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DUAL-PRIMAL FETI METHODS FOR INCOMPRESSIBLE
STOKES AND LINEARIZED NAVIER-STOKES EQUATIONS

JING LI*

Abstract. In this paper, a dual-primal FETI method is developed for solving incompressible
Stokes equations approximated by mixed finite elements with discontinuous pressures in three di-
mensions. The domain of the problem is decomposed into non-overlapping subdomains, and the
continuity of the velocity across the subdomain interface is enforced by introducing Lagrange multi-
pliers. By a Schur complement procedure, the indefinite Stokes problem is reduced to a symmetric
positive definite problem for the dual variables, i.e., the Lagrange multipliers. This dual problem
is solved by a Krylov space method with a Dirichlet preconditioner. At each step of the iteration,
both subdomain problems and a coarse problem on a coarse subdomain mesh are solved by a direct
method. It is proved that the condition number of this preconditioned dual problem is independent
of the number of subdomains and bounded from above by the product of the inverse of the inf-sup
constant of the discrete problem and the square of the logarithm of the number of unknowns in the
individual subdomain problems. Illustrative numerical results are presented by solving lid driven
cavity problems. This algorithm is also extended to solving linearized non-symmetric Navier-Stokes
equation.
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1. Introduction. The finite element tearing and interconnecting (FETI) meth-
ods were first proposed by Farhat and Roux [?] for elliptic partial differential equa-
tions. In this method, the spatial domain is decomposed into non-overlapping subdo-
mains, and the interior subdomain variables are eliminated to form a Schur problem
for the interface variables. Lagrange multipliers are then introduced to enforce conti-
nuity across the interface, and a symmetric positive semi-definite linear system for the
Lagrange multipliers is solved by using a preconditioned conjugate gradient (PCG)
method. This method has been shown to be numerically scalable for second order
elliptic problems if a Dirichlet preconditioner is used. For fourth-order problems, a
two-level FETI method was developed by Farhat and Mandel [?]. The main idea
in this variant is that an extra set of Lagrange multipliers are used to enforce the
continuity at the subdomain corners in every step of the PCG algorithm. A simi-
lar idea was used by Farhat, Lesoinne, and Pierson [?] to introduce the Dual-Primal
FETI (FETI-DP) methods in which the continuity of the primal solution is enforced
directly at the corners, i.e., the values of the degrees of freedom at the vertices of the
subdomains remain the same. In [?], the FETI-DP methods were further refined to
solve three-dimensional problems by introducing Lagrange multipliers to enforce con-
tinuity constraints for the averages of the solution on interface edges or faces. This set
of Lagrange multipliers, together with the corner variables, form the coarse problem
of this FETI-DP method. This richer, primal problem is necessary to obtain satis-
factory convergence rates in three dimensions. Mandel and Tezaur [?] proved that
the condition number of a FETI-DP algorithm grows at most as C(1 + log(H/h))?
for two-dimensional second order and fourth order positive definite elliptic equations;
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here H is the subdomain diameter and h is the element size. Klawonn, Widlund
and Dryja [?] proposed new preconditioners and proved that the condition numbers
can be bounded from above by C(1 + log(H/h))? for three-dimensional problems;
these bounds are also independent of possible jumps of the coefficients of the elliptic
problem.

In [?], we developed a dual-primal FETT method for the two-dimensional incom-
pressible Stokes problem and proved that the condition number is bounded from above
by C(1 + log(H/h))?. In this paper, we will extend this algorithm to solving three-
dimensional incompressible Stokes problem, give the same condition number bound,
and prove the inf-sup stability of the coarse level saddle point problem, which ap-
peared as an assumption in [?]. We also extend our algorithm to solving linearized
non-symmetric Navier-Stokes equations.

2. FETI-DP algorithm for Stokes problem in three dimensions. We are
solving the following Stokes problem on a three-dimensional, bounded, polyhedral
domain (2,

—Au+Vp = f, inQ
—V:u = 0, inQ (1)
u = g, ondQN,

where the boundary velocity g satisfies the compatibility condition | 98 n=0.
The domain 2 is decomposed into N non-overlapping polyhedral subdomains
Q% of characteristic size H. T = (U9Q#)\0Q is the subdomain interface and '/ =
00 N O is the interface of two neighboring subdomains ¢ and /.
We first consider incompressible Stokes problems on two subdomains with a com-
mon face ',

—Au'+Vpt = fi, inQF
-V-ul = 0, inQf
u' = gt ondNNIN!
g—ﬁ: —pin? = X, onI¥,

—Aw +Vp =fi, inQJ
-V-w =0, inQ
u’ on 90 N oY

au? i \j ij
a7 — P =N, onTl%,

I
R
“&).

where A\¥ + M = 0. We now form subdomain discrete problems by using an inf-
sup stable mixed finite element method on each subdomain. We denote the discrete
finite element space for the pressures, with zero average on the subdomain Q¢, by H}.
II; = Hfil I1% is the corresponding product space. The space of constant pressure
on each subdomain is denoted by Ily. We denote the discrete finite element space
for the velocity components on Qf by W"(Q?), which is decomposed as W"(Q) =
Wi @ WL, Wt is the interior velocity part, which equals zero on T' N Q¢ and Wi
is the subdomain boundary velocity part. Wy = [[~, Wi and Wr = [[~, Wi are
the corresponding product spaces. We note that a function in the space Wr are not
required to be continuous across the interface I'. We define a subspace Wr of Wr,
which is given by

Wr =Wn & Wa,
2



where the primal subspace Wi is spanned by the subdomain vertex nodal finite
element basis functions 8y and the cutoff functions fgix and 6x:; associated with all
the edges and faces of the interface I'. f¢ir and 67i; equal 1 at each node of the edge
&% and the face F¥, respectively, and vanish at all other nodes of I'. W4 is the dual
part of the velocity space, and it is the direct sum of local subspaces W , which are
defined by

L= {w e Wh:w(Vi) =0, Weu =0, Wz =0, VWV EF Fil c 90},  (2)
with Wgeir and W ri; defined by

ff,-]- wdx
f]_.ij dx

Using these notations, we can decompose the discrete velocity and pressure space
of the original problem (1) as follows:

, and Wxi; =

W =W;®dWpodWa,

=T, @T,.

If we further introduce a Lagrange multiplier space A to enforce the continuity of
the velocities across the subdomain interfaces, we then have the following discrete
problem: find a vector (ur,pr,um, po,ua,A) € (W, Iy, Wi, Ilg, Wa, A) such that

A[] B}} A%I-'I 0 AzI 0 uyr f[

B;y 0 Bm 0 Bja O DI 0

AHI B?H AHH Bg’H Azl‘[ 0 ujg _ fH (3)
0 0  Bon 0 0 0 Do 0 ’

AAI B?A AAH 0 AAA BZ ua fA
0 0 0 0 Ba 0 A 0

where the matrix By is constructed from {0, 1, —1} such that the values of ua coincide
across subdomain interface I' when Baoua = 0. In this article, we will exclusively work
with fully redundant sets of Lagrange multipliers, i.e., all possible constraints are used
for each node on I'. The matrix BZ then has a null space and to assure uniqueness
it is appropriate to restrict the choice of Lagrange multipliers to range(Ba), i.e., for
any A € A, there is a wa € Wa, such that A = Bawa. We also note that we are
not requiring the pressure to be continuous across the subdomain interfaces in our
algorithm.
By defining a Schur complement operator S by

AII B}} A%I 0 AZI uy 0

Brr 0 Bm 0 Bra J 0

Anr Bjy Amn By Alp unp (=] 0 , (4)
0O 0 Bm 0 0 o 0

Aar Bfn Aan 0 Aaa ua Sua

solving linear system (3) is reduced to solving the following linear system

(£ 5)(5)-(5)
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By using an additional Schur complement procedure, the problem is finally reduced
to solving the following linear system with the Lagrange multipliers A as variables:

BAST'BiX = BASTUf. (6)
Our preconditioner is DBaSaBX D, with Sa defined by
A[[ B}} A£I uy 0
B]I 0 BIA pPr = 0 . (7)
Anr B?A AAn ua Saua

D is a diagonal scaling matrix. Each of its entries corresponds to a Lagrange multiplier
and is given by pf(z) at the interface point z. uf(z) is the pseudoinverse of the
counting functions p(z) on the interface I': at any node z € T, u(z) equals the
number of subdomains shared by that node, and u!(z) = 1/u(=).

We have now formed the preconditioned linear system

DBASABYDBAS™BEI)N = DBASABYIDBAS ! f , (8)

which defines our FETI-DP algorithm for solving the incompressible Stokes problem
(1).

When we use a Krylov subspace iterative method to solve equation (8), both Sa
and S—' are always applied to vectors in the space BEDBAWA. Therefore, we just
need to prove that both Sa and S—! are symmetric positive definite on the space
BIDBAWa,, in order to establish that a conjugate gradient method can be used to
solve the linear system (8).

The following two lemmas can be found in Klawonn et al [?].

LEMMA 1. The operator BXDBa preserves the jumps in the sense that for any
wa € Wa 5

BABZDBAWA (;L') = BAWA (.73)

LEMMA 2. For any wa € Wa, BZDBAWA € Wa.

LEMMA 3. S is symmetric, positive definite on the space Wa.

Proof: Tt is easy to see, from its definition (4), that S is symmetric. We next
just need to show that (Sua,ua) > 0, for any nonzero function un € Wa. For any
given function up € Wa, we can always find a vector (uy,pr, um,po) such that the
equation (4) is satisfied. Therefore,

(S’uA, uA) = uzguA
T

uy A[[ B}} A%I 0 A£1 uy
DI Bir 0 Bm 0 Bja DI
= usg AHI BIIFH AHH B(?H AgH uyr
Do 0 0 Box O 0 Do
ua Aar B}y Aan 0 Aaa up
us r AI[ A%;I AXI uy
= un Anr Amn  ALg un
up Aar Aanm Aaa ua
+2<pI>T<BII Bm BIA) :é +(PI)T(0 0)(101)
Do 0 Bon O Do 0 0 Do

ua
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T

uy AII A%;I AzI uy
= up Anr Amn  ALg un ;
up Aar Aan Aaa up

where the last equality results from BII“I + BIHuH + BIAUA =0 and BOHuH = 0,
because the vector (ur,py,umn, po, ua) satisfies equation (4) . Since the matrix

Arr Ay Al
Anr Ammn ALXgn
Aar Aanm  Aaa

is just a symmetric, positive definite discretion of a direct sum of three Laplace oper-
ators, we find that (Sua,ua) > 0, for any nonzero function uy € Wa.
O

In order to prove that Sa is symmetric, positive definite on the space B DBAW a,
we will make an assumption on the meshes next to each edge. Let ns; be a node on
the edge £ and ¢, its nodal basis function. Let A% be the area of the intersection
of the support of @5 with the face 7, and I be the length of its intersection with
the edge £%*. We assume that A% /I** is independent of s, i.e., there is a constant
¢ guch that A% /Ik = ¢#*+i ¥s. With this assumption, we can prove that

LEMMA 4. Sa is symmetric, positive definite on the space B DBAW .

Proof: We first need to show that S is well defined on the space B DBAW . We
see, from its definition in equation (7), that to apply Sa to a vector B DBawa, with
wa € Wa, we need to solve subdomain incompressible Stokes problems with Dirichlet
boundary data given by BXDBAWA. For these subdomain Dirichlet problems to be
well posed, the boundary data BX DBawa has to satisfy the compatibility condition,

Jsqi (BEDBawa)' -1 = 0, for each subdomain Q. We have

Jooi (BEDBawa)' - n | ,

= Z}'UEBQ" (ff‘ij (BZ‘DBAWA)l ‘N + Zgije]:ij fd;'cj (BZDBAWA)Z . n]:ij)

= Yricoai ([ri (BZDBAWA)Z "N+ Y e g €0 Jeu (BgDBAWA)z D
e

where 87 is the strip of finite element mesh on the face F* next to the edge £%*. Since
BIDBawa € Wa, we have [,.; (BXDBawa)' = 0 and [, (BXDBawa)' =0,
VFi £k C 90F, therefore

/ (BXDBawa)' -n=0.
2194

By arguments similar to those in the proof of Lemma 3, we find that Sa is
symmetric positive definite on the space Wa.
O
When we use a preconditioned conjugate gradient method, or GMRES, to solve
the linear equation (8), we need to apply both Sa and S—! to a vector in each
iteration step. Multiplying Sa and a vector requires solving subdomain incompressible
Stokes problems with Dirichlet boundary conditions, and multiplying S~ by a vector
requires solving a coarse level saddle point problem, as well as subdomain problems.
In [?], we made an assumption about the inf-sup stability condition of this coarse level
problem. In the next section, we will give a proof of this inf-sup stability condition
in the three-dimensional case. This proof is also valid for the two-dimensional case.
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3. Inf-sup stability of the coarse saddle point problem. We know, from
the definition (4), that to find a vector un = S~'wa € W, for any given wa € Wa,
requires solving the following linear system

A[] A£1 B}} A%I 0 uyr 0
Aar Aaa BfA Ag A 0 ua WA
Brr Bia 0 Bm 0 pr |=1]0 9)
AHI AHA B}-’H AHH B(?H ugy 0
0 0 0 BOH 0 Po 0

In our FETI-DP algorithm, we solve this linear system by a Schur complement pro-
cedure. We first solve a coarse level saddle point problem

(5 5)()-(5): o

here Sy will be defined in (12). We then solve the independent subdomain incom-
pressible Stokes problems

A A%, BT, uz 0 Afy;
AAI AAA B?A UuA = WA - A17—£A uyj. (11)
Brir Bia 0 DI 0 Bm

In equation (10), Sy is defined by:

-1

A AX; Bf Al
Bir Bia 0 Bm

St correspopds to a discrete Stokes harmonic extension operator SHpg : W —
1Y, WH(Q7), defined as follows: for any given primal velocity uy € Wiy, find

SHupur € [[N, W"(Q) and p; € J[~, IT¥ such that on each subdomain Qf,i =

1,...,N,
a(SHmum, v +b(vi,pt) = 0, Vvie WH(Q)
b(SHHllH, q}) = 0, Vq} e T (13)
S’Hrﬂln = ujx.

If we define an inner product sp(.,.), corresponding to the Schur operator S, on
the space Wiy, as

SH(UH,UH) = uﬂSnuH = a(SHnuH,S"H,nuH), Yup € WH, (14)

then the matrix form of the coarse problem (10) can be written in the following
variational form: find uy € Wy and py € Il such that,

{ sm(um, vir) + b(vir,po) = < fm,vm >,Vvn € Wn (15)

b(ur, go) = 0,VYqgo € .

We now give an inf-sup stability estimate for this coarse problem. We first intro-
duce an inner product sr(.,.) which is defined by

SF(WF,WF) = a(SHFWF,SHFWF), Vwr € WF, (16)
6



where SHy : Wi — [[%, WA(Qf), is the standard Stokes harmonic extension. We
have the following lemma, from Pavarino and Widlund [?],
LEMMA 5. The saddle point problem

{ SF(UF,VF) +b(VF,p0) = < fp,Vr >,VV1‘* € Wp (17)
b(ur, go) = 0,Vqgo € Ilo,
is inf-sup stable, i.e., there is a constant Br such that
b(wr, go)?
sup AVED s 20012, vy € T, (18)

WI‘EVVI‘ st (WF’ WF)

We also need the following lemmas. Lemma 6 can be found in Klawonn et al [?]
and Lemma 7 in Bramble and Pasciak [?].

LEMl\fIé 6. Define an interpolation operator Ity : Wr — Wi, such that for all
wr(x) € Wr,

Irpwr(x) = ZWF(V”)OV“ (z) + Z weirOgir () + Z Wi 075 (). (19)
yil gik Fij
We then have
\Ienwr 22y < C( + log(H/h))[wr 2121y, YWr (%) € W, (20)

where C is a constant independent of H and h.
LEMMA 7. There exist positive constants C1 and Cs, such that

C18%sr(wr, wr) < [Wr[3/2r) < Cosr(Wr, wr), Ywr € Wr, (21)
and
C18%su(wir, win) < [Wit[3 /2y < Cosu(wi, wn), Ywn € W, (22)

where [ is the inf-sup stability constant of the subdomain Stokes problem, and the
inner products sr(.,.) and sn(.,.) are defined in (16) and (14), respectively.
We now prove the inf-sup stability for the coarse saddle point problem (15).
THEOREM 1.

b(wH7q0)2 2 2 -1 2
sup — ————= > CB Br(1+1log(H/h)) "|lgollz>, Vao €Io,  (23)

wn€Wp SII (WH7 WH)

where B is the inf-sup stability constant of the subdomain Stokes problem solver, and
Br is the inf-sup stability constant of Lemma 5.
Proof: Given the inf-sup stability estimate in Lemma 5, we know, from Fortin [?],

that there exit an interpolant Iy : H'/2(T') — Wr, satisfying

{ b(Ilrw — w, qo) = 0,Vqo € I

sr(Ilrw, IIrw) < E%lwl?fl/?(l“)' (24)

In order to prove (23), we just need to show that there exists an operator Il :
H'/?(T') - Wiy, such that

b(IInw — w,qo) = 0,Vgo € Ilo
su(Ilnpw, IIpw) < Cﬁg(l + log(H/h))|W 32 ry-

7
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By defining Iy = Iy o Iy : H'/?(T') — Wiy, we have

b(IInw — W, qo) b(Irn(Ilrw) — w, qo)

b(Irn(Irw) — IIrw, o) + b(Ilrw — w, o)
Zi q(’) sz diV(IpH(HrW) — HFW)

2296 Jyq: Irnwr — wr) - n

(; 285 Jao: Wa - m

I

I

At the same time, by using Lemma 6, Lemma, 7, and equation (24), we have

ST1 (HHW, HHW) G(SH(HHW), SH (HHW))

o T T,

C% |IFH (HFW) |§{1/2(F)

Cgz (L + log(H/ M) T w |32
C’% (1+log(H/h))sr (TIrw, IIrw)

C gz (1 + Log (/1)) w2

A VA VAN I VAN

Therefore, equation (25) holds and (23) is proved.
0O

4. Condition number estimate in the three-dimensional case. In this
section, we give a proof of the condition number bound of the preconditioned linear
system (8).

LEMMA 8. |WA|§ < |WA|SA,VWA € Wa.

Proof: We know, from the definitions of S and Sa, that

WXS'WA = min min max{vTKv | va = wa and Bogvn =0}, (26)
vi v pr

and

WKSAWA = min max{vTKv | va = wa and vip = 0}, (27)
VI pr

for any wa € Wa, where K and v denote

Air Bfp Al AL Vi
K= By 0 Bm Bia v=| P
AHI B?H AHH AZH ’ Vi1
Aar BY, Aan Aaa va

Since vi; = 0 satisfies the constraint Borvin = 0 in equation (26), it is easy to see
that wiSwa < whSawa for any wa € Wa.
O
We now prove a key estimate,
LEMMA 9. For all wa € Wa, we have,

1

|BADBawal3, < Cﬂz

(1+log(H/h))*lwal},

where C' > 0 is independent of h, H. B
Proof: We consider an arbitrary wa € Wa. In order to compute its S—norm,
we determine the element w = wi + wa € W, wip € Wy, with the correct minimal
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property. Then, by the definition of S, we know that |[walg = |[W|s.. We next note
that we can subtract any continuous function from wa without changing the values
of BKDBAWA; thus, BZDBAW = BgDBAWA.

We introduce the notation (Vi)izl,---,N = BZDBAW. Then, we have to estimate

N

T 2 T 2 |2

|BADBaw(S, = |BADBaw[}, =) |V 2
i=1

We can therefore focus on the estimate of the contribution from a single subdomain

Q. By noticing that v’ vanishes at the subdomain vertices, we can separate the
function v* by using the cutoff functions §:; and Ogix,

vi= M IMOpavi)+ ) IMBeavh).
FiiCoar EikCoqi
By using a similar procedure as in Lemma 9 of Klawonn et al [?], we can show that
i

H . :
% < C(l—}—log(ﬁ))z |Wz|§11/2(agi) + Z |W]|§11/2(am) )

vl <
r
JEN?

where AN is the set of indices of all the subdomains which surround the subdomain
Q. Then, by using Lemma 7, we have we have

1
82

Vi < O+ 1og(3) [ Wil + 3 WP
JEN
O
THEOREM 2. The condition number of the preconditioned linear system (8)
is bounded from above by C'/%(l + log(H/h))?, where C is independent of h,H.
Proof: We will show that

1 H
MMIN<ATFAL 05(1 + logﬁ)z)\TM)\ ,YAEA,

where M~' = DBASABAD,F = BAS~'BJ.
Lower bound: From Klawonn et al [?], or Mandel and Tezaur [?], we have

2
0AVAEWA |VA|§

From Lemma 2, we know that BZDBAWA C Wa, and from Lemma 1 we know that
BABIDBawa(z) = Bawa(z), for any wa € Wa. We also know from Lemma 8
that |wa|g < |wals, for all wa € BADBAWA. Therefore, we have

ATEN > max |()‘JBAB£DBAWA)|2 m |()‘7BAWA)|2 )
T 0AWAEWA |B£DBAWA|% T 0AWAEWA |B£1)BAWA|QSA

Since for any v € A there is a wa € Wa such that v = BAwa, we have
AR _ AP
|B£DV|2SA (M~1v,v)
9
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It follows that AT M X < ATFX by choosing v = M.
Upper bound: Using Lemma 9, we have

AN EN = max M
0£VAEWA |VA|2§
< C%(l + log%)z o;evA%XwA %
- C%(l + log%)zo;é‘{iaewa (M(l);fj:,A;ZAVA)
= C%(l + log%)2 max %
- C%(l +log%)2(M)‘=)‘) :

O

5. Extension to solving linearized Navier-Stokes equations. When we
solve the nonlinear Navier-Stokes equations using a Picard iteration, we need to solve
a linearized problem in each iteration step:

—pAu+(a-Viu+Vp = f,
-V-u = 0, (28)
usn = g

where p is the viscosity, V-a =0, and fasz g-n=0.
To solve this non-symmetric equation, the bilinear form [;(a - V)uv, on each
subdomain €2*, is written as the sum of a skew-symmetric term and an interface term:

(% /Qi(a-V)uv— %/Qi(a-V)Vu) +%/89i(a'n)uv- (29)

By doing this, we are identifying the correct bilinear form describing the action of
the above non-symmetric operator on any given subdomain Q¢ and the subdomain
incompressible Navier-Stokes problem appears as:

—pAu+(a-V)u+Vp = f, in
~-V-u = 0, in @
u = g, ondQnNoNt (30)
,ug—ﬁ —-pn—%2u = A, on ri .

The idea to write the non-symmetric bilinear form [o;(a- V)uv as in (29) has
been used by Achdou, Le Tallec, Nataf, and Vidrascu [?] to solve advection-diffusion
problems.

After discretizing the subdomain problems (30), we can use the same procedure as
in section 2 to design a FETI-DP algorithm. The conjugate gradient method cannot
be used here to solve the preconditioned linear system, because this problem is no
longer symmetric positive definite; instead we use GMRES.

6. Numerical experiments. In [?], we gave some numerical results to demon-
strate the scalability of the FETI-DP algorithm for solving two-dimensional incom-
pressible problems. Here we first describe a three-dimensional experiment. We are
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solving a lid-driven cavity problem in the domain = [0,1] x [0, 1] % [0, 1], with £ = 0,
the boundary conditions g = (1,0,0) on the face z = 1 and g = 0 elsewhere on the
boundary. We use GMRES to solve the preconditioned linear system (8), as well as
the non-preconditioned linear system (6). The initial guess is A = 0 and the stopping
criterion is ||rg||2/||rol|2 < 107¢, where ry is the residual of the Lagrange multiplier
equation at the kth iteration. In our experiments here, we are only using the face
average constraints in our primal velocity space to make the algorithm simpler.

Figure 1 gives the number of GMRES iterations for different number of subdo-
mains with a fixed subdomain problem size H/h = 4, and for different subdomain
problem size H/h with 4 x 4 x 4 subdomains. We see, from the left figure, that the
convergence of the augmented FETT-DP method, with or without a preconditioner, is
independent of the number of subdomains, and that the preconditioned version needs
fewer iterations. The right figure shows that the GMRES iteration count increases,
in both the preconditioned and the non-preconditioned cases, with a increase of the
size of subdomain problem, but that the growth is much slower with the Dirichlet
preconditioner than without.

In Figure 2, we are using two-dimensional numerical results to verify that the
inf-sup stability condition for the coarse level saddle point problem is consistent with
our estimate in Theorem 1. We can see, from the left figure, that S¢ has a lower
bound which is independent of the number of subdomains, and that 1/ Bc? appears
to be a linear function of log(H/h), from the right figure.

We also test the FETI-DP algorithm for solving the linearized non-symmetric
Navier-Stokes problem (28) in a two-dimensional domain Q@ = [0,1] x [0,1], with
f = 0, the boundary conditions g = (1,0) on the upper side y =1 and g = 0 on the
three other sides, and the convection coefficient

o ( 2(2y — 1)(1 — (22 — 1)?) )
22z —1)(1-(2y—1)?) )

cf. Elman, Silvester and Wathen [?]. We can see, from the left graph in Figure 3, that
the convergence of GMRES method becomes even better for both the preconditioned
and the non-preconditioned algorithms when we increase the number of subdomains.
The right graph shows that the convergence of the non-preconditioned algorithm
depends on linearly on H/h and that the convergence of the preconditioned algorithm
appears to depend on H/h in a logarithmic manner.

Figure 4 shows how the convergence of the preconditioned algorithm depends on
the Reynolds number. The bigger the Reynolds number, the slower the convergence.
These experiments are carried out for the case of 10 x 10 subdomains and H/h = 16
with different Reynolds numbers.

Acknowledgments. The author is grateful to Olof Widlund for proposing this
problem and giving many helpful suggestions.
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