ITERATIVE SUBSTRUCTURING PRECONDITIONERS FOR
MORTAR ELEMENT METHODS IN TWO DIMENSIONS
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Abstract. The mortar methods are based on domain decomposition and they allow for the
coupling of different variational approximations in different subdomains. The resulting methods
are nonconforming but still yield optimal approximations. In this paper, we will discuss iterative
substructuring algorithms for the algebraic systems arising from the discretization of symmetric,
second order, elliptic equations in two dimensions. Both spectral and finite element methods, for
geometrically conforming as well as nonconforming domain decompositions, are studied. In each
case, we obtain a polylogarithmic bound on the condition number of the preconditioned matrix.
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1. Introduction. Since the late nineteen eighties, interest has developed in non-
overlapping domain decomposition methods coupling different variational approxima-
tions in different subdomains. The mortar element methods, see [10], have been de-
signed for this purpose and they allow us to combine different discretizations in an op-
timal way. Optimality means that the error is bounded by the sum of the subregion-by-
subregion approximation errors without any constraints on the choice of the different
discretizations. One can, for example, couple spectral methods of different polynomial
degrees, or spectral methods with finite elements, or different finite element methods
with different meshes. Also, the domain partitioning need not be geometrically con-
forming, i.e. the intersection of the closures of two neighboring subdomains may only
be parts of certain edges of these subdomains.

The basic ideas of the mortar method can be outlined as follows: the skeleton of
the decomposition (i.e. the union of the subdomains interfaces) is itself partitioned
into mortars. Each mortar is an entire edge of one of the subdomains; the mortars
are disjoint open sets. The chosen local discretizations may force the method to be
nonconforming and we only impose a type of weak continuity. For each subdomain €2
and for each nonmortar side T"J, of 9Q, we introduce a carefully chosen discrete space
leh of functions supported on Fi. Weak continuity, in this context, then means that

the L%Fi)—projection of the jump across Fi into the space WIZh vanishes. In the first
version of the mortar method, strong continuity constraints were also imposed at the
vertices of the subdomains but this turned out not to be necessary. A second version
of the mortar method, developed and analyzed by Ben Belgacem and Maday [6],[7],
does not require such constraints. In particular for problems in three dimensions, the
second version offers important advantages over the first and in what follows, we shall
exclusively work with this more recently developed method. We note that, in a finite
element context, similar nonconforming methods have been studied by Le Tallec et al

* INSA Rennes, 20 Av des Buttes de Coesmes, 35043 Rennes, France and CMAP, Ecole Poly-
technique 91128 Palaiseau, cedex France. Electronic mail address: achdou@cmapx.polytechnique.fr

t Laboratoire ASCI, Batiment 506, Université Paris Sud, 91405 Orsay and Université Paris 6,
Paris, France. Electronic mail address: maday@ann.jussieu.fr

!} Courant Institute of Mathematical Sciences, 251 Mercer St, New York, NY 10012. Electronic
mail address: widlund@cs.nyu.edu. URL: http://cs.nyu.edu/cs/faculty/widlund/index.html. This
work was supported in part by the CNRS, while this author was visiting Université Paris 6, in part by
the National Science Foundation under Grant NSF-CCR-9503408, and in part by the U. S. Department
of Energy under contract DE-FG02-92ER25127.



[17],[18],[19] .

Mortar element methods offer many advantages:

e They increase the portability of spectral methods.

e In the context of finite elements, they provide flexibility in the construction of
the mesh. For example, they may be used in some cases to avoid updating the finite
element mesh (sliding meshes [5]) or, on the contrary, to simplify the adaption of the
meshes ([9]).

e They are well suited for parallel computing.

There has already been several implementations of the mortar methods, among
them [5] with sliding meshes, [23] for spectral element methods, [18] for a noncon-
forming finite element method for elasticity problems, and [4] for the Navier Stokes
equation.

In the present paper, we propose algorithms for solving the algebraic linear sys-
tems arising from the mortar methods. After the elimination, in parallel, of the degrees
of freedom internal to the subdomains, there remains to find the traces of the solution
on the subdomain boundaries, i.e. to solve the Schur complement system. In our
methods, we work only with the true unknowns of the Schur complement systems, i.e.
the unknowns associated with the mortars and the vertices of the subdomains. The
method presented here can be viewed as a generalization of an iterative substructuring
algorithm first introduced by Bramble, Pasciak, and Schatz [12], for two-dimensional
conforming discretizations and which was reinterpreted in terms of block-Jacobi meth-
ods in [14]. The algorithm consists essentially of decomposing suitably the discrete
space into a direct sum of subspaces in such a way that the related block-Jacobi pre-
conditioned conjugate gradient method has a satisfactory rate of convergence. Each
mortar can be associated in a natural way with a subspace but, in addition, a global
coarse space must be included to deal with the low frequency error. We obtain a
polylogarithmic bound, in terms of the local number of unknowns, on the number of
iterations required for a given accuracy. Therefore, the proposed algorithm can be
considered as almost perfectly scalable.

Other algorithms have also been proposed. A Neumann-Neumann preconditioner
is studied and tested in [18]. In [2], a saddle point formulation of the system, as in
[6], is considered, and iterative methods based on a certain class of preconditioners is
suggested. A saddle point algorithm for which the internal degrees of freedom need
not be eliminated is proposed in [16]. In [13], a method based on a hierarchical basis
representation, cf. [24], is developed and tested for low order mortar finite elements
and geometrically conforming decompositions of the regions.

In three dimensions, the preconditioner of this paper is not satisfactory, and an-
other iterative substructuring method has been proposed; see [22]. In addition, an ex-
tension of the theory for two-level Schwarz algorithms, using overlapping subregions,
has been completed for the mortar finite element case; see [26].

The paper is organized as follows. In Section 2, a brief review is given of the
mortar finite element method in the geometrically conforming case. An iterative sub-
structuring preconditioner for that case is proposed and studied in Section 3. The
geometrically nonconforming mortar finite element method is discussed in Section 4.
Finally, a generalization to the spectral element method in the geometrically conform-
ing and geometrically nonconforming cases is carried out in Section 5.

2. Mortar Element Methods in the Geometrically Conforming Case.
Let Q be a bounded polygonal domain of IR?, and let {Qk}le be a partition of Q
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into K non-overlapping open quadrilaterals:
Q=Uk O where Q. NQ =0 ifk#L

We malke this restriction to polygonal domains and subdomains only to simplify the
presentation. The domain decomposition is called geometrically conforming if the
intersection of the closure of two subdomains is either empty, a vertex, or an entire
common edge of the two subdomains. For any 1 < k # ¢ < K, let T'gs be the closed
straight segment, possibly degenerate, given by 'y, = Qr N Q. Let us also introduce
V as the set of crosspoints of the domain decomposition which are not on 912, and the
skeleton, defined by I' = Ui<r<e<xlre.

We assume that the subdomains have uniformly bounded aspect ratios but there
is no need to assume that the subdomains form a quasiuniform coarse triangulation.

All what follows concerns the Dirichlet problem for Poisson’s equation

—Au=f inQ,
(1) u=0 on 9%,

but our results hold for any self-adjoint, elliptic, second order operator.

Families of finite element triangulations 7y j are associated with the Qf,1 <k <
K, which we assume satisfy the classical shape regularity assumption on the elements.
We denote by h; the maximum diameter of the elements of 75 . To simplify our
analysis, we also assume that the meshes are quasiuniform for each subregion ;. We
recall that quasiuniformity for a triangular mesh means that there exist two positive
constants 7 and ¢ such that for all triangles 7" of T 5, Thy < hy < opp. Here hp is
the diameter of T', and pr the diameter of the circle inscribed in 7. Let Xgp be the
related space of piecewise linear continuous finite element functions which vanish on
0Q. Denoting by T'r; the trace operator from Qg onto 0Qy, we set Xz = Tri Xgp.
The product spaces X, and A, are defined by:

XhE H th Xh = H th.

1<k<K 1<k<K
If |Txs| # 0, we also introduce Xy ¢ p by
Xeon = {(Trkvkh)ww Vip € th} .

Clearly, Xy ¢ 5 is a subspace of the space A?kygyh of the piecewise linear continuous
functions on the corresponding mesh of T'y, (X en = A?k,z,h if T NOQ = ). The
dimension of .;Ek’gyh, denoted by Ng, + 2, equals the number of nodes of 7 , on I'g,.

We note that the meshes need not match at the interface between two subdomains.
Thus, in order to discretize the space H}(f2), we have to introduce, for each 1 < k <
L < K with |Tge| > 0, a space Wk’gyh of Lagrange multipliers used to impose a weak
continuity constraint across I'ys. A choice has to be made since this space of Lagrange
multipliers can be associated with either A?kyg’h or A?g’kyh. One strategy is always to
choose the one of largest dimension, but we emphasize that any other choice can also
be supported by existing theory, and that the same asymptotical error bound results
in all cases.

In the case where the Lagrange multiplier space Wk,z,h 1s based on A?kygyh , let
{¢i},0 < i < Ngg+ 1, be the shape functions of X, j associated with the nodes of
Tie,n on I'yg, with ¢g and ¢, 41 associated with the endpoints of I'y,. Then, Wk,z,h 1s
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F1G. 1. Shape functions of the spaces Xy ¢ p (left) and kagyh (right).

chosen as the space spanned by (o + @1, @2, ..., Biy ooy ONp—1, Ny + PNy, +1); 1t 18 A
subspace of A?kygyh of codimension two. Figure 1 illustrates the construction of Wk,z,h
from A?k,z,hi

It is now possible to define the subspace Y} of X} :

v, = v = (Vin)i<k<ik € Xp : }
PEUVIL< k<< K Yk € Wi, fpu (Trven — Treven)pen =0 [

and the subspace Yy of X}:
Yy = {vh EXp V1< k< < K Vuge, € Wk,z,h, / (Vkh — ven)pnen = 0} ‘
The

Consider an edge Ty, |Tgs| > 0. Assuming that the Lagrange multiplier space kag’h
is built from the mesh Tgp, then the nodes of Tgp NTge\V and Top N Tge\V are called
slave and master nodes, respectively, because the value of v, € Yy at any slave node is
completely determined by the values at the master nodes and crosspoints. Assuming
that |Tge| > 0, then the edge 9 N T'g, is said to be a slave, or nonmortar, and
master, or mortar, edge of Q, respectively, if the space Wk’g’h is based on the mesh
Ten and Tgp, respectively. We denote by Ny the number of degrees of freedom at the
crosspoints of the domain decomposition, and by N,, and N, the number of master
and slave nodes, respectively. Then, the dimension of X} and ), are Ny + N, + N
and Ny + N,,, respectively.
Let a(-,-) : Xn x Xp — IR, be the bilinear form:

K

a(uh,vh) = E Vukh ~Vvkh.
k=1 e

The discretized problem corresponding to (1) is: Find u, € Y}, such that

K
a(uh,vh):Z/ fven, Vvp €Y.
k=1

It is natural to introduce two subspaces which are orthogonal in the sense of this
energy inner product. The first, Xp C X}, consists of functions which vanish on the
interfaces, ie. Xy = {vp € X} : Vk, 1 < k < K,Trgvin = 0}. The other is the
subspace of the discrete harmonic extensions u; € X of up € A}, 1.e. the unique
solution 1y, of

(2)

In order to reduce the size of the problem, it is possible to solve, in parallel, a discrete
Dirichlet problem for each subdomain, i.e. to find u} € X} such that

a(ﬁh,vh) =0, Vv, € Xg,
Ukh = Ukh-

K
Vv, € X7, a(u%,vh)zz fven.
k=178
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Defining the bilinear form sp : X x X — IR, corresponding to a discrete Poincaré-
Steklov operator Sp:

(3) sp(up,vy) = a(ly, Vi),
there remains to find u; € Y; such that
(4) Vvh Eyh, sh(uh,vh) = (f,\?h)—a(uz,ffh).

The solution of (2) is then given by u, = uf, + .

The goal of the next section is to find a basis of Y for which a block diago-
nal preconditioner for S; yields a condition number almost independent of the mesh
parameters.

3. Preconditioners for the Geometrically Conforming Mortar Element
Method. In the following ¢ and C' will denote positive constants uniformly bounded
away from 0 and oo, respectively. They are, in particular, independent of the Hy and
hi, the diameters of the subdomain € and its elements, and in the spectral case, of
the degree of the polynomials.

3.1. Decomposition of the space ). The purpose of this section is to de-
compose the vector space Yy into the direct sum of a coarse space Vg of dimension
Ny (the number of degrees of freedom associated with the crosspoints) and of a fine
space y,{f of dimension Ny, (the number of master nodes):

Y=V ®Vn.
Here
yffIE{UhEyh v, =0 on V}

A few notations will be needed in order to specify the coarse space Yg. Let A be a
crosspoint and let K 4 denote the set

Ka={l<k<K: AecQ}.

It is clear that Ny = E cardinal (K 4). For each crosspoint A, and for each k € K4,
A€V

we define a basis vector e4* € )y, such that,

1. e?’k(A) =1;

2. for all vertices B # A of Qy, e?’k(B) =0;

3. for all £ # k, and for all vertices B of Qy, e?’k(B) =0;

4. eA* is linear on master edges.

For a given crosspoint A € Qy, e?* clearly vanishes on all edges except those

which have A as an endpoint. Let A and B be the endpoints of Tgs, [Txe| > 0. In
the case where I'y, is a master side of 9€, the restriction of e?’k to 'y, 1s the linear

function é%4 with the value 1 at A and 0 at B. The restriction of elA’k to gy 1s the
unique function &%4 ¢ Xy i.n such that

(5) ) gﬁ,k,A(A) — éﬁ,k,A(B) — 0’
Yern € Wekon, fpu (eFA — ek bM) e = 0
5



If conversely, 'y, is a slave side of 98y, the restriction of ef’k to T'ge 1s 0, while

.. Ak . . . - .
the restriction of e, " to I'y, is the unique function ek bA in Xk ¢ such that,

(6)  FEAA) =1, FEAB) =0, Vien € Wien, / A L = 0,
T

The coarse space Yy is defined by
(7) Vg ={etr, AcV ke K)o,

It is clear that the dimension of Vg is Ny.

In what follows, it will be necessary to have accurate estimates of certain Sobolev
norms of the basis vectors of the coarse space V.

LEMMA 1. Let A be a crosspoint and k., £ € Ka, with |Tgs| > 0. Assume that
0Qs, NTye is a slave side of Qi and let E544 be the unique function in Xk o defined
by (6). Then,

(8) €55 o(re,y < OV ha,

(9) Hék’Z’AHHl r < C—l
( kl) —_ \/H’

(10) €554 Lo,y < C.

Proof. Let E be the vector of coordinates of &¥4:4 in the previously described basis
{ﬁbi}OSiSNuH of shape functions of X}, 4, associated to the nodes of 7 , which lie on
[xe. Using the boundary values for é%%4 | we find that the vector £ = (Ey, ..., En,,)T
satisfies:

BE:F,

where F = (—1/2l0,0,...,0)T and

%lol—f-%h X 1l .
sl sl +1) gl

Lo s(li4liy)  glin

oef}
I
|

1 1 1
EZNH—Q 5(11\711@1—2 +lNkl—1)1 glNkz—ll
glNkl—l glNkl—l + §ZNH

Here I; is the length of the i-th mesh interval of I'y,. Since the mesh 7T is quasiuniform,
B is spectrally equivalent to the diagonal matrix D = hi [ and therefore the Euclidean
norm of the vector F is of order 1, since the Euclidean norm of F is of order hy.
Therefore, (8) is proved. The next inequality, (9), now follows by using a well known
inverse inequality for quasiuniform meshes. Finally, (10) is obtained from (8) and (9)
and the Gagliardo-Nirenberg interpolation inequality. O
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REMARK 1. In the same way, we can also prove the same estimates for the
function e&FA — 844 when the side 0Q, N Ty is a master side of Q.

REMARK 2. From (10) and Remark 1, it follows immediately that VA € V,Vk €
KA7

(11) vee{l,...K}, |le**||lLe(an, < C.

Denoting by |.|12,« the product semi-norm on [], ., < HY2(8Qy), it will prove
useful to have bounds of |6A’k|1/27* for any A € V and k € K4. Three cases can be
distinguished:

1. Both sides of Qj adjacent to A are slave sides.
2. Both sides of € adjacent to A are master sides.
3. One side of Q adjacent to A is a slave side, the other a master side.

In the third case, we have the following result.

LEMMA 2. Let A be a crosspoint and let k,£,m € Ka, with |Tg| > 0 and
|ITim| > 0. Assume that 0Q N Tge is a slave side of Q. and that 9k N Tgy is a
master side of Q. Then,

Hy
& sy < O+ log(25)).

Proof. From the quasiuniformity of the mesh 7y, there exists a constant C' such

that for all € € (0,1/2),
(12) lei *Erirz o0, < Chi“le  a-c(o,)-

Let f5™4 and f%%4 be the functions on 9Qy, which coincide with e?’k on I'g,, and
[ge, respectively, and with 0 on 9Qg\Tg,, and and 9Qg\Tre, respectively. Tt is then
clear that at all mesh points which are not vertices,

e?,k = A g pRbA

The semi-norm |fk’m’A|12ql/2_6( can be computed explicitly, because fF™4 is

Q)
piecewise linear; and the following bound is obtained:

m 1 €
(13) oA s a0 < CgHzf :
Tt now follows from (8) and an inverse inequality that
(14) |5 e (o) < OB

Choosing € = (1 + log(g—:))_l and combining (13) and (14), we obtain the desired
result by using (12). O

The next lemma is proved in the same way as Lemma 2.

LEMMA 3. Let A be a crosspoint and let k, ¢ € K 4, with |Tgs| > 0. Assume that
0Qk N Ty is a master side of Q. Then,

H,
2 nany < 01+ log(1).
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It is also possible to prove the following result for the first and second cases:

LEMMA 4. Let A be a crosspoint and let k,£,m € Ka, with |Tg| > 0 and
ITim| > 0. Assume that the sides 0Q NTge and 9Q N Ty, are either both master or
both slave sides of Q. Then,

Ak 2
lej; |H1/2(6Qk) <C.

Proof. The result is very easy when both sides are master sides, because e?’k

is then continuous and piecewise linear on 9. When both sides are slave sides, it
follows from Lemma 1 that

Ak
llek ||%2(6Qk) < Chy,

and the proof is completed by using an inverse inequality. O
Lemmas 2-4 can be summarized in the following corollary:
COROLLARY 1. Let A be a crosspoint and let k € K 4. Then,

H,
¥ 130 < C}?,%f(l + log(h—z)).

3.2. A block-Jacobi preconditioner. ~
Let S be the matrix of S, in the new basis described above. The matrix S can be
written as

(15) S = <*~§;h S ) :

ShH Suu

In order to design a preconditioner for S, we replace the block Shi by 0, and the
block Spp by 1ts block diagonal part with one block for each mortar. The resulting
preconditioner is S with

& (Swn 0
(16) S = < 0 SHH) .
In this section, we will develop bounds for the condition number of the preconditioned
matrix S™'S. For that purpose, the following well known result will prove useful:
There exist two constants ¢ and C' such that

Yon € Yn,  clvalijo. < sn(vn,vn) < Cluali/g.;

see, e.g., [11], in particular the discussion of an extension theorem for finite element
spaces. Let 5, be the bilinear form corresponding to the matrix S. The following
lemma gives an upper bound for the eigenvalues of S=1S:

LEMMA 5. There exists a positive constant C' such that

Yo, € Vi, sn(vn,vn) < Csp(vp,vp).
Proof. Consider an element vy € Vp,. There then exists a unique pair (vhH,vH) €
y{f x Vg such that

(17) vp :vhH—i—vH.

8



Obviously,
(18) sp(vn,vp) < 2(5h(vH,vH)—I—Sh(vhH,vhH)).

Observing that for any # € T, there is a uniform bound on the number of subspaces
with elements which do not all vanish at z, we deduce that there exists a constant C'
such that

Sh(vhHa vhH)) <C E Sh(vhlekw vhH|Fu)) = Céh(vhH:vl?)'
1<k << K;|Tre| >0

In addition,

Sp(ver,ve) = sp(ve, vE).

To find a lower bound for the eigenvalues of S=15 the following lemma is needed:
LEMMA 6. There exists a constant C' such that

H
Yop € Vi, Sna(vm,vg) < C max(1+ log(—z))Qsh(vh,vh),
LEK 4 hz

where vy € Y 1s the coarse space component of vy,.
Proof. Consider a vector vy € Yy, and let (vhH,vH) € y,ff x Yg be given as in
(17). Then,

sn(va,vr) < Clomlln. = C Y verlinspa.)-
1<k<K

Consider specifically the subdomain £, and denote by {Vi}lsiSvaé the vertices of 92,
and by {Qki}lsisN\;,z the subdomains adjacent to Q,. We choose a numbering such
that Vi < Ny ¢, I'y , joins the crosspoints V; and Viy.

It is clear that

VH g, = Z Wh(Vi)ef“z-l- Z E vkh(Vi)ef“k-

1<i<Ny,e 1<i<Ny ¢ kEK(V;:);|Tke| >0

Denote by wyp the continuous piecewise linear function on 9€2, which interpolates
vgp at the V;. We can then write vy as

(19) Vg = Wig + Z Z (Ukh(vz’) i 'L’Zh(Vi))éz’k’v’.
1<i<Ny . kELER(VS);

T'xs 1s a slave side of 8§,

Here é5%:Vi is defined by (5). Proceeding exactly as in [12], we can prove that

H,
|WH|12L11/2(390 <O+ IOg(h_g)) |Wh|12ql/2(am)'

In addition, since vy € Yy, for [Tge| > 0,

< Vth 2T, =< Vkh >Thss
9



where < wvgp >r,, denotes the mean value of vgp over the edge T'ye. Therefore,

Vie{l,...,Ny.}, Vk # £ € K(V;) such that Ty, is a slave side of 0€,
ven (Vi) — ven (Vi) = (vsn (Vi) — < vkn >14,) + (< ven >14, —vern (Vi)

But, see, e.g., [15],
< 2 Hk 2
(20) [osn (Vi) = <vkn >ry, [7 < OO +log(7) [venlmaans):
and
Vi ) 2 < 01+ log( 2 2
lven(Vi)= < ven >y, |7 < C(1+108(37)) [venliasaan,)-

In addition, from Lemma 3,

~0.k Vi |2
B

< C(1 +log(2Ly),

202 (Ts) hy

which gives the desired result since Q; has a uniformly bounded number of neighbors.
O

We can now prove a lower bound for the eigenvalues of S-18:

THEOREM 1. There exists a constant C such that

H,
Yop € Vi,  Sn(vh,vn) < le?x(l +log(h—:))2sh(vh,vh).

Proof. Consider a vector vy, € Vj, and let (v vg) € Y x Vi be given by (17).
It is clear that

§h(vhHa UhH) = Sp(vh —vH,vh — vH)

2 2
< C E VEp — U + |vgp, — v .
> | kh kHlH;ég(Fu) | Lh ZHlH;ég(FH)
1<k << K;|Tre>0

We now focus on the term |vgp — 1)11€H|12q1/2 . Using exactly the same arguments as
00

(T'ke)
n [12],[15], it is possible to bound this expression by

Hk HZ
cl+ log(a))zwkhlip/?(ru) +C(1+ log(h_z))2|vfh|12ql/2(ru):
which completes the proof of the theorem. To make our paper more self contained, we
will outline a proof of this result.

Assume that Ty, is the segment (0, /). By the definition of the Héé2(ru)—norm,

_ 2
)= |vkn — ka|H1/2(FH)+

2
Vkh VEH | ;1/2
| |Hué (Tke

(21) /H |Ukh(;l‘) — ka(I)|2dm+ /H |'L’kh(33) — UkH(x)Pd;p,

=0 T =0 H-—x
Clearly,

|vgn — ka|12q1/z(pu) < |vgn — ka|12ql/2(3Qk) < 2|U1€h|i[1/2(aﬂk) + 2|URH|2H1/2(3Qk)1
10



and 1t is possible to use Lemma 6.

Since the last two terms of (21) are very similar, we concentrate on the first. As
in [15], this integral is split into two, over (0, hg), (hg, H), respectively. Tt is easily
seen that

H 2
ven(z) — vpg(x H

(22) / |ven () — vem(2)] dmSC’(l—}—log(h—))HUkh_UkHHiw(Fu)’

hx z i
and that

hi _ 2
(23) / el mka(x” dz < Cllvgn — UkH”%""(er)'
0

From (11), it follows that

(24) lokr e rpy) < CUllonnllzoo(r,, + loenllZoe )
Thus, from (22),(23), and (24),

[|vkn — UkH||2 1/2 <C(1+ log(f—:))Ilvkhlliw Tre
HY 2 (Ths) (Tks)

+O(1+ log(F))|venllf o (r,,)-

We now use the following very important property of the projection into the coarse
space: the component vy pr|r,, depends only on vgh|r,, and vn|r,,, and, for any ¢ € IR,
vkm|r,, — ¢ is associated through this mapping to vgs|r,, — ¢ and vep|r,, — ¢. Recalling
that < vgp >1,,=< ven >r,,, and choosing ¢ =< vgp >1,,, We find,

_ 2 — o _ 2
s = vknllyara g, o = lloen =€ = (em =l )

=

£

< C(1+log(75) vk — cll () + C (1 +1og(F)lven — ellf ooy
<

c1+ log(g_:))2|vkh|12ql/2(ru) + C(1 + log(

= =

P ))2|U£h |121[1/2(ka)

bl

as in (20). O
We can now obtain a bound on the condition number of S™15:
THEOREM 2. There exists a constant C such that

N Hi
. 1 2
(25) cond(ST'S) < 01£2XK(1 + log( » ).

REMARK 3. In order to design a convenient and inexpensive preconditioner,
we should replace the blocks of Spy in a suitable way. The preconditioners defined
above can be simplified in two ways: first the fine space blocks can be replaced by
more convenient matrices by using for instance hierarchical bases as described in [24]
and [13]. Another possible simplification is crucial for parallelism: it makes sense to
replace the block Syy of the preconditioner, related to the fine space, by a matriz Sy
corresponding to a bilinear form §p : y,{f X y,{f — IR, constructed as follows: Fach
vy € y,{f s mapped to vy € X} given by

U, = vp  on the mortar sides,
o, =0  on the nonmortar sides,

(26)

11



and
(27) éh(uh,vh) Esh(ﬂh,f)h).

For the resulting preconditioner, it is easy to prove, by using the stability result of Ben
Belgacem [6], Lemma 1, that the condition number estimate (25) remains valid in the
geometrically conforming case. A full discussion will be given, in Subsection 4.3, of
the geometrically nonconforming case.

4. Preconditioners for the Geometrically Nonconforming Mortar Ele-
ment Methods.

4.1. The geometrically nonconforming mortar element method. In this
section, we turn to the mortar element method in the case when the decomposition
is no longer geometrically conforming. We will still assume that the aspect ratios
of the subdomains are bounded by a positive constant, and we recall that Hj 1s the
diameter of the subdomain Q5. We also assume that there exists a constant ¢ such

that if |0Q, N 9| > 0 then
(28) — >

Before formulating the discrete problem, we will adapt some of our previous notations
and introduce some new ones. For k € {1,..., K}, let {I'}}1<;<;(x) denote the edges

of Q. Among the set of all edges {Fi; 1<k <K, 1<j<j(k)}, weselect a family
of mortars {’Ym}lngMa satisfying the following three conditions:

1. U yn=T;
1<n<M
2.V(mn)e{l,.... M}2 m#n, ¥m Ny =0
3. Yme {1,..., M} there exists k(m), j(m) such that ~,, = Fi((:?)
Denoting by Xgh the vector space of the traces on Fi of the functions of Xgj;, we
introduce the vector space Wj

wi= [T i,
1<m<M

As in the geometrically conforming case, let us introduce the space A?,fh of the piecewise
linear continuous functions on the corresponding mesh of T. Then W}, denotes the

subspace of fgh of the functions which are constant in the two end segments of T, OF‘;
The nonconforming approximation of H{(£2) is given by the space

vy € Xp;3xn € Wy such that Yk € {1,... K}, Vje {1,...,j(k)},
Y, = if 3m such that (k, j) = (k(m), j(m)), Trkvkhlr‘i = Xhlri’
else fri(Trkl’kﬂri — Xn)Hgp =0, Vg, € Wi,

We can also introduce the trace space YV,
yh = T?“(Yh).

As in Section 2, the edge Fi is called a mortar or master side of Qy if there exists
m € {1,..., M} such that (k,j) = (k(m),j(m)), and a nonmortar or slave side of €
otherwise.

12



Again, the unknowns interior to each subdomain can be eliminated by solving, in
parallel, one Dirichlet problem for each subdomain, and we are led to the problem of
solving (4). As in the previous section, the goal is to find a basis of Y} for which a
block-Jacobi preconditioner leads to condition numbers which are almost independent
of the size of the subdomains and elements. As in Section 3, the preconditioner will
consist of a coarse space block and a block for each mortar.

4.2. Decomposition of the vector space ;. As in Subsection 3.1, we de-
compose the vector space Y}, into the direct sum of a coarse space Yy of dimension Ny
(the number of degrees of freedom associated with the crosspoints) and a fine space
y{f of dimension Ny, (the number of master nodes). Thus,

(29) Yh =V &V,
where
y{IE{l’h eV v, =0 on V}

A basis of Vg is defined as follows. For each vertex A, and for each k& € K 4, the basis
vector e4* € Yy is fully determined by the following four conditions:
Ak

1.e,"(A) =1;

2. for all vertices B # A of Qy, e?’k(B) =0;

3. for all £ # k, for all vertices B of Qy, e?’k (B) =0;

4. e4* is linear on the master edges.
As in Subsection 3.1, the coarse space Vg 1s defined by

Vg ={e* AeV keKy)rom
Consider first a vertex A € Fi where I‘i 1s a slave side of  and let B be the other
end point of I']. Then,
eiFlpi =0, VE#k, Vi € j(f) such that |} N T[> 0;
e (A) =15 " (B)=0;
Ak i / p
fri ex My, =0, Vi, € Wi,

Exactly as in Lemma 1, we can prove that

1
Ak _ o Ak v Ak v
llex ||L2(ch) < CVhg, llex HHl(Fi) < C\/—h—kv llex ”Lw(ri) <cC
Assume now that Fi is a master side of Q. Let £ # k, and let i € j(£) satisfy
ITY N T4 | > 0. We will estimate ||e?’k - e?’k Lary-
Let éf’k ri be the trivial extension of e?’k onto [)\I'J. Just as in Lemma 1, and
Remark 1, we can prove that

(30) ez — & lluary) < OV

To give a flavor of the proof, let us consider the case depicted in Figure 2:

Let Cy and Cy be the endpoints of FZ and let Dy and D; be the endpoints of
the mesh segment containing the crosspoint A. We introduce the continuous function
Akt defined on Fé, which is piecewise linear on the mesh of FZ, and satisfies

Ly

gkt — e?’k on (Dy,CY), Mkt — 0 on (Co, Do), eM*4 linear on (Dg, D).

13



FiaG. 2.

~A kL ~Ak£

In turn, é*%° is split into the sum of two piecewise linear functions ef’k’ and €
such that

~ ~Akl ~A k2
GARE Z GARL | AR

where
éf’k’ﬁ(cl) = gAk Z(C’l), éf’k’z =0 on (Cyg, D1), éf’k’z linear on (Dq, Cy).

Let 7, be the LZ%-projection onto X}, N HE(T%) along VT/Zh. It is clear that

Ak~
€y —62

+Th( )+7Th( ~Ak éA,k,Z).

Therefore,

e = & iy < 17— ma)(E"" = e85 | agrsy + 107 = 7)) (6" lLars

It is clear that ||€f’k ’k’ZHLz y < CVh; and from the L? stability of mp, the first

term of the right hand side of the mequahty above is bounded by Cv/hy. Then an argu—
ment as in Remark 1 yields the same bound for the second term |[|(] — 7Th) ||L2
From the observation (30), it is possible to prove the following lemma in the same
way as Lemma 3. '
LEMMA 7. Let A be a crosspoint and let '] be a master side of Qj with an end

point A. Let £ # k, and let i € j(¢) satisfy [T} N F‘“ > 0. Then,

H,
(31) |€f’k|§p/z(am) <C(l+ log(h—z)).

As in Subsection 3.2, let S be the matrix of S, in the new basis described above.
Again, the matrix S can be described by formula (15) and it is possible to define a
block diagonal preconditioner S by (16). The bilinear form related to S is called $p,.
An upper bound for the eigenvalues of S71S is given by a counterpart of Lemma 5,
which is proved exactly as for the geometrically conforming case. To find a lower
bound, we have to prove an analogue of Lemma 6:

LEMMA 8. There exists a positive constant C' such that

5))2sn (v, vn).

H
Yop € Yo, Sn(ve,vm) < kaax(l —|—log(h—
k

14



where vy is the projection of vy on Yy along y,{f‘
Proof. Consider a vector vy, € Vp, and let (vl vg) € Y x Vi be given by (17).
One can check that

sn(vir,vir) < Clomll s =C Y |vkrliisaq,)-
1<k<K

We focus on one subdomain denoted by g, with sides (F%)ISJSJ(O)' Let wyg be the
continuous piecewise linear function on 9Qq taking the same values as wg; at the
vertices of 9Qg. vog can be rewritten as

_ =7
VoH = WH + E Wy,
1<5<4(0),

Fé is a slave side of Qg

where the functions H}‘}I will be specified below.

Let us focus on a single slave side F% of 9Qg, which we call v = [A, B] for
convenience. The related space of Lagrange multipliers Wgh is denoted th. Let
(% )1<k<k(~) be the subdomains such that [y N 92| > 0, ordered in such a way that
Qi and Qi 41 are adjacent. In the rest of the proof, we assume that k(y) > 1, but the
results also hold for k(y) = 1 with a slight modification, which will not be discussed
here. Also denote by 5 = [Ci—1, Cg] the side of 9Qy, adjacent to v, as shown in Figure
3:

FiG. 3. The side v of 98y and adjacent subdomains

The length of v and v, are called d, and d.,,, respectively.
A calculation shows that

E(v)
~j Cro1,k Cr .k
W = Z (areg ™" + Preg ™),
k=1

where

ar = Vg (Cro1) — wa (Cr-1),
15



and

Br = ven(Cr) — wa (Ck),

where the function wgy has been extended linearly outside 4. Let us further focus
on the term ﬁkeock’k; the term akeock_l’k

0 < k < k(%), Bk can be rewritten as

(A, Cy)
dW

can be estimated in the same way. For

d(A, Cy)

B = A

(ven(Ck) = von(B)) + (1 — ) (vkn (Ck) — von(A)).

For simplicity only, we assume that for 0 < k& < k(y), the intersection of v and v
contains the support of at least one basis function of the Lagrange multiplier space
related to 4; this hypothesis can be eliminated by decomposing the quantities vgp (Ci)—
von(A) and vgp(Ck) — von(B) further. Then, for 0 < k < k(y), it is possible to choose

a nonnegative u, € W} supported in 43, such that

vkh(ck) B von(A) _ (vkh(ck) B fv Ukh,uh) n (fW Voh My, B von(A)) ’

S, S

vkh (Ck) — von(B) = (vkh(ck) b vkhﬂh) + (f” ot _ voh(B)) :

[ [

Therefore, as in the proof of Lemma 6,
Hy, Hy
(380w — wi) (L) < C1+108( ) v o, + C(1+ 1085 2 oon oo

Additionally, because of (28), we can prove the following estimate:

k() c H,
(33) E |60k7 |Hl/2 Qo) = < C(1 +log(—— ho ))

which is slightly stronger than (31).
For k < k(v), the ratio % is smaller than one and the estimate

E(v)-1 c H, H,

| kZ::l PBreg o |H1/2(6QD) < C(1+ log(—— ho ))ZH:l x (1 + log(— hy ))
follows from (32) and (33). For k& = k(v), the situation is somewhat more difficult
because % may be large; however, in this case |e, Cron |H1/2(6QD) is bounded

by C (W())) (1+ log(g—g)). Therefore, we find that

Ck('y)v )2 E ﬂ
e ™ sy < O+ log(12)) max(1 4 log( 1),

0

Exactly as for the geometrically conforming case, it is now possible to prove the
following result:

THEOREM 3. There exists a constant C such that

[ Hy 9
cond(S™'S) < C A (1+log(h ))?.
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4.3. The fine space block Sy;. To simplify the implementation, it makes sense
to replace the block Spp of the preconditioner, related to the fine space, by a matrix
Sh corresponding to a bilinear form §, : y,{f X y}ff — IR, constructed as follows: Each
vy € y,ff is mapped to @, € X} given by

¥p = v, on the mortar sides,
o, =0  on the nonmortar sides,

and

5p(up, vp) = sp(tp, 0p).
The related preconditioner is called S, and it is easy to prove that
(34) Sn(vh,vn) < Sh(va, vn).

To obtain a condition number estimate, we first state the following lemma.

LEMMA 9. Let Qg be a subdomain and let v be a nonmortar side of 0. Let
{W}lSkSk(w) be the mortars adjacent to +; here 4 is a whole side of 0Q. Then,
there exists a constant C such that Vv, € y,{’,

H, E(v)
2 1/2 < 1 1 —))? ] 2 1/2 .
lth|Hoé (= Cos%lglf(v)( T log hy, ) 1; |tkh|H°‘4 ()

Proof. Let the function v, be defined on Ut<k<k(y) Tk by the restrictions of vgj to
Yk Let m be the mortar projection which maps 95 to vgs|y. As in the proof of Lemma
8, we set v = (A, B) and v = (Ckx—1,C%). Let w be the piecewise linear continuous
function which interpolates ¥ at (Ck)o<k<k(), A and B. Of course, w vanishes at all
the Cx and thus depends linearly only on the two parameters vin(A) and vg(yyn(B).
When necessary, we shall use the notation w(-, -).

It is clear that

Vor|y = Tw + T(Th — w).

Let us first bound mw. Using the same arguments as in Lemma 7, we find that the
square of the H, / (y)-norm of 7w(0, 1) and mw(1,0) are bounded by C(1 —|—log(f—g)).
Additionally,

H,q
(AP < O+ log() o 2
’Yk(v)) '

Hy,
[k (B2 < C(1+1og(7 ) [[vkrynlla/2
hi) Hoo

Therefore,

(35) |71'w|12ql/2 < Cmax(l + log Z ||vkh|| 1a

o ()~

There remains to estimate m(%, — w). From the stability of the operator 7, given in
Lemma 1 of [6], we have

(36) I (n = )25, <c§]m—wHUHMk
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The right hand side of (36) can be bounded using the same argument as in the proof
of Theorem 1, and we obtain

H
< (1 +1og(35) luwnlly

(37) 98 = Wiz, < hy, ()’

The proof of the lemma follows by using (35), (36), and (37). O
The following corollary is an analogue of Lemma 5:
COROLLARY 4.1. There exists a positive constant C' such that

H
Von € Y, sn(vn,vn) < C max (14 log(5,2))*5n (vn, ).

The next result follows from Corollary 4.1, the analogue of Theorem 1 for the
geometrically nonconforming case, and (34):
THEOREM 4. There exists a constant C such that

s Hy
: 1 4
(38) cond(S™'S) < C’llsr}%XK(l + log( ” N

5. Preconditioners for the Mortar Spectral Method.

5.1. The geometrically conforming case. For simplicity only, we shall now
assume that the subdomains € are rectangles with sides parallel to the coordinate
axes. We first give a brief review of the mortar spectral method; see [7] for more
details. For a review on the analysis of the Legendre spectral methods, see, e.g., [8].
Consider a family of integers {Ny}re1. k3, all greater than two. Let Xy be the
space of polynomials on € of degree N in each space variables, which vanish on
0Qr NI, and let Xy n be the space of traces of functions of Xy on Q. A product
space 1s defined by

K

XN = HXkN.
k=1

For each subdomain €, a quadrature formula is given, by the Gauss-Lobatto-
Legendre formula on (—1,1), an affine transformation, and tensorization. We denote
the corresponding nodes and weights by §; ; x and w; j x, and by >~ - . the quadrature
formula

Nk
E f= E wi j kS (&ijk)

GL k i,7=0
The nodes &; ;  define a grid Txn on Q. A discrete bilinear form is given by

N

aN(u,v) = Z E VukN . VVkN.

k=1GL,k

Consider two adjacent subdomai}ls Q and Q, and let Lgy be equal to N or Ny. Let
Np¢ = Lgg — 2 and denote by Wy, v the space of polynomials of degree Ng,. The
subspace Yy of Xx is now introduced by

Ve = vy € XN _
NZ=AUVI<k<t<K, Yuken € Waan, Jr,,(Trevien — Treven)pgeny =0 [
18



and the subspace Yy of X'y by

Yy = vy € Xy ~
NZ=AUVI<k<t<K, Yuun € Wiin, Jr,, (WsN —ven)pren =0 [

Slave and mortar sides are introduced exactly as in Section 2, and the Poincaré-Steklov
bilinear form sy : Yy x Yy — IR, can be introduced in terms of the problem of finding
uy € Yy such that

N
Yoy € Yn, sn(un,vn) = E Z fven —an(uy, V).

k=1GL,k

Here uf; is obtained by solving the analogue of (3) and vy is the discrete harmonic
extension of vy .
As before, we look for a decomposition of the space Yy into the direct sum of
a coarse space Yy, of dimension Ny, and a fine space yﬁ. For each crosspoint A
and for each k € K 4, the basis vector e4* of Yy is fully determined by the following
conditions:
1. e?’k(A) =1;
2. for all vertices B # A of Qy, e?’k(B) =0;
3. for all £ # k, for all vertices B of Qy, e?’k(B) =0;
4. eA* is linear on the master edges.
Suppose first that ['x, is a slave edge of Q. We can then check, using coordinates
such that Ty, = [ H, H] with the value H corresponding to A, that

L £)— Ly, -1(&
(39) e?,k gkt A N ( H) . Nee=1( H) ’ 6?,1« 0, on Tk,
+ H L )= Lne-1(F + H
(40) ef’z =2 — N (77) Ner=1 ), eZA’/Z =2 on I'gp.

2H 2
Here Ly, is the Legendre polynomial of degree n. From (39) and (40), it is straight-
forward to show that ||6A’k||Loo < C. The next lemma provides estimates of the L2—

and Hi/2—norms of ek,
LEmMA 10.

2H

||€k,Z,A

||L2(Fk4) < C{Niu} 1/2

|5k’£’A|H1/2(FH) < C/log(Ng)

Proof. Without loss of generality, we can assume that 'y, =]—1, 1], and to simplify
the notations, we also set n = Ngy. Recalling that

! 2
/ LE(z)de = ———,
—1 2n—1

it is easy to show that

|2

||€k7£’A||L2(Fu) >

3
W=
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In order to evaluate the H/2-norm of é¥44  we compute the H'/2-norm of L,. By

the definition of the norm, we have to estimate

2
Vot La(2) = La(y)
2 _ n n
||Ln||H1/2(_171) —[1/;1 [? débdy

Integration by parts, in the case where n is even, leads to

2
/1 [Ln(r) - Ln(y)] de =2, Cal@ L) gy {(Ln(r)—Ln(y)fr
_ -1

/1 [Lm) - Ln(y)rdx .y / (Ln() = La @) Lu (@), o1+ LA () = 2yLn(y)

1 1 =Y 1—y?

Hence,

/[ /[ I_jnw)rdxdy

— La(y)) L, _1 - dy n even;
_2// (DILE) o { 11 Hlﬁ

r—y 1 _) 2yLa(y )dy n odd.

In order to estimate the last terms in this formula, we use Gaussian quadrature based
on the roots (Ci)lsisn of L,. It is well known that there exists positive quadrature
weights (w;)i<i<n such that

1 n
Ve € Pon s, / ple)dr =Y ol
- i=1

We therefore obtain

/1 (L= Lo)? ) g~ (= Lal@) g~ 1
_ ? I

1 1- y i=1
We now recall, see [25],(thm 6.21.3 & (15.3.14)) that (; = cos #; with

—4+ L _
(n Z+2)7T§6i§ (n z—|—1)ﬂ_

n n

bl

and that there exist two positive constants ¢ and C' such that

Cu-)y?<w< Sy,
n n
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We find that

1 2 n
(1_Ln(y)) c 1
— " dy< — _
/_1 1—y? y= niz:;(l—cos%’i)l/2

We recognize this last expression as a Riemann sum of (#32(9))1/2. Hence,

/1 U= Lo g, < Crog(n)

1 1—y?
The same argument leads to

/1 1+ L2(y) — 2yLa(y)
-1 1 —y?

dy < Clog(n),

which in turn leads to

2
1 1 | La@)=L,
L L@f(y) drdy—

T —

(41)

2f_llf_11 (L"(x)_ﬁféy))L"(x)dmdm < Clog(n).

Finally, we remark that

Lo(2) ~ L) | _ In(®) = La(y)) L (2)

r—y r—y

(Ln(2) = Ln (¥))(Ln(2) = Ln(y) = (z = y) Ly (2))
(e =P |

Here (L”(x)_L”(xyl;;g_y)Lln(x)) is a polynomial of degree < n in both z and y. The

orthogonality of the Legendre polynomials then leads to

/1 / [Ln@ _ my)] e = L@@

r—y rT—Y

By using (41), we find that

[ [ [pazme] Cdaty < Clogt)

r—y

Thus, the square of the H'/2-norm of L,, is bounded by Clog(n) and so is the square
of the H'/2-norm of é¥44. 0

The next result is the analogue of Lemma 2:

LEMMA 11. Let A be a crosspoint and let k,£,m € Ka, with |Tgs > 0 and
ITim| > 0. Assume that 0Q N Tge is a slave side of Q. and that Q% N Tgy is a
master side of Q. Then,

(42) e 2/ a0,y < C(1+ log(Nk)).
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Proof. Since we are interested in the H1/2(3Qk) semi-norm, it is possible to
rescale the problem and assume that the edge Ty, is (—1,1). We again set n = Nj.
We first use the following inverse inequality,

A k|2 Ak .
e i gonn) < Cn™1ei ie-c(on);

see [8].
Let us denote by f*™4 and f*%4 the functions on 9 which are equal to e?’k

on Ty, and Tgy, respectively, and vanish on 9Q\Tgy and 9Q \Tie, respectively. Tt
is clear that, almost everywhere,

Ak
ek = phmA y phitA

The semi-norm |fk’m’A|l2ql/2_€( can be computed explicitly, because f*™4 is

Q)
piecewise linear; and the following estimate is obtained:

1
E,m, A2
[ R |H1/2—6(6ﬂk) < CE
To evaluate the contribution of f*%4 it is enough to estimate the following quantity

/3 /3 [x(2) Ln () = X(0) L ()]

o =y

Here x is the characteristic function of (—1,1). It can be proved, as in Lemma 5.1,

that the contribution of fy1:_1 ;:_1 [L’]f_;f;:zf’ I is bounded by C(1+log(n)). There
remains to estimate

[ e
y=1Jr=-1 (y_x)2_26.
This 1s done as follows:

/yi1/1:—1 (y 5215;)—26 < 1—125 /;_1 (1 fi()xl)—ze'

Since L2 (z) < 1, |z] < 1, it follows that

/3 /1 Ln(z)? C
T e =
y=1Jz=-1 (y_ éL‘) - €

Hence,
Ak . 1
|€k7 |%I1/2(aﬂk) S Cn4 <1 + z -+ IOg(TL) .
Choosing € = m yields
Ak
lex " 117200, < C(1 + log(n)).
O
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Let S be the matrix of sy 1n the new basis described above. The matrix S can
be written as

3= <SNN SNH)
Skn Suw )

In order to design a preconditioner for S, we replace the block Sy by 0, and the block
Snn by its block diagonal with one block for each edge. The resulting preconditioner

18
a8 Snn 0
S_< 0 SHH)'

Let sy be the bilinear form corresponding to the matrix S. The bound,
Yoy € Yn, sn(vnv,vn) < Csy(vn,un),

is obtained exactly as in Lemma 5.
The following lemma will also be needed:
LEMMA 12. There exists a constant C' such that Vvgny € Xgn,

(43) [oanlIZ 0,y < C(1+ log(Ni))llvenllFarz oq,)-
Simalarly, if xq is a point of OQy, then,

(44) llosn — v (20) | L= 00,y < C(L+10g(Nk))|vrnlFr1r2 (50,

Proof. To prove (43), we first rescale so that the diameter of Qj equals 1, and
then prove that

1
||“kN||%w(ank) < Cz||ka||12ql/2+e(ank)'

This formula is true for any function and can be derived by using a Fourier transform
argument. From an inverse inequality for polynomials, we also have

||UkN||12L11/z+e(ank) < CN136||UI«N||12L11/2(ank)~

Choosing ¢ = 3 yields the desired result. Finally, (44) is obtained by a stan-

1
1+log( Nk
dard quotient space argument.

Given Lemma 12, analogues of Lemma 6 and Theorem 1 can be obtained as in

the finite element case. The only notable difference is when estimating the integral

T oenw — vgn|?
/—H e+ H
cf. (21)-(24) in the proof of Theorem 1. The integral is again split into two, over
(—H,H¢&) and (HEp, H), respectively. Here the (&;)ieqo,n,} are the Gauss-Lobatto
points in [—1,1]. We note that & + 1 = O(%) and that an inverse inequality for
polynomials of degree n is given by *

lonllwre(-1,1) < n2||vn||LP(—1,1)a p € (1, +oo].
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Finally, since all necessary technical tools are at hand, the proof of the following
main result can be obtained
THEOREM 5. There exists a constant C' such that

G—1G 2
cond(S7°S) < C’lg}ﬁsxK(l + log(Ng))~.

5.2. The geometrically nonconforming case. The previous mortar spectral
element method can be generalized straightforwardly to the case where the assumption
of geometrical conformity is relaxed. The analysis of our preconditioner requires, in
Lemma 5.5 below, a bound on the relative size of the intersection of two edges; in
order to provide estimates which only depend polylogarithmically on the parameter
N, we make the assumption that

- i T} N Ty
(45) Vk, ¢, i, j such that T}, NTY # 0, To > e,

k
a condition less standard and more stringent than (28). The mortar method is based
on the definition of the master and slave sides as described in Section 4 in the finite
element context. The projection that gives slave values in terms of those on the master
edges is defined as in Subsection 5.1. The iterative substructuring algorithm now
considered is the same as that of Section 4. We now have the new tools of Subsection
5.1 at our disposal, and in order to prove a result equivalent to Theorem 3 for the
spectral approximation, we additionally only have to derive an analogue of Lemma 7.
We do so after some preliminary work.

The definition of the mortar condition naturally leads to the introduction of a
projection operator my : L?(—1,1) — PY(—1, 1), given by

1
Vsoem—l,l),/ lo—mn(@)l¥ = 0, Vi € Py_s.

-1

This projection operator has already been analyzed in [7] and certain stability and
approximation properties are given in that paper. While we do not now know how to
prove a uniform bound for the Hééz—norm of this operator, the following results will
allow us to derive a strong result on our preconditioner.

LEMMA 13. Let a be any real number in ] — 1,1[. Let x, denote the piccewise
linear, discontinuous function on ] — 1,1[ that vanishes on ] — 1,a[ and goes linearly

from 1 and 0 over the interval [a,1]. There then erxists a constant C such that

log(N)

2
||7TNX||H¥2 < Cﬂ'

Proof. Let ¢ be a polynomial of degree N in one variable that vanishes at +1.
It is easy to see that it can be written as

(46) on(@) = 3 an(l = 2?) I (2).
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Recalling that the Legendre polynomials L, are L?(—1, 1)-orthogonal, with norm

! 2
/ L:(z)dx = ,
—1 2TL+ 1

and that they satisfy the differential equation

%((1 — r2)L;(r)) +n(n+1)Ly(z) =0,

we can first show that

N-1 N-1
2n?(n + 1)?
2 _ } : 2 <C 3,2
|§0N|1 ] a, o+ 1 = ] n-a,

Using now the integral relation

€ _ Ln 1(1‘)—Ln_1(l‘)
/_1Ln(s)ds_ + 1

and the differential equation once more, we find that

n+1 -
||¢N||o=||2an D s 2) = L @)IE € Y na.

Here we have used the L?—orthogonality of the L,, and the formula

Z Zn_—::i n+1(l‘) _Ln—l(l')) = —a1§L0(£)+
N, (m=Dn (n+1)(n +3) (N = )N
nZ::l(an 1ﬁ — an+1w)Ln(l‘) + aN—lﬁLN(I)-

Let us denote by [Py (—1,1)NL%(=1,1), Pn (=1, 1)NH}(—1, 1)]s, the interpolation
space, with index 6, between the space of polynomials Py (—1, 1) of degree N provided
with the L%-norm and the Hl-norm, respectively. By a main result of interpolation
theory [20], it follows from our two estimates of the norms of ¢ that there exists a
constant C' such that, for all o5 € Pn(—1,1),

N-1

2 1426 2
||80N||[1PN(_1,1)nL2(—1,1),1PN(—1,1)nH;(—1,1)]e <C Z n'*2%a7.

We recall now that, according to [21], [Py (=1, 1)NL*(—1,1), Px(=1,1)NHL(=1,1)],
coincides topologically with Py (—1, 1) provided with the Hj-norm. In particular, we
can conclude that

N-—

In order to complete the proof, we now evaluate the coefficients a,, of the decom-
position of ¢ = T x given by (46). By using the definition of x4, we find that

Vo, 1<n< N -1, [Lon@)(z) = [1 xa(2)L,(z)
= [y 2L (a)

(48)

L |—(1 = a)Ly(a) + [, Ln(2)
= —Ln(o) - g teslgmemla),
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Combining the integral and the differential formulae for the Legendre polynomials,
we deduce

Vn, 1<n<N -1, /_1¢N(fv)L;(:ﬂ) = —Ln(a)+ 1ia(1;(z2ljzlg)(a)
2Ly (a)
< ILn(a)|+|n(n+1)|~

From [1], (22.14.9), we know that

c 1

Vi h/T—a?

As another consequence of the integral formula, we find that

L (z) = > (@2n—4k—1)Ln_sk_a(),
k>0n—-2k-12>0

(49) |Ln(a)| <

which yields

L, (a C 1
(50) ol O L
n(n+1) \/ﬁ(l—az)zl
Finally from (48),(49), and (50), we deduce that
Yn, 1<n<N-1 /1 ()L’()<C !
n, 1<n<N-1, 2)L(2) < ——=——.
R NoEVier:
By using (46), we obtain
n(n+1) ! ,
2——a, =2 L .
it e =2 [ en@Li(e)
Thus,
2n+1 1 Lpti(a) — Ln—1(a)
an = g————(—Ln(a) — — . )
2n(n+ 1) 1—a 2n+1
and hence

c 1
n|l < —=—.
ol < S e

By introducing this bound into formula (47), we can conclude that

log(N)

2

T e < O—=%.
Il NX||H0(§ SO7—5

It is now an easy matter to state an analogue of the Lemma 7. '
LEMMA 14. Assume that (45) holds, let A be a crosspoint, and let T'), be a master
side of Q with A as an end point. Let £ # k, i € j(£) satisfy [T NT%| > 0. Then,

Ak
(51) lez

F;|12ql/2(am) < C(1 + log(Ne)).
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Proof. Let us denote by x, the function obtained from y by a scaling which maps
]—1,1[ onto T with the further property that x;(A) = 1 and x,(B) = 0. Here A and
B are the end points of ', N . By construction, e?’k — x¢ 1s continuous and it even
belongs to H3¢ for any positive £. We decompose e?’k into the following sum

Ak _ Ak
;" = mn(xe) + (e = xe).
Lemma 13 supplies the desired bound for the first term |7r§\,(x4)|H1/z(an). The bound

on the second, |7Tf\,(e?’k —Xt) |H1/2(6ﬂl)a is obtained as in the geometrically conforming
case. O

With Lemma 14, we are ready to prove the following result using the same argu-
ments as in Section 4.

THEOREM 6. Under the assumption (45), there exists a constant C' such that

a—1G 2
cond(S™°S) < 01£2K(1 + log(Ng))~.
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REFERENCES

. ABRAMOVITCH, AND I. STEGUN, Handbook of mathematical functions, Dover (1964).

. AcHpou, Yu.A. KuzNETsov, AND O. PIRONNEAU, Substructuring preconditioners for the
Q1 mortar element method, Numer. Math., 71 (1995) pp. 419-449.

. AcHpou, Y. MaDAY, aND O.B. WIDLUND, Méthodes itératives de sous-structuration pour
les €léments avec joints, Note CRAS, Paris, t 322, I, (1996), pp. 185-190.

. AcHpou aND O. PIRONNEAU, A fast solver for Navier-Stokes equations in the laminar
regime using mortar finite element and boundary element method, STAM J. Numer. Anal.,
32 (1995), pp. 985-1016.

G. ANaGNOsTOU, Y. MaDAY, C. MAVRIPLIS, AND A. PATERA, On the mortar element method:
generalization and implementation, Proceedings of the third international conference on
domain decomposition method for PDE, T. Chan et al eds., Philadelphia, PA, 1990, STAM.

F. BEN BELGACEM, The mortar finite element method with Lagrange multipliers, Tech. Rep.
1994, to appear.

. BEN BELGACEM AND Y. MADAY, A spectral methodology tuned to parallel implementations,
Comp. Methods Appl. Mech. Engrg. 116 (1994) pp. 59-67.

. BERNARDI AND Y. MADAY, Approzimations Spectrales de Problémes auzr Limites Ellip-
tiques, Mathématiques et Applications 10, Springer Verlag France, 1992.

. BERNARDI AND Y. MADAY, Raffinement de maillage en éléments finis par la méthode des
joints, Note CRAS, Paris, t 320, I, (1995), pp. 373-377.

. BERNARDI, Y. MADAY, AND A. PATERA, A new nonconforming approach to domain de-
composition: the mortar element method, Nonlinear partial differential equations and their
applications, Pitman, H. Brezis, J.L. Lions eds., 1989. (Appeared as a technical report
already in 1989.)

P.E. BigrsTaD aND O.B. WIDLUND, [lterative methods for the solution of elliptic problems

on regions partitioned into substructures, SIAM J. Numer. Anal. 23 (1986), pp. 1093-1120.

J.H. BrRaMBLE, J.E. Pasciak, aAND A.H. ScHATZ, The construction of preconditioners for
elliptic problems by substructuring, I, Math. Comp. 47 (1986), pp. 103-134.

M.A. CasarIN AND O.B. WIDLUND, A hierarchical preconditioner for the mortar finite ele-
ment method, ETNA 4 (1996), pp. 75—88.

M. DryJa aAND O.B. WIDLUND, Some domain decomposition algorithms for elliptic problems,
in Iterative Methods for Large Linear Systems, Linda Hayes and David Kincaid, editors,
Academic Press (1989), pp. 273-291.

M. DryJa AND O.B. WIDLUND, Domain decomposition algorithms with small overlap, STAM
J. Sci. Comp., 15 (1994), pp. 604-620.

Yu.A. KuzNETsov, Efficient iterative solvers for elliptic finite element problems on nonmatch-
ing grids, Russ. J. Num. Anal. Math. Modelling, 10 (1995), pp. 187-211.

P. LE TALLEC, Domain decomposition methods in computational mechanics, Computational
mechanics advances. 1, No 2 (1994), pp. 121-220.

P. LE TaLLeEc AND T. Sassi, Domain decomposition with non matching grids: Augmented
Lagrangian approach, Math. Comp. 64 (212) (1995), pp. 1367-1396.

P. LE TavLLec, T. Sassi, AND M. Vibrascu, Three-Dimensional Domain Decomposition
Methods with Nonmatching Grids and Unstructured Coarse Partial Differential Fquations,
Proceedings of the Seventh International Conference of Domain Decomposition in Scientific
and Engineering Computing, D.E. Keyes and J. Xu, editors, AMS 1994, Contemporary
Mathematics 180, pp. 61-74.

J. L. Lions, E. MAGENES, Problémes auxr Limites non Homogénes et Applications, Dunod,

1968.

< < <z

&3]

Q a Q

Y. MADAY, Relévement de traces polynomiales et interpolations hilbertiennes entre espaces de
polyndmes, C. R. Acad. Sci. Paris, 309, Série I, (1989), pp. 463-468.

Y. Mapay, O.B. WIDLUND, In preparation.

C. MAVRIPLIS, Nonconforming discretizations and a posteriori error estimators for adaptive
spectral element technigues, PhD Thesis, MIT, 1989.

B. SmiTH, O.B. WIDLUND, A domain decomposition algorithm wusing a hierarchical basis,
SIAM J. Sci. Comp., 11 (1990), pp. 1212-1220.

G. SzrGO, Orthogonal polynomials, Colloquium publications AMS, Providence, 1978.

. WIDLUND, Two-level Schwarz algorithms, using overlapping subregions, for mortar finite

element methods, Courant Institute technical report (1997), in preparation.

28



