ACKNOWLEDGEMENT 31

[9]

[22]

N.P. Jouppi. Derivation of Signal Flow Direction in MOS VLSI. IFEE Trans. on Computer Aided
Design of Integrated Circuits and Systems, CAD-6(3):480-490, May 1987.

K.J. Lee, R. Gupta, and M.A. Breuer. An Algorithmic Method for Assigning Signal Flow Directions
to MOS Transistors. University of Southern California, June 1990.

B. Mishra. An Efficient Algorithm to find All ‘Bidirectional’ Edges of an Undirected Graph. In 25th
Annual Symposium on Foundations of Computer Science, pages 207-216, 1984.

B. Mishra. Some Graph Theoretic Issues in VLSI Design. PhD thesis, Carnegie-Mellon University,
September 1985.

B. Mishra. Bidirectional Edges Problem: Part II, An Eficient Algorithm. Tech. Report, Courant
Institute of Mathematical Sciences, September 1993.

B. Mishra and R.E. Tarjan. A Linear-Time Algorithm for Finding an Ambitus. Algorithmica,
7:521-554, 1992.

T. Ohtsuki. The Two Disjoint Path Problem and Wire Routing Design. Number 108 in Graph
Theory and Algorithms (Eds. N. Saito, T. Nishizeki). Springer, October 1980.

O. Ore. The Four-Color Problem. Academic Press, New York, London, 1967.
H. Sachs. Einfuhrung in die Theorie der endlichen Graphen. Teil H.B.G. Teubner, Leipzig, 1972.
P.D. Seymour. Disjoint paths in graphs. Discrete Mathematics, 29:293-309, 1980.

Y. Shiloach. A Polynomial Solution to the Undirected Two Paths Problem. J. Association for
Computing Machinery, 27(3):445-456, July 1980.

W.T. Tutte. Connectivity in Graphs. University of Toronto Press, Toronto, 1966.

W.T. Tutte. Bridges and Hamiltonian Circuits in Planar Graphs. Aequationes Mathematicae, 15,
1977.

W.T. Tutte. Graph Theory. Addison-Wesley Publishing Co., Menlo Park, California, 1984.

30 BIDIRECTIONAL EDGES PROBLEM: I

Example 1 Example 2

Figure 16: Labeling of the two example graphs.

Acknowledgement

I wish to acknowledge with gratitude the considerable help and advice I have received from Profs.
E.M. Clarke, M. Foster, E. Frank, A. Frieze, M. Furst, R. Kannan, L. Rudolph, D. Sleator and
R. Statman. Special thanks go to Prof. R.E. Tarjan without whose help this work would not
have been possible. Thanks are also due to Prof. J.T. Schwartz for his encouragement to publish
these results.

References

[1] Z. Barzilai, D.K. Breece, L.M. Huisman, V.S. Iyengar, and G.M. Silberman. SLS—A Fast Switch
Level Simulator. IEEE Trans. on Computer Aided Design of Integrated Circuits and Systems, CAD-
7(8):838-849, August 1988.

[2] D. Brand. Detecting Sneak Paths in Transistor Networks. Technical report, IBM Thomas J. Watson
Research Center, Yorktown Heights, N.Y., 1983.

[3] H.H. Chen, R.G. Mathews, and J.A. Newkirk. An Algorithm to Generate Tests for MOS Circuits
at the Switch Level. In Proc. International Test Conference, pages 304-312, 1985.

[4] M.A. Cirit. Switch Level Random Pattern Testability Analysis. In Proc. Design Automation Con-
ference, pages 587-590, 1988.

[5] E.A. Dinic. Algorithm for solution of a problem of maximum flow in a network with power estimation.

Soviet Math. Docl.; 11:1277-1280, 1970.

2]

S. Even. Graph Algorithms. Computer Science Press, Maryland, 1979.

=

E. Frank. A Data Driven Multiprocessor for Switch Level Simulation of VLSI Circuits. PhD thesis,
Carnegie-Mellon University, Pitssburgh, PA, 1985.

[8] J. Hopcroft and R. Tarjan. Efficient Planarity Testing. Journal of Association for Computing
Machinery, 21, October 1974.

ACKNOWLEDGEMENT 29

algorithm is

o(um Vi) + i 71 j>|,|v<Gj>|>)
- o(|E| v+ <|E<Gj>|,|V|>)

= OW(El-IVD+T ((1ED, V1)
or(el, v o

Theorem 8.2 Let G be a TYPE.IV graph and G', the nonseparable subgraph derived from G by
deleting the vertices s and t together with their incident edges. Let B be the BY? -bridge of G.
Then every edge e = [u,v] of B not incident on s or t is bidirectional.

PROOF.

First note that there exist vertices of attachment of B, on P]s;t[and y on @]s;¢[such that
there is a cross-cut N between z and y containing e. Now, since the two paths P[s;z]* N [z;y]*
Q[y;t] and Q[s; y]* N[y;z]* P[z;t] traverse e in either directions, e is bidirectional. U]

Algorithm LABEL-TYPE-IV(G):

stepl. Every edge [s, u] incident s is labeled {([s,u]) = (s, u) and every edge [u,] incident on ¢,
labeled £([u,t]) = (u,t).

step2. Every edge e of the BF?-bridge not incident on s or ¢ is labeled bidirectional.

step3. Label the edges [u,v] of P[s};tp] and Q[s5;(5] by using the Algorithm for the Two-
Vertex-Disjoint-Paths, i.e.,(u,v) € {([u,v]), if UVP2(s,u; v,1; G) is true, and (v,u) €
£([u,v]), if UVP2(s,v; u,t; G) is true. Since every such edge can be labeled in O(|E|-|V])
time since there are at most |V| edges, this step can be done in O(|E| - [V|?) time.

end{LaBeL-Typre-1V.} [

Since steps 1 and 2 can be done in O(|£]|) time, a TYPE.IV graph can be labeled in O(|E] -
|V|?) time. By Theorem 8.1, we get an O(|E| - |V|?) time labeling algorithm for the general
graph. Also it is easy to see that if the step.3 of the algorithm can be modified to run in time
O(|E| - |V|) then the algorithm LABEL-TYPE-IV will also run in time O(|E] -|V]), and so will
the algorithm LABEL-GRAPH.

Example 8.1 Both the graphs in figure 1 are TYPE.IV graphs. Their labelings are shown in
figure 16.

28 BIDIRECTIONAL EDGES PROBLEM: |

Hence, the set of mutually recursive algorithms reduces the graph G to a set of TYPE.IV graphs
after following amount of time:

oV
O LUE[-IVD+ X IpEil)
=1
where pE; = Uj_, pE(G)).
We first demonstrate that |pF;| = O(|E]), for any stage i. Let H be a graph in stage ¢ — 1
with at least one graph edge, and {Hy, ..., H,,} be the graphs of stage i, obtained from H

by the application of the appropriate reduction algorithm. Following invariant properties of the
reduction algorithms can be verified by straight forward examination:

If e € pE(H;) then either (i) e is an edge of the cycle J and it shares one of its ends
with a vertex of attachment of a BY?-bridge of J, or (ii) e has one end at s or {,
and it shares the other end with a graph edge.

Let the pseudo-edges, pE(H;), of H; be partitioned as follows:

pEW(H;) = {ee pE(H;):eis an edge incident at s or ¢}
pE(z)(Hj) = {e€pE(H;):ec Pls;t[or Q]s;t[in H;}.
(a) Thus there is a function that maps a pseudo-edge, ¢/ = [u,v] € pEM(H;) to a graph

edge, e € gFE(H;). Further, this function maps at most four distinct pseudo-edges of pEM(H;)
to one graph edge of g £/(H;) and hence,

[pEM(H;)| < 4 lgE(H;)] .
(b) Similarly, there is a function that maps a pseudo-edge, ¢’ = [u,v] € pE?)(H) to a
graph edge, e € gF(H;), which also belongs to a BY?-bridge of J. Again, this function maps

at most four distinct pseudo-edges of pE*)(H) to one graph edge of g E£(H;) and hence,

pE) ()| < 4 gB(H)].

Combining,
leE I <8gE(H).
Thus,
o(vl oVl
> Ip Z 8 |El=0(E£]-[V]).
=1

Let {G1, ..., G} be the set of TypPE.IV graph obtained by the reduction algorithms. The
total number of edges in a TYPE.IV graph is <9 |gE(G;)|. Hence the time complexity of the

Section 8 FINAL ALGORITHM AND ITS COMPLEXITY 27

Ge, has at least one BPY?-bridge but no BY- or B?-bridge. The rest of the argument proceeds
as before. [

Lemma 7.2 Lel C be a nonseparable component of G' whose extremal vertices are labeled o or
T (or both), and let e be an arbitrary edge of C. Then there is a simple path R from s tot in G
traversing e in the order wu, v if and only if there are two distinct separation vertices a and b in

C' such that

1. Label of a is o; and label of b is T.

2. There is a simple path R' from a to b in C; traversing e in the order u and v.

PROOF.
Straightforward. [

Theorem 7.3 If LABEL-TYPE-IV correctly labels the edges of a TYPE.IV graph then the algo-
rithm LABEL-TYPE-1I1 correctly labels the edges of a TYPE.ILL graph.

PROOF.

Follows from the Lemma 7.2. [

8 Final Algorithm and Its Complexity

Theorem 8.1 Suppose we have an Algorithm LABEL-TYPE-1V thal correctly labels the edges
of a TYPE.IV graph G = (E,V) in time O(T(|E|,|V])) > O(|E| - |V]), where T(-,-) is a

monotonically-nondecreasing convex function in both its arguments, i.e.,
T(z,)+ T(y,) < T(z+y,-) and T(,2)+T(,y) < T(,z+vy),

where x > 0 and y > 0.

Then the set of mutually recursive algorithms formed by LABEL-GRAPH, LABEL-TYPE-I,
LABEL-TYPE-II and LABEL-TYPE-I11, correctly labels the edges of an undirected connected strict
graph G = (E,V) in time O(T(|E]|,|V])).

PROOF.
The correctness of the algorithm follows immediately from the theorems 4.1, 5.4, 6.3 and 7.3.

Let the pseudo-edges of a graph G be denoted by pE(G) and the graph-edges of G, by ¢ E(G).
We define a set of graphs of a stage of the algorithm as follows: graphs of stage 1 = {G}. Let
graphs of stage ¢ be {G1, ..., G,,}. I G; (1 < j < n)is a Type.IV graph then G; does not
contribute any graph to the next stage; otherwise, we apply the appropriate reduction algorithm
(one of LABEL-GRAPH, LABEL-TYPE-I, LABEL-TYPE-II and LaBEL-TYPE-III) to G; to reduce
it to a set of graphs {G;1, ..., Gjn,} such that G < Gj.

It is easy to see that the total number of stages is < 10-|V(G)|. Since each graph edge occurs
only one graph G of stage 1, in stage 7, the algorithms spend the following amount of time per
stage:

0 (|E| " i|pE<Gj>|) .

i=1

26 BIDIRECTIONAL EDGES PROBLEM: |

t

S cl

cl

(S *
p s,
P
S. ’ teo

Q t*

s* Q
Q

Sa® ‘ ¢ o4

Figure 15: The graph after STEP3 of algorithm LABEL-TYPE-III.

Lemma 7.1 Let C; and Cy be the nonseparable components of the subgraph G', conlaining the
subpaths P[sp;ip] and Q[sh; 5], respectively. Lel Go, and G, be the graphs derived from Cy
and C'y as in the step3 of the algorithm. Then G, and G, are well-defined and TYPE.11 graph.
PROOF.

First note that, every edge of P[sp;{}] belongs to one nonseparable component of G'.

Now, consider the case when C is the nonseparable component of G’ containing P[sp;t}]
but avoiding Q[sa;ta]; then C; contains an extremal vertex, z, distinct from s} and ¢}, and
labeled {o,7}. Thus G¢, must be nonseparable. Further if B’ is a bridge of J¢, in G¢,, with
a vertex of attachment at a on Plsc,;tc,[= P[sp;tp] then B’ has a vertex of attachment at
z, and thus, it is a BP?-bridge. Hence, G¢, has no BF-bridge. Nor does it have a BY?-bridge,
since C'; by assumption is nonseparable. Thus G¢, is a well-defined TyPE.II graph.

On the other hand, if C; = Cy then if B is a bridge of J¢, in G¢, with a vertex of attachment
at @ € Plsc,;lc, [then it has a vertex of attachment at b € Q]sc,; tc, [and vice versa, and hence

Section 7 LABELING THE EDGES OF A TYPE.III GRAPH 25

step2. The vertices of G’ adjacent to s in G are labeled o; and the ones adjacent to ¢t in G, 7.
Such vertices will be called the extremal vertices of G'.

Find the nonseparable components, Cq, Cs, ..., Cy, of G', where C; and C; are the non-
separable components of G’ containing the subpaths P[sh; 5] and Q[sf);15], respectively.
The separation vertices of a nonseparable component C; of G’ together with the vertices
of C;, which are also extremal vertices of G', are called its extremal vertices.

Label each extremal vertex v of each nonseparable component C; as follows: if v is also an
extremal vertex of G’ then v has the same label as that in G’; otherwise, v is a separation
vertex of C; and has the label o (respectively, 7), if there is a path from v to an extremal
vertex u of G', already labeled o (respectively, 7), and the path avoids the edges of C;.

step3. For each nonseparable component C; with its extremal vertices labeled ¢ and 7, do the
following: Introduce two new vertices sc, and {¢;; and join s¢, (respectively, {c,) to all the
extremal vertices of C; labeled o (respectively, 7). We call the resulting graph G¢,, with
the new edges as pseudo-edges.

1. If Cy = C; then let the paths Pp, and Q¢, of Gg, be [s¢,,splx Plsp;tp]* [1p, o,]
and [scy, spl* QLsg; 1ol [15, Loy], respectively. Otherwise, €'y has an extremal vertex
z (distinct from sp and ¢}) labeled {o,7}; let the paths Po, and Q¢, be [s¢,,spl*
Plsp;tp]* [Up, tey]| and [sc, ,] * [z, tc,], respectively. Find the bridges of J¢, in G, .
The paths Pc,, Qc, and the bridges of Jg, in G¢, are found in a similar manner.
The graphs G, and G¢, are well defined and are TyPE.II graphs.
Label each edge of Cy and Cy by recursively calling LABEL-TypE-11 with (G, , s¢,, tc,)
and (Gg,,sc,,lc,), respectively.

2. Label each edge of C; (for 2 < ¢ < n) by recursively calling the main algorithm with
(Goyssorstey)-

step4. Each edge [s, u] incident on s is labeled {([s,u]) = (s,u) and each edge [u,{] incident on

t is labeled {([u,t]) = (u,t).

end{LABEL-TYPE-III.} [

Remark 7.1 1. The relation between the nonseparable components of G’ and their extremal
vertices, is indicated by means of a tree of size no larger than O(|E(G’)|). Hence, the
extremal vertices of each of the nonseparable components of G’ can be labeled, according
to the step2 in time O(s1zE(iree(G'))) = O(|E|) time.

2. Since all other steps take O(|F|) time, the algorithm reduces the graph G to the graph G”
in stepl, or to graphs G¢,, G¢,, ..., G¢, in step2, in O(|£|) time.

3. Since G"” = G, and since G is a TYPE.III graph, whereas G" is a TYPE.IV graph, G" < G.
For each nonseparable component C; of G', |[V(C;)| < |V(G')| and hence for each graph
Gy, [V(Ge,)| < [V(G)]. Thus, G, < G. O

24 BIDIRECTIONAL EDGES PROBLEM: I

Figure 14: A Typg.I11 graph.

B; € Class.j such that e is bidirectional by Lemma 6.2. Hence B = Class.3. But since B
is proper and not a block of equivalent 3-bridges there are two interlacing BF?-bridges B;
and B; € Class.3 such that e is bidirectional by Lemma 6.2.

2. There is no proper block of BYQ-bridges, B, such that B is not a block of equivalent
3-bridges, and e is an edge of the subpath P[sp(B);t5H(B)].
Notice that no bridge of Class.i interlaces with a bridge of Class.j, (where ¢,7 = 1,2,3 and
i # j), and if Class.3 is nonempty, then it is either a singleton set or a block of equivalent
3-bridges. If Class.3 is empty or if Class.3 contains two or more equivalent 3-bridges then
{(e) = (u,v). On the other hand, if Class.3 = {B} is a singleton then the labeling of e is
completely determined by the bridge fragment J U B. U]

7 Labeling the edges of a Type.IIl Graph

As in the earlier sections, we assume that there is an algorithm called LABEL-TYPE-IV, to label
the edges of a TYPE.IV graph; we present an algorithm to label the edges of a TyPE.IIl graph
(G s,t) using LABEL-TYPE-1V.

The cycle J in graph G consists of the path P[s;¢] and Q[s;]; and has a single BF?-bridge,
B. Without loss of generality we may assume that s, and s7) are adjacent to s and {3 and {7,
adjacent to {. If not, G’ may be modified by contracting the subpaths P[s; sp], Q[s; s5], P[tp;1]
and Q[t7); 1] to single edges [s, sp], [s, s5], [(p, 1] and [t5), t], respectively, and the labeling of the
edges of these subpaths are uniquely determined by that of the corresponding edges, as in the
preceding section.

Algorithm LABEL-TYPE-11I(G):

stepl. Let G’ be the subgraph derived from G by deleting the vertices s and ¢ together with
the edges incident on s and ¢. If G’ is nonseparable then G is a TYPE.IV graph and by
assumption, we can label G = G using the algorithm LABEL-TYPE-IV. Otherwise, go to
the next step.

Section 6 LABELING THE EDGES OF A TYPE.II GRAPH 23

b1

bj (= S*Q: t@

-CASE.3- -CASE.4 -

Figure 13: CASES.3 AND .4 of the Lemma.

If ¢3 and b are distinct then every edge of P[b};1}] is bidirectional. Note that ¢}, must be a
vertex of attachment of B;. Thus, there is a cross-cut between a; and {3 (say, N]"). Then the
paths P[s;t] and P[s;a;]+ Ni[a;;tp]+ P[tp;bi]x N/'[bi; b:]* Q[bs; t]traverse edges of P[bj;¢p] in
either directions. The subpath Q[b;; tZg] is treated in a similar manner.
e(CAsE.4 s=ua; andt = b;.

We may assume that sp = {p = a; and sp = {;; = b;. Since, otherwise, this case could be
reduced to one of the previous cases. But, then the theorem is trivially true in this case. L]

Theorem 6.3 If LABEL-TYPE-III correctly labels the edges of a TYPE.IIL graph then the algo-
rithm LABEL-TYPE-II correctly labels a TYPE.IL graph.
PROOF.
Let e = [u,v] be an edge of a TyPE.III graph G. If e is an edge of a BY%-bridge then e is
correctly labeled by lemma 6.1. Thus assume that e is an edge of the path P and that « is to
the left of v on P.

Let us divide the set of BP?-bridges, B, into following three disjoint subsets:

e Class.1={B € B : B has no vertex of attachment on P[v;¢].}
e Class.2= {B € B : B has no vertex of attachment on P[s;u].}
e Class.3 = B\ { Class.1 U Class.2 }
= {B € B : B has a vertex of attachment on P[s;u] and on P[v;?].}

Consider the following two cases:

1. There is a proper block of BY?-bridges, B, such that B is not a block of equivalent 3-
bridges, and e is an edge of the subpath P[sp(B);{5H(B)].
We may assume that no bridge of Class.i interlaces with a bridge of Class.j, (where ¢,j =
1,2,3 and i # j), since, otherwise, there are two interlacing BY?-bridges B; € Class.i and

22 BIDIRECTIONAL EDGES PROBLEM: I

-CASE.1- -CASE.2-

Figure 12: CAsEs.1 AND .2 of the Lemma.

edges of P[sp;a;] in either directions. The cases for P[b;; (3], Q[s5); a:] and Q[by; (7] are treated
similarly.

eCASE.2 s is an internal vertex of quadrant I and t, of quadrant II.

We may assume that a; = s = ¢5. Since, otherwise, this case could be reduced to the previous
case.

Since B; is a BYQ-bridge, a; is also an attachment of B;; and there are cross-cuts between
aj and a; (N]) and between a; and b; (N/). Let @; and b; be modified to be the left- and
right-most vertices of attachment of B; on @), distinct from s and ¢, respectively. Accordingly
N; is modified.

Every edge of the residual path Q[a;;b;] and Q[b;; b;] is bidirectional. The paths Q[s;¢] and
Pls;a;]* Njla;; bi]% Q[bj; a;]* Nila;; bilx Q[bs; 1] traverse edges of Q[a;;b;] in either directions.

If s7, and a; are distinct, then every edge of Q[szg; a;] is bidirectional. Note that s}, must
be a vertex of attachment of B;. Thus, there is a cross-cut between s7, and bj, say N]’-. Then
the paths Q[s;t] and P[s;a;]x N[a;;a;]x Qlas;sjlx Ni[sh;bilx Q[bj;t] traverse the edges of
Q[s%); ai] in either order. The subpath Q[b;; (7] is treated in a similar manner.
oCASE.3 s = a; and { is an internal vertex of the quadrant II.

We may assume that sp = a; and s;; = b;. Since, otherwise, this case could be reduced to one
of the two previous cases.

Since B; is a BP?-bridge, it has a vertex of attachment b: on P[sh;(5]. Let b; and b
be modified to be the right-most vertices of attachment of B; on P and @, distinct from {.
Accordingly N; is modified. Moreover, there are cross-cuts between a; and b (say, N/) and
between b; and b} (say, N').

Every edge of the residual path Q[b;;b;] is bidirectional. The paths @[s;¢] and N;[s;b;]*
Q[bi; b;]* N;[bj;a;]x Plaj;t] traverse the edges of Q[b;;b;] in either directions. If a; and b} are
distinct then, similarly, every edge of P[a;;b!] is bidirectional.

Section 6 LABELING THE EDGES OF A TYPE.II GRAPH 21

PROOF.

The forward direction is trivial as G’ is a minor of G. The converse: Let R[s;t] € G be a path
from s to ¢t that traverse e in the order u and v in G. Using Proposition 2.3, we can write R[s;{]
as R[s;z]* R[z;y]* R[y;t] such that z and y are vertices of attachment of B and R[z;y] belongs
completely to B, is a a cross-cut of J and traverses e in the order u, v.

We need to show that there is a path in G’ that traverses e in the same order. There are
two cases to consider: First, if € P[s;t] and y € Q[s;t] (or vice versa) then the desired
path is P'[s;z]* R[z;y]* Q'[y;t] in G'. If, on the other hand, z and y are both in P]s;{[
(symmetrically, z, y € Q]s;t[), we proceed as follows: Since B is BF?-bridge it has another
attachment z € @]s;{[. By Proposition 2.5, there is a cross-cut either between z and z or
between y and z that contains e. Assume the former, i.e.,the cross-cut is R'[z;z]. Then the
paths P'[s;z]* R'[z;z]x Q'[2;t] and Q'[s; z]* R'[z;x]x P'[x;1] are both in G’ and one of them
traverses e in the order u, v. [

Lemma 6.2 Let B; and B; be two interlacing BFR bridges of J = PUQ. Lel sp and {3 be the
left- and right-most altachment of B; and Bj on P distinct from s and t; and similarly s and
H on Q. Then the edges of the residual paths Plsp;ip] and Q[s5); 5] are bidirectional.
PROOF.

Since B; and Bj; interlace, there exist two vertices of attachment a; and b; of B; and two vertices
of attachment a; and b; of B;, all four distinct, such that a; and b; separate a; and b; in the
cycle J. Let N; be a cross-cut of J in G between a; and b; belonging to B;; and N; between a;
and b; belonging to B;. The four residual paths J[a;;a;], J[a;;b;], J[b;; ;] and J[b;; ;] will be
referred to as quadrants I, II, III and IV, respectively.

Without loss of generality, we may assume that s and ¢ do not lie in the same quadrant.
Suppose not, i.e.,s and ¢ both belong to the same quadrant, say I, which contains P[s;t]. Since
B;is a BP® bridge it has an attachment on P]s;[; call it a;-. Let the path from a;- to b; be the
new cross-cut N]". Now s and ¢ lie in different quadrants defined by a;, b;, a; and b;.

Now we prove the theorem, separately in each of the following four cases:

1. s and t are internal vertices of diametrically opposite quadrants.

2. s and t are internal vertices of adjacent quadrants.

3. s is one of a;, b;, a; or b;; and t is an internal vertex of an adjacent quadrant.
4

. s=ag and t = by, where k = 1 or j.

eCASE.1 s is an internal vertex of quadrant I and t is an internal vertex of quadrant II1.

Let a;, b;, a; and b; be modified such that a; and a; are the left-most vertices of attachment of
B; and Bj, distinct from s, on () and P respectively; and similarly, b; and b;, distinct from .
Accordingly, N; and N; are modified.

Every edge of the residual paths P[a;; b;] and Q[a;; b;] is bidirectional. The paths P[s;] and
Q[s; a;] % Niag; b))+ Plbisa;]+ Njlaj;b;] % Q[b;; t] traverse the edges of Pla;; b;] in either direction.
Similarly, for Q[a;;b;].

If s and a; are distinct then every edge of the path P[s}%;a;] is bidirectional. Note that
sp must be a vertex of attachment of B;. Thus, there is a cross-cut between s} and b;, say
N!. Then the paths P[s;{] and Q[s;b;]% N[bj;a;]* Plaj;splx N/[sp;b;]x P[b;;t] traverse the

20 BIDIRECTIONAL EDGES PROBLEM: |

Figure 11: The graph after sTEP1 of algorithm LABEL-TYPE-IL.

2. Since each step takes O(|E]) time, the algorithm reduces the graph G to graphs G ,

/B27
.oy G5 in O(|E)) time.

3. For all 1 < ¢ < n, since ‘V(G%i)‘ < |V(G)|, and since the algorithm introduces no new
edge with ends at s and ¢ in G}Bi, the first and second elements of the signature of G93¢ are
no larger than those of . But since G is a TYPE.II graph, whereas G is a TYPE.III
graph, G93¢ < G.

L

Lemma 6.1 Let B be a BP?-bridge of J = P U Q in TYPE.1l graph G and e = [u,v], an edge
of B. Let G' be a subgraph of G derived from G by deleting all bridges except B and contracting
the residual subpaths as in the algorithm LABEL-TYPE-II.

Then there is a path from s to t in G lraversing e in the order w, v if and only if there is a
path from s tot in G' traversing e in the same order.

Section 6 LABELING THE EDGES OF A TYPE.II GRAPH 19

Figure 10: A TyPE.Il graph.

Algorithm LABEL-TYPE-II(G):

stepl. Let G be a TyPE.II graph with the set of B¥?-bridges, B = {By, By, ..., B,} (n > 0).
Let By, ..., B; be a partition of B, where B; is a block of BP?-bridges.

Modify each bridge fragment G'g, = B; U J as follows: Let vy, ..., v, and wy, ..., we_1
be the vertices of attachment of B; on P]s;t[and Q]s;{[, ordered in their left-to-right
order, respectively. Let £ = {P[vg(= s);v1], ..., Plop_1;0,(= 1)], Qwo(= s);wn],

Q[wq_l7 we(=1)]} be the set of residual paths of J.

B, is derived from G'g; by contracting the subpaths P[v;_1;v;] and, Q[w;_1;w;], (1 <1 <
pand 1 < j < ¢) to single links [v;_1,v;] and [w;_1, w;] respectively, the “pseudo-edges” of
the subpath. J! = {P/}U{Q’} is the cycle in G derived from J by the contraction. Since,
each such Gz is a TYPE.III graph, by assumption, we can label the edges of (G’ ;s,1)
using the algorithm TvpE.II1.

step2. Let &; = {e},, €9, .. €} C E(P)) such that €}, €} ,, ..., €, are bidirectional in G5,
Label the edges of P correspondmg to the ones in &; of P bidirectional. Label every other
edge e = [u,v] of P unidirectional, with the label (u,v), if u is to the left of v on P. Label
the edges of @, in a similar manner.

step3. Let B = B; be a block of BP?-bridges, where 1 < i < [. If B is a proper block but
not a block of equivalent 3-bridges, label the edges of the subpaths P[s}(B);{5(B)] and
Q[s5(B); 15 (B)] bidirectional.

end{LABEL-TYPE-II.} [J

Remark 6.1 1. It is easily seen that the step2. can be done in time O(|pE + E|+|V|), where
|[pE| = is the total number of pseudo-edges introduced by the algorithm. We will show
that |pE| = O(|E|). Moreover, the blocks of B¥?-bridges bridges can be found in linear
time.

18 BIDIRECTIONAL EDGES PROBLEM: |

must hold. But from the assumption it follows that, uvP2(v;_1,u; v, v;; G;) must be false. But
then UVP2(v;_1,v; u, v;; G;) holds, and again from our assumption it follows that UVP2(s, v;; v;_1,1; G*)
must be false.

For the second part, the forward direction is obvious. In the other direction we proceed as
follows:

Let Ri[s;u] and Ry[v;t] be two vertex-disjoint paths in G*~'. If R; and R avoid the
subgraph G; then the lemma holds trivially.

Hence assume that R; contains a vertex @ € V(G;). By the Lemma 5.1, it must contain
the vertices v;_1 and v;. Since Ry is vertex disjoint with R;, Ry must avoid the subgraph G;.
Let R} be the path in G derived from path Ry, by contracting the subpath R;[v;_1;v;] to the
pseudo-edge [v;_1,v;]. The paths R} and R, are simple and vertex-disjoint in G*. [

The following is a direct consequence of the preceding lemma.

Corollary 5.3 Let e = [u,v] € E(G).

1. Ife € E(G,), for some 1 <1 < p, then UVP2(s,u;v,t;G) if and only if
(i) UvP2(v;_1,u;v, v Gy) or (i) UVP2(s, v 021, GY).
Similarly, if e € E(G;), for some p+ 1 <1< p+q, then uvp2(s,u;v,1;G) if and only if
(1) UVP2(w;_p_1,u; v, wi—p; G;) or (11) UVP2(s, w;_p; wi—p_1,4; G').

2. Ifed E(G,), forall1 < i< p+q, then uvrP2(s,u;v,t;G) if and only if UvP2(s,u;v,1; G").
]

Theorem 5.4 [f LABEL-TYPE-1I correctly labels the edges of a Typre.Il graph then the algo-
rithm LABEL-TYPE-1 correctly labels the edges of a TYPE.I graph.
PROOF.
If G has no BP?-bridge then, since the subgraphs G; and G meet each other only in the vertices
s and ¢, and otherwise avoid each other, the correctness of the algorithm, for this case follows
immediately.

If G has one or more BP?-bridge, then the correctness of the algorithm follows from the
previous corollary. L]

6 Labeling the edges of a Type.Il Graph

As before, we assume that we have an algorithm, called LABEL-TYPE-III to label the edges of
a TypE.III graph; we present an algorithm to label the edges of a TYPE.II graph (G} s, 1) using
LABEL-TYPE-III. The algorithm follows:

Section 5 LABELING THE EDGEs oF A TYPE.I GRAPH 17

Figure 9: The graph after STEP1 of algorithm LABEL-TYPE-I.

Lemma 5.1 Consider the subgraph G; of G*=' defined earlier.

If1 < i < p then every path in G*~', connecting s or t to a vertex of G; must contain v;_;
or v;. Similarly, if p+ 1 < i < p+ q then every path in G*~', connecting s or t to a vertex of
G; must conlain w;_,_1 or w;_,.

PROOF.
This is a direct consequence of the fact that J*~! is an ambitus of G*~1.]

Lemma 5.2 Let 1 <i<p+gq, and e = [u,v] € B(G'™).

1. If1<i<pandec E(G;) then uvp2(s,u;v,t; G*"Y) if and only if
(i) UVP2(v—_1,u;v,v; G;) or (i) UVP2(s, v 01,1 G*). '
Similarly, if p+1<i<p+q and e € E(G;) then uve2(s,u;v, ;G if and only if
(i) UVP2(w;_p_1,u; 0, w;_p; G;) or (ii) UVP2(s, wi_p; wi_p_1,1; GY).

2. Ife g BE(G;) then uvp2(s,u;v,t; G*™Y) if and only if uvP2(s,u;v,t; GY).

PROOF.

Consider the case when 1 <z < p. For the first part:

(=) Assume that UVPQ(S,U;’U,t;Gi_l) holds. Since by the Lemma 5.1, the vertex disjoint

paths of G*~! must contain v;_; and v;, either UVP2(wv;_1,u;v,v;; G;) or UVP2(s, v v,_1,1; GY)

(or both) must hold.

(<) Assume that UvP2(s, u;v,t; G*~1) does not hold. Since G*~! is nonseparable, UVP2(s, v;u, t; Gi1)
must hold. By the Lemma 5.1, it follows that either UVP2(wv;_1,u; v, v;; G;) or UVP2(v;_1, v;u, v3; Gy)

16 BIDIRECTIONAL EDGES PROBLEM: |

All the subgraphs G, Gy, ..., Gpyq are well-defined. Simply, note that since J is an am-
bitus, every B -bridge (respectively, BQ—bridge) of J avoids every BF?-bridge and has all
its vertices of attachment on some residual path P[v;_1;v;] (respectively, Q[w;—p—1, w;_p]).
Moreover, the graphs G’, Gy, ..., G4, partition the edges of the graph G.

1. The graph G’ is a TyPpE.II graph; label the edges of G’ using the algorithm LABEL-
Type-11

2. For each subgraph G; (1 < i < p) repeat the following: If the pseudo-edge, [v;_1, v;] is
labeled bidirectional by the first substep, label all edges of GG; bidirectional; otherwise,
label the edges of G; by recursively calling the main algorithm with the argument
(G, vie1, v;).

3. For each subgraph G; (p+ 1 < ¢ < p+ ¢) repeat the following: If the pseudo-
edge, [w;_p—_1,w;_p] is labeled bidirectional by the first substep, label all edges of
G; bidirectional; otherwise, label the edges of G; by recursively calling the main
algorithm with the argument (G, w;—p_1, w;_p).

end{LABEL-TYPE-1.} [

Remark 5.1 1. See Mishra and Tarjan[14] for an O(|E|) algorithm to find an ambitus.
2. Since all other steps take O(|E]) time, the algorithm reduces the graph G' to Gy and G
in step2, or to graphs G’, Gy, ..., G,4, in step3, in O(|E|) time.
3. If G; and G are the graphs generated in step2, then |V (G;)| < |V(G)| (¢ = 1,2). Moreover,
if |[V(G1)| = |V(G)| then G must be link-graph, and the second element of G1’s signature
is strictly smaller than that of G. Similarly for G3. Hence G; < G (i = 1,2).
4. If G', G4, ..., Gpyq are the graphs generated in step3, then we see that

(a) Since |V(G")| < |V(G)|, and since the algorithm introduces no new edge with ends at
sand t in G', the first and second elements of G’ are no larger than those of G. But
since G is a TYPE.I graph, whereas G' is a TYPE.II graph, G’ < G.

(b) For each subgraph G; (1 < <p+ q),since |V(G))| < |V(G)|, G; < G. U

Let G be a TypE.II graph with an ambitus J such that G has one or more BP?-bridge. We
define a sequence of minors of G as follows:

1. GY =G, and J° = J.

2. (a) 1< i<p. Then G; = (E(Plvi_1;v]) U E(BY (v;i_1,v;)) is a subgraph of G*~1. Let
G' be a minor of G~ obtained by first deleting the edges of Bp(vi_l,“ui) and then
contracting the subpath P[v;_i,v;] to a single edge [v;_1, v;]. J' is the ambitus of G
obtained from J*~! by the contraction.

) p+1 < i< ptgq Then G; = (B(Qwi_p_1;wi,]) U E(B?(w;_p_1,w;_,)) is a
subgraph of G*~!. Let G* be a minor of G*~! obtained by first deleting the edges of
BQ(wi_p_l, w;_p) and then contracting the subpath Q[w;_,_1,w;_,] to a single edge
[Wi—p—1, Wi—p]. J* is the ambitus of G* obtained from J~! by the contraction.

Section 5 LABELING THE EDGEs oF A TYPE.I GRAPH 15

Figure 8: A TvyPE.I graph.

Algorithm LABEL-TYPE-I(G):
stepl. Modify the cycle J to an ambitus.

step2. If G has no BY?-bridge then divide into subgraphs
G1=(E(P)UE(B")), and Gy = (E(Q)UE(B?)),

where BY and B? are the (possibly, empty) set of BP- and B?-bridges of J in G. Label
(G1,s,t) and (Gy, s, t), separately. Otherwise, go to the next step.

step3. Let vy, ..., vp—1 and wy, ..., we—1 be the vertices of attachment of the set of BFP? bridges
on PJs;t[and Q]s;t[, ordered in their left-to-right order, respectively. Let £ = {P[vo(=
s)iv1l, e Plop_1svp(=)], Qwo(= s);wi], ..., Qwy—1; we(= t)]} be the set of residual
paths of J.
Let G’ be the minor of G obtained by first deleting every BF- and B?-bridge and then
contracting the subpaths P[v;_1;v;] and, Q[w;_1;w;], (1 < ¢ <pand 1< j<gq) to single
links [v;_1,v;] and [w;_1, w;] respectively, the “pseudo-edges” of the subpath.

Let Gy, ..., Gp, Gpt1, - .., Gpyq be the subgraph of &, where
Gy = (E(P[vi—y;wi]) U B(B" (vim1,v)), (1<i<p),

and
Gi = (B(Qwi—p—1; wi—p])) U E(B?(wi—p—1,wi—p)), (p+1<i<p+q),

and BY (v;_1,v;) (respectively, BQ(wi_p_l,wi_p)) are the set of B -bridges (respectively,
B@-bridges) with all the vertices of attachment on P[v;_1;v;] (respectively, Q[w;—_p—1, w;_,].)

14 BIDIRECTIONAL EDGES PROBLEM: I

2. The linear time complexity of step.3 follows from the Remark 2.3.

3. Since all other steps take O(|E|) time, the algorithm reduces the graph G to graphs Gy,
G, ..., Gy in O(|E|) time.

4. Since |V(G1)| < |[V(G)|, and since the algorithm introduces no new edge in Gy, the first
and second elements of G1’s signature are no larger than those of G. But since G is an
arbitrary graph, whereas 1 is a TypE.I graph, G; < G.

For each subgraph G; (3 <@ < k), since |V(G))| < |V(G)|,Gi < G. O

Theorem 4.1 If LABEL-TYPE-I correctly labels the edges of a TYPE.I graph then the algorithm
LABEL-GRAPH correctly labels the edges of a nonseparable graph.

PROOF.

Since G is derived by deleting the bridges Gg,...,Gi of a nonseparable component C;, by
Proposition 2.8, G is nonseparable. Moreover, the bridges of G; with respect to J are BF-,
B@9- and BP9 bridges. Hence, G is of Typr.I. The rest follows from the following claim.
Claim: If e = [u, v]is an edge of G; (for 1 < j < k), then there is simple path from s; to ¢; in C;
traversing e in the order u, v if and only if there is a simple path from s; to ¢; in G; traversing
e in the same order.

Proof of claim:

(<) True, since G is a subgraph of C;.

(=) First note that if there is a simple path R from s; to {; containing z, a vertex in the
nucleus N(G;) of a bridge G (for 2 < j < k), then the edges of R belong to ;. (Follows from
proposition 2.3.) Now, assume that R is a path in C; traversing e in the order u and v. Then
there are few cases to consider: If e = [u,v] € G, (2 < 7 < k) and G is degenerate then the
path s; = u — v = {; is the required path in G;. If, on the other hand, G; is proper then either
w or v (or both) belongs to N(G;) and the path R lies completely in G; and traverses e in the
same order. Finally, if e = [u, v] € G then the claim holds easily, since otherwise R has an edge
or vertex in some G (for 2 < j < k) and then all the edges of R belong to G;. This contradicts
the premise that e € Gy.

As a result of this claim and the proposition 3.1, we see that the edge labeling given by the
Algorithm LABEL-GRAPH is, in fact, correct. [

5 Labeling the Edges of a Type.l Graph

We assume that there is an algorithm, called LABEL-TYPE-1I, to label the edges of a TypPE.Il
graph; we present an algorithm to label the edges of a TypE.I graph (G;s,t) using LABEL-
TypE-II. The algorithm follows:

Section 4 LABELING THE EDGES oF A GENERAL GRAPH 13

Figure 7: The graph after STEP3 of algorithm LABEL-GRAPH.

1. Gy is a TypE.I graph; and by assumption, the edges of Gy can be labeled using the
algorithm LABEL-TYPE-I.

2. G is a link graph with ends at s and ¢; label {([s, t]) = (s,).

3. Label the edges of G; € G, (for 3 < j < k) by recursively calling the algorithm
LABEL-GRAPH with the argument (G}, s,).

end{LABEL-GRAPH.} [

Remark 4.1 1. The time complexity of step.2 of the algorithm is O(|£]). Assume that all
edges of the network have capacity one. We observe that in Dinic’s algorithm for maximal
flow in a layered network, each time we find a path all the edges on it become blocked,
and in case the last edge leads to a dead end, we back-track on this edge and it becomes
blocked. Thus the total number of edge traversals is bounded by |E/|, per phase. Since we
are interested in finding only two paths, we need at most two phases, and hence, O(|E|)
time.

12 BIDIRECTIONAL EDGES PROBLEM: I

Figure 6: A non-separable graph with the bridges of J.

Algorithm LABEL-GRAPH(G):

stepl. Find the nonseparable components of the graph. Let Cy,Cy,..., C,, be the chain of
nonseparable components G with respect to s and ¢t. Let s; and ¢; be the vertices associated
with C; (Cf. Assumption 3.2). For each (Cjy; s;, t;), where 1 < ¢ < m, do the following
steps.

step2. If (C; s;, ¢;) is a link-graph (i.e.,[s;, ;] is an isthmus of G) then (([s;, ;]) = (si,1;).
Otherwise, find two internally vertex-disjoint paths connecting s; and ¢; in C; by applying
Dinic’s Algorithm for MaxFlow problem.(Dinic[5]) For every nonseparable graph, such
paths exist. We call these two paths P and @.

step3. Find the set of bridges of the cycle J = {P} U {Q} in C;. Let B stand for the BY-, B%-
and BP?-bridges of J and G for the remaining set of bridges of .J. Notice that every bridge
in the set G has exactly two vertices of attachment s and ¢, and since G is a strict graph
at most one of such bridges is degenerate.

Let Gy = {G1 = PUQ U B}, G = {G3} = the set of degenerate bridges with vertices of
attachment at s and ¢, and G3 = {G3,..., Gy} = the set of proper bridges with vertices of
attachment at s and .

Section 4 LABELING THE EDGES oF A GENERAL GRAPH 11

oTvpPE Il GrAPHS: A graph is said to be of type IT if it is of TyPE.I and has at least one
BF@_bridge, but no BY- or B?-bridges.
o IvpPE III GrAPHS: A graph is said to be of type I1I if it is of TYPE.II and has only one single

BF@ bridge.
oIvPE IV GRrAPHS: A graph is said to be of type IV if it is of TyYPE.IIl and the subgraph,
derived by deleting the vertices s and ¢ together with their incident edges, is nonseparable.]

Definition 3.4 SIGNATURE OF A GRAPH. Let GG be a graph with two distinguished vertices s
and ¢t. To G, we assign a triple of positive integers (i;, i3, 73), called its signature, where

« i1 = [V(G)
e i3 = the number of edges of the form [s,]

o 13=20,1,2, 3 and 4, depending on whether G is a TYPE.IV, TyPE.IIl, TYPE.Il, TYPE.I
or an arbitrary graph.

We say graphs Gy < G, if
signature(G1) <iex signature(Gy).

This defines a well-ordering among the graphs. Let Gg = Gy > --- > G, be a decreasing
chain of graphs ordered by the above ordering. If Gy, G, ..., G, are strict graphs then the
second elements of their signature can have the values 0 or 1, and hence n < 10 - |V(Gy)|. O

Intuitively, these four classes of graphs: TypE.I, TyPE.Il, TYPE.IIl and TYPE.IV graphs,
form a hierarchy of graphs of successively simpler structure. In the following sections we present
four algorithms: LABEL-GRAPH, LABEL-TYPE-I, LABEL-TYPE-II and LABEL-TYPE-III, which
take as input an arbitrary graph, a TYPE.I graph, a TyPE.Il graph and a Typg.IIl graph,
respectively, and reduce the graph into graphs with a strictly smaller signature. Each of these
algorithms labels the graphs of the appropriate type correctly, on the assumption of existence
of correct algorithms for the subsequent types. Moreover, this set of four mutually recursive
algorithms, together with an algorithm for TYPE.IV graph of time complexity O(T'(|£|,|V])) >
O(|E]| - |V]), provide an O(T'(|E|,|V|)) algorithm for labeling a general graph. This chapter
concludes with an O(|E| - [V|*) algorithm for TyPE.IV graphs, and hence a similarly efficient
algorithm for general graphs.

However, each of these algorithms may introduce additional edges into the resulting smaller
graphs; these edges will be referred to as pseudo-edges, as distinguished from the original edges
of the graph, the later being referred to as graph-edges. The algorithms achieve their efficiency
by introducing these pseudo-edges in a controlled manner such that at any stage not too many
pseudo-edges are introduced.

4 Labeling the Edges of a General Graph

In this section we assume that we have an algorithm, called LABEL-TYPE-I to label the edges
of a TypE.I graph; we provide an algorithm to label the edges of a general graph (G s,t) using
LABEL-TYPE-I. The algorithm follows:

10 BIDIRECTIONAL EDGES PROBLEM: |

Figure 5: The chain graph.

Assumption 3.2 G is a chain graph. [

Let G = (V, E) be a graph with source s and sink ¢ and let G’ C G be a minimal subgraph of
GG containing s and ¢ such that every nonseparable component of G’ is a nonseparable component
of G and G’ is a chain graph.

Let Cs = Cy, Cq, ..., Cx = Cy be the nonseparable components of G, where s € V(C) and
t € V(Cy). Let a1, ag, ..., ag—1 be the separation vertices of G', where a; € V(C;) N V(Ciy1).

The nonseparable components Cy, Csq, ..., Cy are the chain of nonseparable components of
G with respect to s and {.

With each C;, we associate two vertices s; and t;, where s; = s, {x = ¢ and s; = a;—1(1 <
i <k)and t; = a;(1 << k). Let E; C F be the edges of the nonseparable components C;’s on
the path P and Fy; = E\ E;. (See Figure 5.) Note that:

Proposition 3.1 (Mishra[12]) Let G = (V, E) be an undirected graph with a source s and sink
t and let 1 and Fq be the partition of edges, E as described. For each edge e € F,

e € Fy if and only if (EI no simple path from s lo t conlaining e).]

Thus each edge [u,v] € E3 has the labeling: ¢([u,v]) = §. Similarly, the labeling of each edge
in Fp is determined by analyzing the subgraph G’, described earlier. Further note that, given
any graph G = (V,) with source s and sink ¢, we can find its nonseparable components and
the separation vertices in time O(|E|). Hence, the chain graph G’ C GG , and ultimately, the set
of edges F5 can all be found in linear time.

83.2 A Classifications of Graphs

Definition 3.3 CLASSIFICATION OF GRAPHS. We introduce a classification of graphs as follows:
oTvPE I GrRAPHS: A nonseparable graph G is said to be of type Iif it has a cycle J containing
the vertices s and t and all its bridges are BY-, B9- or B'?-bridges.

Section 3 OVERVIEW OF THE ALGORITHM 9

Remark 2.16 Following Tutte[22], we define a Y-graph as the union Y of three paths Yy, Y5
and Y3 which have one end v in common but are otherwise mutually disjoint. We call » the
center and the paths Y;’s, the arms of Y.

Proposition 2.5 Let x, y and z be three distinct vertices of attachment of bridge B of J in G
and let e be an edge of B such that there is a cross-cutl of J between x and y containing e. Then
at least one of the two following conditions is salisfied:

1. There is a cross-cul of J belween x and z containing e.

2. There is a cross-cut of J between y and z containing e. [

Proposition 2.6 Let By and By be distinct overlapping bridges of a cycle J of G. Then either
B1 and B, interlace or they are equivalent 3-bridges. [

Proposition 2.7 Let G be a nonseparable graph; e = [u,v] € E(G), an edge of G; and a and
b € V(G), two distinct vertices of G. Then there is a simple path Na;b] in G from a to b
containing e. [

Proposition 2.8 Let G be a nonseparable graph with a cycle J and let By, ..., By the bridges
of J in G. Let G' be the graph derived from G by deleting a bridge B;.

1. w(G,B;)>2 for1 <i<k.
2. G' is nonseparable. [

3 Overview of the Algorithm

The main technique of our algorithm is to use a sequence of reductions, showing that a general
class of graphs can be properly labeled efficiently if and only if certain progressively simpler class
of graphs can be properly labeled with a similar time complexity. The underlying classification
of the graphs is given in terms of the bridges it contains and the nonseparability property
of certain subgraph; these classes are referred to as TyYPE.l, Type.Il, TYPE.IIIl and TYPE.IV.
More concretely, we show that efficient algorithms for graphs of each type can be found, provided
that we have good algorithms for graphs of subsequent types. The roles of each type of graph
will be clear in the following sections. In the final section, we present an O(|E|-|V|*) algorithm
to label the edges of a TYPE.IV graph and show that this implies an O(|E|-|V|*) algorithm for
the general graph.

§3.1 First, we introduce some simplifying assumptions about the graph GG under consideration.
Assumption 3.1 G is a finite connected undirected strict graph. [

Note that if G is not connected and the vertices s and ¢ belong to two distinct connected
components of G, then every edge e = [u,v] of G, {([u,v]) = 0. On the other hand, if s
and ¢ belong to the same connected component, then we only need to analyze that particular
component. For every edge e = [u, v] of all other the labeling is {([u, v]) = 0.

If G has loops and multi-links then for every loop at v, {([v,v]) = (, and for every edge in a
multi-link, the labeling is determined by any single edge.

8 BIDIRECTIONAL EDGES PROBLEM: 1

Definition 2.12 AwmBITUS. Let J, P and @ be as in the previous definition. Then J is called
an ambitus if every BY- or B?-bridge avoids every BY?-bridge. U]

See [14] for a linear-time algorithm to compute an ambitus.

Definition 2.13 A Brock ofF BRrIDGEs. Let J, P and) be as before and B = By,..., B; be
the bridges of J in G. A non-empty subset of bridges B C B is called a block of bridges if it
satisfies the following two conditions:

1. If B; € B and B; and B; overlap, then B; € B.

2. No non-empty proper subset of B satisfies the above condition.

If all the bridges of B are BY-, BY- or BY?-bridges, then it is referred to as a block of BY -,
B9- or BPQ bridges, respectively. O

Definition 2.14 PROPER AND DEGENERATE BLock oF BRIDGEs. Let J, P and @) be as before
and B a block of bridges of J in G. We say B is proper, if it contains more than one bridge of
J in G, otherwise, it is degenerate. []

Notation 2.15 Let G, s, t, P[s;t], Q[s;t] and J = {P} U {Q} be as before. If B is a bridge of
the cycle J (and similarly, for B, a block of bridges) with at least one vertex of attachment on
P]s; t[, then the left- and the right-most vertices of attachment of B on P[s;t] are referred to
by sp(B) and tp(B) (and, in case of a block of bridges, B, sp(B) and {p(B)), and the left-most
and the right-most vertices of attachment of B on P]s;{[are referred to by sp(B) and (H(B)
(and, in case of a block of bridges, B, s;p(B) and t5(B)).

If, on the other hand, B is a bridge of the cycle J with at least one vertex of attachment on
Qls; L[, then sg(B), to(B), sg(B), tg(B), etc. are defined in an identical manner.

If the bridge or the block of bridges under consideration is clear from the context then we
simply write sp, s@, sp, s5, lp, lg, Up and {5. L]

§2.3 In this subsection we present some technical propositions that will be used quite often
later on. Their profs may be found in Even[6], Mishra[12] and Tutte[21].

Proposition 2.1 Let z be any edge or vertex of G not belonging to the cycle J. Then x belongs
to exactly one bridge of J of G that is degenerate or proper. [l

Corollary 2.2 Let z and y be distinct vertices of attachment of a bridge B of J in G. Then
there is a cross-cut of J between x and y. [

Proposition 2.3 Let y be a vertex of G belonging to some bridge B of J and x be any vertex
x € G\ B such that there is a path from x toy in G. Then there is a vertex z on this path that
is also a vertex of attachment of B. [

Proposition 2.4 Let z, y and z be three distinct vertices of attachment of a bridge B of J in
G. Then there is a vertex v belonging to the nucleus of B for which there are three internally
vertex disjoint paths in B: Yi[z;v], Ya[y : v] and Y3[z;v]. O

Section 2 PRELIMINARIES 7

Figure 4: BPQ-, B and B?-bridges of P and Q.

The vertices, s and ¢ dissect the cycle J into two internally vertex disjoint paths: P[s;{],
where P = J[s;1] and its complementary subpath in J, Q[s;t], where Q® = J[i;s]. Clearly P
and @) are internally vertex disjoint.

The vertices of P are ordered according to the cyclic order, and vertices of (), according to
the reverse cyclic order. A vertex u of P is said to be to the left of a vertex v of P, if u precedes
v in the cyclic order of J; and w is strictly to the left of v, if, in addition, w and v are distinct.
On the other hand, a vertex u of) is said to be to the left of a vertex v of @, if v precedes u in
the cyclic order of J; and wu is strictly to the left of v, if, in addition, v and v are distinct. The
relation ‘to the right of’ is the inverse of the relation ‘to the left of;” and the relation ‘strictly to
the right of’ is the relation ‘to the right of” with additional irreflexivity property. [

Definition 2.10 BRIDGES WITH RESPECT TO THE PATHS.

Let G be an undirected graph with two distinguished vertices s and ¢ with two internally
vertex disjoint paths P[s;{] and Q[s;t], which meet each other only in their end vertices, s and
t; J ={P}U{Q} is a cycle in G. We consider three different classes of bridges with respect to
J:

o BP?_BRripGEs: The set of bridges with at least one vertex of attachment on PJs;¢[and at
least one vertex of attachment on Q]s;[.

o BP-BripGEs: The set of bridges with at least one vertex of attachment on P]s;t[and no
vertex of attachment on Q]s;{[.

o BP-BripGEs: The set of bridges with no vertex of attachment on P]s;t[and at least one
vertex of attachment on Q]s;¢[.

If a bridge B of J = PUQ in G is not a BP9, B~ or BY-bridge then it has only s or ¢ as
vertices of attachment. [

Example 2.11 In the figure 4, we show BY?-, BP- and B®- bridges of the paths P and Q.
Bridges By, By and Bs are BPQ—bridges; By is a BP—bridge and Bs, a BQ—bridge.

6 BIDIRECTIONAL EDGES PROBLEM: 1

Figure 3: Bridges of J.

Definition 2.6 RELATIONS BETWEEN BRIDGES.
Let By and Bj be two distinct bridges of a cycle J of G.
o We say B; avoids B if and only if one of the following two conditions is satisfied:

2. All the vertices of attachment of By are contained in a single residual path L of Bs.

e If By and B3 do not avoid one another we say that they overlap.

o If there exist two vertices of attachment zy and x5 of B; and two vertices of attachment g
and yy of By, all four distinct, such that z; and z, separate y; and y, in the cycle J, then we
say that they interlace. [

Example 2.7 In the Figure 3, the bridges B; and B, interlace, where as, the bridge By avoids
B4. Also notice that the bridge Bs avoids every other bridge.

Definition 2.8 CROSS-CUTS.
Let J be a cycle of the graph G. A path N in G avoiding J but having its two ends 2 and
y in J is called a cross-cut of J between z and y.]

Definition 2.9 PATHS P AND ().

Let G be an undirected graph with two distinguished vertices s and ¢ and let J be a cycle of
the graph containing the vertices, s and ¢. Let the vertices of J be ordered in a clockwise cyclic
order starting with the vertex s. A subpath J[a;b] = (a =)ug, u1, ..., ux—1, ur(= b) denotes the
unique subpath of J in which u;_; precedes u; in the clockwise cyclic order (for 1 <1 < k).

Section 2 PRELIMINARIES 5

A connected graph is said to have a separation vertex v (also called an articulation point) if
there exist vertices @ and b, @ # v and b # v, such that all the paths connecting a and b pass
through ». A graph which has a separation vertex is called separable, and one which has none
is called nonseparable (also called biconnected). The maximal nonseparable subgraphs of G are
its nonseparable components (also called biconnected components). A connected graph is said
to be a chain graph if each of its nonseparable component contains no more than two separation
vertices.

§2.2 Now, we introduces the notion of bridges for cycles in general graphs. The term ‘bridge’
is taken from Tutte [21], which also contains a rather complete survey of bridge theory in
both general and planar graphs. The equivalent terms for bridge, in some older literature, are
‘component mod J’, ‘J-component’ [20] and ‘Gespinst’? [17].

Definition 2.1 BRrIDGES.[Tutte]

Let J be a fixed subgraph of G. A subgraph G; of GG is said to be J-detached in G, if all its
vertices of attachment are in J. We define a bridge of J in G as any subgraph B that satisfies
the following three conditions:

e 3 is not a subgraph of J.
e B is J-detached in G.
e No proper subgraph of B satisfies both (1) and (2).
The set of vertices of attachment of a bridge B of a subgraph J in G'is denoted by W(G, B) =

{vo,v1,.. . op—1y. O

Definition 2.2 DEGENERATE AND PROPER BRIDGES. NUCLEUS OF A BRIDGE.

An edge e = [u,v] of G not belonging to J but having both ends in J is referred to as a
degenerale bridge.

Let G~ be the graph derived from G by deleting the vertices of J and all their incident edges.
Let C' be any component of G~. Let B be the subgraph of G obtained from C' by adjoining to
it each edge of G having one end in C and one in J, and adjoining also the ends in J of all such
edges. The subgraph B satisfies the conditions to be a bridge. Such a bridge is called proper.
The component C' of G~ is the nucleus of B. [l

Remark 2.3 By a Theorem due to Tutte, if B is any bridge of a subgraph J of G then B is
either degenerate or proper. Hence using the above definition of a bridge and the theorem, we
can give a linear-time algorithm to find all bridges of a subgraph J of G. [

Example 2.4 In the Figure 3, we give an example of bridges of a cycle J. In this example,
bridges By, By, Bs and Bg are proper bridges, and B4 and Bj are degenerate bridges.

Definition 2.5 RESIDUAL PATHS.

Let the vertices of attachment of a bridge B of a cycle J in G, be W(G, B) = {vg, v1,...,0k-1}
and let vg, vy, ..., vp_1 be their enumeration in their cyclic order on J. The vertices of attachment
dissect J into k subpaths Lo, Ly,..., Ly_q such that L; = J[v;; LY)]. These subpaths
are called the residual paths of B in J. [

mod &

2Gespinst is the German word for ‘cobweb’.

4 BIDIRECTIONAL EDGES PROBLEM: 1

§2.1 Graph Theoretic Terminology

A graph G = (V, F) is a finite set V of vertices and a set E of pairs of vertices, called edges.
Either the edges are ordered pairs (u, v) of distinct vertices (the graph is directed) or the edges
are unordered pairs [u, v] of distinct vertices (the graph is undirected). If [u,v] is an undirected
edge, v and v are adjacent. If (u,v) is a directed edge, u is a predecessor of v (respectively, v is
a successor of u), sometimes denoted by, v — v (respectively, v < u). We call u and v, the ends
of the edge.

A graph Gy = (Vi, Eq) is a subgraph of G, if V1 C V(G), E; C E(G), and each edge of Gy
has the same ends in G as in G. If Gy is a subgraph of G, other than G itself, then Gy is a
proper subgraph of G. If Vi = V(G) then G is said to be a spanning subgraph of G. A vertex
of attachment of G in G is a vertex of (G; that is incident in G with some edge not belonging
to Gl.

If 4 C E(G), let V(£q) be the set of all vertices v of GG such that v is incident with a
member of Fq, i.e.,

V(E) = {veV(G): (3ue V() [uv] € B}

Then the subgraph (F1) = (V(E7), Eq) is the reduction of G' to E;. Similarly, if Vi C V(G), let
E(V7) be the set of all edges of G having both ends in V,i.e.,

E(Vy) = {[u,v] € B(G) :u,v € Vi }.

Then the subgraph (V1) = (V1, £(V1)) is the subgraph of G induced by V;.

An undirected graph is connected if there is a path connecting every pair of vertices and
disconnected otherwise. The maximal connected subgraphs of G are its connected components
or simply, components.

A path of length k from u to v in G is a sequence of vertices (v =) ug, u1, ..., ur (= v) such
that (u;,u;41) € E for 0 < i < k. (Sometimes denoted by u —— v.) The path contains the
edges (u;, u;41) for 0 <@ < k as well as vertices u; for 0 < ¢ < k. The vertices u and v are called
the ends of the path P. All other vertices of the path (i.e., u;’s for 0 < ¢ < k) are the internal
vertices of the path.

If 0 <@ < j <k, then the sequence of vertices, u;, u;41,...,u; is a subpath of the path
from u to v. If P is a path from u to v, u = wg,uy,...,ur = v, and 0 < 7 < 57 < k then
the subpath from w; to u;, including both w; and w; is represented by P[u;;u;]; the subpath
excluding »; but including w;, by Plu;;u;]; the subpath including u; but excluding w;, by
Plu;;u;[and the subpath excluding both w; and u;, by Pluj;u;[. If P = ug,uq,...,up—1,uk

is a path from wuy to ug, then the reversal of the path P is PR = wp,up_1,...,u1,uo. If
Py = wg,u1,...,u; and Py = u;, uiqq, ..., u; are two paths then the concatenation of Py and Py
is Prx Py = Uo, Uty oy Uiy Wiy, Uke

The path is simple if wug, ..., u; are distinct (except possibly ug = uy) and the path is a

cycle if ug = wui. By convention there is a path of no edges from every vertex to itself (null
path), but a cycle must contain at least two edges. Two simple paths P; and P are said to be
vertex disjoint, if the vertices of P; and P, are mutually distinct; internally vertex disjoint, if
the internal vertices of P; and P, are mutually distinct.

Section 2 PRELIMINARIES 3

|_c
Al |Fo Fe A b I} e

r o t

Gnd Gnd

Circuit 1 Circuit 2 Graph for Circuit 2

Figure 2: Example of a Sneak Path.

B)V(BANCAD)V(CALE)) and the resulting circuit after common subcircuit elimination.
However, because of the sneak path through D, it implements the Boolean formula =((AA B)V
(BACAD)V(CNE)V(ANDAE)), instead. Also in figure 2, we present the corresponding
graph in which D is bidirectional, thus showing the existence of a sneak path. Our algorithm
can be used to detect all the sneak paths.

For a discussion of other applications and the history of the problem, see the followings:
Frank[7] posed the original problem in the context of switch level simulation; Barzilai, Breece,
Huisman, Iyengar and Silberman [1] used the directionality information to speed up their simu-
lation; Jouppi[9] used the transistor direction in determining critical paths in the circuit, which
can then be used for timing simulation and design rule checking; Chen, Mathews and Newkirk[3]
used the directionality information for generating the test sets for MOS circuits at the switch
level. Additional applications may also be found in Brand[2], Lee, Gupta and Breuer[10], and
Cirit[4].

The paper is organized as follows: Section 2 introduces the various graph theoretic terminol-
ogy and concepts necessary for this process. Section 3 presents an overview of the algorithm and
defines a classification of graphs, suggested by the reduction processes used by the algorithm.
Sections 4, 5, 6 and 7 discuss the reduction processes and their complexity analysis in details.
Section 8 concludes the paper with the timing analysis of the complete algorithm.

2 Preliminaries

Here, we define some graph theoretic terminology and introduce other key concepts required
in the paper. Most important among these are the terms: bridge, residual path, cross-cut
and ambitus. The definitions are similar to those used in the context of Tutte’s Theorem on
Hamiltonian circuits in 4-connected planar graphs given in Tutte [21], those in the planarity-
testing algorithm of Hopcroft and Tarjan [8] or those in connection with the four-color problem
as presented in Ore [16].

2 BIDIRECTIONAL EDGES PROBLEM: 1

Example 1 Example 2

Figure 1: Two example graphs.

From the proposition above it is easy to see that we can label each edge [u,v] € E by asking
the following two questions: ‘Is UvP2(s, u; v, ¢; G) true?” and ‘is UVP2(s, v; u, t; G) true?’

There are polynomial-time algorithms to find two vertex disjoint paths in an undirected
graph. (Cf. Ohtsuki[15], Seymour[18] and Shiloach[19]; also see Mishra and Tarjan[14] in relation
to Ohtsuki’s algorithm.) The most efficient algorithms for this problem have a time complexity
O(|E|-|V]). (Note, both Ohtsuki’s and Shiloach’s Algorithms have this complexity.) The naive
way of solving the bidirectional edges problem is to invoke an algorithm for two vertex disjoint
paths problem twice per each edge. Altogether this takes O(|E|* - [V]).

Moreover, if we have an algorithm that correctly ‘labels” the edges of a graph G = (E,V) in
time O(T(|E],|V])) > O(|E| + |V|) then it is easy to see that this provides an O(T'(|E|,|V]))
algorithm for two vertex disjoint paths problem, as well. The reasoning is as follows: Given two
pairs of vertices {sy,%;1} and {sg,%3} in a graph G, we modify the graph G by adding a new
edge [t1,s2]. Let the modified graph be called G’. Now, using proposition 1.1, it is easily seen
that UVP2(sy,t1;s2,12; G) holds if and only if (¢1,s2) € £([t1, s2]) in G’. Thus, an algorithm for
bidirectional edges problem with a running time of O(|E| - |V]) is probably the best that one
can hope for.

In this paper and its sequel[13], we devise an O(|F|-|V]) time algorithm for bidirectional
edges problem; the algorithm makes a novel use of bridges of a circuit in a general graph. We
begin this paper with a simple set of reduction processes which suggest an O(|£/|- |V|2) algorithm;
subsequently, in the sequel[13], we introduce some additional machinery that further reduces the
complexity to O(|E| - |V]). The algorithms described here first appeared in [11] and [12].

The problem of finding all bidirectional edges arises naturally in the context of the simulation
of an MOS transistor network, in which a transistor may operate as a unilateral or a bilateral
device, depending on the voltages at its source and drain nodes. (Cf. Brand[2].) For efficient
simulation, it is important to find the set of transistors that may operate as bilateral devices.
Also, sometimes it is desired that information propagates in one direction only, and propagation
in the wrong direction (resulting in a sneak path) can cause functional error.

For instance, in the Figure 2, we show a circuit implementing the Boolean formula —((A A

Section 1 INTRODUCTION 1

1 Introduction

Let G = (V, F) be a finite undirected graph with two distinguished vertices, the source, s, and
the sink, t. We call an edge e = [u, v] of G ‘bidirectional’, if there are two simple paths connecting
s and ¢ and traversing e in either order—u, v and v, w. Similarly, we call an edge e = [u,v]
of G ‘unidirectional’, if every simple path connecting s and ¢ and containing e, traverses e only
in one order, say u, v; additionally, e is labeled (u,v). The “bidirectional edges problem” is
to find all the ‘bidirectional’ and ‘unidirectional’ edges of G, together with the labelings of the
‘unidirectional’ edges.

The notions of ‘unidirectional’ and ‘bidirectional’ edges can be formalized in terms of the
labeling function, £, that maps each undirected edge [u,v] to a subset of {(u,v), (v,u)}.

Definition 1.1 The edge-labeling function, £, is defined as follows:
(u,v), iff there is a simple path

(S :) wo, ..., Wy, wi-|—1, ey Wy (: t)
SUCh that w; = U and wi-l—l — ’U;

v, v]) 3 (v,u), iff there is a simple path
(s =) wo, ..., Wi, Wig1, -.., W, (=1)
such that w; = v and w;41 = u.
Clearly, an edge e = [u,v] is bidirectional, if {([u,v]) = {(u,v), (v,u)}; and unidirectional, if

{([u,0]) = {{w, 0)} or {{v,w)}. U

See figure 1 and 16 for two example graphs and their labeling, respectively. The relation
between bidirectional edges problem and the classical two vertex disjoint paths problem is elu-
cidated in proposition 1.1.

Definition 1.2 Two-VERTEX-DisjoINT PATHS IN AN UNDIRECTED GRAPH: UVP2. Let ¢
be an undirected graph with two pairs of distinct vertices {s1,%;} and {sg,%3}. The predicate
UVP2(sq, t1; S, t2; G) is true if and only if there are two vertex-disjoint paths, Py = sy, ..., {1
and Py = sg, ..., {3 in the undirected graph G. [

Proposition 1.1 Let G be a finite undirected graph with two distinguished vertices, the source,
s and the sink, t. Let e € E(G) be any edge of G. If { is the edge labeling function as defined
earlier,

(u,v) € L([u,v]) < UVP2(s,u;v,1;G).

PROOF.

(u,v) € {([u,v])
& (EI a simple path (s =)wo, ..., Wi, Wit1, ..., Ws(= t)) [wz =u and wip) = v].
& (EI lwo vertex disjoint paths
Py = (s =)wg,...,wi(=u) and P, = (v =)wit1,...,w,(=1) in G
and an edge [u,v] € G).
& UVP2(s,uyv,;G). O

Contents

1 Introduction

2 Preliminaries

3 Overview of the Algorithm

4 Labeling the Edges of a General Graph
5 Labeling the Edges of a Type.I Graph
6 Labeling the edges of a Type.Il Graph
7 Labeling the edges of a Type.IIl Graph

8 Final Algorithm and Its Complexity

11

14

18

24

27

ABSTRACT

The “bidirectional edges problem” is to find an edge-labelling of an undirected network,
G = (V, E), with a source and a sink, such that an edge [u,v] € F is labelled (u,v) or (v, u)
(or both) depending on the existence of a (simple) path from the source to sink that visits
the vertices u and v, in the order u,v or v,u, respectively. We provide several algorithms for
this problem in the current paper and the accompanying sequel. In this paper, we show the
relation between this problem and the classical two-vertex-disjoint-paths problem and then
devise a simple algorithm with a time complexity of O(|E| - |V|2). In the sequel, we improve
the time complexity to O(|E|-|V|). The main technique exploits a clever partition of the
graph into a set of paths and bridges which are then analyzed recursively.

Bidirectional edges problem arises naturally in the context of the simulation of an MOS
transistor network, in which a transistor may operate as a unilateral or a bilateral device,
depending on the voltages at its source and drain nodes. For efficient simulation, it is re-
quired to detect the set of transistors that may operate as bilateral devices. Also, sometimes
it is intended to propagate information in one direction only, and propagation in the wrong
direction (resulting in a sneak path) can cause functional error. Our algorithms can be used
to detect all the sneak paths.

KEY WORDS.
Bridge, Cross-cut, Disjoint Paths, MOS Circuit, Pass Transistor, Sneak Path, complexity

Bidirectional Edges Problem: Part |
A Simple Algorithm

B. Mishrat

Department of Computer Science
Courant Institute of Mathematical Sciences
New York University
719 Broadway
New York, NY 10003

!Supported in parts by National Science Foundation Grants DMS-8703458 and CCR-9002819.

