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Abstract. The Reissner-Mindlin plate models thin plates. The condition numbers of finite
element approximations of these plate models increase very rapidly as the thickness of the plate goes
to 0. A Balancing Domain Decomposition by Constraints (BDDC) Deluxe method is developed for
these plate problems discretized by Falk-Tu finite elements. In this new algorithm, subdomain Schur
complements restricted to individual edges are used to define the average operator for the BDDC
Deluxe method. It is established that the condition number of this preconditioned iterative method
is bounded by C(1 + log H

h
)2 if t, the thickness of the plate, is on the order of the element size h

or smaller; H is the maximum diameter of the subdomains. The constant C is independent of the
thickness t as well as H and h. Numerical results, which verify the theory, and a comparison with a
traditional BDDC method are also provided.
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1. Introduction. The Reissner-Mindlin plate models the deformation of a thin
plate under external forces; see [13, chapter 6.6] and [12, pp.195-232]. The thin plate
is assumed to be of thickness t and its deformation is described by using two variables,
the displacement, w, and the rotation, θ. In the limit case of t = 0, the Reissner-
Mindlin plate model is identical to the Kirchhoff plate model, which requires the
Kirchhoff condition, ∇w = θ. It is also known that the solution of the Reissner-
Mindlin plate model converges to that of the Kirchhoff plate model as the thickness
of the plate decreases to zero; see [3] and [4].

If simple polynomial finite elements are used to discretize Reissner-Mindlin plates,
we may suffer from locking problems because the Kirchhoff condition is too restrictive
for low order polynomial finite elements. Thus, if continuous piecewise linear functions
are used to approximate θ and w with homogeneous boundary conditions, the finite
element solution must vanish over the plate; see [12, pp.204]. By using mixed finite
elements and a reduction operator Π on θ, locking problems can be avoided. We note
that there are many good finite elements for Reissner-Mindlin plates; see e.g., [12,
pp.195-232], [13, chapter 5.6], and [1, 2, 5–7,15–18,21,22,24,29,30,32,33].

Any Reissner-Mindlin plate problem without preconditioners has a condition num-
ber which is asymptotically proportional to

Ch−2t−2,

where C is approximately 2 in our numerical experiments when h and t are small.
Therefore, the condition number increases very rapidly as the thickness of a plate
decreases and we need good preconditioners to obtain an efficient iterative solver for
the Reissner-Mindlin plate problem.

∗ jlee@cims.nyu.edu This work has been supported by the National Science Foundation Grant
DMS-0914954.
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There are some previous studies on preconditioners of the Reissner-Mindlin plate
problem. An overlapping domain decomposition method for the Reissner-Mindlin
plate discretized by Falk-Tu finite elements is developed in [25,26]. A BDDC method
for the Reissner-Mindlin plate discretized by MITC elements is developed in [8–10].
A C(H/h) bound on the condition number is obtained in [8] and improved to a
C(1 + log(H/h))3 bound in [9, 10]. A BDDC method for the Reissner-Mindlin plate
discretized by Falk-Tu elements is suggested in [25] but without a proof of a strong
condition number bound.

The BDDC Deluxe methods are variants of the traditional BDDC methods which
use Schur complements restricted to individual faces to define the average operator
instead of using a conventional pointwise average operator. Although this new average
operator can be somewhat more expensive to apply, BDDC Deluxe methods provide
better convergence rates than the traditional BDDC methods. The BDDC Deluxe
methods were first developed by Dohrmann and Widlund; see [20]. Other applications
of the BDDC Deluxe methods include [11] and [31].

Based on a BDDC method suggested in [25], a BDDC Deluxe method for the
numerically thin Reissner-Mindlin plate discretized using Falk-Tu finite elements is
developed in this paper and a condition number bound is established for the case
when the plate thickness is on the order of the element size. A C(1 + log(H/h))2

bound on the condition number is obtained and it shows at least as good results as
those of [8–10,26].

The Reissner-Mindlin plate theory and Falk-Tu finite elements are presented in
section 2 and 3, respectively, following the presentation in [26]. Balancing domain de-
composition by constraints Deluxe methods are introduced and their condition num-
ber bounds are proved in section 4. An energy bound for the dual variables and an
edge lemma for the Reissner-Mindlin plate are given in section 5. Some numerical
results on BDDC Deluxe methods and traditional BDDC methods are given in section
6. The estimated condition numbers for the new algorithm rarely exceed 4 for small
values of t in our experiments.

2. The Continuous Problem. The plate is assumed to occupy the volume
Pt = Ω × (− t

2 ,+ t
2 ), where Ω is a bounded domain with unit diameter in R

2 and t
is the thickness of the plate. We are interested in the case when t is small. Under
external forces, the plate is deformed and the displacement at each point can be
described using three displacement variables ui, i = 1, 2, 3. We assume the following
four conditions on the displacement and the stress of the plate (see [13, chapter 6.5]):

H1. The linearity hypothesis.

H2. The displacement in the z-direction does not depend on the z-coordinate.

H3. The points on the middle surface are deformed only in the z-direction.

H4. The normal stress σ33 vanishes.

Under these four conditions, the displacement variables can be written as

ui(x, y, z) = −zθi(x, y) for i = 1, 2,

u3(x, y, z) = w(x, y),

in terms of w, the displacement variable, and θ = (θ1, θ2), the rotation.

Using a reduction of dimension for the z-direction and the condition H4, the fol-
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Fig. 3.1. the Falk-Tu element with k=2.

lowing variational problem is obtained: Minimize the Reissner-Mindlin energy

J(θ, w) =
1

2

∫

Ω

Cε(θ) : ε(θ) dxdy +
1

2
̺t−2

∫

Ω

|∇w − θ|2 dxdy

−

∫

Ω

gw dxdy +

∫

Ω

f · θ dxdy,

where εij(θ) = 1
2

(
∂θi

∂xj
+

∂θj

∂xi

)
, Cε = E

1+ν (ε + ν
1−ν trace(ε)I) with the two by two

identity matrix I, and ε : σ =
∑

ij εijσij . Here ν and E are the Lamé constants
of linear elasticity and ̺ is another parameter related to the plate material. For
simplicity, homogeneous Dirichlet boundary conditions are imposed on θ and w.

If there were no essential boundary conditions, the null space of the Reissner-
Mindlin energy is three dimensional and its basis elements are w = 1 and θ = (0, 0),
w = x and θ = (1, 0), and w = y and θ = (0, 1). The primal variables defined later
will reproduce all functions in this null space.

If we approximate θ and w directly using finite elements, there may be locking.
These problems can be avoided by using mixed finite elements and introducing the
shear stress variable γ := ̺t−2(∇w − θ); see [8, 12], and [13, chapter 6.6]. After
including the shear stress variable, we have the following variational problem: Find
θs ∈ H1

0(Ω), ws ∈ H1
0 (Ω), and γs ∈ L2(Ω) such that

a(θs,φ) + (γs,∇v − φ) = (g, v) − (f ,φ), φ ∈ H1
0(Ω), v ∈ H1

0 (Ω),

(∇ws − θs,η) − ̺−1t2(γs,η) = 0, η ∈ L2(Ω),
(2.1)

where a(θ,φ) :=
∫
Ω

Cε(θ) : ε(φ) dxdy.

3. Discretization by Falk-Tu Elements. The Falk-Tu elements are conform-
ing elements, i.e., Θh ⊂ H1

0(Ω), Wh ⊂ H1
0 (Ω), and Sh ⊂ L2(Ω). We choose

(see [12,23])

Θh = M
k−1
1,0 + B

k+2, Wh = Mk
1,0, Sh = M

k−1
0 (3.1)

on the chosen triangulation with k ≥ 2; see Figure 3.1 for the case of k = 2. Here
M

k
a,0 has components in the space of piecewise k-th order polynomials and belongs

to H
a
0(Ω), Mk

a,0 is the space of piecewise k-th order polynomials in Ha
0 (Ω), M

k
a has

components in the space of piecewise k-th order polynomials and belongs to H
a, and

B
k is the space of piecewise k-th order polynomial bubble functions. From now on,

we will concentrate on Falk-Tu elements with k = 2.

Let Π be the L
2 projector of H1

0(Ω) onto Sh. We then have the following discrete
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problem, as in [12,13]: Find θh ∈ Θh, wh ∈ Wh, and γh ∈ Sh such that

a(θh,φh) + (γh,∇vh − Πφh) = (g, vh) − (f ,φh), φh ∈ Θh, vh ∈ Wh,

(∇wh − Πθh,ηh) − ̺−1t2(γh,ηh) = 0, ηh ∈ Sh.
(3.2)

From Boffi et al. [12, pp.213-216], we have the following finite element error bound
for the case of k = 2.

Theorem 3.1. For a sufficiently smooth solution of the continuous problem, we
have

‖θs − θh‖0 + ‖ws − wh‖1 ≤ Ch2(‖f‖0 + ‖g‖0), (3.3)

where C is independent of h.

Because we use stress variables which are discontinuous between elements, we can
eliminate them on the element level as is also done in [8, 19, 26]. We then obtain the
following discrete problem: Find θh ∈ Θh and wh ∈ Wh such that

b((θh, wh), (φh, vh)) = (g, vh) − (f ,φh), φh ∈ Θh, vh ∈ Wh, (3.4)

where b is defined as

b((θ, w), (φ, v)) := a(θ,φ) +
̺

t2
(Πθ −∇w,Πφ −∇v). (3.5)

We now define u := (θ, w) and Û := Θh × Wh.

4. The BDDC Deluxe Algorithm.

4.1. Decomposition of the Domain. We assume that the domain Ω is de-
composed into a set of shape-regular nonoverlapping open subdomains {Ωi}

N
i=1 with

diameters Hi as in [13, 14, 34]. For simplicity, each subdomain is assumed to be a
triangle; it is easy to extend our theory to polygonal subdomain cases given that a
polygon is a union of triangles. Each subdomain Ωi is then decomposed further using
quasi-uniform and shape-regular finite elements with a minimum diameter hi such
that the nodes of the elements match across the interface between the subdomains.
The maximum of Hi

hi
, i = 1, . . . , N, will be denoted by H

h .

4.2. Primal and Dual Spaces. In the following, U(i) will denote the vector
space of values at the nodes of Ωi \ ∂Ω. Each U(i) can be decomposed into a vector
space of values at the subdomain interface nodes and a vector space of values at the

subdomain interior nodes: U(i) = U
(i)
Γ

⊕
U

(i)
I . The space of values at the subdomain

interface nodes will be further decomposed into a space of the primal variables and a

complementary space of dual variables: U
(i)
Γ = U

(i)
Π

⊕
U

(i)
∆ .

The bases of the primal and dual spaces are assumed to have been transformed so
that each primal constraint corresponds to an explicit primal variable of UΠ and U∆

consists of functions with vanishing primal constraints as in [28]. We assume that

the interface space U
(i)
Γ has been transformed in the same way. The primal variables

defined later will include nodal values at all the subdomain vertices and the dual
variables will vanish at the vertices.
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Related product spaces, which allow discontinuities across the interface, are denoted
by

U :=
N∏

i=1

U(i), UΓ :=
N∏

i=1

U
(i)
Γ , UI :=

N∏

i=1

U
(i)
I ,

UΠ :=

N∏

i=1

U
(i)
Π , and U∆ :=

N∏

i=1

U
(i)
∆ .

Therefore, we also have U = UΓ

⊕
UI and UΓ = UΠ

⊕
U∆.

The continuous subspace of UΓ is denoted by ÛΓ and the continuous subspace of
U by Û. The finite element solution is continuous and belongs to Û. To describe
BDDC methods, we also need a subspace ŨΓ ⊂ UΓ which allows discontinuities only
for the dual variables and can be written as

ŨΓ := ÛΠ

⊕
U∆ = ÛΠ

⊕
(

N∏

i=1

U
(i)
∆

)
,

where ÛΠ is the continuous subspace of UΠ. ÛΠ is related to a coarse-level, global
problem of our iterative method.

As in [28], we define several restriction and extension operators for our BDDC

method: R̃
(i)
Γ : ŨΓ → U

(i)
Γ , R̃

(i)
∆ : ŨΓ → U

(i)
∆ , R̃

(i)
Π : ŨΓ → U

(i)
Π , and R̃Π : ŨΓ → UΠ

map ŨΓ to their corresponding components on Γ(i) and UΠ, respectively. R̂
(i)
Γ : ÛΓ →

U
(i)
Γ , R̂

(i)
∆ : ÛΓ → U

(i)
∆ , R̂

(i)
Π : ÛΓ → U

(i)
Π , and R̂Π : ÛΓ → ÛΠ map ÛΓ to their

corresponding components on Γ(i) and ÛΠ, respectively. R̃Γ : ÛΓ → ŨΓ is the direct

sum of R̂Π and R̂
(i)
∆ , i = 1, . . . , N .

4.3. Discrete Harmonic Functions and Schur Complements. The bilinear
form b related to the nodes of Ωi \ ∂Ω and its right hand side can be represented in
matrix form as follows:

[
B

(i)
II B

(i)
IΓ

B
(i)
ΓI B

(i)
ΓΓ

][
u

(i)
I

u
(i)
Γ

]
=

[
f

(i)
I

f
(i)
Γ

]
.

If u(i) satisfies

B
(i)
II u

(i)
I + B

(i)
IΓu

(i)
Γ = 0, (4.1)

then u(i) is said to be a discrete harmonic function; see [34, chapter 4]. The interior
values are well defined by solving the equation (4.1) with given subdomain interface

values u
(i)
Γ , and this solution is denoted by Hi(u

(i)
Γ ) where Hi is the discrete harmonic

extension operator into Ωi. Note that a discrete harmonic function is orthogonal to
any interior function on any subdomain in the sense of the b-bilinear form.

The Schur complement S(i) of U
(i)
Γ is defined as

S(i) := B
(i)
ΓΓ − B

(i)
ΓI B

(i)−1

II B
(i)
IΓ , i = 1, ..., N. (4.2)

If Ωi is a floating subdomain, S(i) is singular with null space elements of zero b-bilinear
energy.
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The Schur complement S of the product space UΓ is defined as the direct sum

of the S(i). We define Ŝ :=
∑N

i=1 R̂
(i)T

Γ S(i)R̂
(i)
Γ , which is the Schur complement S

restricted to ÛΓ, and also define

S̃ :=

N∑

i=1

[
R̃

(i)T

Π R̃
(i)T

∆

]
S(i)

[
R̃

(i)
Π

R̃
(i)
∆

]
(4.3)

=
[
R̃

(i)T

Π R̃
(i)T

∆

] [
S

(i)
ΠΠ S

(i)
Π∆

S
(i)
∆Π S

(i)
∆∆

][
R̃

(i)
Π

R̃
(i)
∆

]
, (4.4)

which is the Schur complement S restricted to ŨΓ. Note that the Schur complement
on ÛΓ can be written as

Ŝ = R̃T
Γ S̃R̃Γ. (4.5)

Eliminating the interior equations of the original equation, we obtain the following
global problem on the interface:

ŜΓuΓ = gΓ, (4.6)

with

gΓ =
N∑

i=1

R̂
(i)T

Γ

(
f

(i)
Γ − B

(i)
ΓI B

(i)−1

II f
(i)
I

)
.

We will develop our BDDC Deluxe preconditioner for the operator of equation (4.6).

4.4. The Scaling Operator and the BDDC Deluxe Preconditioner. Any
BDDC algorithm is defined by the choice of primal variables and the scaling operator
that computes an average across the interface. We will first define the scaling operator
R̃T

D,Γ : ŨΓ → ÛΓ.
Let eij be the edge between two subdomains Ωi and Ωj and Eij be the set of the

dual variables on eij . We obtain two principal minors of the Schur complements S(i)

and S(j) by restricting them to Eij and denote these two smaller matrices by S
(i)
Eij

and S
(j)
Eij

. The average of u ∈ ŨΓ across the edge is then defined as

ūEij
:= (S

(i)
Eij

+ S
(j)
Eij

)−1(S
(i)
Eij

u
(i)
Eij

+ S
(j)
Eij

u
(j)
Eij

). (4.7)

All subdomain vertex variables will be included in the set of primal variables and
the operator R̃T

D,Γ is defined as the direct sum of these scaling operators on the dual

variables and the operator R̂T
Π for the primal variables. As usual, R̃D,Γ is the transpose

of R̃T
D,Γ.

From these definitions, we easily see that

R̃T
Γ R̃D,Γ = R̃T

D,ΓR̃Γ = I. (4.8)

We define the BDDC Deluxe preconditioner using S̃ of (4.3) as

M−1
BDDC := R̃T

D,ΓS̃−1R̃D,Γ. (4.9)
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4.5. A Stable Decomposition. From [26, subsection 5.2], we know that if u
is discrete harmonic in each subdomain and t is on the order of h, or smaller than
h, i.e., t ≤ Ch, we can find ũ := (θ̃, w̃) such that the Reissner-Mindlin energy of the

two functions, u and ũ, are equivalent. Here ũ is defined by w̃ = w, θ̃L = θL, and
∇w̃ = Πθ̃. In interesting problems of the Reissner-Mindlin plates, t is in this good
range. If t is substantially larger than h, the error in the model may be larger than
the finite element error. In the following, small t will mean that t is t ≤ Ch.

4.6. A Condition Number Bound for the BDDC Deluxe Operator. Fol-
lowing the proofs in [27, 35, 36], we will establish a condition number bound of the
BDDC Deluxe operator.

Lemma 4.1. The eigenvalues of the BDDC Deluxe operator are bounded from below
by 1.

Proof. For any given uΓ ∈ ÛΓ, let wΓ := MBDDCuΓ. By (4.8), we have

uT
ΓMBDDCuΓ = uT

Γ R̃T
Γ S̃S̃−1R̃D,ΓwΓ

≤
(
R̃ΓuΓ, R̃ΓuΓ

)1/2

eS

(
S̃−1R̃D,ΓwΓ, S̃−1R̃D,ΓwΓ

)1/2

eS

=
(
uT

Γ R̃T
Γ S̃R̃ΓuΓ

)1/2 (
wT

Γ R̃T
D,ΓS̃−1S̃S̃−1R̃D,ΓwΓ

)1/2

=
(
uT

Γ ŜuΓ

)1/2 (
uT

ΓMBDDCM−1
BDDCMBDDCuΓ

)1/2

=
(
uT

Γ ŜuΓ

)1/2 (
uT

ΓMBDDCuΓ

)1/2
.

Therefore, uT
ΓMBDDCuΓ ≤ uT

Γ ŜuΓ.

For the upper bound, we will prove the following two Lemmas in section 5 after
that the primal variables have been defined.

Lemma 4.2.

|u
(i)
Π |2

S
(i)
ΠΠ

≤ C(1 + log
H

h
)2|u

(i)
Γ |2S(i) , u

(i)
Γ ∈ U

(i)
Γ , (4.10)

where C is independent of H, h, and t if t is small.
The proof of Lemma 4.2 can be borrowed from [26] since the primal variables will

be defined in a way similar to the coarse basis functions of an overlapping method
in [26].

Lemma 4.3.

|u
(i)
Eij

|2
S

(i)
Eij

≤ C(1 + log
H

h
)2|u

(i)
Γ |2S(i) , u

(i)
Γ ∈ U

(i)
Γ , (4.11)

where C is independent of H, h, and t if t is small.
We now define an average operator ED : ŨΓ → ÛΓ ⊂ ŨΓ by

ED := R̃ΓR̃T
D,Γ. (4.12)

Note that ED is a projector and an identity operator on ÛΓ.
Lemma 4.4.

|EDuΓ|
2
eS
≤ C(1 + log

H

h
)2|uΓ|

2
eS
, uΓ ∈ ŨΓ, (4.13)
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where C is independent of H, h, and t if t is small.

Proof.

|EDuΓ|
2
eS

=

N∑

i=1

|R̃
(i)
Γ EDuΓ|

2
S(i) (4.14)

≤ C
N∑

i=1

(
|u

(i)
Π |2

S
(i)
ΠΠ

+ |R̃
(i)
Γ ED(uΓ − R̃T

ΠuΠ)|2S(i)

)
. (4.15)

We then have

|R̃
(i)
Γ ED(uΓ − R̃T

ΠuΠ)|2S(i) ≤ C
∑

j∈Ξi

|ūEij
|2
S

(i)
Eij

≤ C
∑

j∈Ξi

(
|ūEij

− u
(i)
Eij

|2
S

(i)
Eij

+ |u
(i)
Eij

|2
S

(i)
Eij

)

≤ C|Ξi|max
j∈Ξi

(
|ūEij

− u
(i)
Eij

|2
S

(i)
Eij

+ |u
(i)
Eij

|2
S

(i)
Eij

)
, (4.16)

where Ξi is the set of j such that Ωj has a common edge with Ωi. Note that |Ξi|,
the number of elements in Ξi, is bounded from above by three which is the maximum
number of edges of any triangular subdomain.

The first term of (4.16) is bounded by

|ūEij
− u

(i)
Eij

|2
S

(i)
Eij

= |(S
(i)
Eij

+ S
(j)
Eij

)−1(S
(j)
Eij

u
(j)
Eij

− S
(j)
Eij

u
(i)
Eij

)|2
S

(i)
Eij

≤ 2u
(j)T

Eij
S

(j)
Eij

(S
(i)
Eij

+ S
(j)
Eij

)−1S
(i)
Eij

(S
(i)
Eij

+ S
(j)
Eij

)−1S
(j)
Eij

u
(j)
Eij

+2u
(i)T

Eij
S

(j)
Eij

(S
(i)
Eij

+ S
(j)
Eij

)−1S
(i)
Eij

(S
(i)
Eij

+ S
(j)
Eij

)−1S
(j)
Eij

u
(i)
Eij

≤ 2

(
|u

(j)
Eij

|2
S

(j)
Eij

+ |u
(i)
Eij

|2
S

(i)
Eij

)
. (4.17)

From (4.15), (4.16), and (4.17), we then have

|EDuΓ|
2
eS
≤ C

N∑

i=1

(
|u

(i)
Π |2

S
(i)
ΠΠ

+ |u
(i)
Eij

|2
S

(i)
Eij

)
. (4.18)

We then complete the proof by using Lemmas 4.2 and 4.3.

Using Lemma 4.4, we have the following result.

Lemma 4.5. The eigenvalues of the BDDC Deluxe operator are bounded from above
by C(1 + log(H/h))2 where C is independent of H, h, and t if t is small.

Proof. Let again wΓ := MBDDCuΓ, as in the proof of Lemma 4.1, for any uΓ ∈ ÛΓ.
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Fig. 5.1. One subdomain and its vertices and edges.

By Lemma 4.4, (4.8), (4.9), and (4.5), we have that

uT
Γ ŜuΓ = uT

Γ

(
R̃T

Γ S̃R̃Γ

)
M−1

BDDCwΓ

=
(
uT

Γ R̃T
Γ

)
S̃

(
R̃ΓR̃T

D,ΓS̃−1R̃D,ΓwΓ

)

≤
(
R̃ΓuΓ, R̃ΓuΓ

)1/2

eS

(
EDS̃−1R̃D,ΓwΓ, EDS̃−1R̃D,ΓwΓ

)1/2

eS

≤
(
uT

Γ R̃T
Γ S̃R̃ΓuΓ

)1/2

C(1 + log
H

h
)
(
S̃−1R̃D,ΓwΓ, S̃−1R̃D,ΓwΓ

)1/2

eS

= C(1 + log
H

h
)
(
uT

Γ ŜuΓ

)1/2 (
uT

ΓMBDDCR̃T
D,ΓS̃−1S̃S̃−1R̃D,ΓMBDDCuΓ

)1/2

= C(1 + log
H

h
)
(
uT

Γ ŜuΓ

)1/2 (
uT

ΓMBDDCuΓ

)1/2
.

We then obtain uT
Γ ŜuΓ ≤ C(1 + log(H/h))2uT

ΓMBDDCuΓ.
Therefore, we have the following bound for the condition number of our BDDC

Deluxe operator.
Theorem 4.6. The condition number of the BDDC Deluxe operator satisfies the

following bound

κ(M−1
BDDCŜ) ≤ C(1 + log

H

h
)2,

where C is independent of H, h, and t if t is small.

5. The Primal Variables and Proofs of Lemmas 4.2 and 4.3.

5.1. The Definition of the Primal Variables. From now on, we consider
mainly one of the floating subdomains Ωl such that ∂Ωl

⋂
∂Ω = ∅. A set of indices

for edges and vertices of Ωl, e1, e2, e3, v1, v2, and v3, are defined by Figure 5.1. We
now define our primal variables as being the same as the coarse basis functions in [26].

For θi, i = 1, 2, we define a rotational vertex primal variable which vanishes at all
interface nodes except at one subdomain vertex vk where its value equals θi(vk). We
denote these rotational vertex primal variables by θvk

Π,i, i = 1, 2, k = 1, 2, 3. Since
there are two components of θ, we have six rotational vertex primal variables for each
subdomain.

We define a displacement vertex primal variable wvk

Π , k = 1, 2, 3, by giving w the
value w(vk) at vk, 0 at the other subdomain vertices, and making it linear along the
edges of the subdomain. In addition to the definition of w on the interface, we give
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values for θi on the two edges adjacent to the subdomain vertex being considered

such that θ = w(vk)
ℓj

tψej
, where ℓj is the length of the edge ej , t the unit tangent

vector of the edge ej from the vertex of the edge ej other than vk to vk, and ψej
the

edge cut-off function which is a piecewise linear function defined on the edge and has
values 1 at all interface nodes except at the two ends of the edge, where it vanishes.

We define a rotational edge primal variable θek

Π , k = 1, 2, 3, for each edge ek by
prescribing θ = θ̄ek,nnψek

, where n is the unit normal vector of the edge ek pointing
into the right half plane and θ̄ek,n :=

∫
ek

(Ih(θψek
) · n)ds/

∫
ek

ψek
ds. We set all the

boundary values of w to zero.

u
(l)
Π is the sum of the primal variables defined above:

u
(l)
Π =

3∑

k=1

wvk

Π +

3∑

k=1

2∑

i=1

θvk

Π,i +

3∑

k=1

θek

Π . (5.1)

The dimension of the primal space per triangular subdomain is 9×(1/6)+3×(1/2) = 3

on average. Note that u
(l)
Π is continuous across the interface and that it is the coarse

interpolant of an overlapping domain decomposition method for Reissner-Mindlin
plates given by [26, (5.13)]. Lemma 4.2 is established in that paper; see [26, (5.17)].

Therefore, we only need to prove Lemma 4.3. For this, we need to borrow some
results from [26].

5.2. Lemmas from [26]. Let ξ1, ξ2, and ξ3 be the values of the barycentric

functions of the subdomain at (x, y) related to e1, e2, and e3, respectively. Ω̃l is
defined as the union of Ωl and its edges.

We define Υi on Ω̃l as follows:

Υi :=
ξ2
j ξ2

k

ξ2
j ξ2

k + ξ2
i ξ2

j + ξ2
i ξ2

k

on Ω̃l. (5.2)

Note that Υi is equal to 1 on ei and vanishes on the other edges. Υi has values
between 0 and 1 and is not well defined at the vertices of Ωl.

Lemma 5.1. The gradient of Υi is bounded by C
r on any subdomain Ω̃l of diameter

1 where r is the minimum distance to the two vertices of the edge ei. All the second
order partial derivatives of the function Υi are bounded by C

r2 on Ω̃l.
Proof. See the proof of [26, Lemma 5.2].

Lemma 5.2. The gradient of Υi, defined in (5.2), vanishes on the edges of the
subdomain Ωl.

Proof. See the proof of [26, Lemma 5.3].

From [34, remark 4.13], we know that

||v||2L∞(Ωl)
≤ C(1 + log

Hl

hl
)||v||2H1(Ωl)

, v ∈ Θh|Ωl
or v ∈ Wh|Ωl

. (5.3)

From [26, (5.15)], we know that

|θ̄ek,n| =

∣∣∣∣∣

∫
ek

(Ih(θψek
) · n)ds∫

ek
ψek

ds

∣∣∣∣∣ ≤ C||θ||H1(Ωl). (5.4)

Lemma 5.3. Under the condition Πθ̃ = ∇w̃, the b-seminorm and the H1-seminorm
are equivalent for θ̃ ∈ Θh. The constants of this equivalence do not depend on Hl
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and hl but only on the shape regularity of the elements and the Lamé constants. In
particular, we have the relation |θ̃|2H1(Ωl)

≤ Cb(θ̃, θ̃)Ωl
.

Proof. See the proof of [26, Lemma 5.8].

5.3. Proof of Lemma 4.3. We will use that (θ̃, w̃) has an energy equivalent to
that of u = (θ, w). Here we will drop the subscript ij and write e instead of eij and
E instead of Eij . We denote the two vertices of the edge e by v1 and v2. Without
loss of generality, we assume that v2 is at the origin, (0, 0), and assume that the edge
e can be expressed by ax + by = 0. Here, (a, b) is the unit tangent vector of e from
v2 to v1. Let (a′, b′) be the unit normal vector of e pointing into the right half plane.

Define

w̃0 :=
w(v1) − w(v2)

ℓ
(ax + by) + w(v2) + θ̄e,n(a′x + b′y) on Ωl, (5.5)

where ℓ is the length of the edge e. Note that w̃0 is linear and that a′x + b′y vanishes
on the edge e. We also define

θ̃0 := ∇w̃0 on Ωl. (5.6)

Note that ũ0 := (θ̃0, w̃0) reproduces all functions in the null space of the Reissner-
Mindlin energy. We can see, from (5.3) and (5.4), that

||w̃0||L∞(Ωl) ≤ C(||w̃||L∞(Ωl) + Hl||θ̃||H1(Ωl)), (5.7)

and

||θ̃0||L∞(Ωl) = ||∇w̃0||L∞(Ωl) ≤ C(
1

Hl
||w̃||L∞(Ωl) + ||θ̃||H1(Ωl)). (5.8)

We then define

w̄ := { Ĩh(Υ(w̃ − w̃0)) at the nodes of Ω̃l,
0 at the vertices of Ωl,

(5.9)

and

θ̄L := {
Ih(∇Υ(w̃ − w̃0)) + Ih(Υ(θ̃L −∇w̃0)) at the nodes of Ω̃l,

0 at the vertices of Ωl.
(5.10)

Then, these functions have the same interface values as u
(l)
E . Here Ĩh is the standard

second order interpolation operator into M2
1 and Ih is the standard first order in-

terpolation operator into M
1
1. We define the bubble functions by using the equation

Πθ̄ = ∇w̄ on each element.
Note that |w̃ − w̃0| vanishes at the two vertices of the edge e and that |w̃ − w̃0| is

bounded by

|w̃ − w̃0| ≤ r||∇(w̃ − w̃0)||L∞(Ωl) (5.11)

≤ Cr(||θ̃||L∞(Ωl) +
1

Hl
||w̃||L∞(Ωl) + ||θ̃||H1(Ωl)) (5.12)

≤ Cr(1 + log
Hl

hl
)

1
2 (||θ̃||H1(Ωl) +

1

Hl
||w̃||H1(Ωl)), (5.13)

where r is the minimum distance to the vertices of the edge e.
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For each element K, which touches a subdomain vertex where θ̄ vanishes, we have

|θ̄|2H1(K) ≤ C
1

h2
h2||θ̄||2L∞(K) (5.14)

≤ C(||θ̄L||
2
L∞(K) + ||∇w̄||2L∞(K)) (5.15)

≤ C(1 + log
Hl

hl
)(||θ̃||2H1(Ωl)

+
1

H2
l

||w̃||2H1(Ωl)
). (5.16)

For each element K, which does not touch a subdomain vertex, we have

|θ̄L|
2
H1(K) ≤

∣∣∣∣∇2Υ(w̃ − w̃0)
∣∣∣∣2

L2(K)
+ ||∇Υ∇(w̃ − w̃0)||

2
L2(K) +

∣∣∣
∣∣∣∇Υ(θ̃L −∇w̃0)

∣∣∣
∣∣∣
2

L2(K)
+

∣∣∣
∣∣∣Υ∇(θ̃L −∇w̃0)

∣∣∣
∣∣∣
2

L2(K)
. (5.17)

Let K(v) be the union of the elements K with one of its vertices in common with
a vertex v of Ωl. The sum of the first term of (5.17) over Ωl \ K(v) is bounded by

∣∣∣∣∇2Υ(w̃ − w̃0)
∣∣∣∣2

L2(Ωl\K(v))
(5.18)

≤ C(||θ̃||2H1(Ωl)
+

1

H2
l

||w̃||2H1(Ωl)
)

∫ 2π

0

∫ Hl

chl

1

r4
(1 + log

Hl

hl
)r2rdrdθ (5.19)

≤ C(1 + log
Hl

hl
)2(||θ̃||2H1(Ωl)

+
1

H2
l

||w̃||2H1(Ωl)
). (5.20)

The sum of the second term of (5.17) over Ωl \ K(v) is bounded by

||∇Υ∇(w̃ − w̃0)||
2
L2(Ωl\K(v))

≤ C(||θ̃||2H1(Ωl)
+

1

H2
l

||w̃||2H1(Ωl)
)

∫ 2π

0

∫ Hl

chl

1

r2
(1 + log

Hl

hl
)rdrdθ

≤ C(1 + log
Hl

hl
)2(||θ̃||2H1(Ωl)

+
1

H2
l

||w̃||2H1(Ωl)
).

Similarly, the sum of the third term of (5.17) over Ωl \ K(v) is bounded by

C(1 + log
Hl

hl
)2(||θ̃||2H1(Ωl)

+
1

H2
l

||w̃||2H1(Ωl)
).

Note that the second order derivatives of w̃0 vanishes because w̃0 is linear. There-
fore, the fourth term of (5.17) is bounded by

∣∣∣
∣∣∣Υ∇(θ̃L −∇w̃0)

∣∣∣
∣∣∣
2

L2(K)
≤

∣∣∣
∣∣∣∇θ̃L

∣∣∣
∣∣∣
2

L2(K)
≤ C||θ̃||2H1(K).

For the bubble function θ̄B of an element K, which does not touch a subdomain
vertex, we know that

Πθ̄B = ∇w̄ − θ̄L (5.21)

= ∇
(
Ĩh(Υ(w̃ − w̃0)) − (Υ(w̃ − w̃0))

)
(5.22)

+∇ (Υ(w̃ − w̃0)) −
(
Ih(∇Υ(w̃ − w̃0)) + Ih(Υ(θ̃L −∇w̃0))

)
. (5.23)
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Therefore for each element K, which does not touch a subdomain vertex,

|θ̄B |2H1(K) ≤ C||θ̄B ||2L∞(K)

≤ C

(
||∇

(
Ĩh(Υ(w̃ − w̃0)) − (Υ(w̃ − w̃0))

)
||2L∞(K)

+||∇Υ(w̃ − w̃0) − Ih(∇Υ(w̃ − w̃0))||
2
L∞(K)

+||Υ(∇w̃ −∇w̃0) − Ih(Υ(θ̃L −∇w̃0))||
2
L∞(K)

)
. (5.24)

We know that

||∇2(w̃ − w̃0)||
2
L∞(K) =

1

h2
l

||h2
l ∇

2w̃||2L∞(K) ≤
C

h2
l

||∇θ̃||2L2(K). (5.25)

Using (5.7), (5.13), and (5.25), the sum of the first two terms of (5.24) of an element
K of Ωl \ K(v) is bounded by

C

(
||∇

(
Ĩh(Υ(w̃ − w̃0)) − (Υ(w̃ − w̃0))

)
||2L∞(K)

+||∇Υ(w̃ − w̃0) − Ih(∇Υ(w̃ − w̃0))||
2
L∞(K)

)

≤ Ch2
l

(
||∇2(Υ(w̃ − w̃0))||

2
L∞(K) + ||∇(∇Υ(w̃ − w̃0))||

2
L∞(K)

)

≤ C(1 + log
Hl

hl
)(||θ̃||2H1(Ωl)

+
1

H2
l

||w̃||2H1(Ωl)
)
h2

l

r2
+ C||θ̃||2H1(K).

The third term of (5.24) of an element K of Ωl \ K(v) is bounded by

C||Υ(∇w̃ −∇w̃0) − Ih(Υ(θ̃L −∇w̃0))||
2
L∞(K)

≤ C||Υ(∇w̃ −∇w̃0) − Ih(Υ(∇w̃ −∇w̃0))||
2
L∞(K)

+C||Ih(Υ(∇w̃ −∇w̃0)) − Ih(Υ(θ̃L −∇w̃0)||
2
L∞(K)

≤ Ch2
l ||∇(Υ∇(w̃ − w̃0))||

2
L∞(K) + C||∇w̃ − θ̃L||

2
L∞(K)

≤ C(1 + log
Hl

hl
)(||θ̃||2H1(Ωl)

+
1

H2
l

||w̃||2H1(Ωl)
)
h2

l

r2
+ C||θ̃||2H1(K) + C||θ̃B ||2L∞(K)

≤ C(1 + log
Hl

hl
)(||θ̃||2H1(Ωl)

+
1

H2
l

||w̃||2H1(Ωl)
)
h2

l

r2
+ C||θ̃||2H1(K).

There are on the order of
H2

l

h2
l

elements in each subdomain and the number of elements

with a distance r from a vertex is about r
hl

. Therefore, to bound |θ̄B |2H1(Ωi)
, we need

to estimate

C

Hl
hl∑

i=1

ihl

hl

h2
l

i2h2
l

= C

Hl
hl∑

i=1

hl

ihl
,
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where r = ihl. This sum is bounded by C(1 + log Hl

hl
). Therefore,

|θ̄B |2H1(Ωl\K(v)) ≤ C(1 + log
Hl

hl
)2(||θ̃||2H1(Ωl)

+
1

H2
l

||w̃||2H1(Ωl)
). (5.26)

In total,

b(ū, ū)Ωl
≤ C|θ̄|2H1(Ωl)

≤ C(1 + log
Hl

hl
)2(||θ̃||2H1(Ωl)

+
1

H2
l

||w̃||2H1(Ωl)
). (5.27)

Because ũ0 reproduces w = 1 and θ = (0, 0) which is in the null space of the
Reissner-Mindlin energy, we have that

b(ū, ū)Ωl
≤ C(1 + log

Hl

hl
)2||θ̃||2H1(Ωl)

, (5.28)

by using Poincaré’s inequality and |w̃|2H1(Ωl)
≤ C||θ̃||2L2(Ωl)

from ∇w̃ = Πθ̃.
By using Poincaré’s inequality further with the other null space functions of the

Reissner-Mindlin energy and Lemma 5.3,

b(ū, ū)Ωl
≤ C(1 + log

Hl

hl
)2|θ̃|2H1(Ωl)

≤ C(1 + log
Hl

hl
)2b(u, u). (5.29)

Because ū has the same interface values as uE , the values of the dual variables on
the edge e, and that the harmonic extension minimizes the b-bilinear form energy,
Lemma 4.3 is proved for a floating subdomain Ωl.

If Ωl is not a floating subdomain, we can modify the proof easily by using the same
argument as in [26, subsection 5.4].

6. Numerical Experiments. In our numerical experiments, H is the coarse
mesh size, h that of the fine mesh, and t the thickness of the plate. Experiments
for each parameter set were run 50 times with random right hand sides and the
average iteration counts and condition numbers are given. The stopping criteria for

the conjugate gradient algorithm was
||rn||

l2

||r0||l2
≤ 10−6.

6.1. The BDDC Deluxe Operator. We have tested the BDDC Deluxe algo-
rithm numerically using square subdomains.

The condition number as a function of the number of subdomains are given in Table
6.1; as expected, the condition number is bounded and it is also bounded for the case
of a thick plate with t = 1.0.

Results with varying H
h are given in Table 6.2 and Figure 6.1.

We can see that the maximum eigenvalue of the BDDC Deluxe operator is approx-
imately proportional to (1 + log H

h )2.
In numerical experiments with an overlapping Schwarz method in [26], the dimen-

sion of coarse space per subdomain was on average 7. The dimension of primal space
per subdomain is on average 5 for our BDDC algorithm. In spite thereof, the condition
number of our BDDC algorithm is smaller than that of our overlapping method.

6.2. The Traditional BDDC Operator. We have also tested the traditional
BDDC operator numerically using square subdomains with the same parameters. The
condition number as a function of the number of subdomains are given in Table 6.3.
Results with varying H

h are given in Table 6.4.

We can see that as the thickness of the plate t decreases and H
h increases, the BDDC

Deluxe preconditioner performs better than the traditional BDDC preconditioner.
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Table 6.1

Results for the BDDC Deluxe preconditioner for H

h
= 4, decreasing h = 1

n
, and increasing the

number of subdomains = n

4
×

n

4
.

Number of λmax iter λmax iter λmax iter λmax iter λmax iter λmax iter
Subdomains t = 1.0 t = 10−1 t = 10−2 t = 10−3 t = 10−4 t = 10−5

9 2.20 8.0 2.38 9.5 3.02 11.4 2.89 11.8 2.89 11.8 2.86 11.8
36 2.84 11.0 2.71 11.1 3.31 13.0 3.02 13.0 3.02 13.0 3.02 13.0
81 2.97 12.0 2.83 12.0 3.15 13.0 3.07 14.0 3.05 14.0 3.05 14.0
144 3.02 12.0 2.87 12.0 2.94 13.0 3.09 14.0 3.05 14.0 3.06 14.0
225 3.06 12.1 2.90 12.9 2.86 12.8 3.13 14.0 3.06 14.0 3.06 14.0
324 3.07 13.0 2.91 13.0 2.83 13.0 3.17 14.0 3.06 14.0 3.06 14.0
441 3.07 13.0 2.92 13.0 2.81 13.0 3.20 14.5 3.06 14.0 3.06 14.0
576 3.08 13.0 2.92 13.0 2.79 13.0 3.24 15.0 3.06 14.2 3.06 14.2
729 3.08 13.0 2.92 13.0 2.79 13.0 3.27 15.0 3.06 15.0 3.06 15.0
900 3.09 13.0 2.93 13.0 2.80 13.0 3.31 15.0 3.06 15.0 3.06 15.0

Table 6.2

Results for the BDDC Deluxe preconditioner for h = 1

n
, 4 × 4 subdomains, and increasing

H

h
= n

4
.

λmax iter λmax iter λmax iter λmax iter λmax iter λmax iter
H/h t = 1.0 t = 10−1 t = 10−2 t = 10−3 t = 10−4 t = 10−5

3 2.25 8.1 2.21 9.9 2.99 12.0 2.88 12.0 2.88 12.0 2.89 12.1
6 3.00 10.0 3.00 11.0 3.56 13.0 2.98 13.0 2.97 13.0 2.97 13.0
9 3.61 11.0 3.51 12.0 3.97 14.0 3.12 13.0 3.07 13.0 3.08 13.0
12 3.94 12.0 3.93 13.0 4.32 14.9 3.30 13.4 3.21 13.5 3.21 13.7
15 4.30 13.0 4.22 13.3 4.57 15.6 3.49 14.0 3.35 14.0 3.36 14.0
18 4.61 13.0 4.51 14.0 4.80 16.0 3.66 14.4 3.47 14.8 3.48 14.9
21 4.89 14.0 4.76 14.1 4.97 16.0 3.82 15.0 3.60 15.0 3.58 15.0
24 5.05 14.0 4.95 14.5 5.13 16.3 3.95 15.0 3.68 15.0 3.68 15.0
27 5.30 14.9 5.16 14.9 5.25 16.9 4.09 15.5 3.76 15.5 3.78 15.3
30 5.54 15.0 5.28 15.1 5.39 17.0 4.23 15.9 3.85 16.0 3.87 16.0
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Fig. 6.1. The square root of the maximum eigenvalue of the BDDC Deluxe operator as a
function of H

h
.
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Table 6.3

Results for the traditional BDDC preconditioner for H

h
= 4, decreasing h = 1

n
, and increasing

the number of subdomains = n

4
×

n

4
.

Number of λmax iter λmax iter λmax iter λmax iter λmax iter λmax iter
Subdomains t = 1.0 t = 10−1 t = 10−2 t = 10−3 t = 10−4 t = 10−5

9 2.20 7.9 2.32 9.9 3.26 13.0 3.53 14.0 3.52 14.0 3.52 14.0
36 2.84 11.0 2.71 11.0 3.24 14.0 3.64 15.0 3.65 15.0 3.66 15.0
81 2.96 12.0 2.81 12.0 3.04 13.0 3.64 16.0 3.68 16.0 3.68 16.0
144 3.01 12.0 2.88 12.0 2.84 13.0 3.62 16.0 3.68 16.0 3.68 16.0
225 3.05 13.0 2.91 12.0 2.77 12.6 3.59 16.0 3.69 16.0 3.68 16.0
324 3.07 13.0 2.93 13.0 2.77 13.0 3.56 16.0 3.68 16.2 3.69 16.3
441 3.08 13.0 2.93 13.0 2.77 13.0 3.52 16.0 3.69 17.0 3.69 17.0
576 3.09 13.0 2.93 13.0 2.78 13.0 3.49 16.0 3.69 17.0 3.69 17.0
729 3.09 13.0 2.94 13.0 2.79 13.0 3.45 16.0 3.68 17.0 3.69 17.0
900 3.09 13.0 2.94 13.0 2.81 13.0 3.41 16.0 3.68 17.0 3.69 17.0

Table 6.4

Results for the traditional BDDC preconditioner for h = 1

n
, 4× 4 subdomains, and increasing

H

h
= n

4
.

λmax iter λmax iter λmax iter λmax iter λmax iter λmax iter
H/h t = 1.0 t = 10−1 t = 10−2 t = 10−3 t = 10−4 t = 10−5

3 2.26 8.0 2.24 10.0 3.09 13.0 3.25 13.7 3.27 13.8 3.27 13.8
6 3.03 10.0 3.01 11.0 3.63 14.0 3.87 16.0 3.90 16.0 3.89 16.0
9 3.53 11.3 3.54 12.2 4.20 15.0 4.02 16.2 4.10 16.8 4.09 16.7
12 3.94 12.0 3.94 13.0 4.58 15.9 4.25 17.0 4.27 17.0 4.27 17.0
15 4.26 13.0 4.31 14.0 4.84 16.0 4.50 17.1 4.51 17.9 4.51 17.9
18 4.58 14.0 4.59 14.0 5.09 16.4 4.73 18.0 4.69 18.0 4.69 18.0
21 4.80 14.5 4.87 14.4 5.29 16.9 4.96 18.0 4.85 18.8 4.85 18.8
24 5.03 15.0 5.08 15.0 5.46 17.0 5.22 18.8 5.03 19.0 5.03 19.0
27 5.25 15.0 5.28 15.0 5.60 17.0 5.45 19.0 5.16 19.7 5.16 19.7
30 5.39 15.0 5.49 15.3 5.78 17.3 5.67 19.0 5.28 20.0 5.28 20.0

7. Acknowledgement. The author wishes to thank Prof. Olof Widlund of the
Courant Institute, who made him aware of BDDC Deluxe and its possible use in this
application. He also was helpful in organizing and commenting on drafts of this paper.
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CRM Proc. Lecture Notes, pages 225–242. Amer. Math. Soc., Providence, RI, 1999.

[25] Jong Ho Lee. Domain Decomposition Methods for Reissner-Mindlin Plates Discretized with
the Falk-Tu Elements. PhD thesis, Courant Institute of Mathematical Sciences, New York,
N.Y., 2011.

[26] Jong Ho Lee. Overlapping domain decomposition methods for numerically thin Reissner-
Mindlin plates approximated with the Falk-Tu elements. SIAM J. Numer. Anal., 51(1):24–
46 (electronic), 2013.

[27] Jing Li and Olof Widlund. BDDC algorithms for incompressible Stokes equations. SIAM J.
Numer. Anal., 44(6):2432–2455, 2006.



18 REFERENCES

[28] Jing Li and Olof B. Widlund. FETI-DP, BDDC, and block Cholesky methods. Internat. J.
Numer. Methods Engrg., 66(2):250–271, 2006.

[29] Carlo Lovadina. A new class of mixed finite element methods for Reissner-Mindlin plates.
SIAM J. Numer. Anal., 33(6):2457–2467, 1996.

[30] Mikko Lyly. On the connection between some linear triangular Reissner-Mindlin plate bending
elements. Numer. Math., 85(1):77–107, 2000.

[31] Duk-Soon Oh, Olof B. Widlund, and Clark R. Dohrmann. A BDDC algorithm for Raviart-
Thomas vector fields. Technical Report TR2013-951, Courant Institute, New York Univer-
sity, February 2013.

[32] Petra Peisker and Dietrich Braess. Uniform convergence of mixed interpolated elements for
Reissner-Mindlin plates. RAIRO Modél. Math. Anal. Numér., 26(5):557–574, 1992.

[33] Rolf Stenberg. A new finite element formulation for the plate bending problem. In Asymptotic
methods for elastic structures (Lisbon, 1993), pages 209–221. de Gruyter, Berlin, 1995.

[34] Andrea Toselli and Olof B. Widlund. Domain decomposition methods—algorithms and theory,
volume 34 of Springer Series in Computational Mathematics. Springer-Verlag, Berlin,
2005.

[35] Xuemin Tu. Three-level BDDC in three dimensions. SIAM J. Sci. Comput., 29(4):1759–1780,
2007.

[36] Xuemin Tu. Three-level BDDC in two dimensions. Internat. J. Numer. Methods Engrg.,
69(1):33–59, 2007.


