
Cryptographic Security of Macaroon Authorization Credentials

Adriana López-Alt
New York University

December 6, 2013

Abstract

Macaroons, recently introduced by Birgisson et al. [BPUE+14], are authorization credentials that
provide support for controlled sharing in decentralized systems. Macaroons are similar to cookies in that
they are bearer credentials, but unlike cookies, macaroons include caveats that attenuate and contextually
confine when, where, by who, and for what purpose authorization should be granted.

In this work, we formally study the cryptographic security of macaroons. We define macaroon schemes,
introduce corresponding security definitions and provide several constructions. In particular, the MAC-
based and certificate-based constructions outlined in [BPUE+14], can be seen as instantiations of our
definitions. We also present a new construction that is privately-verifiable (similar to the MAC-based
construction) but where the verifying party does not learn the intermediate keys of the macaroon, a problem
already observed in [BPUE+14].

We also formalize the notion of a protocol for “discharging” third-party caveats and present a security
definition for such a protocol. The encryption-based protocol outlined by Birgisson et al. [BPUE+14] can
be seen as an instantiation of our definition, and we also present a new signature-based construction.

Finally, we formally prove the security of all constructions in the given security models.

1 Introduction

Macaroons, as introduced by Birgisson et al. [BPUE+14], are bearer tokens that act as authorization
credentials. In its most basic form, a macaroon identifies a list of restrictions or caveats that specify when,
where, by who, and for what purpose, access to a resource can be granted. For example, a caveat might
specify that the macaroon is valid (and thus access should be granted) as long as the operation being
performed is ‘read’. Another caveat might specify that the macaroon is valid as long as the object being
accessed is ‘myimage.jpg’. These examples are what Birgisson et al. call first-party caveats. The conditions
they impose can be verified by the target service that manages the resource when the access request is made
and the macaroon is presented. More interesting are third-party caveats, caveats that require a third-party
to assert that a certain condition holds true. For example, a third-party caveat might require proof of
membership in a group G at a third-party service A. A recipient of a macaroon holding a third-party caveat
must first obtain such a proof or discharge from the corresponding third-party, and pass along the discharge
with the macaroon when it accesses the intended resource at the target service.

Of course, care must be taken to ensure that caveats are ‘bound together’ so that a principal holding
a macaroon cannot remove or modify caveats at his or her convenience. Therefore, macaroons include a
cryptographic signature that guarantees the integrity of the list of caveats and the caveats themselves.

Macaroons also allow delegation and attenuation by permitting additional caveats to be added to a
macaroon, further restricting the validity of the token. More importantly, this can be done using only the
macaroon itself (and perhaps an additional extension key created at the same time as the macaroon), and
does not require communication with other principals or the target service. It is this flexibility that makes
macaroons a leading candidate for authorization in decentralized distributed systems, and in ‘cloud’ services
in particular.

1

Our Results. In this work, we formally study the cryptographic security of macaroons. We divide this
task into three parts. First, we study the security of macaroon schemes, a new primitive that captures the
requirements of integrity and extension (for delegation or attenuation) of a macaroon. Second, we study
discharge protocols, a new primitive that specifies the syntax of third-party caveats and how they can be
used to obtain discharges from the corresponding third-party. Finally, we study macaroon-tree protocols, a
new primitive that captures the full functionality of macaroons: issuing, extending with a first-party caveat,
extending with a third-party caveat, discharging, and verifying.

We follow the formalization of Birgisson et al. and model a macaroon as follows. A macaroon includes
a list of caveats, where each caveat is a bit-string mi ∈ {0, 1}∗. Additionally, a macaroon includes a key
identifier id that opaquely encodes a root key k, and a signature σ that guarantees the integrity of the
macaroon and can be verified using the key k.

Macaroon Schemes. We define a new primitive called a macaroon scheme that defines how macaroons
can be issued, extended (for delegation or attenuation), finalized, and verified. A key generation algorithm
generates root keys k, with which a macaroon can be issued. When a macaroon is issued, an extension key
is also given. Using this extension key, the new macaroon can be extended, essentially adding more caveats
to it, and a new extension key is issued so as to allow further extensions. A verification algorithm is also
defined such that given the corresponding root key k, the validity of a macaroon µ can be verified. Finally,
an algorithm Finalize is defined, that modifies a given macaroon so that it can be verified by the verification
algorithm. This last algorithm can be seen as optional – indeed, only one of our constructions requires it.

We formalize a security definition for macaroon schemes that captures the desired guarantee that a
principal cannot forge a macaroon. In other words, a principal cannot create a valid macaroon µ∗ with
respect to a root key k unless it obtained the macaroon via “valid means”, i.e. µ∗ was given to him, and
µ∗ was issued using k or is an extension of such a macaroon. Notice that this provides security against
removing or modifying caveats from a macaroon obtained legally.

We provide three constructions of macaroon schemes. Two of these, a PRF-based construction and
a certificate-based construction were already described in [BPUE+14]. We formalize these constructions
and the properties required to prove their security. The third construction is new, and offers efficiency
vs. security trade-offs when compared to the other two.

Finally, we make a distinction between a privately-verifiable macaroon scheme (as informally defined
above), where a macaroon is issued and verified using the same root key k, and a publicly-verifiable macaroon
scheme, where a macaroon is issued with a secret root key sk and verified with a corresponding (public)
verification key vk. See Section 3.1 for a formal discussion of privately-verifiable macaroon schemes, and
Section 3.2 for a formal discussion of publicly-verifiable macaroon schemes.

Discharge Protocols. We formally define discharge protocols, a new primitive that specifies the syntax
of third-party caveats and their corresponding discharges, which are also macaroons. An initial setup creates
a discharging key skD and an issuing key skI. We define a token-issuing algorithm, which takes as input the
issuing key skI and outputs two tokens - a state token αS and a discharge token αD. The discharge token
αD, together with the discharging key skD, is used to obtain a discharge macaroon. The state token αS is
used to verify the validity of the discharge obtained.

A third-party caveat includes both the state token αS, as well as the discharge token αD. The discharge
token αD can be used by the holder of the macaroon to obtain the discharge from the third-party who holds
the discharging key skD, and the state token αS can be used by the target service to verify the validity of
the discharge presented.

Note that in the use-case of discharge protocols, a principal will present a macaroon and the correspond-
ing discharges to a target service. The target service will then use the state tokens that are part of the
third-party caveats in the macaroon and use these to verify the discharges that are presented along with
the macaroon. Therefore, our definition of security of a discharge protocol ensures that without knowing
the issuing or discharge keys, a principal cannot forge a state token α∗S and a discharge macaroon µ∗ such
that µ∗ is a valid discharge macaroon for α∗S, unless they were legally obtained.

We present two constructions of discharge protocols, one that uses encryption and a privately-verifiable
macaroon scheme, and another that uses a message authentication code (MAC) and a publicly-verifiable

2

macaroon scheme. Though the first was already outlined in [BPUE+14], we formalize the properties required
to prove its security. In particular, we show that the encryption used must be non-malleable.

Macaroon-Tree Protocols. Finally, we show how to combine macaroon schemes and discharge
protocols to obtain macaroon-tree protocols, which have the full functionality of macaroons described in
[BPUE+14]. In particular, macaroons can be issued, extended with a first-party caveat, extended with a
third-party caveat, discharged, finalized, and verified. The security definition of macaroon-tree protocols
follows directly from combining the security definitions of macaroon schemes and discharge protocols.

Our construction of a macaroon-tree protocol “glues” together a macaroon scheme and a discharge pro-
tocol using symmetric-key and public-key encryption, and a message authentication code. The symmetric-
key encryption and the MAC are used to create the key identifier of a macaroon: the key identifier is a
symmetric-key encryption of the root key k, together with a tag of this ciphertext. The public-key encryp-
tion is used to encrypt the token issuing key of the discharge protocol under the verifying party’s public key.
We note that this encryption can be removed in certain cases and discuss this optimization in Section 5. We
further note that the construction is generic, so that any macaroon scheme and any discharge protocol can
be combined. In particular, a privately verifiable macaroon scheme can be used with the discharge protocol
that uses publicly-verifiable discharges, and vice versa.

Concrete vs. Asymptotic Security. The proofs of security in this work use asymptotics (e.g. poly(·)
and negl(·) functions). Though they establish the theoretical security of the constructions, a more concrete
analysis of probabilities that takes into account the computational power of the adversary and possible
upper bounds for the number of queries, must be performed in specific use cases to guarantee their concrete
security.

Organization. We begin by presenting a few preliminary definitions in Section 2. In Section 3, we
present our definitions and constructions of macaroon schemes. In Section 4, we discuss discharge protocols,
and finally, in Section 5, we discuss macaroon-tree protocols. For clarity of presentation, all proofs are
presented in the Appendix.

2 Preliminaries

We assume basic knowledge of cryptographic primitives such as PRFs, MACs, signatures, and symmetric-
key and public-key encryption. For completeness, we review their security definitions below.

Notation. For a randomized function f , we write f(x; r) to denote the unique output of f on input x
with random coins r. We write f(x) to denote a random variable for the output of f(x; r) over the random
coins r. For a distribution or random variable X, we write x ← X to denote the operation of sampling a
random x according to X. For a set S, we overload notation and use s← S to denote sampling s from the
uniform distribution over S. We use y := f(x) to denote the deterministic evaluation of f on input x with
output y, and in general, as the assignment operator. Finally, we use a||b to denote the concatenation of
bit strings a and b, and λ to denote the empty string.

2.1 Pseudorandom Functions (PRFs)

A pseudorandom function or PRF is a function that is indistinguishable from a truly random function. A
more formal definition follows.

Definition 2.1. A function F : {0, 1}n ×{0, 1}B → {0, 1}n is pseudorandom if for all PPT distinguishers
A, ∣∣∣Pr[AFk(·)(1n) = 1]− Pr[Af(·)(1n) = 1]

∣∣∣ ≤ negl(n),

where k ← {0, 1}n and f is chosen uniformly at random from the set of functions mapping {0, 1}B to
{0, 1}n.

3

Note that the oracle f(·) can be simulated efficiently by answering every query with an independent and
uniformly random value in {0, 1}n.

Definition 2.2. Let F : {0, 1}n × {0, 1}B → {0, 1}n. Define the functions F (1), F (2), . . . inductively as
follows:

F (1)(k, x1) = F (k, x1) and F (n)(k, x1, . . . , xn) := F (F (n−1)(k, x1, . . . , xn−1), xn)

Define F ∗(k, x1, . . . , xn) := F (n)(k, x1, . . . , xn).

The above construction is called the cascade construction. Bellare, Canetti, and Krawczyk [BCK96]
showed that if F is a PRF, then F ∗ is a pseudorandom against prefix-free adversaries, that is, against
adversaries whose query set is a prefix-free set.

Theorem 2.3 ([BCK96]). If F is a PRF, then F ∗ described above is pseudorandom against distinguishers
whose query set is prefix-free.

2.2 Message Authentication Codes (MAC)

Definition 2.4. A message authentication code (MAC)M = (KeyGen,Mac,Verify) is existentially-unforgeable
under a chosen message attack (EU-CMA-secure) if for all PPT adversaries A, the probability that A wins
the following game is negligible in κ.

Setup: The challenger generates a key k ← KeyGen(1κ).

Tag Queries: The adversary A is given access to a tag oracle. On its ith query, the adversary sends a
message m(i), the challenger computes t(i) ← Mac(k, m(i)) and sends t(i) as response.

Winning Condition: The adversary outputs a message and forgery m∗, t∗, and he wins the game if t∗ is
a valid tag for m∗ under key k, that is, if Verify(k,m∗, t∗) = 1.

2.3 Signatures

Definition 2.5. A signature scheme S = (KeyGen,Sign,Verify) is existentially-unforgeable under a chosen
message attack (EU-CMA-secure) if for all PPT adversaries A, the probability that A wins the following
game is negligible in κ.

Setup: The challenger generates a key pair (vk, sk)← KeyGen(1κ).

Tag Queries: The adversary A is given access to a signature oracle. On its ith query, the adversary sends
a message m(i), the challenger computes σ(i) ← Sign(sk,m(i)) and sends σ(i) as response.

Winning Condition: The adversary outputs a message and forgery m∗, σ∗, and he wins the game if σ∗

is a valid signature for m∗ under key vk, that is, if Verify(vk,m∗, t∗) = 1.

2.4 CPA-Secure Symmetric-Key Encryption

Definition 2.6. A symmetric-key encryption scheme E = (KeyGen,Enc,Dec) has indistinguishable ci-
phertexts under a chosen plaintext attack (is CPA-secure) if for all PPT adversaries A, the adversary’s
advantage in winning the following game is negligible in κ.

Setup: The challenger generates a key sk← KeyGen(1κ).

Encryption Queries: The adversary A is given access to an encryption oracle. On its ith query, the ad-
versary sends a message m(i), the challenger computes c(i) ← Enc(sk,m(i)) and sends c(i) as response.

Challenge: The adversary picks two challenge plaintexts, m0,m1, and sends them to the challenger. The
challenger picks a bit at random, b← {0, 1}, computes c∗ ← Enc(sk,mb), and sends c∗ to A.

Encryption Queries: The adversary can make more encryption queries.

Winning Condition: The adversary outputs a bit b∗ and wins if b∗ = b. We define the advantage of A
in this game to be: |Pr[A wins]− 1/2|.

4

2.5 CCA2-Secure Public-Key Encryption

Definition 2.7. A public-key encryption scheme E = (KeyGen,Enc,Dec) has indistinguishable ciphertexts
under a chosen ciphertext attack (is CCA2-secure) if for all PPT adversaries A, the adversary’s advantage
in winning the following game is negligible in κ.

Setup: The challenger generates a key pair (pk, sk)← KeyGen(1κ).

Decryption Queries: The adversary A is given access to a decryption oracle. On its ith query, the
adversary sends a ciphetext c(i), the challenger computes m(i) ← Dec(sk, c(i)) and sends m(i) as
response.

Challenge: The adversary picks two challenge plaintexts, m0,m1, and sends them to the challenger. The
challenger picks a bit at random, b← {0, 1}, computes c∗ ← Enc(sk,mb), and sends c∗ to A.

Decryption Queries: The adversary can make more decryption queries, as long as the query ciphertext
c(i) is not the challenge ciphertext c∗, i.e. as long as c(i) 6= c∗.

Winning Condition: The adversary outputs a bit b∗, and wins if b∗ = b. We define the advantage of A
in this game to be: |Pr[A wins]− 1/2|.

3 Macaroons

A macaroon is a bearer token that acts as an authorization credential and includes caveats that attenuate
and contextually confine when, where, by who, and for what purpose authorization should be granted. We
model each caveat by a bit-string mi ∈ {0, 1}∗. Additionally, a macaroon includes a key identifier id that
opaquely encodes a root key k, and a signature σ that guarantees the integrity of the macaroon and can be
verified using the key k.

Definition 3.1. A macaroon consists of a key identifier id, an optional tuple of messages or caveats
(m1, . . . ,mn) for some n ≥ 1, and a signature σ. We use the notation µ := (id | m1, . . . ,mn | σ) to denote
a macaroon µ, or µ := (id | | σ) if the macaroon does not have any caveats.

3.1 Macaroon Schemes

We define a new primitive called a macaroon scheme that defines how macaroons can be issued, extended
(for delegation or attenuation), finalized, and verified. A key generation algorithm generates root keys k,
with which a macaroon can be issued. When a macaroon is issued, an extension key is also given. Using
this extension key, the new macaroon can be extended or delegated, essentially adding more caveats to it,
and a new extension key is issued so as to allow further delegation. A verification algorithm is also defined
such that given the corresponding root key k, the validity of a macaroon µ can be verified. Finally, an
algorithm Finalize is defined, that modifies a given macaroon so that it can be verified by the verification
algorithm. This last algorithm can be seen as optional – indeed, only one of our constructions requires it.

We make a distinction between a privately-verifiable macaroon scheme (as informally defined above),
where a macaroon is issued and verified using the same root key k, and a publicly-verifiable macaroon
scheme, where a macaroon is issued with a secret root key sk and verified with a corresponding verification
key vk. We formally define privately-verifiable macaroon schemes below, present constructions, and discuss
their security in this section. See Section 3.2 for a formal discussion of publicly-verifiable macaroon schemes.

Definition 3.2. A privately-verifiable macaroon scheme is a tuple of algorithmsM = (Setup, Issue,Extend,
Finalize,Verify) with the following syntax:

• k ← KeyGen(1κ) : Given a security parameter κ, outputs a root key k.

• (µ, ek)← Issue(k, id) : Given a root key k and an identifier id, outputs a macaroon µ = (id | | σ) with
no caveats, and an extension key ek.

• (µ′, ek) ← Extend(ek, µ,m) : Given an extension key ek, a macaroon µ = (id | m1, . . . ,mn | σ) and a
message m ∈ {0, 1}∗, outputs a new macaroon µ′ := (id′ | m1, . . . ,mn,m | σ′) with key identifier id′

such that id is a prefix of id′, and whose caveat list is the same as that of µ, with m appended at the
end. In particular, it should be easily determined if a macaroon µ′ is an extension of a macaroon µ.

5

• µ′ ← Finalize(ek, µ) : Given an extension key ek and a macaroon µ = (id | m1, . . . ,mn | σ), outputs a
new macaroon µ′ = (id | m1, . . . ,mn | σ′) with the same key identifier and the same caveat list as µ.

• b := Verify(k, µ) : Given a root key k and a macaroon µ, outputs a bit b.

We require that these algorithms satisfy correctness: for all id ∈ {0, 1}∗, for all n ≥ 1 and all m1, . . . ,mn ∈
{0, 1}∗, if k ← KeyGen(1κ), (µ0, ek0)← Issue(k, id), (µi, eki)← Extend(eki−1, µi−1,mi) for i ∈ [n], µfinal ←
Finalize(ekn, µn), then Verify(k, µfinal) = 1 with probability 1.

The above definition outlines the syntax of a macaroon scheme; we now turn to defining its security.
The desired security guarantee for a macaroon scheme is that a principal cannot forge a macaroon. In other
words, a principal cannot create a valid macaroon µ∗ with respect to a root key k unless it obtained the
macaroon via “valid means”, i.e. µ∗ was given to him, and µ∗ was issued using k or is an extension of such
a macaroon. Notice that this includes removing caveats from a macaroon obtained legally.

We wish to guarantee security even against colluding principals and as such define a global “adversary”
that might obtain valid macaroons and whose goal is to forge a new macaroon. This has a similar flavor to
the security definition of MACs or signatures, and so we follow the same structure, allowing the macaroon
equivalent of “signature queries”. In our case, however, macaroons can be obtained from issuing a new
macaroon or extending an existing one. Therefore, we allow the adversary to make both issuing queries
and extension queries.

Finally, we must define a “valid forgery”. For signatures, a valid forgery means a signature of message
that was not given as part of a signature query. For macaroons, we must extend this to mean a macaroon
that was not a result of a query, or an extension of such a macaroon. This is because the extension key can
be either implicit in the macaroon (as in our first construction) or empty (as in our second construction).
Therefore, obtaining the macaroon itself is enough to extend or delegate it. To this end, we have the
challenger keep track of the macaroons that have been issued and extended in queries, and have the adversary
explicitly ask to receive these macaroons. This allows a valid forgery to include “parents” of macaroons that
have been revealed to the adversary. In other words, this guarantees a breach of security if an adversary
successfully removes caveats in macaroon that it obtained legally.

Definition 3.3. We say that a macaroon scheme M = (KeyGen, Issue,Extend,Finalize,Verify) is secure if
for all PPT adversaries A, the probability that A wins in the following game is negligible in κ.

Setup: The challenger generates a key k ← KeyGen(1κ). The challenger keeps a tree of macaroons T ,
which has macaroon/extension key pairs as nodes and ids/caveats as edges. As a general rule, a
macaroon in T whose path from the root is (id, ~m) has the form (ĩd | ~m | σ) for some signature σ and
key identifier ĩd = id|| . . . that has id as prefix. Note that its caveats are exactly ~m. The challenger
initializes T to contain the empty string, λ, as root.

Issue Queries: On the ith query, the adversary chooses an identifier id(i). The challenger creates a mac-
aroon (µ(i)

0 , ek
(i)
0)← Issue(k, id(i)). It adds (µ(i)

0 , ek
(i)
0) as a child of the root under an edge labeled with

id(i).

Extend Queries: On the ith query, the adversary sends an identifier id(i), a tuple of caveats ~m(i), and a
message m(i) ∈ {0, 1}∗ to the challenger. If (id(i), ~m(i)) is a valid path in T leading to a node (µ, ek),
then the challenger computes (µ(i), ek(i)) ← Extend(ek, µ,m(i)), and adds (µ(i), ek(i)) to T as a child
of (µ, ek) under an edge labeled with m(i).

Macaroon Queries: On the ith query, the adversary sends an identifier id(i) and a tuple of caveats ~m(i)

to the challenger. If (id(i), ~m(i)) is a valid path in T leading to a node (µ, ek), then the challenger
returns (µ, ek) to the adversary.

Winning Condition: The adversary A outputs a macaroon µ∗ := (ĩd
∗
||~m∗||σ∗) with ĩd

∗
:= id∗|| He

wins if Verify(k, µ∗) = 1 and µ∗ is not an extension of a macaroon given to A in a macaroon query.
This can be easily checked by checking if (id∗, ~m∗) leads down a path that includes a macaroon that
was given to A in a macaroon query, or equivalently, if the caveat list of any of the macaroons given
to A in a macaroon query with identifier id∗, is a prefix of µ∗’s caveat list.

6

3.1.1 Construction 1

Below we show how to construct a macaroon scheme from a variable-input PRF. This construction is
precisely the MAC-based construction described in [BPUE+14], where the key identifier and the caveats
are MAC’ed in a cascade fashion, i.e. the root key k is used to create a signature, σ0, of the key identifier
id; σ0 is then used as a key to create a signature, σ1, of the first caveat m1, and so on. Here, we formalize
the properties required from the “MAC” function, and show that using a variable-input PRF suffices.
Intuitively, the pseudorandomness of the output guarantees that it is computationally indistinguishable
from a valid and fresh key, and the unpredictability of the output ensures unforgeability.

Let F : {0, 1}n × {0, 1}∗ → {0, 1}n be a variable-input PRF. We define:

• KeyGen(1κ) : Output k ← {0, 1}n.

• (µ, ek)← Issue(k, id) : Output µ := (id | | σ) and ek := σ, where σ := F (k, id).

• (µ′, ek′) ← Extend(ek, µ,m) : Parse µ = (id | m1, . . . ,mn | σ). Output µ′ := (id | m1, . . . ,mn,m | σ′)
and ek := σ′, where σ′ := F (σ,m).

• µ′ ← Finalize(ek, µ): Output µ′ := µ (i.e. don’t do anything)

• b := Verify(k, µ) : Parse µ = (id | m1, . . . ,mn | σ). Compute σ0 := F (k, id). For i = 1, . . . , n, compute
σi := F (k, σi). Output 1 if σn = σ, and 0 otherwise.

Theorem 3.4. . Let F : {0, 1}n ×{0, 1}∗ → {0, 1}n be a variable-input PRF. Then the above construction
is a secure macaroon scheme.

To prove Theorem 3.4, we must assume that if an adversary will ask a macaroon queries id, ~m1 and
id, ~m2 such that ~m1 is a prefix of ~m2, then it will ask the query id, ~m1 before the query id, ~m2. Even though
making this assumption weakens the theorem statement, it might not be an unreasonable assumption to
make in the setting of macaroons. This is because the macaroon µ2 corresponding to id, ~m2 is an extension
of the macaroon µ1 corresponding to id, ~m1, and therefore µ1 must be computed before µ2. In assuming
that the adversary learns µ1 before µ2, we are assuming static (vs. adaptive) corruptions of the parties, or
in other words, we assume that if a party is corrupted at any point in time then it was corrupted from the
beginning.

3.1.2 Construction 2

We now show a new construction of a privately-verifiable macaroon scheme. To issue a macaroon, one
simply computes a public-key signature of the key identifier. Extending a macaroon requires sampling a
new signature key pair, and signing the previous signature, together with the new verification key, and the
new caveat. However, notice that this simple construction is insecure, as it allows an adversary to obtain
a valid macaroon and remove its caveats, by simply removing the corresponding signatures. To safe-guard
against this, we encrypt the intermediate signatures using a public-key encryption scheme. The macaroon
can then be verified using the original verification key (corresponding to the secret key used to sign the key
identifier), and the decryption key.

Let S = (KeyGenS ,Sign,Verify) be a signature scheme, and let E = (KeyGenE ,Enc,Dec) be a CPA-secure
public-key encryption encryption scheme. We define:

• KeyGen(1κ) : Output k := (vkS , pkE , skS , skE), where

(vkS , skS)← KeyGenS(1κ) , (pkE , skE)← KeyGenE(1κ)

• (µ, ek)← Issue(k, id) : Parse k := (vkS , pkE , skS , skE). Output µ = (ĩd | | σ), where

ĩd := id||pkE , σ ← Sign(skS , ĩd) , ek := λ,

and λ is the empty string.

7

• (µ′, ek′) ← Extend(ek, µ,m) : Parse µ = (ĩd | m1, . . . ,mn | σ) and parse ĩd = id||pkE || . . . Output
µ′ := (ĩd

′
| m1, . . . ,mn,m | σ′), where:

(vk′, sk′)← KeyGenS(1κ) , c← Enc(pkE , σ) , ĩd
′
:= ĩd||(vk′, c) , σ′ ← Sign(sk′, vk′||c||m) , ek := λ

and λ is the empty string.

• µ′ ← Finalize(ek, µ): Output µ′ := µ (i.e. don’t do anything)

• b := Verify(k, µ) : Parse µ = (ĩd | m1, . . . ,mn | σ) and parse ĩd = id||pkE ||(vk1, c1)|| . . . ||(vkn, cn). For
i = 0, . . . , n− 1, compute σi := Dec(skE , ci+1), and let σn := σ. Check that Verify(vkS , id||pkE , σ0) = 1
and Verify(vki, vki||ci||mi, σi) = 1 for i = 1, . . . , n.

Theorem 3.5. Let S = (KeyGenS ,SignS ,VerifyS) be an EU-CMA-secure signature scheme, and let E =
(KeyGenE ,Enc,Dec) be a CPA-secure public-key encryption scheme. Then the above construction is a secure
macaroon scheme.

Trade-Offs. Though Construction 2 is considerably less efficient than Construction 1 (as it uses public-
key primitives), it has one advantage. Notice that in Construction 1, the process of verifying a macaroon
reveals all intermediate signatures, which double as extension keys in that construction. As observed in
[BPUE+14], this can be a problem when used within macaroon-tree protocols, as is our goal (see Section
5). Construction 2 does not use extension keys, and therefore does not suffer from this weakness.

3.2 Publicly-Verifiable Macaroon Schemes

Similarly to privately-verifiable macaroons schemes, we define publicly-verifiable macaroon schemes. The
only difference is that a macaroon is issued with a secret root key sk and verified with a corresponding
public verification key vk.

Definition 3.6. A public-key macaroon scheme is a tuple of algorithms M = (Setup, Issue,Extend,Verify)
with the following syntax:

• (vk, sk)← KeyGen(1κ) : Given a security parameter, outputs a verification key vk and a secret key sk.

• (µ, ek) ← Issue(sk, id) : Given a secret key sk and an identifier id, outputs a macaroon µ = (id | | σ)
with no caveats, and an extension key ek.

• (µ′, ek) ← Extend(ek, µ,m) : Given an extension key ek, a macaroon µ = (id | m1, . . . ,mn | σ) and a
message m ∈ {0, 1}∗, outputs a new macaroon µ′ := (id′ | m1, . . . ,mn,m | σ′) with key identifier id′

such that id is a prefix of id′, and whose caveat list is the same as that of µ, with m appended at the
end. In particular, it should be easily determined if a macaroon µ′ is an extension of a macaroon µ.

• µ′ ← Finalize(ek, µ) : Given an extension key ek and a macaroon µ = (id | m1, . . . ,mn | σ), outputs a
new macaroon µ′ = (id | m1, . . . ,mn | σ′) with the same key identifier and the same caveat list as µ.

• b := Verify(vk, µ) : Given a verification key vk and a macaroon µ, outputs a bit b.

We require that these algorithms satisfy correctness: for all id ∈ {0, 1}∗, for all n ≥ 1 and all m1, . . . ,mn ∈
{0, 1}∗, if (vk, sk) ← KeyGen(1κ), (µ0, ek0) ← Issue(sk, id), (µi, eki) ← Extend(eki−1, µi−1,mi) for i ∈ [n],
µfinal ← Finalize(ekn, µn), then Verify(vk, µfinal) = 1 with probability 1.

The definition of security of a public-key macaroon scheme is the analogous to that of a symmetric-
key macaroon scheme. The only differences are that the adversary is also given the verification key vk,
macaroons are issued with the secret key sk, and the adversary wins if µ∗ verifies under the verification key
vk.

3.2.1 Construction

Below we show how to construct a publicly-verifiable macaroon scheme from a public-key signature scheme.
This construction is a formalization of the certificate-based construction described in [BPUE+14]. Intu-
itively, in issuing and extending macaroons, one constructs two “strands” of signatures, denoted here with

8

ν and τ . The first is a certificate chain that authenticates the second, and the second is used to sign the
key identifier and each of the caveats.

Note that the Finalize algorithm is crucial in this construction, as it ensures knowledge of the last signing
key in the chain. This ensures that caveats cannot be removed from a legally-obtained macaroon, except
by the principal who created the macaroon in the first place.

Let S = (KeyGenS ,SignS ,VerifyS) be a signature scheme. We define:

• KeyGen(1κ) : Output (vk, sk)← KeyGenS(1κ).

• (µ, ek)← Issue(sk, id) : Output µ := (ĩd | | σ) and ek = sk′, where:

(vk′, sk′)← KeyGenS(1κ) , ν ← SignS(sk, vk′) , τ ← SignS(sk′, id) , σ := (ν, τ) , ĩd := id||vk′

• (µ′, ek′) ← Extend(ek, µ,m) : Parse µ := (ĩd | m1, . . . ,mn | σ) and ĩd = id|| Output ⊥ if m = id.
Otherwise, output µ′ := (ĩd

′
| m1, . . . ,mn,m | σ′) and ek′ = sk′, where:

(vk′, sk′)← KeyGenS(1κ) , ν ← SignS(ek, vk′) , τ ← SignS(sk′,m) , σ′ := σ||(ν, τ) , ĩd
′
:= ĩd||vk′

• µ′ ← Finalize(ek, µ) : Parse µ := (ĩd | m1, . . . ,mn | σ). Output µ′ := (ĩd | m1, . . . ,mn,m | σ′), where
σ′ := σ||σfinal and σfinal ← SignS(ek, id).

• b := Verify(vk, µ) : Parse µ := (ĩd | m1, . . . ,mn | σ), parse ĩd = id||vk1|| . . . ||vkn+1, and parse σ =
(ν0, τ0)|| . . . ||(νn, τn)||σfinal. For simplicity, let vk0 := vk and m0 := id. For i = 0, . . . , n, check that
VerifyS(vki, vki+1, νi) = 1 and VerifyS(vki+1,mi, τi) = 1. Finally, check that VerifyS(vkn+1, id, σfinal) =
1.

Theorem 3.7. Let S = (KeyGenS ,SignS ,VerifyS) be an EU-CMA-secure signature scheme. Then the above
construction is a secure macaroon scheme.

4 Discharge Protocols

Having defined and constructed macaroon schemes, we now turn to studying the “discharge” of so-called
“third-party” caveats. Third-party caveats require a third-party to assert that a given condition holds
true. As an example (previously used in [BPUE+14]), a third-party caveat can require proof of membership
in a group G at service A. Before presenting a macaroon to a target service for verification, a holder of
a macaroon must obtain “discharges” from the appropriate third-parties, asserting that the conditions
specified in the third-party caveats holds true. These discharges are also macaroons.

In what follows, we formally define discharge protocols, specifying the syntax of third-party caveats and
their corresponding discharges. After an initial discharge setup that creates a discharging key skD and an
initial issuing setup that creates an issuing secret key skI, tokens can be issued using the issuing key and
discharged using the discharging key. Every invocation to the token-issuing algorithm outputs two tokens -
a state token αS and a discharge token αD. The discharge token αD is used to obtain a discharge macaroon
and the state token αS is used to verify the validity of the discharge obtained.

Looking ahead, a third-party caveat will include both the state token αS, as well as the discharge token
αD. The discharge token αD can be used by the holder of the macaroon to obtain the discharge from the
discharging third-party who holds the discharging key skD, and the state token αS can be used by the target
service to verify the validity of the discharge presented. See Section 5 for more details.

Definition 4.1. A macaroon discharge protocol is a tuple of algorithms D = (Setup,Token,Discharge,Verify)
with the following syntax:

• (params, skD)← SetupDischarge(1κ) : Given a security parameter κ, outputs public parameters params
and a discharging secret key skD. All other algorithms take params as argument, even if not explicitly
written.

• skT ← SetupToken(1κ) : Given a security parameter κ, outputs a token-issuing secret key skT.

9

• (αS, αD) ← Token(skT): Given the token-issuing secret key skT, outputs a state token αS and a dis-
charge token αD.

• µ ← Discharge(skD, αD): Given a discharge token αD and the discharging secret key skD, outputs a
macaroon µ.

• b := Verify(skT, αS, µ): Given a macaroon µ, a state token αS, and the token-issuing secret key skT,
outputs a bit b.

We require that these algorithms satisfy correctness: if (params, skT, skD) ← Setup(1κ), (αS, αD) ←
Token(skT), µ← Discharge(skD, αD), then Verify(skT, αS, µ) = 1 with probability 1.

Note that in the use-case of discharge protocols, a principal will present a macaroon and the correspond-
ing discharges to a target service. The target service will then use the state tokens that are part of the
third-party caveats in the macaroon and use these to verify the discharges that are presented along with the
macaroon. Therefore, for the security of a discharge protocol, we wish to ensure that without knowing the
issuing or discharge keys, skI and skD, a principal cannot forge a state token α∗S and a discharge macaroon
µ∗ such that µ∗ is a valid discharge macaroon for α∗S, unless they were legally obtained.

To ensure this, in our definition we allow the adversary to obtain tokens and discharges via token queries
and discharge queries, and only consider a forgery (α∗S, µ

∗) to be valid if µ∗ is a valid discharge macaroon
for α∗S, and α∗S and µ∗ were not both legally obtained from token and discharge queries. That is, we allow
α∗S to be the output of a token query (α∗S, α

∗
D), as long as µ∗ was not the output of a discharge query using

the corresponding token α∗D. Thus, security is broken if a principal is able to obtain a valid discharge for
a third-party caveat that it did not create (i.e. for a state token that it did not issue), without the help of
the third-party who owns the discharging key skD. Furthermore, we consider security broken if a principal
is able to forge a state token sk∗S.

Definition 4.2. We say that a macaroon discharge protocol D = (Setup, Issue,Discharge,Verify) is secure
if for all PPT adversaries A, the probability that A wins in the following game is negligible in κ.

Setup: The challenger chooses (params, skD) ← SetupDischarge(1κ) and skT ← SetupToken(1κ) and gives
params to A. The challenger keeps track of a set of tokens QT and a set of discharges QD, both of
which start out empty.

Token Queries: The adversary A asks the challenger to issue a token. On the ith query, the challenger
runs (α(i)

S , α
(i)
D) ← Token(skT) and returns (α(i)

S , α
(i)
D) to A. It also adds (α(i)

S , α
(i)
D) to QT. Issuing

queries and discharge queries can be interleaved.

Discharge Queries: On the ith query, the adversary A sends a token α
(i)∗
D to the challenger, who runs

µ(i) ← Discharge(skD, α
(i)∗
D) and returns µ(i) to A. The challenger also adds (α(i)∗

D , µ(i)) to QD. Issuing
queries and discharge queries can be interleaved.

Winning condition: The adversary wins if it produces a token α∗S and a macaroon µ∗ such that µ∗ is not
an extension of any macaroon µ such that (α∗D, µ) ∈ QD, where α∗D is a corresponding discharge token
to α∗S in QT, and Verify(skI, α

∗
S, µ

∗) = 1. In other words, A wins if it outputs a valid macaroon that is
not an extension of a macaroon that was the output of a discharge query with token α∗D corresponding
to α∗S.

4.1 Construction 1

We first present the encryption-based construction that was described in [BPUE+14]. The idea is for the
state and discharge tokens to encode a key k, which will be the root key for the discharge macaroon. The
state token is a symmetric-key authenticated encryption of k, whereas the discharge token encrypts k using
the third-party’s public key. Given a discharge token, the third-party obtains k by decrypting the token,
and issues a discharge macaroon using k as root key. A verifying party first checks the integrity of a state
token, decrypts it to obtain the root key k, and uses this key to verify the validity of the discharge macaroon.

Let E1 := (KeyGen1,Enc1,Dec1) be a CPA-secure symmetric-key encryption scheme, let E2 := (KeyGen2,
Enc2,Dec2) be a CCA2-secure public-key encryption scheme, let T := (KeyGenT ,Mac,VerifyT) be a message
authentication code, and letM = (KeyGenM, Issue,Extend,VerifyM) be a macaroon scheme. We define:

10

• SetupDischarge(1κ) : Output params := pk2 , skD := sk2, where (pk2, sk2)← KeyGen2(1κ).

• SetupToken(1κ) : Output skT := (sk1, k), where

sk1 ← KeyGen1(1
κ) , k ← KeyGenT (1κ)

• Token(skT) : Parse params = pk2, skT = (sk1, k) and output αS := (c1, σ) and αD := c2, where

r ← KeyGenM(1κ) , c1 ← Enc1(sk1, r) , c2 ← Enc2(pk2, r) , σ ← Mac(k, c1)

• Discharge(skD, αD) : Parse skD = sk2, αD = c2 and output β = (c2, t) where

r ← Dec2(sk2, c2) , µ← Issue(r, c2)

• Verify(skT, αS, µ) : Parse αD = (c1, σ) and skT = (sk1, k). Check that VerifyT (k, c1, σ) = 1. Let
r = Dec1(sk1, c1) and check that VerifyM(r, µ) = 1. Output 0 if either of the checks fail; otherwise
output 1.

Theorem 4.3. Let E1 := (KeyGen1,Enc1,Dec1) be a CPA-secure symmetric-key encryption scheme, let
E2 := (KeyGen2,Enc2,Dec2) be a CCA2-secure public-key encryption scheme, let T := (KeyGenT ,Mac,VerifyT)
be a message authentication code, and let M = (KeyGenM, Issue,Extend,VerifyM) be a macaroon scheme.
Then the above construction is a secure macaroon discharge protocol.

Need for CCA2-Secure PKE. We highlight the fact that the proof of Theorem 4.3 would not go
through if E2 is not CCA2-secure but only CPA (or even CCA1) secure. The reason for this is that we
need the encryption to be non-malleable. If an adversary were able to tamper with a ciphertext c2 and
obtain a ciphertext c′2 that encrypts a related plaintext, then he could submit c′2 as a discharge query and
obtain a macaroon under a related key. If the macaroon is implemented using a signature or MAC (as
proposed in Section 3), then the adversary obtains a signature or tag under a related key. In short, using an
encryption scheme that permits malleability could allow the adversary to mount a related-key attack against
the underlying signature or MAC scheme of the macaroon scheme. See, e.g [PSW12], for related-key attacks
on HMAC.

Using Symmetric-Key Encryption for E2. It is possible, and possibly preferable for efficiency
concerns, to have E2 be a symmetric-key encryption scheme instead of a public-key one. In this case, it is
possible to achieve the required CCA2-security by encrypting the plaintext using a CPA-secure symmetric-
key encryption scheme and concatenating a MAC tag of the ciphertext to the ciphertext. The new shared
key includes both the encryption key and the MAC key.

4.2 Construction 2

We now present a new construction of a discharge protocol based on MACs and a publicly-verifiable mac-
aroon scheme. In this construction, tokens are issued by first sampling a nonce r. The state token is a
MAC of r, and the discharge token in simply r. The third-party “authenticates” itself by presenting a valid
macaroon with r as key identifier.

Let T := (KeyGenT ,Mac,VerifyT) be a message authentication code, and letM = (KeyGenM, Issue,Extend,VerifyM)
be a publicly-verifiable macaroon scheme. We define:

• SetupDischarge(1κ) : Output params := vk and skD := sk, where (vk, sk)← KeyGenM(1κ).

• SetupToken(1κ) : Output skT := k ← KeyGenT (1κ).

• Token(skT) : Output αS := (r, σ) and αD := r, where

r ← {0, 1}κ , σ ← Mac(skT, r)

• Discharge(skD, αD) : Output µ← Issue(skD, r).

11

• Verify(skT, αS, µ) : Parse skT = (vk, k) and αS = (r, σ). Check that VerifyT (k, r, σ) = 1, µ’s key
identifier is r, and VerifyM(vk, µ) = 1. Output 0 if either of the checks fail; otherwise output 1.

Theorem 4.4. Let S := (KeyGenS ,Sign,VerifyS) be an EU-CMA-secure signature scheme, let T :=
(KeyGenT ,Mac,VerifyT) be a message authentication code, and let M = (KeyGenM, Issue,Extend,VerifyM)
be a macaroon scheme. Then the above construction is a secure macaroon discharge protocol.

5 Macaroon-Tree Protocols

In this section, we show how to combine macaroon schemes and discharge protocols to obtain macaroon-tree
protocols, which have the full functionality of macaroons described in [BPUE+14]. In particular, macaroons
can be issued, extended with a first-party caveat, extended with a third-party caveat, discharged, finalized,
and verified. The security definition of macaroon-tree protocols also follows directly from combining the
security definitions of macaroon schemes and discharge protocols.

Definition 5.1. A macaroon-tree protocol is a tuple of algorithms M = (Setup, Issue,Extend1stParty,
Extend3rdParty,Verify) with the following syntax:

• (params, skI, skD) ← Setup(1κ) : Given a security parameter κ, outputs public parameters params, an
issuing secret key skI and a discharge secret key skD. All other algorithms take params as argument,
even if not explicitly written.

• (k, µ, ek)← Issue(skI) : Given an issuing secret key skI, outputs a key k and a macaroon µ.

• (µ′, ek′)← Extend1stParty(ek, µ,m) : Given an extension key ek, a macaroon µ = (id | m1, . . . ,mn | σ)
and a message m ∈ {0, 1}∗, outputs a new macaroon µ′ := (id′ | m1, . . . ,mn,m | σ′) with key identifier
id′ such that id is a prefix of id′, and whose caveat list is the same as that of µ, with m appended at
the end. In particular, it should be easily determined if a macaroon µ′ is an extension of a macaroon
µ.

• (µ′, ek′, αD)← Extend3rdParty(ek, µ) : Given an extension key ek, a macaroon µ = (id | m1, . . . ,mn | σ)
and a message m ∈ {0, 1}∗, outputs a new macaroon µ′ := (id′ | m1, . . . ,mn,m | σ′) with key identifier
id′ such that id is a prefix of id′, and whose caveat list is the same as that of µ, with a new message
m appended at the end. In particular, it should be easily determined if a macaroon µ′ is an extension
of a macaroon µ. This algorithm also outputs a discharge token αD.

• µ′ ← Finalize(ek, µ) : Given an extension key ek and a macaroon µ = (id | m1, . . . ,mn | σ), outputs a
new macaroon µ′ = (id | m1, . . . ,mn | σ′) with the same key identifier and the same caveat list as µ.

• µ ← Discharge(skD, αD): Given a discharge token αD, outputs a macaroon µ. The key identifier of µ
must be αD.

• b := Verify (skI, µ,M = {µj}) : Given an issuing secret key skI, a macaroon µ, and a set of discharges
M = {µj}, outputs a bit b.

We require that these algorithms satisfy correctness. To state the correctness requirement, we first
define the algorithm (µ′, ek′, α) ← Extend(ek, µ,m) that first checks if m = λ, where λ is the empty string.
If it is, it outputs Extend3rdParty(ek, µ), otherwise it outputs Extend1stParty(ek, µ,m) and α = λ. The
correctness requirement is then stated as follows: if (params, skI, skD)← Setup(1κ), (k, µ0, ek0)← Issue(skI),
(µi, eki, αi) ← Extend(eki−1, µi−1,mi) for i ∈ [n], µfinal ← Finalize(ekn, µn), µj ← Discharge(skD, αj) for
every j such that µj = λ and M = {µj}, then Verify(skI, µfinal,M) = 1 with probability 1.

Definition 5.2. We say that a macaroon-tree protocol is secure if for all PPT adversaries A, the probability
that A wins in the following game is negligible in κ.

Setup: The challenger chooses (params, skI, skD)← Setup(1κ) and gives params to A. The challenger keeps
a tree of macaroons T , which has macaroon/extension key pairs as nodes and ids/caveats as edges. As
a general rule, a macaroon in T whose path from the root is (id, ~m) has the form (ĩd | ~m | σ) for some
signature σ and key identifier ĩd = id|| . . . that has id as prefix. Note that its caveats are exactly ~m.
The challenger initializes T to contain the empty string, λ, as root. The challenger also keeps track
of a set of discharges QD, which starts out empty.

12

Issue Queries: On the ith query, the challenger creates a macaroon (µ(i)
0 , ek

(i)
0) ← Issue(skI). It adds

(µ(i)
0 , ek

(i)
0) as a child of the root under an edge labeled with µ

(i)
0 ’s key identifier. All types of queries

can be interleaved.

Extend Queries: On the ith query, the adversary sends an identifier id(i), a tuple of caveats ~m(i), and a
message m(i) ∈ {0, 1}∗∪λ to the challenger, where λ is the empty string. If (id(i), ~m(i)) is a valid path
in T leading to a node (µ, ek), then the challenger computes (µ(i), ek(i), α

(i)
D)← Extend(ek, µ,m(i)), and

adds (µ(i), ek(i), α
(i)
D) to T as a child of (µ, ek) under an edge labeled with m(i). Here, Extend(ek, µ,m) is

defined as follows: If m = λ, it outputs Extend3rdParty(ek, µ), otherwise it outputs Extend1stParty(ek, µ,m)
and α = λ. All types of queries can be interleaved.

Discharge Queries: On the ith query, the adversary A sends a token α
(i)∗
D to the challenger, who runs

µ(i) ← Discharge(skD, α
(i)∗
D) and returns µ(i) to A. The challenger also adds (α(i)∗

D , µ(i)) to QD. All
types of queries can be interleaved.

Macaroon Queries: On the ith query, the adversary sends an identifier id(i) and a tuple of caveats ~m(i)

to the challenger. If (id(i), ~m(i)) is a valid path in T leading to a node (µ, ek), then the challenger
returns (µ, ek) to the adversary. All types of queries can be interleaved.

Winning condition: The adversary A outputs a macaroon µ∗ and a set of discharges M∗ =
{
µ∗j

}
. He

wins if Verify(skI, µ
∗,M∗) = 1 and either (1). µ∗ is not an extension of a macaroon given to A in a

macaroon query, or (2). µ∗ is an extension of a macaroon µ given to A in a macaroon query, and there
exists a macaroon m∗

j ∈M∗ corresponding to a third-party caveat 3||cj ||α(j)
S ||α

(j)
D in µ such that µ∗j is

not an extension of any macaroon µ′ such that (α(j)
D , µ′) ∈ QD. In other words, A wins if it outputs a

valid macaroon that is not an extension of a macaroon revealed to A in a macaroon query, or if µ∗ is
an extension of a macaroon µ revealed to A in a macaroon query and there is a discharge macaroon
in M∗ that corresponds to a third-party caveat in µ and that is not an extension of a macaroon that
was the output of a discharge query for that caveat.

5.1 Construction

We describe a construction of a macaroon-tree protocol that “glues” together a macaroon scheme and a
discharge protocol using symmetric-key and public-key encryption, and a message authentication code. The
symmetric-key encryption and the MAC are used to create the key identifier of a macaroon; in other words,
the key identifier of a macaroon is a symmetric-key encryption of the root key k, together with a tag of
this ciphertext. Finally, the public-key encryption is used to encrypt the token issuing key of the discharge
protocol under the verifying party’s public key. We note that this encryption can be removed in certain
cases and will discuss this optimization later in this section.

Let E1 = (KeyGen1,Enc1,Dec1) be a CPA-secure symmetric-key encryption scheme, let E2 = (KeyGen2,
Enc2,Dec2) be a CPA-secure public-key encryption scheme, let T = (KeyGenT ,MacT ,VerifyT) be a message
authentication code, let M = (KeyGenM, IssueM,ExtendM,FinalizeM,VerifyM) be a macaroon scheme, let
D = (SetupDischargeD,SetupTokenD,TokenD,DischargeD,VerifyD) be a macaroon discharge protocol. We
define:

• Setup(1κ): Output (params, skI, skD), where:

(paramsD, skD)← SetupDischargeD(1κ) , sk1 ← KeyGen1(1
κ) , (pk2, sk2)← KeyGen2(1

κ)

kT ← KeyGen(1κ) , skI := (sk1, sk2, kT) , params := (paramsD, pk2)

• Issue(skI): Parse skI = (sk1, sk2). Output (k, µ, ek), where:

k ← KeyGenM(1κ) , c← Enc(sk1, k) , σ ← Mac(kT , c) , id := c||σ , (µ, ek)← IssueM(k, id)

• Extend1stParty(ek, µ,m): Output (µ′, ek′)← ExtendM(ek, µ, 1||m).

13

• Extend3rdParty(ek, µ): Output (µ′, ek′, αD), where:

skT ← SetupTokenD(1κ) , c← Enc2(pk2, skT) , (αS, αD)← TokenD(skT)

(µ′, ek′)← ExtendM(ek, µ, 3||c||αS||αD)

• µ′ ← Finalize(ek, µ) : Output FinalizeM(ek, µ).

• Discharge(skD, αD): Output µ← DischargeD(skD, αD).

• b := Verify (skI, µ,M = {µj}): Parse skI = (sk1, sk2) and µ := (ĩd | m1, . . . ,mn | σ) and ĩd = c||σ||
Check that Verify(kT , c, σ) = 1 and if so, compute k := Dec(sk1, id) and verify that VerifyM(k, µ) = 1.
For every third-party caveat mi in µ (ie. every caveat prefixed with 3), parse mi := 3||ci||α(i)

S ||α
(i)
D

and compute sk
(i)
T := Dec(sk2, ci). Finally, verify that there exists µj ∈ M with key identifier α

(i)
D ,

and verify that VerifyD(sk(i)
T , α

(i)
S , µj) = 1.

Theorem 5.3. Let E1 = (KeyGen1,Enc1,Dec1) be a CPA-secure symmetric-key encryption scheme, let E2 =
(KeyGen2,Enc2,Dec2) be a CPA-secure public-key encryption scheme, letM = (KeyGenM, IssueM,ExtendM,
VerifyM) be a macaroon scheme, let D = (SetupDischargeD,SetupTokenD,TokenD,DischargeD,VerifyD) be a
macaroon discharge protocol. Then the above construction is a secure macaroon-tree protocol.

Optimization. If the macaroon scheme has pseudorandom extension keys, as is the case in the first
macaroon-scheme construction (see Section 3.1.1), then in the algorithm Extend3rdParty, instead of sampling
and encrypting skT, it possible to use a (strong) computational extractor or a KDF to expand the extension
key into randomness to run SetupTokenD, as well as a new pseudorandom extension key ek′ to use when
running ExtendM. This allows Verify to recover skT and ek′ when verifying the validity of a macaroon, and
does not require the expensive encryption step.

Acknowledgements

We are very grateful to Úlfar Erlingsson for valuable discussions about the definitions and constructions.
We also thank Tyler Close, Edward Knapp, and Yevgeniy Dodis for helpful discussions and feedback.

References

[BCK96] Mihir Bellare, Ran Canetti, and Hugo Krawczyk. Pseudorandom functions revisited: The
cascade construction and its concrete security. In Proceedings of the 37th Symposium on Foun-
dations of Computer Science, IEEE, pages 514–523. IEEE, 1996.

[BPUE+14] Arnar Birgisson, Joe Politz, Úlfar Erlingsson, Ankur Taly, Michael Vrable, and Mark Lentczner.
Macaroons: Cookies with contextual caveats for decentralized authorization in the cloud. In
21th Annual Network and Distributed System Security Symposium (NDSS), 2014.

[PSW12] Thomas Peyrin, Yu Sasaki, and Lei Wang. Generic related-key attacks for hmac. In ASI-
ACRYPT, volume 7658, pages 580–597. Springer, 2012.

A Proof of Theorem 3.4: Security of SK Macaroons, Construc-
tion 1

Proof. We use a series-of-games argument to show the security of the public-key macaroon scheme con-
struction. In all games, the setup phase is the same: the challenger runs k ← KeyGen(1κ).

We let pi be the probability that A wins in Game i. For simplicity, we do not write extension keys since
these are always the same as the corresponding signature.

Game 0: Let Game 0 be the original security game from Definition 3.3. In this game, we have:

14

Issue Queries: On the ith query, A gives id(i) to the challenger who adds µ
(i)
0 to T , where:

σ(i) ← F (k, id(i)) , µ
(i)
0 = (id(i) | | σ(i))

Extend Queries: On the ith query, A gives id(i), ~m(i),m(i) to the challenger, who checks that
(id(i), ~m(i)) is a valid path in T leading to a macaroon µ := (id(i) | ~m(i) | σ). If it is, it adds µ(i)

to T as a child of µ with edge m(i), where:

σ(i) ← F (σ,m(i)) , µ(i) := (id(i) | ~m(i),m(i) | σ(i))

Macaroon Queries: On the ith query, A gives id(i), ~m(i) to the challenger, who checks that (id(i), ~m(i))
is a valid path in T leading to a macaroon µ := (id(i) | ~m(i) | σ). If it is, it sends µ to the adversary.

Winning Condition: The adversary A outputs a macaroon µ∗ = (id∗ | m∗
1, . . . ,m

∗
n | σ∗). He wins if

σ∗ = F ∗(k, id∗,m∗
1, . . . ,m

∗
n) and µ∗ is not an extension of a macaroon given to A in a macaroon

query. Such a µ∗ we call a valid macaroon forgery.

Game 1: In Game 1, we change how the challenger answers macaroon queries. At the beginning of the
game, the challenger chooses a random function f . It receives issue and extend queries from A and
builds T but does not compute the signatures immediately. When it receives a macaroon query id, ~m,
it checks if there exists a revealed macaroon µ′ ∈ T whose path from the root is id, ~m′ and ~m′ is a
prefix of ~m. Or in other words, it checks if any of the ancestors of the macaroon corresponding to
id, ~m in T have been revealed to A in a macaroon query. If no ancestor has been revealed, then the
challenger computes σ = f(id, ~m) . If an ancestor µ := (id | ~m′ | σ′) has already been revealed, then
the challenger computes the new signature as an extension of σ′, that is, it outputs µ := (id, ~m, σ)
where σ = F ∗(σ′,mi+1, . . . ,mn) and ~m := (m1, . . . ,mn) and ~m′ := (m1, . . . ,mi). The adversary wins
if σ∗ = f(id∗, ~m∗). Note that f can be simulated efficiently by independently sampling a uniformly
random value in {0, 1}n every time the function is evaluated on a new point.
We claim that |p0 − p1| = negl(κ) by the pseudorandomness of F ∗ (see Theorem 2.3). The reduction
behaves the same as the challenger in Game 1, except that when it receives a macaroon query and no
ancestor has been revealed, it queries its oracle at point (id, ~m) to obtain σ. In the case that the oracle
function is F ∗, the reduction perfectly simulates Game 0, and if the oracle function is random, then
the reduction perfectly simulates Game 1. Therefore, |p0 − p1| = negl(κ) by the pseudorandomness
of F ∗. Notice that this is only true since we assume that an adversary will never ask to reveal a
macaroon that is an ancestor of a macaroon that has already been revealed. This guarantees that the
reduction’s query set is prefix-free.

A Can’t Win: We argue that p1 = negl(κ). Since f is a truly random function, then f(id∗, ~m∗) is uniformly
random in {0, 1}n, and therefore p1 = 2−n = negl(κ).

We conclude that p0 ≤ |p0 − p1|+ p1 = negl(κ).

B Proof of Theorem 3.5: Security of SK Macaroons, Construc-
tion 2

Proof. We use a series-of-games argument to show the security of the public-key macaroon scheme con-
struction. In all games, the setup phase is the same: the challenger runs k ← KeyGen(1κ) and obtains
k := (vkS , pkE , skS , skE) where (vkS , skS)← KeyGenS(1κ) and (pkE , skE)← KeyGenE(1κ).

We let pi be the probability that A wins in Game i. For simplicity, we do not write extension keys since
these are always λ, the empty string.

Game 0: Let Game 0 be the original security game from Definition 3.3. In this game, we have:

Issue Queries: On the ith query, A gives id(i) to the challenger who adds µ
(i)
0 to T , where:

ĩd
(i)

:= id(i)||pkE , σ(i) ← Sign(skS , ĩd
(i)

) , µ
(i)
0 = (ĩd

(i)
| | σ(i))

15

Extend Queries: On the ith query, A gives id(i), ~m(i),m(i) to the challenger, who checks that
(id(i), ~m(i)) is a valid path in T leading to a macaroon µ := (ĩd | ~m(i) | σ). If it is, it adds
µ(i) to T as a child of µ with edge m(i), where:

(vk(i), sk(i))← KeyGenS(1κ) , c(i) := Enc(pkE , σ) , ĩd
(i)

:= ĩd||(vk(i), c(i))

σ(i) ← Sign(sk(i), vk(i)||c(i)||m(i)) , µ(i) := (ĩd
(i)
| ~m(i),m(i) | σ(i))

Macaroon Queries: On the ith query, A gives id(i), ~m(i) to the challenger, who checks that (id(i), ~m(i))
is a valid path in T leading to a macaroon µ := (ĩd | ~m(i) | σ). If it is, it sends µ to the adversary.

Winning Condition: The adversary A outputs a macaroon µ∗ = (ĩd
∗
| m∗

1, . . . ,m
∗
n | σ∗). He wins

if Verify(k, µ∗) = 1 and µ∗ is not an extension of a macaroon given to A in a macaroon query.
Such a µ∗ we call a valid macaroon forgery. In more detail, it must be the case that, ĩd

∗
=

id∗||pkE ||(vk
∗
1, c

∗
1)|| . . . ||(vk

∗
n, c∗n) and Verify(vkS , id||pkE , σ0) = 1 and Verify(vk∗i , vk

∗
i ||c∗i ||m∗

i , σ
∗
i) =

1 for i = 1, . . . , n, where: σ∗i := Dec(skE , c∗i+1) for i = 0, . . . , n− 1 and σ∗n := σ∗.

Game 1: In Game 1, we change the winning condition so that A wins only if id∗ = id(i) for some id(i)

given by A in an issuing query. This guarantees that µ∗ is in T or is an extension of some macaroon
in T .
We argue that |p0 − p1| = negl(κ) by the security of the signature scheme S under keys (vkS , skS).
Let ε be the probability that A outputs a valid macaroon forgery and id∗ 6= id(i) for all id(i) given
by A in an issuing query. Then |p0 − p1| = ε since the games are equivalent otherwise. We argue
that ε = negl(κ) by the security of S. The reduction receives the verification key from the signature
challenger and uses it as vkS . It computes (pkE , skE) ← KeyGenE(1κ) on its own. When A asks
for an issuing query id(i), the reduction answers it by querying the signature oracle on id(i)||pkE .
The reduction answers extend and macaroon queries by computing everything as specified. When
A outputs a forgery µ∗ := (ĩd

∗
| m∗

1, . . . ,m
∗
n | σ∗), it parses ĩd

∗
= id∗||pk∗E ||(vk

∗
1, c

∗
1)|| . . ., decrypts

σ := Dec(skE , c∗1) and submits σ as a signature forgery for message id∗||pkE . We argue that the
probability that the reduction outputs a valid forgery is at least ε. The reduction’s forgery is valid
only if A outputs a macaroon µ∗ such that σ := Dec(skE , c∗1) is a valid signature for id∗||pkE , and
id∗||pkE was not queried to the signing oracle. But note that µ∗ is valid only if σ is a valid signature
for id∗||pkE since this is part of the macaroon’s verification. Furthermore, if id∗ 6= id(i) for all issuing
queries, then id∗||pkE is never queried to the signing oracle. Therefore, by the security of S, we must
have ε = negl(κ).

Game 2 : Let qI be an upper bound on the number of issuing queries that A makes, and let qE be an
upper bound on the number of extension queries that it makes. In Game 2, the challenger picks a
uniformly random index t ∈ {1, . . . , qI + qE}. This number identifies a unique macaroon µch := (ĩdch |
~mch | σch) ∈ T : if t ≤ qI, then t corresponds to the node created in the tth issue query. If t > qI, then
t corresponds to the node created in the (t− qI)th extension query. We change the winning condition
so that A only wins if ĩdch = id∗|| . . . and µch is the last macaroon in T whose caveat list, ~mch, is a
prefix of ~m∗. In other words, A only wins if ~mch is a prefix of ~m∗ and there does not exist another
macaroon µ := (ĩd | ~m | σ) ∈ T such that ĩd = id∗|| . . . and ~m is a longer prefix of ~m∗.
We argue that p2 = p1/(qE + qI). If A outputs a valid forgery µ∗ = (id∗|| . . . | ~m∗ | σ∗), then there is a
unique macaroon µ := (ĩd | ~m | σ) ∈ T such that ĩd = id∗|| . . . and ~m is the longest prefix of ~m∗ in any
macaroon in T . Since t was sampled uniformly at random, the probability that µch = µ is 1/(qE + qI).

Game 3.i for i ∈ 1, . . . , qE: Let qE and µch be as in Game 2. In Game 3.i we change how the challenger
answers the ith extension query that extends µch. Since qE is an upper bound on the number of
extension queries, in particular it is an upper bound on the number of extensions of µch. On the ith
extension to µch, instead of encrypting σch, the challenger encrypts 0.

Extend Queries: Upon receiving ĩdch, ~mch,m
(i), the challenger adds µ(i) to T as a child of µch with

edge m(i), where:

(vk(i), sk(i))← KeyGenS(1κ) , c(i) ← Enc(pkE , 0) , ĩd
(i)

:= ĩdch||(vk(i), c(i))

16

σ(i) ← Sign(sk(i), vk(i)||c(i)||m(i)) , µ(i) := (ĩd
(i)
| ~mch,m

(i) | σ(i))

For simplicity let Game 3.0 be Game 2. We argue that
∣∣p3.(i−1) − p3.i

∣∣ = negl(κ) for all i ∈ 1, . . . , qE

by the CPA-security of E . The reduction receives pk from the CPA-challenger and uses it as pkE . It
samples (vkS , skS) ← KeyGenS(1κ) on its own. It answers issue queries using skS to sign. It answers
the jth extension query as follows: if j < i, it lets c(j) ← Enc(pkE , σ). For the ith query, it sends
m0 = σ,m1 = 0 to the CPA challenger, and receives a challenge ciphertext c∗ ← Enc(pkE ,mb).
It lets c(i) = c∗. Finally, if j > i, it lets c(j) ← Enc(pkE , 0). The challenger answers macaroon
queries as specified. If b = 0, the reduction correctly simultes Game 3.(i − 1), whereas if b = 1,
the reduction correctly simulates Game 3.i. Therefore, by the CPA-security of E , we must have∣∣p3.(i−1) − p3.i

∣∣ = negl(κ).

A Can’t Win: We argue that p3 = negl(κ) by the security of signature scheme S. Let ĩd
∗

= id∗||pkE ||
(vk1, c1)|| . . . ||(vkn, cn), and let j be such that idch = id∗||pkE ||(vk1, c1)|| . . . ||(vkj , cj), or let j = 0 if
idch = id∗||pkE (in this case, define vk0 = vkS). We know such a j exists by the definition of µch. In the
reduction, the challenger will receive vk from the signing challenger, and use vkj = vk. It computes
(pkE , skE) ← KeyGenE(1κ) on its own. When A asks for an issuing query or extension query that
does not involve signing with skj (the corresponding secret key to vkj), the challenger answers them
accordingly. If a query involves signing a message with skj , then the challenger uses the signing oracle
to compute the signature. However, the challenger never computes σch. This means that the reduction
never queries the signing oracle on id||pkE if j = 0 or on vkj ||cj ||mj if j > 0. This is possible since all
extensions of µch encrypt 0 instead of σch, and if the adversary wins the game, then σch is never revealed
in a macaroon query. When A outputs its forgery, the reduction computes σj = Dec(skE , cj+1), and
outputs σj as its forgery. If A wins, then σj must be a valid signature under vkj for id||pkE if j = 0 or
for vkj ||cj ||mj if j > 0 since this check is part of the verification algorithm. Since the signing oracle
was never queried by the reduction on that message, σj is also a valid signature forgery. Therefore,
by the security of S, we must have p3 = negl(κ).

We wish to prove that p0 = negl(κ). We know that |p0 − p1| = negl(κ), p1 = (qI + qE) · p2, |p2 − p3| =
negl(κ), and p3 = negl(κ). Putting it all together, we have:

|p0 − p1|+ (qI + qE) · |p2 − p3| ≥ (p0 − p1) + (qI + qE) · (p2 − p3) = p0 − (qI + qE) · p3

Since qI and qE are number of queries made by A and A runs in polynomial time, we must have that
(qI + qE) = poly(κ). We can therefore conclude that

p0 ≤ |p0 − p1|+ (qI + qE) · |p2 − p3|+ (qI + qE) · p5 = negl(κ),

as required.

C Proof of Theorem 3.7: Security of PK Macaroons

Proof. We use a series-of-games argument to show the security of the macaroon discharge protocol con-
struction. In all games, the setup phase is the same: the challenger runs (params, skI , skD) ← Setup(1κ)
and gives params to A. We let pi be the probability that A wins in Game i.

Game 0: Let Game 0 be the original game from the definition of security of public-key macaroons (anal-
ogous to Definition 4.2).

Game 1 : Let qI be an upper bound on the number of issuing queries that A makes, and let qE be an
upper bound on the number of extension queries that it makes. In Game 1, the challenger picks a
uniformly random index t ∈ {1, . . . , qI + qE}. This number identifies a unique macaroon µch := (ĩdch |
~mch | σch) ∈ T : if t ≤ qI, then t corresponds to the node created in the tth issue query. If t > qI,
then t corresponds to the node created in the (t − qI)th extension query. We change the winning
condition so that in addition, A only wins if ĩdch = id||vk1, . . . , vki is the longest prefix in T of ĩd

∗
.

17

This means ĩd
∗

= id||vk1|| . . . , vki, vk
∗
i+1, . . . vk

∗
n, vk∗n+1, and there does not exist another macaroon

µ := (ĩd | ~m | σ) ∈ T such that ĩd is a longer prefix of ĩd
∗
.

We argue that p1 = p0/(qE + qI). If A outputs a valid forgery µ∗ = (id∗|| . . . | ~m∗ | σ∗), then there is
a unique macaroon µ := (ĩd | ~m | σ) ∈ T such that ĩd the longest prefix of ĩd

∗
in any macaroon in T .

Since t was sampled uniformly at random, the probability that µch = µ is 1/(qE + qI).

Game 2: We change the winning condition so that A only wins if ĩd
∗

= ĩdch. Let ε be the probability that
i < n. Then |p1 − p2| = ε since the games are equivalent otherwise. We argue that ε = negl(κ) by the
security of S under verification key vki. The reduction receives the verification key from the signature
challenger and uses it as vki. The reduction answers issue, extension, and macaroon queries as specified,
except when extending µch. In this case, it samples a key pair vk(j), sk(j) as usual, and uses the signing
oracle to compute the signature ν(j) on vk(j). When the adversary outputs a macaroon forgery
µ∗ = (ĩd

∗
| ~m∗ | σ∗), it parses ĩd

∗
= id||vk1|| . . . , vki, vk

∗
i+1, . . . vk

∗
n and σ = (ν∗0 , τ∗0)|| . . . (ν∗i , τ∗i)|| . . .

and outputs ν∗i as a signature forgery of vk∗i+1. If µ∗ is a valid macaroon forgery, then ν∗i is a valid
signature since the macaroon verification checks this. Moreover, since µch is the macaroon with the
largest prefix, then vk∗i+1 6= vk(j) for all j and therefore vk∗i+1 was never queried to the signature oracle.
We thus conclude that ε = negl(κ).

Game 3: Let µch = (id|| . . . | ~m | σ). In Game 3, we change the winning condition so that when A submits
a forgery µ∗ := (ĩd

∗
| ~m∗ | σ∗), it wins only if ĩd

∗
= id∗|| . . . and (id∗, ~m∗) = (id, ~m). In other words,

the key identifier and the caveats of the adversary’s forgery must match those of µch.
Let i be the last index at which (id∗, ~m∗) and (id, ~m) are the same (if id∗ 6= id then i = 0). Let ε be the
probability that i < n. Then |p1 − p2| = ε since the games are equivalent otherwise. We argue that
ε = negl(κ) by the security of the signature scheme S under key vki+1. The reduction answers issue,
extend, and macaroon queries as usual, except when extending µch. In this case, instead of sampling a
new key pair, it queries the signature oracle. When A outputs a forgery µ∗ := (ĩd

∗
| m∗

1, . . . ,m
∗
n | σ∗),

the reduction parses σ∗ = (ν∗0 , τ∗0)|| . . . (ν∗i+1, τ
∗
i+1)|| . . ., and outputs τ∗i+1 as a signature forgery for

message m∗
i+1.

The reduction’s forgery is valid only if A outputs a macaroon µ∗ such that τ∗i+1 is a valid signature for
m∗

i+1, and m∗
i+1 was not queried to the signing oracle. Note that if µ∗ is valid then the first condition

is satisfied since this is part of the macaroon’s verification. Furthermore, if m∗
i+1 6= mi+1 then m∗

i+1

is never queried to the signing oracle. Therefore, by the security of S, we must have ε = negl(κ).

A Can’t Win: We argue that A can’t win by the security of S under verification key vkn+1. The reduction
uses the verification key from the signature challenger as vkn+1, and answers issue, extend, and
macaroon queries as usual, using the signing oracle when needed. When A outputs a forgery µ∗ :=
(ĩd

∗
| m∗

1, . . . ,m
∗
n | σ∗), the reduction parses ĩd

∗
= id∗|| . . . and σ∗ = (ν∗0 , τ∗0)|| . . . ||σfinal, and outputs

σfinal as a signature forgery for message id∗.
The reduction’s forgery is valid only if A outputs a macaroon µ∗ such that σfinal is a valid signature
for id∗, and id∗ was not queried to the signing oracle. Note that if µ∗ is valid then the first condition
is satisfied since this is part of the macaroon’s verification. Furthermore, the challenger never extends
a macaroon with a caveat equal to its key identifier, so the reduction never queried id∗ to the signing
oracle. Therefore, by the security of S, we must have ε = negl(κ).

D Proof of Theorem 4.3: Security of Discharge Protocol, Con-
struction 1

Proof. We use a series-of-games argument to show the security of the macaroon discharge protocol con-
struction. In all games, the setup phase is the same: the challenger runs (params, skD)← SetupDischarge(1κ)
and skT ← SetupToken(1κ) and gives params to A. We let pi be the probability that A wins in Game i.

Game 0: Let Game 0 be the original game from Definition 4.2. In this game, we have:

18

Token Queries: On the ith query, A receives α
(i)
S := (c(i)

1 , σ(i)), and α
(i)
D := c

(i)
2 , where

r(i) ← KeyGenM(1κ) , c
(i)
1 ← Enc1(sk1, r

(i)) , σ(i) ← Mac(k, c
(i)
1), , c

(i)
2 ← Enc2(pk2, r

(i))

Discharge Queries: On the ith query α
(i)∗
D = c

(i)∗
2 , A receives µ(i), where

r(i) ← Dec2(sk2, c
(i)∗
2) , µ(i) ← IssueM(r(i), c

(i)∗
2)

Winning Condition: A wins if it produces a token α∗S = (c∗1, σ
∗) and a macaroon µ∗ such that

Verify(r∗, µ∗) = 1 where r∗ = Dec1(sk1, c
∗
1), and µ∗ is not an extension of any macaroon µ such

that (α∗D, µ) ∈ QD, where α∗D corresponds to α∗S in QT. In other words, A wins if it outputs a
valid macaroon that is not an extension of a macaroon that was the output of a discharge query
with a discharge token corresponding to α∗S.

Game 1: Let qT be an upper bound on the number of issuing queries that A makes. In Game 1, the
challenger remembers each r(i) that it samples in an issuing query, and we change the winning condition
so that A only wins if µ∗ is a valid macaroon under key r(i) for some i ∈ {1, . . . , qT}. In other words,
A only wins if it produces a valid macaroon under a key that the challenger sampled in a token query.

Winning Condition: A wins if it outputs (α∗S, µ
∗) such that Verify(r(i), µ∗) = 1 for some i ∈

{1, . . . , qT} and µ∗ is not an extension of any macaroon µ such that (α∗D, µ) ∈ QD, where α∗D
corresponds to α∗S in QT.

We argue that |p0 − p1| = negl(κ) by the security of the MAC T . Consider the probability ε that A
outputs a valid forgery that contains c∗1 6= c

(i)
1 for all i ∈ {1, . . . , qT}, or in other words, that c∗1 is a

ciphertext that was not given to A as a response to an token query. It is easy to see that |p0 − p1| = ε

since by correctness of decryption of E1, the games are equivalent if c∗1 = c
(i)
1 for some i ∈ {1, . . . , qT}.

By the security of the MAC T , we must have ε = negl(κ). The reduction samples sk1, pk2, sk2, answers
token queries by computing c

(i)
1 and c

(i)
2 on its own and using the MAC tagging oracle to obtain σ(i).

It answers discharge queries using sk2, and given A’s forgery (c∗1, σ
∗, µ∗), it outputs c∗1, σ

∗. Since this
simulates A’s view perfectly, the reduction produces a tag on a new message with probability ε.

Game 2: In Game 2, the challenger chooses an index ich ∈ {1, . . . , qT} uniformly at random. We change
the winning condition so that A only wins if µ∗ is a valid macaroon under key r(ich).

Winning Condition: The challenger picks ich ∈ {1, . . . , qT} uniformly at random. A wins if it
outputs (α∗S, µ

∗) such that Verify(r(ich), µ∗) = 1 and µ∗ is not an extension of any macaroon µ
such that (α∗S, µ) ∈ QD. In other words, A wins if it outputs a valid macaroon under rich that is
not an extension of a macaroon that was the output of a discharge query with token α∗S.

Since ich is chosen uniformly at random, we have that p2 = p1/qT.

Game 3: In Game 3, we change how the ichth token query is answered by the challenger. In particular,
c
(ich)
1 will now be an encryption of 0 instead of an encryption of r(ich).

ichth Token Query: On the ichth query, A receives α
(ich)
S := (c(ich)

1 , σ(ich)), and α
(ich)
D := c

(ich)
2 , where

r(ich) ← KeyGenM(1κ) , c
(ich)
1 ← Enc1(sk1, 0) , σ ← Mac(k, c

(ich)
1), , c

(ich)
2 ← Enc2(pk2, r

(ich))

We argue that |p2 − p3| = negl(κ) by the CPA-security of E1. The reduction samples pk2, sk2, k and
chooses a random ich ∈ {1, . . . , qT}. It answers the ith token query as follows: if i 6= ich, it generates
r(i) and obtains c

(i)
1 from the encryption oracle. It computes σ(i), c

(i)
2 on its own. On the ichth token

query, the reduction gives m0 = rich and m1 = 0 to the CPA-challenger as the challenge plaintexts.
It obtains a challenge ciphertext Enc1(sk1,mb) in return, which it uses as c

(ich)
1 . It then computes

σ(ich), c
(ich)
2 on its own. The reduction answers discharge queries as usual, decrypting with sk2.

If b = 0, then the reduction perfectly simulates Game 2 and if b = 1, the reduction perfectly simulates
Game 1. Therefore, we conclude that |p2 − p3| = negl(κ) by the CPA-security of E1.

19

Game 4: In Game 4, we change how we answer discharge queries. More specifically, the challenger checks
if c

(i)∗
2 = c

(ich)
2 , or in other words, if the query ciphertext is the same as the c2 ciphertext given as a

response to the ichth token query. If c
(i)∗
2 6= c

(ich)
2 , then the discharge query is answered as usual, but

if c
(i)∗
2 = c

(ich)
2 , then the challenger issues a macaroon under key r(ich).

Games 3 and 4 are identically distributed by the correctness of decryption of E2. Thus, p3 = p4.

Game 5: In Game 5, we again change how the ichth token query is answered by the challenger. In
particular, c

(ich)
2 will now be an encryption of 0 instead of an encryption of r(ich).

ichth Token Query: On the ichth query, A receives α
(ich)
S := (c(ich)

1 , σ(ich)), and α
(ich)
D := c

(ich)
2 , where

r(ich) ← KeyGenM(1κ) , c
(ich)
1 ← Enc1(sk1, 0) , σ ← Mac(k, c

(ich)
1), , c

(ich)
2 ← Enc2(pk2, 0)

We argue that |p4 − p5| = negl(κ) by the CCA2-security of E2. The reduction obtains pk2 from the
CCA2-challenger, and samples sk1 and k. To answer the ith token query, it computes c

(i)
1 , σ on its own.

If i 6= ich, it also computes c
(i)
2 . On the other hand, if i = ich, then it sends m0 = r(ich),m1 = 0 to the

CCA-challenger as the challenge plaintexts. It obtains a challenge ciphertext Enc(pk2,mb), which it
uses as c

(i)
2 . It answers discharge queries as follows: If c

(i)∗
2 6= c

(ich)
2 , then it gives c

(i)∗
2 to the decryption

oracle and uses the plaintext it receives back as the key to issue the macaroon. If c
(i)∗
2 = c

(ich)
2 , then

the challenger simply issues the macaroon under key r(ich). Note that this guarantees that we never
query the decryption oracle with the challenge ciphertext.
If b = 0, then the reduction perfectly simulates Game 4 and if b = 1, the reduction perfectly simulates
Game 5. Therefore, we conclude that |p4 − p5| = negl(κ) by the CCA2-security of E2.

A Can’t Win: We argue that p5 = negl(κ) by the security of the macaroon scheme M. The reduction
samples sk1, sk2, pk2, k. It answers token queries by computing c

(i)
1 , c

(i)
2 , σ(i) on its own. Note that this

does not require encrypting r(ich). It answers discharge queries as follows: If c
(i)∗
2 6= c

(ich)
2 , it answers

the query as usual: decrypts c
(i)∗
2 and creates a macaroon using the plaintext. But if c

(i)∗
2 = c

(ich)
2 , it

calls the issuing oracle with c
(ich)
2 and the asks for it with a macaroon query. Finally, when A outputs

α∗S, µ
∗, it outputs µ∗ as its forgery. If A wins, then µ∗ is a valid macaroon under r(ich) and is not

an extension of a macaroon µ such that (α∗S, µ) ∈ QD. In particular, this means that it is not an
extension of a macaroon given to the reduction as a macaroon query. Therefore, the probability that
the reduction gives a valid forgery is exactly p5 since it simulated Game 5 perfectly for A. By the
security of the macaroon scheme M, we conclude p5 = negl(κ).

We wish to prove that p0 = negl(κ). We know that |p0 − p1| = negl(κ), p1 = qT · p2, |p2 − p3| = negl(κ),
p3 = p4, |p4 − p5| = negl(κ), and p5 = negl(κ). Putting it all together, we have:

|p0 − p1|+ qT · |p2 − p3|+ qT · |p4 − p5| ≥ (p0 − p1) + qT · (p2 − p3) + qT · (p4 − p5) = p0 − qT · p5

Since qT is the number of queries that A makes and A runs in polynomial time, we must have that
qT = poly(κ). We can therefore conclude that

p0 ≤ |p0 − p1|+ qT · |p2 − p3|+ qT · |p4 − p5|+ qT · p5 = negl(κ),

as required.

E Proof of Theorem 4.4: Security of Discharge Protocol, Con-
struction 2

Proof. We use a series-of-games argument to show the security of the macaroon discharge protocol con-
struction. In all games, the setup phase is the same: the challenger runs (params, skD)← SetupDischarge(1κ)
and skT ← SetupToken(1κ) and gives params to A. We let pi be the probability that A wins in Game i.

Game 0: Let Game 0 be the original game from Definition 4.2. In this game, we have:

20

Token Queries: On the ith query, A receives α
(i)
S := (r(i), σ(i)), and α

(i)
D := r(i), where

r(i) ← {0, 1}κ , σ(i) ← Mac(k, r(i))

Discharge Queries: On the ith query α
(i)∗
D = r(i)∗, A receives µ(i), where

µ(i) ← IssueM(skD, r(i)∗)

Winning Condition: A wins if it produces a token α∗S = (r∗, σ∗) and a macaroon µ∗ such that
Verify(vk, µ∗) = 1, µ∗’s key identifier is r∗, and µ∗ is not an extension of any macaroon µ that
was given to A as a discharge query with token r∗.

Game 1: Let qT be an upper bound on the number of issuing queries that A makes. In Game 1, the
challenger remembers each r(i) that it samples in a token query, and we change the winning condition
so that A only wins if r∗ = r(i) for some i ∈ {1, . . . , qT}. In other words, A only wins if it produces a
valid discharge macaroon for a token it received from a token query.

Winning Condition: A wins if it outputs (α∗S, µ
∗) such that Verify(vk, µ∗) = 1, µ∗ key identifier is

r∗, r∗ = r(i) for some i ∈ {1, . . . , qT}, and µ∗ is not an extension of any macaroon µ that was
given to A as a discharge query with token r∗.

We argue that |p0 − p1| = negl(κ) by the security of the MAC T . Consider the probability ε that A
outputs a valid forgery that contains r∗ 6= r(i) for all i ∈ {1, . . . , qT}, or in other words, that r∗ was
not given to A as a response to an token query. It is easy to see that |p0 − p1| = ε since the games
are equivalent otherwise. By the security of the MAC T , we must have ε = negl(κ). The reduction
samples (vk, sk) on its own, answers token queries by computing sampling random r(i) and using
the MAC tagging oracle to compute σ(i). It answers discharge queries using sk. Given A’s forgery
(r∗, σ∗, µ∗), it outputs σ∗ and its forgery on message r∗. Since this simulates A’s view perfectly, the
reduction produces a tag on a new message with probability ε.

Game 2: In Game 2, the challenger chooses an index ich ∈ {1, . . . , qT} uniformly at random. We change
the winning condition so that A only wins if r∗ = r(ich).

Winning Condition: A wins if it outputs (α∗S, µ
∗) such that Verify(vk, µ∗) = 1, µ∗ key identifier is

r∗, r∗ = r(ich), and µ∗ is not an extension of any macaroon µ that was given to A as a discharge
query with token r∗.

Since ich is chosen uniformly at random, we have that p2 = p1/qT.

A Can’t Win: We argue that p2 = negl(κ) by the security of the macaroon scheme M. The reduction
samples k and receives vk from the macaroon scheme challenger. It answers token queries by computing
r(i), σ(i) on its own. It answers discharge queries by calling its issuing oracle with r(i)∗ and and
immediately asking for the resulting macaroon with a macaroon query. Finally, when A outputs
α∗S, µ

∗, it outputs µ∗ as its forgery. If A wins, then µ∗ is a valid macaroon with r(ich) as its key
identifier, and it is not an extension of a macaroon µ given to A as a discharge query for token
r(ich). In particular, this means that it is not an extension of a macaroon given to the reduction as
a macaroon query. Therefore, the probability that the reduction gives a valid forgery is exactly p2

since it simulated Game 2 perfectly for A. By the security of the macaroon scheme M, we conclude
p2 = negl(κ).

We wish to prove that p0 = negl(κ). We know that |p0 − p1| = negl(κ), p1 = qT · p2, and p2 = negl(κ).
Putting it all together, we have:

|p0 − p1|+ qT · p2 ≥ (p0 − p1) + qT · p2 = p0

Since qT is the number of queries that A makes and A runs in polynomial time, we must have that
qT = poly(κ). We can therefore conclude that

p0 ≤ |p0 − p1|+ qT · p2 = negl(κ),

as required.

21

F Proof of Theorem 5.3: Security of our Macaroon-Tree Protocol

Proof. We use a series-of-games argument to show the security of the macaroon discharge protocol con-
struction. In all games, the setup phase is the same: the challenger runs (params, skI, skD)← Setup(1κ) and
gives params to A. We let pi be the probability that A wins in Game i.

Game 0: Let Game 0 be the original game from Definition 5.2. In this game, we have:

Issue Queries: On the ith query, the challenger creates a macaroon (µ(i)
0 , ek

(i)
0) and adds it as a

child of the root under an edge labeled with c(i)||σ(i), where:

k(i) ← KeyGenM(1κ) , c(i) ← Enc(sk1, k
(i)) , σ(i) ← Mac(kT , c(i)) , id(i) := c(i)||σ(i)

(µ(i)
0 , ek

(i)
0)← IssueM(k(i), id(i))

Extend Queries: On the ith query, the adversary sends an identifier id(i), a tuple of caveats ~m(i),
and a message m(i) ∈ {0, 1}∗ ∪ λ to the challenger, where λ is the empty string. If (id(i), ~m(i))
is a valid path in T leading to a node (µ, ek), then the challenger computes (µ(i), ek(i), α

(i)
D) ←

Extend(ek, µ,m(i)), and adds (µ(i), ek(i), α
(i)
D) to T as a child of (µ, ek) under an edge labeled with

m(i). Here, Extend(ek, µ,m) is defined as follows: If m = λ, it outputs Extend3rdParty(ek, µ),
otherwise it outputs ExtendM(ek, µ, 3||c(i)||α(i)

S ||α
(i)
D) and α = λ, where:

sk
(i)
T ← SetupTokenD(1κ) , c(i) ← Enc2(pk2, sk

(i)
T) , (α(i)

S , α
(i)
D)← TokenD(skT)

Discharge Queries: On the ith query, the adversary A sends a token α
(i)∗
D to the challenger, who

runs µ(i) ← DischargeD(skD, α
(i)∗
D) and returns µ(i) to A. The challenger also adds (α(i)∗

D , µ(i)) to
QD.

Macaroon Queries: On the ith query, the adversary sends an identifier id(i) and a tuple of caveats
~m(i) to the challenger. If (id(i), ~m(i)) is a valid path in T leading to a node (µ, ek), then the
challenger returns (µ, ek) to the adversary.

Winning condition: The adversary A outputs a macaroon µ∗ and a set of discharges M∗ =
{
µ∗j

}
.

He wins if:
1. Verify(kT , c, σ) = 1 and VerifyM(k, µ) = 1 where k := Dec(sk1, id) , and

2. For every third-party caveat 3||ci||α(i)
S ||α

(i)
D in µ, there exists µj ∈M with key identifier α

(i)
D

such that VerifyD(sk(i)
T , α

(i)
S , µj) = 1 where sk

(i)
T := Dec(sk2, ci), and

3. Either
(a) µ∗ is not an extension of a macaroon given to A in a macaroon query, or

(b) There exists a macaroon m∗
j ∈ M∗ corresponding to a third-party caveat 3||cj ||α(j)

S ||α
(j)
D

in µ∗ such that µ∗j is not an extension of any macaroon µ such that (α(j)
D , µ) ∈ QD.

Game 1: Let qI be an upper bound on the number of issuing queries that A makes. In Game 1, the
challenger remembers each k(i) that it samples in an issuing query, and we change the winning condition
so that A only wins if µ∗ is a valid macaroon under key k(i) for some i ∈ {1, . . . , qI}. In other words,
A only wins if it produces a valid macaroon under a key that the challenger sampled in an issuing
query.

Winning condition: The adversary A outputs a macaroon µ∗ and a set of discharges M∗ =
{
µ∗j

}
.

He wins if:
1. Verify(kT , c, σ) = 1 and VerifyM(k(i), µ) = 1 for some i ∈ {1, . . . , qI}, and

2. For every third-party caveat 3||ci||α(i)
S ||α

(i)
D in µ, there exists µj ∈M with key identifier α

(i)
D

such that VerifyD(sk(i)
T , α

(i)
S , µj) = 1 where sk

(i)
T := Dec(sk2, ci), and

3. Either
(a) µ∗ is not an extension of a macaroon given to A in a macaroon query, or

22

(b) There exists a macaroon m∗
j ∈ M∗ corresponding to a third-party caveat 3||cj ||α(j)

S ||α
(j)
D

in µ∗ such that µ∗j is not an extension of any macaroon µ such that (α(j)
D , µ) ∈ QD.

We argue that |p0 − p1| = negl(κ) by the security of the MAC T . Consider the probability ε that A
outputs a valid forgery µ∗ with key identifier ĩd

∗
= c∗||σ∗|| . . . such that c∗ 6= c(i) for all i ∈ {1, . . . , qI},

or in other words, that c∗ is a ciphertext that was not given to A as a response to an issue query. It
is easy to see that |p0 − p1| = ε since by correctness of decryption of E1, the games are equivalent if
c∗ = c(i) for some i ∈ {1, . . . , qI}. By the security of the MAC T , we must have ε = negl(κ). The
reduction samples sk1, pk2, sk2, answers token queries by sampling k(i) and computing c(i) on its own
and using the MAC tagging oracle to obtain σ(i). It answers extend, macaroon, and discharge queries
on its own. Given A’s forgery µ∗ with key identifier ĩd

∗
= c∗||σ∗|| . . . , it outputs σ∗ as a signature

forgery on message c∗. Since this simulates A’s view perfectly, the reduction produces a tag on a new
message with probability ε.

Game 2: In Game 2, the challenger chooses an index ich ∈ {1, . . . , qI} uniformly at random. We change
the winning condition so that A only wins if µ∗ is a valid macaroon under key r(ich).

Winning condition: The adversary A outputs a macaroon µ∗ and a set of discharges M∗ =
{
µ∗j

}
.

He wins if:
1. Verify(kT , c, σ) = 1 and VerifyM(k(ich), µ) = 1, and

2. For every third-party caveat 3||ci||α(i)
S ||α

(i)
D in µ, there exists µj ∈M with key identifier α

(i)
D

such that VerifyD(sk(i)
T , α

(i)
S , µj) = 1 where sk

(i)
T := Dec(sk2, ci), and

3. Either
(a) µ∗ is not an extension of a macaroon given to A in a macaroon query, or

(b) There exists a macaroon m∗
j ∈ M∗ corresponding to a third-party caveat 3||cj ||α(j)

S ||α
(j)
D

in µ∗ such that µ∗j is not an extension of any macaroon µ such that (α(j)
D , µ) ∈ QD.

Since ich is chosen uniformly at random, we have that p2 = p1/qI.

Game 3: In Game 3, we change how the challenger answers the ichth issuing query. Instead of encrypting
k(ich), it encrypts 0.

Issue Queries: On the ichth query, the challenger creates a macaroon (µ(ich)
0 , ek

(ich)
0) and adds it as

a child of the root under an edge labeled with c(ich)||σ(ich), where:

k(ich) ← KeyGenM(1κ) , c(ich) ← Enc(sk1, 0) , σ(ich) ← Mac(kT , c(ich)) , id(i) := c(i)||σ(i)

(µ(ich)
0 , ek

(ich)
0)← IssueM(k(ich), id(ich))

We argue that |p2 − p3| = negl(κ) by the CPA-security of E1. The reduction samples pk2, sk2, kT on
its own. For i 6= ich, it answers the ith issuing query by sampling k(i) and asking its encryption oracle
for c(i). It then computes σ(i) and µ

(i)
0 , ek

(i)
0 on its own. On the ichth issuing query, it samples k(ich)

and sends m0 := k(ich),m1 := 0 to the encryption challenger as the challenge plaintexs, and receives
a challenge ciphertext Enc1(sk1,mb). It uses the challenge ciphertext as c(ich) and computes σ(i) on
its own. The reduction answers extend, discharge, and macaroon queries on its own. Notice that if
b = 0, the reduction perfectly simulates Game 2, whereas if b = 1, the reduction perfectly simulates
Game 3. Therefore, by the CPA-security of E1 we must have |p2 − p3| = negl(κ).

Game 4: Let qE be an upper on the number of extension queries made by A that add a third-party caveat.
In Game 4, the challenger chooses an index jch ∈ {1, . . . , qE} uniformly at random. We change the
winning condition so that A only wins if either µ∗ is not an extension of any macaroon µ revealed
in a macaroon query, or it is such an extension, the jchth extension query added a third-party caveat
3||cjch

||α(jch)
S ||α(jch)

D caveat to µ, and there exists a macaroon µ(j) ∈ M∗ that is a valid discharge for
this caveat and µ(j) was not the output of a discharge query for token α

(jch)
D .

Winning condition: The adversary A outputs a macaroon µ∗ and a set of discharges M∗ =
{
µ∗j

}
.

He wins if:

23

1. Verify(kT , c, σ) = 1 and VerifyM(k(ich), µ) = 1, and

2. For the third-party caveat 3||cjch
||α(jch)

S ||α(jch)
D in µ, there exists µj ∈ M with key identifier

α
(jch)
D such that VerifyD(sk(jch)

T , α
(jch)
S , µj) = 1 where sk

(jch)
T is the key sampled by the challenger

in the jchth extension query, and
3. Either
(a) µ∗ is not an extension of a macaroon given to A in a macaroon query, or

(b) µ(j) was not the output of a discharge query for token α
(jch)
D .

Since jch is chosen uniformly at random, we have that p4 ≥ p3/qE.

Game 5 : In Game 5, we change how the jchth extension query is answered. If is a query to add a
third-party caveat, instead of encrypting sk

(jch)
T , the reduction encrypts 0.

Extend Queries: On the jchth query that adds a third-party caveat, the adversary sends an identi-
fier id(jch), a tuple of caveats ~m(jch) to the challenger. If (id(jch), ~m(jch)) is a valid path in T leading
to a node (µ, ek), then the challenger computes (µ′, ek′)ExtendM(ek, µ, 3||c(jch)||α(jch)

S ||α(jch)
D) and

adds (µ′, ek′) to T as a child of (µ, ek), where:

sk
(jch)
T ← SetupTokenD(1κ) , c(i) ← Enc2(pk2, 0) , (α(jch)

S , α
(jch)
D)← TokenD(skT)

We argue that |p4 − p5| = negl(κ) by the CPA-security of E2.
Game 6 : In Game 6, we change the winning condition so that the adversary only wins if it outputs a

macaroon µ∗ that is valid under key k(ich), and is not an extension of a macaroon revealed to A in a
macaroon query.

Winning condition: The adversary A outputs a macaroon µ∗ and a set of discharges M∗ =
{
µ∗j

}
.

He wins if:
1. Verify(kT , c, σ) = 1 and VerifyM(k(ich), µ) = 1, and
2. µ∗ is not an extension of a macaroon given to A in a macaroon query.

We argue that |p5 − p6| = negl(κ) by the security of the macaroon discharge protocol D. Let E be
the event that A outputs m∗,M∗ such that for the third-party caveat 3||cjch

||α(jch)
S ||α(jch)

D in µ, there
exists µj ∈M with key identifier α

(jch)
D such that VerifyD(sk(jch)

T , α
(jch)
S , µj) = 1 where sk

(jch)
T is the key

sampled by the challenger in the jchth extension query, and µ(j) was not the output of a discharge
query for token α

(jch)
D . Then |p5 − p6| ≤ Pr[E], and we claim Pr[E] = negl(κ) by the security of D.

The reduction samples sk1, sk2, pk2, kT on its own and answers issuing and macaroon queries on its
own. It also answers extend queries on its own if the query is adding a first-party caveat. It answers
all extension queries on its own, except the jchth extension query that adds a third-party caveat.
It answers the jchth extension query that adds a third-party caveat by calling the token oracle and
receiving α

(jch)
S , α

(jch)
D . It answers all discharge queries by calling its discharge oracle. When A outputs

µ∗,M∗, then the reduction looks for a discharge µ(j) ∈ M∗ with key identifier α
(jch)
D and submits

α
(jch)
S , α

(jch)
D , µ(j) as its discharge forgery. If there is more than one, it picks one at random. If the

event E occurs, then there is at least one valid forgery macaroon in M∗ and the reduction picks it
with probability 1/|M∗|. Therefore, the probability that the reduction outputs a valid forgery is at
least Pr[E]/ |M∗|. Since |M∗| = poly(κ), by the security of the discharge protocol D, we must have
Pr[E] = negl(κ), as desired.

A Can’t Win : We argue that p6 = negl(κ) by the security of the macaroon scheme M. The reduction
samples sk1, sk2, pk2, kT , paramsD, skD on its own. On the ith issue query, if i 6= ich, the reduction
answers it on its own as well. On the ichth query, the reduction computes cich

and σich
on its own

(note that this does not require it to know kich
), and calls its issuing oracle with idich

= cich
||σich

. The
reduction answers extend queries by first checking if id∗ = idich

. If it is, then it uses its extension oracle
to complete the query, otherwise it computes everything on its own. It answers discharge queries on
its own. When A outputs a macaroon forgery µ∗, then the reduction outputs µ∗ as well. It is easy
to see that if A wins, then the reduction outputs a valid forgery. Therefore, by the security of the
macaroon scheme, we must have p6 = negl(κ).

24

We wish to prove that p0 = negl(κ). We know that |p0 − p1| = negl(κ), p1 = qI · p2, |p2 − p3| = negl(κ),
p3 ≤ p4 · qE, |p4 − p5| = negl(κ), |p5 − p6| = negl(κ), and p6 = negl(κ). Putting it all together, we have:

|p0 − p1|+ qT · |p2 − p3|+ qT · qE · |p4 − p5|+ qT · qE · |p5 − p6| ≥

(p0 − p1) + qT · (p2 − p3) + qT · qE · (p4 − p5) + qT · qE · (p5 − p6) = p0 − qT · qE · p6

Since qT and qE are numbers of queries that A makes and A runs in polynomial time, we must have
that qT = poly(κ) and qE = poly(κ). We can therefore conclude that

p0 ≤ |p0 − p1|+ qT · |p2 − p3|+ qT · qE · |p4 − p5|+ qT · qE · |p5 − p6|+ qT · qE · p6 = negl(κ),

as required.

25

