
Compositional Abstractions for Verifying Concurrent

Data Structures

by

Siddharth Krishna

A dissertation submitted in partial fulfillment

of the reqirements for the degree of

Doctor of Philosophy

Department of Computer Science

New York University

September, 2019

Professor Thomas Wies

© Siddharth Krishna
all rights reserved, 2019

Acknowledgements

This dissertation would, literally (and in the original sense of the word), not exist if not for
my advisor Thomas Wies. Without his patience, support, and generous con�dence in me I would
have quit my PhD before I even started work on this thesis. I could not have hoped for a better
advisor, and I would like to thank him for everything. This dissertation also owes its existence to
Dennis Shasha, whose talk in our formal methods seminar started o� this line of work. I would
like to thank Dennis for being a second advisor to me, for his boundless encouragement and
enthusiasm, and for being the kind of researcher that I would like to be when I “grow up”.

I also want to thank to the rest of my committee members: Mike Dodds, for spending what
must have been quite a chunk of time in performing a close reading of my thesis and whose
feedback has been invaluable; Michael Emmi, for teaching me the value of good tooling and
for an extremely enjoyable internship and collaboration; and Patrick Cousot, for without whose
good-humored lambasting in my qualifying exams I may still be struggling with getting machines
to learn formal methods.

I am grateful for having the opportunity to collaborate with other excellent researchers and
people during my PhD. A chance conversation at a workshop in 2017 with Alex Summers has
led to a productive collaboration and great friendship. Alex constantly inspires me to push my
results and think of the bigger picture, and has been the driving force behind the more general and
elegant framework presented here. I’d like to thank Philippa Gardner and Emanuele D’Osualdo
for inviting me to visit them in Imperial and the very interesting and useful discussions on �ows. I
also want to thank Marc Brockschmidt for two extremely fun internships, and for being my crisis
hotline for the last few years. I must thank Danny Tarlow for patiently teaching me machine
learning, Paul Gastin for a fun summer exploring pushdown automata, and Anca Muscholl for
guiding me through my �rst summer abroad, my �rst workshop talk, and my �rst paper.

I have been very lucky in �nding great friends during all my internships and my time in
New York. I do not wish to incriminate anyone by publishing their association with me, or risk
selective incrimination, so I will not name names. But thank you all for all the fun times!

Finally, I want to thank my family: Anu, for inspiring me to overcome odds, especially phys-
ical odds; Thitha, for teaching me to do things properly and be interested in everything; Chutty,
for creating new universes and battling childhood boredom by my side; and Karishma, for always
being on my team.

This work was in part supported by the National Science Foundation under grants CCF-1815633 and CCF-
1618059.

iii

Abstract

Formal veri�cation has had great success in improving the reliability of real-world software,
with projects such as ASTREE, CompCert, and Infer showing that rigorous mathematical analy-
sis can handle the scale of today’s cyber-infrastructure. However, despite these successes, many
core software components are yet to be veri�ed formally. Concurrent data structures are a class
of algorithms that are becoming ubiquitous, as software systems seek to make use of the increas-
ingly parallel design of computers and servers. These data structures use sophisticated algorithms
to perform �ne-grained synchronization between threads, making them notoriously di�cult to
design correctly, with bugs being found both in actual implementations and in the designs pro-
posed by experts in peer-reviewed publications. The rapid development and deployment of these
concurrent algorithms has resulted in a rift between the algorithms that can be veri�ed by the
state-of-the-art techniques and those being developed and used today. The goal of this disserta-
tion is to bridge this gap and bring the certi�ed safety of formal veri�cation to the concurrent
data structures used in practice.

Permission-based program logics such as separation logic have been established as the stan-
dard technique for verifying programs that manipulate complex heap-based data structures. These
logics build on so-called separation algebras, which allow expressing properties of heap regions
such that modi�cations to a region do not invalidate properties stated about the remainder of
the heap. This concept is key to enabling modular reasoning and also extends to concurrency.
However, certain data structure idioms prevalent in real-world programs, especially concurrent
programs, are notoriously di�cult to reason about, even in these advanced logics (e.g., random
access into inductively de�ned structures, data structure overlays). The underlying issue is that
while heaps are naturally related to mathematical graphs, many ubiquitous graph properties are
non-local in character. Examples of such properties include reachability between nodes, path
lengths, acyclicity and other structural invariants, as well as data invariants which combine with
these notions. Reasoning modularly about such global graph properties remains a hard problem,
since a local modi�cation can have side-e�ects on a global property that cannot be easily con�ned
to a small region.

This dissertation addresses the question: which separation algebra can be used to prove that
a program maintains a global graph property by reasoning only about the local region modi�ed
by the program? We propose a general class of global graph properties, that can be expressed
in terms of �ows – �xpoints of algebraic equations over graphs. Flows can encode structural
properties of the heap (e.g. the reachable nodes from the root form a tree), data invariants (e.g.
sortedness), as well as combinations of both shape and data constraints of overlaid structures in

iv

a uniform manner. We then introduce the notion of a �ow interface, an abstraction of a region
in the heap, which expresses the constraints and guarantees between the region and its context
with respect to the �ow. Under a suitable notion of composition that preserves the �ow values,
we show that �ow interfaces form the desired separation algebra.

Building on our theory of �ows, we develop the �ow framework, a general proof technique
for modular reasoning about global graph properties over program heaps that can be integrated
with existing separation logics. We further devise a strategy for automating this technique us-
ing SMT-based veri�cation tools. We have implemented this strategy on top of the veri�cation
tool Viper and applied it successfully to a variety of challenging benchmarks including 1) algo-
rithms involving general graphs such as Dijkstra’s algorithm and a priority inheritance protocol,
2) inductive data structures such as linked lists and B trees, 3) overlaid data structures such as
the Harris list and threaded trees, and 4) object-oriented design patterns such as Composite and
Subject/Observer. We are not aware of any single other approach that can handle these examples
with the same degree of simplicity or automation.

While the �ow framework is applicable to any data structure, its features give rise to a new
form of modular reasoning for certain concurrent data structures. Concurrent separation logics
already apply modularity on multiple levels to simplify correctness proofs, decomposing them
according to program structure, program state, and individual threads. Despite these advances, it
remains di�cult to achieve proof reuse across di�erent data structure implementations. For the
large class of concurrent search structures, we demonstrate how one can achieve further proof
modularity by decoupling the proof of thread safety from the proof of structural integrity.

We base our work on the template algorithms of Shasha and Goodman that dictate how
threads interact but abstract from the concrete layout of nodes in memory. By using the �ow
framework of compositional abstractions in the separation logic Iris, we show how to prove cor-
rectness of template algorithms, and how to instantiate them to obtain multiple veri�ed imple-
mentations. We demonstrate our approach by formalizing three concurrent search structure tem-
plates, based on link, give-up, and lock-coupling synchronization, and deriving implementations
based on B-trees, hash tables, and linked lists. These case studies represent algorithms used in
real-world �le systems and databases, which have so far been beyond the capability of automated
or mechanized state-of-the-art veri�cation techniques. Our veri�cation is split between the Coq
proof assistant and the deductive veri�cation tool GRASShopper in order to demonstrate that our
proof technique and framework can be applied both in fully mechanized proof assistants as well
as automated program veri�ers. In addition, our approach reduces proof complexity and is able
to achieve signi�cant proof reuse.

v

Contents

Acknowledgments iii

Abstract iv

List of Figures viii

List of Tables ix

1 Introduction 1
1.1 The Flow Framework . 2
1.2 Concurrent Search Structures . 5
1.3 Outline . 8

2 Preliminaries 9
2.1 Separation Logic . 10
2.2 A Brief Introduction to Iris . 14

2.2.1 Ghost States and Resource Algebras . 15
2.2.2 Example Iris Proof . 16

3 The Flow Framework 19
3.1 Flows from First Principles . 19
3.2 The Flow Framework . 24

3.2.1 Flows and Flow Interfaces . 24
3.2.2 Flow Interfaces as a Resource Algebra . 30

3.3 Expressivity of Flows . 30
3.4 Existence and Uniqueness of Flows . 32

3.4.1 Edge-local Flows . 32
3.4.2 Nilpotent Cycles . 33
3.4.3 E�ectively Acyclic Flow Graphs . 35

3.5 Conclusion . 40

4 Proof Technique and Automation 41
4.1 Proof Technique . 41

vi

4.1.1 Encoding Flow-based Proofs in SL . 41
4.2 Extending To The Harris List . 48
4.3 The Edge-local Flow Transformation . 50
4.4 Proof Automation . 52

4.4.1 Automatic Generation of a Flow-based Proof 54
4.5 An Example Proof in our Frontend . 58
4.6 Evaluation . 60
4.7 Related Work . 63
4.8 Conclusion . 65

5 Concurrent Search Structure Templates 66
5.1 Overview . 66

5.1.1 B-link Trees . 67
5.1.2 Abstracting Search Structures using Edgesets 68
5.1.3 The Link Template Algorithm . 68
5.1.4 A Proof Strategy for Template Search Structures 69

5.2 Verifying Search Structure Templates . 71
5.2.1 Encoding the Edgeset Framework using Flows 73
5.2.2 Resource Algebras and Ghost State . 75
5.2.3 Proof of the Link Template . 76
5.2.4 Lock-coupling and Give-up Templates . 79
5.2.5 Proofs of Template Implementations . 81

5.3 Proof Mechanization and Automation . 81
5.4 Related Work . 84
5.5 Conclusion . 86

6 Conclusion 87
6.1 Future Work . 87

A Appendix 89
A.1 Encoding of Flows in Viper . 89

Bibliography 97

vii

List of Figures

1.1 Pseudocode of the PIP and a state of the protocol data structure. 3
1.2 The structure of our proofs. 7

2.1 The de�nition of a resource algebra (RA). 15
2.2 Proof sketch of our example program in Iris. 16

3.1 Pseudocode of the PIP and a state of the protocol data structure (repeated). 20
3.2 Examples of graphs that motivate e�ective acyclicity. 36

4.1 A proof sketch using our �ow-based proof technique for the insert procedure of
a linked list. 42

4.2 Proof rules for proving entailments between �ow-based speci�cations. 44
4.3 The crux of �ow-based proofs: reasoning about a straight-line fragment of code C. 46
4.4 Inserting a new node n into a list between existing nodes l and r 47
4.5 A potential state of the Harris list. 48
4.6 The structure of annotated Viper programs generated by our technique. 55

5.1 An example B-link tree state in the middle of of a split. 67
5.2 The link template algorithm. 69
5.3 Abstract speci�cation of search structure operations. 72
5.4 Speci�cations of helper functions that are de�ned by implementations. 76
5.5 The link template algorithm with a proof outline. 77
5.6 The give-up template algorithm. 80
5.7 The lock-coupling template algorithm. 80
5.8 B-link tree implementation in GRASShopper. 82

viii

List of Tables

4.1 The results of our evaluation. 61

5.1 Summary of templates and instantiations veri�ed in Iris/Coq and GRASShopper. . 83

ix

1 | Introduction

For the last 60 years or so, the processing power of computers has been doubling approxi-
mately every 2 years. For most of this time, this growth has been backed by the increase in the
number of transistors present on integrated circuit chips, a phenomenon commonly known as
Moore’s Law. This has also been accompanied by a matching increase in clock speed, the speed
at which computers perform each step of computation. However, in the 2000s, computer hard-
ware started reaching the physical limits of clock speed, mostly due to overheating and quantum
e�ects. To counter this, manufacturers have turned to parallel architectures where the extra
transistors predicted by Moore’s law are being used to provide multiple cores on a single chip,
enabling multiple computations to be performed in parallel.

Unfortunately, two processors in parallel does not immediately imply a factor of two increase
in speed. To make the most of these multicore machines, software needs to be carefully designed
to e�ciently divide work into threads, sequences of instructions that can be executed in par-
allel. Well designed parallel algorithms distribute the workload among threads in a way that
minimizes the amount of time spent waiting for each other. A standard way to achieve this is
to store any shared data in so-called concurrent data structures, algorithms that store and orga-
nize data to facilitate e�cient access and modi�cation by multiple threads in parallel. These data
structures are now core components of critical applications such as drive-by-wire controllers in
cars, database algorithms managing �nancial, healthcare, and government data, and the software-
de�ned-networks of internet service providers. The research community has risen to to meet this
need, and has developed concurrent data structure algorithms that are fast, scalable, and able to
adapt to changing workloads.

Unfortunately, these algorithms are also among the most di�cult software artifacts to develop
correctly. Despite being designed and implemented by experts, the sheer complexity and subtlety
of the ways in which di�erent threads can interact with one another means that even these ex-
perts often fail to anticipate subtle bugs. These can cause the data to be corrupted or the program
to misbehave in unexpected ways. For instance, consider the standard textbook on concurrent al-
gorithms, “The Art of Multiprocessor Programming” [Herlihy and Shavit 2008]. Although written
by renowned experts who have developed many of the most widely used concurrent data struc-
tures, the errata of the book list several severe but subtle errors in the algorithms included in the
book’s �rst edition. There have also been many such examples of mistakes in concurrent algo-
rithms in peer-reviewed articles with (pencil-and-paper) mathematical proofs [Burckhardt et al.
2007; Michael and Scott 1995]. It is clear therefore that we desperately need more systematic and
dependable techniques to reason about and ensure correctness of these complex algorithms.

1

Formal veri�cation is a �eld of research that aims to use mathematical techniques to prove, in
a rigorous and machine-checkable manner, the absence of bugs and the conformity of a system
to its intended speci�cation. Several projects have demonstrated the successful use of formal
veri�cation to improve the reliability of real-world software designs, including SLAM, ASTREE,
CertiKOS, seL4, CompCert, and Infer. In fact, in some areas such as hardware veri�cation, formal
veri�cation is now a core part of the design process. However, as we argue below, there is a huge
gap between the concurrent data structures that can be veri�ed by state-of-the-art techniques
and the algorithms being developed and used everyday. The goal of this dissertation is to bridge
this gap and bring the certi�ed safety of formal veri�cation to the concurrent data structures in
use everyday.

1.1 The Flow Framework
The core technique for formal reasoning about data structures, both sequential and con-

current, is separation logic (SL) [O’Hearn et al. 2001; Reynolds 2002]. SL provides the basis of
many successful veri�cation tools that can verify programs manipulating complex data struc-
tures [Calcagno et al. 2015; Jacobs et al. 2011; Müller et al. 2016; Appel 2012]. This success is
due to the logic’s support for reasoning modularly about modi�cations to heap-based data. To
support reasoning about complex data structures (lists, trees, etc.), SL is typically extended with
predicates that are de�ned inductively in terms of separating conjunction to express invariants
of unbounded heap regions. For simple inductive data structures such as lists and trees, much of
this reasoning can be automated [Berdine et al. 2004; Iosif et al. 2014; Katelaan et al. 2019; Piskac
et al. 2013; Enea et al. 2017].

One problem with inductive predicates is that the recursion scheme must follow a traversal
of the data structure in the heap that visits every node exactly once. Such de�nitions are not
well-suited for describing data structures that are less regular, consist of multiple overlaid data
structures, or provide multiple traversal patterns (e.g. threaded trees). However, these idioms
are prevalent in real-world implementations such as the �ne-grained concurrent data structures
found in operating systems and databases (examples include B-link trees [Lehman and Yao 1981]
and non-blocking lists with explicit memory management [Harris 2001]). Solutions to these prob-
lems have been proposed [Hobor and Villard 2013] but remain di�cult to automate.

Another challenge is that proofs involving inductive predicates rely on lemmas that show
how the predicates compose, decompose, and interact. For example, SL proofs of algorithms
that manipulate linked lists often use the inductive predicate lseg(x,y), which denotes subheaps
containing a list segment from x toy. A common lemma about lseg used in such proofs is that two
disjoint list segments that share an end and a start point compose to a larger list segment (under
certain side conditions). Unfortunately, these lemmas do not easily generalize from one data
structure to another since the predicate de�nitions may follow di�erent traversal patterns and
generally depend on the data structure’s implementation details. Hence, there is a vast literature
describing techniques to derive such lemmas automatically, either by expressing the predicates
in decidable fragments of SL [Berdine et al. 2004; Cook et al. 2011; Pérez and Rybalchenko 2011;
Bouajjani et al. 2012; Iosif et al. 2014; Piskac et al. 2013; Tatsuta et al. 2016; Reynolds et al. 2017;

2

1 method acquire(p: Node, r: Node) {
2 if (r.next == null) {
3 r.next := p
4 } else {
5 p.next := r;
6 update(r, 0, p.curr_prio)
7 }
8 }
9 method update(n: Node, from: Int, to: Int) {

10 if (from == to)
11 return
12 var old_prio := n.curr_prio
13 if (from != 0)
14 n.prios := n.prios \ {from}
15 if (to != 0)
16 n.prios := n.prios ∪ {to}
17 n.curr_prio := max(n.prios)
18 if (n.curr_prio != old_prio && n.next != null) {
19 update(n.next, old_prio, n.curr_prio)
20 }
21 }

p13 {3, 2}

r1

1

{1}

p2

1

{1, 1}

r21 {1, 1}

p3

2

{2, 1}

r3

{1, 1, 2, 2}

2

p41 {1} p52 {2}

r4 {1, 2, 2}2

p62 {2}

p72 {2}

Figure 1.1: Pseudocode of the PIP and a state of the protocol data structure. Round nodes represent
processes and rectangular nodes resources. Nodes are marked with their current priorities curr_prio as
well as the aggregate priority multiset prios. A node’s default priority is underlined and marked in bold
blue.

Enea et al. 2017] or by using heuristics [Nguyen and Chin 2008; Brotherston et al. 2011; Chlipala
2011; Pek et al. 2014; Enea et al. 2015]. However, these techniques can be brittle, in particular,
when the predicate de�nitions involve constraints on data.

For proofs of general graph algorithms, the situation is even more dire. Despite substan-
tial improvements in the veri�cation methodology for such algorithms [Sergey et al. 2015; Raad
et al. 2016], signi�cant parts of the proof argument still typically need to be carried out using
non-modular reasoning. This dissertation presents a general technique for automated modular
reasoning about graph properties that applies to a broad class of data structures and graph algo-
rithms. In fact, for many of the examples that we consider in this dissertation, no fully-modular
proof had existed before.

As a motivating example, we consider an idealized version of the priority inheritance proto-
col (PIP), which is a technique used in process scheduling [Sha et al. 1990]. The purpose of the
protocol is to avoid (unbounded) priority inversion, i.e., a situation where a process is blocked
from making progress by a lower priority process. The protocol maintains a bipartite graph with
nodes representing processes and resources. An example graph is shown in Figure 1.1. An edge
from a process p to a resource r indicates that p is waiting for r to become available whereas an
edge in the other direction means that r is currently held by p. Every node has an associated de-
fault priority as well as a current priority, both of which are strictly positive integers. The current
priority a�ects scheduling decisions. When a process attempts to acquire a resource currently

3

held by another process, the graph is updated to avoid priority inversion. For example, when
process p1 with current priority 3 attempts to acquire the resource r1 that is held by process p2
of priority 2, then p1’s higher priority is propagated to p2 and, transitively, to any other process
that p2 is waiting for (p3 in this case). As a result, all nodes on the created cycle will be updated to
current priority 31. The protocol thus maintains the following invariant: the current priority of
each node is the maximum of its default priority and the current priorities of all its predecessors.
Priority propagation is implemented by the method update shown in Figure 1.1. The implemen-
tation represents graph edges by next pointers and handles both kinds of modi�cations to the
graph: adding an edge (acquire) and removing an edge (release - code omitted). To recalculate
the current priority of a node (line 17), each node maintains a multiset prios which contains the
priorities of all its immediate predecessors as well as its own default priority.

Verifying that the PIP maintains its invariant using established separation logic (SL) tech-
niques is challenging. In general, SL assertions describe resources and express the fact that the
program has permission to access and manipulate these resources. We stick to the standard model
of SL where resources are memory regions represented as partial heaps. Assertions describing
larger regions are built from smaller ones using separating conjunction, ϕ1 ∗ ϕ2. Semantically,
the ∗ operator is tied to a notion of resource composition de�ned by an underlying separation
algebra [Calcagno et al. 2007; Cao et al. 2017]. In the standard model, composition enforces that
ϕ1 and ϕ2 must describe disjoint regions. The logic and algebra are set up so that changes to the
regionϕ1 do not a�ectϕ2 (and vice versa). That is, ifϕ1∗ϕ2 holds before the modi�cation andϕ1 is
changed to ϕ′1, then ϕ′1 ∗ϕ2 holds afterwards. This so-called frame rule enables modular reasoning
about modi�cations to the heap and extends well to the concurrent setting when threads operate
on disjoint portions of memory [Brookes and O’Hearn 2016; Dodds et al. 2016; Raad et al. 2015;
Dockins et al. 2009]. However, the mere fact that ϕ2 is preserved by modi�cations to ϕ1 does not
guarantee that if a global property such as the PIP invariant holds for ϕ1 ∗ ϕ2, it also still holds
for ϕ′1 ∗ ϕ2.

For example, consider the PIP scenario depicted in Figure 1.1. If ϕ1 describes the subgraph
containing only node p1, ϕ2 the remainder of the graph, and ϕ′1 the graph obtained from ϕ1 by
adding the edge from p1 to r1, then the PIP invariant will no longer hold for the new composed
graph described by ϕ′1 ∗ ϕ2. On the other hand, if ϕ1 captures p1 and the nodes reachable from
r1 (i.e., the set of nodes modi�ed by update), ϕ2 the remainder of the graph, and we reestablish
the PIP invariant locally in ϕ1 obtaining ϕ′1 (i.e., run update to completion), then ϕ′1 ∗ ϕ2 will also
globally satisfy the PIP invariant. The separating conjunction ∗ is not su�cient to di�erentiate
these two cases; both describe valid partitions of a possible program heap. As a consequence,
prior techniques have to revert back to non-modular reasoning to prove that the invariant is
maintained.

Contributions. In this dissertation we answer the question: which separation algebra allows
us to reason modularly about the e�ects of local changes on global properties of graphs? We
consider a general class of global graph properties that can be expressed in terms of �ows –

1The algorithm can then detect the cycle to prevent a deadlock, but we ignore this here to keep the presentation
simple.

4

functions from nodes of the graph to values. For the PIP, the �ow maps each node to the multiset
of its incoming priorities. One can then use this �ow to express the PIP invariant as a node-
local condition. In general, a �ow is a �xpoint of a set of algebraic equations induced by the
graph. These equations are de�ned over a �ow domain, which determines how the �ow values
are propagated along the edges of the graph and how they are aggregated at each node.

In Chapter 3, we present mathematical foundations for �ow domains, imposing minimal re-
quirements on the underlying algebra that allow us to capture a broad range of data structure
invariants and graph properties, and reason locally about them in a suitable separation algebra.
We further identify general mathematical conditions that guarantee unique �ows and provide
local proof arguments to check the preservation of these conditions.

To express abstract SL predicates that describe unbounded graph regions and their �ows, we
introduce the notion of a �ow interface. A �ow interface of a graphG expresses the constraints on
G’s contexts thatG relies upon in order to satisfy its internal �ow conditions, as well as the guar-
antees that G provides its contexts so that they can satisfy their �ow conditions. The algebraic
properties we require from �ow domains give rise to generic proof rules for reasoning about �ow
interfaces. These include rules that allow a �ow interface to be split into arbitrary chunks which
can be modi�ed and recomposed, enabling reasoning about data structure algorithms that do not
follow a �xed traversal strategy.

To enable �ow-based proofs in existing separation logic based tools and proof systems, we
show that �ow interfaces form a separation algebra. Our �ow framework can be embedded di-
rectly into existing separation logic tools like GRASShopper [Piskac et al. 2014, 2013] and the Iris
higher-order separation logic framework [Jung et al. 2015, 2016; Krebbers et al. 2017; Jung et al.
2018a]. The former enables proof automation via SMT solvers and the latter can be used to me-
chanically check proofs using Coq [Coq Development Team 2017]. This showcases the �exibility
of the new framework, as it allows the veri�er to choose either highly-trusted but labor-intensive
tools or tools that provide more automation but have a larger trusted code base, depending on
the needs at hand.

Building on this theory we develop a general proof technique for modular reasoning about
global graph properties that can be integrated with existing separation logics (Chapter 4). We fur-
ther devise a strategy for automating this technique using SMT-based veri�cation tools. We have
implemented this strategy on top of the veri�cation tool Viper [Müller et al. 2016] and applied
it successfully to a variety of challenging benchmarks. These include 1) algorithms involving
general graphs such as the PIP and Dijkstra’s algorithm, 2) inductive structures such as linked
lists and B trees, 3) overlaid structures such as the Harris list with draining [Harris 2001] and
threaded trees, and 4) OO design patterns such as Composite and Subject/Observer. We are not
aware of any other approach that can handle these examples with the same degree of simplicity
or automation.

1.2 Concurrent Search Structures
An application of our �ow framework that exempli�es its advantages is the formalization

and veri�cation of concurrent search structure templates. This introduces a new type of modular

5

proof technique, whereby the proof of thread safety is decoupled from the proof of structural
integrity.

Modularity is as important in simplifying formal proofs as it has been for the design and
maintenance of large systems. There are three main types of modular proof techniques: (i) Hoare
logic [Hoare 1969] enables proofs to be compositional in terms of program structure; (ii) separa-
tion logic [O’Hearn et al. 2001; Reynolds 2002] allows proofs of programs to be local in terms of
the state they modify; and (iii) thread modular techniques [Jones 1983; Owicki and Gries 1976;
Herlihy and Wing 1990] allow one to reason about each thread in isolation.

Concurrent separation logics [O’Hearn 2007; Brookes 2007; Brookes and O’Hearn 2016; Vafeiadis
and Parkinson 2007; Feng et al. 2007; Dinsdale-Young et al. 2010, 2013; Fu et al. 2010; Svendsen
and Birkedal 2014; Nanevski et al. 2014; da Rocha Pinto et al. 2014; Jung et al. 2015; Dodds et al.
2016] incorporate all of the above techniques and have led to great progress in the veri�cation
of practical concurrent data structures, including recent milestones such as a formal proof of the
B-link tree [da Rocha Pinto et al. 2011]. Such proofs, however, remain large, complex, and on
paper; veri�ed only by hand.

An important reason why existing proofs, such as that of the B-link tree, are still so compli-
cated is that they argue simultaneously about thread safety (i.e., how threads synchronize) and
memory safety (i.e., how data is laid out in the heap). We contend that such proofs should instead
be decomposed so as to reason about these two aspects independently. When verifying thread
safety we should abstract from the concrete heap structure used to represent the data and when
verifying memory safety we should abstract from the concrete thread synchronization algorithm.
Adding this form of abstraction as a fourth modular proof technique to our arsenal promises more
reusable proofs and simpler correctness arguments, which in turn aids proof automation.

As an example, consider the B-link tree, which uses the link-based technique for thread syn-
chronization. The following analogy [Shasha and Goodman 1988] captures the essence of this
technique. Bob wants to borrow book k from the library. He looks at the library’s catalog to
locate k and makes his way to the appropriate shelf n. Before arriving at n, Bob runs into a friend
and gets caught up in a conversation. Meanwhile, Alice who works at the library, reorganizes
shelf n and moves k as well as some other books to n′. She updates the library catalog and also
leaves a sticky note at n indicating the new location of the moved books. Finally, Bob continues
his way to n, reads the note, proceeds to n′, and takes out k . The synchronization protocol of
leaving a note (the link) when books are moved ensures that Bob can �nd k rather than thinking
thatk is nowhere in the library. However, note that when arguing the correctness of this protocol,
we do not need to reason about how books are stored in shelves or how the catalog is organized.

The library patron corresponds to a thread searching for and performing an operation on the
key k stored at some node n in the B-link tree and the librarian corresponds to a thread perform-
ing a split operation involving nodes n and n′. As in our library analogy, the synchronization
technique of creating a forward pointer (the link) when nodes are split is independent of how
data is stored within each node and how the nodes are organized in memory (e.g. whether they
form a B-tree or a hash table). Hence, it applies to vastly di�erent concrete data structures. Our
goal is to verify the correctness of template algorithms once and for all so that their proofs can be
reused across di�erent data structure implementations.

6

Abstract spec. Set ADT

Templates Give-up Lock coupling Link

Implementations Hash table (give-up) B+ tree Lock coupling list B-link tree Hash table (link)

Figure 1.2: The structure of our proofs.

The challenge in achieving this algorithmic proof modularity is in reconciling the involved
abstractions with the proof technique of reasoning locally about modi�cations to the heap as in
separation logic (SL), which is itself critical for obtaining simple proofs that are easy to mecha-
nize. The proof of the link technique depends on certain invariants about the paths that a search
for a key k follows in the data structure graph. However, with the standard heap abstractions
used in separation logic (e.g. inductive predicates), it is hard to express these invariants indepen-
dently of the invariants that capture how the concrete data structure is represented in memory.
Consequently, existing proofs such as the one of the B-link tree in [da Rocha Pinto et al. 2011]
intertwine the synchronization invariants and the memory invariants, which makes the proof
complex, hard to mechanize, and di�cult to reuse.

Contributions. In this dissertation we show how to adapt and combine recent advances in
separation logic and re�nement proofs with our �ow-based compositional abstractions in order
to achieve the envisioned algorithmic proof modularity for an important class of concurrent data
structures: search structures.

A search structure is a data structure that supports fast search, insert, and delete operations on
a set of key-value pairs (e.g. sorted lists, binary search trees, hash tables, and B-trees). We present
a methodology for specifying and verifying template algorithms for concurrent search structures
that abstract from the concrete low-level representation of the data structure in memory. The
methodology independently veri�es that (1) the template algorithm satis�es the abstract speci�-
cation of search structures assuming that node-level operations maintain certain shape-agnostic
invariants and (2) the implementations of these operations for each concrete data structure main-
tains these invariants. The veri�cation uses SL-style reasoning for both subtasks and the method-
ology is designed to be usable within o�-the-shelf SL-based veri�cation tools so that the proofs
can be mechanically checked and automated. Moreover, a key advantage of our approach is that
we can perform sequential reasoning when we verify that a concrete implementation is a valid
instantiation of a template.

We base our work on the template algorithms for concurrent search structures by Shasha
and Goodman [1988], who identi�ed the key invariants needed for decoupling reasoning about
synchronization and memory representation for such data structures. The second ingredient
is our �ow framework, which enables us to formalize the correctness argument of Shasha and
Goodman [1988] within separation logic.

We demonstrate our methodology by formalizing three template algorithms for concurrent
search structures based on the link, the give-up, and the lock-coupling technique of synchroniza-
tion (Figure 1.2). For these, we derive concrete implementations based on B-trees, hash tables,

7

and sorted linked lists, resulting in �ve di�erent data structure implementations. We are not
aware of any other logic that provides an abstraction mechanism to support this style of proof
modularization at the level of data structure algorithms.

1.3 Outline
This dissertation begins in Chapter 2 with a survey of the relevant background, and intro-

duces preliminary concepts and notation used throughout. Chapter 3 then presents the �ow
framework. The general framework is concerned with describing and maintaining properties
de�ned as �xpoints over graphs, and we also present a restricted version of the framework for
cases that require the �xpoint to be unique. This chapter is an adapted and generalized version
of the �ow framework presented at POPL ’18 [Krishna et al. 2018a]. Chapter 4 shows how to
automate �ow-based proofs by presenting a proof strategy that enables SMT-based automation
for a variety of di�cult data structures. Finally, Chapter 5 uses the �ow framework to modularize
the proofs of a large class of concurrent search structures. Chapter 6 concludes this dissertation
and surveys potential future work.

8

2 | Preliminaries

We begin with some basic de�nitions and notations that we use in the rest of this dissertation.
The term (b ? t1 : t2) denotes t1 if condition b holds and t2 otherwise. We write f : A→ B for

a function from A to B, and f : A⇀ B for a partial function from A to B. For a partial function f ,
we write f (x) = ⊥ if f is unde�ned at x . We use the lambda notation (λx . E) to denote a function
that maps x to the expression E (typically containing x). If f is a function from A to B, we write
f [x � y] to denote the function fromA∪{x} de�ned by f [x � y](z) B ((? z :=)x,y, f (z)). We
use {x1� y1, . . . , xn � yn} for pairwise di�erent xi to denote the function ϵ[x1� y1] · · · [xn �
yn], where ϵ is the function on an empty domain. Given functions f1 : A1 → B and f2 : A2 → B
we write f1] f2 for the function f : A1] A2 → B that maps x ∈ A1 to f1(x) and x ∈ A2 to f2(x)
(if A1 and A2 are not disjoint sets, f1] f2 is unde�ned).

We write δn=n′ : M → M for the function de�ned by δn=n′(m) B m if n = n′ else 0. We also
write λ0 B (λm. 0) for the identically zero function, λid B (λm.m) for the identity function, and
use e ≡ e′ to denote function equality. For e : M → M and m ∈ M we write m . e to denote the
function application e(m). We write e◦e′ to denote function composition, i.e. (e◦e′)(m) = e(e′(m))
for m ∈ M , and use superscript notation ep to denote the function composition of e with itself p
times.

For multisets, we use the standard set notation if it is clear from the context. We also write
{x1� i1, . . . , xn � in} for the multiset containing i1 occurrences of x1, i2 occurrences of x2, etc.
For a multiset S , we write S(x) to denote the number of occurrences of x in S .

De�nition 2.1. A partial monoid is a setM , along with a partial binary operation + : M×M ⇀ M ,
and a special zero element 0 ∈ M , such that (1) + is associative, i.e., (m1+m2)+m3 =m1+(m2+m3);
and (2) 0 is an identity element, i.e.,m + 0 = 0 +m =m. Here, equality means that either both sides
are de�ned and equal, or both sides are unde�ned.

We identify a partial monoid with its support set M . If + is a total function, then we call M a
monoid. Let m1,m2,m3 ∈ M be arbitrary elements of the (partial) monoid in the following. We
call a (partial) monoid M commutative if + is commutative, i.e., m1 +m2 = m2 +m1. Similarly, a
commutative monoid M is cancellative if + is cancellative, i.e., if m1 +m2 = m1 +m3 is de�ned,
thenm2 =m3.

We say M is positive if m1 +m2 = 0 implies that m1 = m2 = 0. For a positive monoid M ,
we can de�ne a partial order ≤ on its elements as m1 ≤ m2 if and only if ∃m3. m1 +m3 = m2.
Positivity also implies that everym ∈ M satis�es 0 ≤ m.

9

For e, e′ : M → M , we write e + e′ for the function that maps m ∈ M to e(m) + e′(m). We lift
this construction to a set of functions E and write it as

∑
e∈E e .

De�nition 2.2. A function e : M → M is called an endomorphism on M if for everym1,m2 ∈ M ,
e(m1 +m2) = e(m1) + e(m2). We denote the set of all endomorphisms onM as End(M).

Note that for every endomorphism e ∈ End(M), e(0) = 0 by cancellativity. It is easy to see
that e + e′ ∈ End(M) for any e, e′ ∈ End(M). Similarly, for E ⊆ End(M),

∑
e∈E e ∈ End(M). We say

that a set of endomorphisms E ⊆ End(M) is closed if for every e, e′ ∈ E, e ◦ e′ ∈ E and e + e′ ∈ E.

2.1 Separation Logic
Separation logic (SL), is an extension of Hoare logic [Hoare 1969] that is tailored to perform

modular reasoning about programs that manipulate mutable resources. The primary application
of SL has been to verify heap-based data structures, but the core of SL is an abstract separa-
tion logic (based on the logic of bunched implications (BI) [O’Hearn and Pym 1999]) that can be
instantiated to obtain various existing forms of SL by choosing an appropriate resource:

De�nition 2.3 (Separation Algebra [Calcagno et al. 2007]). A separation algebra is a cancellative,
partial commutative monoid.

We will consider two kinds of SL in this dissertation. The �rst is a standard, �rst-order sepa-
ration logic for reasoning about sequential heap-manipulating programs, that we describe in this
section. We use this simpler logic in Chapter 4 as a basis to explain how to use the �ow frame-
work within SL-based proofs. The second is Iris, a concurrent, higher-order separation logic that
can be used to reason about complex �ne-grained concurrent programs (§2.2). In Chapter 5, we
use the �ow framework within Iris to verify complex real-world concurrent search structures.
We hope this demonstrates the wide applicability of our �ow framework.

We next describe the �rst-order separation logic (henceforth referred to as “SL”).

Heaps Our separation logic uses standard partial heaps as its semantic model. Let us assume
we have the following �xed countably in�nite sets: Val, consisting of program values; Addr,
consisting of memory addresses; and Field, consisting of of �eld names. Partial heaps are partial
maps from addresses to partial maps from �eld-names to values:

Heap B {h | h : Addr⇀ (Field⇀ Val)}

It is easy to see that, under the disjoint union operator], and using the empty heaph∅, (Heap,],h∅)
forms a separation algebra.

10

Programming Language We consider the following simple imperative programming language:

C ∈ ComF skip Empty command
| c Basic command
| C1; C2 Sequential composition
| C1 +C2 Non-deterministic choice
| C∗ Looping

c F assume(B) Assume condition
| x := e Variable assignment
| x := e . f Heap dereference
| e1. f := e2 Heap write
| x := alloc() Allocate heap cell
. . .

Here,C stands for commands, c for basic commands, x for program variables, e for heap-independent
expreesions, f ∈ Field for �eld names, and B for boolean expressions. Since we are only con-
cerned with partial correctness in this dissertation, we can de�ne the more familiar program
constructs as the following syntactic shorthands:

if(B) C1 else C2 B (assume(B); C1) + (assume(¬B); C2)

while(B) C B (assume(B); C)∗; assume(¬B)

Assertions We assume that we start from a standard �rst-order logic over a signature that
includes a countably in�nite number of uninterpreted functions and predicates. The only re-
quirement on the underlying logic is that it supports additional uninterpreted sorts, functions
and predicates, which can be axiomatised in the pure part of the logic1.

Let Var be an in�nite set of variables (we omit sorts and type-checking from the presentation,
for simplicity). The syntax of assertions ϕ is given by the following:

ϕ F P | true | ϕ ∧ ϕ | ϕ ⇒ ϕ | ∃x . ϕ

| e 7→ { f1 : e1, . . . } | ϕ ∗ ϕ | ∗
x∈X

ϕ

Here, the �rst line consists of �rst order assertions P (called pure assertions in the SL world),
the always valid assertion true, standard boolean connectives, and existential quanti�cation. We
can de�ne the remaining boolean connectives and universal quanti�cation as shorthands for the
appropriate combination of these. The second line contains the new predicates and connectives
introduced by SL (so-called spatial assertions). The points-to assertion e 7→ { f1 : e1, . . . } is a
primitive assertion that denotes a heap cell at adderss e containing �elds f1 with value e1, etc.
The key feature of SL is the new connective ∗, or separating conjunction, that is used to conjoin two

1We will use this power to express all the values associated with �ows and �ow interfaces.

11

disjoint parts of the heap. We use the∗x∈X ϕ syntax to represent iterated separating conjunction
(the bound variable x ranges over a set X)2.

The semantics of the separation logic assertions are de�ned with respect to an interpretation
of (logical and program) variables i : Var⇀ Val. We write JeKi for the denotation of expression e
under interpretation i . In particular, we have:

h, i |= e 7→ { f1 : e1, . . . , fk : ek} ⇐⇒ h(JeKi) = { f1� e1, . . . , fk � ek}

h, i |= ϕ1 ∗ ϕ2 ⇐⇒ ∃h1,h2. (h = h1] h2) ∧ (h1, i |= ϕ1) ∧ (h2, i |= ϕ2)

Note that the logic presented here is garbage-collected [Cao et al. 2017] (also known as intuition-
istic). Thus, the semantics of the points-to assertion x 7→ { f1 : e1, . . . , fk : ek} does not restrict
the heap h to only contain the address x , it only requires x to be included in its domain. This
restriction is not essential but simpli�es presentation; also, Chapter 4 considers an embedding of
the �ow framework in the Viper tool, whose logic also uses a garbage-collected semantics.

Operational Semantics We give a small-step operational semantics for our programming lan-
guage. Con�gurations are either fault or a pair (C,σ) of a commandC and a state σ (i.e. a heap-
interpretation pair). The following rules de�ne a reduction relation −→ between con�gurations:

Seq1
(skip; C2),σ −→ C2,σ

Seq2
C1,σ −→ C′1,σ

′

(C1; C2),σ −→ (C
′
1; C2),σ

′
Cho1
(C1 +C2),σ −→ C1,σ

Cho2
(C1 +C2),σ −→ C2,σ

Ass
JBKσ

assume(B),σ −→ skip,σ
Loop
C∗,σ −→ (skip + (C;C∗)),σ

While we can also give similar small-step semantics to basic commands (for instance, see [Reynolds
2002]), it is easier to understand their axiomatic semantics, presented in the next paragraph.

Soundness of separation logic, especially the frame rule below, relies on the following locality
property of the semantics of the programming language. By de�ning our basic commands via an
axiomatic semantics, they automatically satisfy this property, and by construction all composite
commands will have the locality property.

De�nition 2.4 (Locality). (L1) If (C,σ1 } σ) −→∗ fault, then (C,σ1) −→∗ fault.

(L2) If (C,σ1 } σ) −→∗ (skip,σ2), then either there exists σ ′2 such that (C,σ1) −→∗ (skip,σ ′2) and
σ2 = σ } σ

′
2, or (C,σ1) −→

∗ fault.
2Most presentations of SL also include the separating implication connective −∗. However, logics including −∗

are harder to automate and usually undecidable. By omitting −∗ we emphasize that we do not require it to perform
�ow-based reasoning

12

Proof Rules As with Hoare logic, programs are speci�ed in separation logic by Hoare triples.

De�nition 2.5 (Hoare Triple). We say |=
{
ϕ
}
C

{
ψ
}
if for every state σ such that σ |= ϕ we have

(1) (C,σ) 6−→∗ fault, and (2) for every state σ ′ such that (C,σ) −→∗ (skip,σ ′), σ ′ |= ψ .

In the above de�nition, −→∗ is the re�exive transitive closure of the reduction relation −→.
Intuitively, the judgment

{
ϕ
}
C

{
ψ
}

means that if a commandC is executed on a state satisfying
the precondition ϕ, then it executes without faults. Moreover, if C terminates, then the resulting
state satis�es the postconditionψ (thus, this is a partial correctness criterion).

Separation logic inherits the standard Floyd-Hoare structural proof rules, and the rule of con-
sequence:

SL-Skip
`

{
ϕ
}
skip

{
ϕ
} SL-Seq

`
{
ϕ
}
C1

{
ψ
}

`
{
ψ
}
C2

{
ρ
}

`
{
ϕ
}
C1;C2

{
ρ
} SL-Choice

`
{
ϕ
}
C1

{
ψ
}

`
{
ϕ
}
C2

{
ψ
}

`
{
ϕ
}
C1 +C2

{
ρ
}

SL-Loop
`

{
ϕ
}
C

{
ϕ
}

`
{
ϕ
}
C∗

{
ϕ
} SL-Conseq

P ′⇒ ϕ `
{
ϕ
}
C

{
ψ
}

ψ ⇒ Q′

`
{
P ′

}
C

{
Q′

}
The scalability of SL-based reasoning arises due to the following frame rule:

SL-Frame
`

{
ϕ
}
C

{
ψ
}

`
{
ϕ ∗ ρ

}
C

{
ψ ∗ ρ

}
The frame rule allows one to lift a proof that a commandC executes safely on a state satisfying ϕ,
producing a state satisfying ψ if it terminates, to the setting where an additional resource ρ (the
frame) is present. Since C was safe when given only ϕ, it does not access any resources outside
ϕ; hence, ρ is untouched in the postcondition. The soundness of the frame rule relies on the
disjointness of resources enforced by the separating conjunction operator ∗3.

For the basic commands of the programming language, one can give small axioms, proof
rules that specify the minimum resource they need in order to execute safely. The e�ect of basic
commands on more complex states can be derived from these and the frame rule. Here are some
of the small axioms:

SL-Assign
`

{
ψ [x � e]

}
x := e

{
ψ
} SL-Write

`
{
e1 7→ { f : _, . . . }

}
e1. f := e2

{
e1 7→ { f : e2, . . . }

}
SL-Read
`

{
e 7→ { f : z, . . . } ∗ e = y

}
x := e . f

{
y 7→ { f : z, . . . } ∗ x = z

}
Note that we write ψ [x � e] for the assertion ψ where all occurrences of x are replaced with e ,
and _ for an anonymous existential variable (to denote expressions we do not care about).

3The frame rule relies on a side condition that the program variables modi�ed by C do not overlap with the free
variables in ρ, but this condition can be omitted using the “variables as resource” technique [Bornat et al. 2006].

13

Together with standard axioms of �rst-order logic, the proof rules presented above are known
to be complete [Yang 2001b]4. In other words, all valid Hoare triples can be derived by an appro-
priate combinations of these axioms.

2.2 A Brief Introduction to Iris
Iris is a mechanized higher-order concurrent separation logic framework. A formal introduc-

tion to the Iris logic and the underlying programming language semantics is, unfortunately, out
of the scope of this dissertation. We provide intuition for the key logical constructs and reasoning
steps in this section using a simple example from [Birkedal and Bizjak 2018]; for more details and
an excellent introduction to Iris see [Jung et al. 2018b].

Iris’s default programming language, and the one we use in this dissertation, is an ML-like
language with higher-order store, fork, and compare-and-set (CAS). Again, we do not list the
syntax and semantics of the language here, but instead introduce any non-standard features as
and when they occur.

Consider the program
(` ←!` + 1 | | ` ←!` + 1) ; !`

where C1 | | C2 is the parallel composition of two commands (can be encoded using forks). If we
know that the value stored at ` is initially n, then one speci�cation we might wish to prove is
that the program returns a value that is at least n + 1. Because we know that the program only
increases the value of `, a natural �rst attempt at an invariant might be ∃m.` 7→ m ∧m ≥ n.
However, that is not strong enough to tell us that !` > n holds at the end of the program, as it
does not rule out decreasing the value at ` back to n. Intuitively, what we additionally need to
capture is the protocol by which threads modify the shared state (in this case, that threads only
increase !`).

One way to model protocols in Iris is to use ghost state (also known as logical or auxiliary state,
de�ned formally in §5.2.2), a type of primitive resource analogous to the points-to predicate that
helps with the proof but has no e�ect on run-time behavior. Iris allows us to allocate ghost state
at ghost names, the analogue of memory addresses for concrete locations. When we allocate a
new ghost location, we can pick the type of ghost state stored at that location from any resource
algebra, a generalization of separation algebras.

In our example, suppose we had a resource algebra with two elements S , a “start token” to
encode that ` 7→ n, and F , a “�nish token” to encode that ∃m. ` 7→ m ∧m > n. We can allocate
a ghost location γ with value S , denoted by the ghost proposition S

γ , at the beginning, and we
can update the ghost state to F

γ when we increase the value at `. Formally, we can tie the value
of the ghost location to the value of the physical location using an invariant such as:

Inv` B ∃m. ` 7→m ∗
((

S
γ
∧m = n

)
∨

(
F
γ
∧m ≥ n + 1

))
4Note that Yang’s completeness result depends crucially on the separating implication −∗ being included in the

assertion language.

14

A resource algebra is a tuple (M,V : M → Prop, |−| : M → M?, (·) : M ×M → M) satisfying:

∀a,b, c . (a · b) · c = a · (b · c) (ra-assoc)
∀a,b . a · b = b · a (ra-comm)
∀a. |a | ∈ M ⇒ |a | · a = a (ra-core-id)
∀a. |a | ∈ M ⇒ ||a | | = |a | (ra-core-idem)
∀a,b . |a | ∈ M ∧ a 4 b ⇒ |b | ∈ M ∧ |a | 4 |b | (ra-core-mono)

∀a,b . V(a · b) ⇒ V(a) (ra-valid-op)
where M? B M] {⊥} a? · ⊥ B ⊥ · a? B a?

a 4 b B ∃c ∈ M . b = a · c

Figure 2.1: The definition of a resource algebra (RA).

This may at �rst seem pointless: why use ghost state when one can just as easily look at the value
stored at ` to see whether it is equal to or greater than n?

The advantage of using ghost state is that we can de�ne how ghost state can be shared or com-
bined. For instance, by de�ning the resource algebra appropriately, we can obtain the following
properties of our tokens:

F-duplicable
F
γ
` F

γ
∗ F

γ
S-F-incompatible
S
γ
∗ F

γ
` false

Once a thread increases the value at `, F-duplicable lets us duplicate the �nish token and share
the knowledge that !` > n. And if we have F

γ then together with our invariant S-F-incompatible
tells us that !` > n. We will use this to prove the desired postcondition.

2.2.1 Ghost States and Resource Algebras
Before presenting the proof of our example, we take a small detour and formally de�ne some

notions that we will need to perform the above reasoning within Iris.
Resource algebras (RAs) are the structure underlying user-de�ned resources in Iris5. RAs are

a generalization of partial commutative monoids or separation algebras, the standard algebraic
structure underlying resources in most separation logics (including the one in §2.1).

The de�nition of a resource algebra is given in Figure 2.1, where Prop is the type of propo-
sitions of the meta-logic (e.g. Coq). Readers familiar with separation logic will notice that the
composition operator is not partial as is the case in standard separation algebras. Instead, RAs
use the validity predicate V to identify valid elements of the domain; cases where composition
used to be unde�ned can be encoded by sending them to an invalid element. Another di�erence

5Iris actually uses cameras as the structure underlying resources, but as we do not use higher-order resources
(i.e. state which can embed propositions) in this dissertation we restrict our attention to RAs, a stronger, but simpler,
structure.

15

{
` 7→ n

}{
S
γ
∗ ` 7→ n

}{
Inv`

N
}

©­­­«
{

Inv`
N
} {

Inv`
N
}

` ←!` + 1 ` ←!` + 1{
Inv`

N
∗ F

γ
} {

Inv`
N
∗ F

γ
} ª®®®¬ ;{

Inv`
N
∗ F

γ
}

!`{
v .v ≥ n + 1

}

{
Inv`

N
}{

∃m . ` 7→m ∗
((

S
γ
∧m = n

)
∨

(
F

γ
∧m ≥ n + 1

))}>\N
let x = !` in{
∃m . ` 7→m ∗

((
S

γ
∧m = n

)
∨

(
F

γ
∧m ≥ n + 1

))
∧ x ≥ n

}>\N{
Inv`

N
∧ x ≥ n

}{
∃m . ` 7→m ∗

((
S

γ
∧m = n

)
∨

(
F

γ
∧m ≥ n + 1

))
∧ x ≥ n

}>\N
` ← x + 1{
` 7→ (x + 1) ∗ F

γ
∗ F

γ
∧ (x + 1) ≥ n + 1

}>\N{
Inv`

N
∗ F

γ }
Figure 2.2: Proof sketch of our example program in Iris.

is that RAs do not have a single unit element, and instead the partial function |−| assigns to an
element a a core |a | (which can be thought of as a’s own unit). These features allow Iris to express
higher-order state and build more expressive encodings.

For instance, the resource algebra we will use for our example is:

M B {S, F , } V(a) B a , |F | B F |S | B ⊥ a · b B

{
F a = b = F

 otherwise

We can split or compose ghost state at a particular location based on the composition operator
of the underlying resource algebra: a γ

∗ b
γ
a` a · b

γ
. This lets us prove the properties F-

duplicable and S-F-incompatible of our token resource algebra.
The main invariant Iris maintains about ghost locations is that the comopsition of all ghost

elements stored at a location is valid as per the underlying resource algebra. For example, Iris
allows us to allocate a fresh ghost location containing any valid element. Iris also lets us update
the ghost state as long as the invariant that the composite ghost state is valid is maintained.

De�nition 2.6. One can do a frame-preserving updates from a ∈ M to B ⊆ M , written a B, if

∀a?f ∈ M
?. V(a · a?f) ⇒ ∃b ∈ B. V(b · a

?
f).

We say a b if a {b}.

Intuitively, a b says that every frame a f that is compatible with a should also be compatible
with b. Thus, changing one’s fragment of the ghost state from a to some b will not violate the
assumptions made by anyone else. In our example RA, it is easy to see that the only frame-
preserving update is S F .

2.2.2 Example Iris Proof
We can now describe the proof of our example program in Iris (shown on the left of Figure 2.2).

Since the memory cell located at ` needs to be utilized by both threads, we create an invariant.

16

Invariants in Iris, written ϕ
N

where ϕ is an Iris assertion andN is the name of the invariant, are
persistent resources. They are duplicable and thus sharable among multiple threads. To create an
invariant ϕ

N
, one must demonstrate that one owns the resource ϕ that it contains.

In our case, we create the invariant Inv`
N

, and so we �rst need to establish Inv` . We already
own the memory location ` 7→ n, but we do not yet own the ghost resource, so we �rst allocate a
new ghost resource. Iris allows us to allocate a ghost cell a γ at a fresh ghost location γ as long
as the initial resource is valid,V(a). S is a valid element of our RA, so we allocate the start token
S
γ , and now have enough resources (and satisfy the constraints imposed by Inv`) to create the

invariant Inv`
N

.
To reason about the parallel composition of threads, Iris has the following (derived) rule6:

HT-Par
`

{
ϕ1

}
C1

{
v .ψ1

}
`

{
ϕ2

}
C2

{
v .ψ2

}
`

{
ϕ1 ∗ ϕ2

}
C1 | | C2

{
(v1,v2).ψ1[v � v1] ∗ψ2[v � v2]

}
This rule allows us to run C1 and C2 in parallel if they have disjoint preconditions, and breaks
down the proof into two separate proofs of each command. Before applying this rule, we use the
fact that invariants are duplicable to split Inv`

N
into Inv`

N
∗ Inv`

N
. Now, using HT-Par, we

divide up the resources at hand and give each thread one copy of the invariant. Next, we show
that each thread satis�es the following Hoare triple:

{
Inv`

N
}
` ←!` + 1

{
Inv`

N
∗ F

γ
}
.

This proof is shown on the right of Figure 2.2, where we have desugared the (non-atomic)
read and increment into a read followed by a write. First, to prove that the dereference !` in the
let binding is safe, we need to exhibit a memory cell ` 7→ _. However, at this point we have
only the invariant and the �nish token, and the memory cell in question is wrapped up in the
invariant Inv`

N
. Iris allows us to open up invariants and access their contents, but only for

an atomic step, and forces us to re-establish them afterwards. We open the invariant N , show
that the dereference is safe, and obtain the knowledge that x ≥ n (since this is true in either
disjunct). Before we can consider the next line of the program, we must close the invariant again
(this obligation is denoted by the superscript > \ N on the intermediate assertion). Since we did
not modify the state, we continue to satisfy Inv` , so we can close up the invariant and obtain
Inv`

N
∧ x ≥ n.

Now consider the write to `. Again, we need the resource ` 7→ _ to show that the write is safe,
so we again open the invariant and reason about the write. However, now we have a state where
the �rst disjunct in the invariant no longer holds, so the only way we can close the invariant is
to satisfy the second disjunct, which means we need to transform S

γ into F
γ . Iris allows us to

modify ghost state, as long as the change we make to the resource is a frame-preserving update
(De�nition 2.6). Since we know that S F , we convert S

γ to F
γ .

Finally, to show the desired postcondition of this code fragment, note that we need a copy of
6Note that since we are now reasoning about an ML-like programming language, the postcondition in Hoare

triples explicitly mention the value v returned by evaluating the command C .

17

F
γ outside the invariant. We obtain this by the rule F-duplicable, and close the invariant (this

time, by satisfying the second disjunct).
When the two threads join, HT-Par lets us compose the postconditions of both threads, ob-

taining Inv`
N
∗ F

γ
∗ Inv`

N
∗ F

γ . As we are in an intuitionistic setting, we simply throw away
the duplicates and obtain the intermediate assertion immediately preceding the �nal dereference
of ` in Figure 2.2. Once again, we open the invariant to prove safety of the dereference !`. Note
that this time, since we also own a copy of F

γ outside the invariant, we have additional informa-
tion about the shared state. In particular, S-F-incompatible tells us that the �rst disjunct cannot
hold, thus we know that the value stored at ` is at least n + 1. We thus close the invariant and
obtain the postcondition (again throwing away any resources that we no longer need).

18

3 | The Flow Framework

The �ow framework is a separation logic based approach for specifying and reasoning about
unbounded data structures. The framework represents the heap as an abstract labeled graph.
Data structure invariants are expressed as local conditions satis�ed by each node in the graph.
These conditions are allowed to depend on the �ow of the node, a quantity de�ned as a �xpoint of
a set of algebraic equations induced by the entire graph. Unbounded regions of the heap are then
abstracted using �ow interfaces that specify the relies and guarantees that the region imposes
on the rest of the heap to maintain the local �ow invariants at each of its nodes. Proving that
a program preserves the data structure invariants is done by showing that the modi�ed region
satis�es an equivalent �ow interface.

This chapter begins in §3.1 by explaining the core mathematical notions behind the �ow
framework. In §3.2 we de�ne the �ow as a solution to a �xpoint equation over a graph, and
de�ne an abstraction, �ow interfaces, to reason compositionally about �ow-based properties.
In many domains, it is not true that given a graph there exists a �ow, or that that the �xpoint
equation de�ning a �ow has a unique solution. We describe three conditions in §3.4 under which
the �ow equation always has a unique solution, and conclude in §3.5. We postpone the surveying
of related work to Chapter 4 (see §4.7).

3.1 Flows from First Principles
In this section, we explain the core mathematical notions behind our �ow framework, and

their motivation with respect to local reasoning principles. We aim for a general technique for
modularly proving the preservation of recursively-de�ned invariants over partial graphs, with
well-de�ned decomposition and composition operations. Partiality is essential for modular rea-
soning; when applying our reasoning technique to programs, method calls need not be speci�ed
with knowledge of the global graph, and in a concurrent setting, multiple threads can simultane-
ously operate on disjoint subgraphs.

Since we continue to use the priority inheritance protocol as a motivating example through
this chapter, we repeat its code and a snapshot of a possible state of the data structure in Figure 3.1.

Flow Domain Our �ow framework is parametric with an underlying �ow domain which is a
four-tuple (M, 0,+, E) whose components are elaborated and motivated next. As we will show,
di�erent instantiations of these parameters can capture a �exible variety of graph properties

19

1 method acquire(p: Node, r: Node) {
2 if (r.next == null) {
3 r.next := p
4 } else {
5 p.next := r;
6 update(r, 0, p.curr_prio)
7 }
8 }
9 method update(n: Node, from: Int, to: Int) {

10 if (from == to)
11 return
12 var old_prio := n.curr_prio
13 if (from != 0)
14 n.prios := n.prios \ {from}
15 if (to != 0)
16 n.prios := n.prios ∪ {to}
17 n.curr_prio := max(n.prios)
18 if (n.curr_prio != old_prio && n.next != null) {
19 update(n.next, old_prio, n.curr_prio)
20 }
21 }

p13 {3, 2}

r1

1

{1}

p2

1

{1, 1}

r21 {1, 1}

p3

2

{2, 1}

r3

{1, 1, 2, 2}

2

p41 {1} p52 {2}

r4 {1, 2, 2}2

p62 {2}

p72 {2}

Figure 3.1: Pseudocode of the PIP and a state of the protocol data structure. Round nodes represent
processes and rectangular nodes resources. Nodes are marked with their current priorities curr_prio as
well as the aggregate priority multiset prios. A node’s default priority is underlined and marked in bold
blue.

which can be tracked and reasoned about compatibly with separation-logic-style local reasoning.

Flow Values and Flows General recursive properties of graphs naturally depend on non-local
information; for example, we cannot express that a graph is a acyclic directly as a conjunction
of independent invariants per node in the graph. To make expressing such properties possible
locally, we require a means of summarising this external information, embodied by �ow values in
our technique; the set of �ow values M is the �rst parameter of our �ow domains. A �ow value
is assigned (under constraints explained below) to each node in a graph, capturing su�cient
information about the graph to express and reason about non-local properties of interest. Our
technique enforces minimal restrictions on the choice of M , which gives it its generality; we
consider three examples for the rest of this section:

PIP Domain For reasoning about the priority inheritance protocol (PIP) example (cf. Figure 3.1)
�ow values capture multisets of integers, representing the priorities of the current node
and all those directly referencing it in the PIP data structure.

Path Counting Flow values capture the number of paths from a distinguished root node r ; one
can then express that a graph is a tree rooted at r with the local condition that the �ow at
each node is 1.

20

Inverse Reachability Flow values capture multisets of sets of nodes; each set represents the
nodes along a simple path (one with no cycles) leading to the current node in the graph.

For a graph G over a set of nodes N we express properties of G in terms of node-local condi-
tions that may depend on the nodes’ �ow. A �ow is a function flow : N → M that assigns every
node a �ow value and must be some �xpoint of the following �ow equation:

∀n ∈ N . flow(n) = in(n) +
∑
n′∈N

flow(n′) . e(n′,n) (3.1)

Intuitively, one can think of the �ow as being obtained by a fold computation over the graph1:
the in�ow in : N → M de�nes an initial �ow at each node. This initial �ow is then updated
recursively as follows. For every node n, the current �ow value at its predecessor nodes n′ is
transferred ton via edge functions e(n′,n) : M → M (we use . to denote function application where
the function is on the right). The transferred �ow values are aggregated using the summation
operation + provided by the �ow domain to obtain the updated �ow of n. We next motivate the
individual components of the �ow equation and discuss the constraints imposed on them by local
reasoning principles.

Edge Functions In any partial graph, the �ow value assigned to a node by a �ow is propagated
to its neighbours (and transitively) according to a labelling of pairs of nodes (n,n′) with edge
functions e : M → M , mapping the �ow value at the source node n to one propagated on this edge
to the target node n′. We require such a labelling for all pairs consisting of a source node n inside
the graph and a target node n′ (possibly outside the graph). In addition, we provide a convenient
default case. We require a distinguished 0 �ow value to represent no �ow (the second element
of our �ow domains); the corresponding (constant) zero function λ0 = (λm. 0) then conceptually
represents the absence of an edge in the graph2. We write e(n,n′) for the edge function labelling
the pair (n,n′). A set of edge functions E from which this labelling is chosen makes up the fourth
element of our �ow domains; as we will see in §3.4, restrictions to certain sets E can be exploited
to strengthen our overall technique.

For our PIP Domain example, the set of edge functions would be zero functions (where no edge
exists in the PIP structure), and otherwise functions which return a singleton multiset storing the
maximum value in the input multiset or the default priority of the node, whichever is greater. For
instance, in Figure 3.1, e(r3,p2) = λ0 and e(r3,p1) = (λX . {max(X ∪ {1})}). Since the �ow value
at r3 is {1, 2, 2}, the edge (r3,p1) propagates the value {2} to p1. In the path-counting example, the
edge functions would be identity functions (edge present) and zero functions (edge absent). For
inverse reachability, the (non-zero) edge function on the edge (n,n′) maps a multiset of sets T to
a new multiset T ′ containing S ∪ {n} for every S ∈ T such that n < S . Note, T ′ does not contain
sets S ∈ T that contain n, because such sets correspond to cyclic paths in the graph, while this
particular domain tracks only simple paths.

1We note that �ows are not generally de�ned in this manner as we consider any �xpoint of the �ow equation to
be a �ow. Though, the analogy helps to build the right intuition.

2We will sometimes informally refer to paths in a graph as meaning sequences of nodes for which no edge function
labelling a consecutive pair in the sequence is the zero function λ0.

21

Flow Aggregation and Inflows The �ow value at a node is de�ned by those propagated to
it via edge functions, along with an additional in�ow value, explained here. Since multiple edges
can reach a single node, we need to model the aggregation of these values, for which a binary +
operator on �ow values must be de�ned. + is the third element of our �ow domains. To make
this aggregation of values order-independent, we require + to be commutative and associative.
The 0 �ow value (representing no �ow) must act as a unit with respect to +. For example, in
our multiset-based �ow domains we let + be multiset union whereas in the path-counting �ow
domain + means addition on natural numbers.

Every node has an in�ow, modelling contributions to its �ow value which do not come from
nodes inside the graph. This in�ow term plays two important roles: �rst, since our graphs are
partial, the in�ow models the contributions from nodes outside of the graph in question. Second,
in�ow can be arti�cially added as a means of specialising the computation of �ow values. For
example, in our PIP domain, the in�ow of each node will be the singleton multiset containing the
node’s default priority. In our path counting domain, we can select the distinguished root node n
by giving it an in�ow of 1; we could also do this for multiple nodes, to count paths from each. In
the inverse reachability domain, we can employ multisets containing a single empty set, forcing
paths from these nodes to be tracked by the �ow computation.

The �ow equation (3.1) de�nes the �ow of a node n to be the aggregation of �ow values
coming from other nodes n′ inside the graph (as given by the respective edge function e(n′,n))
as well as the in�ow in(n). Preserving solutions to this equation is a fundamental goal of our
technique. A graph (including its edge functions and �ow value assignment) is called a �ow
graph if there is some choice of in�ow for its nodes satisfying the �ow equation. We now turn to
how this property can be preserved under changes to the graph in order to aid the veri�cation of
�ow-dependent invariants.

Graph Updates and Cancellativity Consider that we take a �ow graph along with a correct
in�ow, and obtain a modi�ed graph di�erent only in that a single pair of nodes (n1,n2) has a
di�erent edge function. We are concerned with the question of whether and how we can change
the �ow values in the new graph (keeping the in�ow unchanged) to satisfy the �ow equation.

Consider �rst the simple case that the target n2 of the modi�ed edge propagates no �ow
via edge functions (e(n2,n′) = λ0 for all n′); it may however receive additional �ow from edge
functions e(n′′,n2) coming from nodes n′′ other than n1. For example, in the PIP graph shown in
Figure 3.1, removing the edge from p6 to r4 (i.e. setting it to the zero function λ0) does not a�ect
the current priority of r4 whereas ifp7 had current priority 1 instead of 2, then the current priority
of r4 would have to decrease. For this reason, our PIP Domain aggregates multisets of incoming
�ow values, rather than having + simply collapse these to their maximum. The multisets contain
enough information to locally adjust the �ow value when an edge is removed from the graph,
whereas if we knew only the maximum and removed an edge (p, r) which provided exactly this
value, we could not decide whether or not to decrease the �ow value of r without some knowledge
of all of r ’s incoming edges. In this example, recomputing the �ow value for r4 is simply a matter
of subtraction (removing {2} from the multiset at r4); this exploits the property that this �ow
domain is cancellative with respect to +, giving us a unique solution. Note that without this

22

property, the recomputation of a �ow value for the target node n2 of the removed edge consistent
with the rest of the graph would in general depend on the values of flow(n′′) . e(n′′,n2) for all
nodes n′′ (such as p7 in our example), causing the recomputation to concern unboundedly-many
nodes which were not involved in the change to the edge.

Mathematically, cancellativity is the key property which allows removal of edges to be han-
dled without this non-local dependency; for this reason, we make cancellativity of+ a requirement
on our �ow domains3.

Flow Footprints and Interfaces The cancellativity of + alone is not su�cient to reason lo-
cally about general �ow graph modi�cations. Consider again the simple modi�cation of changing
the edge function labelling a single edge (n1,n2). Having cancellativity avoids dependency on ar-
bitrary incoming edges, but once we remove the above assumption that the target node n2 had
no non-zero outgoing edges, recomputing a single �ow value is not su�cient. We also need to
account for the propagation of the change transitively throughout the graph. For example, if we
add the edge (p1, r1) in Figure 3.1 and hence, 3 to the �ow of r1, we also add 3 to the �ow of all
other nodes reachable from r1. On the other hand, adding an edge from r4 to p5 a�ects only these
two nodes. To capture the relative locality of the side-e�ects of such updates, we introduce the
notion of �ow footprint of a modi�cation to a �ow graph. A modi�cation’s �ow footprint is the
smallest subset of the graph containing those nodes which are sources of modi�ed edges, plus
all those whose �ow values need to be changed in order to obtain a new �ow graph. Note that
the new �ow graph must have the same in�ow, as the in�ow captures the (unchanged) external
contribution to the �ow values inside the graph. For example, the �ow footprint for the addition
of the edge (p1, r1) in Figure 3.1 is p1 and all nodes reachable from r1 (including r1 itself).

Flow footprints can be used to localise the e�ect of a graph modi�cation: from the perspective
of the graph outside of the �ow footprint, nothing observable in the �ow domain has changed. We
use this observation to extract an abstraction of �ow graphs which we call �ow interfaces. Given
a �ow (sub)graph, its �ow interface consists of the node-wise in�ow and out�ow (being the �ow
contributions its nodes make to all nodes outside of the graph). It is thus an abstraction that hides
the �ow values and edges inside the region. Flow graphs that have the same �ow interface “look
the same” to the external graph, as the same values are propagated inwards and outwards.

This idea, while simple, turns out to be powerful enough to build a separation algebra over
our reasoning technique, allowing graphs to be decomposed, locally modi�ed and recomposed
in ways yielding all the local reasoning bene�ts of separation logics. In particular, for graph
operations within a subgraph with a certain interface, we need to prove: (a) that the modi�ed
subgraph is still a �ow graph (by checking that the �ow equation still has a solution locally in
the subgraph) and (b) that it satis�es the same interface (in other words, the �ow footprint of the
modi�cation is within the subgraph), and the meta-level results for our technique justify that we
can recompose the modi�ed subgraph with any graph that the original could be composed with.
These steps form the core of our reasoning technique, and are de�ned formally in §3.2.

3As we will show in §3.2.1, an analogous problem for composition of �ow graphs is also directly solved by this
choice to force aggregation to be cancellative.

23

Local Reasoning Challenges Our main technique, elaborated in the following section, em-
ploys �ow interfaces to abstract over subgraphs in which localised graph modi�cations can be
shown to be opaque to the remaining graph. Despite the power of this mechanism, when applying
it in practice with a particular �ow domain and graphs, the following key questions arise:

1. When does the �ow equation have a �xpoint solution? How can this be checked, in partic-
ular, when is a newly-modi�ed subgraph a �ow graph?

2. When is a solution to the �ow equation guaranteed to be unique? If desired, how can this
property be enforced and preserved?

3. Which graph modi�cations have which �ow footprints? In particular, how localised can
their e�ects on �ow values be?

The �rst two questions are particularly pertinent when we use the �ow values of each node in a
graph to express properties of interest. For example, consider the path-counting �ow domain. If
the graph contains a cycle that is reachable from the dedicated root nodes (i.e., those with non-
zero in�ow), then no �ow exists. On the other hand, if the graph contains cycles but no cycle
is reachable from the root nodes, then many �ows exist; we can assign arbitrary �ow values to
the cycles as long as the nodes on each cycle are assigned the same value. The property that all
nodes have a �ow value of 1 expresses that the graph is a tree only if we can restrict the �xpoint
solution to be one that assigns 0 �ow to unreachable cycles.

In the next section, we formalise our base �ow framework and core reasoning techniques,
and present a variety of techniques for addressing these key questions.

3.2 The Flow Framework
We now present the formal development of our �ow framework: a general technique for

preserving global properties of graphs using modular reasoning.

3.2.1 Flows and Flow Interfaces
A �ow is a recursively-constrained quantity expressed over a labelled graph. The graph labels

and �ow values are determined by a �ow domain; our entire theory is parametric on this domain.

De�nition 3.1 (Flow Domain). A �ow domain (M,+, 0, E) consists of a commutative cancellative
(total) monoid (M, 0,+) and a set of functions E ⊆ M → M .

Example 3.2. The �ow domain used for the path-counting �ow is (N,+, 0, {λid, λ0}), consisting of
the monoid on natural numbers under addition and the set of edge functions containing only the
identity function and the zero function.

Example 3.3. For the PIP, we de�ne the �ow domain (NN,∪, ∅, {(λS . {max(S)}), λ0}), consisting
of the monoid of multisets of natural numbers under multiset union and two edge functions: λ0 and
the function mapping a multiset S to the singleton multiset containing the maximum value in S .

24

Example 3.4. Given two �ow domains (M1,+1, 01, E1) and (M2,+2, 02, E2), the product domain
(M1 ×M2,+, (01, 02), E1 × E2) where (m1,m2) + (m

′
1,m

′
2) B (m1 +1m

′
1,m2 +2m

′
2) is a �ow domain.

In the rest of this section we �x a �ow domain (M,+, 0, E) and a (potentially in�nite) set of
nodes N. We abstract heaps using directed partial graphs; integration of our graph reasoning
with direct proofs over program heaps is handled in §4.1. The graphs are partial because they
describe abstractions of heaplets rather than the whole heap.

De�nition 3.5 (Graph). A (partial) graph G = (N , e) consists of a �nite set of nodes N ⊆ N and a
mapping from pairs of nodes to edge functions e : N × N→ E.

A �ow of graph G = (N , e) under in�ow in : N → M is a solution of the following �xpoint
equation (the same as (3.1), repeated for clarity) over G, denoted FlowEqn(in, e, flow):

∀n ∈ dom(in). flow(n) = in(n) +
∑

n′∈dom(in)

flow(n′) . e(n′,n) (FlowEqn)

Example 3.6. Consider the graph in Figure 3.1; if the �ow domain is as in Example 3.3, the in�ow
function in assigns to every node n the multiset containing n’s default priority and we let flow(n) be
the multiset labelling every node in the �gure, then FlowEqn(in, e, flow) holds.

An important fact about �ows is that any �ow of a graph over a product of two �ow domains
is the product of the �ows on each �ow domain component; this fact greatly simpli�es reasoning
about overlaid graph structures. Note that a �ow of a graph may (in general) not exist, or may
not be unique, depending on the possible solutions to the �ow equation (FlowEqn) above.

De�nition 3.7 (Flow Graph). A �ow graph H = (N , e, flow) consists of a graph (N , e) and a
function flow : N → M such that there exists an in�ow in : N → M satisfying FlowEqn(in, e, flow).

We let dom(H) = N , and sometimes identify H and dom(H) to ease notational burden. For
n ∈ H we write Hn for the singleton �ow subgraph of H induced by n.

Two �ow graphs with disjoint domains always compose to a graph, but this will only be a
�ow graph if their �ows are chosen consistently to admit a solution to the resulting �ow equation
(i.e. the �ow graph composition operator de�ned below is partial).

De�nition 3.8 (Flow Graph Algebra). The �ow graph algebra (FG, •,H∅) for the �ow domain
(M,+, 0, E) is de�ned by

FG B {(N , e, flow) | (N , e, flow) is a �ow graph}

(N1, e1, flow1) • (N2, e2, flow2) B

{
H H = (N1] N2, e1] e2, flow1] flow2) ∈ FG
⊥ otherwise

H∅ B (∅, e∅, flow∅)

where e∅ and flow∅ are the edge functions and �ow on the empty set of nodes N = ∅. We use H to
range over FG.

25

As discussed in §3.1, cancellativity of the �ow domain operator + is key to de�ning an ab-
straction of �ow graphs that permits local reasoning. The following lemma follows from the fact
that + is cancellative.

Lemma 3.9. Given a �ow graph (N , e, flow) ∈ FG, there exists a unique in�ow in : N → M such
that FlowEqn(in, e, flow).

Proof. Suppose in and in′ are two solutions to FlowEqn(_, e, flow). Then, for any n,

flow(n) = in(n) +
∑

n′∈dom(in)

flow(n′) . e(n′,n) = in′(n) +
∑

n′∈dom(in′)

flow(n′) . e(n′,n)

which, by cancellativity of the �ow domain, implies that in(n) = in′(n). �

Our abstraction of �ow graphs consists of two complementary notions. Lemma 3.9 implies
that any �ow graph has a unique in�ow. Thus we can de�ne an in�ow function that maps each
�ow graphH = (N , e, flow) to the unique in�ow inf(H) : H → M such that FlowEqn(inf(H), e, flow).
We can also de�ne the out�ow of H as the function outf(H) : N \ N → M de�ned by

outf(H)(n) B
∑
n′∈N

flow(n′) . e(n′,n).

De�nition 3.10 (Flow Interface). Given a �ow graphH ∈ FG, its �ow interface int(H) is the tuple
(inf(H), outf(H)) consisting of its in�ow and its out�ow.

We use I to range over interfaces, and write I in, I out for the two components of the interface
I = (in, out). We again identify I and dom(I in) to ease notational burden. The interfaces of a
singleton �ow graph containing n capture the �ow and the out�ow values propagated by n’s
edges:

Lemma 3.11. For any �ow graphH = (N , e, flow) and n,n′ ∈ N , if e(n,n) = λ0 then int(Hn)
in(n) =

flow(n) and int(Hn)
out(n′) = flow(n) . e(n,n′).

Proof. Follows directly from (FlowEqn) and the de�nition of out�ow. �

We can now de�ne the �ow interface algebra as follows:

De�nition 3.12 (Flow Interface Algebra).

FI B {int(H) | H ∈ FG}

I∅ B int(H∅)

I1 ⊕ I2 B


I I1 ∩ I2 = ∅

∧ ∀i , j ∈ {1, 2} ,n ∈ Ii . Ii in(n) = I in(n) + Ij
out(n)

∧ ∀n < I . I out(n) = I1
out(n) + I2

out(n)

⊥ otherwise.

26

Flow interface composition is well de�ned because of cancellativity of the underlying �ow
domain (although it is also, like �ow graph composition, partial). We next show the key result
for this abstraction: the ability for two �ow graphs to compose depends only on their interfaces.
Flow interfaces thus implicitly de�ne a congruence relation on �ow graphs.

Lemma 3.13. int(H1) = I1 ∧ int(H2) = I2 ⇒ int(H1 • H2) = I1 ⊕ I2.

Proof. If H1 •H2 is de�ned and has interface I , then we show that I1 ⊕ I2 is de�ned and equal to I .
Let Hi = (Ni, ei, flowi), I = (in, out), I1 = (in1, out1), and I2 = (in2, out2). Since H = H1 • H2 ∈ FG
and inf(H) = I in = in, we know by de�nition that ∀i , j ∈ {1, 2} ,n ∈ Hi,

flow(n) = in(n) +
∑
n′∈H

flow(n′) . e(n′,n)

⇐⇒ flowi(n) = in(n) +
∑
n′∈H

flow(n′) . e(n′,n)

⇐⇒ ini(n) +
∑
n′∈Hi

ei(n
′,n, flowi(n

′)) = in(n) +
∑
n′∈Hi

ei(n
′,n, flowi(n

′)) +
∑
n′∈Hj

ej(n
′,n, flowj(n

′))

⇐⇒ ini(n) = in(n) +
∑
n′∈Hj

ej(n
′,n, flowj(n

′)) (By cancellativity)

⇐⇒ ini(n) = in(n) + out j(n).

Secondly, let H = H1 • H2 and note that

out(n) B
∑
n′∈H

flow(n′) . e(n′,n)

=
∑
n′∈H1

flow1(n
′) . e1(n

′,n) +
∑
n′∈H2

flow2(n
′) . e2(n

′,n)

= out1(n) + out2(n).

As H = H1 • H2 implies dom(H1) ∩ dom(H2) = ∅, this proves that I1 ⊕ I2 = I .
Conversely, if I1 ⊕ I2 is de�ned and equal to I then we show that H1 • H2 is de�ned and has

interface I . First, I1 ∩ I2 = ∅, so we know that the graphs are disjoint. Note that the proof above
works in both directions, so

∀i , j ∈ {1, 2} ,n ∈ Ii . Ii in(n) = I in(n) + Ij
out(n)

⇒ flow(n) = in(n) +
∑
n′∈H

flow(n′) . e(n′,n).

This tells us that H = H1 • H2 ∈ FG and inf(H) = in. From above, we also know that out(n) =
out1(n) + out2(n), so the interface composition condition I out(n) = I1

out(n) + I2
out(n) gives us

outf(H) = out. �

Crucially, the following result shows that we can use �ow interfaces as an abstraction com-
patible with separation-logic-style framing. This means that when replacing a �ow (sub)graph
H1 with H ′1, it is su�cient to check that int(H ′1) is a contextual extension of int(H1) in order to
ensure that H ′1 still composes with anything that H1 composed with.

27

Theorem 3.14. The �ow interface algebra (FI, ⊕, I∅) is a separation algebra.

We next make the notion of �ow footprint that we introduced in §3.1 formally precise.

De�nition 3.15 (Flow Footprint). Let H and H ′ be �ow graphs such that int(H) = int(H ′), then
the �ow footprint of H and H ′, denoted �p(H ,H ′), is the smallest �ow graph H ′1 such that there
exists H1,H2 with H = H1 • H2, H ′ = H ′1 • H2 and int(H1) = int(H ′1).

The following lemma states that the �ow footprint captures exactly those nodes in the graph
that are a�ected by a modi�cation (i.e. either their �ow or their outgoing edges change).

Lemma 3.16. Let H and H ′ be �ow graphs such that int(H) = int(H ′), then for all n ∈ H , n ∈
�p(H ,H ′) i� Hn , H ′n.

In general, when modifying a �ow graph H to another �ow graph H ′, requiring that H ′ sat-
is�es the same interface int(H) can be too strong a condition. In particular, it does not permit
allocating new nodes in the modi�ed region. Instead, we want to allow int(H ′) to di�er from
int(H) in that the new interface could have larger domain, as long as the new nodes are fresh
and edges from the new nodes do not change the out�ow of the modi�ed region. We capture this
notion formally below.

De�nition 3.17. An interface I = (in, out) is contextually extended by I ′ = (in′, out′), written
I - I ′, if and only if

1. dom(in) ⊆ dom(in′),

2. ∀n ∈ dom(in). in(n) = in′(n), and

3. ∀n′ < dom(in). out(n′) = out′(n′).

The following theorem states that contextual extension preserves composability and is itself
preserved under interface composition.

Theorem 3.18 (Replacement Theorem). If I = I1 ⊕ I2, and I1 - I ′1 are all valid interfaces such that
I ′1 ∩ I2 = ∅ and ∀n ∈ I

′
1 \ I1. I2

out(n) = 0, then there exists a valid I ′ = I ′1 ⊕ I2 such that I - I ′.

Proof. LetH ,H1,H2 be �ow graphs with interfaces I , I1, I2 respectively (thus, H = H1•H2). De�ne
H0 = (N0, e0, flow0) B (dom(I ′1) \ dom(I1), (λn,n′. λ0), (λn. in′1(n) + out1(n))).

First, we show that H ′1 = H0 • H1 is de�ned. The graph composition is de�ned because
I ′1 ∩ I2 = ∅, and to show that it is a �ow graph, we choose in′1 = I ′1

in. We need to show, for any
n ∈ H ′1, that

flow′1(n) = in′1(n) +
∑
n′∈H ′1

flow′1(n
′) . e′1(n

′,n)

= in′1(n) +
∑
n′∈H1

flow1(n
′) . e1(n

′,n). (as n′ ∈ H0 ⇒ e′1(n
′,n) = λ0)

28

When n ∈ H0, by de�nition,

flow′1(n) = flow0(n) = in′1(n) + out1(n) = in′1(n) +
∑
n′∈H1

flow1(n
′) . e1(n

′,n).

On the other hand, when n ∈ H1,

flow′1(n) = flow1(n) = in1(n) +
∑
n′∈H1

flow1(n
′) . e1(n

′,n) = in′1(n) +
∑
n′∈H1

flow1(n
′) . e1(n

′,n)

(I1 - I ′1 implies in1(n) = in′1(n)).
Second, we show that int(H ′1) = I ′1. By construction, inf(H ′1) = in′1 = I ′1

in. The out�ow
outf(H ′1)(n) is equal to∑

n′∈H ′1

flow′1(n
′) . e′1(n

′,n) =
∑
n′∈H1

flow1(n
′) . e1(n

′,n) = out1(n) = out′1(n)

(the last equality follows from I1 - I ′1).
Third, we show that H ′ = H ′1 •H2 = H0 •H is a �ow graph. The graph composition is de�ned

because I ′1 ∩ I2 = ∅, and to show that it is a �ow graph, we choose the in�ow

in′(n) =

{
in(n) n ∈ H

in′1(n) n ∈ H0.

We now need to show that (FlowEqn) holds, but �rst note that for any n ∈ H ′,∑
n′∈H ′

flow′(n′) . e′(n′,n) =
∑
n′∈H1

flow1(n
′) . e1(n

′,n) +
∑
n′∈H2

flow2(n
′) . e2(n

′,n) (3.2)

as when n′ ∈ H0, e′(n′,n) = e0(n
′,n) = λ0. Now when n ∈ H0,

flow′(n) = flow0(n) = in′1(n) + out1(n) = in′(n) +
∑
n′∈H1

flow1(n
′) . e1(n

′,n).

The RHS of (FlowEqn) is, by (3.2),

in′(n) +
∑
n′∈H1

flow1(n
′) . e1(n

′,n) +
∑
n′∈H2

flow2(n
′) . e2(n

′,n)

but note that the third term is zero as n ∈ I ′1 \ I1 ⇒ I2
out(n) = 0. Thus, the �ow equation holds.

On the other hand, when n ∈ H ,

flow′(n) = flow(n) = in(n) +
∑
n′∈H

flow(n′) . e(n′,n) = in′(n) +
∑
n′∈H ′

flow′(n′) . e′(n′,n),

where the last equality follows from (3.2).
Finally, we let I ′ = int(H ′) and show that I - I ′. By construction, dom(I) ⊆ dom(I ′) and

in(n) = in′(n) when n ∈ dom(I). When n′ < dom(I), by (3.2), out′(n′) = out1(n′) + out2(n′) =
out(n′), completing the proof. �

29

3.2.2 Flow Interfaces as a Resource Algebra
As de�ned above, �ow graphs (De�nition 3.8) and �ow interfaces (De�nition 3.12) have a

partial composition operator. However, to use �ow interfaces to reason about programs within
the Iris logic, we need them to be resource algebras (Figure 2.1), in particular composition needs
to be a total operator. This can be achieved by de�ning a special invalid element and mapping
all pairs for whom composition should be unde�ned to this invalid element. This subsection
presents modi�ed de�nitions of the �ow graph and �ow interface algebras that can be used in
Iris. Since this is also the standard way of encoding partial functions in �rst-order logic, we also
use this in our SL encoding in Chapter 4.

De�nition 3.19 (Flow Graph Algebra). The �ow graph algebra (FG, •,H∅) for �ow domain (M,+, 0, E)
is de�ned by

FGF H ∈ {(N , e, flow) | (N , e, flow) is a �ow graph} | H

(N1, e1, flow1) • (N2, e2, flow2) B

{
H H = (N1] N2, e1] e2, flow1] flow2) ∈ FG
H otherwise

_ • H B H C H • _
H∅ B (e∅, flow∅)

where e∅ and flow∅ are the edge functions and �ow on the empty set of nodes N = ∅.

De�nition 3.20 (Flow Interface Algebra). The �ow interface algebra (FI,V, |−|, ⊕) is de�ned by

FIF I ∈ {int(H) | H ∈ FG} | I V (a) B a , I |a | B I∅

I1 ⊕ I2 B

{
int(H) ∃H1,H2. H = H1 • H2 ∧ ∀i ∈ {1, 2} . int(Hi) = Ii

I otherwise,

where I∅ B int(H∅).

Theorem 3.21. The �ow interface algebra (FI,V, |−|, ⊕) is a resource algebra.

3.3 Expressivity of Flows
We now give a few examples of �ows to demonstrate the range of data structures whose

properties can be expressed as local constraints on each node’s �ow.
We start by demonstrating the generality of the �ow equation in terms of its ability to capture

global graph properties. In particular, we de�ne a universal �ow that computes, at each node,
su�cient information to reconstruct the entire graph. This shows that �ows are powerful enough
to capture any graph property of interest.

30

De�nition 3.22 (Universal Flow). Saywe are given a set of nodesN ⊆ N and a function ϵ : N×N→
A labelling each pair of nodes from some setA (for instance, to encode an unlabelled graph,A = {0, 1}
and ϵ(n,n′) is 1 i� an edge is present in the graph). Consider the �ow domain (N2N×N×A,∪, ∅, E),
consisting of the monoid of multisets of sets of tuples (n,n′,a) of edges (n,n′) and labels a ∈ A under
multiset union and edge functions E containing λ0 and for every n,n′ ∈ N,a ∈ A the function

λn,n′,a(S) B {P � ((n,n
′,a) ∈ P ? S(P \ {(n,n′,a)}) : 0)} .

Given a �ow graph H = (N , e, flow), if e(n,n′) = λn,n′,ϵ(n,n′) and inf(H) = (λn. {∅}), then flow(n)
is a multiset containing, for each simple path in H ending at n, a set of all edge-label tuples of edges
occurring on that path.

To see why the universal �ow computes the entire graph at each node, let us look at the edge
functions in more detail. The way to think of e(n,n′) = λn,n′,ϵ(n,n′) is that it looks at each path P ′

in the input multiset S and if P ′ does not contain the tuple (n,n′, ϵ(n,n′)) then it adds the tuple to
P ′ and adds the resulting path P to the output multiset. In order to convert this procedure into a
multiset comprehension style de�nition, the formal de�nition above starts from each path P in
the output multiset and works backward (i.e. P ′ = P \ {(n,n′, ϵ(n,n′))}).

To understand the �ow computation, let us start with the in�ow to a node n, the singleton
multiset containing the empty set {∅}, and track its progress through a path. For every n′, the
edge function e(n,n′) acts on {∅} and propagates the singleton multiset {(n,n′, ϵ(n,n′))}. In this
way, if we consider a sequence of (distinct) edges (n1,n2), . . . , (nk−1,nk), then this value becomes
{(n1,n2, ϵ(n1,n2)), . . . , (nk−1,nk, ϵ(nk−1,nk))}. However, the minute we follow an edge (ni,ni+1)
that has occurred on the path before, the edge function e(ni,ni+1) will send this value to the
empty multiset ∅. Thus, the �ow at each node n turns out to be the multiset containing sets of
edge-label tuples for each simple path in the graph4. Note that we label all pairs of nodes in the
graph by edges of the form λn,n′,ϵ(n,n′). This means that flow(n) will contain one set for every
sequence of pairs of nodes in the graph, even those corresponding to edges that do not “exist”
in the original graph ϵ . From this information, one can easily reconstruct all of ϵ and hence any
graph property of the global graph.

The power of the universal �ow to capture any graph property comes with a cost: the �ow
footprint of any modi�cation is the entire global graph. This means that we lose all powers of local
reasoning, and revert to expensive global reasoning about the program. This is to be expected,
however, because the universal �ow captures all details of the graph, even ones that are possibly
irrelevant to the correctness of the program at hand. The art of using �ows is to carefully de�ne
a �ow that captures exactly the necessary global information needed to locally prove correctness
of a given program. The rest of this section describes a few interesting examples of �ows that we
use in our case studies in Chapter 4.

De�nition 3.23 (Path-counting Flow). The path-counting �ow uses the �ow domain (N,+, 0, {λid, λ0})
de�ned in Example 3.2. Given a �ow graph H = (N , e, flow) over this domain, if e(n,n′) is λid for
edges that are present in the graph and λ0 otherwise, and inf(H) = (λn. (n = r ? 1 : 0)) for some
root node r , then flow(n) is the number of paths from r to n.

4This �ow domain has the property that any graph has a unique solution to the �ow equation (see §3.4.2).

31

The path-counting �ow is a very useful �ow for describing the shape of common structures,
e.g. lists (singly and doubly linked, cyclic), trees, and (by using product �ow constructions) nested
and overlaid combinations of these. By considering products with �ows for data properties, we
can also describe structures such as sorted lists, binary heaps, and search trees.

De�nition 3.24 (Inverse Reachability Flow). Consider the �ow domain (N2N,∪, ∅, E), consisting
of the monoid of multisets of sets of nodes under multiset union and edge functions E containing λ0
and for every n ∈ N the function

λn(S) B {P � (n ∈ P ? S(P \ {n}) : 0)} .

Given a �ow graph H = (N , e, flow), if e(n,n′) = λn and inf(H) = (λn. (n = r ? {∅} : ∅)), then
flow(n) is a multiset containing, for each simple path in H from r to n, the set of all nodes occurring
on that path.

This �ow is a simpli�ed version of the universal �ow in that for each edge it only keeps track
of the source node. By capturing less information about the global graph, however, this �ow
permits more modi�cations: for instance, one can swap the order of two nodes in a simple path
and only update the �ows of the two nodes modi�ed. This is an example of carefully tuning the
�ow domain to match the modi�cations performed by the program.

3.4 Existence and Uniqeness of Flows
We typically express global properties of a graph G = (N , e) by �xing a global in�ow in :

N → M and then constraining the �ow of each node in N using node-local conditions. However,
as we discussed at the end of §3.1, there is no general guarantee that a �ow exists or is unique
for a given in and G. The remainder of this section presents three complementary conditions
under which we can prove that our �ow �xpoint equation always has a unique solution. To this
end, we say that a �ow domain (M,+, 0, E) has unique �ows if for every graph (N , e) over this
�ow domain and in�ow in : N → M , there exists a unique flow that satis�es the �ow equation
FlowEqn(in, e, flow).

3.4.1 Edge-local Flows
A simple but useful case is when all edge functions e ∈ E ignore their input; i.e. are constant

functions. We call such a �ow domain edge-local. In this case, the �ow of every node can be
computed as a direct aggregation (according to the �ow domain operator +) of the (constant)
values its neighbours edge functions propagate; the �ow equation is no-longer recursive and
always has a unique solution.

Example 3.25. The �ow of a PIP graph can be encoded using an edge-local �ow domain. This
is because the PIP implementation tracks the �ow explicitly as part of the state of each object (the
multisets stored in the prios �eld). We explain this in more depth in §4.3.

32

Lemma 3.26. If (M,+, 0, E) is a �ow domain such that for every e ∈ E there exists a ∈ M such that
e ≡ (λm. a), then this �ow domain has unique �ows.

Proof. Let (N , e) be a graph, in : N → M an in�ow, and flow : N → M an arbitrary �ow that
satis�es FlowEqn(in, e, flow). We will give a closed expression for flow(n), thereby showing that
there is a unique �ow.

Since the �ow domain is edge-local, there must be a constantan,n′ such that for everyn,n′ ∈ N ,
e(n,n′) ≡ (λm. an,n′). By (FlowEqn), for any n ∈ N ,

flow(n) = in(n) +
∑
n′∈N

flow(n′) . e(n′,n) = in(n) +
∑
n′∈N

an′,n .

As this is a closed expression depending only on the graph and the in�ow, the �ow must be
unique. �

3.4.2 Nilpotent Cycles
Let (M,+, 0, E) be a �ow domain where every edge function e ∈ E is an endomorphism on M .

In this case, we can show that the �ow of a node n is the sum of the �ow as computed along each
path in the graph that ends atn. Suppose we additionally know that the edge functions are de�ned
such that their composition along any cycle in the graph eventually becomes the identically zero
function. In this case, we need only consider �nitely many paths to compute the �ow of a node,
which means the �ow equation has a unique solution.

Formally, such edge functions are called nilpotent endomorphisms:

De�nition 3.27. A closed set of endomorphisms E ⊆ End(M) is called nilpotent if there existsp > 1
such that ep ≡ 0 for every e ∈ E.

Example 3.28. The edge functions of the inverse reachability domain of §3.1 are nilpotent endo-
morphisms (taking p = 2).

If all edges of a �ow graph are labelled with edges from a nilpotent set of endomorphisms,
then the �ow equation has a unique solution:

Lemma 3.29. If (M,+, 0, E) is a �ow domain such thatM is a positive monoid and E is a nilpotent
set of endomorphisms, then this �ow domain has unique �ows.

Before we prove this lemma, we present some useful notions and lemmas when dealing with
�ow domains that are endomorphisms.

Lemma3.30. If (M,+, 0, E) is a �ow domain such that E is a closed set of endomorphisms,G = (N , e)
is a graph, in : N → M is an in�ow such that FlowEqn(in, e, flow), and L ≥ 1,

flow(n) = in(n) +
∑

n1,...,nk∈N
1≤k<L

in(n1) . e(n1,n2) · · · e(nk−1,nk) . e(nk,n)

+
∑

n1,...,nL∈N

flow(n1) . e(n1,n2) · · · e(nL−1,nL) . e(nL,n).

33

Proof. If L = 1, then this follows directly from (FlowEqn): flow(n) = in(n) +
∑

n′∈N flow(n′) .
e(n′,n). For L > 1, by induction, we can assume that

flow(n) = in(n) +
∑

n1,...,nk∈N
1≤k<L−1

in(n1) . e(n1,n2) · · · e(nk−1,nk) . e(nk,n)

+
∑

n1,...,nL−1∈N

flow(n1) . e(n1,n2) · · · e(nL−2,nL−1) . e(nL−1,n).

Now, using the (FlowEqn) to substitute for flow(n1) in the third term, we get (after using the
endomorphism property and some variable renaming):∑

n1,...,nL−1∈N

in(n1) . e(n1,n2) · · · e(nL−2,nL−1) . e(nL−1,n)

+
∑

n1,...,nL∈N

flow(n1) . e(n1,n2) · · · e(nL−1,nL) . e(nL,n).

Adding these to the above expression completes the proof. �

De�nition 3.31. The capacity of a �ow graph G = (N , e) is cap(G) : N × N→ (M → M) de�ned
inductively as cap(G) B cap|G |(G), where

cap0(G)(n,n′) B δn=n′ capi+1(G)(n,n′) B δn=n′ +
∑
n′′∈G

capi(G)(n,n′′) ◦ e(n′′,n′).

For a �ow graph H = (N , e, flow), we write cap(H)(n,n′) = cap((N , e))(n,n′) for the capacity
of the underlying graph. Intuitively, cap(G)(n,n′) is the function that summarizes how �ow is
routed from any source node n in G to any other node n′, including those outside of G.

Lemma 3.32. The capacity is equal to the following sum-of-paths expression:

capi(G)(n,n′) = δn=n′ +
∑

n1,...,nk∈G
0≤k<i

e(n,n1) · · · e(nk,n
′).

Proof. Follows from the de�nition of capacity by a straightforward induction on i . �

We now have all the ingredients needed to prove that nilpotent �ow domains have unique
�ows.

Proof of Lemma 3.29. Let G = (N , e) be a graph, in : N → M an in�ow, and flow : N → M an
arbitrary �ow that satis�es FlowEqn(in, e, flow). By Lemma 3.30,

flow(n) = in(n) +
∑

n1,...,nk∈N
1≤k<L

in(n1) . e(n1,n2) · · · e(nk−1,nk) . e(nk,n)

+
∑

n1,...,nL∈N

flow(n1) . e(n1,n2) · · · e(nL−1,nL) . e(nL,n). (3.3)

34

Let S be the third term in (3.3); we claim S is zero for su�ciently large L. When L > p |N |, where
p is the degree of nilpotence of E, we will show that (in terms of the monoid order ≤):

S ≤
∑

n1,m∈N

flow(n1) . capL(G)(n1,m) .
(
capL(G)(m,m)

)p
. capL(G)(m,n).

In this case, since E is nilpotent,
(
capL(G)(m,m)

)p
≡ λ0 which implies that S ≤ 0 ⇒ S = 0. To

show the above inequality, consider any term flow(n1) . e(n1,n2) · · · e(nL−1,nL) . e(nL,n) in S . As
L > p |N |, by the Pigeonhole Principle there must be somem ∈ N that appears p + 1 times in the
sequence n1, . . . ,nL. Thus, there exists some indices 1 ≤ i1 < · · · < ip+1 ≤ L such that our term
is equal to

flow(n1) . e(n1,n2) · · · e(ni1−1,m)

.
(
e(m,ni1+1) · · · e(ni2−1,m)

)
· · ·

(
e(m,nip+1) · · · e(nip+1−1,m)

)
︸ ︷︷ ︸

p times

. e(m,nip+1+1) · · · e(nL−1,nL) . e(nL,n).

By Lemma 3.32, this is ≤ flow(n1) . capL(G)(n1,m) .
(
capL(G)(m,m)

)p
. capL(G)(m,n).

Thus,
flow(n) = in(n) +

∑
n1,...,nk∈N
1≤k<L

in(n1) . e(n1,n2) · · · e(nk−1,nk) . e(nk,n).

As this expression is uniquely determined by the �ow domain, the in�ow, and the graph, the �ow
must be unique. �

3.4.3 Effectively Acyclic Flow Graphs
There are some �ow domains that compute �ows useful in practice, but which do not guar-

antee either existence or uniqueness of �xpoints a priori for all graphs. For example, the path-
counting �ow from Example 3.2 is one where for certain graphs, there exist no solutions to the
�ow equation (see Figure 3.2(a)), and for others, there can exist more than one (in Figure 3.2(b),
the nodes marked with x can have any path count, as long as they both have the same value).

In such cases, we explore how to restrict the class of graphs we use in our �ow-based proofs
such that each graph has a unique �xpoint; the di�culty is that this restriction must be respected
for composition of our graphs. Here, we study the class of �ow domains (M,+, 0, E) such that M
is a positive monoid and E is a set of reduced endomorphisms (de�ned below); in such domains
we can decompose the �ow computations into the various paths in the graph, and achieve unique
�xpoints by restricting the kinds of cycles graphs can have.

De�nition 3.33. A �ow graph H = (N , e, flow) is e�ectively acyclic (EA) if for every 1 ≤ k and
n1, . . . ,nk ∈ N ,

flow(n1) . e(n1,n2) · · · e(nk−1,nk) . e(nk,n1) = 0.

35

1

?

?

1

(a)

1

x

x

1

(b)

1 n1 1n2

1n3 1 n4

1

n5

1

1 n1 1n2

1n3 1 n4

1

n5

1

(c)

Figure 3.2: Examples of graphs that motivate e�ective acyclicity. All graphs use the path-counting flow
domain, the flow is displayed inside each node, and the inflow is displayed as curved arrows to the top-le�
of nodes. 3.2(a) shows a graph and inflow that has no solution to (FlowEqn); 3.2(b) has many solutions.
3.2(c) shows a modification that preserves the interface of the modified nodes, yet goes from a graph that
has a unique flow to one that has no solutions to (FlowEqn).

The simplest example of an e�ectively acyclic graph is one where the edges with non-zero
edge functions form an acyclic graph. However, our semantic condition is weaker: for example,
when reasoning about two overlaid acyclic lists whose union happens to form a cycle, a product
of two path-counting domains will satisfy e�ective acyclicity because the composition of di�erent
types of edges results in the zero function.

Lemma 3.34. Let (M,+, 0, E) be a �ow domain such that M is a positive monoid and E is a closed
set of endomorphisms. Given a graph (N , e) over this �ow domain and in�ow in : N → M , if there
exists a �ow graph H = (N , e, flow) that is e�ectively acyclic, then flow is unique.

Proof. By Lemma 3.30, if we can show that for some L > 1 the following expression is 0, then the
�ow at every node is determined uniquely by the in�ow and the graph:∑

n1,...,nL∈N

flow(n1) . e(n1,n2) · · · e(nL−1,nL) . e(nL,n). (3.4)

Pick L > |G |. For any term T in (3.4), the Pigeonhole Principle tells us there must be some
m ∈ N that appears twice in the sequence n1, . . . ,nL. Thus, there exists indices 1 ≤ i1 < i2 ≤ L
such that

T = flow(n1) . e(n1,n2) · · · e(ni1−1,m)︸ ︷︷ ︸
T1

. e(m,ni1+1) · · · e(ni2−1,m)︸ ︷︷ ︸
T2

. e(m,ni2+1) · · · e(nL−1,nL) . e(nL,n)︸ ︷︷ ︸
T3

.

36

Note that by Lemma 3.30, flow(n1) . T1 ≤ flow(m). Furthermore, as H is EA, flow(m) . T2 = 0.
Thus, T = flow(n1) .T1 .T2 .T3 ≤ flow(m) .T2 .T3 = 0 .T3 = 0. By positivity, T = 0, completing
the proof. �

While the restriction to e�ectively acyclic �ow graphs guarantees us that the �ow is the
unique �xpoint of the �ow equation, it is not easy to show that modi�cations to the graph
preserve EA while reasoning locally. Even modifying a subgraph to another with the same
�ow interface (which we know guarantees that it will compose with any context) can inadver-
tently create a cycle in the larger composite graph. For instance, consider Figure 3.2(c), that
shows a modi�cation to nodes {n3,n4} (the boxed blue region). The interface of this region is
({n3� 1,n4� 1} , {n5� 1,n2� 1}), and so swapping the edges of n3 and n4 preserves this
interface. However, the resulting graph, despite composing with the context to form a valid �ow
graph, is not EA (in this case, it has multiple solutions to the �ow equation). This shows that
�ow interfaces are not powerful enough to preserve e�ective acyclicity. For a special class of
endomorphisms, we show that a local property of the modi�ed subgraph can be checked, which
implies that the modi�ed composite graph continues to be EA.

De�nition 3.35. A closed set of endomorphisms E ⊆ End(M) is called reduced if e ◦e ≡ λ0 implies
e ≡ λ0 for every e ∈ E.

Note that if E is reduced, then no e ∈ E can be nilpotent. In that sense, this class of instantia-
tions is complementary to those in §3.4.2.

Example 3.36. Examples of �ow domains that fall into this class include positive semirings of
reduced rings (with the additive monoid of the semiring being the aggregation monoid of the �ow
domain and E being any set of functions that multiply their argument with a constant �ow value).
Note that any direct product of integral rings is a reduced ring. Hence, products of the path counting
�ow domain are a special case.

For reduced endomorphisms, it is su�cient to check that a modi�cation preserves the �ow
routed between every pair of source and sink node. This pairwise check ensures that we do not
create any new cycles in any larger graph. We de�ne a relation analogous to contextual extension,
that constrains us to modi�cations that preserve EA while allowing us to allocate new nodes5.

De�nition 3.37. A �ow graph H ′ is a sub�ow-preserving extension of H , written H -s H ′, if

int(H) - int(H ′),

∀n ∈ H ,n′ < H ′,m.m ≤ inf(H)(n) ⇒m . cap(H)(n,n′) =m . cap(H ′)(n,n′), and
∀n ∈ H ′ \ H ,n′ < H ′,m.m ≤ inf(H ′)(n) ⇒m . cap(H ′)(n,n′) = 0.

We now show that it is su�cient to check our local condition on a modi�ed subgraph to
guarantee composition back to an e�ectively-acyclic composite graph:

5The monoid ordering used in the following de�nition exists because we are working with a positive monoid
(see Chapter 2).

37

Theorem 3.38. Let (M,+, 0, E) be a �ow domain such thatM is a positive monoid and E is a reduced
set of endomorphisms. If H = H1 •H2 and H1 -s H

′
1 are all e�ectively acyclic �ow graphs such that

H ′1 ∩ H2 = ∅ and ∀n ∈ H ′1 \ H1. outf(H2)(n) = 0, then there exists an e�ectively acyclic �ow graph
H ′ = H ′1 • H2 such that H -s H ′.

Before we prove this Theorem, we list some properties of �ow graph compositions where one
subgraph consists of disconnected nodes (all edges are zero function):

Lemma 3.39. If H ′ = H0 • H such that H0 = (_, e0, _) and ∀n,n′. e0(n,n′) ≡ λ0, and H is EA, then
H ′ is EA.

Lemma 3.40. If H ′ = H0 • H such that H0 = (_, e0, _) and ∀n,n′. e0(n,n′) ≡ λ0, then ∀n′ <
H ′. outf(H ′)(n′) = outf(H)(n′).

Lemma 3.41. If H ′ = H0 • H such that H0 = (_, e0, _) and ∀n,n′. e0(n,n′) ≡ λ0, then

∀n ∈ H ′,n′ < H ′,m.m ≤ inf(H ′)(n) ⇒m . cap(H ′)(n,n′) =

{
m . cap(H)(n,n′) n ∈ H

0 n ∈ H0.
(3.5)

We now have enough tools to prove the analogue of the Replacement Theorem for e�ectively
acyclic graphs.

Proof of Theorem 3.38. We �rst consider the case where dom(H1) = dom(H ′1). In this case, note
that the de�nitions of contextual and sub�ow-preserving extensions reduce to int(H1) = int(H ′1)
and ∀n ∈ H1,n

′ < H1,

m ≤ inf(H1)(n) ⇒m . cap(H1)(n,n
′) =m . cap(H ′1)(n,n

′). (3.6)

Thus, Lemma 3.13 tells us that H ′ = H ′1 • H2 exists and int(H ′) = int(H). All that remains to
show is that H ′ is EA and show the analogue of (3.6) between H and H ′. To simplify the proof,
let H ′2 B H2 and note that (3.6) also holds between H2 and H ′2.

Let us �rst show that H ′ is EA. If not, then there exists some n11,n
2
1, . . . ,n

p1
1 ,n

1
2, . . . ,n

pk
k
∈ H

that is an alternating sequence (i.e. n1i and n1i+1 are in di�erent subgraphs, and every nji is in the
same subgraph as n1i) and some 1 ≤ x ≤ k, 1 ≤ y ≤ px such that

S = in(n11) . e
′(n11,n

2
1) · · · e

′(n
pk−1
k
,n

pk
k
) . e′(n

pk
k
,n

y
x) , 0.

Note that k cannot be 1, because then the entire path would be in H ′i for i ∈ {1, 2}, contradicting
the fact that H ′i is EA; thus 1 < k .

If x = k , then let

T = in(n11) .
©­­­«

∑
m1,...,ml ∈H_

0≤l<L

e′(n11,m1) · · · e
′(ml ,n

1
2)
ª®®®¬ · · ·

©­­­«
∑

m1,...,ml ∈H_
0≤l<L

e′(n1k−1,m1) · · · e
′(ml ,n

1
k)

ª®®®¬
38

for some L such that S + _ = T . e′(n1
k
,n2

k
) · · · e′(n

pk
k
,n

y
x). As S , 0, positivity tells us S + _ , 0, and

so T , 0. By applying (3.6) repeatedly, we can show that T = in(n11) . c_(n
1
1,n

1
2) . . . c_(n

1
k−1,n

1
k
).

The de�nition of interface composition tells us that in_(n
1
k
) = T + _, so by positivity we must

have in_(n
1
k
) . e′(n1

k
,n2

k
) · · · e′(n

pk
k
,n

y
x) , 0. However, this is a path entirely in some subgraph,

contradicting EA of that subgraph.
On the other hand, if x < k , we have

S = in(n11) . e
′(n11,n

2
1) · · · e

′(n
y−1
x ,n

y
x) .

(
e′(n

y
x ,n

y+1
x) · · · e

′(n
px
x ,n

1
x+1)

)
. e′(n1x+1,n

2
x+1) · · · e

′(n
pk
k
,n

y
x).

Since our �ow domain is reduced and S , 0, we can repeat the parenthesized portion and obtain

S′ = in(n11) . e
′(n11,n

2
1) · · · e

′(n
y−1
x ,n

y
x) . e

′(n
y
x ,n

y+1
x) · · · e

′(n
px
x ,n

1
x+1)

.e′(n1x+1,n
2
x+1) · · · e

′(n
pk
k
,n

y
x) . e

′(n
y
x ,n

y+1
x) · · · e

′(n
px
x ,n

1
x+1) , 0.

Note that this is a path that starts and ends on the boundary (i.e. with the last edge crossing
between subgraphs). Depending on whether nyx and n1

k
are in the same subgraph or not, we can

use new variable names and write this as

S′ = in(m1
1) . e

′(m1
1,m

2
1) · · · e

′(m
ql−1
l
,m

ql
l
) . e′(m

ql
l
,m1

l+1) , 0.

Let

T = in(m1
1) .

©­­­«
∑

n1,...,nk∈H_
0≤k<L

e′(m1
1,n1) · · · e

′(nk,m
1
2)
ª®®®¬ · · ·

©­­­«
∑

n1,...,nk∈H_
0≤k<L

e′(m1
l ,n1) · · · e

′(mk,n
1
l+1)

ª®®®¬
for some L such that T = S′ + _, so by positivity, T , 0. Again, applying (3.6) repeatedly lets us
show that T = in(m1

1) . c_(m
1
1,m

1
2) . . . c_(m

1
l
,m1

l+1). By expanding the de�nitions of the capacities
and using the endomorphism property we get that T is the sum of cyclic paths in H , at least one
of which is non-zero. This contradicts the fact that H is EA. The proof of the analogue of (3.6)
between H and H ′ proceeds similarly, by breaking up all paths into segments in each subgraph
and using (3.6) repeatedly; we omit it here for clarity of presentation.

We now turn to the case where dom(H1) ⊂ dom(H ′1). Our aim is to reduce this case to the
previous case, thus we need to construct an intermediate graph H ′′1 that satis�es the conditions
of this theorem but additionally has the same domain as H ′1.

We de�ne H0 = (N0, e0, flow0) B (dom(H ′1) \ dom(H1), (λn,n
′. λ0), (λn. in′1(n) + out1(n))).

Let H ′′1 = H0 • H1; this exists because the graphs are disjoint by construction, and we show that
(FlowEqn) is true for in�ow in′1 by showing, for any n ∈ H ′′1 , that

flow′′1 (n) = in′1(n) +
∑

n′∈H ′′1

flow′′1 (n
′) . e′′1 (n

′,n)

= in′1(n) +
∑
n′∈H1

flow1(n
′) . e1(n

′,n). (as n′ ∈ H0 ⇒ e′′1 (n
′,n) = λ0)

39

When n ∈ H0, by de�nition,

flow′′1 (n) = flow0(n) = in′1(n) + out1(n) = in′1(n) +
∑
n′∈H1

flow1(n
′) . e1(n

′,n).

On the other hand, when n ∈ H1,

flow′′1 (n) = flow1(n) = in1(n) +
∑
n′∈H1

flow1(n
′) . e1(n

′,n) = in′1(n) +
∑
n′∈H1

flow1(n
′) . e1(n

′,n),

where we use in1(n) = in′1(n) from H1 -s H
′
1. By Lemma 3.39, we get that H ′′1 is EA.

Next, we show thatH ′′1 -s H
′
1. First, to show that I ′′1 - I ′1, note that by construction dom(H ′′1) =

dom(H ′1); we have already shown that H ′′1 satis�es the �ow equation with in�ow in′1, hence they
have the same in�ows; and by Lemma 3.40 they have the same out�ows. Second, let n ∈ H ′′1 ,n

′ <
H ′1 and m ≤ inf(H ′′1)(n). If n ∈ H0, then by Lemma 3.41, m . cap(H ′′1)(n,n

′) = 0 and since
n < H1, by H1 -s H

′
1, m . cap(H ′1)(n,n

′) = 0. On the other hand, if n ∈ H1, then by Lemma 3.41,
m.cap(H ′′1)(n,n

′) =m.cap(H1)(n,n
′)which equalsm.cap(H ′1)(n,n

′) byH1 -s H
′
1 and inf(H ′′1)(n) =

inf(H ′1)(n) = inf(H1)(n). The third condition of H ′′1 -s H ′1 is vacuously true since dom(H ′′1) =
dom(H ′1).

By a similar argument, we can show that H ′′ = H ′′1 • H2 = H0 • H exists, and is EA. At this
point, we have H ′′ = H ′′1 • H2 and H ′′1 -s H ′1 are all e�ectively acyclic �ow graphs such that
H ′1 ∩H2 = ∅ and additionally dom(H ′′1) = dom(H ′1). Thus, we can use the case when the domains
are equal (which has been proved above) and obtain an EA �ow graph H ′ = H ′1 • H2 such that
H ′′ -s H

′. Since -s is transitive, we just need to show that H -s H ′′ to complete the proof.
To see thatH -s H ′′, �rst consider I - I ′′: by construction andH1 -s H

′
1, dom(H) ⊆ dom(H ′′);

we constructed H ′′ to have an in�ow that is equal to in on all nodes in H ; and by Lemma 3.40
they have the same out�ows. Second, let n ∈ H ,n′ < H ′′ and m ≤ inf(H)(n). By Lemma 3.41,
m . cap(H ′′)(n,n′) = m . cap(H)(n,n′). Third, let n ∈ H ′′ \ H ,n′ < H ′′ and m ≤ inf(H ′′)(n). Since
n ∈ H ′′ \ H ⇒ n ∈ H0, Lemma 3.41 tells us thatm . cap(H ′′)(n,n′) = 0. �

3.5 Conclusion
We have presented the �ow framework, enabling local modular reasoning about recursively-

de�ned properties over general graphs. Using the �ow framework avoids several limitations
of common solutions to such abstraction, allows unrestricted sharing and arbitrary traversals of
heap regions, and provides a uniform treatment of data constraints. The core reasoning technique
has been designed to make minimal mathematical requirements, providing great �exibility in
terms of potential instantiations and applications. We identi�ed key classes of these instantiations
for which we can provide existence and uniqueness guarantees for the �xpoint properties our
technique addresses.

40

4 | Proof Techniqe and Automation

This chapter shows how to integrate �ow interface reasoning into a standard separation logic.
It presents a proof technique that is widely applicable, and illustrates its usage on a simple ex-
ample program; the same core proof technique can be applied to all examples discussed in this
chapter.

4.1 Proof Techniqe
Since �ow graphs and �ow interfaces form separation algebras, it is possible to de�ne a sep-

aration logic (SL) using these notions as its semantic model (indeed, this is the proof approach
taken by Krishna et al. [2018b]). By contrast, we encode �ow interfaces within a standard separa-
tion logic without modifying its semantics. This has the important technical advantage that our
proof technique can be naturally integrated with existing separation logics and veri�cation tools
supporting SL-style reasoning. In §4.4 we demonstrate this concretely for the Viper veri�er, but
our technique is also easy to extend to logics such as Iris which support (ghost) resources ranging
over user-de�ned separation algebras [Jung et al. 2018b]. We focus here on the simple separation
logic from §2.1 that does not have support for e.g. �ne-grained concurrency, but our compatibility
with standard SL semantics makes integration with more sophisticated logics straightforward.

4.1.1 Encoding Flow-based Proofs in SL
We now describe our proof technique, using the running example of the insertion procedure

on a singly-linked list. While this is a simple example which can be handled by a wide variety
of other techniques, we use it to illustrate the key points of our technique as it minimizes any
example-speci�c complexity. As we show subsequently, by layering on more �ow domains the
same proof sketch extends to insertion into doubly-linked lists or the Harris list, illustrating the
power of �ow-based proofs to scale to algorithms with arbitrary traversals and complex overlaid
structures.

Abstracting the Heap using Flow Interfaces The key idea behind encoding �ow interfaces
in SL is to use a special ghost �eld intf to store an interface for every node. The interface stored
in this �eld at address x is the singleton interface of a �ow graph containing only node x . While
the �ow framework gives us the power to use interfaces of any size in our proofs to reason

41

1 // Let edges({next : y} , x, z) B (z = y , null ? λid : λ0)
2 // Let γls(x, {next : y} ,m) B m = 1
3 // Let φ(I) B I in = {h� 1, _� 0} ∧ I out = {_� 0}
4

5 method traverse(h: Node, X: Set[Node])
6 returns (X ′: Set[Node])
7 requires Gr(X , J ,γls) ∗ φ(JX)
8 ensures Gr(X ′, J ′,γls) ∗ φ(J

′
X ′)

9 {
10 var l := h; var r := l.next;
11 while (nondet() && r != null)
12 invariant Gr(X , J ,γls) ∗ φ(JX)

13 invariant l ∈ X ∗ r = next(®fl) ∗ (r , null ⇒ r ∈ X)
14 {
15 l := r; r := l.next;
16 }

17
{
Gr(X1, J ,γls) ∗ Gr(X \ X1, J ,γls) ∗ V (JX) ∗ φ(JX) ∗ X1 = {l}

}
18 var X1 := {l}; var X ′1 := insert(l: Node, X1);

19

{
Gr(X ′1, J

′,γls) ∗ Gr(X \ X1, J ,γls) ∗ JX1 - J
′
X ′1
∗ V (JX) ∗ φ(JX) ∗ X1 = {l}

}
20 return X ∪ (X ′1 \ X1);
21 }
22

23 method insert(l: Node, X1: Set[Node])
24 returns (X ′1: Set[Node])
25 requires Gr(X1, J ,γls) ∗ X1 = {l}
26 ensures Gr(X ′1, J

′,γls) ∗ JX1 - J
′
X ′1

27 {

28
{
Gr(X1, J ,γls) ∗ X1 = {l}

}
29 var r := l.next;
30 var n := alloc(); initNode(n, 0);
31 X ′1 := X ∪ {n};

32

{
Gr(X1, J ,γls) ∗ N(n, ®fn, J , J) ∗ X ′1 = X1 ∪ {n} ∗ V

(
JX ′1

)
∗ JX1 - JX ′1

}
33 n.next := r; l.next := n;

34

{
∗
x ∈X ′1

(
N(x, ®fx , J , J ′) ∗ γls(x, ®fx , J

′
x
in
)

)
∗ JX ′1 = J

′
X ′1
∗ V

(
JX ′1

)
∗ JX1 - JX ′1

}
35 sync({l,n});

36

{
∗
x ∈X ′1

(
N(x, ®fx , J ′, J ′) ∗ γls(x, ®fx , J

′
x
in
)

)
∗ V

(
J ′X ′1

)
∗ JX1 - J

′
X ′1

}
37 }

Figure 4.1: A proof sketch using our flow-based proof technique for the insert procedure of a linked list.

42

about concrete states, this choice is in some sense canonical. If we tie the singleton interfaces to
abstract the singleton heap regions, then we can express the interface of any set of nodes as the
composition of the respective singleton interfaces. On the other hand, if we only tied the interface
of a larger region to the heap, we would lose the ability to precisely reason about modi�cations
to single nodes when needed (see Lemma 3.11).

Encoding The basic building block of �ow-based speci�cations is a node predicate N(x, ®fx , J , J ′)
that abstracts a node x to the corresponding singleton �ow graph:

N(x, ®fx , J , J ′) B x 7→
{
intf : Jx , ®fx

}
∗ dom(Jx) = {x} ∗ ∀y. J ′x

out
(y) = J ′x

in
(x) . edges(®fx , x,y)

Here, J and J ′ are logical variables of typeN→ FI, and we use the notation Jx for the interface that
J maps node x to1. This predicate expresses the fact that we have a heap cell at address x , whose
intf �eld stores the singleton interface Jx and whose other �elds are captured by the parameter
®fx (a list of �eld-name/value mappings). N is parametric with a user-de�ned abstraction function
edges that abstracts the �eld values (as de�ned by ®fx) of x to the �ow graph edge function for the
pair of nodes (x,y); we constrain the out�ow of x ’s singleton interface J ′x in terms of this edge.

The purpose of using two interface maps Jx and J ′x is to allow the �elds of x to be abstracted
by an interface that may temporarily di�er from the one stored in intf. We call such nodes dirty
nodes. This �exibility will be used in our proofs to model intermediate states between modifying
the heap and updating the �ow graph abstraction.

Specifications Speci�cations in our technique, for instance method pre and postconditions,
are naturally expressed using the node predicate N within an iterated separating conjunction
over a set of nodes X , to express a region of the heap abstracted by a �ow interface:

Gr(X , J ,γ) B∗
x∈X

(
N(x, ®fx , J , J) ∗ γ (x, ®fx , Jx in(x), . . .)

)
∗ V (JX)

Gr(X , J ,γ) describes a set of nodes X , each of which satis�es N and none of whom are dirty (as
we use N(x, ®fx , J , J ′) with J = J ′)2. JX is syntactic sugar for the (iterated) interface composition⊕

x∈X Jx ; the assertionV (JX) represents the fact that the singleton interfaces stored in the intf

�elds of nodes in X compose to a valid interface.
The invariants of the data structure in question are encoded using a combination of the Gr

predicate, and another predicate φ. Gr is parameterised by a user-speci�ed predicate γ used to
encode node-local properties, including constraints on the �ow values of nodes. The predicate
φ can instead be used to constrain the composed interface JX , for instance expressing that it is a
closed region with no outgoing edges.

1We assume here, for simplicity of presentation, that each address on the heap corresponds to a graph node,
i.e., N = Addr. This approach can easily be extended to the case where a graph node represents more than one
heap address by replacing the x 7→ {intf : Jx , . . . } predicate with a user-de�ned predicate spatialRep that can be
instantiated to specify all the addresses abstracted by graph node x .

2In speci�cations, we implicitly existentially quantify at the top level over free variables such as ®fx , etc.

43

Gr(X1, J ,γ) ∗ Gr(X2, J ,γ) ∗ V
(
JX1]X2

)
≡ Gr(X1] X2, J ,γ) ((De)Comp)

N(x, ®fx , J , J) ∗ γ (x, ®fx , Jx in(x), . . .) ∗ V
(
J{x}

)
≡ Gr({x} , J ,γ) (Sing)

true |= Gr(∅, J ,γ) (GrEmp)

V
(
JX1]X2

)
∗ X ′1 ∩ X2 = ∅ ∗ JX1 - J

′
X ′1
∗ JX2 = J

′
X2
|= V

(
J ′X ′1]X2

)
∗ JX1]X2 - J

′
X ′1]X2

(Repl)

V (JX) ∗ x ∈ X |= JX
in(x) + _ = Jx in(x) (IntCompIn)

V (JX) ∗ x ∈ X ∗ y < X |= JX
out(y) = Jx

out(y) + _ (IntCompOut)

V (JX) ∗ Y ⊆ X |= V (JY) (ValidSub)

Figure 4.2: Proof rules for proving entailments between flow-based specifications.

For example, consider the list insertion example shown in Figure 4.1; for this proof, we use the
path-counting �ow domain from Example 3.2. The abstraction function edges conditions on the
next �eld of a source node and de�nes the corresponding graph edge to be the identity function
λid if the �eld is non-null and the zero function λ0 otherwise (we write (P ? E1 : E2) for C-style
conditional expressions). The precondition of traverse on line 7 uses Gr with parameter γls, to
express that each node has a �ow (i.e. path count) of 1, and φ to restrict the composite interface
JX to have in�ow 1 at the head of the list h, in�ow 0 everywhere else, and 0 out�ow to all nodes.
Thus, the precondition Gr(X , J ,γ) ∗ φ(JX) implies that X contains a closed list rooted at h.

Proof Rules for Flows Our encoding of �ow interfaces into SL and the predicates N and Gr
give rise to generic proof rules for entailments (Figure 4.2). ((De)Comp), (Sing), and (GrEmp) all
follow directly from the de�nition of Gr and basic properties of iterated separating conjunction.
(Repl) is derived from the Replacement Theorem (Theorem 3.18), and we discuss it further below.
(IntCompIn) and (IntCompOut) are properties of composite interfaces that follow directly from
the de�nition of interface composition. Finally, (ValidSub) expresses the fact that if an interface
JX is valid (i.e. the implicit composition

⊕
x∈X Jx is de�ned) then so is any sub-interface.

Note the connection between ((De)Comp) and the algebraic laws of standard inductive predi-
cates such as lseg. For instance by combining ((De)Comp) and (Sing) we can prove the following
rule to fold or unfold the graph predicate:

Gr(X] {x} , J ,γ) ≡
(
N(x, ®fx , J , J) ∗ γ (x, ®fx , Jx in(x), . . .)

)
∗ Gr(X , J ,γ) ((Un)Fold)

∗ V
(
JX]{x}

)
However, an advantage of using the �ow graph predicate Gr is that these are generic rules that
apply regardless of the data structure they describe (the rules are parametric with γ) and these
rules are proved once and for all here. By contrast, for every new inductive predicate and direction
of traversal one would need to prove a new rule like ((Un)Fold).

44

The rule (Repl) is derived from the Replacement Theorem by letting I = JX1]X2, I1 = JX1, I2 =

JX2 and I ′1 = J
′
X ′1

. We know I1 - I ′1 by JX1 - J
′
X ′1

,V
(
JX1]X2

)
tells us that I = I1 ⊕ I2, and X ′1∩X2 = ∅

gives us I ′1∩ I2 = ∅. The �nal condition of the Replacement Theorem is to prove is that there is no
out�ow fromX2 to any newly allocated node inX ′1. However, in a garbage collected environment
this condition is true so long as we additionally restrict the abstraction function edges to only
propagate �ow along an edge (n,n′) if n has a (non-ghost) �eld with a reference to n′. We assume
a garbage collected environment in the proofs in this section, and in our Viper implementation
in §4.4.

Method Calls and Frame Reasoning The list insertion procedure in Figure 4.1 is structured
into two methods: the traverse method iterates through the list and stops at a nondeterministic
point l (this is for simplicity; one could select a position based on value criteria, etc.). It then calls
the insert method, which creates and inserts a new node n after l .

traverse sets a variable l to be the head and reads its next �eld into r before hitting a loop.
The loop’s invariant has the same spatial component as the precondition, but additionally says
that l is in X , r is l ’s next �eld, and if r , null then it is also in X (line 13). This is true initially,
and since the de�nition of edges implies that l has an out�ow of 1 to r , and the out�ow of JX is
always 0, we can conclude that walking next �elds must stay within X .

After the loop, the code calls the insert method. The precondition of insert (line 25) states
that it operates on the singleton set of nodes X1 = {l}; using ((De)Comp) we can show that the
loop invariant implies this precondition. However, after insert returns, not only has l ’s interface
potentially changed to a new interface J ′

l
, but the set of nodes has potentially increased to X ′1. To

establish the postcondition of traverse, we need to show that the interface of X ′1 composes with
the interface of the frame X2 B X \ X1 resulting in a valid interface satisfying φ.

To perform this frame reasoning, we use the rule (Repl). We knowV
(
JX1]X2

)
= V (JX) from

the precondition of traverse and, from the postcondition of insert, that JX1 - J
′
X ′1

. By standard
separation logic framing, we know that any new nodes in X ′1 cannot overlap with any of the
nodes in X2. (Repl) allows us to deduce that JX ′ = JX ′1 ⊕ JX2 is a valid interface and JX - JX ′ . By
setting J ′ = J for all nodes in X2, and checking that - preserves the conditions in φ, we obtain
the postcondition of traverse in line 8.

A similar argument is used in the proof of insert. After reading l ’s next �eld into r , the code
allocates a new node at address n using the inbuilt heap allocation procedure alloc. It then calls
a helper method initNode that initializes n’s intf �eld and has the following speci�cation (its
proof is omitted here, but can also be discharged with our technique):{

n 7→ _
}
initNode(n,m)

{
N(n, ®fn, J , J) ∗ I∅ - Jn ∗ Jn in =m

}
The postcondition gives us a graph node N(n, ®fn, J , J)whose singleton interface Jn is a contextual
extension of the empty interface I∅. Contextual extension forces n to have no out�ow, but since
n is a new node we determine n’s in�ow by the method argument m. In the case of insert,
since we expect to satisfy the �ow invariant γls by linking n into the list, we do not need any
external in�ow to n, so we pass 0. Again, following our proof technique, we use (Repl) to lift

45

{
∗
x ∈X1

(
N(x, ®fx , J ′, J ′) ∗ γ (x, ®fx , J ′x

in
(x), . . .)

)
∗ ∗

x ∈X2

(
N(x, ®fx , J ′, J ′) ∗ γ (x, ®fx , J ′x

in
(x), . . .)

) }

{
∗
x ∈X

(
N(x, ®fx , J ′, J ′) ∗ γ (x, ®fx , J ′x

in
(x), . . .)

) }

sync(X1)

{
∗
x ∈X1

(
N(x, ®fx , J , J ′) ∗ γ (x, ®fx , J ′x

in
(x), . . .)

)
∗ ∗

x ∈X2

(
N(x, ®fx , J , J) ∗ γ (x, ®fx , Jx in(x), . . .)

) }
C

{
∗
x ∈X1

(
N(x, ®fx , J , J) ∗ γ (x, ®fx , Jx in(x), . . .)

)
∗ ∗

x ∈X2

(
N(x, ®fx , J , J) ∗ γ (x, ®fx , Jx in(x), . . .)

) }

{
∗
x ∈X

(
N(x, ®fx , J , J) ∗ γ (x, ®fx , Jx in(x), . . .)

) }

Figure 4.3: The crux of flow-based proofs: reasoning about a straight-line fragment of code C.

the contextual extension guaranteed by alloc to the current footprint, JX1 - JX ′1 , obtaining the
intermediate assertion shown on line 32.

Reasoning about Modifications When the program we are reasoning about makes changes
to the heap, the modi�ed nodes become dirty: for some nodes we hold N(x, ®fx , J , J ′)with Jx , J

′
x .

Eventually, we need to update the intf �elds of all such dirty nodes, to once more obtain a state
in which the heap is in sync with the �ow abstraction. We add a special procedure sync to update
the �ow abstraction of a given dirty region D:{

∗
x∈D

N(x, ®fx , J , J ′) ∗ JD = J ′D
}
sync(D)

{
∗
x∈D

N(x, ®fx , J ′, J ′)
}

The precondition of sync checks that the interface of D is preserved, using the fact that the intf

�elds of these nodes store the previous interfaces which composed to form an interface for D. By
Lemma 3.16, we know that for this condition to be satis�ed, the dirty region that one syncs must
be a superset of the �ow footprint of the modi�cation.

46

l r

n

1
λid λid

l r

n

1

λ
id λ id

λid

J{l ,n } = ({l � 1,n� 0} , {r � 1}) J ′
{l ,n } = ({l � 1,n� 0} , {r � 1})

Figure 4.4: Inserting a new node n into a list between existing nodes l and r . Edges are labeled with edge
labels for path counting (λ0 edges omi�ed), and curved arrows indicate inflow. The interfaces of the dirty
region {l,n} before and a�er the modification are shown below.

This is the crux of our proofs: reasoning about the modi�cations made by a straight-line code
fragment C with no method calls. Figure 4.3 shows our proof technique for showing that a generic
�ow-based speci�cation (the green �rst and last lines of Figure 4.3) is preserved by the program C.
The speci�cation is essentially Gr(X , J ,γ), but we expand it in the �gure for clarity. The �rst step
is to decompose the region X (using the rule ((De)Comp)) into X1, the blue region modi�ed by C,
and X2, the yellow unmodi�ed frame. The program C then modi�es X1, and this is re�ected in
the intermediate speci�cation in the line after C as we go from N(x, ®fx , J , J) to N(x, ®fx , J , J ′). This
is the dirty state; accordingly, this region is now colored red. Before we can call sync, we need
to show that the nodes in X1, and their new interfaces J ′, satisfy the program-speci�c invariant
γ , and (by the precondition of sync) that the interface of X1 is the same (JX1 = J ′X1

). If these
conditions are satis�ed, sync will write the new interfaces given by J ′ to the intf �eld of nodes
in X1, updating the state to the intermediate speci�cation in the line after sync(X1) where the X1
region is once more in sync (blue). Finally, we can once again use ((De)Comp) to compose X1 and
X2 and obtain the postcondition.

To see this proof technique in action, consider the proof of insert. After allocating a new
node n, the code manipulates the pointers to link n into the list right after l . We now have a state
in which both l and n are dirty: due to the heap modi�cation, their �elds abstract to di�erent
interfaces from those still stored in their intf �elds. The dirty region before and after modi�cation
is shown in Figure 4.4. We must now show that there exists a �ow in the dirty region {l,n}, by
exhibiting �ow values for these nodes that satisfy the �ow equation for the new edge functions
in this region. In this case, we can see that there exist �ow values {l � 1,n� 1} that satisfy the
�ow equation in the dirty region. Moreover, we can show that the �ow invariant γls is true given
these �ow values, and we can calculate the out�ow of this region and show that it matches that of
the desired interface. We thus obtain the intermediate state on line 34, where the new interfaces
J ′x have their out�ow components computed from the heap by edges, and in�ow components
equal to the �ow values that we computed (recall that in�ows for singleton interfaces are equal
to the nodes’ �ow values). We can now call sync, which checks that the dirty region’s interface
is indeed preserved and writes the new interfaces into the intf �elds of all nodes in the dirty
region, resulting in the state described on line 36. Following our proof technique for handling
procedure calls, we follow this with an application of the Replacement Theorem, which in this
case is a vacuous call since the frame X2 is empty. We thus obtain the postcondition, completing
our proof.

47

mh −∞ 3 5 9 10 12 ∞

fh 2 6 1 7 �

Figure 4.5: A potential state of the Harris list with explicit memory management. fnext pointers are
shown with dashed edges, marked nodes are shaded gray, and null pointers are omi�ed for clarity.

Effective Acyclicity The proof above used the path-counting �ow domain, but did not restrict
itself to e�ectively acyclic (EA) �ow graphs. Thus, the precondition in line 25 does not imply that
X contains only a list rooted at h; the �ow equation in general has multiple �xpoints, and in
particular allows X to contain cycles of nodes with �ow 1 unreachable from h. To rule out such
undesirable cases, we can (as discussed in §3.4.3) use the EA restriction of the path-counting
domain.

In this case, one needs to perform two extra checks when syncing the dirty region. First,
to prove that a �ow exists for the modi�ed dirty region, we check that the dirty region does
not contain any cycles (simple, in this case). Second, we must check that the change to the dirty
region is a sub�ow-preserving extension (c.f. De�nition 3.37) to rule out the possibility of creating
cycles in the larger graph. We omit the full details here, though §4.4.1.1 shows how we automate
such checks for our case studies.

4.2 Extending To The Harris List
The power of �ow-based reasoning is exhibited when we try to extend this proof to one that

inserts a node into an overlaid data structure such as the Harris’ list, a concurrent non-blocking
linked list algorithm [Harris 2001]. This algorithm implements a set data structure as a sorted
list, and uses atomic compare-and-swap (CAS) operations to allow a high degree of parallelism.
As with the sequential linked list, Harris’ algorithm inserts a new key k into the list by �nding
nodes k1,k2 such that k1 < k < k2, setting k to point to k2, and using a CAS to change k1 to point
to k only if it was still pointing to k2. However, a similar approach fails for the delete operation.
If we had consecutive nodes k1,k2,k3 and we wanted to delete k2 from the list (say by setting k1
to point to k3), there is no way to ensure with a single CAS that k2 and k3 are also still adjacent
(another thread could have inserted or deleted in between them).

Harris’ solution is a two step deletion: �rst atomically mark k2 as deleted (by setting a mark
bit on its successor �eld) and then later remove it from the list using a single CAS. After a node
is marked, no thread can insert or delete to its right, hence a thread that wanted to insert k′ to
the right of k2 would �rst remove k2 from the list and then insert k′ as the successor of k1.

In a non-garbage-collected environment, unlinked nodes cannot be immediately freed as there
may be suspended threads continuing to hold a reference to them. A common solution is to
maintain a second “free list” to which marked nodes are added before they are unlinked from the

48

main list (this is the so-called drain technique). These nodes are then labeled with a timestamp,
which is used by a maintenance thread to free them when it is safe to do so. This leads to the
kind of data structure shown in Figure 4.5, where each node has two pointer �elds: a next �eld
for the main list and an fnext �eld for the free list (shown as dashed edges). Threads that have
been suspended while holding a reference to a node that was added to the free list can simply
continue traversing the next pointers to �nd their way back to the unmarked nodes of the main
list.

Even if our goal is to verify seemingly simple properties such as that the Harris list is memory
safe and not leaking memory, the proof will rely on the following non-trivial invariants:

(a) The data structure consists of two (potentially overlapping) lists: a list on next edges be-
ginning at mh and one on fnext edges beginning at fh.

(b) The two lists are null terminated and next edges from nodes in the free list point to nodes
in the free list or main list.

(c) All nodes in the free list are marked.

(d) � is an element in the free list.

Fortunately, with �ows, we can easily adapt the proof of the singly-linked list to one that
proves that the above invariants are maintained by Harris’ algorithm. To do so, we use the product
of two path-counting �ow domains: one to track the path count from the head of the main list, and
one from the head of the free list. The de�nitions of edges, γ , and φ require analogous changes:

edges({next : y, fnext : z} , x,v) B (v = null ? λ0
: (v = y ∧ y , z ? λ(1,0)

: (v , y ∧ y = z ? λ(0,1)
: (v = y ∧ y = z ? λid : λ0))))

γh(x, {next : y, fnext : z} ,m) B (m = (1, 0) ∨m = (0, 1) ∨m = (1, 1))
∧ (m , (1, 0) ⇒ M(y))

∧ (x = � ⇒m , (1, 0))

φ(I) B I in = {mh� (1, 0), fh� (0, 1), _� (0, 0)}
∧ I out = {_� (0, 0)}

Here, edges encodes the edge functions needed to compute the product of two path counting
�ows, the �rst component tracks path-counts from mh on next edges and the second tracks path-
counts from fh on fnext edges (λ(1,0) B (λ(m1,m2). (m1, 0)) and λ(0,1) B (λ(m1,m2). (0,m2))).
The node-local invariant γh says: the �ow is one of {(1, 0), (0, 1), (1, 1)} (meaning that the node
is on one of the two lists, invariant (a)); if the �ow is not (1, 0) (the node is not only on the main
list, i.e. it is on the free list) then the node is marked (indicated by M(y), invariant (c)); and if the

49

node is � then it must be on the free list (invariant (d)). The constraint on the global interface, φ,
says that the in�ow picks out mh and fh as the roots of the lists, and there is no outgoing �ow
(thus, all non-null edges from any node in the graph must stay within the graph, invariant (b)).

Moreover, the proof outline remains essentially identical. All the complexity of reasoning
about the various cases of possible overlap are reduced to our standard requirement of showing
that the �ow interface of the modi�ed region is preserved. This is tedious to perform and present
in a by-hand proof, so we omit it here for clarity of presentation. Nevertheless, as we show in
§4.4 and in our evaluation (§4.6), this portion of the proof is can be fully automated, putting
no additional burden on the end-user. We note that our proof of Harris’ list is performed in
a sequential separation logic. However, the invariant we verify is su�cient to verify the same
algorithm in a concurrent setting, and corresponds to the one used by Krishna et al. [2018b].

4.3 The Edge-local Flow Transformation
In the example proof in Figure 4.1, it was easy to show that the modi�cation that linked the

new node n into the list preserved the interface of some region X ′1 because the �ow footprint of
the modi�cation was small (in this case, equal to the set of modi�ed nodes {l,n}). However, in
general, a particular �ow domain and heap modi�cation may yield a larger (and potentially un-
bounded) �ow footprint. Proving that an unbounded dirty region has a solution to the �ow equa-
tion, and preserves a prior interface becomes challenging, and generally requires precise infor-
mation about the graph structure, along with ad-hoc inductive reasoning. This section presents
a technique to transform any �ow domain into one in which the �ow footprint has a well-de�ned
structure and moreover always admits a solution to the �ow equation. Our technique breaks
down the task of reasoning about an unbounded �ow footprint into a series of reasoning steps
about smaller, more structured regions, facilitating easier and more natural proofs of programs
such as the PIP example.

To motivate the problem, consider indeed the �ow domain for the PIP introduced in §3.1;
we employ multisets of (strictly positive) integers to capture the priorities of each node and its
predecessors. Recall the situation in which a process p attempts to acquire a resource r , adding
an edge (p, r) to the PIP graph. In general such a modi�cation has an unbounded �ow footprint,
in the worst case comprising all nodes reachable from r (e.g., consider p1 and r1 in Fig. 3.1).

Constructing proofs in the presence of such unbounded �ow footprints (dirty regions, in the
proofs) makes it di�cult to show, after a modi�cation, that the �ow footprint can be abstracted
to a valid �ow graph matching its prior interface: the key requirement of our local reasoning
technique. Demonstrating that the �ow equation has a solution in an unbounded dirty region in
general requires intimate knowledge of the graph structure and �eld values within this region.
Since the entire region must be synced at once, this knowledge must typically cross at least one
speci�cation boundary (e.g. a loop head), adding complexity and length to user speci�cations
and impeding proof automation. Most seriously, for proving this fact, one would have to revert to
complex inductive reasoning about �xpoints over general graphs – the very problem that �ow-
based reasoning is intended to avoid.

Our solution to this problem is to transform the �ow computation into an one that can be

50

computed simply and incrementally. We do this by transforming the �ow domain to one which is
edge-local; and modifying any given �ow graph by replacing its edge functions with correspond-
ing constant functions providing the same �ow values. More precisely, for any �ow domain
(M, 0,+, E), we de�ne EM B {(λ_.m) | m ∈ M} to be the set of constant edge functions. The �ow
domain (M, 0,+, EM) is an edge-local �ow domain (see §3.4.1), which means any graph over this
domain always has a unique �ow. The following lemma shows that any �ow graph H over the
original �ow domain can be transformed into a �ow graph H ′ over the corresponding edge local
domain and vice versa.

Lemma 4.1. Let (M, 0,+, E) be a �ow domain, G = (N , e) be a graph over this domain, and G′ =
(N , e′) a graph over the corresponding edge-local �ow domain (M, 0,+, EM). Then given in, flow :
N → M , the following statements are equivalent

(i) H = (N , e, flow) is a �ow graph with in�ow in

(ii) H ′ = (N , e′, flow) is a �ow graph with in�ow in and ∀n,n′. e′(n,n′) B (λ_. flow(n) .e(n,n′))

We can lift this edge-local transformation to our proof technique as follows. We de�ne a new
�eld flw, and rede�ne the original edge functions to propagate (from each source node) the value
in its flw instead its the actual �ow value, using the following abstraction function:

edges′(
{
flw : f , ®fx

}
, x,y) B (λ_. edges(x, ®fx)(y)(f))

where edges is the original abstraction function. Now, if all nodes in a �ow graph satisfy an ad-
ditional invariant that their �ow values match their flw �elds, then by Lemma 4.1 the �ow values
in this transformed program are also a solution to the original �xpoint equation. E�ectively, we
decouple the transitive propagation of �ow values, via the additional �eld flw.

The key advantage of this transformation is that the only node whose �ow value can change
when an edge (n,n′) is modi�ed is the single target noden′. Any outgoing edge fromn′ propagates
the same value that it used to, because the flw �eld of n′ has not changed; in other words, the
�ow footprint for any single edge modi�cation is at most the two nodes that the edge connects.
Of course, the invariant that the flw of every node matches its �ow may be broken by such an
update, but only (immediately) for node n′. Crucially, this discrepancy does not prevent us from
calling sync in our proofs; the node whose flw value is out of sync with its actual �ow values can
now be tracked in pure speci�cations.

This edge-localisation technique lends itself to natural proofs of programs whose algorithms
re�ect this break-then-notify style. For instance, returning to the PIP; here is what the key proof
de�nitions look like after our edge-local transformation:

®f B {flw : S, curr_prio : q, next : y, . . . } edges(®f, x, z) B (z = y , null ? (λ_. {q}) : λ0)

γpip(x, ®f,m) B S =m ∧ q = max(S)

If a state of the PIP satis�es the assertion Gr(X , J ,γpip) then γpip enforces that the value stored in
the flw is equal to the �ow, and edges speci�es that the out�ow to the next node is the maximum
of the priorities given by the �ow (this is also stored in the curr_prio �eld).

51

What is interesting is that the code in Figure 3.1 already stores the �ow in the prios �eld, and
the priority going from one node to the next is this locally cached �ow value, meaning that our
edge-local �ow mirrors the algorithm. Moreover, after modifying an edge, the algorithm calls
update to correct the target node, which only updates the prios �eld of that one node. There is
a recursive call to update to �x any downstream nodes whose �ow may have changed, but the
state before this recursive call can be described more naturally using the edge-local �ow as one
where every node except n.next satis�es γpip, and for n.next the required update is to remove the
priority old_prio and add the priority n.curr_prio from its prios �eld (which is also the �ow given
to n).

The edge-local transformation is applicable to any �ow domain and program; though it is most
useful in cases when the program makes modi�cations with unbounded �ow footprints and then
proceeds to iteratively �x the invariant in this region. A potential downside of using the edge-
local transformation is that it does not play well with e�ective acyclicity (EA), for, by de�nition,
no non-trivial edge-local �ow graph is EA. For instance, if one were using the path-counting �ow
domain coupled with the EA restriction to describe a tree, then the edge-local transformation of
this domain would allow extra nodes that formed unreachable cycles (see Figure 3.2(b)).

The transformation itself is just a matter of moving one part of the �ow computation from the
meta-theory to the node-local invariants. The �ow of the transformed graph only corresponds
to the original �ow when all nodes satisfy an additional invariant. Despite the fact that the
result of this transformation appears to have gotten rid of any global reasoning, this does not
make the �ow framework redundant. The framework still provides a means of dealing with
unbounded aggregation of incoming �ow values. For example, if one were to reason about the
edge-local version of the PIP �ow without the �ow framework, one would need to axiomatize
the maximum operator over values from all nodes in the graph and use ad-hoc rules to deduce
that certain modi�cations only a�ect the priority of neighbouring nodes. On the other hand,
the �ow framework provides a uniform means to reason, in a manner compatible with SL-style
framing, about everything from complex global properties to simple local reasoning about edge-
level aggregation.

4.4 Proof Automation
In this section, we develop upon our proof strategy to enable automated checking of �ow-

based proofs. Our checking simulates a translation from source-level programs annotated with
�ow speci�cations, into Viper [Müller et al. 2016] programs whose successful veri�cation implies
the existence of a source-level proof. Our goal is for the only requirements on the user to be
the de�nition of the �ow domain instantiation (with a chosen labelling function lifting heaps
to graphs), and the classical speci�cations for deductive reasoning (pre/post conditions and loop
invariants); essentially only the blue annotations in Figure 4.1. We show how to automate the two
main classes of �ow domain introduced in §3.2: edge-local �ow domains, and e�ectively-acyclic
(EA) graphs.

The �ow-based proof technique presented in §4.1 a�ords a great deal of �exibility in the
construction of correctness proofs, which was key to its general applicability. Unfortunately, this

52

�exibility requires creativity on the part of the proof author, and presents a number of challenges
for achieving the high degree of automation that we aim for:

(C1) When do we call sync on modi�ed regions? Our proof technique allows us to sync the �ow
interfaces with the heap at any point and any number of times. To have an automated proof
technique, we need to �nd a strategy that works for a large class of examples.

(C2) Which dirty regions do we sync? As we saw in §4.1, we must sync a superset of the �ow
footprint of any modi�cation. As the �ow footprint is de�ned in terms of the �ow of the
larger graph, it is not always possible to compute the �ow footprint in a local and automat-
able manner. We need a heuristic for choosing a suitable dirty region for a given call to
sync.

(C3) When we call sync on a given region, how do we prove that it has a �ow and that its in-
terface is preserved? We have seen that certain classes of �ow domains (§3.4) guarantee
the existence of the �ow. However, to express the �ow equation (FlowEqn) in the dirty
region and to derive its old and new �ow interfaces requires sum comprehensions. Fur-
thermore, for the e�ectively acyclic class, one additionally requires a computation over all
paths within the region to establish sub�ow preservation (De�nition 3.37).

(C4) Finally, how do we automatically infer relations between the interfaces of di�erent sizes? In
the example proof in §4.1.1, one had to call the Replacement Theorem after the method call
to insert in order to relate the interface J ′

X ′1
of insert’s footprint to the interface J ′X ′ of the

caller. One also needs to relate singleton interfaces to the interfaces of larger, potentially
unbounded, regions containing them. This reasoning depends on applying the de�nition of
interface composition to an unbounded region, something that is hard to do automatically.
We need a technique to apply such proof steps to the relevant interfaces at appropriate
points.

We present solutions to all of these challenges in the remainder of this section, under certain
restrictions which we explain next.

Restrictions Given that automated reasoning about inductive properties such as reachability
over unbounded graphs, that can be encoded as �ows, are known to be undecidable [Immerman
et al. 2004], we must sacri�ce completeness for a sound automated proof technique. Our automa-
tion story (unlike the by-hand proof technique of the previous section) thus works under some
additional restrictions: (1) we require that the proof uses either an edge-local �ow domain or the
EA restriction; (2) we require that pre/post-condition speci�cations are each written in terms of
node-local conditions γ on each node’s concrete �elds and �ow, and a constraint φ on the global
interface of the subgraph on which a method operates (i.e., we don’t automate support for other
combinations of interfaces in speci�cations); and (3) our calculation of dirty regions is heuris-
tic, and relies on one of our techniques being employed to localise the �ow footprint of each
modi�cation to a �nitely-bounded (not necessarily statically-known) sub-region of the graph.

53

As we saw in §4.3, any �ow domain can be transformed into an edge-local one that has the
same set of solutions to the �ow equation. Thus any proof can be done with edge-local �ows
at the cost of more reasoning steps or ghost code; in many cases (e.g. the PIP, Dijkstra, and
Composite examples) however, these steps match those of the code itself. While in theory one
could write speci�cations about multiple potentially-overlapping interfaces of the data structure,
we have not yet found an algorithm where this is necessary. Finally, our dirty region calculation
heuristic does rule out certain modi�cations that have an unbounded �ow footprint. However,
our edge-local transformation can again help tame the �ow footprint and bring it within reach
of our heuristic. Note that for �ne-grained concurrent algorithms, our requirement to keep the
�ow footprints local corresponds to locality of atomic updates; any node whose �ow invariant
is broken for longer would have to be locked to prevent other threads observing inconsistent
states. As we demonstrate in our evaluation (§4.6), we are able to capture a wide variety of data
structures, �ow domains and properties within these restrictions.

When to Sync Our aim of requiring minimal and simple annotations from the user guides our
approach to Challenge (C1). To avoid requiring user-speci�cations about dirty regions (which,
when later synced, will require �ne-grained knowledge of the graph structure and �ow values),
we perform a sync before each veri�cation boundary, meaning before a loop or method call, and
at the end of a loop or method body. This design naturally organises the veri�cation of a method
into phases; we begin with a consistent graph and interfaces (and an empty dirty region), make
modi�cations which add some nodes to the dirty region, and then sync these before the next
veri�cation boundary back to a consistent interface.

Which Region to Sync Since we only sync at veri�cation boundaries, we only need to build
up a suitable dirty region between each such boundary. Our heuristic for maintaining this dirty
region is as follows: every time the �eld of an object is modi�ed in the program code, we add
that object to the dirty region. As discussed above, this might not work for some input programs
and �ow domains, but constructions such as the edge-local transformation of §4.3 can be em-
ployed to overcome this limitation. Combined with our restrictions, this gives us a way to solve
Challenge (C2) for a wide variety of challenging examples. We describe how we deal with Chal-
lenges (C3) and (C4) in the relevant parts of the description of our automation procedure in the
next subsection.

4.4.1 Automatic Generation of a Flow-based Proof
We now describe our automation technique as a syntactic translation from minimally-annotated

programs to Viper �les that perform a proof in our proof technique from §4.1.

Viper’s Logic The core logic employed by the Viper veri�cation infrastructure is based on the
implicit dynamic frames logic [Smans et al. 2009], a close relative of separation logic; the embed-
ding of core separation logic is known [Parkinson and Summers 2012]. Viper natively supports
expressing and automatically reasoning about iterated separating conjunctions [Müller et al.

54

1

{
∗x ∈X

(
N(x, ®fx , J , J) ∗ γ (x, ®fx , Jx in, . . .)

)
∗ V (JX) ∗ φ(JX)

}
2 assumeLemmas()
3 snapshotEdges(e)
4

5 instrumentedCode(C, D)
6

7 // Compute old interface:
8 snapshotEdges(e ′)
9 computeInterface(D, J, e)

10 if (EA) assumeNoCycles(D, J, e)

11 // Compute new interface:
12 if (EA) assertNoCycles(JD, e ′)
13 computeInterface(D, J ′, e ′)
14 if (EA) assertSubflowPreserved(JD, e, e ′)
15

16 // Check interface preservation and sync:
17 sync(D, J, J ′)
18

19 assumeLemmas()

20

{
∗x ∈X

(
N(x, ®fx , J ′, J ′) ∗ γ (x, ®fx , J ′x

in, . . .)
)

∗ V
(
J ′X

)
∗ φ(J ′X)

}

Figure 4.6: The structure of annotated Viper programs generated by our technique.

2016]. This is why we chose Viper for demonstrating our automation techniques, but any tool
with similarly automated support for iterated separating conjunctions and custom mathematical
types/functions could in principle be used in its place. Our encodings could also be adapted to
less automated settings; for a more manual proof, our heuristically-chosen dirty regions could be
overridden by manual speci�cation; our Viper encoding also supports user-selected additions to
this dirty region.

User Input Our automation relies on the following ingredients as inputs from the user:

• A de�nition of the �ow domain in question, along with the choice of whether this employs
edge-local �ows, or e�ectively-acyclic graphs.

• A labelling function edges(x,y), de�ning, for each pair of references x and y, the edge
function between their corresponding graph nodes, in terms of the concrete �eld values of
x .

• Pre/post-conditions and loop invariants in terms of both node-local conditions (γ from §4.1)
and constraints on the interface of the composite graph in question (φ from §4.1).

Generation Procedure Figure 4.6 shows the structure of the annotated output Viper program
generated by our technique. The input to this generation is a veri�cation phase, i.e. a piece of
straight-line code C not containing any loops or method calls, and its pre/post-condition speci�ca-
tions (shown in lines 1 and 20 respectively). The output is an annotated Viper program fragment
that tries to prove that C satis�es the �ow-based speci�cation of this phase, using the proof tech-
nique shown in Figure 4.3. Note that as allocation is done by a method call to alloc, C cannot
modify the footprint, so the same set of nodes X is used in both speci�cations (handling method
calls is described in a subsequent paragraph).

We now show how we instrument C to compute the dirty region as per our heuristic, compute
the new �ow graph for this region, and check that it preserves its interface so that we can sync

55

the region and prove the postcondition of this phase. We achieve this using the following series
of auxiliary steps:

1. The �rst and last components (lines 2 and 19) are to assume certain �ow interface lemmas
that relate interfaces of di�erent regions; these will be described in detail in §4.4.1.2.

2. We take a snapshot of the graph edges before and after the instrumented code (line 5). That
is, we de�ne auxiliary variables e and e′ respectively to be equal to the edge functions of
the graph that abstracts the heap (as given by the edges function) at the code locations in
question.

3. We instrument the code C to compute the set of dirty nodes D prescribed by our heuristic.
We do this by following every �eld write command with a command that adds the source
node to the set D, the resulting code is denoted instrumentedCode(C, D).

4. We know from the precondition that all the singleton interfaces Jx for x ∈ D composed to
a valid interface. Thus, we can compute the old interface of D, JD , in terms of the singleton
interfaces Jx , denoted computeInterface(D, J, e) (described in §4.4.1.1). Moreover, if we
are in the EA case, we can also assume that the old �ow graph was EA (line 10), which
additionally constrains the singleton interfaces Jx and edges e .

5. Before we can compute the new interface of D, we must �rst check that D has a �ow. In
the edge-local case, this is always true, but in the EA case we additionally check that the
new edges e′ have not introduced any cycles inside D (assertNoCycles(JD, e ′)). We can
now use computeInterface(D, J ′, e ′) to compute the new interface J ′D of D and relate it
to the new singleton interfaces J ′x for x ∈ D. Additionally, to ensure in the EA case that
we do not introduce new cycles in the larger region X , we also check that D’s interface is
sub�ow preserving (De�nition 3.37).

6. Finally, we try to sync D. This step checks that the old interface of D, JD = J ′D , the new
interface of D.

This generation relies on several macros (computeInterface, assertNoCycles, etc.) that are
not easy to encode as Viper assertions because they contain arbitrary sums or reasoning about
all paths through a region. We next describe how we encode such computations in an automatable
manner.

4.4.1.1 Computing Interfaces and Flows

Solving challenge (C3), computing the �ow and �ow interface of a region, boils down to
solving two problems: automating the sum of a quantity over a statically-unknown set of nodes
D, and automating sums over all paths through a region D.

Given a region D, where each x ∈ D has interface Jx , and the interface of D is JD B
⊕

x∈D Jx ,
we know that the out�ow of D is given by ID

out(y) =
∑

x∈D Jx
out(x,y). Computing this sum auto-

matically is hard because in many programs, the size and contents of D are statically unknown

56

(certain nodes could only be modi�ed in some branches of the code, may or may not alias one
another, etc.). Directly instantiating the �ow equation (FlowEqn) is also hard for the same reason.
We solve this issue by amending instrumentedCode(C, D) to also track the set of nodes D as a
mathematical list DL containing each node in D exactly once (the list’s contents may depend on
branch conditions, aliasing, etc., in a way known only to the prover). We then axiomatize a func-
tion to simulate a functional program to compute the sum over these terms, using E-matching
[Detlefs et al. 2005] in place of pattern-matching, to automate this computation via quanti�er
instantiation within the SMT solver used by Viper to verify the instrumented program.

In the EA case, checking e�ective acyclicity (De�nition 3.33) of the modi�ed graph and show-
ing that the modi�ed interface is sub�ow-preserving (De�nition 3.37) requires computing the ca-
pacity of the (old and new) dirty region, which is a sum over all paths through D. To enumerate
these paths, we de�ne the following helper function that approximates the capacity of the dirty
region, wherem,n are nodes and DL is a set of nodes:

capAuxe(m,n, ∅) = e(m,n)

capAuxe(m,n,n
′ :: DL) = capAuxe(m,n,DL) + capAuxe(m,n

′,DL) ◦ capAuxe(n
′,n,DL)

capAuxe(m,n,DL) is inspired by the Floyd-Warshall algorithm, and contains terms for all simple
paths from m to n using nodes in DL (and some other cyclic paths, but those will be zero by
e�ective acyclicity). When a �ow graph H = (N , e, flow) is EA (for instance, we know this in
the pre-state), we can assume that for every n ∈ N , flow(n) . capAuxe(n,n,DL \ {n}). And when
we check that the new dirty region is e�ectively acyclic, since we do not yet know the new �ow
values, we use the following lemma:

Lemma 4.2. Let (M, E) be a �ow domain such that M is a positive monoid and E is a reduced set
of endomorphisms, G = (N , e) be a graph over this domain, and in : N → M be an in�ow for this
graph. If for every n,n′ ∈ N , in(n) . capAuxe(n,n

′,DL \ {n,n
′}) . capAuxe(n

′,n′,DL \ {n
′}) = 0, then

there exists flow : N → M such that (N , e, flow) ∈ FG is a �ow graph and is e�ectively acyclic.

4.4.1.2 Flow Interface Lemmas

The problem to solve in Challenge (C4) is how to axiomatize properties of �ow interfaces and
their compositions over unbounded regions, and how and when to apply them. It is again not
possible to have a complete algorithm to decide properties of �ow interfaces, so our approach is
to instead select a number of core lemmas about �ow interfaces that are typically required, and
axiomatise them in Viper. The lemmas concern the interfaces stored in the intf �elds of nodes;
some rely on these corresponding to the current �ow values of the nodes. We apply these lemmas
only in consistent states, (indicated by assumeLemmas() in Figure 4.6) at the beginning and end
of each veri�cation phase, so that they apply both to already-established and newly-established
interfaces arising in our proofs. These lemmas include the Replacement Theorem, which is used
to reason about interface composition after a method call (see §4.1.1), which we apply at the
beginning of the subsequent veri�cation phase.

57

4.4.1.3 Soundness

The soundness of our automated �ow-based proof technique relies on the soundness of the
meta-theory of the �ow framework. This consists of the basic theory of �ows (§3.2.1) and the
�ow-based proof rules from Figure 4.2, that have been described and proved in this dissertation
(see also Appendix A.1 for the �ow framework encoding and lemmas we use in Viper). We note
that these proofs have not been mechanized yet, and we are currently working on mechanizing
the �ow framework in Coq. Apart from the �ow framework, the rest of our technique is simply a
syntactic transformation from a restricted class of input programs to annotated Viper programs
with an analogous underlying semantic model; thus soundness of the separation-logic-level rea-
soning is established by Viper.

The automation technique described in this section is not complete, due to the heuristic
choices made (particularly for selecting our dirty regions). As we show in the next section, it
nonetheless works extremely well in practice (and accurately identi�es bugs in faulty algorithms).

4.5 An Example Proof in our Frontend
To illustrate the bene�ts of our proof technique and automation, we list here the code and

annotations needed to verify the PIP example. We only show the annotations that need be pro-
vided by an end-user, all the remaining parts of the proof are determined by our proof technique
and translation to Viper.

Since our target veri�er is Viper, which supports heap-dependent functions, we directly write
�eld expressions to refer to �eld values of nodes x to which we have permission (denoted acc(x)).
We use the Gr predicate from §4.1.1 to express our speci�cations: for instance, the assertion
Gr(X, nodeInv(_, X), true) denotes the �ow graph of a set of nodes X, where each node x satis�es
the node-local predicate nodeInv(x, X), and the �ow interface of X satis�es the trivial condition
true. The nodeInvIntermediate predicate is used to denote states where the priority of a node
has not yet been updated to match its �ow.

We note that the annotations required from the end-user are minimal, and consist of �ow
domain de�nitions, local invariants on nodes’ �elds and �ows, and annotations _make_dirty to
manually add neighbours to the dirty region in certain cases.

1 // ---- Flow Domain definitions and PIP invariant:
2

3 type FlowDom = Multiset[Int]
4 // Contains:
5 // fd : Multiset[Int] → FlowDom
6 // fdZero : () → FlowDom
7

8 // The fields of a node:
9 field parent: Ref

10 field current_prio: Int
11 field default_prio: Int
12 field priorities: Multiset[Int]

58

13

14 // Definition of a node and good condition:
15 function edges(x: Ref, y: Ref) : Map[FlowDom, FlowDom]
16 requires acc(x)
17 {
18 (x != y ∧ x.parent != null ∧ x.parent == y) ?
19 {_� fd(Multiset(x.current_prio))} : {_� fdZero()}
20 }
21

22 function correct_priorities(x: Ref, from: Int, to: Int): Multiset[Int]
23 requires acc(x)
24 ensures result == (to > 0 ? x.priorities ∪ Multiset(to) : x.priorities) \ Multiset(from)
25

26 define nodeInvIntermediate(x, y, from, to, X)
27 // priorities are strictly positive
28 x.default_prio > 0 ∧ (∀ i: Int :: (i ∈ x.priorities) > 0 ==> i > 0)
29 // local priorities are consistent with inflow

30 ∧ fd(y == x ? correct_priorities(x, from, to) : x.priorities) == x.intfin(x)
31 // x.current_prio is maximal priority of x and predecessors
32 ∧ x.current_prio == max(ms_max(x.priorities), x.default_prio)
33 // No self loops
34 ∧ x.parent != x
35 // Data structure is closed
36 ∧ x.parent != null ==> x.parent ∈ X
37

38 define nodeInv(x, X) nodeInvIntermediate(x, null, 0, 0, X)
39

40 // ---- PIP algorithm:
41

42 method updatePriorities(this: Ref, from: Int, to: Int, X: Set[Ref])
43 requires Gr(X, nodeInvIntermediate(_, this, from, to, X), true)
44 requires this ∈ X
45 ensures Gr(X, nodeInv(_, X), true)
46 {
47 if (from != to) {
48 var old_prio: Int := this.current_prio
49 if (to > 0) {
50 this.priorities := this.priorities union Multiset(to)
51 }
52 this.priorities := this.priorities setminus Multiset(from)
53 this.current_prio := max(ms_max(this.priorities), this.default_prio)
54 _make_dirty(this.parent)
55

56 if (this.current_prio != old_prio && this.parent != null) {
57 updatePriorities(this.parent, old_prio, this.current_prio, X)
58 }
59 }
60 }
61

62 method aquire(this: Ref, r: Ref, X: Set[Ref])
63 requires Gr(X, nodeInv(_, X), true)

59

64 requires this ∈ X ∗ r ∈ X ∗ this != r ∗ this.parent == null
65 ensures Gr(X, nodeInv(_, X), true)
66 {
67 if (r.parent == null) {
68 r.parent := this
69 _make_dirty(r.parent)
70 updatePriorities(this, 0, r.current_prio, X)
71 } else {
72 this.parent := r
73 _make_dirty(this.parent)
74 updatePriorities(r, 0, this.current_prio, X)
75 }
76 }
77

78 method release(this: Ref, r: Ref, X: Set[Ref])
79 requires Gr(X, nodeInv(_, X), true)
80 requires this ∈ X ∗ r ∈ X
81 ensures Gr(X, nodeInv(_, X), true)
82 {
83 if (r.parent == this) {
84 r.parent := null
85 _make_dirty(this)
86 updatePriorities(this, r.current_prio, 0, X)
87 }
88 }

4.6 Evaluation
We evaluate the �ow framework and our accompanying automation techniques for its proofs

on a collection of challenging data-structure examples. These are hand-encoded into Viper, but
our encodings simulate the systematic behaviour of a potential future front-end tool for this
reasoning, requiring as input only the �ow domain instantiation and speci�ed code as described
in §4.4.

Our collection of examples is presented in Table 4.1. Some examples (such as the PIP and
Composite) concern edge-local �ow domains, while most employ e�ectively-acyclic graphs (and
the corresponding additional requirements on interface composition) to structure the reasoning
and automation. We employ a variety of �ow domains to succinctly capture the graph properties
in question, and show the preservation of the key invariants of each data structure.

We chose our benchmarks based on whether at least one existing SL-based reasoning tech-
nique would struggle to cope with them (with the exception of the singly and doubly linked-list
examples, which can be handled by most techniques). We next describe each of the non-trivial
examples in detail:

Overlaid Data Structures The �rst non-trivial group of examples (Harris list, threaded tree)
involves operations on overlaid data structures (traversal, insertion, deletion, etc.). The Harris
list (see §4.2 for more details) is a singly-linked list that is arbitrarily overlayed with a free list

60

Table 4.1: The results of our evaluation. Here, "EL" means the flow domain is edge-local, while "EA"
means the example employs e�ectively-acyclic graphs. The “buggy” variants are adapted from the correct
code by intentionally seeding mistakes. All examples behave as expected (correct versions verify, buggy
versions identify the correct errors). All timings were gathered on an Intel Core i7-7700K 4.20Ghz machine
running (64 bit) Windows 10; timings were taken 7 times, the lowest and highest times discarded, and
the remaining 5 averaged and reported to two decimal places (we observed no significant variations in
timings)

Example Properties Flow Domain Class Variant Average
Description Veri�ed Values EL EA Time (secs)

EA Singly-linked-list exactly one path Natural numbers
X

correct 12.31
(insert,delete,etc.) from hd to each node (path-counting) buggy 10.62
EL Doubly-linked-list next vs. prev Multisets of

X
correct 12.75

(insert,delete,etc.) �elds inverses references buggy 14.92
EA Doubly-linked-list next vs. prev; Multisets of

X
correct 28.27

(insert,delete,etc.) connected list references buggy 28.16
Harris List nodes in two overlaid lists; Pairs of

X
correct 12.81

(insert, delete) those on one are marked natural numbers buggy 12.02
Threaded Tree nodes in tree overlaid with Pairs of

X
correct 40.54

(traversal, insert) list natural numbers buggy 21.40
B-Tree functional correctness Maps of keys to

X
correct 13.76

of node level ops. Natural numbers buggy 15.10
Hash Table functional correctness Maps of keys to

X
correct 12.59

of node level ops. Natural numbers buggy 13.63
Composite Node values store Integers

X
correct 10.22

Pattern subtree size buggy 10.45
Subject Observer inverse reference Multisets of

X
correct 19.34

Pattern invariants references buggy 48.94
Priority Inheritance Priorities accurate; Multisets of

X
correct 35.55

Protocol (PIP) no priority inversion integers buggy 35.93
Speculative Dijkstra functional correctness: Multisets of

X
correct 18.69

Shortest Path computes shortest paths costs (N ∪ {∞}) buggy 75.86

consisting of marked nodes (inspired by the drain technique of manual memory management).
The threaded tree is a commonly-used data structure, used, for example, in the Linux deadline
I/O scheduler, that facilitates two types of access to elements: FIFO access via the linked list and
e�cient key-based lookup via the tree. Its structure is therefore a linked list overlaid arbitrarily
over a binary tree. We consider a simplifed version of the algorithm that traverses down the tree to
a nondeterministic leaf and inserts a new node into both the three and the list. These examples are
generally di�cult to handle with existing techniques because such data structures allow multiple
traversal strategies (following di�erent sets of pointers in the heap) and the invariants of the
overlays can be intertwined (e.g., every node is contained in both structures).

Using �ows, we �nd that compared to the singly-linked list benchmarks, the speci�cation
e�ort is of similar complexity and scales-up in size roughly linearly with the number of overlays.
In particular, the proof of a traversal of the Harris list looks almost identical to that of a simple

61

singly-linked list.

Search Structures The next group of benchmarks (B-tree, hash table) is inspired by the tech-
nique for verifying functional correctness of search structures presented in [Krishna et al. 2018b,
§7]. The speci�cations of these examples are challenging because they involve non-trivial com-
binations of data and structural invariants. For each of these complex structures, we verify func-
tional correctness of the node-level operations such as member, insert, and delete.

As we will see in Chapter 5, using �ows we can break down the correctness of concurrent
search structures into a concurrent proof of template algorithms that manage interference be-
tween threads and �nd the correct node on which to operate, and a sequential proof of node-level
operations on the appropriate node. The proofs we perform satisfy the speci�cations required to
be part of such a modular proof, and thus contribute towards the proof of the complete concur-
rent algorithms. This shows that the �ow framework and our automation technique can scale
to handle complex real-world concurrent algorithms, some of which (B-link tree) have not been
mechanically veri�ed before. For more details, see Chapter 5.

OOP design patterns Next, we consider object-oriented programming (OOP) design patterns
(Composite, Subject/Observer). Our example of the Composite design pattern is the one studied
by Summers and Drossopoulou [2010] and involves a tree where each node n stores the size of
the subtree rooted at n. When one adds a subtree to a node n in the tree, the algorithm has to add
the size of the subtree to the value stored in n, and then recursively traverse up n’s ancestors and
correct their size �elds.

The Subject/Observer example [Parkinson 2007] is a program consisting of a subject, which
contains a value of interest, and several observers, who have a cached copy of the value. When
new observers are created, they register themselves with the subject. When the subject changes
its value, it iterates through the observers it has in its register, and noti�es them of the new value
so that they can update their caches. The invariant is that the observers’ caches match the value
stored by the subject.

Both these algortihms involve multi-object invariants which are known to be challenging
to handle at a per-node level of granularity in separation logics. In a sense, using �ows we
can mimic existing proof strategies for such examples based on object invariants [Summers and
Drossopoulou 2010] within separation logic, obtaining the additional bene�ts of modular fram-
ing.

Graph Algorithms The last two examples deal with recursive properties of general graphs.
The PIP example is a complete version of the code shown in Fig. 3.1. The algorithm, and why
its veri�cation is challenging, was described in §1.1, and §4.5 contains a full code listing. The
speci�cation for the PIP states that the current priorities stored by each node is correct (i.e. the
maximum of the priority of any node waiting on it), and thus that there are no priority inver-
sions. The Dijkstra shortest path algorithm is a sequential variant of the concurrent algorithm
considered by Raad et al. [2016]. We verify full functional correctness of this algorithm – that it
correctly computes the length of the shortest path to every vertex.

62

We are not aware of any existing SL-based technique that can automatically verify these
kinds of proofs. Moreover, we are not aware of any existing local proofs of the properties we
considered for these benchmarks. We note that Sergey et al. [2015]; Raad et al. [2016] verify
concurrent versions of such algorithms. These works focus on modular reasoning techniques for
the concurrency aspects (which we ignore here) while the reasoning about the considered graph
properties requires some non-local reasoning steps.

Buggy Versions We include both correct and buggy variants of the code, in order to demon-
strate that we can e�ectively identify bugs in faulty proofs. Moreover, we aim to show that our
automation is not signi�cantly slower in searching for a wrong proof. We created the buggy ver-
sions of the code from the original correct versions by manually introducing common types of
errors: o�-by-one errors on array indices, failing to update array length variables after an array
update, failing to check if a reference is null, mixing up local variables, arithmetic errors, etc.

As can be seen, the time taken to check each proof is reasonable despite the absence of man-
ual intervention, and a variety of examples which go beyond the state-of-the-art for any proof
technique known to enable a similar degree of automation.

4.7 Related Work
An abundance of SL variants provide complementary mechanisms for modular reasoning

about programs (e.g. [Jung et al. 2018b; Raad et al. 2015; Sergey et al. 2015]). Most have in com-
mon that they are parameterized by the underlying separation algebra; our �ow-based reasoning
technique can be easily integrated into these existing logics.

Recursive data structures are classically handled in SL using recursive predicates [O’Hearn
et al. 2001; Reynolds 2002]. There is a rich line of work in automating such reasoning within
decidable fragments (e.g. [Berdine et al. 2004; Iosif et al. 2014; Katelaan et al. 2019; Piskac et al.
2013; Enea et al. 2017; Qiu and Wang 2019]). However, recursive de�nitions are problematic
for handling e.g. graphs with cycles, sharing and unbounded indegree, overlaid structures and
unconstrained traversals.

The most common approach to reason about irregular graph structures in SL is to use iter-
ated separating conjunction [Yang 2001a; Müller et al. 2016] and describe the graph as a set of
nodes each of which satis�es some local invariant. This approach has the advantage of being
able to naturally describe general graphs. However, it is hard to express non-local properties
that involve some form of �xpoint computation over the graph structure. One approach is to ab-
stract the program state as a mathematical graph using iterated separating conjunction and then
express non-local invariants in terms of the abstract graph rather than the underlying program
state [Hobor and Villard 2013; Sergey et al. 2015; Raad et al. 2016]. However, a proof that a mod-
i�cation to the state maintains a global invariant of the abstract graph must then often revert
back to non-local and manual reasoning, involving complex inductive arguments about paths,
transitive closure, and so on. Our technique and Viper encoding also exploit iterated separating
conjunction for the underlying heap ownership, with the key bene�t that �ow interfaces exactly

63

capture the necessary conditions on a modi�ed subgraph in order to compose with any context
and preserve desired non-local invariants.

The �ow framework presented in this chapter is inspired by the one presented in [Krishna
et al. 2018b]. In addition to the technical innovations made here (general proof technique that in-
tegrates with existing SLs and proof automation), the most striking di�erence is in the underlying
meta theory. The prior �ow framework required �ow domains to form a semiring; the analogue
of edge functions are restricted to multiplication with a constant, which must come from the
same �ow value set. Our �ow framework decouples the algebraic structure de�ning how �ow
is aggregated from the algebraic structure of the edge functions. As a consequence, we obtain a
more general framework that applies to many more examples, and with simpler �ow domains.
Strictly speaking, the prior and our framework are incomparable as the prior did not require that
�ow aggregation is cancellative. As we argue in §3.1, cancellativity is a natural requirement for
local reasoning, and is critical for ensuring that the in�ow of a composed graph is uniquely deter-
mined. Instead of demanding cancellativity, Krishna et al. [2018b] require proofs to reason about
�ow interface equivalence classes. This complicates proofs (and their automation, introducing
quanti�er alternations), and entails strong restrictions on modi�cations of cyclic structures.

An alternative approach to using SL-style reasoning is to commit to global reasoning but re-
main within decidable logics to enable automation [Itzhaky et al. 2013; Klarlund and Schwartzbach
1993; Wies et al. 2011; Madhusudan et al. 2012; Lahiri and Qadeer 2008]. However, such logics
are restricted to certain classes of graphs and certain types of properties. For instance, reasoning
about reachability in unbounded graphs with two successors per node is undecidable [Immerman
et al. 2004]. Recent work by Ter-Gabrielyan et al. [2020] shows how to deal with modular framing
of pairwise reachability speci�cations in an imperative setting. Their framing notion has parallels
to our notion of interface composition, but allows subgraphs to change the paths visible to their
context. The work is speci�c to a reachability relation, and cannot express the rich variety of
custom graph properties available by instantiating �ow domains in our technique.

Scope and Limitations of the Flow Framework The universal �ow (De�nition 3.22) shows
that �ows are powerful enough to capture any graph property. This means that �ow-based proofs
must make a trade-o� between how global the invariants they reason about are and how local the
reasoning about the program is. If a �ow captures an invariant that is intrinsically global, then the
kinds of modi�cations permitted by �ow interfaces will also have large �ow footprints. While the
theory of �ows permits reasoning about such large/unbounded dirty regions, automating such
proofs will be hard unless the footprint happens to have well-de�ned structure. However, this is
in some sense inescapable, and in such cases the algorithm will also have to repair the invariant
of all nodes in the �ow footprint. Thus, techniques such as the edge-local transformation can
help obtain a local proof that mirrors the actions of the algorithm.

We have not yet formulated a precise relation between inductive predicates and �ows, but this
is an interesting question to explore in future work. However, the programs and data structures
we have studied so far suggest that anything one can de�ne using an inductive predicate can
also be de�ned using �ows. Since any graph property can be captured by �ows, the fact that the
�ow equation is a �xpoint equation that mirrors the inductive unrolling of inductive de�nitions

64

suggests that one can achieve similar abstraction capabilities using �ows. It would be interesting
to formulate a precise transformation from an inductive predicate de�nition to a �ow domain
and local invariant.

4.8 Conclusion
This chapter has shown how two of the key classes of the �ow framework (edge-local �ow

domains and e�ectively-acyclic graphs) can be built upon to provide automated, simple proof
checking for a wide variety of challenging examples.

65

5 | Concurrent Search Structure
Templates

This chapter presents a major application of the �ow framework to simplifying and modular-
izing the veri�cation of a large class of concurrent data structures: search structures. We propose
a methodology for verifying template algorithms for concurrent search structures that enables
proofs to be compositional in terms of program structure and state, and exploit both thread and
algorithmic modularity. Using this method, we mechanically prove several complex real-world
data structures such as the B-link tree that are beyond the capability of existing techniques for
mechanized or automated formal proofs.

Our proofs are much simpler and more automated than prior (pencil-and-paper) proofs of
comparable structures. Further, the template-based modularity in our proofs allow us to mix and
match synchronization protocols and heap representations with negligible additional proof e�ort.
For example, most of the core operations on B-trees such as insertion and deletion of a key into a
node are shared between the B-link (which uses the link technique) and the B+ tree (which uses
the give-up technique). Hence, they need to be veri�ed only once.

We begin in §5.1 by describing the B-link tree and use it to introduce the idea of a template
algorithm. This idea of viewing search structure algorithms abstractly as template algorithms on
graphs is due to Shasha and Goodman [1988]. Our contribution is to formalize their ideas and in
§5.2 we describe our proof technique in detail, which relies on two important steps. First, §5.2.1
shows how to encode the edgeset framework using �ows. Second, we embed �ow interfaces as
ghost state in Iris in §5.2.2, a combination that lets us prove that our template algorithms con-
textually re�ne their sequential speci�cations while abstracting from the implementation. This
is demonstrated in §5.2.3, which puts this all together and veri�es the link template algorithm. A
summary of our veri�cation e�ort is provided in §5.3. We perform the template proofs in Iris/Coq
and verify the implementations in GRASShopper, in order to bring the proofs of highly compli-
cated implementations such as B-link trees within reach. We close with a survey of related work
in §5.4 and conclude in §5.5.

5.1 Overview
This section motivates and demonstrates our approach using the B-link tree implementation

of a search structure and the link template algorithm that generalizes it. A search structure is

66

1 2 4

(−∞, 4) 2

y0

4 5

[4, 5) 1

y1

6 7 8

[5, 8) 2

y2

8 9

[8,∞) 2

y3

4 5

(−∞,∞) 1

n

8

[5,∞) 1
n′

(−∞,∞) 0

r

(−∞
,∞)
,

∅

(−
∞
, 4
),

∅
[4, 5),
∅ (−

∞
, 8
),

∅

[8,∞
),

∅

[5,∞),

[5,∞)

[4,∞),

[4,∞)

[5,∞),

[5,∞)

[8,∞),

[8,∞)

(−∞,∞),

(−∞,∞)

∅,

(−∞,∞)

∅,

(−∞,∞)

Figure 5.1: An example B-link tree state in the middle of of a split. Noden was full, and has been half-split
and children y2 and y3 have been transferred to new node n′ (old edges are shown as do�ed lines), but
the complete split has yet to add n′ to the parent r (the dashed edge). Each node shows the array of keys
in the top le�, the array of pointers in the bo�om le�, l (number of keys) in the top right, and its inflow
(see §3.2.1) in the top le�. The key in the gray box is not considered part of the contents and determines
the edgeset of the link edge. The edges are labelled with edgesets and linksets (see §5.2.1). The global
inflow is shown as curved arrows on the top le� of nodes, and is omi�ed when zero.

a key-based store that implements three basic operations: search, insert, and delete. We refer
to a thread seeking to search for, insert, or delete a key k as an operation on k , and to k as the
operation’s query key. For simplicity, the presentation here treats search structures as containing
only keys (i.e. as implementations of mathematical sets), but all our proofs can be easily extended
to consider search structures that store key-value pairs.

5.1.1 B-link Trees
The B-link tree (Figure 5.1) is an implementation of a concurrent search structure based on

the B-tree. A B-tree is a generalization of a binary search tree, in that a node can have more
than two children. In a binary search tree, each node contains a key k0 and up to two pointers
yl and yr . An operation on k takes the left branch if k < k0 and the right branch otherwise. A
B-tree generalizes this by having l sorted keys k0, . . . ,kl−1 and l + 1 pointers y0, . . . ,yl at each
node, such that B ≤ l + 1 < 2B for some constant B. At internal nodes, an operation on k takes
the branch yi if ki−1 ≤ k < ki . Only the keys stored in leaf nodes are considered the contents
of a B-tree; internal nodes contain “separator” keys for the purpose of routing only. When an
operation arrives at a leaf node n, it proceeds to insert, delete, or search for its query key in the
keys of n. To avoid interference, each node has a lock that must be held by an operation before it
reads from or writes to the node.

67

When a node n gets full, a separate maintenance thread performs a split operation by trans-
ferring half its keys (or pointers, if it is an internal node) into a new node n′, and adding a link
to n′ from n’s parent. In the concurrent setting, one needs to ensure that this operation does not
cause concurrent operations at n looking for a key k that was transferred to n′ to conclude that
k is not in the structure. The B-link tree solves this problem by linking n to n′ and store a key k′

(the key in the gray box in the �gure) that indicates to concurrent operations that all keys k > k′

can be reached by following the link edge. For e�ciency, this split is performed in two steps: (i)
a half-split step that locks n, transfers half the keys to n′, and adds a link from n to n′ and (ii) a
complete-split performed by a separate thread that takes half-split nodes n, locks the parent of n,
and adds a pointer to n′.

Figure 5.1 shows the state of a B-link tree where node y2 has been fully split, and its parent
n has been half split. The full split of y2 moved keys {8, 9} to a new node y3, added a link edge,
and added a pointer to y3 to its (old) parent n. However, this caused n to become full, resulting in
a half split that moved its children {y2,y3} to a new node n′ and added a link edge to n′. The key
5 in the gray box in n directs operations on keys k ≥ 5 via the link edge to n′. The �gure shows
the state after this half split but before the complete-split when the pointer of n′ will be added to
r .

5.1.2 Abstracting Search Structures using Edgesets
The link technique is not restricted to B-trees: consider a hash table implemented as an array

of pointers, where the ith entry points to a bucket node that contains an array of keys k0, . . . ,kl
that all hash to i . When a node n gets full, it is locked, its keys are moved to a new node n′ with
twice the capacity, and n is linked to n′. Again, a separate operation locks the main array entry
and updates it from n to n′.

While these two data structures look completely di�erent, the main operations of search,
insert, and delete follow the same abstract algorithm. In both, there is some rule by which oper-
ations are routed from one node to the next, and both introduce link edges when keys are moved
to ensure that no other operation loses its way.

To concretize this intuition, let the edgeset of an edge (n,n′), written es(n,n′), be the set of
query keys for which an operation arriving at a node n traverses (n,n′). For the B-link tree in
Figure 5.1, the edgeset of (n,y1) is [4, 5) and the edgeset of the link edge (y0,y1) is [5,∞). Note
that 4 is in the edgeset of (y0,y1) even though an operation on 4 would not normally reach y0; in
order to make edgeset a local quantity, we say k ∈ es(n,n′) if an operation on k would traverse
(n,n′) assuming it somehow found itself at n. In the hash table, assuming there exists a global
root node, the edgeset from the root to the ith array entry is {k | hash(k) = i}. The edgeset from
an array entry to the bucket node is the set of all keys KS, as is the edgeset from a deleted bucket
node to its replacement.

5.1.3 The Link Template Algorithm
Figure 5.2 lists the link template algorithm [Shasha and Goodman 1988] that uses edgesets

to describe the algorithm used by all core operations for both B-link trees and hash tables in a

68

1 let rec traverse n k =
2 lockNode n;
3 match findNext n k with
4 | None -> n
5 | Some n' -> unlockNode n;
6 traverse n' k

7 let rec searchStrOp ω r k =
8 let n = traverse r k in
9 match decisiveOp ω n k with

10 | None -> unlockNode n;
11 searchStrOp ω r k
12 | Some res -> unlockNode n; res

Figure 5.2: The link template algorithm, which can be instantiated to the B-link tree algorithm by pro-
viding implementations of helper functions findNext and decisiveOp. findNext n k returns Some n’ if
k ∈ es(n,n′) and None if there exists no such n′. decisiveOp n k performs the operation ω (either search,
insert, or delete) on k at node n.

uniform manner. The algorithm assumes that an implementation provides certain primitives or
helper functions, such as findNext that �nds the next node to visit given a current node n and a
query key k , by looking for an edge (n,n′) with k ∈ es(n,n′). For the B-link tree, findNext does
a binary search on the keys to �nd the appropriate pointer to follow, while for the hash table,
when at the root it returns the edge to the array element indexed by the hash of the key, and at
bucket nodes it follows the link edge if it exists. The function searchStrOp can be used to build
implementations of all three search structure operations by implementing the helper function
decisiveOp to perform the desired operation (read, add, or remove) of key k on the node n.

An operation on key k starts at the root r , and calls a function traverse on line 8 to �nd
the node on which it should operate. traverse is a recursive function that works by following
edges whose edgesets contain k (using the helper function findNext on line 3) until the operation
reaches a node n with no outgoing edge having an edgeset containing k . Note that the operation
locks a node only during the call to findNext, and holds no locks when moving between nodes.
traverse terminates when findNext does not �nd any n′ such that k ∈ es(n,n′), which, in the B-
link tree case means it has found the correct leaf to operate on. At this point, the thread performs
the decisive operation on n (line 9). If the operation succeeds, then decisiveOp returns Some

res and the algorithm unlocks n and returns res. In case of failure (say an insert operation
encountered a full node), the algorithm unlocks n, gives up, and starts from the root again.

If we can verify this link template algorithm with a proof that is parametrized by the helper
functions, then we can reuse the proof across diverse implementations.

5.1.4 A Proof Strategy for Template Search Structures
As the link template algorithm is parametrized by the concrete data structure, its proof cannot

use any data-structure-speci�c invariants (such as that the array of keys in a B-tree is sorted). The
edgeset framework provides a correctness condition for search structure algorithms in terms of
reachability properties of sets of keys on a mathematical graph, abstracting from the data layout
of the implementation.

Let the contents of a node be the set of keys that are stored at that node (for the B-link tree
in Figure 5.1 the contents of y0 are {1, 2}, while the contents of internal nodes like n are ∅). We
let the state of a data structure be the graph whose edges are labelled with edgesets and nodes

69

with their contents. The abstract state of a graph is then the union of the contents of all its
nodes. Proving that the link template re�nes its abstract speci�cation requires us to prove that
the decisive operation updates the abstract state appropriately. In our B-link tree example, say
an operation seeking to delete 3 arrived at node y0 and returned because 3 was not present, then
the proof must show that 3 is not present anywhere else in the structure. Intuitively, we know
that this is true because the rules de�ning a B-link tree ensure that y0 is the only node where 3
can be present.

To generalize this argument to arbitrary search structures, we build on the concept of edge-
sets. The pathset of a path between nodes n1 and n2 is de�ned as the intersection of edgesets
of every edge on the path, and is thus the set of keys for which operations starting at n1 would
arrive at n2 assuming neither the path nor the edgesets along that path change. For example, the
pathset of the path between r and n′ in Figure 5.1 is (−∞,∞) ∩ [5,∞) = [5,∞). With this, we
de�ne the inset of a node n, written ins(n), as the union of the pathsets of all paths from the root
node to n (B-link trees may have several paths from the root to a given leaf node). Let the outset
of n, outs(n), be the keys in the union of edgesets of edges leaving n. If we take the inset of a node
n, and subtract the outset, we get the keyset of n, ks(n). Intuitively, the keyset of a node n is the
set of keys that if present in the structure, must be in n. Coming back to our example, the keyset
of node y0 is (−∞, 4) \ [4,∞) = (−∞, 4), and so it su�ces for the delete operation to ensure that
3 is not present in y0.

We enforce the above interpretation of the keyset using the following good state conditions:

(GS1) The contents of every node are a subset of the keyset of that node.

(GS2) The edgesets of two distinct edges leaving a node are disjoint.

For data structures with a single root, (GS2) ensures that the keysets of two distinct nodes are
disjoint. This, along with (GS1), tells us that we can treat the keyset of n as the set of keys that
n can potentially contain. In good states, k is in the inset of n if and only if operations on k pass
through n, and k is in the keyset of n if and only if operations on k end up at n. Given a good state,
if an operation looks for, inserts, or deletes k at a node n such that k is in the keyset of a node n,
then the keyset theorem of Shasha and Goodman [1988] shows that the operation modi�es the
abstract state correctly.

How does the link template ensure thatk ∈ ks(n)when decisiveOp is called? In the absence of
split operations and link edges, this follows because we start o� at the root r , where by de�nition
k ∈ ins(r), and traverse an edge (n,n′) only when k ∈ es(n,n′), maintaining the invariant that
k ∈ ins(n). When there does not exist an outgoing edge with k in the edgeset, we know by
de�nition that k ∈ ks(n).

In the presence of split operations, this invariant breaks down because the inset of a node n
shrinks after a split, so that k might have been in the ins(n) before the split but not afterwards.
Note, however, that if one traverses the link edge, one can get back to a node with k in its inset.
The way to formalize a more general invariant is to de�ne the inreach of a node n as

inr(n) B ins(n) ∪
⋃
n′

es(n,n′) ∩ inr(n′).

70

Intuitively, inr(n) is the set of keys k for which if we follow edges labelled with k from n then
we will eventually reach a node n′ with k ∈ ins(n′). For example, in Figure 5.1 the inreach of
y1 is [4,∞) even though its inset is only [4, 5), for it can reach the nodes with k in their inset
for all k ≥ 4 by following link edges. The invariant of the traversal is then that k ∈ inr(n).
This is true at the root, because inr(r) = ins(r) = KS, and it is preserved during the traversal
even with concurrent splits. When findNext returns None, the de�nition of inreach implies that
k ∈ inr(n) \ outs(n) ⊆ ks(n), which by the keyset theorem gives us correctness of the decisive
operation.

The edgeset framework and keyset theorem thus give us abstract conditions under which a
template algorithm is correct. However, reasoning about insets and inreach is still challenging,
because they are global inductively-de�ned quantities of the data structure. If we can write local
pre- and post-conditions for helper functions such as decisiveOp, then the proof of an implemen-
tation can reason only about the node that the helper function modi�es. In the next section, we
show how to reason about the correctness conditions for template algorithms that rely on global
quantities using local reasoning.

5.2 Verifying Search Structure Templates
This section shows how to tie together the edgeset framework and �ow interfaces in Iris in

order to verify template algorithms for concurrent search structures. We do this using the proof
of the link template from §5.1 as an example. The other template algorithms we prove, as well as
the implementations we consider, are described in the next section. A formal introduction to Iris
and the underlying programming language semantics is, unfortunately, beyond the scope of this
thesis. We provide intuition for the key logical constructs and reasoning steps as and when they
are used; for a more detailed introduction to Iris see [Jung et al. 2018a].

Proving correctness of data structures generally involves showing memory safety and func-
tional correctness. In this work, we prove that template algorithms such as the link template
satisfy a speci�cation that encapsulates correctness as well as safety: contextual re�nement. An
implementation program e1 contextually re�nes a speci�cation program e2 if and only if, for every
possible client, each behavior when using e1 is a possible behavior of e2.

To prove contextual re�nement, we use ReLoC [Frumin et al. 2018], an extension of Iris with
�rst-class support for reasoning about re�nement. However, to simplify the presentation, we
show only the Hoare-style proof of the invariant needed for re�nement in this section and in-
dicate at the appropriate points what extra proof obligations are needed for the full re�nement
proof. All free variables in the intermediate assertions are implicitly existentially quanti�ed.

Let us abstractly represent the state of a search structure as the set of keysC that it contains.
We de�ne the speci�cation program searchStrSpec ω for search structure operation ω (either
search, insert, or delete) on query key k as an atomic step that modi�es the setC to a new setC′,
and returns the value res, such that the predicate Ψω(k,C,C′, res) de�ned in Figure 5.3 holds. Note
that as our speci�cation (a mathematical set ADT) is atomic, we can infer that our implementation
is linearizable [Filipovic et al. 2009].

The high-level idea behind the re�nement proof is to relate the state of the implementation to

71

Ψω (k,C,C
′, res) B


C ′ = C ∧ (res ⇐⇒ k ∈ C) ω = search

C ′ = C ∪ {k} ∧ (res ⇐⇒ k < C) ω = insert

C ′ = C \ {k} ∧ (res ⇐⇒ k ∈ C) ω = delete

Figure 5.3: Abstract specification of search structure operations.

the state of the speci�cation so that we can show that the implementation modi�es the state in a
manner consistent with the speci�cation. We will do this in Iris using an invariant Inv which is a
formula in Iris’ logic that we formally de�ne in §5.2.3 but describe intuitively here. Since e�cient
concurrent implementations usually distribute the state over a set of nodes, a natural �rst step is
to associate each node with the set of keys it contains and use the invariant Inv to express that the
union of contents of all nodes is equal to the abstract state C . However, as mentioned in §5.1.4,
this is not enough if one wants to do local reasoning. For instance, if we want to prove that a
delete operation on k that removed k from node n is correct, we additionally need to show that k
is not present in the contents of any other node in the structure1.

The edgeset framework comes to our rescue here: if the implementation state satis�es the
good state conditions of §5.1.4 and k is in the keyset of n, then we know that k cannot be present
in any other node. Thus, Inv will also enforce that the state is a good state. As we have seen, to
reason about the good state conditions locally, we encode them using �ows. We will use ghost
state (see §5.2.2) to keep track of the �ow interface of each node, and use the node-local constraint
γ to enforce that each node satis�es local versions of the good state conditions. Our invariant
Inv will tie the �ow interface of each node to the actual heap representation of the node. The
�ow interfaces also keep track of each node’s contents using the node labels, and Inv will further
enforce that the node label of the global interface should be equal to the abstract contents C .

Apart from showing that all threads maintain the invariant, we must additionally show that
any assumptions made by a thread is not violated by the actions of other threads. For example,
as discussed in §5.1.4, traverse relies on the fact that k ∈ inr(n) when it is called in order to
guarantee that k ∈ ks(n) when it returns. So we must ensure that no other operation modi�es
the state in a way that violatesk ∈ inr(n), which we can do by proving that no operation decreases
the inreach of any node. One can think of this as being the protocol obeyed by each thread in the
link technique.

The rest of this section explains how to implement this high-level proof structure in Iris.
First, §5.2.1 explains how we use �ow interfaces to enforce the edgeset framework’s good state
conditions and lift a proof that an operation correctly updated a node to a proof that the operation
correctly updated the entire data structure. §5.2.2 then describes the resource algebras that we
use to encode both �ow interfaces and other ghost information needed for our proof, as well
as to enforce the protocol by which the shared state is updated. Finally, in §5.2.3 we de�ne the
invariant Inv in Iris and prove that the link template algorithm maintains Inv. We also describe

1The essential property we require is that the contents of distinct nodes be disjoint, but disjointness is not a local
condition either.

72

how Inv is strong enough to extend this proof to show re�nement.

5.2.1 Encoding the Edgeset Framework using Flows
Our �rst task is to provide an encoding of the edgeset framework using �ows that enables

us to lift a proof that an operation correctly updated the contents of a single node in the search
structure to a proof that it correctly updated the contents of the data structure as a whole.

To encode the edgeset framework using �ows, we cannot use sets of keys as the �ow domain
because set union is not cancellative. Instead, we use multisets as our �ow domain, as multiset
union is cancellative and su�ces to encode the invariants of the edgeset framework. Our �ow do-
main is thus (NKS, ∅,∪, EKS), where we represent multisets as functions from keys to natural num-
bers (the number of times each key occurs), write ∪ for multiset union (pointwise addition of oc-
currence counts), and denote byEKS the set of edge functions eK B (λK′. {k � min(K(k),K′(k))})
for K ⊆ KS. We label each edge (n,n′) in graph G by the function ees(n,n′), which encodes inter-
section by the edgeset es(n,n′). We use a global in�ow in = (λn. {k � (n = r ? 1 : 0)}), which
demands that the searches for all keys k in the global graph start at the root r . The �ow will then
tell us for every node n and key k , how many paths there are to the node n that a search for k
may follow. In particular, we have flow(n)(k) > 0 i� k is in the inset of n.

We express the good state condition (GS1) by saying that every key k in n’s contents is in the
inset (flow(n)(k) > 0), and there is no edge to n′ with k in its edgeset. Similarly, we can express
(GS2) by saying for any key k and other nodes n1 , n2, k is not in the edgeset of at least one of
the two edges from n to n1,n2.

It is hard to de�ne the inreach directly as a �ow [Krishna et al. 2018a], so we encode an
under-approximation of inreach that is su�cient for correctness. The key idea is to view the
graph as an overlay of two structures: a standard structure where the �ow computes the inset,
and a link structure consisting only of the link edges. For the B-link tree, the main structure
consists of the tree edges from nodes to their children, while the link structure is composed of
one list per level. This is modeled in the �ow framework by using the product of two key count
domains (see Example 3.4) as the �ow domain, where the �rst component calculates the inset as
described above. The roots of the second component are the �rst nodes on each level (as shown
in Figure 5.1), and the resulting �ow at each node n is called the linkset of n, denoted lnks(n). The
linkset of y0 is (−∞,∞) as it is the �rst leaf, and the linkset of y2 is [5,∞). One can think of the
linkset component as describing how keys are routed when they traverse link edges.

Note that in the B-link tree, the linkset happens to be equal to the inreach. In general, we
require only that the linkset approximate the inreach in such a way that it has the following
properties: First, if k ∈ lnks(n)\ ins(n) then for every edge (n,n′), k is in the edge label of the inset
component (i.e. the edgeset) of (n,n′) if and only if k is in the linkset component of the edge label
of (n,n′). This is used to prove that if k ∈ ins(n) ∪ lnks(n) and findNext n k returns Some n’, then
k ∈ ins(n′) ∪ lnks(n′) (needed by the recursive call to traverse). Second, if k ∈ lnks(n) \ outs(n),
then k ∈ ins(n)(which in turn implies k ∈ ks(n)). We use this to infer that when findNext fails, we
have found the right node n (k is in n or nowhere in the structure). These two properties mean
that instead of the inreach it is su�cient to work with the inreach-approximation ins(n)∪ lnks(n),
which for simplicity we shall call inreach in the following. We enforce these properties in γ , the

73

local good condition on nodes.
Before describing γ , we introduce some shorthand notation for clarity (these overload the

symbols used when describing the edgeset framework because they express the same quantities):

ins(I ,n) B {k | I in(n)is(k) ≥ 1} lnks(I ,n) B {k | I in(n)ls(k) ≥ 1}
outs(I) B {k | ∃n′. I out(n′)is(k) ≥ 1} es(I ,n,n′) B {k | dom(I) = {n} ∧ I out(n′)is(k) ≥ 1}

wheremis andmls denote the inset and linkset component of the �ow valuem.
We assume that the implementation uses two ghost �elds to store the contents and the inreach-

approximation of each node, and use two logical variables cn and inr that map nodes to their con-
tents and inreach respectively. We enforce this in the node-local good condition γ , along with the
good state conditions (GS1) and (GS2) and the properties needed for the desired interpretation of
linkset:

γ (n, ®fn, _, J , cn, inr) B cn(n) ⊆ ins(Jn,n) \ outs(Jn) (5.1)
∧ (∀n′,n′′. n′ = n′′ ∨ es(Jn,n,n′) ∩ es(Jn,n,n′′) = ∅) (5.2)
∧ (∀k,n′. k ∈ inr(n) \ ins(Jn,n) ⇒ Jn

f (n,n′)ls(k) = Jn
f (n,n′)is(k)) (5.3)

∧ lnks(Jn,n) ⊆ ins(Jn,n) ∪ outs(Jn,n) (5.4)
∧ ®fn = {cont : cn(n), inr : inr(n), . . . } (5.5)

Here, conditions (5.1) and (5.2) encode the good state conditions (GS1) and (GS2). (5.3) and (5.4)
are the two constraints on the linkset that we described earlier. Finally, (5.5) ties the logical maps
cn, inr to the ghost �eld values.

We also require the following constraints on the global interface:

φ(I) B (∀n,k .I in(n)is(k)= (n=r ? 1 : 0)) ∧ I out =λ0
This says that in the inset �ow domain component, the global in�ow assigns a key count of 1 to
the root r , and 0 for every other node, for all keys (i.e. all searches start at the root). It does not
restrict the global in�ow in the linkset component. We also require that the global interface is
closed (i.e. has no outgoing �ow).

The good condition γ and the global interface constraint φ together result in a �ow that com-
putes the inset and the linkset of each node. They also enforce the good state conditions of the
edgeset framework.

Finally, we can use these quantities and constraints to formulate a version of the Keyset Theo-
rem from [Shasha and Goodman 1988], which reduces the problem of proving the search structure
speci�cation Ψω for the global region X to proving it for the single modi�ed node n:

keyset-thm
∀x . γ (x, _, _, J , cn, _) n ∈ X φ(JX)

∀x , n. cn(x) = cn′(x) k ∈ ins(Jn,n) \ outs(Jn)

Ψω(k, cn(n), cn′(n), res) ⇒ Ψω(k, cn(X), cn′(X), res)

Here, we lift the contents map to a set of nodes as cn(X) B
⋃

x∈X cn(x). This lemma is a pure
assertion about �ow interfaces and can be proven by induction on the number of nodes in X .

74

5.2.2 Resource Algebras and Ghost State
Iris models both the knowledge of threads about the shared state (e.g. k ∈ ks(n)) and protocols

for modifying the shared state (e.g. inreach cannot decrease) using the notion of ghost state. Ghost
state, also known as logical or auxiliary state, is a type of primitive resource (analogous to the
points-to predicate from standard separation logics) that helps with the proof but has no e�ect on
run-time behavior. Ghost state can be allocated by the prover at any time at unused ghost names,
the analogue of memory addresses for concrete locations, and will contain values drawn from a
user-speci�ed resource algebra (RA). Iris expresses ownership of ghost state by the proposition
a γ which asserts that ownership of a piece a ∈ M of the ghost locationγ . Ghost state can be split

and combined according to the rules of the underlying RA: a γ
∗ b

γ
a` a · b

γ
. Furthermore,

Iris maintains the invariant that the composition of all the pieces of ghost state at a particular
location is valid (in terms of theV predicate from Figure 2.1).

For instance, consider the authoritative RA that we will use to keep track of the inreach of
each node. Given an RA M , the authoritative RA Auth(M) (see [Jung et al. 2018a] for the formal
de�nition) can be used to model situations where one party owns the authoritative element a ∈ M
and other parties are allowed to own fragmentsb ∈ M , with the invariant that all fragmentsb 4 a.
This can be used to model, for example, a shared heap, where there is a single authoritative heap
a and each thread owns a fragment of it. The invariant that all fragments b 4 a implies that the
fragments owned by all threads are consistent. We write •a for ownership of the authoritative
element and ◦b for fragmental ownership.

We use an authoritative RA of sets of keys, at locations γi(n) for each node n, to encode the
inreach of each node. From the de�nition, one can show that this RA satis�es the following
properties:

auth-set-upd
X ⊆ Y

•X •Y
auth-set-snapshot
•X •X · ◦X

auth-set-valid
V(•X · ◦Y)

Y ⊆ X

We store the inreach of a node n with interface In in the shared state as •inr(n)
γi(n) . Threads

can take snapshots of the inreach of a node using auth-set-snapshot and move a fragment
∃X . ◦X

γi(n) to their local state. This allows them to make assertions such as ∃X . ◦X γi(n)
∗k ∈ X

for some key k , which in conjunction with auth-set-valid encodes the knowledge that k ∈ inr(n).
This knowledge is stable under interference by other threads, for the only frame-preserving up-
date permitted by this RA is auth-set-upd, which allows threads to increase the inreach of a
node.

We also use an authoritative RA of �ow interfaces Auth(FI) to keep track of the �ow inter-
face ghost state of our algorithms. Using Theorem 3.18, we can show that this RA permits the
following non-deterministic frame-preserving update (which is a generalization of the standard
frame-preserving update presented in §2.2.1, for details see [Jung et al. 2018a]):

auth-fi-upd
I1 - I ′1

(• I , ◦ I1)
{
(• I ′, ◦ I ′1)

�� I - I ′ ∧ ∃I2. I = I1 ⊕ I2 ∧ I
′= I ′1 ⊕ I2

}
75

{
~(n, In, cn, inr)

}
findNext n k{
v . ~(n, In, cn, inr) ∗ (v = None ∗ k < outs(In)

∨v = Some(n′) ∗ k ∈ es(In,n,n′))

}
{
~(n, In, cn, inr) ∗ k ∈ ins(In,n) ∗ k < outs(In)

}
decisiveOp ω n k
v .v = None ∗ ~(n, In, cn, inr)

∨v = Some(v ′) ∗ ~(n, I ′n, cn′, inr′) ∗ Ψω (k, cn(n), cn′(n),v ′)

∗ In - I ′n ∗ inr(In,n) = inr(I ′n,n)


Figure 5.4: Specifications of helper functions that are defined by implementations.

Finally, given any set S , it is easy to see that we have an RA (2S, True, λX .∅,∪), which permits
a frame-preserving update X Y for any X ,Y ⊆ S . We will use a set RA in our proof to keep
track of the global contents, which is the state of the speci�cation program.

5.2.3 Proof of the Link Template
Since Iris allows user-de�ned ghost state, we can simplify the proof technique and encoding

from §4.1.1. First, we store the singleton interface of each node as a resource ◦In
γI instead of

using a ghost �eld intf. We also do not use the node and graph predicates N and Gr, and instead
use a direct encoding into Iris to keep the speci�cations simple. Instead of an abstraction function
edges, we assume an abstract heap representation predicate (whose de�nition is implementation-
speci�c, and provided by the user for implementation proofs) ~(n, In, cn, inr) that must satisfy

~(n, In, cn, inr) ⇒ n 7→ ®fn ∗ γ (n, ®fn, _, {n� In} , cn, inr).

Figure 5.5 presents a proof outline of the link template algorithm, where the intermediate as-
sertions in braces show the context of the proof (the premises that are currently available). Our
proof assumes that the implementation-speci�c helper functions satisfy the speci�cations shown
in Figure 5.4. For instance, the speci�cation of findNext expects to be given a node n satisfying
~(n, In, cn, inr), and returns None if k is not in the outset of n or else it returns Some(n′) if k is in
the edgeset es(In,n,n′). Similarly, the speci�cation of decisiveOp expects a node ~(n, In, cn, inr)
such that k is in the keyset of n (k ∈ ins(In,n) ∗ k < outs(In)). If decisiveOp returns None then
it returns the node unchanged. On the other hand, if it returns Some(v′) then the node is now
~(n, I ′n, cn′, inr′), but the inreach is unchanged (inr(In,n) = inr(I ′n,n)), the new interface is a contex-
tual extension of the previous interface (In - I ′n), and the return value satis�es the search structure
speci�cation with respect to the old and new contents of the node n (Ψω(k, cn(n), cn′(n),v′)).

We also use a standard lock module, similar to the one in [Frumin et al. 2018], adapted to a set-
ting where each node n in our data structure has its own lock that protects the interface and heap
representation of n, ◦In

γI
∗ ~(n, In, cn, inr). We assume the speci�cation of the lock and unlock

methods shown at the top of Figure 5.5, but note that our Iris proofs prove this speci�cation.
The Hoare-style speci�cation for searchStrOp is simply{

Inv
N
}
searchStrOp ω r k

{
Inv

N
}
.

However, the re�nement proof will also require us to show that if we execute the speci�cation
program searchStrSpec at the linearization point, then searchStrSpec returns the same value as

76

1 (* Let inFP(n) B ∃N . ◦N
γf
∗ n ∈ N, inInr(n,k) B ∃R. ◦R

γi (n)
∗ k ∈ R *)

2

3

{
Inv

N
∗ inFP(n)

}
lockNode n

{
Inv

N
∗ Node(n, In, In)

}
4

{
Inv

N
∗ Node(n, In, In)

}
unlockNode n

{
Inv

N
}

5

6

{
Inv

N
∗ inFP(n) ∗ inInr(n,k)

}
7 let rec traverse n k =
8 lockNode n;

9

{
Inv

N
∗ Node(v, Iv , Iv) ∗ inFP(n) ∗ inInr(n,k)

}
10 match findNext n k with

11 | None ->
{

Inv
N
∗ Node(n, In, In) ∗ inFP(n) ∗ inInr(n,k) ∗ k < outs(In)

}
12 n

13 | Some n' ->
{

Inv
N
∗ Node(n, In, In) ∗ inFP(n) ∗ inInr(n,k) ∗ k ∈ es(In,n,n′)

}
14 unlockNode n;

15

{
Inv

N
∗ inFP(n′) ∗ inInr(n′,k)

}
16 traverse n' k

17

{
v . Inv

N
∗ Node(v, Iv , Iv) ∗ inInr(v,k) ∗ k < outs(Iv)

}
18

19 let rec searchStrOp ω r k =

20

{
Inv

N
∗ inFP(r) ∗ inInr(r ,k)

}
21 let n = traverse r k in

22

{
Inv

N
∗ Node(n, In, In) ∗ k ∈ ins(In,n) ∗ k < outs(In)

}
23 match decisiveOp ω n k with

24 | None ->
{

Inv
N
∗ Node(n, In, In) ∗ k ∈ ins(In,n) ∗ k < outs(In)

}
25 unlockNode n;

{
Inv

N
}

26 searchStrOp ω r k

27 | Some res ->
{

Inv
N
∗ Node(n, In, I ′n) ∗ Ψω (k, cn(n), cn′(n), res)

}
28

{
•I

γI
cn(I)

γc
∗ ◦In

γI
∗ ~(n, I ′n, cn′, inr′) ∗ Ψω (k, cn(n), cn′(n), res) · · ·

}>\N
29 (* Linearization point. Execute spec: res' = searchStrSpec ω k *)

30

{
•I

γI
∗ C ′

γc
∗ ◦In

γI
∗ ~(n, I ′n, cn′, inr′) ∗ Ψω (k, cn(n), cn′(n), res) ∗ Ψω (k, cn(dom(I)),C ′, res′) ∗ · · ·

}>\N
31

{
•I ′

γI
∗ cn(I ′)

γc
∗ ◦I ′n

γI
∗ ~(n, I ′n, cn′, inr′) ∗ res = res′ · · ·

}>\N
32

{
Inv

N
∗ ◦I ′n

γI
∗ ~(n, I ′n, cn′, inr′) ∗ res = res′

}
33 unlockNode n;

{
Inv

N
∗ res = res′

}
34 res

Figure 5.5: The link template algorithm with a proof outline.

77

will be returned by searchStrOp. In order to do this, we construct an Iris invariant that relates
the implementation state and the speci�cation state and is su�cient to prove correctness:

Inv B ∃I . •I
γI
∗ φ(I) ∗ • dom(I)

γf
∗∗

n∈I

•inr(n)
γi(n)
∗ cn(dom(I))

γc

∗∗
n∈I

∃b . `(n) 7→i b ∗ (b ? True : ∃In . Node(n, In, In))

Node(n, In, I ′n) B ◦In
γI
∗ ~(n, I ′n, cn, inr)

Our invariant uses a few di�erent types of ghost states in order to capture the state of the
link algorithm, the state of the speci�cation, and the relation between them. First, we use the
Auth(FIγ) RA at location γI to keep track of the �ow graph abstraction. The invariant always
owns the authoritative version •I γI , which is the interface of the global graph and that satis�es
φ(I). We assume that every node n ∈ I has a lock bit at location `(n) that is set to True i� node
n is locked. If n is unlocked, the invariant owns the fragment version of n’s interface ◦In

γI and
n’s heap representation ~(n, In, cn, inr) (denoted Node(n, In, In)).

We use an authoritative RA of sets of keys, at locations γi(n) for each node n, to encode the
inreach of each node. This allows threads to assert that a key is in the inreach of a given node
even when it is unlocked, as described in §5.2.2. We also use an authoritative RA of sets of nodes
at location γ f to encode the footprint of the global graph. The invariant owns the authoritative
version • dom(I)

γf , which is the domain of the global interface. This allows threads to take
snapshots of the footprint and assert locally that a given node is in the footprint (used for example,
in the precondition of lockNode).

Finally, we use a sets of keys RA at location γc in order to encode the state of the speci�cation
program searchStrSpec. The relation between the link algorithm and the speci�cation is that the
state of the speci�cation must match the set of keys of the implementation, cn(dom(I)).

In Iris, the invariant assertion Inv
N

denotes state that can be shared between threads that
always satis�es the invariant Inv. Invariants are tagged with name spaces (our invariant is tagged
with the name space N) so as to enforce that the invariant is reestablished in between atomic
steps of the program. This is achieved in Iris by tagging the proof goal with a mask E of available
invariants, and allowing the proof to consider an atomic action only when all invariants opened
by the previous action have been closed. E.g. the mask > \ N encodes the fact that N has been
opened and needs to be reestablished before proceeding. We represent this as superscripts on our
Hoare-style assertions, and omit the superscript if the mask is >, the set of all invariant names.

Let us now step through the proof of searchStrOp. The code begins with a call to traverse

on line 21. To satisfy traverse’s precondition, we need to open the invariant and use the fact
that φ(I) ⇒ r ∈ dom(I). We can then take a snapshot of the domain of the global invariant using
auth-set-snapshot, and we add inFP(r) to our context. Note that φ(I) ⇒ I in(r)is(k) = 1 which
by the invariant gives us k ∈ inr(r). So we also use r ∈ dom(I) to unfold the iterated separating
conjunction containing the inreach sets in the invariant, and take a snapshot of the inreach set
of r using auth-set-snapshot to add inInr(r ,k) to our context. The resulting context is depicted
in line 20.

78

After the call to traverse, we can add its postcondition (line 17) to our context. The next step
is the call to decisiveOp, for whose precondition we need to show that k ∈ ins(In,n). This follows
from inInr(n,k) ∧ k < outs(In) by the de�nition of the invariant, and (5.4).

We then look at the two possible outcomes of decisiveOp. In the case where it returns None,
our context is unchanged, so we execute unlockNode using the Node(n, In, In) in our context. We
can use the speci�cation of searchStrOp on the recursive call on line 26 to complete this branch
of the proof.

On the other hand, if decisiveOp succeeds, we get back a modi�ed node Node(n, In, I ′n) with
a new interface I ′n that satis�es the search structure speci�cation Ψω(k, cn(n), cn′(n), res) locally
(line 27). Since we have modi�ed the search structure, we now have an extra proof obligation
for the re�nement proof: we need to show that the result value of the speci�cation program
if executed at this point is the same as what searchStrOp will return. This is essentially the
linearization point of this algorithm.

To do this, we �rst open the invariant to get temporary access to its contents, which sets the
mask to > \N (line 28). We now have the resources to execute the speci�cation program, which
changes the speci�cation state from cn(n) toC′ and tells us they satisfy Ψω(k, cn(dom(I)),C′, res′).

On the concrete side, we only know Ψω(k, cn(n), cn′(n), res). If we can lift this knowledge to
the whole graph, we can use the fact that Ψω determines the result uniquely to obtain res = res′:

Ψω(k,C,C
′
1, res1) ∧ Ψω(k,C,C

′
2, res2) ⇒ C′1 = C

′
2 ∧ res1 = res2.

Before we do that, we �rst note that while the node n has interface I ′n, the ghost location γI still
contains the old interface In. So we now perform a frame-preserving update to the authoritative
�ow interface ghost location, using auth-fi-upd and the fact that I ′n contextually extends In ac-
cording to the postcondition of decisiveOp. We also need to re-establish the relation between
the implementation state and the speci�cation state, namely cn(dom(I ′)) = C′. We do this with
the help of keyset-thm, which gives us Ψω(k, cn(dom(I)), cn(dom(I ′)), res). As Ψω determines the
result, we have that res = res′, completing the re�nement proof obligation.

We now have the context in line 31, from which we can close the invariant. We �nally execute
the call to unlockNode as above, and complete the proof. The proof of traverse follows a similar
line-by-line reasoning using the appropriate speci�cations of helper functions, except that it does
not need to execute the speci�cation program. The intermediate contexts are shown in Figure 5.5.

5.2.4 Lock-coupling and Give-up Templates
In this subsection we list and describe the other templates that we have considered: the give-

up and the lock-coupling templates. These correspond to alternate strategies for using locks to
avoid unwanted interference between threads. We omit the proofs of these templates because
they are very similar to the proof of the link template, use almost identical invariants, and are in
fact simpler as neither of these two need the notion of inreach.

Give-up Template The give-up template, like the link template, uses locks only when reading
or writing from a node and does not hold locks while traversing from one node to the next.

79

1 let rec traverse r n k =
2 lockNode n;
3 if inRange n k then
4 match findNext n k with
5 | None -> n
6 | Some n' -> unlockNode n;
7 traverse n' k
8 else
9 unlockNode n;

10 traverse r r k

11 let rec searchStrOp ω r k =
12 let n = traverse r r k in
13 match decisiveOp ω n k with
14 | None ->
15 unlockNode n;
16 searchStrOp ω r k
17 | Some res ->
18 unlockNode n;
19 res

Figure 5.6: The give-up template algorithm.

1 let rec traverse p n k =
2 match findNext n k with
3 | None -> (p, n)
4 | Some n' ->
5 unlockNode p;
6 lockNode n;
7 traverse n n' k

8 let rec searchStrOp ω r k =
9 lockNode r;

10 match findNext r k with
11 | None -> searchStrOp ω r k
12 | Some n ->
13 let (p, n) = traverse r n k in
14 let res = decisiveOp ω p n k in
15 unlockNode p;
16 unlockNode n;
17 res

Figure 5.7: The lock-coupling template algorithm.

Unlike the link template, there are no link edges added by threads that move data from one node
to another. Instead, each node stores a range �eld: this is an under-approximation of that node’s
inset. Upon arriving at a new node n, each thread locks the node and checks its query key k
against the range of n. If k is in the range of n then the thread knows that it is still on the correct
path, and it continues. If not, it gives up: it relinquishes the lock on n and goes back to the root
of the data structure to retry.

The code for this template algorithm is given in Figure 5.6. Note that apart from the helper
functions findNext and decisiveOp, this template assumes a helper function inRange. When called
as inRange n k, this function returns true if and only if k is in the range of n.

The give-up template can be instantiated by a B+ tree, for instance, by adding to each node n
additional �elds to keep track of lower and upper bounds for keys that are present in the subtree
rooted at n. We have also considered a hash table implementation of this template.

Lock-coupling Template The lock-coupling template uses the hand-over-hand locking scheme
to ensure that no thread is negatively interfered with while it is on its traversal. Unlike the other
two templates, every thread always holds at least one lock while traversing from one node to
the next. This means that no other thread can overtake this thread, or perform any modi�cation
that would invalidate this thread’s search. The code for this template algorithm is given in Fig-

80

ure 5.7. This is one of the more basic concurrency techniques, and is not as e�cient, thus we only
consider a linked list implementation of this template.

5.2.5 Proofs of Template Implementations
To obtain a veri�ed implementation of the link template, one needs to provide code for the

helper functions in Figure 5.4 that satis�es the given speci�cations. As can be seen from the
speci�cations, these functions do not have access to the invariant, and hence the shared state,
and only have access to the heap representation of the given node. Thus, if their implementations
are sequential code, one expects to be able to verify them using an o�-the-shelf separation logic
tool that can verify sequential heap-manipulating code. Indeed, using some of the core rules of
Iris/ReLoC, we can show that we can reason about the implementation program using standard
separation logic rules as long as the program only uses those resources that are not locked up in
some invariant. Thus, in theory, we can take a proof produced by a standard SL tool and lift it to
an Iris proof.

As an example, we present the key de�nitions that we use to verify the B-link tree imple-
mentation in GRASShopper in Figure 5.8. We assume an uninterpreted type of keys K (that we
axiomatize to be ordered), represent B-link tree nodes using the struct type Node and the �ow
domain and �ow interfaces using algebraic data types. The �ow domain is axiomatized as de-
scribed in §5.2.1. Since GRASShopper does not have partial maps, we use the footprint set dom to
constrain the domains of the in�ow and out�ow.

hrepSpatial is a predicate that de�nes the access permissions needed for each B-link tree
node (it gives permissions to the node and its arrays by means of the access predicate acc). The
function edge_fn is the abstraction function edges that determines the edge function labelling
each edge leaving a node. hrep is the heap representation predicate ~(n, In, cn, inr). For space
reasons, we only list the B-link tree speci�c constraints, such as that the keys are sorted, and
omit the parts tying the parameters cn and inr to the heap, and the conditions of γ predicate, as
they have been described before.

5.3 Proof Mechanization and Automation
In addition to the link template presented in this thesis, we have also veri�ed the give-up and

lock-coupling template algorithms from [Shasha and Goodman 1988], as depicted in Figure 1.2.
For the link template and give-up template, we have derived and veri�ed implementations based
on B trees and hash tables. For the lock-coupling template we have considered a sorted linked
list implementation. The lock-coupling template also captures the synchronization performed by
maintenance operations on algorithms such as the split operation on B+ and B-link trees when
they traverse the data structure.

The proofs of the template algorithms have been mechanized using the Coq proof assistant,
building on the formalization of ReLoC [Frumin et al. 2018]. The implementations of the helper
functions for the concrete implementations that are assumed in the template algorithms (e.g.
decisiveOp, findNext, etc.) have been veri�ed using the separation logic based deductive pro-

81

1 type K
2

3 struct Node {
4 var len: Int;
5 var keys: Array<K>;
6 var ptrs: Array<Node>;
7 var next: Node;
8 ghost var indices: Map<Node, Int>;
9 }

10 datatype FlowDom = fd(ks: Map<K, Int>,
11 ir: Map<K, Int>)
12

13 datatype Interface =
14 int(inf: Map<Node, FlowDom>,
15 out: Map<Node, FlowDom>,
16 dom: Set<Node>)
17 | intUndef

18 predicate hrepSpatial(x: Node) {
19 acc(x) ∗ acc(x.keys) ∗ acc(x.ptrs) ∗ x.keys.length == 2*B ∧ x.ptrs.length == 2*B
20 }
21

22 function edge_fn(x: Node, y: Node) returns (e: Map<FlowDom, FlowDom>)
23 requires hrepSpatial(x)
24 ensures 0 ≤ x.indices[y] ∧ x.indices[y] ≤ x.len
25 ⇒ (∀ p: FlowDom, k: K :: e[p].ks[k]
26 == ((x.indices[y] == 0 || le(x.keys[x.indices[y] - 1], k))
27 ∧ (x.indices[y] == x.len ∧ x.next == null ∧ lt(k, top())
28 || lt(k, x.keys[x.indices[y]]))
29 ? p.ks[k] : 0))
30 ensures x.indices[y] == -1
31 ⇒ (∀ p: FlowDom, k: K :: e[p].ks[k]
32 == (x.next == y ∧ y , null ∧ le(x.keys[x.len], k) ∧ lt(k, top())
33 ? p.ks[k] : 0))
34

35 define hrep(x, I, C, inr) {
36 hrepSpatial(x) ∗ x.next , x ∧ I.dom == {x}
37 ∧ 0 ≤ x.len < 2*B ∧ (x.next == null ⇒ x.keys[x.len] == top)
38 // Outflow determined by edge_fn
39 ∧ (∀ z: Node :: fdEq(I.out[z], edge_fn(x, z)[I.inf[x]]))
40 // Keys are sorted
41 ∧ (∀ i: Int, j: Int :: 0 ≤ i < j ≤ x.len ⇒ x.keys[i] < x.keys[j])
42 // All outgoing pointers are distinct
43 ∧ (∀ i: Int :: x.ptrs[0] , null ∧ 0 ≤ i ≤ x.len ⇒ x , x.ptrs[i])
44 ∧ (∀ i: Int :: x.ptrs[0] , null ∧ 0 ≤ i ≤ x.len ⇒ x.ptrs[i] , x.next)
45 ∧ (∀ i: Int, j: Int :: x.ptrs[0] , null ∧ 0 ≤ i < j ≤ x.len ⇒ x.ptrs[i] , x.ptrs[j])
46 // Internal nodes don't point to null
47 ∧ (∀ i: Int :: x.ptrs[0] , null ∧ 0 ≤ i ≤ x.len ⇒ x.ptrs[i] , null)
48 // Indices of outgoing pointers are stored in x.indices
49 ∧ (∀ n: Node :: 0 ≤ x.indices[n] ≤ x.len ⇒ x.ptrs.map[x.indices[n]] == n)
50 ∧ (∀ i: Int :: x.ptrs[0] , null ∧ 0 ≤ i ≤ x.len ⇒ x.indices[x.ptrs.map[i]] == i)
51 ∧ (∀ n: Node :: -1 ≤ x.indices[n] ≤ x.len)
52 ∧ (x.ptrs[0] == null ⇒ (∀ n: Node :: x.indices[n] == -1))
53 // Tie C and inr to heap, list good conditions:
54 ...
55 }

Figure 5.8: B-link tree implementation in GRASShopper.

82

Table 5.1: Summary of templates and instantiations verified in Iris/Coq and GRASShopper. For each al-
gorithm or library, we show the number of lines of code, lines of proof annotation (including specification),
total number of lines, and the proof-checking / verification time in seconds.

Tool Module Code Proof Total Checker Time

Iris/Coq

Flow library - 99 99 -
Link template 29 518 547 70
Give-up template 35 406 441 25
Lock-coupling template 37 565 602 44
Total 101 1588 1689 139

GRASShopper

Flow library - 127 127 -
Array library 132 300 432 9
B+ tree 73 161 234 10
B-link tree (core) 105 312 417 63
B-link tree (half split) 56 238 294 167
B-link tree (full split) 20 186 206 203
Hash table (link) 58 176 234 7
Hash table (give-up) 64 141 205 7
Lock-coupling list 83 231 314 138
Total 598 1655 2253 401

gram veri�er GRASShopper [Piskac et al. 2014]. This provided us with a substantial decrease in
veri�cation e�ort, as the tool infers intermediate assertions whose validity is proved automati-
cally using SMT solvers. While we do not have, as of now, a formal proof for the transfer of proofs
between Iris and GRASShopper, note that Iris is expressive enough to support all the reasoning
that we do in GRASShopper, but comes with signi�cant additional manual e�ort. Furthermore,
our automation of implementation proofs in GRASShopper is another indication that our �ow
framework is suitable for reasoning in o�-the-shelf automated tools.

The Coq formalization assumes that �ow interfaces form an RA (Theorem 3.21) and that they
enable frame preserving updates (Theorem 3.18) as well as some basic general lemmas about �ow
interfaces. The template proofs parameterize over the implementation of the helper functions,
the heap representation predicate ~ as well as the actual �ow domain, node label domain, and
good condition γ .

All properties involving the speci�c �ow domain elements andγ needed in the template proofs
are factored out into a few lemmas. These are assumed in Coq and proved in GRASShopper as
they can be easily discharged using an SMT solver. To automate the implementation proofs and
auxiliary lemmas in GRASShopper, we extended the tool with support for general maps and
algebraic data types as they are needed to formalize �ow interfaces.

In addition to the helper functions of each data structure that are assumed by the templates
we have also veri�ed the split operations for B-link trees. The B-link tree uses a two-part split
operation: a half-split that creates a new node, transfers half the contents from a full node to
this new node, and adds a link edge; and a full-split that links such newly created nodes to the

83

tree by adding it to the parent node. For the split operations, we assume a harness template for
a maintenance thread that traverses the data structure graph to identify nodes that are amenable
to half splits. While we have not veri�ed this harness, we note that it is a simple variation of our
lock-coupling template where the abstract speci�cation leaves the contents of the data structure
unchanged. For the implementations of half and full splits, we verify that the operation preserves
the �ow interface of the modi�ed region as well as its contents.

Table 5.1 provides a summary of our development. Experiments have been conducted on an
laptop with an Intel Core i7-5600U CPU and 16GB RAM. We split the table into one part for the
templates (proved in Coq) and one part for the implementations (proved in GRASShopper). We
note that for the B-link tree, B+ tree and hash table implementations, most of the work is done
by the array library, which is shared between all these data structures. The size of the proof for
the lock-coupling list is relatively large for such a simple data structure. The reason is that the
insertion operation, which adds a new node to the list, requires the calculation of a new �ow in-
terface for the region obtained after the insertion. This requires the expansion of the de�nitions of
functions related to �ow interfaces, which are deeply nested quanti�ed formulas. GRASShopper
enforces strict rules that limit quanti�er instantiation so as to remain within certain decidable
logics [Piskac et al. 2013; Bansal et al. 2015]. Most of the proof in this case involves auxiliary
assertions that manually unfold de�nitions. The actual calculation of the interface is performed
by the SMT solver. We note that the size of the proof could be signi�cantly reduced with a few
simple tactics for quanti�er expansion. Nevertheless, one can see that the additional automation
provided by the tool reduces the overall manual proof e�ort compared to an interactive proof
assistant like Coq.

5.4 Related Work
The work presented in this chapter builds on the Iris separation logic [Jung et al. 2018a], the

ReLoC logic [Frumin et al. 2018] for expressing re�nement proofs in Iris, and the �ow frame-
work of compositional abstractions of complex data structures. Our main technical contribution
relative to these works is a new proof technique for verifying template algorithms of concurrent
search structures that relies on the integration of the �ow framework into Iris/ReLoC.

We note that there is no formal connection between the proofs done in Coq and GRASShopper.
If one desires end-to-end certi�ed proofs, one can parametrize Iris by the programming language
used in GRASShopper and use GRASShopper as an oracle for implementation proofs, or even
perform both template and implementation proofs in Iris/Coq (albeit with subtantial manual ef-
fort). The only other trusted component is the meta theory of our �ow framework. These proofs
are simple facts about graphs and graph properties that need only be proven once, apply to every
data structure proof in our evaluation and beyond, and are proved in detail in Chapter 3. By con-
trast, all the proofs pertaining to our individual case studies are performed and veri�ed by either
Coq or GRASShopper.

All the algorithms we have considered use �ne-grained node-level locking. This is represen-
tative of real-world applications, many of which prefer lock-based over lock-free algorithms as

84

the latter tend to copy data more2. On the other hand, our methodology does not require locking,
and can be extended to prove lock-free algorithms such as the Bw-tree [Levandoski and Sengupta
2013].

The proofs we obtain are both more modular and simpler than existing proofs of such concur-
rent data structures. In fact, we are the �rst to obtain a mechanically veri�ed proof of concurrent
B-link trees. Unlike the proof of da Rocha Pinto et al. [2011], which is not mechanized, our proof
does not assume node-level operations to be given as primitives. In particular, we also verify the
challenging split operation. The only other comparable proof is that of a B+ tree in [Malecha
et al. 2010]. However, this work only considers a sequential implementation of B-trees and the
proof is considerably more complex than ours (encompassing more than 5000 lines of proof for
roughly 500 lines of code).

A recent paper [Meyer and Wol� 2019] demonstrates a similar proof modularity by decoupling
the proof of data structures from that of the underlying manual memory management algorithm.
Note that as our proofs are done in Iris, which does not support reasoning about deallocation,
our proofs assume a garbage collected environment. However, by using Iron [Bizjak et al. 2019],
a recent extension of Iris that allows proving absense of memory leaks, we can extend our proofs
to the manual memory setting as well. It is a promising direction of future work to integrate this
approach and our technique in order to obtain veri�ed data structures where the user can mix-
and-match the synchronization technique, memory layout, as well as the memory management
system.

There exist many other concurrent separation logics that help modularize the correctness
proofs of concurrent systems [Bornat et al. 2005; Heule et al. 2013; Vafeiadis and Parkinson 2007;
Feng et al. 2007; Nanevski et al. 2014; Dinsdale-Young et al. 2010; da Rocha Pinto et al. 2014;
Xiong et al. 2017; Raad et al. 2015]. Like Iris, their main focus is on modularizing proofs along the
interfaces of components of a system (e.g. between the client and implementation of a data struc-
ture). Instead, we focus on modularizing the proof of a single component (a concurrent search
structure) so that the parts of the proof can be reused across many diverse implementations.

We verify correctness of concurrent data structures by showing that they re�ne a sequen-
tial speci�cation. Most existing techniques instead focus on proving linearizability [Herlihy and
Wing 1990]. The connection between contextual re�nement and linearizability was established
in [Filipovic et al. 2009]. The template algorithms that we have veri�ed focus on lock-based tech-
niques with �xed linearization points inside a decisive operation. The give-up and link templates
can be generalized to handle lock-free data structures. Though, many lock-free data structures
have non-�xed linearization points, which ReLoC currently cannot reason about. Much work
has been dedicated to handling non-�xed as well as external linearization points [O’Hearn et al.
2010; Bouajjani et al. 2017; Chakraborty et al. 2015; Khyzha et al. 2017; Dodds et al. 2015; Liang
and Feng 2013; Bouajjani et al. 2013; Zhu et al. 2015; Delbianco et al. 2017]. However, we note
that these papers do not aim to separate the proof of thread safety from the proof of structural
integrity. In fact, we see our contributions as orthogonal to these works as our approach does

2For instance, Apache’s CouchDB uses a B+ tree with a global write lock; BerkeleyDB, which has hosted Google’s
account information, uses a B+ tree with page-level locks in order to trade-o� concurrency for better recovery; and
java.util.concurrent’s hash tables lock the entire list in a bucket during writes, which is more coarse-grained than
the one we verify.

85

not critically depend on the use of ReLoC/Iris. Our proof methodology can be replicated in other
separation logics that support user-de�ned ghost state, such as FCSL [Sergey et al. 2015], which
would also be useful if one wanted to extend this work to non-linearizable data structures [Sergey
et al. 2016].

Fully automated proofs of linearizability by static analysis and model checking have been
mostly con�ned to simple list-based data structures [Amit et al. 2007; Vafeiadis 2009; Cerný et al.
2010; Dragoi et al. 2013; Abdulla et al. 2013; Bouajjani et al. 2015]. Recent work by Abdulla et al.
[2018] shows how to automatically verify more complex structures such as concurrent skip lists
that combine lists and arrays. However, it is di�cult to devise fully automated techniques that
work over a broad class of diverse heap representations. In particular, structures like the B-link
tree considered here are still beyond the scope of the state of the art.

5.5 Conclusion
We have presented a proof technique for concurrent search structures that separates the rea-

soning about thread safety from memory safety. We have demonstrated our technique by formal-
izing and verifying three template algorithms, and show how to derive veri�ed implementations
with signi�cant proof reuse and automation. The result is fully mechanized and partially auto-
mated proofs of linearizability and memory safety for a large class of concurrent search structures.

86

6 | Conclusion

This dissertation set out to bridge the gap between the concurrent data structures used in
the real world and the algortihms that can be veri�ed by formal reasoning techniques. Towards
this goal, the disseration introduced the �ow framework, a novel approach to the abstraction and
speci�cation of unbounded data structures in a way that permits modular reasoning. The frame-
work simpli�es existing proofs, brings the proofs of complex concurrent data structures within
reach to automated and mechanized veri�cation tools, and opens up the possibility of template-
based veri�cation to further modularize proofs of certain important classes of concurrent data
structures. Flows can be used within existing separation logic systems and tools, and also permit
a large degree of automation. These contributions make signi�cant strides towards the practical
veri�cation of real-world concurrent algorithms.

6.1 Future Work
The ideas and contributions in this dissertation suggest a number of interesting avenues for

future work.

Flow Framework In terms of the theory of �ows, one interesting question is to investigate
the potential for an extended meta-theory supporting syncing of partial dirty regions, as an al-
ternative proof technique to our edge-local transformation. It is also desirable to connect our
techniques to other veri�cation tools, and to mechanise the theoretical foundations.

Automation An obvious �rst-step in increasining the level of automation of �ow-based proofs
is to develop a lightweight front-end tool, facilitating the application of �ow-based reasoning to
further and more complex examples. Building from here, the next natural question is the in-
ference of �ow-based speci�cations. We have shown how a small number of �ow domains can
be combined to represent a variety of common data structures. Building on the large body of
work on inferring invariants for heap-manipulating programs (e.g., [Sagiv et al. 2002]), includ-
ing techniques based on separation logic [Distefano et al. 2006; Calcagno et al. 2009; Vafeiadis
2010], it would be interesting to see if techniques from such shape analyses (typically using some
form of abstract interpretation [Cousot and Cousot 1977]) can be extended to infer �ow-based
speci�cations.

87

Templates for Other ADTs The template-based modularity presented in Chapter 5 was lim-
ited to search structures. While this is a large and important class of concurrent data structures,
an interesting question is to see if one can come up with template algorithms and proofs for other
ADTs, such as queues and stacks.

Manual Memory Management A recent paper [Meyer and Wol� 2019] demonstrates a similar
proof modularity by decoupling the proof of data structures from that of the underlying manual
memory management algorithm. Note that as our proofs are done in Iris, which does not support
reasoning about deallocation, our proofs assume a garbage collected environment. However, by
using Iron [Bizjak et al. 2019], a recent extension of Iris that allows proving absense of memory
leaks, we can extend our proofs to the manual memory setting as well. It is a promising direc-
tion of future work to integrate this approach and our technique in order to obtain veri�ed data
structures where the user can mix-and-match the synchronization technique, memory layout, as
well as the memory management system.

88

A | Appendix

A.1 Encoding of Flows in Viper
We list here the encoding of the �ow framework in Viper.

1 // Interfaces
2 domain Interface {
3 // Constructor
4 function interface(i: Map[Ref, FlowDom], o: Map[Ref, FlowDom],
5 F: Set[Ref]) : Interface
6 // Destructors
7 function inf(I: Interface) : Map[Ref, FlowDom] // inflow
8 function out(I: Interface) : Map[Ref, FlowDom] // outflow
9 function dom(I: Interface) : Set[Ref] // footprint

10

11 // Validity
12 function intValid(I: Interface) : Bool
13

14 axiom interfaceDef {
15 forall i: Map[Ref, FlowDom], o: Map[Ref, FlowDom],
16 F: Set[Ref] :: {interface(i, o, F)}
17 inf(interface(i, o, F)) == i
18 && out(interface(i, o, F)) == o
19 && dom(interface(i, o, F)) == F
20 }
21

22 axiom injective_interface {
23 forall I: Interface :: {inf(I), out(I), dom(I)}
24 I == interface(inf(I), out(I), dom(I))
25 }
26

27 // Interface contextual extension (allows increasing domain)
28 function intLeq(I1: Interface, I2: Interface) : Bool
29

30 axiom intLeq_eq {
31 forall I: Interface :: {intLeq(I, I)} intLeq(I, I)
32 }
33

34 axiom intLeq_implies {

89

35 forall I1: Interface, I2: Interface :: {intLeq(I1, I2)}
36 intLeq(I1, I2)
37 ==> intValid(I1) && intValid(I2)
38 && dom(I1) subset dom(I2)
39 && (forall n: Ref :: {Iinf(I2, n)}
40 n in dom(I1) ==> fdEq(Iinf(I1, n), Iinf(I2, n)))
41 && (forall m: Ref :: {Iout(I2, m)}
42 !(m in dom(I2)) ==> fdEq(Iout(I1, m), Iout(I2, m)))
43 }
44

45 axiom intLeq_transitive {
46 forall I1: Interface, I2: Interface, I3: Interface ::
47 {intLeq(I1, I2), intLeq(I2, I3), intLeq(I1, I3)}
48 intLeq(I1, I2) && intLeq(I2, I3) ==> intLeq(I1, I3)
49 }
50 }
51

52 // Macros to simplify specs
53 define Iinf(I, x) select(inf(I), x)
54 define Iout(I, y) select(out(I), y)
55

56 // Helper lemma to prove validity of singleton interfaces
57 method _lemma_prove_intValid(yy: Ref)
58 requires nodeSpatial(yy) && acc(yy.intf) && dom(yy.intf) == Set(yy)
59 // Outflow consistent with edge_fn
60 requires (forall z: Ref :: {Iout(yy.intf, z)}{edge_fn(yy, z)}
61 fdEq(Iout(yy.intf, z), select(edge_fn(yy, z),Iinf(yy.intf, yy))))
62 ensures nodeSpatial(yy) && acc(yy.intf)
63 ensures hrepUnchanged(yy) && yy.intf == old(yy.intf)
64 ensures intValid(intCompSet(Set(yy)))
65

66 // Helper lemma to prove intLeq
67 method _lemma_prove_intLeq(I1: Interface, I2: Interface)
68 requires dom(I1) subset dom(I2)
69 requires intValid(I1) && intValid(I2)
70 requires (forall n: Ref :: {Iinf(I2, n)}
71 n in dom(I1) ==> fdEq(Iinf(I1, n), Iinf(I2, n)))
72 requires (forall m: Ref :: {Iout(I2, m)}
73 !(m in dom(I2)) ==> fdEq(Iout(I1, m), Iout(I2, m)))
74 ensures intLeq(I1, I2)
75

76 // Apply the Replacement Theorem
77 define _replacement_theorem(X, X1, Y, Y1, pre) {
78 // This is an instantiation of the Replacement Theorem:
79 assume intLeq(old[pre](intCompSet(Y)), intCompSet(Y1))
80 ==> intLeq(old[pre](intCompSet(X)), intCompSet(X1))
81 // By defn of composition, new nodes' inflow given by inflow of method's footprint
82 assume forall z: Ref :: {Iinf(intCompSet(X1), z)}
83 z in (X1 setminus X) ==> Iinf(intCompSet(X1), z) == Iinf(intCompSet(Y1), z)
84 }
85

90

86 // ---- Basic elements of encoding: intf field and N predicate
87

88 field intf: Interface
89

90 // This is defined outside the domain as it is state-dependent
91 function intCompSet(X: Set[Ref]) : Interface
92 requires forall xx: Ref :: {xx.intf} xx in X ==> acc(xx.intf)
93 ensures dom(result) == X
94 // The empty interface
95 ensures X == Set[Ref]()
96 ==> (forall xx: Ref :: {Iinf(result, xx)} fdEq(Iinf(result, xx), fdZero()))
97 ensures X == Set[Ref]()
98 ==> (forall xx: Ref :: {Iout(result, xx)} fdEq(Iout(result, xx), fdZero()))
99 ensures X == Set[Ref]() ==> intValid(result)

100 // The singleton interface
101 ensures forall xx: Ref :: {intCompSet(Set(xx))} X == Set(xx) && xx in X ==> result == xx.intf
102

103 define node(x)
104 nodeSpatial(x) && acc(x.intf) && dom(x.intf) == Set(x)
105 && (forall z: Ref :: {Iout(x.intf, z)}{edge_fn(x, z)}
106 fdEq(Iout(x.intf, z), select(edge_fn(x, z),Iinf(x.intf, x))))
107

108

109 // ---- Tricks to compute unbounded sums
110

111 // Compute capacity (approximately)
112 domain Cap {
113 function mapPlus(m1: Map[FlowDom, FlowDom], m2: Map[FlowDom, FlowDom])
114 : Map[FlowDom, FlowDom]
115 axiom mapPlusLookup {
116 forall m1: Map[FlowDom, FlowDom], m2: Map[FlowDom, FlowDom], f: FlowDom ::
117 {select(mapPlus(m1, m2), f)}
118 select(mapPlus(m1, m2), f) == fdPlus(select(m1, f), select(m2, f))
119 }
120

121 function capAux(m: Ref, n: Ref, edges: Map[Ref, Map[Ref, Map[FlowDom, FlowDom]]],
122 through: List[Ref]) : Map[FlowDom, FlowDom]
123

124 axiom capDirect {
125 forall m: Ref, n: Ref, edges: Map[Ref, Map[Ref, Map[FlowDom, FlowDom]]] ::
126 {capAux(m, n, edges, nil())}
127 capAux(m, n, edges, nil()) == select(select(edges, m), n)
128 }
129

130 axiom capMaybeThrough {
131 forall m: Ref, n: Ref, edges: Map[Ref, Map[Ref, Map[FlowDom, FlowDom]]],
132 i: Ref, rest: List[Ref] ::
133 {capAux(m, n, edges, cons(i, rest))}
134 capAux(m, n, edges, cons(i, rest))
135 == mapPlus(capAux(m, n, edges, rest),
136 pipe(capAux(m, i, edges, rest), capAux(i, n, edges, rest)))

91

137 }
138 }
139 define cap(n0, n1, m, d) capAux(n0, n1, m, remove(remove(d, n0), n1))
140

141 // The sum of outflow from a given region
142 domain OutflowSum {
143 function outflowAux(n: Ref, flows: Map[Ref, FlowDom],
144 edges: Map[Ref, Map[Ref, Map[FlowDom, FlowDom]]], l: List[Ref]) : FlowDom
145

146 axiom OutflowSumBase {
147 forall n: Ref, flows: Map[Ref, FlowDom],
148 edges: Map[Ref, Map[Ref, Map[FlowDom, FlowDom]]] ::
149 {outflowAux(n, flows, edges, nil())}
150 outflowAux(n, flows, edges, nil()) == fdZero()
151 }
152

153 axiom OutflowSumMaybeThrough {
154 forall n: Ref, flows: Map[Ref, FlowDom],
155 edges: Map[Ref, Map[Ref, Map[FlowDom, FlowDom]]], m: Ref, rest: List[Ref] ::
156 {outflowAux(n, flows, edges, cons(m, rest))}
157 outflowAux(n, flows, edges, cons(m, rest))
158 == fdPlus(outflowAux(n, flows, edges, rest),
159 select(select(select(edges, m), n), select(flows, m))) // flow(m) |> edge(m, n)
160 }
161 }
162 define outflowSum(n, f, e, D) outflowAux(n, f, e, remove(D, n))
163

164

165 // ---- Macros for flow annotations to be automatically added:
166

167 // (Re)-initialize all variables
168 define _init_vars() {
169 dirty := Set[Ref]()
170 dirtyList := nil()
171 // edge_fns[n][n'] is e(n, n')
172 edge_fns := havoc_map_map_edge()
173 // edge_fns_new[n][n'] is e'(n, n')
174 edge_fns_new := havoc_map_map_edge()
175 // infs_small[n] is In.inf[n]
176 infs_small := havoc_map()
177 // infs_small_new[n] is In'.inf[n]
178 infs_small_new := havoc_map()
179 // inf_D is inflow of interface of dirty region
180 inf_D := havoc_map()
181 }
182

183 // Add n to the dirty region
184 define _make_dirty(n0) { // could also parameterise by assigned-to variables
185 if(n0 != null && !(n0 in dirty)) {
186 dirty := dirty union Set(n0)
187 dirtyList := cons(n0, dirtyList)

92

188 }
189 }
190

191 define _set_edge_fns(edge_fns, X) {
192 assume forall x: Ref, y: Ref :: {select(select(edge_fns, x), y)}
193 x in X ==> select(select(edge_fns, x), y) == edge_fn(x, y)
194 }
195

196 define _set_infs_and_fms(infs_small, edge_fns_new, X) {
197 assume forall x: Ref :: {select(infs_small, x)}
198 x in dirty ==> select(infs_small, x) == Iinf(x.intf, x)
199 _set_edge_fns(edge_fns_new, X)
200 }
201

202 define _assume_flow_eqn(infs_small, edge_fns, inf_D) {
203 assume forall x: Ref :: {select(infs_small, x)} {select(inf_D, x)}
204 x in dirty ==> select(infs_small, x)
205 == fdPlus(select(inf_D, x), outflowSum(x, infs_small, edge_fns, dirtyList))
206 }
207

208 // General flow framework lemmas
209 define _assume_flow_lemmas(X) {
210 assume forall x: Ref :: {Iinf(x.intf, x)}
211 x in X && intValid(intCompSet(X))
212 ==> fdLeq(Iinf(intCompSet(X), x), Iinf(x.intf, x))
213 assume forall x: Ref, y: Ref :: {trig_gfe(x, y)}
214 x in X && y in X && intValid(intCompSet(X))
215 ==> fdLeq(Iout(x.intf, y), Iinf(y.intf, y))
216 }
217

218 // Trigger for global flow equation
219 function trig_gfe(x: Ref, y: Ref) : Bool { true }
220

221 define _field_read(x, xf) {
222 assert trig_gfe(x, xf)
223 }
224

225 // Assume acyclic based on infs_small (i.e. actual flow), because
226 // this is what is known about the pre state
227 define _assume_no_cycles(infs_small, edge_fns) {
228 assume (forall x: Ref :: {select(infs_small, x)} x in dirty
229 ==> select(cap(x, x, edge_fns, dirtyList), select(infs_small, x))
230 == fdZero())
231 }
232

233 // Assert acyclic based on inf_D because this must be the same in the post,
234 // and infs_small_new only determined by flow eqn (which is only true if acyclic)
235 define _assert_no_cycles(inf_D, edge_fns_new) {
236 assert (forall x: Ref, y: Ref :: {no_match(x), no_match(y)}
237 x in dirty && y in dirty
238 ==> fdEq(

93

239 select(pipe(cap(x, y, edge_fns_new, dirtyList),
240 cap(y, y, edge_fns_new, dirtyList)),
241 select(inf_D, x)),
242 fdZero()))
243 }
244

245 // Check path subflow preservation for dirty region
246 // This is needed to guarantee that composite graph is also EA
247 define _assert_path_subflow_preserved(inf_D, edge_fns, edge_fns_new) {
248 assert forall x: Ref, z: Ref, p: FlowDom ::
249 {no_match(x), no_match(z), no_match_fd(p)}
250 x in dirty && !(z in dirty) && fdLeq(p, select(inf_D, x))
251 ==> fdEq(select(cap(x, z, edge_fns, dirtyList), p),
252 select(cap(x, z, edge_fns_new, dirtyList), p))
253 }
254

255 define _pre_code(FP) {
256 _init_vars()
257 _assume_flow_lemmas(FP)
258 _set_edge_fns(edge_fns, FP)
259 }
260

261 // Compute footprints after a method call
262 define _compute_footprints(X, X1, Y, Y1) {
263 X1 := X union (Y1 setminus Y)
264 }
265

266 define _post_method_call(FP, FP1, Y, Y1, pre) {
267 _compute_footprints(FP, FP1, Y, Y1)
268 _replacement_theorem(FP, FP1, Y, Y1, pre)
269 }
270

271 define _post_code_sync(FP) {
272 // Summarise infs and fms of singleton interfaces in dirty region
273 _set_infs_and_fms(infs_small, edge_fns_new, FP)
274

275 // Assume flow equation on pre state
276 _assume_flow_eqn(infs_small, edge_fns, inf_D)
277

278 // Assume flow equation on new state
279 _assume_flow_eqn(infs_small_new, edge_fns_new, inf_D)
280

281 // Check equivalence of flow maps
282 label pre_sync
283 // Check node for each node in dirty and write new interface to x.intf
284 sync(dirty, dirtyList, inf_D, infs_small, infs_small_new, edge_fns, edge_fns_new)
285 _replacement_theorem(FP, FP, dirty, dirty, pre_sync)
286 }
287

288 define _post_code_sync_EA(FP) {
289 // Summarise infs and fms of singleton interfaces in dirty region

94

290 _set_infs_and_fms(infs_small, edge_fns_new, FP)
291

292 // Assume flow equation on pre state
293 _assume_flow_eqn(infs_small, edge_fns, inf_D)
294

295 // Assume that dirty region had no cycles
296 _assume_no_cycles(infs_small, edge_fns)
297

298 // Check that dirty region has no cycles
299 _assert_no_cycles(inf_D, edge_fns_new)
300

301 // Assume flow equation on new state
302 _assume_flow_eqn(infs_small_new, edge_fns_new, inf_D)
303

304 // Check that we won't introduce any cycles in the larger graph
305 _assert_path_subflow_preserved(inf_D, edge_fns, edge_fns_new)
306

307 // Check equivalence of flow maps
308 label pre_sync
309 // Check node for each node in dirty and write new interface to x.intf
310 sync(dirty, dirtyList, inf_D, infs_small, infs_small_new, edge_fns, edge_fns_new)
311 _replacement_theorem(FP, FP, dirty, dirty, pre_sync)
312 }
313

314

315 // ---- Flow-specific ghost procedures:
316

317 // Sync the dirty set of nodes and update their intf fields
318 // Requires the interface of dirty to be exactly equal
319 method sync(dirty: Set[Ref], dirtyList: List[Ref],
320 inf_D: Map[Ref, FlowDom],
321 infs_small: Map[Ref, FlowDom], infs_small_new: Map[Ref, FlowDom],
322 edge_fns: Map[Ref, Map[Ref, Map[FlowDom, FlowDom]]],
323 edge_fns_new: Map[Ref, Map[Ref, Map[FlowDom, FlowDom]]])
324

325 requires forall x1: Ref :: {no_match(x1)} x1 in dirty ==> acc(x1.intf)
326 // Check that new interface of dirty == old interface of dirty
327 // We know that dom and inf is equal by construction, so check outflow preserved:
328 requires forall z: Ref :: {no_match(z)} !(z in dirty)
329 ==> fdEq(outflowSum(z, infs_small, edge_fns, dirtyList),
330 outflowSum(z, infs_small_new, edge_fns_new, dirtyList))
331

332 ensures forall x1: Ref :: {x1 in dirty}
333 x1 in dirty ==> acc(x1.intf) && dom(x1.intf) == Set(x1)
334 // Now x.intf contains the interface given by infs_small_new and fms_small_new
335 ensures forall x1: Ref :: {Iinf(x1.intf, x1)}
336 x1 in dirty ==> Iinf(x1.intf, x1) == select(infs_small_new, x1)
337 ensures forall x1: Ref, y1: Ref :: {Iout(x1.intf, y1)}
338 x1 in dirty ==> Iout(x1.intf, y1)
339 == select(select(select(edge_fns_new, x1), y1), Iinf(x1.intf, x1))
340 // and the interface is the same

95

341 ensures old(intCompSet(dirty)) == intCompSet(dirty)
342

343

344 // ---- Misc util stuff:
345

346 // Nondeterministic boolean value
347 method nondet() returns (b: Bool)
348

349 // Havoc a flow map
350 method havoc_map() returns (m: Map[Ref, FlowDom])
351 method havoc_map_map() returns (m: Map[Ref, Map[Ref, FlowDom]])
352 method havoc_map_map_edge() returns (m: Map[Ref, Map[Ref, Map[FlowDom, FlowDom]]])
353

354 // Trigger that's never triggered
355 domain NoMatching {
356 function no_match(r: Ref) : Bool
357 function no_match_int(x: Int) : Bool
358 function no_match_fd(d: FlowDom) : Bool
359 }
360

361 // Dummy term to seed triggers
362 function dummy(f: FlowDom) : Bool { true }

96

Bibliography

Abdulla, P. A., Haziza, F., Holík, L., Jonsson, B., and Rezine, A. (2013). An integrated speci�cation
and veri�cation technique for highly concurrent data structures. In Piterman, N. and Smolka,
S. A., editors, Tools and Algorithms for the Construction and Analysis of Systems - 19th Interna-
tional Conference, TACAS 2013, Held as Part of the European Joint Conferences on Theory and
Practice of Software, ETAPS 2013, Rome, Italy, March 16-24, 2013. Proceedings, volume 7795 of
Lecture Notes in Computer Science, pages 324–338. Springer.

Abdulla, P. A., Jonsson, B., and Trinh, C. Q. (2018). Fragment abstraction for concurrent shape
analysis. In Ahmed, A., editor, Programming Languages and Systems - 27th European Sympo-
sium on Programming, ESOP 2018, Held as Part of the European Joint Conferences on Theory and
Practice of Software, ETAPS 2018, Thessaloniki, Greece, April 14-20, 2018, Proceedings, volume
10801 of Lecture Notes in Computer Science, pages 442–471. Springer.

Amit, D., Rinetzky, N., Reps, T. W., Sagiv, M., and Yahav, E. (2007). Comparison under abstraction
for verifying linearizability. In Damm, W. and Hermanns, H., editors, Computer Aided Veri-
�cation, 19th International Conference, CAV 2007, Berlin, Germany, July 3-7, 2007, Proceedings,
volume 4590 of Lecture Notes in Computer Science, pages 477–490. Springer.

Appel, A. W. (2012). Veri�ed software toolchain. In Goodloe, A. and Person, S., editors, NASA
Formal Methods - 4th International Symposium, NFM 2012, Norfolk, VA, USA, April 3-5, 2012.
Proceedings, volume 7226 of Lecture Notes in Computer Science, page 2. Springer.

Bansal, K., Reynolds, A., King, T., Barrett, C. W., and Wies, T. (2015). Deciding local theory
extensions via e-matching. In Kroening, D. and Pasareanu, C. S., editors, Computer Aided
Veri�cation - 27th International Conference, CAV 2015, San Francisco, CA, USA, July 18-24, 2015,
Proceedings, Part II, volume 9207 of Lecture Notes in Computer Science, pages 87–105. Springer.

Berdine, J., Calcagno, C., and O’Hearn, P. W. (2004). A decidable fragment of separation logic.
In Lodaya, K. and Mahajan, M., editors, FSTTCS 2004: Foundations of Software Technology and
Theoretical Computer Science, 24th International Conference, Chennai, India, December 16-18,
2004, Proceedings, volume 3328 of Lecture Notes in Computer Science, pages 97–109. Springer.

Birkedal, L. and Bizjak, A. (2018). Lecture notes on iris: Higher-order concurrent separation logic.

Bizjak, A., Gratzer, D., Krebbers, R., and Birkedal, L. (2019). Iron: managing obligations in higher-
order concurrent separation logic. PACMPL, 3(POPL):65:1–65:30.

97

Bornat, R., Calcagno, C., O’Hearn, P., and Parkinson, M. (2005). Permission accounting in sep-
aration logic. In Proceedings of the 32nd ACM SIGPLAN-SIGACT Symposium on Principles of
Programming Languages, POPL ’05, pages 259–270, New York, NY, USA. ACM.

Bornat, R., Calcagno, C., and Yang, H. (2006). Variables as resource in separation logic. Electron.
Notes Theor. Comput. Sci., 155:247–276.

Bouajjani, A., Dragoi, C., Enea, C., and Sighireanu, M. (2012). Accurate invariant checking for
programs manipulating lists and arrays with in�nite data. In Chakraborty, S. and Mukund,
M., editors, Automated Technology for Veri�cation and Analysis - 10th International Symposium,
ATVA 2012, Thiruvananthapuram, India, October 3-6, 2012. Proceedings, volume 7561 of Lecture
Notes in Computer Science, pages 167–182. Springer.

Bouajjani, A., Emmi, M., Enea, C., and Hamza, J. (2013). Verifying concurrent programs against
sequential speci�cations. In Felleisen, M. and Gardner, P., editors, Programming Languages and
Systems - 22nd European Symposium on Programming, ESOP 2013, Held as Part of the European
Joint Conferences on Theory and Practice of Software, ETAPS 2013, Rome, Italy, March 16-24, 2013.
Proceedings, volume 7792 of Lecture Notes in Computer Science, pages 290–309. Springer.

Bouajjani, A., Emmi, M., Enea, C., and Hamza, J. (2015). On reducing linearizability to state
reachability. In Halldórsson, M. M., Iwama, K., Kobayashi, N., and Speckmann, B., editors,
Automata, Languages, and Programming - 42nd International Colloquium, ICALP 2015, Kyoto,
Japan, July 6-10, 2015, Proceedings, Part II, volume 9135 of Lecture Notes in Computer Science,
pages 95–107. Springer.

Bouajjani, A., Emmi, M., Enea, C., and Mutluergil, S. O. (2017). Proving linearizability using
forward simulations. In Majumdar, R. and Kuncak, V., editors, Computer Aided Veri�cation
- 29th International Conference, CAV 2017, Heidelberg, Germany, July 24-28, 2017, Proceedings,
Part II, volume 10427 of Lecture Notes in Computer Science, pages 542–563. Springer.

Brookes, S. (2007). A semantics for concurrent separation logic. Theor. Comput. Sci., 375(1-3):227–
270.

Brookes, S. and O’Hearn, P. W. (2016). Concurrent separation logic. SIGLOG News, 3(3):47–65.

Brotherston, J., Distefano, D., and Petersen, R. L. (2011). Automated cyclic entailment proofs in
separation logic. In Bjørner, N. and Sofronie-Stokkermans, V., editors, Automated Deduction
- CADE-23 - 23rd International Conference on Automated Deduction, Wroclaw, Poland, July 31 -
August 5, 2011. Proceedings, volume 6803 of Lecture Notes in Computer Science, pages 131–146.
Springer.

Burckhardt, S., Alur, R., and Martin, M. M. K. (2007). Checkfence: checking consistency of con-
current data types on relaxed memory models. In Ferrante, J. and McKinley, K. S., editors,
Proceedings of the ACM SIGPLAN 2007 Conference on Programming Language Design and Imple-
mentation, San Diego, California, USA, June 10-13, 2007, pages 12–21. ACM.

98

Calcagno, C., Distefano, D., Dubreil, J., Gabi, D., Hooimeijer, P., Luca, M., O’Hearn, P. W., Pa-
pakonstantinou, I., Purbrick, J., and Rodriguez, D. (2015). Moving fast with software veri�-
cation. In Havelund, K., Holzmann, G. J., and Joshi, R., editors, NASA Formal Methods - 7th
International Symposium, NFM 2015, Pasadena, CA, USA, April 27-29, 2015, Proceedings, volume
9058 of Lecture Notes in Computer Science, pages 3–11. Springer.

Calcagno, C., Distefano, D., O’Hearn, P. W., and Yang, H. (2009). Compositional shape analysis
by means of bi-abduction. In Shao, Z. and Pierce, B. C., editors, Proceedings of the 36th ACM
SIGPLAN-SIGACT Symposium on Principles of Programming Languages, POPL 2009, Savannah,
GA, USA, January 21-23, 2009, pages 289–300. ACM.

Calcagno, C., O’Hearn, P. W., and Yang, H. (2007). Local action and abstract separation logic.
In 22nd IEEE Symposium on Logic in Computer Science (LICS 2007), 10-12 July 2007, Wroclaw,
Poland, Proceedings, pages 366–378. IEEE Computer Society.

Cao, Q., Cuellar, S., and Appel, A. W. (2017). Bringing order to the separation logic jungle. In
Chang, B. E., editor, Programming Languages and Systems - 15th Asian Symposium, APLAS 2017,
Suzhou, China, November 27-29, 2017, Proceedings, volume 10695 of Lecture Notes in Computer
Science, pages 190–211. Springer.

Cerný, P., Radhakrishna, A., Zu�erey, D., Chaudhuri, S., and Alur, R. (2010). Model checking of
linearizability of concurrent list implementations. In Touili, T., Cook, B., and Jackson, P. B.,
editors, Computer Aided Veri�cation, 22nd International Conference, CAV 2010, Edinburgh, UK,
July 15-19, 2010. Proceedings, volume 6174 of Lecture Notes in Computer Science, pages 465–479.
Springer.

Chakraborty, S., Henzinger, T. A., Sezgin, A., and Vafeiadis, V. (2015). Aspect-oriented lineariz-
ability proofs. Logical Methods in Computer Science, 11(1).

Chlipala, A. (2011). Mostly-automated veri�cation of low-level programs in computational sep-
aration logic. In Hall, M. W. and Padua, D. A., editors, Proceedings of the 32nd ACM SIGPLAN
Conference on Programming Language Design and Implementation, PLDI 2011, San Jose, CA, USA,
June 4-8, 2011, pages 234–245. ACM.

Cook, B., Haase, C., Ouaknine, J., Parkinson, M. J., and Worrell, J. (2011). Tractable reasoning in a
fragment of separation logic. In Katoen, J. and König, B., editors, CONCUR 2011 - Concurrency
Theory - 22nd International Conference, CONCUR 2011, Aachen, Germany, September 6-9, 2011.
Proceedings, volume 6901 of Lecture Notes in Computer Science, pages 235–249. Springer.

Coq Development Team, T. (2017). The Coq Proof Assistant Reference Manual, version 8.7.

Cousot, P. and Cousot, R. (1977). Abstract interpretation: a uni�ed lattice model for static analysis
of programs by construction or approximation of �xpoints. In Proc. 4th POPL.

da Rocha Pinto, P., Dinsdale-Young, T., Dodds, M., Gardner, P., and Wheelhouse, M. J. (2011).
A simple abstraction for complex concurrent indexes. In Lopes, C. V. and Fisher, K., editors,

99

Proceedings of the 26th Annual ACM SIGPLAN Conference on Object-Oriented Programming, Sys-
tems, Languages, and Applications, OOPSLA 2011, part of SPLASH 2011, Portland, OR, USA, Oc-
tober 22 - 27, 2011, pages 845–864. ACM.

da Rocha Pinto, P., Dinsdale-Young, T., and Gardner, P. (2014). Tada: A logic for time and data
abstraction. In Jones, R. E., editor, ECOOP 2014 - Object-Oriented Programming - 28th European
Conference, Uppsala, Sweden, July 28 - August 1, 2014. Proceedings, volume 8586 of Lecture Notes
in Computer Science, pages 207–231. Springer.

Delbianco, G. A., Sergey, I., Nanevski, A., and Banerjee, A. (2017). Concurrent data structures
linked in time. In Müller, P., editor, 31st European Conference on Object-Oriented Programming,
ECOOP 2017, June 19-23, 2017, Barcelona, Spain, volume 74 of LIPIcs, pages 8:1–8:30. Schloss
Dagstuhl - Leibniz-Zentrum fuer Informatik.

Detlefs, D., Nelson, G., and Saxe, J. B. (2005). Simplify: A theorem prover for program checking.
J. ACM, 52(3):365–473.

Dinsdale-Young, T., Birkedal, L., Gardner, P., Parkinson, M. J., and Yang, H. (2013). Views: compo-
sitional reasoning for concurrent programs. In Giacobazzi, R. and Cousot, R., editors, The 40th
Annual ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages, POPL ’13,
Rome, Italy - January 23 - 25, 2013, pages 287–300. ACM.

Dinsdale-Young, T., Dodds, M., Gardner, P., Parkinson, M. J., and Vafeiadis, V. (2010). Concurrent
abstract predicates. In D’Hondt, T., editor, ECOOP 2010 - Object-Oriented Programming, 24th
European Conference, Maribor, Slovenia, June 21-25, 2010. Proceedings, volume 6183 of Lecture
Notes in Computer Science, pages 504–528. Springer.

Distefano, D., O’Hearn, P. W., and Yang, H. (2006). A local shape analysis based on separation
logic. In Hermanns, H. and Palsberg, J., editors, Tools and Algorithms for the Construction and
Analysis of Systems, 12th International Conference, TACAS 2006 Held as Part of the Joint European
Conferences on Theory and Practice of Software, ETAPS 2006, Vienna, Austria, March 25 - April 2,
2006, Proceedings, volume 3920 of Lecture Notes in Computer Science, pages 287–302. Springer.

Dockins, R., Hobor, A., and Appel, A. W. (2009). A fresh look at separation algebras and share
accounting. In Hu, Z., editor, Programming Languages and Systems, 7th Asian Symposium,
APLAS 2009, Seoul, Korea, December 14-16, 2009. Proceedings, volume 5904 of Lecture Notes in
Computer Science, pages 161–177. Springer.

Dodds, M., Haas, A., and Kirsch, C. M. (2015). A scalable, correct time-stamped stack. In Rajamani,
S. K. and Walker, D., editors, Proceedings of the 42nd Annual ACM SIGPLAN-SIGACT Symposium
on Principles of Programming Languages, POPL 2015, Mumbai, India, January 15-17, 2015, pages
233–246. ACM.

Dodds, M., Jagannathan, S., Parkinson, M. J., Svendsen, K., and Birkedal, L. (2016). Verifying
custom synchronization constructs using higher-order separation logic. ACM Trans. Program.
Lang. Syst., 38(2):4:1–4:72.

100

Dragoi, C., Gupta, A., and Henzinger, T. A. (2013). Automatic linearizability proofs of concurrent
objects with cooperating updates. In Sharygina, N. and Veith, H., editors, Computer Aided
Veri�cation - 25th International Conference, CAV 2013, Saint Petersburg, Russia, July 13-19, 2013.
Proceedings, volume 8044 of Lecture Notes in Computer Science, pages 174–190. Springer.

Enea, C., Lengál, O., Sighireanu, M., and Vojnar, T. (2017). SPEN: A solver for separation logic.
In Barrett, C. W., Davies, M., and Kahsai, T., editors, NASA Formal Methods - 9th International
Symposium, NFM 2017, Mo�ett Field, CA, USA, May 16-18, 2017, Proceedings, volume 10227 of
Lecture Notes in Computer Science, pages 302–309.

Enea, C., Sighireanu, M., and Wu, Z. (2015). On automated lemma generation for separation
logic with inductive de�nitions. In Finkbeiner, B., Pu, G., and Zhang, L., editors, Automated
Technology for Veri�cation and Analysis - 13th International Symposium, ATVA 2015, Shanghai,
China, October 12-15, 2015, Proceedings, volume 9364 of Lecture Notes in Computer Science, pages
80–96. Springer.

Feng, X., Ferreira, R., and Shao, Z. (2007). On the relationship between concurrent separation
logic and assume-guarantee reasoning. In Nicola, R. D., editor, Programming Languages and
Systems, 16th European Symposium on Programming, ESOP 2007, Held as Part of the Joint Eu-
ropean Conferences on Theory and Practics of Software, ETAPS 2007, Braga, Portugal, March 24
- April 1, 2007, Proceedings, volume 4421 of Lecture Notes in Computer Science, pages 173–188.
Springer.

Filipovic, I., O’Hearn, P. W., Rinetzky, N., and Yang, H. (2009). Abstraction for concurrent objects.
In Castagna, G., editor, Programming Languages and Systems, 18th European Symposium on
Programming, ESOP 2009, Held as Part of the Joint European Conferences on Theory and Practice
of Software, ETAPS 2009, York, UK, March 22-29, 2009. Proceedings, volume 5502 of Lecture Notes
in Computer Science, pages 252–266. Springer.

Frumin, D., Krebbers, R., and Birkedal, L. (2018). Reloc: A mechanised relational logic for �ne-
grained concurrency. In Dawar, A. and Grädel, E., editors, Proceedings of the 33rd Annual
ACM/IEEE Symposium on Logic in Computer Science, LICS 2018, Oxford, UK, July 09-12, 2018,
pages 442–451. ACM.

Fu, M., Li, Y., Feng, X., Shao, Z., and Zhang, Y. (2010). Reasoning about optimistic concurrency
using a program logic for history. In Gastin, P. and Laroussinie, F., editors, CONCUR 2010
- Concurrency Theory, 21th International Conference, CONCUR 2010, Paris, France, August 31-
September 3, 2010. Proceedings, volume 6269 of Lecture Notes in Computer Science, pages 388–
402. Springer.

Harris, T. L. (2001). A pragmatic implementation of non-blocking linked-lists. In Welch, J. L.,
editor, Distributed Computing, 15th International Conference, DISC 2001, Lisbon, Portugal, Oc-
tober 3-5, 2001, Proceedings, volume 2180 of Lecture Notes in Computer Science, pages 300–314.
Springer.

101

Herlihy, M. and Shavit, N. (2008). The art of multiprocessor programming. Morgan Kaufmann.

Herlihy, M. and Wing, J. M. (1990). Linearizability: A correctness condition for concurrent objects.
ACM Trans. Program. Lang. Syst., 12(3):463–492.

Heule, S., Leino, K. R. M., Müller, P., and Summers, A. J. (2013). Abstract read permissions:
Fractional permissions without the fractions. In Giacobazzi, R., Berdine, J., and Mastroeni, I.,
editors, Veri�cation, Model Checking, and Abstract Interpretation, 14th International Conference,
VMCAI 2013, Rome, Italy, January 20-22, 2013. Proceedings, volume 7737 of Lecture Notes in
Computer Science, pages 315–334. Springer.

Hoare, C. A. R. (1969). An axiomatic basis for computer programming. Commun. ACM,
12(10):576–580.

Hobor, A. and Villard, J. (2013). The rami�cations of sharing in data structures. In Giacobazzi,
R. and Cousot, R., editors, The 40th Annual ACM SIGPLAN-SIGACT Symposium on Principles of
Programming Languages, POPL ’13, Rome, Italy - January 23 - 25, 2013, pages 523–536. ACM.

Immerman, N., Rabinovich, A. M., Reps, T. W., Sagiv, S., and Yorsh, G. (2004). The boundary
between decidability and undecidability for transitive-closure logics. In Marcinkowski, J. and
Tarlecki, A., editors, Computer Science Logic, 18th InternationalWorkshop, CSL 2004, 13th Annual
Conference of the EACSL, Karpacz, Poland, September 20-24, 2004, Proceedings, volume 3210 of
Lecture Notes in Computer Science, pages 160–174. Springer.

Iosif, R., Rogalewicz, A., and Vojnar, T. (2014). Deciding entailments in inductive separation logic
with tree automata. In Cassez, F. and Raskin, J., editors, Automated Technology for Veri�cation
and Analysis - 12th International Symposium, ATVA 2014, Sydney, NSW, Australia, November 3-7,
2014, Proceedings, volume 8837 of Lecture Notes in Computer Science, pages 201–218. Springer.

Itzhaky, S., Banerjee, A., Immerman, N., Nanevski, A., and Sagiv, M. (2013). E�ectively-
propositional reasoning about reachability in linked data structures. In Sharygina, N. and
Veith, H., editors, Computer Aided Veri�cation - 25th International Conference, CAV 2013, Saint
Petersburg, Russia, July 13-19, 2013. Proceedings, volume 8044 of Lecture Notes in Computer Sci-
ence, pages 756–772. Springer.

Jacobs, B., Smans, J., Philippaerts, P., Vogels, F., Penninckx, W., and Piessens, F. (2011). Verifast:
A powerful, sound, predictable, fast veri�er for C and java. In Bobaru, M. G., Havelund, K.,
Holzmann, G. J., and Joshi, R., editors, NASA Formal Methods - Third International Symposium,
NFM 2011, Pasadena, CA, USA, April 18-20, 2011. Proceedings, volume 6617 of Lecture Notes in
Computer Science, pages 41–55. Springer.

Jones, C. B. (1983). Speci�cation and design of (parallel) programs. In IFIP Congress, pages 321–
332.

102

Jung, R., Krebbers, R., Birkedal, L., and Dreyer, D. (2016). Higher-order ghost state. In Garrigue,
J., Keller, G., and Sumii, E., editors, Proceedings of the 21st ACM SIGPLAN International Confer-
ence on Functional Programming, ICFP 2016, Nara, Japan, September 18-22, 2016, pages 256–269.
ACM.

Jung, R., Krebbers, R., Jourdan, J., Bizjak, A., Birkedal, L., and Dreyer, D. (2018a). Iris from the
ground up: A modular foundation for higher-order concurrent separation logic. J. Funct. Pro-
gram., 28:e20.

Jung, R., Krebbers, R., Jourdan, J., Bizjak, A., Birkedal, L., and Dreyer, D. (2018b). Iris from the
ground up: A modular foundation for higher-order concurrent separation logic. J. Funct. Pro-
gram., 28:e20.

Jung, R., Swasey, D., Sieczkowski, F., Svendsen, K., Turon, A., Birkedal, L., and Dreyer, D. (2015).
Iris: Monoids and invariants as an orthogonal basis for concurrent reasoning. In Rajamani, S. K.
and Walker, D., editors, Proceedings of the 42nd Annual ACM SIGPLAN-SIGACT Symposium on
Principles of Programming Languages, POPL 2015, Mumbai, India, January 15-17, 2015, pages
637–650. ACM.

Katelaan, J., Matheja, C., and Zuleger, F. (2019). E�ective entailment checking for separation
logic with inductive de�nitions. In Vojnar, T. and Zhang, L., editors, Tools and Algorithms for
the Construction and Analysis of Systems - 25th International Conference, TACAS 2019, Held as
Part of the European Joint Conferences on Theory and Practice of Software, ETAPS 2019, Prague,
Czech Republic, April 6-11, 2019, Proceedings, Part II, volume 11428 of Lecture Notes in Computer
Science, pages 319–336. Springer.

Khyzha, A., Dodds, M., Gotsman, A., and Parkinson, M. J. (2017). Proving linearizability using
partial orders. In Yang, H., editor, Programming Languages and Systems - 26th European Sym-
posium on Programming, ESOP 2017, Held as Part of the European Joint Conferences on Theory
and Practice of Software, ETAPS 2017, Uppsala, Sweden, April 22-29, 2017, Proceedings, volume
10201 of Lecture Notes in Computer Science, pages 639–667. Springer.

Klarlund, N. and Schwartzbach, M. I. (1993). Graph types. In Deusen, M. S. V. and Lang, B., editors,
Conference Record of the Twentieth Annual ACM SIGPLAN-SIGACT Symposium on Principles of
Programming Languages, Charleston, South Carolina, USA, January 1993, pages 196–205. ACM
Press.

Krebbers, R., Jung, R., Bizjak, A., Jourdan, J., Dreyer, D., and Birkedal, L. (2017). The essence
of higher-order concurrent separation logic. In Yang, H., editor, Programming Languages and
Systems - 26th European Symposium on Programming, ESOP 2017, Held as Part of the European
Joint Conferences on Theory and Practice of Software, ETAPS 2017, Uppsala, Sweden, April 22-29,
2017, Proceedings, volume 10201 of Lecture Notes in Computer Science, pages 696–723. Springer.

Krishna, S., Shasha, D. E., and Wies, T. (2018a). Go with the �ow: Compositional abstractions for
concurrent data structures. Proc. ACM Program. Lang., 2(POPL):37:1–37:31.

103

Krishna, S., Shasha, D. E., and Wies, T. (2018b). Go with the �ow: compositional abstractions for
concurrent data structures. PACMPL, 2(POPL):37:1–37:31.

Lahiri, S. K. and Qadeer, S. (2008). Back to the future: revisiting precise program veri�cation using
SMT solvers. In Necula, G. C. and Wadler, P., editors, Proceedings of the 35th ACM SIGPLAN-
SIGACT Symposium on Principles of Programming Languages, POPL 2008, San Francisco, Cali-
fornia, USA, January 7-12, 2008, pages 171–182. ACM.

Lehman, P. L. and Yao, S. B. (1981). E�cient locking for concurrent operations on b-trees. ACM
Trans. Database Syst., 6(4):650–670.

Levandoski, J. J. and Sengupta, S. (2013). The bw-tree: A latch-free b-tree for log-structured �ash
storage. IEEE Data Eng. Bull., 36(2):56–62.

Liang, H. and Feng, X. (2013). Modular veri�cation of linearizability with non-�xed linearization
points. In Boehm, H. and Flanagan, C., editors, ACM SIGPLAN Conference on Programming
Language Design and Implementation, PLDI ’13, Seattle, WA, USA, June 16-19, 2013, pages 459–
470. ACM.

Madhusudan, P., Qiu, X., and Stefanescu, A. (2012). Recursive proofs for inductive tree data-
structures. In Field, J. and Hicks, M., editors, Proceedings of the 39th ACM SIGPLAN-SIGACT
Symposium on Principles of Programming Languages, POPL 2012, Philadelphia, Pennsylvania,
USA, January 22-28, 2012, pages 123–136. ACM.

Malecha, J. G., Morrisett, G., Shinnar, A., and Wisnesky, R. (2010). Toward a veri�ed relational
database management system. In Hermenegildo, M. V. and Palsberg, J., editors, Proceedings
of the 37th ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages, POPL
2010, Madrid, Spain, January 17-23, 2010, pages 237–248. ACM.

Meyer, R. and Wol�, S. (2019). Decoupling lock-free data structures from memory reclamation
for static analysis. PACMPL, 3(POPL):58:1–58:31.

Michael, M. and Scott, M. (1995). Correction of a memory management method for lock-free data
structures. Technical Report TR599, University of Rochester.

Müller, P., Schwerho�, M., and Summers, A. J. (2016). Automatic veri�cation of iterated separating
conjunctions using symbolic execution. In Chaudhuri, S. and Farzan, A., editors, Computer
Aided Veri�cation - 28th International Conference, CAV 2016, Toronto, ON, Canada, July 17-23,
2016, Proceedings, Part I, volume 9779 of Lecture Notes in Computer Science, pages 405–425.
Springer.

Müller, P., Schwerho�, M., and Summers, A. J. (2016). Viper: A veri�cation infrastructure for
permission-based reasoning. In Jobstmann, B. and Leino, K. R. M., editors, Veri�cation, Model
Checking, and Abstract Interpretation (VMCAI), volume 9583 of LNCS, pages 41–62. Springer-
Verlag.

104

Nanevski, A., Ley-Wild, R., Sergey, I., and Delbianco, G. A. (2014). Communicating state transition
systems for �ne-grained concurrent resources. In Shao, Z., editor, Programming Languages and
Systems - 23rd European Symposium on Programming, ESOP 2014, Held as Part of the European
Joint Conferences on Theory and Practice of Software, ETAPS 2014, Grenoble, France, April 5-13,
2014, Proceedings, volume 8410 of Lecture Notes in Computer Science, pages 290–310. Springer.

Nguyen, H. H. and Chin, W. (2008). Enhancing program veri�cation with lemmas. In Gupta,
A. and Malik, S., editors, Computer Aided Veri�cation, 20th International Conference, CAV 2008,
Princeton, NJ, USA, July 7-14, 2008, Proceedings, volume 5123 of Lecture Notes in Computer Sci-
ence, pages 355–369. Springer.

O’Hearn, P. W. (2007). Resources, concurrency, and local reasoning. Theor. Comput. Sci., 375(1-
3):271–307.

O’Hearn, P. W. and Pym, D. J. (1999). The logic of bunched implications. Bulletin of Symbolic
Logic, 5(2):215–244.

O’Hearn, P. W., Reynolds, J. C., and Yang, H. (2001). Local reasoning about programs that alter
data structures. In Fribourg, L., editor, Computer Science Logic, 15th InternationalWorkshop, CSL
2001. 10th Annual Conference of the EACSL, Paris, France, September 10-13, 2001, Proceedings,
volume 2142 of Lecture Notes in Computer Science, pages 1–19. Springer.

O’Hearn, P. W., Rinetzky, N., Vechev, M. T., Yahav, E., and Yorsh, G. (2010). Verifying linearizabil-
ity with hindsight. In Richa, A. W. and Guerraoui, R., editors, Proceedings of the 29th Annual
ACM Symposium on Principles of Distributed Computing, PODC 2010, Zurich, Switzerland, July
25-28, 2010, pages 85–94. ACM.

Owicki, S. S. and Gries, D. (1976). Verifying properties of parallel programs: An axiomatic ap-
proach. Commun. ACM, 19(5):279–285.

Parkinson, M. (2007). Class invariants: The end of the road? In Proceedings of the International
Workshop on Aliasing, Con�nement and Ownership in object-oriented programming (IWACO).

Parkinson, M. J. and Summers, A. J. (2012). The relationship between separation logic and implicit
dynamic frames. Logical Methods in Computer Science, 8(3).

Pek, E., Qiu, X., and Madhusudan, P. (2014). Natural proofs for data structure manipulation in C
using separation logic. In O’Boyle, M. F. P. and Pingali, K., editors, ACM SIGPLAN Conference
on Programming Language Design and Implementation, PLDI ’14, Edinburgh, United Kingdom -
June 09 - 11, 2014, pages 440–451. ACM.

Pérez, J. A. N. and Rybalchenko, A. (2011). Separation logic + superposition calculus = heap
theorem prover. In Hall, M. W. and Padua, D. A., editors, Proceedings of the 32nd ACM SIGPLAN
Conference on Programming Language Design and Implementation, PLDI 2011, San Jose, CA, USA,
June 4-8, 2011, pages 556–566. ACM.

105

Piskac, R., Wies, T., and Zu�erey, D. (2013). Automating separation logic using SMT. In Sharygina,
N. and Veith, H., editors, Computer Aided Veri�cation - 25th International Conference, CAV 2013,
Saint Petersburg, Russia, July 13-19, 2013. Proceedings, volume 8044 of Lecture Notes in Computer
Science, pages 773–789. Springer.

Piskac, R., Wies, T., and Zu�erey, D. (2014). Grasshopper - complete heap veri�cation with mixed
speci�cations. In Ábrahám, E. and Havelund, K., editors, Tools and Algorithms for the Construc-
tion and Analysis of Systems - 20th International Conference, TACAS 2014, Held as Part of the
European Joint Conferences on Theory and Practice of Software, ETAPS 2014, Grenoble, France,
April 5-13, 2014. Proceedings, volume 8413 of Lecture Notes in Computer Science, pages 124–139.
Springer.

Qiu, X. and Wang, Y. (2019). A decidable logic for tree data-structures with measurements. In
Enea, C. and Piskac, R., editors, Veri�cation, Model Checking, and Abstract Interpretation - 20th
International Conference, VMCAI 2019, Cascais, Portugal, January 13-15, 2019, Proceedings, vol-
ume 11388 of Lecture Notes in Computer Science, pages 318–341. Springer.

Raad, A., Hobor, A., Villard, J., and Gardner, P. (2016). Verifying concurrent graph algorithms. In
Igarashi, A., editor, Programming Languages and Systems - 14th Asian Symposium, APLAS 2016,
Hanoi, Vietnam, November 21-23, 2016, Proceedings, volume 10017 of Lecture Notes in Computer
Science, pages 314–334.

Raad, A., Villard, J., and Gardner, P. (2015). Colosl: Concurrent local subjective logic. In Vitek, J.,
editor, Programming Languages and Systems - 24th European Symposium on Programming, ESOP
2015, Held as Part of the European Joint Conferences on Theory and Practice of Software, ETAPS
2015, London, UK, April 11-18, 2015. Proceedings, volume 9032 of Lecture Notes in Computer
Science, pages 710–735. Springer.

Reynolds, A., Iosif, R., and Serban, C. (2017). Reasoning in the bernays-schön�nkel-ramsey frag-
ment of separation logic. In Bouajjani, A. and Monniaux, D., editors, Veri�cation, Model Check-
ing, and Abstract Interpretation - 18th International Conference, VMCAI 2017, Paris, France, Jan-
uary 15-17, 2017, Proceedings, volume 10145 of Lecture Notes in Computer Science, pages 462–482.
Springer.

Reynolds, J. C. (2002). Separation logic: A logic for shared mutable data structures. In 17th IEEE
Symposium on Logic in Computer Science (LICS 2002), 22-25 July 2002, Copenhagen, Denmark,
Proceedings, pages 55–74. IEEE Computer Society.

Sagiv, S., Reps, T. W., and Wilhelm, R. (2002). Parametric shape analysis via 3-valued logic. ACM
Trans. Program. Lang. Syst., 24(3):217–298.

Sergey, I., Nanevski, A., and Banerjee, A. (2015). Mechanized veri�cation of �ne-grained concur-
rent programs. In Grove, D. and Blackburn, S., editors, Proceedings of the 36th ACM SIGPLAN
Conference on Programming Language Design and Implementation, Portland, OR, USA, June 15-
17, 2015, pages 77–87. ACM.

106

Sergey, I., Nanevski, A., Banerjee, A., and Delbianco, G. A. (2016). Hoare-style speci�cations as
correctness conditions for non-linearizable concurrent objects. In Visser, E. and Smaragdakis,
Y., editors, Proceedings of the 2016 ACM SIGPLAN International Conference on Object-Oriented
Programming, Systems, Languages, and Applications, OOPSLA 2016, part of SPLASH 2016, Ams-
terdam, The Netherlands, October 30 - November 4, 2016, pages 92–110. ACM.

Sha, L., Rajkumar, R., and Lehoczky, J. P. (1990). Priority inheritance protocols: An approach to
real-time synchronization. IEEE Trans. Computers, 39(9):1175–1185.

Shasha, D. E. and Goodman, N. (1988). Concurrent search structure algorithms. ACM Trans.
Database Syst., 13(1):53–90.

Smans, J., Jacobs, B., and Piessens, F. (2009). Implicit dynamic frames: Combining dynamic frames
and separation logic. In ECOOP 2009, volume 5653 of LNCS, pages 148–172.

Summers, A. J. and Drossopoulou, S. (2010). Considerate reasoning and the composite design
pattern. In Barthe, G. and Hermenegildo, M. V., editors, Veri�cation, Model Checking, and Ab-
stract Interpretation, 11th International Conference, VMCAI 2010, Madrid, Spain, January 17-19,
2010. Proceedings, volume 5944 of Lecture Notes in Computer Science, pages 328–344. Springer.

Svendsen, K. and Birkedal, L. (2014). Impredicative concurrent abstract predicates. In Shao, Z.,
editor, Programming Languages and Systems - 23rd European Symposium on Programming, ESOP
2014, Held as Part of the European Joint Conferences on Theory and Practice of Software, ETAPS
2014, Grenoble, France, April 5-13, 2014, Proceedings, volume 8410 of Lecture Notes in Computer
Science, pages 149–168. Springer.

Tatsuta, M., Le, Q. L., and Chin, W. (2016). Decision procedure for separation logic with inductive
de�nitions and presburger arithmetic. In Igarashi, A., editor, Programming Languages and Sys-
tems - 14th Asian Symposium, APLAS 2016, Hanoi, Vietnam, November 21-23, 2016, Proceedings,
volume 10017 of Lecture Notes in Computer Science, pages 423–443.

Ter-Gabrielyan, A., Müller, P., and Summers, A. J. (2020). Modular veri�cation of heap reachability
properties in separation logic. In Proceedings of OOPSLA 2020. Conditionally Accepted.

Vafeiadis, V. (2009). Shape-value abstraction for verifying linearizability. In Jones, N. D. and
Müller-Olm, M., editors, Veri�cation, Model Checking, and Abstract Interpretation, 10th Interna-
tional Conference, VMCAI 2009, Savannah, GA, USA, January 18-20, 2009. Proceedings, volume
5403 of Lecture Notes in Computer Science, pages 335–348. Springer.

Vafeiadis, V. (2010). Rgsep action inference. In Barthe, G. and Hermenegildo, M. V., editors,
Veri�cation, Model Checking, and Abstract Interpretation, 11th International Conference, VMCAI
2010, Madrid, Spain, January 17-19, 2010. Proceedings, volume 5944 of Lecture Notes in Computer
Science, pages 345–361. Springer.

Vafeiadis, V. and Parkinson, M. J. (2007). A marriage of rely/guarantee and separation logic. In
Caires, L. and Vasconcelos, V. T., editors, CONCUR 2007 - Concurrency Theory, 18th International

107

Conference, CONCUR 2007, Lisbon, Portugal, September 3-8, 2007, Proceedings, volume 4703 of
Lecture Notes in Computer Science, pages 256–271. Springer.

Wies, T., Muñiz, M., and Kuncak, V. (2011). An e�cient decision procedure for imperative tree
data structures. In Bjørner, N. and Sofronie-Stokkermans, V., editors, Automated Deduction -
CADE-23 - 23rd International Conference on Automated Deduction, Wroclaw, Poland, July 31 -
August 5, 2011. Proceedings, volume 6803 of Lecture Notes in Computer Science, pages 476–491.
Springer.

Xiong, S., da Rocha Pinto, P., Ntzik, G., and Gardner, P. (2017). Abstract speci�cations for concur-
rent maps. In Yang, H., editor, Programming Languages and Systems - 26th European Symposium
on Programming, ESOP 2017, Held as Part of the European Joint Conferences on Theory and Prac-
tice of Software, ETAPS 2017, Uppsala, Sweden, April 22-29, 2017, Proceedings, volume 10201 of
Lecture Notes in Computer Science, pages 964–990. Springer.

Yang, H. (2001a). An example of local reasoning in BI pointer logic: the Schorr-Waite graph
marking algorithm. In Proceedings of the SPACE Workshop.

Yang, H. (2001b). Local reasoning for stateful programs. University of Illinois at Urbana-
Champaign.

Zhu, H., Petri, G., and Jagannathan, S. (2015). Poling: SMT aided linearizability proofs. In Kroen-
ing, D. and Pasareanu, C. S., editors, Computer Aided Veri�cation - 27th International Conference,
CAV 2015, San Francisco, CA, USA, July 18-24, 2015, Proceedings, Part II, volume 9207 of Lecture
Notes in Computer Science, pages 3–19. Springer.

108

	Acknowledgments
	Abstract
	List of Figures
	List of Tables
	Introduction
	The Flow Framework
	Concurrent Search Structures
	Outline

	Preliminaries
	Separation Logic
	A Brief Introduction to Iris
	Ghost States and Resource Algebras
	Example Iris Proof

	The Flow Framework
	Flows from First Principles
	The Flow Framework
	Flows and Flow Interfaces
	Flow Interfaces as a Resource Algebra

	Expressivity of Flows
	Existence and Uniqueness of Flows
	Edge-local Flows
	Nilpotent Cycles
	Effectively Acyclic Flow Graphs

	Conclusion

	Proof Technique and Automation
	Proof Technique
	Encoding Flow-based Proofs in SL

	Extending To The Harris List
	The Edge-local Flow Transformation
	Proof Automation
	Automatic Generation of a Flow-based Proof

	An Example Proof in our Frontend
	Evaluation
	Related Work
	Conclusion

	Concurrent Search Structure Templates
	Overview
	B-link Trees
	Abstracting Search Structures using Edgesets
	The Link Template Algorithm
	A Proof Strategy for Template Search Structures

	Verifying Search Structure Templates
	Encoding the Edgeset Framework using Flows
	Resource Algebras and Ghost State
	Proof of the Link Template
	Lock-coupling and Give-up Templates
	Proofs of Template Implementations

	Proof Mechanization and Automation
	Related Work
	Conclusion

	Conclusion
	Future Work

	Appendix
	Encoding of Flows in Viper

	Bibliography

