
Extensible MultiModal Environment Toolkit (EMMET):

A Toolkit for Prototyping and Remotely Testing Speech and Gesture

Based Multimodal Interfaces

by

Christopher A. Robbins

A dissertation in partial fulfillment

of the requirements for the degree of

Doctor of Philosophy

Department of Computer Science

New York University

September, 2005

Dr. Kenneth Perlin

©Christopher A.Robbins

All Rights Reserved, 2005

Dedication

To my wife Julie, without whom none of this would be possible.

iii

Acknowledgments

I am profoundly grateful to Dr. Kenneth Perlin of New York University, who has

served as my doctoral thesis advisor. I feel exceedingly privileged to have had the op-

portunity to learn from and interact with such a brilliant paragon, and I feel honored

to have done so. It was Dr. Perlin’s fascinating research that first attracted me to

New York University, and it was Dr. Perlin’s guidance, support, expertise, creativity,

and open-mindedness that facilitated my abilities to rise to the many challenges in-

herent in the rigors of the doctoral program. Dr. Perlin has been my instructor both

in and out of the classroom, and what I have learned from him transcends academic

knowledge. The extent of my admiration, respect, and appreciation for Dr. Perlin

truly defies the limits of the English language.

Within New York University, I have been exceptionally fortunate to have been

surrounded by gifted minds and accomplished people. I would like to extend my most

sincere gratitude to Dr. Denis Zorin, Director of Graduate Studies in the Department

of Computer Science. Dr. Zorin not only accepted me into the doctoral program,

thereby providing me with the incredible opportunity be a part of a cutting-edge

and exciting world of learning, but he also provided comprehensive departmental

leadership throughout my experience at the University. Additionally, I am grateful

to Dr. Margaret Wright, Chair of the Department of Computer Science. Dr. Wright’s

leadership has helped maintain the highest standards of excellence in the department

of which I am so proud to have been a part.

Further, I would like to thank Dr. Alan Gottlieb and Dr. Zvi Kedem, under both

of whom I had the opportunity to serve as a teaching assistant. I learned a great deal

from both of these professors, and I am grateful to each of them for their support,

iv

which continued long after my teaching assistantships were completed. I thank Dr.

Christoph Bregler, who generously gave of his time and energy in my thesis proposal

committee and my doctoral dissertation committee, and Dr. Dennis Shasha, who

participated in my doctoral defense.

I was uniquely privileged to work with two additional professors from outside of

NYU’s Department of Computer Science: Dr. Mary Flanagan, of the Hunter College

Department of Film and Media Studies, and Dr. Andrea Hollingshead, of the Uni-

versity of Southern California Annenberg School for Communication. Dr. Flanagan

and Dr. Hollingshead have been collaborators with Dr. Perlin on a project called

RAPUNSEL, with which I am fortunate to be involved. Both of these professors

have helped me to broaden my horizons and to bridge connections between computer

science and its application to other disciplines. A significant amount of my learning

from RAPUNSEL was directly applicable to my thesis work. I thank both of these

professors for all they have taught me. Additionally, I thank Dr. Flanagan for her

participation as a reader on my thesis proposal committee and my doctoral disserta-

tion committee, and I thank Dr. Hollingshead for going out of her way to participate

in my doctoral dissertation defense.

From the start of my journey at NYU, I have learned a great deal from many

professors and from my fellow students, too. However, this journey could not have

begun were it not for the foundation of knowledge afforded me by the University of

Delaware’s Department of Computer Science and the Rensselaer Polytechnic Insti-

tute’s Department of Computer Science during my respective pursuits of my Bachelor

of Science and Master of Science degrees. Further, I would also like to acknowledge the

support I have received from the International Business Machines Corporation. My

friends and colleagues at IBM helped me to prepare for the experience that awaited

v

me at NYU. In particular, I am indebted to the following people for their efforts

on my behalf: William Zeitler, Richard Potts, James Noonan, Carla Shultis, Arnie

Bendel, Cheng-Fong Shih, Paul Loftus, and Nicholas Carbone.

In addition to those at NYU and IBM, I am very much appreciative of the friends

who have come into my life through the years. The support and understanding I

received from these friends has been invaluable. I am especially grateful for their

friendship through the many times when my PhD program prevented me from seeing

them as much as I would have liked. I offer my deepest thanks to Mark Bilson, Daniel

Burkhardt, Jim Ground, Yoan Johnson, and Stephen Toth, as well as to the Robinson

and McClain families.

I am extremely fortunate to have a family that values education and hard work. I

fondly recall the enormous pride my late maternal grandparents, Casper and Theresa

Reaves, took in the educational accomplishments of their children and grandchildren.

My late paternal grandmother, Theo Robbins, taught me by example that anything is

possible when one combines independence, intelligence, and determination. She was

an exceptionally strong woman, whose impact on me cannot be measured. Her hus-

band, my grandfather Alexander Robbins, has likewise led by example, not only in his

own educational accomplishments, but also through his steadfast efforts to contribute

to others’ learning. From his volunteer work serving as a tutor in his community, to

his support for his children and grandchildren in their formal educations, to his most

informal talks around a dining room table, my grandfather has continued to provide

me with countless lessons to this day, whether he has known it or not.

My aunts Alice Robbins and Eloise Robbins have both continued to pursue their

own educations, earning numerous advanced degrees and designations by going “back

to school” after establishing careers. They, like their parents, have taught me by

vi

example to value a life-long commitment to learning. They have also taught me to

take risks and not to fear change, and I am extraordinarily grateful to them.

My uncle, Dr. Casper M. Reaves, Jr., has had a most profound influence on me.

“Uncle” is only one of the roles Casper has held in my life; he has in turn served

unofficially as my big brother, my mentor, my teacher, my advisor, my confidant, my

role model, and my friend. In many ways, were it not for Casper, I would not have

even entered the field of computer science. It was Casper who sparked my interest

in computers, when, in the early 1980s, as a teenager, he created a video game on

his Commodore VIC-20 computer. I was still in grade school, but I clearly remember

being fascinated by the notion that I could create my own games. As the years went

on, much of my early programming experiences were on computers Casper handed

down to me. When I was in high school, Casper’s encouragement to broaden my

then limited programming knowledge led me to discover that programming was not

all about learning codes. I became interested in the science behind the programming.

In my endeavor to continue exploring this science at the doctoral level, Casper’s

input has proven invaluable. Having earned a PhD himself, he has been able not

only to provide exceptional advice and insight about the process, but also to lend

an understanding ear and provide much-needed support when I encountered rigorous

challenges along the way. His generosity is boundless, and I owe so much of who I am

to him. Casper, you truly are my hero.

I am blessed to have an exceptional sister, Kathy Ritchie. She and her husband,

Christopher Ritchie, have provided consistent reassurance to me that with or without

a PhD, I will still be loved. Their son, my wonderful nephew Stephen Ritchie, has

helped to keep me grounded in the knowledge that when all is said and done, I will

still be “Uncle Pooh,” and he will still look up to me. In their travels and career

vii

paths, Kathy and Chris have shown me the importance of remaining true to one’s

heart and of taking risks when necessary.

The two people most directly responsible for my value of education are my parents,

Joyce and Wayne Robbins. My parents gave me an early license to pursue my interests

and to chart my own path, and they outfitted me with the intellectual and emotional

tools to do so. They instilled in me the ability to dream and yet to temper high hopes

with humility. They held high expectations, and they entrusted me with the freedom

and the responsibility to meet their standards. They allowed me to make mistakes

so that I could learn vital lessons, but they never allowed me to create irreparable

damage, and they were always there to encourage me to succeed when I did slip. I

am entirely grateful for their lessons, their support, and most of all, their love. They

have provided me with the proverbial wings with which to fly.

In addition to the extraordinary family I was lucky to be born into, I feel blessed

by the family that I have acquired in recent years. My father-in-law, Murray Halb-

fish, consistently exemplifies the values of life-long learning and risk-taking. Well-

established in his career with advanced degrees and professional designations, he

nonetheless continually devotes himself to coursework toward additional degrees and

designations, all in the interest of learning. I am extremely grateful to Murray for his

positive outlook and “never quit” attitude, which I strive to emulate. My mother-

in-law, Gayle Halbfish has also demonstrated the value of working hard, and she has

shown me the importance of resourcefulness. She has helped me learn to prioritize,

and in a demanding graduate program, that is an important skill. My brother-in-law,

Michael Halbfish, Esq., has epitomized the virtue of tenacity. His commitment to his

profession and his tireless efforts therein have motivated me in my own endeavors.

Additionally, Michael’s pursuits of outside interests have taught me the importance

viii

of being well-rounded and of pursuing education that addresses the many facets of

oneself. Ironically, my “in-laws” do not include the term “in-law” in their vernacular,

and as such, they have always treated me as a son and a brother. I am deeply appre-

ciative. For as long as I have known them, they have never ceased to express their

affection toward me or pride in me, and the reassurance I have gleaned from them

has proven limitless. In addition, their confidence in me has been unwavering and has

bolstered me at times when I truly needed it. The love, encouragement, and support

they have offered, and the sincerity with which it has been offered, has meant more

to me than any mere words on paper could ever express.

No mention of my family would be complete without acknowledgment of my wife,

Julie Robbins. Without her, none of this would have been possible. Her support

and confidence in me was unwavering. I could not have faced the many challenges

of the PhD program without the reassurance that she would be there afterward–to

console me if I did not succeed or to celebrate with me if did. It should be no surprise

that academia was also what brought Julie into my life. We met at the University

of Delaware eleven years ago and have been inseparable ever since. I am unable to

express how much I value and enjoy her companionship. She makes every day more

meaningful than I could possibly imagine or explain. Julie, you have my undying love

and endless devotion.

Collectively, as noted, my family members have all inspired my value of education,

my love of learning, and my abilities to pursue my academic goals. Nonetheless, the

chief lesson my family has taught me is that the most important learning one achieves

has nothing to do with academics and everything to do with character. Indeed, what

we know is of little importance compared to how we use what we know–and degrees

of academia cannot substitute for degrees of kindness. My family members have all

ix

instilled in me various lessons and tools to facilitate my academic success, and I will

be eternally grateful. Most of all, however, I am grateful to my family members for

exemplifying the purest of character. My family has taught me that class is not just

about school and grace is not just about movement.

x

Abstract

Ongoing improvements to the performance and accessibility of less conventional input

modalities such as speech and gesture recognition now provide new dimensions for

interface designers to explore. Yet there is a scarcity of commercial applications which

utilize these modalities either independently or multimodally. This scarcity partially

results from a lack of development tools and design guidelines to facilitate the use of

speech and gesture.

An integral aspect of the user interface design process is the ability to easily eval-

uate various design solutions through an iterative process of prototyping and testing.

Through this process guidelines emerge that aid in the design of future interfaces.

Today there is no shortage of tools supporting the development of conventional in-

terfaces. However there do not exist resources allowing interface designers to easily

prototype and quickly test, via remote distribution, interface designs utilizing speech

and gesture.

The thesis work for this dissertation explores the development of an Extensible

MultiModal Environment Toolkit (EMMET) for prototyping and remotely testing

speech and gesture based multimodal interfaces to three-dimensional environments.

The overarching goals for this toolkit are to allow its users to:

� explore speech and gesture based interface design without requiring an under-

standing of the details involved in the low-level implementation of speech or

gesture recognition,

� quickly distribute their multimodal interface prototypes via the Web, and

� receive multimodal usage statistics collected remotely after each use of their

xi

application.

EMMET ultimately contributes to the field of multimodal user interface design by

providing an environment to existing user interface developers in which speech and

gesture recognition have been seamlessly integrated into their palette of user input

options. Such seamless integration serves to increase the utilization within applica-

tions of speech and gesture modalities by removing any actual or perceived deterrents

to the use of these modalities versus the use of conventional modalities. EMMET ad-

ditionally strives to improve the quality of speech and gesture based interfaces by

supporting the prototype-and-test development cycle through its Web distribution

and usage statistics collection capabilities. These capabilities also allow developers

to realize new design guidelines specific to the use of speech and gesture.

xii

Contents

Dedication iii

Acknowledgments iv

Abstract xi

List of Figures xvi

List of Tables xx

List of Appendices xxi

1 Introduction 1

1 Multimodal Interface Design . 4

2 Human Factors in Speech-Based Interfaces 6

2 Multimodal Interface Design History and Related Work 9

1 Early Multimodal Interfaces . 9

1.1 Put-That-There . 10

1.2 CUBRICON . 12

1.3 XTRA: An Intelligent Multimodal Interface to Expert Systems 15

xiii

2 Recent Speech Based Multimodal Interfaces 19

2.1 QuickSet . 20

2.2 IBM’s Human-Centric Word Processor (HCWP) 23

2.3 Portable Voice Assistant . 25

2.4 Field Medic Information System 27

3 Multimodal Interface Usability Studies 28

3.1 Human Factors in Integration and Synchronization of Input

Modes . 28

3.2 Mutual Disambiguation of Recognition Errors 33

3.3 Multimodal Interfaces for Children 35

4 Multimodal Interface Design and Related Work Conclusion 37

5 Multimodal Frameworks Currently in Development 39

3 EMMET Design and Implementation 42

1 Overview . 42

2 Foundational Concepts and Technologies 43

2.1 Java Speech API (JSAPI) . 44

2.2 HHReco Graphic Symbol Recognition Toolkit 47

2.3 The jMonkeyEngine (jME) Java 3D Rendering API 47

2.4 Unification-based Multimodal Integration 48

2.5 Statistics Gathering . 50

3 EMMET’s Software Architecture . 51

3.1 The content Package . 52

3.2 The controller Package . 60

3.3 The command Package . 103

xiv

3.4 The resolver Package . 114

3.5 The model Package . 118

3.6 The statistics Package . 121

3.7 The apps Package . 124

4 EMMET Proof of Concept Tests, Function Verification Tests, and

Demonstration Applications 126

1 Pre-EMMET Proof of Concept Tests 126

1.1 Early Speech Recognition Tests 127

1.2 Speech and Gesture Based Geometry Placer 130

2 EMMET Development Function Verification Tests 132

2.1 EMMET Unimodal Input Mode Test Applications 134

2.2 EMMET Multimodal Input Mode Test Application 142

3 EMMET Geometry Placer Demonstration Application 147

5 Conclusion 157

Appendices 160

Bibliography 164

xv

List of Figures

2.1 Bolt’s Media Room . 10

2.2 CUBRICON System Architecture . 13

2.3 XTRA Tax Form . 16

2.4 Spatial Relation . 18

2.5 Quickset Handheld PC Interface . 21

2.6 Quickset Gestures and Symbols . 22

2.7 IBM’s HCWP Input Evaluation System 24

2.8 VoiceLog Interface . 26

2.9 Task Action Command Analysis . 30

2.10 Mutual Disambiguation Research Design 33

3.1 JSGF Sample . 45

3.2 JSGF “Put-That-There” Sample . 46

3.3 Gesture Feature Structure . 49

3.4 Speech Feature Structure . 49

3.5 Generated Multimodal Feature Structure 50

3.6 content Package Overview . 53

3.7 ModalContent Class . 54

3.8 ModalContent Subclasses in controller Package 55

xvi

3.9 ModalityType Class . 56

3.10 ModalitySubType Subclasses in controller Package 57

3.11 TimeInterval Class . 58

3.12 ConfidenceLevel Class . 60

3.13 ModalContentQueue Class . 61

3.14 Gesture Input Handler and Adapter 67

3.15 Gesture Content subclass . 69

3.16 KeyboardInputManager Class . 71

3.17 KeyContent Class . 72

3.18 KeyHandler Interface and KeyAdapter Class 73

3.19 MouseInputManager Class . 75

3.20 MouseContent Class . 76

3.21 Mouse and Mouse Motion Input Handlers and Adapters 77

3.22 controller.gesture Package . 79

3.23 Gesture Class . 81

3.24 GestureInputManager Gesture Recognition State Cycle 82

3.25 The controller.speech Package . 86

3.26 SpeechInputManager Class . 88

3.27 ParsedRuleToken Class . 89

3.28 ParsedRuleNode Class . 89

3.29 Simple JSGF Grammar for Adding and Coloring Objects 90

3.30 ParsedRuleNode Tree . 90

3.31 ParseRuleUtil Utility Class . 92

3.32 RuleContent Class . 93

3.33 RuleHandler Interface . 94

xvii

3.34 MultimodalInputManager Class . 100

3.35 Multimodal Input Listener and Adapter 102

3.36 ModeTrigger Interface and Implementors 105

3.37 CommandDefinition Class . 106

3.38 The CommandListener Interface and CommandAdapter Class 109

3.39 The CommandEvent Class . 111

3.40 The CommandDefinitionRegistry Class 113

3.41 The Resolver Class . 117

3.42 WorldObject Class with Mobile and Static Subclasses 119

3.43 WorldObject and WorldObjectType Registries 120

3.44 MultimodalStatisticsCollector . 123

3.45 CommandCallRecord . 124

3.46 CommandStatistics Class . 125

4.1 PollyWorld Layout Tester Java Applet with Speech Recognition . . . 129

4.2 Speech and Gesture Based Geometry Placer Proof-Of-Concept 133

4.3 TestKeyboardInput Excerpt . 135

4.4 TestMouseInput Excerpt . 136

4.5 TestGestureInput Excerpt . 137

4.6 TestGestureInput Application with User Drawing a Tree Gesture . . . 138

4.7 TestSpeechInput Excerpt . 140

4.8 Basic Speech Definition Use of Command and Trigger 143

4.9 Look Left Definition Responds to Speech or Keyboard Triggers 144

4.10 ColorSomething Speech Definition Responds to Multimodal Input . . 145

4.11 EMMET Geometry Placer . 148

xviii

4.12 Registering World Object Types and the WorldObjectRegistry 149

4.13 Geometry Placer “addNewObject” CommandDefinition Triggers . . . 150

4.14 Geometry Placer “addNewObject” CommandDefinition Listener . . . 152

4.15 EMMET Geometry Placer Java� WebStart JNLP File 154

4.16 EMMET Geometry Placer Remote Statistics Reporting 155

4.17 Geometry Placer “addNewObject” Command Usage Statistics 156

xix

List of Tables

2.1 Types of Individual Input Construction 29

2.2 Pen Input Command Type Frequencies 32

2.3 MD Rates and Command Length . 34

xx

List of Appendices

Appendix A: Glossary of Terms . 160

Appendix B: UML Class Diagram Reference 163

xxi

Chapter 1

Introduction

Multimodal interfaces process two or more combined user input modes in a coordi-

nated manner with multimedia system output. Such combinations work to facilitate

the overall human computer interaction experience. There is a growing interest in

the design and implementation of multimodal interfaces fueled by the many inherent

advantages they provide. Multimodal systems are flexible in their ability to provide

users with a choice of input. They offer greater accessibility to a broad range of users.

Their adaptability is apparent in their ability to switch input modes as necessary. The

simultaneous input possibilities afforded by multimodal interfaces allow for more ef-

ficient input. Multimodal systems can also take advantage of mutual disambiguation

to facilitate error avoidance and recovery.

In a summary of future directions in multimodal interfaces Oviatt et al. spec-

ify a number of research challenges involved in advancing the field [46]. One of

these challenges is the scarcity of tools which facilitate the development of multi-

modal software and the inherent complexity in the development of such tools. Tools

such as these should allow for the rapid implementation of multimodal interfaces

1

for iterative software development. A second challenge includes the development of

metrics and techniques for evaluating alternative multimodal systems. These met-

rics and techniques are needed to establish a common basis for analyzing the quality

of new multimodal interface designs. A third challenge involves studies of how peo-

ple integrate and synchronize multimodal input during human-computer interactions.

Such empirical usability studies explore and evaluate the human factors involved in

multimodal input, thus providing useful insight and guidance toward the design and

implementation of future multimodal interfaces.

To address the challenges posed by Oviatt et al., this dissertation explores the

design and implementation of EMMET, an Extensible MultiModal Environment

Toolkit. EMMET was created with three overarching goals:

� to allow programmers to explore speech and gesture based interface design with-

out requiring an understanding of the details involved in the low-level imple-

mentation of speech or gesture recognition;

� to facilitate rapid distribution of programmers’ multimodal interface prototypes

via the World Wide Web; and

� to provide a built in data collector that enables programmers to receive multi-

modal usage statistics after each use of their applications.

Note that for each goal there exists a corresponding implicit research question of

how one can develop a programmer interface to accomplish the goal. Furthermore,

reaching these goals supports the thesis that it is possible to implement a clean and

well architected set of algorithms and techniques to support the development and

evaluation of multimodal interfaces by handling the difficult semantic problems that

2

arise when trying to reconcile very different input modalities such as speech and

gesture.

Thus, EMMET first contributes to the field of multimodal interface design by

addressing Oviatt et al.’s call for tools that facilitate the development of multimodal

software. EMMET enables programmers who lack expertise in speech and gesture

recognition to create applications with speech and gesture based multimodal inter-

faces. As a result, using EMMET to implement speech and gesture recognition,

programmers need only to define the grammar string and gestures they want their

applications to recognize and specify what response is called for when a qualifying

utterance or gesture occurs.

Additionally, EMMET responds to Oviatt et al.’s discussion of the need to de-

velop metrics and techniques for evaluating alternative multimodal systems. Each

time a program that was created with EMMET is used, EMMET collects multimodal

usage statistics and sends them to the programmer. Realizing that the quality of

multimodal interface designs will inevitably vary based on the differing purposes of

each application, the creation of one rubric by which all multimodal interfaces can

be evaluated would be daunting. However, EMMET allows programmers to indepen-

dently evaluate their multimodal interfaces and customize them to their needs and

the needs of their users. Therefore, EMMET opens a door toward answering Oviatt

et al.’s third challenge, the call for studies of how people integrate and synchronize

multimodal input during human computer interactions. From the information EM-

MET provides, developers will be able to gain insight and guidance for the design

and improvement of future multimodal interfaces.

3

1 Multimodal Interface Design

The primary goal in the design of any user interface is to facilitate the interaction

between user and machine. This user-centered goal is the guiding force behind choices

made in the design process. There are, of course, many system engineering issues

that influence interface design decisions such as the limits of technology, schedules,

proper functionality, reliability, etc. However, addressing these issues ideally serves

the purpose of creating a better user experience with the system.

One purpose of researching multimodal interfaces from an HCI perspective is to

evaluate how to take advantage of the benefits they provide over unimodal recognition-

based interfaces and conventional keyboard and mouse interfaces. Such advantages

include flexibility, availability, adaptability, efficiency, lower error rate, and a more

intuitive and natural interaction [45].

The flexibility of multimodal interfaces lies in the choices they give to users in

selecting how they will interact with the system. These choices allow the user to select

an input mode to suit the type of input, to use multiple input modes simultaneously,

or to alternate between modes. An example of such flexibility is evident in the Field

Medic system (section 2.4), as it allows a medic to alternate between using voice, pen,

or both as necessary. This provides the medic with a hands free interface whilst he

or she cares for the patient and the ability to later switch to a pen and tablet based

interface for recording more detailed information at a later time.

The ability of multimodal interfaces to accommodate a broad range of users un-

der a variety of circumstances increases the availability of such interfaces versus the

availability of conventional unimodal interfaces. This increased availability can ex-

tend access to a particular system to users that may otherwise not be able to interact

4

at all. This is self evident for users such as the visually impaired. However to argue

that a unimodal speech-based interface serves the same purpose overlooks the fact

that while speech alone suits the needs of a blind user, it prevents use by one that is

hearing impaired. The advantage of multimodality is that one interface can allow a

range of users to interact with the same system.

Multimodal interface adaptability is an application of flexibility in which a multi-

modal system can be taken into an environment where one form of input becomes

unusable and yet the system can still be used by switching to an alternative input

method. An example situation for adaptability would be a vehicle navigation system

which supports visual directions via a map display and directions delivered by speech.

In the common situation in which the driver cannot remove his gaze from the road, a

purely map-based interface would be unable to direct him; however listening to verbal

driving directions is still an option. A similar example is a cell phone that allows the

owner to use spoken name recognition for dialing common numbers.

A greater efficiency for certain tasks is gained with multimodal interfaces that

process parallel input [34]. These tasks include those that would require a series of

sequential input events in a unimodal interface. This ability to process parallel input

was originally thought to be the primary advantage of using multimodal interfaces

[45]. One example of improved efficiency is experienced by users of the map-based

LeatherNet military simulation system (section 2.1), as it allows them to quickly

specify objects by name while simultaneously indicating an action using stylus input.

Error handling is also improved in multimodal systems due to their inherent error

avoidance and recovery. This avoidance and recovery is often initiated by the user as

they tend to select input modes that they believe best suit content they are about to

enter. Also, in pen and gesture based multimodal input, the ability to select a visible

5

referent rather than having to use speech avoids possible errors in speech recognition.

Finally, users will often base mode type selections on past experience, such that past

errors that occurred when using a particular input mode are avoided when the user

needs to enter a similar input [45]. In addition to user originated error avoidance and

recovery, system based error detection and recovery is also improved in multimodal

interfaces. This improvement is rooted in the ability to use mutual disambiguation

when processing parallel complimentary recognition inputs. An example of such dis-

ambiguation occurs when a spoken referent phrase is misrecognized as being singular,

but the user has used pen input to select multiple items on a display.

2 Human Factors in Speech-Based Interfaces

In discussing the human factors of speech as it relates to speech based interface de-

sign it is important to differentiate between interfaces that recognize command speech

versus those that recognize natural language. Command speech involves the recog-

nition of token words or phrases in isolation, while natural language involves the

recognition of the full sentence structures and richness of a natural spoken language

such as English, although perhaps with a limited vocabulary. Individual voice quality

contributes to the difficulty of recognizing speech tokens. Interpersonal variations in

voice and speech are caused by such differences as physical features, cultural speech

patterns, gender, native language, and accents. Intrapersonal variability is affected

by differences like time of day, health, and degree of background noise. To facilitate

recognition when faced with this variability, systems must take advantage of syn-

tax, semantics, and context. The accuracy of command speech recognition can be

increased by maintaining a current context that limits the possible valid commands.

6

An advantage in natural language recognition is that much of the speech input beyond

simple command tokens provides helpful contextual information and redundancy.

Human short term memory is another concern in designing a speech based in-

terface. Most humans can keep about five to nine chunks of information in working

memory at a time [51]. This factor is not as important for visual GUIs, because they

limit the user to selecting or acting upon a shown set of choices. However, similar

to command line interfaces, the efficient use of command speech interfaces involves

remembering the set of valid inputs tokens or else having to repeatedly refer to help

systems or documentation. In purely speech based interfaces a guidance system,

similar to the one inherent in GUI systems, needs to be provided.

In discussing speech based interface design dialog structure must also be consid-

ered. Conventional user interface commands are usually short, as they are often based

upon a single word or mouse input event. With spoken dialog there is the possibility

for longer input streams, especially when dealing with natural language. The question

of when to respond to user input is difficult because the definite completion of input

declared by pressing enter on the keyboard or clicking a mouse button is lost when

dealing with speech.

Conversational technique is another human factor to address in the development

of speech-based interfaces. Techniques such as clarification, back-channel utterances,

dialog repair, turn taking, and topic introduction commonly occur in human-human

conversation [2]. These techniques often produce problems that do not have con-

ventional user interfaces counterparts. Back-channel utterances include non-speech

sounds such as “uh-huh”, “um”, and “ah”. Dialog repair involves a pause in the cur-

rent flow of speech to immediately step back and correct a pronunciation or to change

a word or phrase. Regarding turn taking, human-computer interaction is based on

7

the user producing a complete utterance or phrase followed by a suitable response

from the computer. Human-human turn taking is variable, allowing one party to

produce sequential complete utterances with no need for intermittent responses from

the other. Sometimes the meaning of one phrase is clarified by a later one. Similarly,

a topic introduction can change the context of subsequent dialog such that the in-

terpretation of a phrase becomes completely different from its interpretation prior to

the introduction.

User vocabularies vary in size and breadth but the only vocabulary of value to

them is the one recognized by the interface. How to establish an interface’s vocab-

ulary with the user is an important question in the development of both command

speech and natural language interfaces. One solution is to rely upon a phenomenon

called “parroting”, the human tendency to respond when spoken to using the same

vocabulary and style as the speaker. Thus, restricting system prompts and responses

to the supported vocabulary may influence the users input vocabulary.

Speech prosody is another human factors consideration. Prosody refers to varia-

tions in the duration of phonemes and the silences between them as well as frequency

and amplitude changes in human speech patterns. Prosody is used by natural lan-

guage systems to improve recognition and parse information. Prosody is also used by

interfaces that generate speech to produce more natural sounding output.

8

Chapter 2

Multimodal Interface Design

History and Related Work

The following chapter surveys a number of early and recent multimodal interfaces as

well as three multimodal interface usability studies. Researching these interfaces and

usability studies later served to guide related aspects of the design and implementation

of EMMET.

1 Early Multimodal Interfaces

One of the earliest multimodal interfaces illustrating the use of voice and gesture

based input was Richard Bolt’s “Put That There” system [1]. Subsequent multimodal

interfaces of the late 1980’s and early 1990’s explored the use of speech input combined

with conventional keyboard and mouse input. The design of these interfaces was

based upon a strategy of simply adding speech to traditional graphical user interfaces

(GUIs). The primary motivation for this addition of speech was a belief that the use

9

of speech gives the user greater expressive capability, especially when interacting with

visual objects and extracting information [45]. Examples of such types of interfaces

include CUBRICON [38], XTRA [57], and Shoptalk [10].

1.1 Put-That-There

In Bolt’s “Put-That-There” system, speech recognition is used in parallel with gesture

recognition. User interaction takes place in a media room about the size of a personal

office as seen in Figure 2.1.

Figure 2.1: Bolt’s Media Room

Visual focus is directed at a large screen display on one wall of the room. Gesture-

10

based input is primarily the recognition of deictic arm movements in the forms of

pointing at objects displayed on the screen and sweeping motions of the arm whilst

pointing. In general, deictic gestures are gestures that contribute to the identification

of an object (or a group of objects) by specifying their location. The gesture recogni-

tion technology Bolt used involves a space position and orientation sensing technology

based on a magnetic field [1]. Speech recognition in the “Put That There” system al-

lows for simple English sentence structures that use a limited vocabulary. The driving

example scenario Bolt uses to illustrate his “Put That There” system consists of in-

put requests for creating, customizing, copying, moving, and deleting basic geometric

objects on a large screen display. Sample input speech includes the command, “Cre-

ate a blue square there.” The difficulty of interpreting this request is the presence of

the pronoun “there.” In a purely speech based interface the specification of a loca-

tion must be included as part of the speech command. For example, after uttering,

“Create a blue square,” the user must provide location information in the form of a

phrase such as, “in the center of the display,” or perhaps, “next to the green circle,”

(assuming referable objects, such as a green circle, exist). Bolt’s system addresses

the ambiguity of deictic references by assigning pronouns to temporal arm pointing

and motion gestures. Such gesture-based recognition builds upon the speech input to

disambiguate pronoun usage. Thus, when the user states, “Make that smaller,” while

pointing to a blue square, the pronoun, “that” refers to the blue square. A more

ambiguous command is the paper’s title providing phrase, “Put that there.” For this

phrase, the user points at an object while saying “that,” then points at a desired

location after saying “there.” This disambiguation represents one way multimodal

interfaces can cooperatively use one modality in parallel with another. Accordingly,

Bolt introduced an important benefit of multimodal interfaces by demonstrating their

11

ability to resolve deictic references that unimodal interfaces cannot consider.

The speech utterances recognized by Bolt’s “Put-That-There” system are limited

to its set of command words. A limited speech recognition vocabulary can be useful

because it improves recognition efficiency and accuracy [17, 33]. Such limitation of

input also occurs in Windows-Icon-Menu-Pointer (WIMP) based interfaces, in which

the user is limited to referring to a finite set of command choices, windows, and icons.

Bolt’s system provides an initial step in establishing multimodal interfaces as a

more natural form of human-computer interaction. This is especially evident in the

user’s ability to use pronouns as would occur in daily conversation, and the natural

manner of pointing to an object to establish it as the subject of current discourse or

as the antecedent of a pronoun. A direct implication of Bolt’s work on the design of

EMMET was the guiding principle of deictic reference resolution. Based on Bolt’s

research, one of the goals in developing EMMET was to provide a system that would

allow programmers to create interfaces that could resolve deictic references. Another

way Bolt’s system directly impacted the development of EMMET was in its use of a

limited, pre-defined vocabulary. Programmers who utilize EMMET provide grammar

strings to specify speech utterances to which they want their interfaces to respond.

1.2 CUBRICON

An early interface combining spoken and typed natural language with deictic ges-

ture for the purposes of both input and output was designed for CUBRICON [39],

a military situation assessment tool. Similar to the “Put-That-There” system, the

CUBRICON interface utilizes pointing gestures to clarify references to entities based

upon simultaneous natural language input. It also introduces the concept of compos-

ing and generating a multimodal language based on a dynamic knowledge base. This

12

knowledge base is initialized and built upon via models of the user and the ongoing

interaction. These dynamic models influence the generated responses and affect the

display results which consist of combinations of language, maps, and graphics.

In the CUBRICON architecture (Figure 2.2), natural language input is acquired

via speech recognition and keyboard input. Location coordinates are specified via a

conventional mouse pointing device. An input coordinator processes these multiple

input streams and combines them into a single stream which is passed on to the

multimedia parser and interpreter. Building upon information from the system’s

knowledge sources, the parser interprets the compound stream and passes the results

on to the executor/communicator.

Figure 2.2: CUBRICON System Architecture

13

The CUBRICON system’s knowledge sources consist of the following elements:

� Lexicon - denotes the vocabulary

� Grammar - defines the multimodal language

� Discourse Model - dynamically maintains knowledge pertinent to the current

dialog.

� User Model - aids in interpretation based on user goals and plans

� Knowledge Base - contains information related to the task space

CUBRICON’s multimodal language incorporates mouse input to select on-screen

content such as windows, table components, icons, and points, and spoken or written

natural language, to specify one or more actions that refer back to selected objects.

CUBRICON builds upon “Put-That-There” by allowing a number of point gestures in

a single phrase and the combination of multiple multimodal phrases into one sentence.

For instance, CUBRICON allows one to use a phrase like, “Where are these items?”

while sequentially pointing to multiple elements.

The combination of speech and gesture in this manner improves the usability

of either input method alone, as the two can work cooperatively to achieve greater

accuracy in determining the user’s intent. Thus the interpretation of an ambiguous

utterance can take advantage of the fact that only a limited set of applicable actions

exist for the referenced object. Conversely, an ambiguous pointing gesture can be

resolved if simultaneous natural language input reduces the number of applicable

on-screen objects.

CUBRICON’s output is also multimodal, as it integrates gesture with speech.

For instance, if an output refers to an icon object, the icon referenced is pointed to,

14

and corresponding natural language is generated. If the output object is part of an

icon, the containing icon is pointed to instead. If the output refers to an object that

appears in multiple windows, the object is weakly highlighted in each window, except

for the top or selected window, in which the icon blinks.

By definition, multimodal output methods, like the one exhibited by the CUBRI-

CON interface, exceed conventional output methods’ abilities to clearly convey in-

formation to the user in a natural manner (“natural” denoting similarity to human-

human interaction). An illustrative example is the explanation of driving directions,

in which a graphic map traversal combined with verbal directions is clearer than that

of either output alone.

The explanation of CUBRICON’s architecture provided guidance in architecting

EMMET. Similar to the CUBRICON architecture, EMMET maintains a grammar

for deriving recognizable utterances. Further, EMMET maintains both a discourse

model, in the form of content registries, and a knowledge base, in the form of user-

defined command tasks.

1.3 XTRA: An Intelligent Multimodal Interface to Expert

Systems

XTRA (eXpert TRAnslator) is an intelligent multimodal interface that combines

natural language, graphics, and pointing for input and output [57]. Based upon

a focusing gesture-analysis methodology, the XTRA project constrains referents in

speech to possibilities from a gesture based region. Doing so aids the system in

interpretation of subsequent definite noun phrases that refer to objects located in the

focused area.

15

An illustrative application discussed by Wahlster involves the use of XTRA to

facilitate filling in a tax form. As shown in Figure 2.3, gesture based input and

output for this application occurs in the left panel which displays pages of a tax

form. Natural language input and system response text are displayed in a panel to

the right. Note that the tax form display panel is shared for both gesture based input

and output.

Figure 2.3: XTRA Tax Form

Using a mouse or similar pointing device, the user can specify locations on, and

areas of, the tax form. Fields that exist on a tax form page may overlap or be con-

tained within one another. Also, analogous to human-human interaction, but unlike

conventional human-computer interaction, gestured-to locations are not confirmed

16

graphically. The granularity and interpretation of mouse-specified locations and ar-

eas depends upon the current pointing mode selected by the user. These modes are

designed to simulate various types of deictic gestures commonly used in human-human

conversation, as follows:

� Exact pointing with a pencil

� Standard pointing with the index finger

� Vague pointing with the entire hand

� Encircling regions with an ‘@’-sign

In addition, three types of movement gestures are considered: point, underline,

and encircle. Selecting in pencil mode is similar to mouse selection in conventional

WIMP-based interfaces; however, as the pointing area mode becomes less granular,

mouse selections are no longer considered to occur in discrete fields. Instead, a plau-

sibility value is computed for each subset of the superset generated with all of the

fields contained in the pointing-mode based mouse selection region. Thus a selection

of multiple tax form fields as a referent could be accomplished by using the entire

hand mode and using plurality in the natural language discourse.

Also, XTRA considers the effects of dialog focus, thereby allowing the user to

sequentially or simultaneously specify a region to be the one containing another lo-

cation or area. Allowing the user to do so removes the ambiguity of language based

references to a field that may occur in multiple locations. For instance, if field ‘A’

is verbally specified but it appears in three rows, a focusing gesture can be used

to specify the row of attention. The discussion of dialog focus progresses toward a

17

consideration of combined pointer actions in which one pointer action specifies a re-

gion and another indicates a subfield of that region. In the case of pointer actions,

two possibilities are considered: one-handed input (sequential), and two-handed in-

put(parallel/simultaneous). In this manner, focusing gestures modify the discourse

model.

The discourse model can also be modified based upon intrinsic and extrinsic re-

lations. Ignoring the pointing icon in Figure 2.4, the definite noun description, “the

right circle” is intrinsically determined to be circle 5, based upon the standard left

to right reading direction paradigm. However, if one were to consider the presence of

the pointing icon, the same description would extrinsically be determined to refer to

circle 3.

Figure 2.4: Spatial Relation

Because multimodal interfaces involve the process of interpreting multimodal in-

put as well as generating multimodal output, XTRA’s output consists of simultaneous

deictic descriptions and pointing gestures. In planning the presentation of such out-

put, XTRA consults its dynamic user model to customize responses based upon the

user’s experience level. For example, a pointing gesture is used in place of a verbal

description to refer to a visible object if a technical term would be required that is

not understood by the user, based upon the current user model. XTRA also utilizes

18

the different types of pointing modes made available to the user for output. This fea-

ture helps to clarify the scope of an output utterance. For instance, when an output

utterance is, “Delete this,” and pencil mode is used to point to a word phrase, it is

hard to determine if the deletion affects the exact letter pointed to by the pencil, or

the whole phrase. However, if index pointing mode is used, the user’s index pointing

gesture indicates whole words or fields, clarifying what the deletion will affect.

XTRA is an early illustration of how multimodal input may affect dynamic user

models and dialog discourse models, and how such models may affect the multimodal

output of a cooperative natural language and gesture based interface. In addition,

XTRA introduces the use of deictic gesture granularity to parallel natural gesture

usage in human-human interaction. XTRA also shows a use of sequential or simul-

taneous pointing gestures, in which one gesture establishes an area of attention to

reduce or remove ambiguity in another gesture.

XTRA’s implication on the development of EMMET is evident in EMMET’s

ability to recognize non-symbolic gestures and, upon recognition of such gestures, to

provide programmers using the EMMET API with pertinent attributes of the gesture.

Subsequently, these programmers may analyze the gesture attributes to mimic deictic

granularity demonstrated by Wahlster’s system.

2 Recent Speech Based Multimodal Interfaces

Recent multimodal interface trends have moved away from combining speech with

simple mouse and touchpad pointing, and toward the use of speech in parallel with

more expressive input methods and technologies [45]. Such recent interfaces benefit

from the additional user expressibility allowed by two recognition based inputs. Cur-

19

rently the most mature research in multimodal interfaces, combining two recognition

based inputs, has focused on speech and pen or speech and lip recognition. For both

cases keyboard and mouse input tends to not be used.

2.1 QuickSet

Research into speech and pen based multimodal input began in the early 1990’s. The

QuickSet system, prototyped in 1994, is one of the earliest speech and pen multi-

modal interfaces [45]. Quickset is a collaborative multimodal system designed to run

on multiple platforms from handheld PCs (see Figure 2.5) to wall-sized display inter-

faces. In addition to integrating multiple interface components, the Quickset system

is designed to work with a collection of distributed applications [13]. A Java-based

implementation of Quickset was developed for the World Wide Web. The system

also introduces a unification-based mechanism to analyze the meaning of multiple

input mode fragments. This mechanism selects the optimal joint interpretation of se-

quential or simultaneous input fragments. Like the CUBRICON and XTRA systems,

Quickset utilizes multimodal discourse to aid in accurate interpretation of speech and

gesture input.

Quickset [13] is designed as a general architecture for providing speech and pen

multimodal interfaces for map-based, otherwise self contained, back-end applications

. The map interface provided by QuickSet displays the terrain for a specified region

along with entities whose physical position lies within the region. Normal map inter-

face capabilities such as zoom and pan are also provided. Multimodal pen and speech

input allows the user to annotate the map using points, lines, and areas. The user

can also use symbolic gestures to create new entities on the map while simultane-

ously using speech input to describe and name them. To handle the situation where

20

Figure 2.5: Quickset Handheld PC Interface

background conversation or speech is not intended for the interface, QuickSet only

activates its speech recognition engine when the pen touches the display. The com-

mercial speech engines used by QuickSet to implement speech recognition, are IBM’s

VoiceType, a predecessor to the current IBM ViaVoice series, and Microsoft’s Whis-

per engine. The pen-based gesture recognizer was written as part of the QuickSet

implementation and consists of a neural network and a set of hidden Markov models.

The gesture recognizer recognizes a number of pen gestures including military map

symbols, editing gestures, paths, areas, and taps. QuickSet also provides distributed

system support, speech recognition customization parameters, and multi-user collab-

oration.

An early illustrative system using QuickSet as its multimodal interface is Leath-

erNet, a map based military simulation set-up and control application [7]. With

LeatherNet, military units and objectives are placed on the map using speech to

specify the object and gesture to specify the locations. New entities can be created

21

on the map by using line gesture based symbols, as shown in Figure 2.6. These sym-

bolic gestures can be used to create objects like barbed wire, minefields, and platoons,

which can later be identified by a name given in speech input as the item is created.

Figure 2.6: Quickset Gestures and Symbols

LeatherNet also utilizes the Quickset framework’s support of heterogeneous col-

laboration. Thus users can be interacting in the same simulation using variegated

platforms and software environments from handheld PCs to PC Web-based applets

to wall sized virtual reality 3D caves. In each case the interface displays the same

information in whatever form is available for the platform. The collaboration sup-

ported includes the ability for each user’s device to display changes in unit and object

location by subscribing to an entity-location and attribute database. With the frame-

work users can also choose to link their interfaces with other ones such that they can

actually see the pen gestures and map view changes produced by another user.

To conclude, a general framework such as QuickSet facilitates multimodal inter-

22

face design research by providing a flexible testing environment, in which multimodal

interfaces can be developed and refined using a rapid implementation and test cycle.

This environment allows researchers to acquire a better understanding of which inter-

face modes and combinations work best with particular application paradigms. The

environment also helps researchers determine ways in which various input methods

can reduce their weaknesses by taking advantage of other input methods’ strengths

when included in a multimodal interface.

The EMMET API builds upon the functionality provided by Quickset. Multi-

modal interface capabilities supported by Quickset, such as multi-stroke symbolic

gesture recognition and non-symbolic gesture recognition, deictic reference resolution,

and modal speech recognition, are all provided by EMMET. In addition, applications

developed using the EMMET API are not restricted to map-based environments. Fur-

thermore, EMMET is not restricted to two-dimensional application environments, as

it supports and provides addition functionally for multimodal interfaces to three-

dimensional environments.

2.2 IBM’s Human-Centric Word Processor (HCWP)

IBM’s Human-Centric Word Processor (HCWP) is a word processing system that

allows content to be input via continuous real-time dictation, then edited using a pen

and speech based interface (Figure 2.7). HCWP was built to address the common

desire to correct and edit text obtained via speech dictation [56]. This desire to edit

is often due to a lack of organization common in real-time dictation and inaccurate

speech-recognition [46]. To allow such multimodal interactivity HCWP builds upon

technologies including speech recognition with natural language processing(NLP) and

stylus pen gesture recognition.

23

Figure 2.7: IBM’s HCWP Input Evaluation System

The post-dictation text editing phase allows the usual keyboard based editing

input such as spelling corrections and word changes. Spatial text editing allows for

multimodal pen input to format, correct, and manipulate the dictated text. Examples

of speech and pen based formatting and correction of text include spoken phrases such,

as “Delete this word,” whilst pointing to a word in the text, and “Underline from here

to there,” while indicating the beginning and end of the desired text with sequential

deictic pen gestures. Usability test results showed that such multimodal capability

reduced task completion time relative to speech only text editing interfaces [56].

To address the common problem of determining whether the user is dictating

text or issuing a text editing command, HCWP used a modal rocker-switch on the

microphone. Tests showed that users quickly adopted the use of this switch with

minimal mode errors. Alternative solutions to this problem, used in similar speech-

24

based interface situations, include GUI buttons or speech commands to toggle the

mode, or the development of a more sophisticated modeless system which determines

whether user speech is a command or dictated text based upon its content. Although

the modeless approach is considered optimal, studies have shown that errors occurring

in such systems tend to iteratively lead to interpretation problems and lack of usability

[28].

HCWP accomplishes integration of deictic pen gestures and command speech by

maintaining a temporal buffer which indicates the time and location of each gesture.

The natural language understanding (NLU) engine uses similarly time-stamped sub-

elements of input speech to determine an appropriate formal language statement to

pass onto the Formal Language Parser. The parser then builds upon current focus

and discourse information to generate events which are dispatched to an editor agent

to carry out.

A couple of HWCP aspects influenced design decisions made in implementing the

EMMET API. Firstly, the benefits of allowing users to toggle speech recognition on

and off, via various methods, resulted in EMMET’s push-to-talk mode option and

the ability to specify the toggle indicator. EMMET also uses aspects of the HWCP

temporal buffer solution for recording unimodal input events.

2.3 Portable Voice Assistant

The Portable Voice Assistant (PVA) by BBN is a pen and speech recognition based

architecture for developing multimodal interfaces for on-line Web applications. PVA

runs on a mobile pen-based computer with microphone and wireless connection to

the Internet [32]. VoiceLog is a prototype system implemented as a Java Web-based

applet to demonstrate the PVA interface. The VoiceLog applet allows the user to

25

order parts from a catalog. As illustrated in Figure 2.8, the VoiceLog applet consists

of a small status field above a large display panel which shows either parts from the

catalog or an order form. Images from the catalog contain subparts identified as

“hot” regions that can be selected for examination or order via either pen or speech

input.

Figure 2.8: VoiceLog Interface

The following is an example usage scenario for VoiceLog (U stands for user input;

VL stands for VoiceLog response):

U: “Show me the humvee.” [humvee is a nickname for HMMWV military jeep]
VL: displays an image of the HMMWV.
U: “Expand the engine.”
VL: flashes the area of the engine and replaces the image with a part diagram for

the engine.
U: (while pointing at a region with the pen) “Expand this area.”
VL: highlights the selected area, the fuel pump, and displays an expanded view.
U: (points to a specific screw in the diagram) “I need 10.”
VL: brings up an order form filled out with the part name, part number and

26

quantity fields for the item.

Similarly, the order form can be filled out with multimodal input by using the pen

to select a form fields and speech or written pen input to specify the value. Unique

features of the Portable Voice Assistant include its modular multimodal architecture

designed for reuse, a centralized speech recognition server, a simple single windowed

interface, and a Web-based architecture. Research into the PVA influenced EMMET’s

modular architecture for supporting extensibility and reuse. The EMMET API is also

especially designed for developing Web-distributable applications.

2.4 Field Medic Information System

The Field Medic Information System by NCR illustrates a medical use for multimodal

interfaces which integrate speech and pen recognition. This system allows medical

personnel to remotely document patient care and status information in the field [23].

This information is then electronically sent to the hospital for patient arrival prepara-

tion. Hardware used for the Field Medic system consists of a small wearable computer

and attached headset with microphone and earphones called the Field Medic Assistant

(FMA), and a handheld tablet computer called the Field Medic Coordinator (FMC)

. As the medic inputs patient data into the FMA via speech, it is confirmed by a ping

sound to indicate acceptance or a click sound to indicate a problem. Also, through

speech commands, a medic can request that past input be read back. The FMC tablet

computer displays editable medical information about the patient and is wirelessly

connected to the FMA such that input and patient data is shared. This connection

allows the patient record to be updated and annotated through FMA speech input as

well as through stylus input directly to the tablet. Cooperation between the devices

27

also allows the medic to select areas of the patient record to annotate on the FMC

and specify the content of the annotation with speech. Note that unlike some of the

pen and speech based interfaces discussed earlier, the Field Medic input modalities

are not designed to be used simultaneously. The usefulness of the multimodal Field

Medic Information system lies in is its hands-free speech input interface coupled with

the ability to input more complete information with the tablet interface as needed.

3 Multimodal Interface Usability Studies

The advantages discussed in the prior section provide an impetus to design and re-

search the usability of multimodal interfaces. The benefits of answering questions

pertaining to how and when to use such interfaces are apparent. The following stud-

ies by Oviatt[47, 42] and Xiao[61] are representative of the types of studies for which

the EMMET API was developed. These studies research human factors related to

the integration and synchronization of multimodal inputs and provide user statistics

to guide designers in the development of multimodal interfaces.

3.1 Human Factors in Integration and Synchronization of In-

put Modes

Oviatt’s study into the integration of input modes during multimodal interaction used

a simulated dynamic map system to analyze user interaction with a speech and pen

based multimodal interface [47]. The decision to use a map system for testing was

based on her earlier work which revealed that users tend to produce more multimodal

commands in visual spatial domains [41]. The goals for Oviatt’s study were:

28

� explore the multimodal integration and synchronization patterns that occur

during pen and speech based human computer interaction;

� evaluate the linguistic features of spoken multimodal interfaces and how they

differ from unimodal speech recognition interfaces;

� determine how spoken and written modes are naturally integrated and synchro-

nized during multimodal input construction.

Participants in the study were asked to perform home selection related tasks for a

client using a “Service Transaction System”. The simulated system displayed client

information and an overhead map of an area from which a suitable home was to be

found. Users could interact with the system through speech, direct pen input on the

map, or both.

General results provide insight into user preferences with regard to multimodal

interaction. Users possessed a strong preference to interact multimodally versus uni-

modally during map tasks. 100% used both spoken and pen inputs during the task.

User interviews revealed that 95% of users preferred to interact multimodally. The

types of individual input constructions occurred with frequencies summarized in Ta-

ble 2.1:

Individual Input Construction Type Percentage Value

Simultaneous Speech and Writing 19% 165
Unimodal Writing 17.50% 152
Unimodal Speech 63.50% 553

Total Study Participants 871

Table 2.1: Types of Individual Input Construction

Command use analysis results implied the existence of three groupings for task

action commands, spatial, selection, and general. Spatial commands have a high like-

29

lihood of being input multimodally and include graphics input and query commands

such as add, move, modify, or calculate physical distance. The second group is se-

lection commands, which have an intermediate chance of being input multimodally

and consist of object information query, deletion, and labeling, or zooming in on an

object. The third group includes the remaining general commands, which are rarely

input multimodally. Usually, these command are not spatially oriented and do not

require a referent object. General commands include, controlling task procedures,

scrolling the display, printing, etc. The frequency of each input task action command

is summarized in Figure 2.9.

Figure 2.9: Task Action Command Analysis

30

As expected, the order of spoken semantic elements was based upon typical English

subject-object-verb or simply object-verb order. 98% of unimodal speech commands

and 97% of multimodal commands adhered to this order. However, a notable result

from the analysis of linguistic content was the drastic difference in location of referent

objects in command construction. Unimodal speech utterances almost always con-

cluded with the specification of the referent object, rather than indicating the object

up front. A unimodal example of this order being, “Add a house next to the dam”,

in which the dam is the existing referent object and thus ends the command. In the

case of multimodal speech, the results are nearly opposite. When interacting multi-

modally users overwhelmingly choose to first indicate the referent object or location

with the deictic pen gesture , and to then specify the action command. Therefore, an

equivalent multimodal command to for the previous example, would begin with the

users pointing at the dam, and subsequently uttering, “add house”.

The pen was used in 100% of multimodal inputs used to indicate locations and

spatial information. The same information provided by the pen input was duplicated

in the corresponding speech utterance about 2% of the time. Conversely, subject and

verb elements were specified in speech 100% of the time. Object elements were also

spoken about 85% of the time and written 15%. Thus speech and pen input was often

complementary.

Table 2.2 illustrates the frequency of different types of pen input for both multi-

modal and unimodal. Types of pen input include graphics, (e.g. rectangles for build-

ing and lines for roadways), symbols or signs, (e.g. X’s indicating deletion, arrows

indicating movement), simple pointing, and finally words or digits.

Multimodal usage analysis revealed that most input constructions, 82%, involved

draw and speak input, while point and speak inputs represented only 14% of construc-

31

Table 2.2: Pen Input Command Type Frequencies

tions. Of the draw and speak constructions 42% were simultaneous, 32% sequential,

and 12% were compound (i.e. draw graphic , then point to it while speaking). Sequen-

tial draw and speak input constructions were further classified into the nine overlap

possibilities. Sequential integrated input constructions were analyzed to determine

length of lag between the first input and the second. Integration of deictic terms were

also studied to determine when the spoken term and disambiguating pen input were

sequential and when they were simultaneous.

Supporting similar multimodal interface usage patterns research was a primary

goal in the development of EMMET. The need to provide such support resulted in

EMMET’s command and triggers based design. With this design, programmers or-

ganize responses to user input into commands (or tasks) and then describe the types

and modes of user input that trigger each command. Furthermore, the statistics col-

lection capability of EMMET not only collects general usage statistics, it also reports

usage statistics on a per task basis. Thus, innumerable variations upon Oviatt’s Hu-

man Factors in Integration and Synchronization study would be facilitated through

the use of EMMET.

32

3.2 Mutual Disambiguation of Recognition Errors

A second study by Oviatt contributing to the design theory of multimodal interfaces

researches the benefits of mutual disambiguation for avoiding and recovering from

recognition errors. An inherent advantage gained from a well designed multimodal

interface is the ability to find and correct errors by cooperatively inspecting com-

plementary input modalities for conflicting or confirming content. In Oviatt’s study

native and accented English speakers were asked to provide thousands of utterances

to be processed by a multimodal system. Participant gender was also a factor. The

processing results were logged and analyzed.

The system used for conducting the study was built using the map-based interface

and multimodal capabilities of the QuickSet system. Participants were given tasks

which involved using the system to set up simulations for community and fire control

scenarios. In the process of accomplishing these tasks each subject entered approx.

100 multimodal commands to QuickSet. The research design was a completely-crossed

factorial with two between-subjects factors as indicated in Figure 2.10 below:

Gender

Native
Speaker

Male
Native

Female
Native

Male
Non-Native

Female
Non-Native

Figure 2.10: Mutual Disambiguation Research Design

For the purpose of the study, a mutual disambiguation dependent measure was

formulated per subject MDj, Eq. (2.1), as the percentage of all their scored commands

Nj in which the rank of the correct lexical choice on the multimodal n-best list RMM

was lower than the average rank of the correct lexical choice on the speech and gesture

33

n-best lists, RS
i and RG

i , minus the number of commands in which the rank of the

correct choice was higher on the multimodal n-best list than its average rank on the

speech and gesture n-best list or: [42]

MDj =
1

Nj

N∑
i=1

Sign

(
RS

i + RG
i

2
−RMM

i

)
(2.1)

Other dependent measures analyzed include the ratio of multimodal pull-ups,

(situations in which the correct multimodal input was pulled up from a worse-ranked

position determined during processing), the percentage of correct speech recognitions

and gesture recognitions alone when processing multimodal input, and the total per-

centage of correct multimodal recognitions.

Results showed that in about one out of eight correctly interpreted multimodal

inputs, mutual disambiguation was responsible for the production of the correct re-

sponse. MD was used more often to correct recognition errors for non-native speakers

than native speakers for both male and female participants. Differences in the need for

MD based on gender were not significant. These results are summarized in Table 2.3:

Command Length
% Total

Commands in
Corpus

% Speech
Recognition

Errors

% MD with Speech
Pull-Ups

1 Syllable 40% 58.2% 84.6%
2-7 Syllables 60% 41.8% 15.4%

Table 2.3: MD Rates and Command Length

The ratio of multimodal pull-ups for speech to overall pull-ups was higher for

non-native speakers, .65, than native speakers, .35. Successful speech recognition

alone was 72.6% for native speakers and 63.1% for non-native speakers. However

non-native speakers had a slightly higher gesture recognition rate which contributes

to better results in overall multimodal recognition when mutual disambiguation is

34

performed. The overall multimodal recognition rate remained lower for non-native

speakers, 71.7%, than native speakers, 77.2%, however, the difference between the

groups was an improvement over the difference in recognition rate for speech alone.

In comparing the success of multimodal input recognition with mutual disam-

biguation with unimodal speech recognition, result showed an absolute change in

command utterance recognition of +13.3%, representing a 41.3% reduction rate in

recognition errors.

A secondary goal for EMMET was to support research into other methods of

utilizing complementary input modalities. EMMET’s ability to define commands

with multiple modality triggers, coupled with EMMETS ability to access recorded

input events across all modalities, allows further research into the advantages and

disadvantages of a wide range of cross modal input evaluation techniques.

3.3 Multimodal Interfaces for Children

Xiao’s study into the multimodal integration patterns of children investigates how the

multimodal interface interactions of children differ from adult interactions [61]. More

specifically the goal of this study was to perform a comprehensive analysis of children’s

multimodal integration patterns in a speech and pen-based interface and compare the

results with integration and synchronization patterns of adults. The analysis of these

patterns in children and the comparison to those of adults provides useful data for

the development decisions required in the design of multimodal interfaces for children

in the future.

Participants in the study were children aged 7 to 10. These children were asked to

interact multimodally with a science education application called Immersive Science

Education for Elementary kids (I SEE!), which teaches them about marine biology

35

through animated marine animals. The interface allowed them to interact with these

animals by asking questions formulated using speech, pen, or both. They were en-

couraged to use the input methods as they wish, informed on the instructions where

they could write using the pen, and that speech input required that they either tap

or begin writing on the screen. They were then left to interact with system for about

an hour.

Overall, close to 6500 usable child utterances were obtained. Results showed that

speech input alone dominated child utterances, which consisted of 10.1% multimodal

input, 80.4% speech input alone, and 9.6% pen input alone. Results also showed that

the 93.4% of pen input in multimodal utterances involved abstract scribbling, Of the

interpretable pen inputs, consisting of words, symbols, gestures, or pictures, 93.2%

complemented the correlating speech input. With regard to user originated error

handling, analysis indicated that children were much more likely to use multimodal

input when they needed to repair misinterpreted input.

Generally, children preferred simultaneous input over sequential input. Of interest

is the discovery that children tended to have a dominant multimodal integration type

which they adopted early in the session. When multimodal input was sequential, pen

preceded speech in 97% of utterances. Intermodal lag in sequential input involving

interpretable pen input averaged 1.1 seconds and ranged from 0 to 2.1 seconds.

In summary, many of the aspects of pen and voice integration patterns are not

significantly different in adults versus children. Both adults and children adopt a

dominant multimodal input pattern early which is consistently used for later inputs.

Also both adults and children used multimodal input to convey complementary se-

mantic information. However, children differ from adults in their likeliness to use

simultaneous integration, choosing it in 77% of multimodal inputs versus adult use

36

in only 36% . Additionally, sequential intermodal lag for children was consistently

less for children than adults. Finally, children showed a higher tendency to engage in

manual pen activity, if for no purpose other than to scribble.

Xiao’s study provides another example of research into multimodal input usage

patterns which guided the development of EMMET. EMMET’s built-in statistics col-

lection and reporting mechanism was designed to provided task-based usage pattern

data analogous to results reported by Xiao, such as percentages of unimodal speech

and pen input as well as multimodal input.

4 Multimodal Interface Design and Related Work

Conclusion

The design and implementation of multimodal interfaces is an exciting area of research

in the field of human-computer interaction. Initial research in this area includes

multimodal systems such as Bolt’s “Put-That-There” system which combines speech

and gesture, allowing users to identify and act upon referents in speech by physically

pointing at their visible representations. Other early systems in this genre include

the CUBRICON system, which studies the benefits of maintaining dynamic user and

discourse models, to improve interpretation of gesture-based and natural language

speech multimodal input, and the XTRA system that also includes the use of user

and discourse models while exploring the use of variable granularity in deictic gestures

involved in a point-and-speak interface model.

More recent systems include: QuickSet, a reusable map-based speech and pen

multimodal interface framework that allows more complex symbol gestures for cre-

ating objects as well as spatial and pointing gestures, IBM’s Human-Centric Word

37

Processor, a word processor that explores the benefits of using gesture and speech

to edit dictated text, the Portable Voice Assistant, a modular architecture for devel-

oping Web-based multimodal applications, and the Field Medic Information System,

a portable multimodal system consisting of a wearable hands-free speech interface

augmented by a speech an gesture tablet computer interface.

Human factors that need to be considered in the implementation of multimodal

speech based interfaces include individual voice quality, short term memory, dialog us-

age structure, conversational technique, vocabulary, and speech prosody. The human

factor of emotion has been the subject of recent studies that explore methods of de-

tecting and addressing emotion during speech input analysis, and designing interfaces

that avoid soliciting negative emotions.

Research and implementation of multimodal systems is fueled by the many in-

herent advantages they provide. Multimodal systems are flexible in their ability to

provide users with choice of input. They offer greater availability to a broad range

of users. The adaptability of multimodal interfaces is apparent in their capability

to switch input modes when situations and environment warrant. The simultaneous

input possibilities they provide allow for more efficient input, and the ability of multi-

modal systems to use mutual disambiguation is an advantage that facilitates error

avoidance and recovery.

Finally, usability studies, exploring and evaluating the human factors involved in

multimodal input, provide useful insight and guidance toward the design and im-

plementation of multimodal interfaces. These studies include human factors of in-

tegration and synchronization of input modes, the use of mutual disambiguation for

detecting and corrected recognition errors, and considerations involved in the design

of multimodal interfaces for children.

38

5 Multimodal Frameworks Currently in Develop-

ment

In addition to QuickSet there a few framework APIs currently in development which

are similar to EMMET. The Rutgers University Center for Advanced Information

Processing (CAIP) has published their work on A Framework for Rapid Development

of Multimodal Interfaces [18], a research group from “AMBIENTE - Workspaces

of the Future” has written about their work on A Multimodal Interaction Frame-

work for Pervasive Game Applications, called STARS [31], and a collaborative ef-

fort between Penn State University and Advanced Interface Technologies, Inc re-

sulted in a paper on A Real-Time Framework for Natural Multimodal Interaction

with Large Screen Displays [62]. There has also been a yet-to-be fully implemented

multimodal framework specification for Web interfaces established by the W3C at

(http://www.w3.org/TR/mmi-framework/).

The Rutgers CAIP rapid development system is a general purpose Java based

framework API for multimodal interface development focusing on optimal reusability

of the framework code. In addition to this reusability, the system provides a highly

generic late fusion multimodal integration agent for managing diverse mode type

input sets toward multimodal input resolution. EMMET also addresses this need

for highly reusability multimodal development tool. However the CAIP framework

focuses on purely the development of multimodal interfaces and the incorporation of

new input modalities. EMMET design focuses on the rapid development as well as

testing of multimodal interfaces, by providing built-in statistics collection tools for

interface design analysis. Secondly, the CAIP framework is limited to the development

of multimodal interfaces to 2D applications, whereas the EMMET both supports and

39

facilitates the development of 3D applications. Finally, EMMET was designed to

develop multimodal applications that can be easily distributed and tested over the

World Wide Web.

The AMBIENTE STARS system is a .NET based framework supporting multiple

input mode types for interactivity with board games and tabletop strategy or role-

playing games. It also focuses on support of the social activity inherent in such

games via networking. In contrast to EMMET, the the AMBIENTE system restricts

it applications to multimodal 2D discrete game environments, whereas EMMET has

not such restriction.

The real-time multimodal framework being developed at Pennsylvania State Uni-

versity was designed to facilitate the development of speech and gesture based inter-

faces involving large screen displays. The philosophy behind Penn State’s framework

is most similar to that of the EMMET’s design philosophy as it is focused on de-

veloping an environment for researching certain aspects or problems in multimodal

interface design. However, it differs in its focus on questions arising from the use of

an output modality such as large screen displays versus EMMET focus on researching

multimodal usage patterns.

The aforementioned frameworks represent current published multimodal frame-

work API research efforts. Their relevance to this dissertation is many-fold. They

first validate the need for such frameworks as tools to facilitate multimodal inter-

face design research. Secondly, they provide some direction in the methodologies

and approaches used for developing such frameworks. However, each of the exist-

ing frameworks is constrained by limitations in the types and/or environments upon

which its multimodal interfaces are built. Also, none of these frameworks allow for

wide dissemination of applications via the Web. Furthermore, none of the framework

40

APIs in development incorporate an integrated statistics gathering engine to provide

the feedback required to facilitate the analysis of the quality of the interfaces built

upon them.

41

Chapter 3

EMMET Design and

Implementation

1 Overview

In undertaking the implementation of a toolkit such as EMMET, programmers must

consider the difficulties they may have experienced in adopting new technologies such

as programming languages, programming environments and code libraries. To pro-

mote the exploration of speech and gesture interface technology, EMMET is designed

and implemented to simplify the inclusion of these interface modalities. EMMET is

directed at users who are familiar with coding graphics and interfaces in Java, but

may have no prior experience or knowledge of how to incorporate speech or gesture

recognition into their work. Thus, EMMET’s API design strives to dismiss doubts

about using speech and gesture, when these doubts arise from the perception that

including such modalities is prohibitively complicated or difficult.

The forthcoming discussion of EMMET’s design and implementation first pro-

42

vides background information on the foundational technologies and concepts used to

build the API. These technologies include the Java Speech API, HHReco Symbol

Recognition Toolkit, jMonkey Engine Java 3D rendering environment, and Multi-

modal Integration. Following the discussion of EMMET’s foundational technologies,

is an in-depth explanation of EMMET’s architecture.

2 Foundational Concepts and Technologies

The EMMET API is implemented in the Java�programming language. The deci-

sion to use Java is based upon Java’s object-oriented features and support for Web

accessible content, and upon the ability to use existing unimodal Java speech and

gesture recognition APIs. Furthermore, the jMonkey Engine (jME) which is used

for rendering the 3D environments is Java based. The speech recognition portion

of EMMET builds upon Sun’s existing Java Speech API (JSAPI). The JSAPI spec-

ification allows Java applications to incorporate speech recognition into their user

interfaces. JSAPI’s support includes command and control recognizers, dictation

systems and speech synthesizers. The implementation of the JSAPI used by EM-

MET is the CloudGarden TalkingJava SDK. The underlying speech recognition (SR)

engine implementation is the engine included with the Microsoft Windows2000 and

WindowsXP operating systems. Gesture recognition in EMMET utilizes the HHReco

Graphic Symbol Recognition Toolkit [24]. The HHRreco toolkit is a Java multi-stoke

symbol recognition API developed at UC Berkley by Heloise Hse and A. Richard

Newton. EMMET processes input from these APIs in parallel and passes the in-

put events to a multimodal integration agent. This multimodal integration agent is

implemented using a time-stamped unification architecture similar to that used by

43

the QuickSet system [35]. The ultimate capabilities of EMMET include support for

creating Web accessible 3D environments as well as support for defining the set of

valid multimodal inputs that are appropriate for the particular application utilizing

EMMET. Gesture based input support includes recognition of deictic, symbolic, and

spatial gestures. Speech recognition input support allows for the specification of a

valid set of command utterances.

2.1 Java Speech API (JSAPI)

Support for speech recognition in EMMET is provided through the use of the Java

Speech Application Programming Interface (JSAPI). The JSAPI is an extension to

the Java platform which allows Java applets and applications to incorporate speech

recognition into their user interfaces. Its support includes command and control

recognizers, dictation systems and speech synthesizers. The Java Speech API also

allows Java Web applets and Web accessible applications to access speech capabilities

on users’ machines. No prior setup of a speech recognition engine is required by the

user if Java Web Start is used to dynamically download an implementation of a native

speech recognition engine onto the user’s machine.

The design of a Java application with speech recognition support using the Java

Speech API begins with the definition of the supported rule grammar. This definition

is supplied by a Java Speech Grammar Format (JSGF) file. In this file the user defines

rules and their associated spoken word set. Figure 3.1 shows a simple example of a

JSGF file.

The rules in a JSGF file are enclosed in angle brackets, (i.e. <Command>, <Polite>,

etc. . .). Optional words and rules are enclosed in square brackets. Parentheses can

be used to group words and commands. Words, commands, and groupings can be

44

#JSGF v1.0

grammar SimpleCommands; //Define the grammar name

public <Command> = [<Polite>] <Actions> <Object> (and <Object>)*;
<Action> = open | close | delete;
<Object> = the window | the file;
<Polite> = please;

Figure 3.1: JSGF Sample

followed by an asterisk to indicate that they can occur one or more times.

Vertical bars separates multiple sets of words or actions in which any one of the

separated items will satisfy the associated rule.

The static JSGF file is not the limit of what an instantiated JSAPI recognizer

can recognize, it is merely a initialization mechanism for forming the base of the

recognizer’s valid grammar. In addition to the rules specified in the grammar file,

new rules can be dynamically added after the recognizer’s instantiation. In fact, a

recognizer can be instantiated with no initial grammar file at all, in which case, the

grammar is completely defined dynamically by the application using the recognizer.

The ability to dynamically update the grammar recognized is required to allow for

the naming of newly created objects in EMMET 3D environments.

The use of the JSAPI for implementing EMMET’s speech recognition support

takes advantage of another feature of JSGF called result tags. Result tags are attached

to entities in the rule grammar. The syntax used for these tags is overridden by

EMMET to store data during multimodal integration. This data is later retrieved to

aid in interpreting relevant segments of incoming speech utterances. For example, an

excerpt from a JSGF grammar suitable for an interface similar to Bolt’s “put-that-

there” system is shown in Figure 3.2.

45

#JSGF v1.0

grammar putThatThereStyle;

public command = <action> <object> [<where>]
<action> = put {PUT ACTION} | delete {DEL ACTION}
<object> = <pronoun> | ball {BALL OBJECT} | square

{SQUARE OBJECT}
<where> = <pronoun> | (above | below | to the (left | right)

of) <object>
<pronoun> = (that | this | it) {OBJECT REFERENT} | there

{LOCATION REFERENT}

Figure 3.2: JSGF “Put-That-There” Sample

In this grammar the phrase “put that there” produces three result tags, PUT -

ACTION, OBJECT REFERENT and LOCATION REFERENT. These results will

be time stamped and passed on to the multimodal integration engine to resolve the

referent pronouns based on corresponding input from the gesture recognition stream.

The JSAPI speech recognition engine implementation used by EMMET

is CloudGarden’s TalkingJava SDK (http://www.cloudgarden.com/JSAPI/-

index.html). The TalkingJava SDK includes full support for the JSAPI specification

and Microsoft’s text-to-speech (TTS) and speech recognition (SR) engines. The

decision to use the CloudGarden SDK rests on its compliance with the JSAPI

standards and it support for academic research via a personal use license of negligible

cost. The decision to use Microsoft’s TTS and SR engines is based on the engines’

compliance with the Speech API standard (SAPI) as well as their inclusion with

current Microsoft operating systems. Supported speech input devices include built-in

laptop or monitor microphones, desktop microphones, and headset microphones. The

Microsoft speech recognition engines requires only one brief initial training session,

however further training sessions greatly improve speech recognition accuracy.

46

2.2 HHReco Graphic Symbol Recognition Toolkit

EMMET support for symbolic gesture recognition utilizes the HHReco symbol recog-

nition toolkit (http://www.eecs.berkeley.edu/ hwawen/research/hhreco/) which is a

product of gesture recognition research by Hse and Newton at the Electronics Re-

search Lab, University of California, Berkely [24, 25]. This toolkit provides a Java

API to an adaptive multi-stroke symbol recognition system. The toolkit is designed to

be used off-the-shelf or customized to suit a specific application. This customizability

is used by EMMET to add time-stamp, screen location, and gesture size attributes

to recognized input gestures. The gesture classification with added attributes is also

used by EMMET for multimodal integration. Devices supported by EMMET for

gesture based input include conventional mouse, touchpad, TrackPoint�, and stylus.

2.3 The jMonkeyEngine (jME) Java 3D Rendering API

The jMonkey Engine (jME) (http://www.jmonkeyengine.com/) is a Java 3D Graphics

API. jME provides a scenegraph based architecture for modeling and rendering 3D

environments. For the rendering of scenegraphs, jME also provides culling of data

to discard scene branches that are not visible to the viewer. The leaf nodes of jME

scenegraphs contain the Geometry objects that are rendered to the screen. These

geometries can be simple objects, such as cubes, cones, and spheres; objects built

from geometric primitives, including Bezier Patches, Lines, and Points; or objects

loaded from model files. jME also supports advanced 3D rendering techniques such

as environment mapping, terrain generation, lens flare, and particle systems.

The Light Weight Java Game Library (LWJGL) (http://www.lwjgl.com) is the

high-performance Java 3D rendering engine upon which jME was developed. LWJGL

47

provides a Java Native Interface (JNI) to the Open Graphic Library (OpenGL), which

is the preeminent 3D rendering library supported by most hardware accelerated graph-

ics PC cards.

2.4 Unification-based Multimodal Integration

EMMET’s multimodal integration agent implementation utilizes semantic unification

to produce unimodal and multimodal input interpretations. Unification is basically

an operation that takes multiple partial inputs and combines them into a single

interpretation. The foundation upon which EMMET’s multimodal integration was

built was also used to implement the QuickSet system, and is described in a paper

by Johnston, et al. on the topic of unification-based multimodal integration [35].

In the unification architecture for Quickset, the unification operation is performed

over a typed feature structure. Similarly, the feature structure (FS) for EMMET is

consistent for both unimodal speech and gesture input interpretations as well as

unified multimodal input interpretations. Figure 3.3 is an example FS for a unimodal

symbol gesture. This FS represents the user drawing a cube symbol gesture at (x,y,z)

world coordinates (100.0, 0.0, 50.0) of proportions resulting in size (2.0, 2.0, 2.0) at

time 10min, 20s, 200ms from application invocation. The interpretation of this FS

alone would pass through multimodal integration as a unimodal gesture resulting in

the instantiation of a new object of type CUBE with the requested attributes at the

requested location.

However, if a temporally relevant speech input FS such as the one shown in Fig-

ure 3.4 resulted from the spoken input “Create green cube”, then the unification

performed by the multimodal integration agent based upon the matching classifica-

tion, type, and command, would produce the multimodal FS in Figure 3.5. The

48

Gesture FS

{
Classification: OBJECT
Type: CUBE
Command: INSTANTIATE
Location: (100.0, 0.0, 50.0)
Size: (2.0, 2.0, 2.0)
Time: 10:20:200

...
}

Figure 3.3: Gesture Feature Structure

result of this FS would be the instantiation of a cube, similar to the one created by

the gesture FS alone, however the cube would also be colored green. Of course the

integration agent produces an N-best interpretations list, which would also contain

the original unimodal feature structures; both with a lower ranking than the unified

multimodal FS.

Speech FS

{
Classification: OBJECT
Type: CUBE
Command: INSTANTIATE
Color: ‘‘green’’
Time: 10:02:100

...
}

Figure 3.4: Speech Feature Structure

The N -best ranking is useful when unification must make assumptions when some

conflict in input occurs. If the speech input were more descriptive for example,

“Create green cube at 100 units across and 100 units back.”, such that the location

coordinates in the speech FS do not match those from the gesture FS, there might

be multiple multimodal interpretations. The highest ranking multimodal FS might

49

Multimodal FS

{
Classification: OBJECT
Type: CUBE
Command: INSTANTIATE
Color: ‘‘green’’
Location: (100.0, 0.0, 50.0)
Size: (2.0, 2.0, 2.0)
Time: 10:02:100

...
}

Figure 3.5: Generated Multimodal Feature Structure

average the speech and gesture FS location coordinates followed by two lower ranked

multimodal FS for each location coordinate on the N-best list.

2.5 Statistics Gathering

A final component of the EMMET implementation is a multimodal usage statistics

gathering engine. This component takes advantage of the aforementioned unimodal

and multimodal feature structures to collect information such as the percentage of

each input type’s usage, elapsed time between the modalities used in multimodal

inputs, and the percentage of correct results in interpreting each input event. Such

statistics are also reported for each command definition defined by the programmer.

For Web accessible implementations using EMMET, the results acquired by the statis-

tics gathering engine will be reported to the user. For local implementations using

EMMET, the statistics are sent to standard output.

50

3 EMMET’s Software Architecture

The following discussion provides an exhaustive explanation of EMMET’s software

architecture implementation. The progression of this explanation follows the order

in which the Java packages being discussed were implemented. Each of these Java

packages contains all of the Java classes and interfaces that correspond to a particular

aspect of EMMET’s functionality.

Some of the terminology used throughout this explanation pertains to the Java

programming language and object-oriented programming. Appendix A provides a

small glossary to help the reader familiarize themself with this terminology. Also, for

clarification, the terms developer and programmer refer to those who are using the

EMMET API to develop applications, whereas the term user refers to the person who

uses such applications, i.e. the end-user.

In addition, the term class, is used exclusively when referring to the definition

of an object type, and the terms instance and object are used when referring to the

instantiation of a defined object type or class. However, the terms class, instance,

and object are not always used when such clarification is not necessary. For example,

in the statement, “the x field is defined in MyObject,” MyObject must be a class,

and in the statement, “the value of x in MyObject,” MyObject is an instance of the

MyObject class.

Also, common Java CamelCaps conventions are used through the explana-

tion. The term CamelCaps is used to describe a naming style in which

name word boundaries are capitalized, as in myVariableForStoringWidgets or

MyClassThatDefinesWidgets. The Java CamelCaps naming conventions addition-

ally state that variables and method names begin with a lower-case letter, as in

51

myVariable or myMethod(), and classes begin with upper-case letters, as in MyClass.

Finally, to clarify when a method name is being referred to, method names will always

appear with parens appended, as in myMethod() or onMyCallback().

Finally, Unified Modeling Language (UML) class diagram objects are used exten-

sively throughout the explanation. These diagrams provide the proverbial “thousand

words” that would be required to explain many of the details relevant to the ar-

chitecture. Appendix B provides references to UML resources and a brief table for

interpreting the icons used in the diagrams.

3.1 The content Package

As previously described in the discussion of multimodal integration, input events for

each modality must be recorded in structures with certain common fields. These

fields are required for the eventual integration of multimodal user input. As shown

in Figure 3.6, the content package serves this purpose with:

� the ModalContent class which defines the basic common structure for input

events, as well as

� ModalityType, ModalitySubType, TimeInterval, and ConfidendLevel classes for

the common fields in ModalContent, and

� the ModalContentQueue class for maintaining ModalContent instances in a

queue based data structure.

3.1.1 ModalContent

The ModalContent class diagram in Figure 3.7 illustrates the common fields of the

ModalContent class. As shown in Figure 3.8, this class is extended for each modality

52

Figure 3.6: content Package Overview

53

to include fields and methods that are specific to events for that modality. During

processing of user input, an instance of ModalContent is generated for each discrete

input event. This generation occurs in the input manager associated with the input

event’s modality.

Figure 3.7: ModalContent Class

3.1.2 ModalityType

The modalityType field indicates the input modality of a given ModalContent in-

stance. Modality types are instances of the ModalityType class shown in Figure 3.9,

which is a strongly typed enumeration of each mode currently supported by the

toolkit. The initial toolkit is implemented to support mode types: mouse, ges-

ture, speech, and keyboard. When an instance of the ModalContent class is

generated from multiple input modalities, the ModalityType is set to multimodal.

The ModalityType class also provides static convenience methods for acquiring a

Set or an Iterator of all the current modality types. These convenience methods are

often used in code that must respond differently for each type.

When extending the toolkit to include additional modalities, the ModalityType

class is one of few places outside of the controller package that needs to be updated.

54

F
ig

u
re

3.
8:

M
o
d
al

C
on

te
n
t

S
u
b
cl

as
se

s
in

co
n
tr
ol

le
r

P
ac

ka
ge

55

Figure 3.9: ModalityType Class

For instance, the implementation of eye tracking support would require the addition

of an eye tracking ModalityType.

3.1.3 ModalitySubType

The modalitySubType field indicates the subtype of a given ModalContent instance’s

modality type. Modality subtypes are instances of the ModalitySubType class, which

is a strongly typed enumeration used to provide further details about a specific modal-

ity’s input events. Because these details would apply only to that modality, this class

is abstract and subclassed for each modality as illustrated by Figure 3.10. For ex-

ample, the ModalitySubType for an instance of ModalContent representing a gesture

recognition event is defined by the GestureType class. The GestureType class indi-

cates, among other things, whether the gesture event represented a symbol or spatial

gesture.

3.1.4 TimeInterval

The timeInterval field, defined by the TimeInterval class , is critical for the proper

integration of multimodal inputs. This field is used during integration to determine

56

F
ig

u
re

3.
10

:
M

o
d
al

it
y
S
u
b
T

y
p
e

S
u
b
cl

as
se

s
in

co
n
tr
ol

le
r

P
ac

ka
ge

57

whether one input event occurred before, during, or after another event. When mul-

tiple input events occur during overlapping intervals they may both contribute to the

overall interpretation of the user’s input. If one event occurred before or after another,

the order of the occurrence may also have an impact on the resulting interpretation.

Figure 3.11 shows the the TimeInterval class which is used to represent the time

interval during which a given input event occurred. Within the toolkit, a point in

time is consistently represented as the number of milliseconds that have occurred

since the initialization of the current toolkit instantiation. During initialization of

EMMET, a read-only global field is set to the system clock time in milliseconds. This

time can be obtained through build-in Java method, System.currentTimeMillis(). For

time stamping events, this global field is subtracted from the current system clock

time to obtain the current time since initialization.

Figure 3.11: TimeInterval Class

Each input event that occurs is represented by a ModalContent instance which is

time stamped with a begin and end time. For the purpose of distinguishing between

single input events that have no duration versus those that do, the terms instantaneous

event and durational event will be used respectively. For instantaneous events, such

58

as key presses and mouse clicks, the begin and end time are the same and indicate the

time when the actual press or click occurred. For durational events, such as speech

utterances and the drawing of symbol gestures, the begin time will be the time when

the event initially commenced and the end time will be the time at which the event

concluded.

For the sake of determining the number of milliseconds a particular modal input

event lasted, the TimeInterval class provides a getDuration() convenience method.

For instantaneous events, it is valid for getDuration() to return 0. Also provided

by the TimeInterval class are a number of convenience methods used for integrating

multiple events. These methods answer whether or not a given TimeInterval overlaps,

contains, or occurred either during another TimeInterval or during a given begin and

end time.

3.1.5 ConfidenceLevel

The confidenceLevel field indicates the degree of confidence with the interpretation of

input that led to the generation of a given ModalContent instance. Confidence level

is maintained by the ConfidenceLevel class shown in Figure 3.12 as a float percent

value between 0.0f and 1.0f. This confidence is determined by the appropriate input

manager at the time input is processed. Certain input events, such as mouse clicks

and key presses, have have 100% (or full) confidence. A static convenience method

in the ConfidenceLevel class, getFullConfidenceLevel(), is provided to facilitate the

setting a ModalContent instance’s confidence level to full.

59

Figure 3.12: ConfidenceLevel Class

3.1.6 The ModalContentQueue

To aid in the integration of incoming input events with prior events across mul-

tiple modalities, the ModalContentQueue class was implemented. The ModalCon-

tentQueue class shown in Figure 3.13 extends a general Queue class implementation

and is used to maintain ModalContent instances in the order that their corresponding

input events occurred. As ModalContent instances are generated from input events, it

is the responsibility of each modality’s InputManager to queue them on the singleton

ModalContentQueue instance for that modality. ModalContent instances in a Modal-

ContentQueue may also be removed by an input manager if they expire. The time

at which an input event’s generated ModalContent instance expires varies–depending

on both the modality of the ModalContent instance and the corresponding Input-

Manager’s adjustable input event expiration time setting. The ModalContentQueue

class also extends the Queue class to provide a useful method called getInputsDur-

ingTimeInterval() for acquiring a sub-ModalContentQueue containing only the events

that occurred between a given begin and end time.

3.2 The controller Package

The controller package consists of subpackages for each modality supported by the

toolkit. The implementation of the controller package progressed in two stages. In

60

Figure 3.13: ModalContentQueue Class

the first stage the goal was to implement input managers that follow a consistent

architecture and provide unimodal support for each modality. In the second stage

the goal was full support for multimodal applications through the addition of a con-

troller.multimodal subpackage. This subpackage contains a multimodal input man-

ager to instantiate and manage each modal input manager and a multimodal integra-

tion agent, suitably named to handle the tasks involved in multimodal integration.

For its respective modality, each controller subpackage contains the implementa-

tion of an input manager, an input handler interface with an optional adapter class,

a ModalContent subclass, and a ModalitySubType extension. For an example of

this architecture see Figure 3.22 in Section 3.2.2 which shows the controller.gesture

subpackage. This consistency among controller packages supports the goal of an ex-

tensible toolkit by establishing the design outline upon which new controller packages

61

supporting other modalities should be implemented.

Input Managers

Each controller subpackage provides a singleton input manager. One objective for

the modal input managers is that they successfully hide any low-level details required

to recognize and interpret input events associated with that manager’s modality. A

secondary objective in the first stage was that each input manager be implemented

such that it could be used unimodal

The primary responsibilities for each input manager are:

1. intercepting and interpreting input events for its modality,

2. generating ModalContent instances for each intercepted event,

3. notifying any registered input handlers of each event as it is intercepted, and

4. for the multimodal support stage, queuing generated ModalContent instances

onto the manager’s singleton ModalContentQueue

The mechanism through which each manager intercepts and interprets input

events primarily depends on the modality it supports. Generally, this mechanism

involves the manager extending an external library’s event listener class then regis-

tering itself to listen for events. For instance, to intercept mouse events pertinent

to gesture recognition, the GestureInputManager extends jME’s MouseInputAction

class and registers itself with the jME InputHandler.

Another possible mechanism for intercepting events is direct communication with

the associated input device. Each input manager has the option of implementing an

update() method allowing it to receive control every application update cycle. It

is during this period of control, that a manager could communicate directly with an

62

input device. The update() method also provides a time during which the manager

can update state information, run tasks, or perform maintenance. The implemen-

tation of an update() method is optional because it may not be needed by input

managers that do not need to perform tasks outside of their input event handling.

Interpretation of input events is also particular to the modality supported. This

interpretation must be sufficient to populate the required fields in that modality’s

ModalContent subclass. Some ModalContent fields can be set directly from informa-

tion provided by the input event. Such is the case when setting the location field in

a MouseContent instance directly from the location value provided in a mouse input

event. Other ModalContent fields may require the input manager to obtain further in-

formation or perform some processing on input events. For example, the gesture field

in GestureContent is populated with a Gesture instance. Upon receiving a gesture

complete input event, this Gesture instance is constructed by the GestureInputMan-

ager by interpreting the points recorded from previous input events which occurred

while the gesture was being drawn.

Notification of registered input handlers involves iterating through the manager’s

list of registered handlers and calling their listener callback methods at the appro-

priate times. The signatures for these callback methods are specified by the input

handler’s interface. For listener methods called upon the completion of an input in-

terpretation, the object passed is the generated ModalContent instance. The objects

passed to callbacks listening for in-progress events depend on what information is

available at the time. For example, the GestureHandler interface provides callbacks

that listen for two in-progress events, gesture begin and gesture point added; and

one event for gesture complete. The in-progress callbacks only receive location in-

formation indicating where the gesture began or where a point was added, while the

63

gesture complete callback receives the completed GestureContent instance generated

from the final interpretation of the points collected.

Queuing of generated ModalContent instances was implemented as a requirement

for multimodal support in the second stage. Each input manager is responsible for

maintaining a queue of the input events that have occurred during the interaction

session. The ModalContentQueue data structure makes performing this queuing task

trivial as the task involves simply calling enqueue() on an input manager’s singleton

ModalContentQueue instance. The base structure for the items contained in this

queue is specified by the ModalContent class defined in the content package (see 3.1).

An input manager may also want to perform additional operations on their Modal-

ContentQueue, such as removing queue contents that have been consumed or have

expired. The removal of expired inputs is performed when the manager gains control

in its update() method. The expiration status of a ModalContent instance is deter-

mined by comparing its TimeInterval stamp to the current system time. If consumed

inputs are to be removed this removal is done upon their consumption.

All low-level knowledge and implementation details necessary to implement sup-

port for each modality is hidden from the other aspects of the toolkit and the pro-

grammer by the input managers in the controller subpackages. For instance, the

controller.speech package encapsulates the instantiation of the speech recognition en-

gine and the rule based grammar; the gesture controller package encapsulates the

loading of the gesture file and the recognition of gestures. To extend the toolkit in

order to support additional modalities one would be required to follow this design

paradigm.

An example of extending the toolkit might be the addition of an eye tracking

controller subpackage. To add such a controller one would first need to add an

64

eye tracking subpackage to the controller package. To remain consistent with the

support for existing modalities, this package would need to hide the acquisition and

interpretation of video input for the purpose of eye tracking in an eye tracking input

manager. To accomplish this task, the input manager may obtain video device input

via event listening or polling; some intermediate interface to an eye tracking library;

or when it receives control during each system update cycle.

An input manager may also provide methods to support any special capabilities

particular to the modality it manages. For instance addition methods are provided by

the SpeechInputManager to set the recognition mode to either always-on or push-to-

talk, and, in push-to-talk mode, to specify what input event toggles the recognition

state. A call to some methods may be required to specify the content recognized by

an input manage. The GestureInputManager, for example, requires the user to call

loadGestureTrainingFile() to provide a file containing the symbolic gestures it is

supposed to recognize.

As previously mentioned, input managers may be used in either multimodal or

unimodal input mode. In this context, multimodal input mode entails the simulta-

neous use of multiple input managers in a manner requiring integration among the

modalities each manager supports; whereas unimodal input mode involves the use of

each manager separately with no need to cross-reference other modal inputs or access

past occurrences of input events.

It is important to understand that the use of the terms multimodal and unimodal

in this context applies only to an input manager’s current input mode and should

not be confused with the concepts of multimodal and unimodal applications. Thus,

utilizing the toolkit, a programmer could implement a multimodal application using

only managers running in unimodal input mode. Such an application would allow a

65

user to use multiple modalities, but not in a way that requires the interpretation of

combined or accumulated inputs from separate modalities to perform a single task.

To specify and query the current modal input mode, each input manager provides

setMultimodal() and isMultimodal() methods. By default input managers are set

to be use multimodally. When multiple managers are used it is required that they all

be in the same modal input mode. For further information on how input managers

are used and how input events are handled differently based upon the modal input

mode setting see section 4: EMMET Proof of Concept Tests and Demonstration

Applications.

Input Handlers and Adapters

Each controller subpackage also includes an input handler interface and optional

adapter class. The input handler interfaces define callback methods which can be

overridden by implementors of the interface. These callback methods fall into two

categories. The first category includes methods which are called when a modal input

event completes. The parameter passed into these methods is always a ModalContent

instance reflecting the completed input event. Some input handlers may have multiple

callbacks that fall into the first category. For example, the controller.keyboard pack-

age’s KeyHandler interface defines onKeyPressed() and onKeyReleased(). These

callbacks both provided KeyContent parameters reflecting the content generated from

their respective input events. The second category of callback methods encompass

notification of any remaining input occurrences related to the supported modality.

The optional adapter class provides, often empty, implementations for each callback.

Figure 3.14 shows the controller.gesture package’s GestureHandler inter-

face and GestureAdapter class. The GestureHandler interface defines the

66

onGestureComplete() callback. This callback falls into the modal input event com-

plete category, thus it receives a GestureContent instance generated by the GestureIn-

putManger at the completion of a drawn gesture. The remaining onGestureBegun()

and onPointAdded() callbacks fall into the second category, and allow implementors

of the interface or extenders of the adapter to receive notification of location informa-

tion upon the commencement of a new gesture and upon the addition of each point

to a gesture.

Figure 3.14: Gesture Input Handler and Adapter

An input handler interface must be defined whenever the toolkit is extended to

support a new modality. For example, continuing with prior considerations for ex-

tending the toolkit to support eye tracking, an EyeTrackingHandler would need to

be defined. This input handler interface would require at least one callback from the

first category. Such a callback might be defined as onEyeFocusConfirmed() which

would be called upon the completion of an eye focus determined event.

ModalContent subclassing

67

Each controller subpackage also includes a subclass of the ModalContent class. For

a description of the base ModalContent class please refer to section 3.1.1. Figure 3.8

shows the ModalContent subclasses for the currently supported modalities. Each

subclass extends ModalContent to define additional fields specific to the modality

it supports. Each of these fields holds a relevant piece of information that may be

derived from the interpretation of an input event. Each ModalContent subclass may

also implement query methods. These query methods facilitate the subclass’ use by

providing convenient access to information:

� additionally maintained by the subclass but not directly reflecting a singular

input event aspect;

� extracted from buried or hidden properties of a subclass field whose type is also

a class; or

� resulting from calculations or processing performed on one or more subclass

fields.

The GestureContent class shown in Figure 3.15 helps to better illustrate Modal-

Content subclassing. It maintains two protected fields in addition to the ones de-

fined by ModalContent. These fields are gesture and buttonState which directly

reflect the Gesture and MouseButtonState information obtained at the completion

of a singular gesture input event. Direct access to these fields is provided by the

getGesture() and getButtonStateType() getter methods. The query methods

getGesturePoints(), getGestureSymbol(), and getGestureType() are all exam-

ples of convenience methods that extract information from the GestureContent’s

gesture field. The getGestureCenterPoint() query method is an example that

returns calculated information. In this case the gesture’s center point is calculated

68

from gesture point data obtained from an internal call to getGesturePoints(). Fi-

nally, isSymbolGesture() is a example of a query method that performs processing

on additional information maintained by the subclass and determines whether the

current content represents a symbolic or spatial gesture.

Figure 3.15: Gesture Content subclass

ModalitySubType subclassing

Finally, each controller subpackage provides a subclass of ModalitySubType. The

ModalitySubType base class is described in section 3.1.2. Each ModalitySubType

subclass provides a strongly typed enumeration of the categories into which that

ModalitySubType’s modal input events are divided. Figure 3.10 shows the set of

ModalitySubType subclasses implemented for the modalities currently supported by

EMMET. For some modalities, such as speech, all inputs fall into only one cate-

gory. Thus the SpeechType subclass only defines one type, speech rule. For other

modalities there may be a number of sub categories. For example, the MouseType

subclass defines the types: mouse up, mouse down, mouse move, mouse drag,

and mouse hover.

69

3.2.1 The controller.keyboard and controller.mouse Packages

The LWJGL and jME APIs underlying EMMET provide basic support for handling

keyboard and mouse input. LWJGL allows one to query current state information

for these devices, such as key pressed state, mouse location, and mouse button state.

However, programs that utilize this state query support are responsible for constantly

checking device state information in order to perform responsively. jME’s input action

support builds upon LWJGL’s state query support and is slightly more sophisticated.

jME’s support involves an architecture that allows one to register input action lis-

teners. Included with these listeners is a performAction() callback method that

receives control only when a device state has changed. When the performAction()

callback is called, it is passed an input action event object. This object is populated

with state information, obtained through LWJGL, corresponding to the input event

that initiated the call to performAction()

EMMET’s keyboard and mouse packages build upon both LWJGL and jME input

handling in order to uphold EMMET’s goal of providing a consistent input handling

interface across all supported modalities. For the discussion that follows, note that

conventional input support encompasses support for both keyboard input and con-

ventional mouse input and also note that conventional mouse input includes only

changes to mouse location and mouse button state.

The singleton KeyboardInputManger, shown in figure 3.16, manages EMMET’s

support for the keyboard modality. It extends jME’s KeyInputAction class and regis-

ters itself with jME as an input handler. As a registered jME key input handler, the

KeyboardInputManager uses its overridden implementation of the performAction()

callback to intercept and interpret key events. To elaborate, jME calls the Keyboard-

InputManager’s performAction() method for each keyboard input events and passes

70

an InputActionEvent object, reflecting the keyboard input event, as an argument.

Figure 3.16: KeyboardInputManager Class

As shown in Figure 3.17, the KeyContent class extends the ModalContent class to

include character, key code, and key name fields. These fields respectively hold the

Java character, unique LWJGL key identifier code, and Java String representation

reflecting a keyboard input event’s key value. An additional piece of information,

obtainable from an instance of KeyContent, is whether the instance’s corresponding

key input event was triggered by a key press or key release. This information is

maintained in the KeyContent’s ModalitySubType field, which contains an instance

of the controller.keyboard package’s KeyInputType. The available KeyInputTypes

are key down and key up. Note that the KeyContent constructor performs the

task of filling out the base ModalContent class fields: ModalityType, TimeInterval,

and ConfidenceLevel. For KeyContent instances, the ModalityType value is Modali-

tyType.KEYBOARD; the TimeInterval value is a zero length time interval that both

begins and ends at the time at which the corresponding keyboard input event oc-

71

curred; and the ConfidenceLevel is always full (i.e. 100%).

Figure 3.17: KeyContent Class

The KeyboardInputManager’s performAction() method generates an instance

of KeyContent. It populates the fields in this KeyContent instance with information

obtained by inspecting the InputActionEvent argument that jME passes into it. The

values required to populate the keyChar, keyCode, and keyName fields of a KeyCon-

tent instance directly correspond to values available through jME’s KeyInput inter-

face. The InputActionEvent class provides access to the LWJGL implementation of

this interface through its getKeys() method. Thus, performAction() first calls the

getKeys() method of the InputActionEvent object. The getKeys() method returns

the associated KeyInput instance. The performAction() method then queries the

KeyInput instance for the values it needs to populate the aforementioned fields of the

KeyContent instance. Finally, performAction() queries the state of the key associ-

ated with the keyboard input event via the KeyInput interface’s static isKeyDown(int

keyCode) method. In addition to generating a single KeyContent instance for each

keyboard input event, performAction() also supports repeated key event processing

72

by generating multiple KeyContent instances when a key is being held down.

Once performAction() has generated the KeyContent instance, it notifies all

of the KeyHandlers registered with the KeyInputManager. Implementors of the

KeyHandler interface register themselves with the singleton KeyInputManger by

calling the manager’s addKeyHandler() method. The addKeyHandler() method

merely adds the KeyHandler object it receives to a private list of registered Key-

Handlers which is maintained by the KeyInputManager. The KeyHandler interface

and corresponding adapter, shown in Figure 3.18, provide two callback methods,

onKeyReleased() and onKeyPressed(). These methods must be implemented or

overridden to receive control when the corresponding keyboard input event subtype

(i.e. key up or key down respectively) occurs. The performAction() method

iterates through the list of registered KeyHandlers and invokes each handler’s im-

plementation of the callback corresponding to the current keyboard input event’s

KeyInputType and passes the generated KeyContent instance as the only argument.

Figure 3.18: KeyHandler Interface and KeyAdapter Class

Finally performAction() determines whether the KeyboardInputManager is in

multimodal input mode. It does so through an internal call to isMultimodal(). If the

73

KeyboardInputManager is in multimodal input mode, the performAction() method

performs the additional task of enqueueing the generated KeyContent instance onto

the KeyBoardInputManager’s singleton ModalContentQueue instance.

The KeyboardInputManger also implements the optional update() callback. Dur-

ing update(), the manager updates the internal keyboard state it maintains for proper

handling of key releases, and removes expired KeyContent instances from the key-

InputQueue. KeyContent instances expire after they have remained on the queue

for longer than the number of milliseconds specified by the KeyInputMangers private

inputExpirationTime field.

The singleton MouseInputManger, shown in figure 3.19, manages EMMET’s sup-

port for conventional mouse input. The term conventional mouse input denotes mouse

input consistent with conventional WIMP based interfaces, such as a mouse button

presses, releases, or clicks; mouse movements; or mouse drags. In a similar manner

to the KeyInputManager, the MouseInputManager extends jME’s MouseInputAc-

tion class and registers itself with jME as an input handler. As a registered jME

mouse input handler, the MouseInputManager uses its overridden implementation of

the performAction() callback to intercept and interpret conventional mouse input

events.

The MouseContent class, shown in Figure 3.20, extends ModalContent to include

fields specific to the conventional mouse input modality. These fields reflect mouse

device state information associated with a mouse input event. The MouseContent

mouseButtonState field is of the type MouseButtonStateType which is a strongly

enumerate type defined in jME. Each static instance of MouseButtonStateType rep-

resents a three button combinatorial state indicating which of three possible mouse

buttons are currently pressed. For example, mouse button 1 3 is a static instance

74

Figure 3.19: MouseInputManager Class

of MouseButtonStateType that represents a mouse state in which the first and third

mouse buttons are both currently pressed. A frequently checked MouseButtonState-

Type is mouse button none which reflects the mouse state where no buttons are

pressed. Note that the MouseButtonStateType supports mouse devices with up to

three buttons. For mouse devices with less than three buttons, MouseButtonState-

Types that represent button state information for the non-existent buttons can be

ignored. The MouseContent location field is an AWT1 Point, which holds the two

integer values representing the x and y location of the current mouse cursor. These

x and y values represent the pixel distance along the x and y axes of a 2D cartesian

coordinate system where location (0, 0) is the lower left corner of the display screen

or window.

Also in a manner similar to the KeyInputManager, the MouseInputManager

handles the interception and interpretation of conventional mouse input in its

performAction() callback. All of the mouse device state information needed by

performAction() to generate an instance of MouseContent can be obtained through

the jME MouseInput object. The jME MouseInput object provides query methods for

1The Abstract Windowing Toolkit (AWT) is a GUI widget and input device handling library
packaged with Java

75

Figure 3.20: MouseContent Class

obtaining information about the current state of the mouse input device. The Mou-

seInputManager maintains a reference to the jME MouseInput object for obtaining

mouse state information whenever needed. Thus, for each mouse input event, jME

calls the MouseInputManager’s performAction() callback. The performAction()

callback then obtains pertinent mouse state information via the handle to the jME

MouseInput object. Next, performAction() uses this mouse state information to

generate a MouseContent instance that reflects the conventional mouse input event

that triggered the call to performAction(). Note that the MouseContent constructor

populates its ModalContent superclass fields: ModalityType, TimeInterval, and Con-

fidenceLevel. Similar to a KeyContent instance, an instance of MouseContent has a

ModalityType value of ModalityType.MOUSE; a zero length TimeInterval value that

both begins and ends at the time at which the corresponding mouse input event

occurred; and a ConfidenceLevel that is always full (i.e. 100%). Upon generating

and populating a MouseContent object, performAction() checks the multimodal in-

put mode of the MouseInputManager. If the manager’s input mode is multimodal,

performAction() queues the generated MouseObject onto the MouseInputManager’s

mouseInputQueue.

76

Finally, the MouseInputManager’s performAction() callback notifies the mouse

input handlers that have registered to receive notification of mouse input events from

the MouseInputManager. The controller.mouse package defines two conventional

mouse input handler and adapter sets, shown in Figure 3.21. The first input handler

set consists of a MouseHandler interface and MouseAdapter class. This set provides

callbacks for mouse button input events only. The second input handler set consists

of a MouseMotionHandler interface and MouseMotionAdapter class. This set pro-

vides callbacks for mouse location input events only. Mouse location input events

include mouse movement, mouse dragging, and mouse hovering. This separation into

categories improves performance by reducing unnecessary calls to handlers that are

only interested in one type of of mouse input event or the other. MouseHandlers and

MouseMotionHandlers can register with the MouseInputManager by calling the man-

ager’s addMouseHandler() or addMouseMotionHandler() methods respectively. The

MouseInputManager maintains these registered handlers in List objects. This main-

tenance of registered handlers is similar to the KeyboardInputManger’s except there

are two List objects, one for MouseHandlers and another for MouseMotionHandlers.

Figure 3.21: Mouse and Mouse Motion Input Handlers and Adapters

77

3.2.2 The controller.gesture Package

EMMET’s support for symbol gesture recognition is implemented in the con-

troller.gesture package. Figure 3.22 illustrates the classes defined in this package

and their relationships. As previously mentioned in the discussion of foundational

technologies, section 2.2, gesture recognition support for EMMET is built upon the

HHReco Graphic Symbol Recognition Toolkit. EMMET uses HHReco to interpret

two-dimensional gesture symbols that are drawn on the screen using the mouse cursor.

Symbol interpretation involves iterating through an application’s set of predefined

recognizable symbols to find one that best matches the user drawn symbol.

The singleton GestureInputManager, included in Figure 3.22, manages gesture

recognition support for EMMET. In the same manner as the MouseInputManager,

the GestureInputManager extends jME’s MouseInputAction class and registers itself

with jME as an input handler. This similarity between the mouse and gesture in-

put mangers is a natural result of the mouse being the input device used by both

managers. For the purpose of intercepting mouse input events, the GestureInput-

Manager implements the performAction() method to receive notification of mouse

state changes.

The GestureInputManager uses an instance of the HHRecognizer for recog-

nizing drawn gestures. This recognizer instance must first be trained on the

set of symbols it will be used to recognize. The GestureInputManager performs

this training of the recognizer by loading an HHReco multi-stroke training file.

HHReco multi-stroke training files can be created using applications provided in

the HHReco toolkit. Once such a file is created, it can be loaded by GestureIn-

putManager by calling the manager’s loadGestureTrainingFile() method. The

loadGestureTrainingFile() method can load files specified as either a local file or

78

F
ig

u
re

3.
22

:
co

n
tr
ol

le
r.

ge
st

u
re

P
ac

ka
ge

79

a URL2. The loadGestureTrainingFile() method then parses the contents of the

training file to extract positive symbol examples which it uses to train the recognizer.

The GestureInputManager maintains and updates gesture information in Gesture

objects. The Gesture class, shown in Figure 3.23, uses an instance of the TimedStroke

class, defined in the HHReco toolkit, for storing the gesture points comprising a

gesture. The use of TimedStroke in this manner necessitates some conversion, because

the TimedStroke class maintains x and y double location values along with a long

timestamp value for each point. However, such conversion would have eventually been

required as the HHRecognizer expects to receive a TimedStroke object when asked

to perform symbol recognition. The Gesture class also maintains the stroke/gesture

start time which is uses to calculate the timestamps for each point. This start time

is provided to the Gesture class in a required constructor argument. Other values

maintained by a Gesture object are an isGestureComplete boolean, a symbol name,

and a confidenceLevel. The isGestureComplete value is set when the Gesture object

is informed that the gesture being drawn has finished via the setGestureComplete()

method. The symbolName and confidenceLevel values are set after the recognizer has

attempted to classify the Gesture symbol. The Gesture class also provides convenience

methods for retrieving the set of gesture points, the recognized symbol name, and the

recognition confidence level, as well as a method that calculates and returns the

gesture center point.

While EMMET is running, the GestureInputManager cycles through three gesture

recognition states. This cycle is illustrated in Figure 3.24. In the first state, the

manager is waiting for a mouse input event to indicate that the drawing of a symbol

gesture has commenced. By default, this indicator is set to be a left mouse button

2URLs (or Uniform Resource Locators) can specify the path of either a local or remote file

80

Figure 3.23: Gesture Class

pressed event, however it can be changed to a different one. In the second state, the

manager is collecting gesture points and adding them to the current gesture in progress

by following the mouse cursor location as the user draws the gesture. The third

state is entered when the user indicates that the gesture is complete by releasing the

gesture commencement indicator button. In the third state, the GestureInputManger

calls upon its HHRecognizer instance to interpret the drawn symbol. After this

interpretation completes, the GestureInputManger returns to the waiting for gesture

commencement state.

As a registered mouse input handler, the GestureInputManager receives notifica-

tion of mouse input events through its performAction() method. Upon receiving

notification of any mouse input event, performAction() merely passes control to the

handleGestureInput() method. The handleGestureInput() method is responsible

81

Figure 3.24: GestureInputManager Gesture Recognition State Cycle

for interpreting all mouse input events and responding to those events based on the

current gesture recognition state:

� If the manager is in the waiting for gesture commencement state,

handleGestureInput() checks if the gesture commencement indicator mouse

button was just pressed. If the indicator button was just pressed,

handleGestureInput() sets the GestureInputManger’s gestureInProgress field

to a new Gesture instance, sets the new Gesture instance’s first gesture point

to the current mouse location, and notifies any registered GestureHandlers that

a new gesture has begun. The GestureInputManager’s gestureInProgess field

maintains the current Gesture being drawn and can be externally referenced via

the manager’s getGestureInProgress() getter method. Upon the commence-

ment of a new gesture symbol, the GestureInputManger enters the gesture in

progress state.

82

� If the manager is in the gesture in progress state and the gesture commence-

ment indicator button is still pressed, handleGestureInput() adds a new

Point to the gestureInProgress reflecting the current mouse cursor location.

Points are added to the gestureInProgress by calling its addVertex() method

and passing the mouse device’s x and y coordinates along with the current

time as arguments. Note that handleGestureInput() will only be called

via performAction(), and that performAction() is only called when the

mouse device state changes. Thus the gestureInProgress should not contain

adjacent vertices containing the same location. Upon adding the new point,

handleGestureInput() notifies any registered GestureHandlers that a new

point has been added. If the manager is in the gesture in progress state and the

gesture commencement indicator button has been release, then the GestureIn-

putManger enter the gesture complete/gesture recognition state.

� If the manager is in the gesture complete/gesture recognition state,

handleGestureInput() first sets the GestureInputManager’s las-

tRecognizedGesture field to the completed Gesture instance. Next,

handleGestureInput() obtains the gesture’s TimedStroke representation

from the completed Gesture object and passes it to the recognizer. The recog-

nizer then returns a Recognition object that contains the recognized symbol

name and a recognition confidence level. Finally, handleGestureInput()

uses the Recognition result and completed Gesture object to generate a

GestureContent instance and notifies any registered ContentHandlers that a

gesture has been completed. The GestureInputManger then returns to the

waiting for gesture commencement state.

83

The GestureContent class, shown in Figure 3.15 , extends ModalContent to in-

clude fields and methods specific to a gesture complete input event. This class main-

tains two protected fields, gesture and buttonState, in addition to the fields defined

by ModalContent. The gesture field contains the completed Gesture object used to

generate the ModalContent instance . The buttonState field contains a MouseBut-

tonStateType indicating which button was used to draw the gesture. Nearly all of

the query methods provided by GestureContent are delegate methods for obtaining

Gesture information from the gesture field. These query methods have a one-to-one

correspondence with the Gesture class’ query methods. The GestureContent class

also provides a getter method for simply obtaining a reference to the gesture field.

The controller.gesture package also defines the GestureHandler interface and Ges-

tureAdapter class, included in Figure 3.14. This input handler and adapter set allows

users of EMMET to listen for gesture input events. The GestureHandler interface

defines three callback methods for receiving notification of gesture input events. The

onGestureBegun() and onGesturePointAdded() callbacks can be implemented to

receive notification when a gesture has commenced or a gesture point has been added

to the current gesture in progress. These callbacks are only passed the x and y mouse

cursor location of either the first gesture point or the last point added, respectively.

The third callback provided is onGestureComplete(), which can be implemented to

receive notification of the completion of the last gesture in progress. This third call-

back is passed the instance of GestureContent corresponding to that last completed

gesture. The GestureAdapter class implements the GestureHandler interface to pro-

vide empty implementations of each of the three callbacks. GestureHandlers can be

registered with the GestureInputManager by calling the manager’s addGestureHan-

dler() method.

84

3.2.3 The controller.speech Package

The classes and interfaces defined in the controller.speech package, shown in Fig-

ure 3.25 implement EMMET’s speech recognition support. As previously mentioned

in the discussion of foundational technologies, section 2.1, speech recognition support

for EMMET is built using the JavaSpeech API (JSAPI). The implementations of the

JSAPI supported by EMMET are the CloudGarden TalkingJava SDK which utilizes

the Microsoft Speech engine, and the IBM Speech for Java SDK which utilizes the

IBM ViaVoice engine. The only type of speech recognition supported by EMMET is

rule-based speech recognition. Therefore, users specify what speech utterances should

be recognized and how a recognized utterance should be interpreted by defining gram-

mars and rules within those grammars. These grammars and rules can be loading

from preexisting Java Speech Grammar Format (JSGF) files or specified dynamically

by adding new rules using JSGF syntax.

The SpeechInputManager

The singleton SpeechInputManager, shown in Figure 3.26, manages speech recog-

nition support for EMMET. Unlike the previously discussed input managers, the

SpeechInputManager does not rely upon jME input handling to receive notification

of input events. Rather, it registers itself to receive notification of speech input

events from the speech recognition engine. During its construction, the SpeechIn-

putManager uses the JSAPI to call upon the speech recognition engine to create a

new speech Recognizer object. Depending on the currently running speech engine,

this Recognizer object will be either an IBM ViaVoice or CloudGarden recognizer.

The SpeechInputManager’s engine implementation field maintains which speech

recognition engine implementation was used. This engine implementation value

85

F
ig

u
re

3.
25

:
T

h
e

co
n
tr
ol

le
r.

sp
ee

ch
P
ac

ka
ge

86

will be one of two defined EngineType’s, ibm via voice or cloudgarden. The

SpeechInputManager references this field to compensate for slight variations in the

JSAPI support provided by each engine. Upon obtaining the speech Recognizer ob-

ject, the manger defines a single parent RuleGrammar to which all new JSGF rules

and sub-RuleGrammars will be added. This parent rule grammar is maintained in

the manager’s grammar field.

Grammars specified in JSGF grammar files can be added to the SpeechInputMan-

ager by calling the manager’s loadSpeechGrammarFile() method. New grammar

rules can be added to the current grammar using one of the addRule() methods.

New rules can be specified as a string in JSGF format or as JSAPI Rule object.

Added rules may reference previously added rules. Programmers using EMMET may

also specify the mode in which speech recognition will occur. In pushToTalk mode,

the user of an EMMET application is required to hold down a keyboard button to en-

gage speech recognition. When not in pushToTalk mode, speech recognition is always

being performed. GUI developers using EMMET can specify the speech recognition

mode via a call to setPushToTalkMode(). The key that engages speech recognition

can be specified using the SpeechInputManger’s setPushToTalkKey() method. De-

velopers also have the ability to manually pause and resume speech recognition via

the pauseRecognition() and resumeRecognition() methods.

Internal Data Structures for Speech Recognition Results

The ParsedRuleToken class shown in Figure 3.27 is used to represent a single word

token parsed from a speech utterance. This class maintains a String representation

of the parsed word token in the spokenText field as well as the the time at which

the word token began being spoken and the time at which it completed. Figure 3.28

87

Figure 3.26: SpeechInputManager Class

88

Figure 3.27: ParsedRuleToken Class Figure 3.28: ParsedRuleNode Class

shows the ParsedRuleNode. ParsedRuleNodes are used as the basic node type for

generating an internal tree representation of a recognized speech utterance. This

internal parse tree representation facilitates the interpretation of speech input events

for multimodal integration and by users of EMMET.

Given the JSGF grammar in Figure 3.29, Figure 3.30 shows the ParsedRuleNode

tree resulting from a recognition of the utterance “Color the green cube red”. The

utterance “Color the green cube red” was chosen because of its similarity to phrases

used by Bolt to illustrate his pioneering “Put-That-There” multimodal interface.

Furthermore, “Color the green cube red” is representative of the types of imperative

context sensitive sentences EMMET is capable of resolving.

Note that ParsedRuleNode trees maintain parsed token data cumulatively from

89

#JSGF v1.0

grammar sampleGrammar;

<diectic_ref> = (here | there);
<object> = [<color>] <object_type>;
<object_ref> = (the <object>) | ((this | that) [<object>]) | (it);
<color> = red | blue | green | purple | yellow | orange;
<addObject> = Add [(a|an)] [<color> {color}] <object_type> {object_type}

<diectic_ref> {location}
<colorObject> = (color | paint) <object_ref> {target} <color> {color}

Figure 3.29: Simple JSGF Grammar for Adding and Coloring Objects

Figure 3.30: ParsedRuleNode Tree

90

the leaves up through the root. For example, two sibling leaf nodes might each contain

one token in their ruleTokens list. The ruleTokens list for the parent node of these

leaf nodes will include the leaf nodes’ tokens in addition to the parent’s own tokens.

The parent node may also have a token tag in its ruleTags list. The grandparent

of the leaf nodes will cumulatively contain the leaf nodes’ tokens, the parent node’s

tokens and tag, and the tokens contained in any of the parent node’s siblings, and so

on.

The repetition of parsed rule data in ParseRuleNode trees is deliberate. Because of

this repetition, each ParseRuleNode contains all of the tokens and tags that comprise

the parsed rule represent by the node. Thus, methods that utilize ParseRuleNodes

do not have to search through a node’s subtree in order to collect all of that node’s

parsed rule data. This repetition of data also simplifies the job of detaching and

passing ParsedRuleNode subtrees.

Also included in the speech.controller package is the ParseRuleUtil class, shown

in Figure 3.31. The ParseRuleUtil class provides a number of static utility methods

for processing ParsedRuleNodes and ParsedRuleNode trees. The method provided

by ParseRuleUtil that is most utilized by EMMET is the recursiveRuleParse()

method which takes a RuleParse object, defined in the JSAPI and provided by

the speech recognition engine, and returns an equivalent ParsedRuleNode tree.

ParseRuleUtil also provides query methods for extracting information from Parse-

dRuleNode trees, such as a list containing all of the occurrence of a given rule, and a

method for querying the number of tags in a given ParseRuleNode.

RuleContent

The RuleContent class, shown in Figures 3.32 extends the ModalContent class

91

Figure 3.31: ParseRuleUtil Utility Class

with fields and methods specific to the speech recognition modality. As previously

mentioned, the speech recognition support provided by EMMET is rule based and,

thus a speech recognition event denotes the recognition and acceptance of a single ut-

terance. A speech utterance is accepted only if its word token sequence can be derived

from the SpeechInputManager’s current RuleGrammar. When a speech recognition

event is accepted, a RuleContent instance is generated. This RuleContent class holds

information about the utterance recognized and the utterance’s relationship with the

rule it was derived from.

The ruleName and ruleText fields hold the name and spoken text for the rule

recognized. The result field maintains the FinalRuleResult object generated by the

JSAPI upon recognizing and accepting an utterance. The ruleNode field references

the root node of the internal ParsedRuleNode tree representation of the recognized

utterance. Given the RuleGrammer specified in Figure 3.29, the spoken phrase “Add

a green ball” would be accepted as it can be derived from the rule grammar. The rule

name from which this phrase can be derived is <addObject>. Thus the RuleContent

instance generated to reflect this recognized utterance would have its ruleName equal

92

Figure 3.32: RuleContent Class

to “<addObject>” and its ruleText equal to “Add a green ball”. The RuleContent

instance’s result and ruleNode fields would respectively hold the utterance’s JSAPI

FinalRuleResult and the ParsedRuleNode tree generated from that result.

RuleHandlers

The additional complexity associated with speech recognition requires some addi-

tional complexity in the support for speech recognition event handling. Similar to the

input handler implementations for the previously discussed controller subpackages,

the RuleHandler interface, shown in Figure 3.33, defines the onRuleRecognized()

callback for responding to speech rule recognition events. Note that no RuleAdapter

class was implemented because only one callback is defined in the RuleHandler inter-

face. The adapter classes for the other modalities allow one to override only a subset

of the callback methods defined in the implemented handler interface by providing

empty implementations of all the handler interface’s callbacks.

93

Figure 3.33: RuleHandler Interface

The aforementioned additional complexity can be observed in the manner in which

RuleHandlers register themselves with the SpeechInputManger to receive rule recog-

nition results. RuleHandlers can register with the SpeechInputManager to receive

notification of any rule recognition events or they can register to receive notification

of only rule recognition events resulting from the derivation of a specified rule or rule

set. RuleHandlers registered to receive all speech rule recognition events can also

be referred to as general RuleHandlers. The way in which general RuleHandlers are

registered to receive events is most like the previously discussed handlers. To register

a general RuleHandler, the programmer simply passes it in a call to the SpeechInput-

Manger’s addGeneralRule() method. Having done so, the general RuleHandler will

receive notification of speech rule recognition events in its onRuleRecognized(). In-

formation about the rule recognized, including the name of which rule was recognized,

can be obtained from the RuleContent instance passed into the callback. However,

users of EMMET may need to respond differently to one rule versus another. To

address this need, the SpeechInputManger provides a number of ways to request

notification of speech recognition events that result from only a specified grammar

rule or a subset of rules. Both forms of the manager’s addRule() method allow for

an optional third argument with which the programmer can specify a RuleHandler

object. The RuleHandler specified as this argument is registering to only receive

speech recognition events for the grammar rule being adding. A second method for

94

requesting rule notification only for a specific rule is the bindRule() method. The

bindRule() method takes a rule name and a RuleHandler as arguments and registers

the RuleHandler to only be notified of speech recognition events resulting from that

rule.

The SpeechInputManager maintains registered RuleHandlers in its generalRule-

Handlers and ruleHandlers fields. The generalRuleHandlers field is a list structure

that holds all general RuleHandlers and is treated in the same way as the other

input managers’ input handler lists. The ruleHandlers field is of type RuleHandler-

Hashtable. This RuleHandlerHashTable maps each ruleName to an associated list of

input handlers. This list contains only input handlers registered to receive notification

for speech input recognition events that corresponding to the ruleName’s grammar

rule.

The SpeechHandlerResultListener

As shown in Figure 3.26, the SpeechInputManager also contains an internal

SpeechHandlerResultListener class. This class extends the JSAPI’s ResultAdapter.

To receive notification of speech recognition input events, a new SpeechHandlerRe-

sultListener instance is created and registered with the SpeechInputManager’s Rec-

ognizer in the manager’s class constructor. State information is maintained by the

SpeechHandlerResultListener in two fields, resultInProgress and ruleTokenList. The

SpeechHandlerResultListener implements a number of callbacks for receiving notifi-

cation of recognized speech rule events:

� resultCreated() is called by the recognition engine upon the creation of a new

rule recognition result.

� resultAccepted() is called when a rule recognition result is complete and can

95

be derived from the current RuleGrammar.

� resultRejected() is called when a rule recognition result is complete and can

not be derived from the current RuleGrammar.

When called, the SpeechHandlerResultListener’s implementation of

resultCreated() first sets the listener’s resultInProgress field to the current

speech recognition result in progress. The resultCreated() method then initializes

the listener’s ruleTokenList field with a new LinkedList instance. The ruleTokenList

consists of ParsedRuleTokens used to store word tokens in the order they are rec-

ognized. The ruleTokenList is maintained by the listener until the resultInProgress

completes and the result is either accepted or rejected. Note that a rule-based

Recognizer creates a recognition result object immediately upon determining that the

word tokens recognized from an utterance in progress could constitute the beginning

of a rule grammar derivation. Thus resultCreated() is called by the recognizer

soon after this determination has been made. Next, resultCreated() attaches a

new ResultAdapter to the current resultInProgress. Attaching this ResultAdapter

allows the listener to be notified when the resultInProgress is updated or changed.

Upon such notification, the ruleTokenList list is updated to properly reflect the

resultInProgress.

The SpeechHandlerResultListener’s implementation of resultAccepted() is

called when the current result in progress ends and the result can be derived from

the SpeechInputManager’s RuleGrammar. The resultAccepted() method finalizes

the ruleTokenList and passed the finalized list along with the final rule result to the

SpeechInputManager’s processRuleRecognition() method.

The SpeechHandlerResultListener’s implementation of resultRejected() is

96

called when the current result in progress ends and the result can not be derived from

the SpeechInputManager’s RuleGrammar. The resultRejected() method simply

sets the resultInProgress to be null which ,in essence, discards the collected rule to-

kens and discontinues an speech recognition processing until a new utterance begins.

The final task performed by the SpeechHandlerResultListener’s re-

sultAccepted() implementation is to call the SpeechInputManager’s

processSpeechRecognitionResult() method. This method processes and in-

terprets recognized speech results created by the speech recognition engine; generates

a RuleContent instance reflecting those recognition results; and notifies the ap-

propriate RuleHandlers and GenereralRuleHandlers of the speech rule recognition

event.

The processSpeechRecognitionResult() method begins by obtaining the recog-

nition result’s tokens and tags as well as the recognized rule name from the fi-

nal rule recognition result. Next, a string representation of the recognized utter-

ance is constructed by concatenating the recognized word tokens. The SpeechInput-

Manager’s global lastUtteranceRecognized is then updated for later reference. The

processSpeechRecogntionResult() method next calls upon the current RuleGram-

mar’s parser to obtains a RuleParse object corresponding to the recognized text, by

passing the constructed spoken text String and rule name. The returned RuleParse

object is used to construct a ParsedRuleNode tree representation of the recognized

utterance by utilizing the ParseNodeUtil utility class. The overall time interval for

the recognized utterance is then derived from the start time of the first token and the

end time of the last token. Having obtained or derived all of the required information

from the recognition result, a RuleContent instance is constructed. If the SpeechIn-

putManager is in multimodal input mode, the constructed RuleContent instance is

97

enqueued onto the SpeechInputManager’s ruleInputQueue. Finally any RuleHandlers

that were registered to be notified when the recognized rule has been recognized are

notified, and any GeneralRuleHandlers that were registered to receive notification of

all speech rules recognized are also notified.

3.2.4 The controller.multimodal Package

The mouse, keyboard, gesture, and speech controller packages discussed thus far

were each implemented to provide support for one input modality. The functional-

ity provided by these single modality packages, coupled with the classes defined in

the content package, is sufficient for users of EMMET to develop applications that

only need to utilize the modal input mangers in unimodal input mode. Recall that

multimodal input mode entails the simultaneous use of multiple input managers in a

manner requiring integration among the modalities each manager supports; whereas

unimodal input mode involves the use of each manager separately with no need to

cross-reference other modal inputs or access past occurrences of input events. In other

words, the functionality discussed so far can be used to develop applications that rec-

ognize simple speech commands or symbol gestures. However, applications that need

to interpret input events from multiple modalities simultaneously in order to reach

a single conclusion require multimodal input mode. Applications that need to ref-

erence past input in order to properly interpret new input also require multimodal

input mode.

The controller.multimodal package contains classes and interfaces that contribute

to EMMETs multimodal input mode support. It is the one controller subpackage

that deviates from the design paradigm for implementing controller subpackages

discussed in section 3.2. The only class in the controller.multimodal package class

98

implemented in accordance with the design paradigm, is the MultimodalInputMan-

ager. The reason behind this accord is that the MultimodalInputManager is the only

class utilized outside of the multimodal package. The remaining multimodal package

classes and interface, which include a singleton MultimodalIntegrationAgent, a Mul-

timodalInputListener, and a MultimodalInputAdapter, are only used internally by

the MultimodalInputManger.

The MultimodalInputManger

The MultimodalInputManger, shown in Figure 3.34, consolidates all of the single-

ton modal input managers into one multimodal system. Regardless of the multimodal

input mode being used, the preferred method for interacting with the singleton modal

input managers is through delegate methods provided by MultimodalInputManager.

The MultimodalInputManger provides delegate methods for all of the most commonly

used mode specific query any convenience methods provided by each unimodal input

manager, as well as delegate methods for adding listeners to each manager. To access

modal input managers’ less commonly used methods, the MultimodalInputManager

provides access to each modal input manager though getter methods.

The MultimodalInputManager instantiates and initializes the singleton modal in-

put managers independently of how the modal input managers’ methods are accessed.

During this initialization, the MultimodalInputManager’s default behavior is to set

the modal input managers to multimodal input mode. The MultimodalInputManager

is also responsible for calling each modal manager’s update() method every system

cycle.

Some of the requirements for supporting multimodal input mode have already

been addressed in the implementation and discussion of the content package and

99

Figure 3.34: MultimodalInputManager Class

100

the modal input managers. One such requirement is the need for a common fea-

ture structure for storing input events from each modality. The ModalContent class

defines such a structure with the common features being the ModalityType, Modali-

tySubType, TimeInterval, and ConfidenceLevel. A second requirement is that input

events be recorded somewhere for later retrieval during multimodal integration. This

requirement is already fulfilled through the maintenance of a ModalContentQueue by

each unimodal input manager.

The remaining requirement for supporting multimodal input mode is the ability to

perform multimodal integration across all input modalities. This support is provided

by the MultimodalIntegrationAgent. Like the modal input managers, a singleton

instance of the MultimodalIntegrationAgent is instantiated and initialized by the

MultimodalInputManager. In order to process input from all modalities, the Multi-

modal integration needs to receive notification of all input events from each modal-

ity. To register for these notifications, the MultimodalIntegrationAgent extends the

MultimodalInputAdapter class which allows the MultimodalInputManager to register

the MultimodalInputAgent as a handler with each modal input manager. Note that

the MultimodalInputManger registers the MultimodalIntegrationAgent SpeechInput-

Manager as general RuleHandler.

The MultimodalIntegrationAgent extends the MultimodalInputAdapter class in

order to be registered as an input handler with all of the modal input managers. By

implementing each modal input handler’s interface, the MultimodalInputListener,

shown in Figure 3.35, consolidates all of the modal input handlers into one unified

listener. The MultimodalInputAdapter completes the listener/adapter pair by provid-

ing empty implementations for each method defined in the MultimodalInputListener.

A detailed discussion involving the design and implementation of the Multimodal-

101

F
ig

u
re

3.
35

:
M

u
lt

im
o
d
al

In
p
u
t

L
is

te
n
er

an
d

A
d
ap

te
r

102

IntegrationAgent itself is greatly facilitated by a clear understanding of the command-

and-triggers based paradigm behind EMMET’s multimodal input mode support. This

paradigm and related concepts are discussed in the next section which covers EM-

MET’s command package.

3.3 The command Package

The command package addresses the aspects of EMMET required to support EM-

MET’s command-and-triggers based solution for providing multimodal input mode

support. In this solution programmers provide command definitions and specify the

combination and types of input events that will trigger the commands defined. The

programmer can then register command listeners with these command definitions

in order to receive notification when the commands are triggered. This command-

and-triggers solution allows the programmer to focus more on responding to the

recognition of multimodal input events and focus less on how this recognition occurs.

3.3.1 The command.trigger Package

The command.trigger package defines the ModeTrigger interface and ModeTrigger

implementations for each supported modality. The ModeTrigger interface defines

only one method, isTriggeredBy(). This method is called internally by the Multi-

modalIntegrationAgent for determining which triggers are fired by a particular input

event. Figure 3.36 shows the ModeTrigger implementor for each modality. Each

trigger implementor provides a number of constructors that allow the programmer to

describe the type of input events that would fire that trigger.

For example, the SpeechTrigger implementation of the ModeTrigger interface pro-

vides three constructors. Two of the SpeechTrigger constructors simply require an

103

existing speech rule. This speech rule argument specifies which speech rule recognition

event should fire the speech trigger. The third constructor defined for the SpeechTrig-

ger takes a new speech rule name and a JSGF string defining the new rule. Thus,

this constructor allows the programmer to define a new speech rule and create a trig-

ger for that speech rule simultaneously. Once constructed, a SpeechTrigger object

sets it ruleName field to the name of the trigger rule specified in the constructor.

As required by the ModalTrigger interface, the SpeechTrigger also implements the

isTriggeredBy() method. The SpeechTrigger implementation of isTriggeredBy()

determines if the speech rule event represented by the RuleContent object passed into

the method matches the rule corresponding to the SpeechTrigger object’s ruleName.

3.3.2 The command.definition Package

The command.definition package contains the classes and interfaces required for cre-

ating command definitions and command listeners, as well as a singleton registry for

maintaining defined commands.

The CommandDefinition Class

Instances of the CommandDefinition class shown in Figure 3.37 are used to repre-

sent user defined commands. The CommandDefinition class includes two List fields,

triggers and commandListeners. The triggers field holds the list of ModeTriggers

that describes the types and combinations of input events that trigger the defined

command. The commandListeners field holds the list of CommandListeners that

have registered to receive notification when the defined command has been triggered.

The remaining field is the commandName String. Pragmatically speaking, the com-

mandName should be unique across all registered CommandDefintion objects but this

104

F
ig

u
re

3.
36

:
M

o
d
eT

ri
gg

er
In

te
rf

ac
e

an
d

Im
p
le

m
en

to
rs

105

uniqueness is not enforced. The one CommandDefinition constructor requires only a

String argument that specifies the desired command definition name.

The general methodology for manually defining a new command is to first cre-

ate a uniquely named CommandDefinition object via the CommandDefinition con-

structor; then to define and add the ModalTriggers for the newly defined com-

mand, via the addTrigger() method; and to finally register any CommandListen-

ers that need to receive notification when the defined command is triggered via the

addCommandListener() method. Note that the upcoming explanation of the Com-

mandDefinitionRegistry will show that this method of manually defining new com-

mands is rarely necessary.

Figure 3.37: CommandDefinition Class

Command Listeners and Adapters

As shown in Figure 3.38, the CommandListener interface defines callback meth-

ods for receiving notification when a command has been triggered. To receive such

notifications from a given command, a CommandListener object registers itself with

that command via that command’s addTrigger() method. A number of callbacks

are defined in CommandDefinition. The onCommandTriggered() callback is generic

106

and can be overridden to receive control when any of the trigger’s command’s Mod-

eTriggers have been fired. Using the onCommandTrigger() callback alone to respond

when a command has been triggered most closely follows the paradigm in which the

focus is on the command versus the individual modalities. However the Comman-

dListener interface also defines mode-specific callbacks for each modality in the form

on<modality>Trigger() to allow for special handling that depends on the modality

of the input event that triggered the command.

The following two scenarios comprise an example that clarifies the use

of the general onCommandTrigger() callback versus the use of mode specific

on<modality>Trigger() callbacks. Suppose in the first scenario a programmer wants

to define a command for adding cubes to a three-dimensional world. The program-

mer would like to allow users of her program to add new cubes by drawing a square

gesture or saying the phrase “Add a new cube.” The programmer would first cre-

ates a new CommandDefinition object with the name “AddCubeCommand.” Next,

the programmer would create a GestureTrigger that is fired when the user makes

a square gesture and creates a SpeechTrigger that is fired when the user utters the

phrase “Add a new cube.” The programmer would then add these two triggers to her

AddCubeCommand object. Next, she would define a CommandListener to receive no-

tification when the AddCubeCommand is triggered. In this CommmandListener, she

would only need to implement the onCommandTrigger() callback because no mode

specific information about the input event that triggered the AddCubeCommand is

needed.

Conversely, suppose in the second scenario that the programmer wants to define

a more general “AddObjectCommand”. For this command, the programmer wants

to allow users of her program to add new objects by drawing various gestures or

107

by saying the phrase “Add a new ,” in which the user specifies which object

to add in the blank. The GestureTrigger for this command would need to be fired

when the user makes any of the gestures that correspond to createable objects. The

SpeechTrigger for this command would need to fired when the user utters the phrase

“Add a new <object type>”. However <object type> would have to be defined as

new rule that recognizes words corresponding to createable objects. For this scenario,

the programmer would have to implement the onSpeechTrigger() callback in order

to obtain the word recognized by the <object type> rule. Similarly, the programmer

would have to implement the onGestureTrigger() callback in order to obtain the

gesture that was recognized.

Thus, the mode-specific CommandListener callbacks may be required when mode-

specific information must be extracted from the triggering input event’s ModalCon-

tents. However, in the spirit of focusing on the command versus the modalities, pro-

grammers can implement one response method that actually handles the command

being triggered, and then have all of the mode-specific callbacks call that response

method after obtaining any required mode-specific information.

CommandExitState

The return type for each CommandListener callback is a CommandExitState.

The CommandExitState is a strongly typed enumeration. The value return by an

implementation of any CommandListener callback must be one of the three Com-

mandExitStates, failed, ignored, or succeeded.

The succeeded exit state should be returned by a callback implementation when

both of the following are true:

1. The input event or events that caused the callback to be notified were indeed

108

Figure 3.38: The CommandListener Interface and CommandAdapter Class

event(s) meant to trigger the command that the callback is registered with.

(Note that it is quite possible for a CommandListener callback to be called for

input events meant for a command other than the one the listener is register

with if multiple commands have overlapping ModalTriggers.)

2. The callback was successfully able to acquire all information about the input

event(s) it needed for its response to the command being triggered.

The failed exit state should be returned by a callback implementation when both

of the following are true:

1. The input event or events that caused the callback to be notified were indeed

event(s) meant to trigger the command that the callback is registered with.

2. The callback was unable to acquire all information about the input event(s) it

109

needed for its response to the command being triggered.

The ignored exit state should be returned by a callback implementation when

the input event or events that caused the callback to be notified were actually event(s)

meant to trigger a command other than the one the callback is registered with.

The CommandExitStates returned by CommandListener callbacks are used by

the statics collection engine for categorizing input events and command events as be-

ing successful or unsuccessful. Thus to ensure accurate usage statistics, programmers

should make a conscientious effort to ensure that their CommandListener callback

implementations return the correct CommandExitStates. This responsibility of de-

termining whether the notification of a callback was successful is placed on the pro-

grammer because it often the case that the programmer is the only entity capable of

determining such success.

CommandEvents

Further observation of the CommandListener interface and CommandAdapter

class shown in shown in Figure 3.38 reveals that all of the CommandListener callbacks

also receive a CommandEvent object. The CommandEvent class shown in Figure 3.39

provides an even more complete record of the input event or the combination of in-

put events that triggered a defined command. A CommandEvent instance not only

contains the ModalContent reflecting the input event that triggered the command, it

contains a list of all of the ModalContents that reflect input events that contributed

to the triggering of the command. A CommandEvent instance also contains addi-

tional information resulting from resolved tags specified in any of the triggering input

events. (The use of tags and resolvers will be discussed in detail in the upcoming

discussion of the command.resolvers package in section 3.4.) Finally, a CommandE-

110

vent instance records the name of the CommandDefinition it triggered allowing it to

passed outside of the CommandListener and adapter system.

Figure 3.39: The CommandEvent Class

Now that the CommandEvent object has been introduced, note that the triggering

ModalContent object is passed to the CommandListener callbacks for convenience as

the triggering ModalContent is almost always required for further analysis. If the

CommandEvent were the only argument passed to the ModalContent objects, the

triggering modality’s ModalContent could be easily obtained through a call to the

CommandEvent’s getTriggerContent() method.

The ModalContent objects in the contributing content list maintained by an in-

stance of CommnandEvent reflect all of the modal input events that contributed to

the triggering of the command. For instance, an “addObject” command may be trig-

gered by the user uttering the phrase “Add a ball here” while hovering the mouse

111

cursor over a location that resolves the diectic “here” reference. In this case, the

command was triggered by the “Add a ball here” speech input event and, thus, the

triggerContent field of the resulting CommandEvent object would contain a RuleCon-

tent object that reflects the speech utterance. However the resolution of the diectic

“here” required a mouse input event and, thus, the contributing contents list in the

resulting CommandEvent object would include a MouseContent object that reflect

the mouse hover input event. Note, that the discussion of resolvers and tags will

reveal how the tag content map in the resulting CommandEvent could also contain

the screen location of the resolved diectic.

The CommandEvent class also provides a number of useful query methods. These

query methods include the getTimeInterval(), getTriggerMouseLocation(), and

isConventionalInput(), and the self-explanatory getTriggerModality() method.

The getTimeInterval() method returns a time interval constructed by taking the

start time of the triggering content and the latest end time from all the contribut-

ing modal contents. The getTriggerMouseLocation() returns the location of the

mouse cursor at the time of the triggering input event. The isConventionalInput()

method return true if the triggering input event was from the mouse or keyboard.

The CommandDefinitionRegistry

The singleton CommandDefinitionRegistry, shown in Figure 3.40, maintains all

active CommandDefinition objects. A manually defined CommandDefinition is not

activated until it has been registered with the CommandDefinitionRegistry via the

registry’s registerComandDefinition() method. However, as stated earlier, the

process of manually defining CommandDefinions and then manually adding those

definitions to the registry is usually unnecessary. This process is unnecessary because

112

the CommandDefinitionRegistry provides a number of convenience methods that al-

low the programmer to define new CommandDefinitions that are then automatically

registered with CommandDefinitionRegistry.

Figure 3.40: The CommandDefinitionRegistry Class

The methods provided in the CommandDefinitionRegistry for defining new Com-

mandDefinitions include basic methods for defining simple commands that are trig-

gered by only one modality as well as a method for defining commands that are

triggered by multiple modalities. The basic methods for defining commands trig-

gered by only one modality, are all of the form addBasic<modality>Definition().

For each of these basic methods, the trigger is defined by arguments passed directly

to the method. In addition to the trigger arguments, the only remaining argument

is the desired name for the new command to be defined. The basic method then

defines a new CommandDefinition object from the command name and trigger ar-

guments passed into the method, automatically registers the newly defined Com-

mandDefinition object with the CommandDefinitionRegistry, and, finally, returns a

reference to the newly defined CommandDefinition to the caller. The more complex

113

addDefinition() method provided by the CommandDefinitionRegistry, requires the

programmer to pass the desired name for the new command and an array of already

defined ModeTriggers.

The remaining generateCommandEvents() method provided by the Command-

DefinitionRegistry is used internally by the MultimodalIntegrationAgent. This

method takes a ModalContent object resulting from any modality’s input event and

returns an array of CommandEvent objects. The returned array contains a Comman-

dEvent object for each registered CommandDefinition that is triggered by the input

event represented in the provided ModalContent object.

3.4 The resolver Package

The resolver package augments EMMET’s multimodal input mode support by pro-

viding a tag resolving architecture that addresses diectic, anaphoric, and object ref-

erences occurring in speech utterances. In this context, diectic references are words

that specify a spacial or temporal location from the perspective of the user, anaphoric

references are words, such as a pronouns, that refer back to another unit, and object

references are references to objects visible to the user. This tag resolving architecture

can be extended to support any number of additional speech reference types, defined

by the programmer.

The tag resolving architecture provided by EMMET overloads the JSGF tag

syntax, allowing programmers to request that certain information be obtained and

recorded while speech utterances, derivable from the defined JSGF speech rule, are

being recognized.

The following example should help to clarify this use of speech tags. Suppose a

programmer wants to define a command to add ball objects to a three-dimensional

114

world at specific locations. He wants the user to invoke this command using speech.

He would first need to define a speech trigger for this command. The JSGF speech

rule string for this trigger would be ”‘Add a ball <diectic ref>. The <diectic ref>

rule is predefined by EMMET to recognize the words “here” and “there”. However

when this speech rule is recognized and the command is triggered, he will then need to

know where the mouse cursor was when the user uttered the diectic word. To ensure

that this mouse cursor location is available to him, the programmer can add a lo-

cation tag to his JSGF speech rule, as in “Add a ball <diectic ref> {location}”.

Adding this tag indicates to the MultimodalIntegration agent that it should use

the DiecticResolver to obtain the the mouse cursor’s screen location Point at the

time of the <diectic location> utterance and store the resolved Point value with the

{location} tag. The programmer can now obtain this location from the CommandE-

vent object, generated by the recognition of the speech rule, via the CommandEvent

getTagContents() method.

Resolvers

In the previous example a Resolver was utilized to obtain the mouse cursor loca-

tion during the time a speech utterance was made. The current set of implemented

Resolver subclasses, available in the resolver package, include the ColorResolver,

DiecticResolver, WorldObjectResolver, and the WorldObjectTypeResolver. The Col-

orResolver resolves a ParsedRuleNode tree, resulting from a recognized utterance of

the predefined <color> grammar rule, into a corresponding ColorRGBA object which

is usable by jME for coloring rendered objects. As described in the preceding example,

the DiecticResolver resolves a ParsedRuleNode tree, resulting from a recognized utter-

ance of the predefined <diectic ref> grammar rule, into the Point object reflecting the

115

location of the mouse at the time of the utterance. The WorldObjectResolver resolves

a ParsedRuleNode tree, resulting from a recognized utterance describing an object

visible to the user, into a WorldObject reference to the described object’s model. Fi-

nally, the WorldObjectTypeResolver resolves a ParsedRuleNode tree, resulting from

a recognized utterance of an object type, into the corresponding WorldObjectType.

The abstract Resolver class, shown in Figure 3.41, is the foundation from which

all resolver implementations must be extended. Each Resolver subclasses must im-

plement the abstract methods, resolve() and canResolve(). The canResolve()

method implementation should, as efficiently as possible, return a boolean value in-

dicating whether the Resolver’s resolve() method is capable of resolving the object

argument passed into canResolve(). Implementing an additional canResolve()

method, instead of simply implementing the resolve() method to return null when it

cannot resolve an object, was necessary because some implementations of resolve()

might want to return null as the resolved value for an input object. The imple-

mentation of resolve() takes an input object and returns the resolved value for that

object. The abstract resolve() method definition has maximal genericity as both its

argument and its return type are Java Objects. This allows the creation of Resolver

subclassed to resolve (or convert) any object type into another object type. A con-

crete Resolver example is the DiecticResolver whose resolver() method resolves a

ParseRuleNode tree representations of a diectic utterance into a screen location Point

reflecting the mouse cursor location at the time of the utterance. Implementations of a

the resolver() method are also required to call the protected usedModalContent()

method for each ModalContent object referenced in performing the resolution.

The abstract Resolver class provides a number of helper methods to facilitate

the implementation of canResolve() and resolve() in its subclasses. A subset of

116

Figure 3.41: The Resolver Class

these helper methods provided access to all of the ModalContent objects that re-

sulted from input events occurring across all modalities during a particular TimeIn-

terval. These methods return input events in either a ModalContentQueue or an

Iterator over the contents of a ModelContentQueue. Another helper method is

resolveMouseLocation() which returns a Point reflecting the mouse cursor loca-

tion at a particular time or the average mouse cursor location during a particular

time interval. Finally, the getInputManager() helper method allows quick access to

the singleton MultimodalInputManager.

The ResolverRegistry

The single ResolverRegistry stores all of the defined Resolvers for access by the pro-

grammer and the MultimodalIntegrationAgent. This registry initially contains all of

the predefined Resolvers already mentioned. New Resolver subclasses should be added

to the ResolverRegistry via the registry’s registerResolver method. Access to

117

the Resolvers maintained in the ResolverRegistry is provided by the getResolver()

method, which takes a resolver name String and returns the corresponding Resolver

object, and by the getResolverIterator() method which returns an iterator over

all registered Resolver objects.

3.5 The model Package

The model package helps to tie EMMET’s multimodal input support to the three-

dimension environments implemented using jME. This package defines a simple ab-

stract layer which allows the rendered environment to share information with the

Resolvers and CommandDefinition listeners.

The WorldObject class along with its mobile and static subclasses is shown in

Figure 3.42. These classes provide generic wrappers for the concrete spatials used to

represent objects in a jME rendered environment. The subclassing of WorldObjects

as mobile and static helps to clarify what role the wrapped Spatial plays in the jME

environment. A WorldObject wrapper should be created for any jME spatial that

needs to be referenced by an EMMET Resolver or CommandDefinition listener. To

create such wrappers, the programmer creates a new instance of WorldObject by

passing the jME Spatial to the WorldObject class constructor. Upon creation, new

WorldObject instances must be added to the singleton WorldObjectRegistry.

The singleton WorldObjectRegistry, shown in Figure 3.43, maintains and

provides access to all of the register WorldObject instances. This registry

is used extensively by the WorldObjectResolver for resolving object references

made in speech utterances. The WorldObjectRegistry also provides a number

of query methods. These query methods include getLastResolveWorlObject(),

which returns the last WorldObject return by any Resolver’s resolve() method;

118

Figure 3.42: WorldObject Class with Mobile and Static Subclasses

getRegisteredWorldObjectAtLocation(), which returns the WorldObject located

at a provided screen location Point; getRegisteredWorldObjectByName(), which re-

turns the WorldObject with a given name; and isRegisteredWorldObject(), which

returns whether a given Spatial is registered with the registry. As the WorldOb-

jectRegistry extends the AbstractModelRegistry, note that RegistryListeners can be

added to the WorldObjectRegistry to receive notification when the registry changes.

RegistryListener interfaces defines only one callback method, onRegistryChanged().

Also defined in the model package is the singleton WorldObjectTypeRegistry.

This registry is use extensively by the WorldObjectTypeResolver for resolver ob-

ject type references made in speech utterances. Each WorldObjectType estab-

lishes a relationship between a word and some category of object that can be ren-

dered in a jME environment. For example a WorldObjectType for cubes would

attach the word ”‘cube”’ to a jME Spatial subclass defining cube objects. New

WorldObjectTypes are created and registered via the WorldObjectTypeRegistry’s

registerWorldObjectType() method.

119

Figure 3.43: WorldObject and WorldObjectType Registries

120

3.6 The statistics Package

The statistics packages contains the classes that implement EMMET’s multimodal

usage statics collection and remote reporting capability. The statistics collected by

EMMET include detailed information about all of the input events recognized during

a user’s interaction with an EMMET application. This detailed information includes

the modality and associated modal content for each input event. The statistics col-

lected also record which commands were triggered by input events, the events that

triggered the commands, and the success or failure state of commands triggered.

General input usage statistics recorded by EMMET’s statistics collection support in-

clude the number and proportion of input events for each modality, the number of

multimodal input events, and the overall percentage of successful and unsuccessful

command triggers. Finally, the statistics collected include the amount and percentage

of time spent using each modality.

3.6.1 The MultimodalStatisticsCollector

The singleton MultimodalStatisticsCollector class, shown in Figure 3.44, collects

statistics on the commands called and input event triggered during a users interaction

with a running EMMET application. To receive notification of all such events, the

MultimodalStatisticsCollector extends the MultimodalInputAdapter class and regis-

ters itself as a listener with the MultimodalInputManager.

Upon notification of each modal input event, the statistics collector, updates the

corresponding modality’s input usage count and usage time. The usage count is

maintained in the modalInputCount Map field, which maps a ModalityType to a

total Integer value, and the usage time is maintained in the modalInputTime Map

field, which maps a ModalityType to a total Long value. Upon notification of each

121

command triggered, via the onCommandTriggered() callback, a CommandCallRecord

is instantiated. This CommandCallRecord is then enqueued onto a CommandCall-

Record Queue. Each CommandCallRecord queue is maintained in the Multimodal-

StatisticsCollector commandCallSetMap, which maps CommandDefinition names to

CommandCallRecord queues.

Finally, the MultimdodalStatisticsCollector provides a

getCommandCallStatistics() method for obtaining a report of all the statis-

tics collected. A sample and explanation of such a statistics report is provided in

chapter 4, section 3 on page 147.

The CommandCallRecord, shown in Figure 3.45, records the attributes of the

input events that triggered a command, and the state returned from the command

listener notified. Each CommandCallRecord includes the following:

� the name of the CommandDefinition called, in the commandName field;

� the ModalContent of the triggering input event, in the triggerContent field;

� the ModalityType of the triggering input event, in the triggerModality field;

� a List containing the ModalContents corresponding to any contributing input

events, in the modalContents field; and

� the CommandExitState returned by the CommandListener callback that was

notified of the command trigger, in the exitState field.

These values are all automatically set by the CommandCallRecord’s constructor from

information obtained from CommandEvent and CommandExitState parameters.

The CommandStatistics class, shown in Figure 3.46, is a helper class used by the

MultimodalStatisticsCollector getCommandCallStatistics() method. Each Com-

122

Figure 3.44: MultimodalStatisticsCollector

mandStatistics object is instantiated with a CommandCallRecord queue. The Com-

mandStatistics class constructor uses the records in this queue to generate printable

reports of successful, ignored, and failed calls to the associated command’s listen-

ers in addition to the input event information corresponding to these calls. Thus,

the getCommandCallStatistics() method uses a CommandStatistics instance for

each CommandCallRecord queue in the MultimodalStatisticsCollector’s command-

123

Figure 3.45: CommandCallRecord

CallSetMap.rate printable reports of successful, ignored, and failed calls to the asso-

ciated command’s listeners in addition to the input event information corresponding

to these calls. Thus, the getCommandCallStatistics() method uses a Command-

Statistics instance for each CommandCallRecord queue in the MultimodalStatistic-

sCollector’s commandCallSetMap.

3.7 The apps Package

The apps package contains the MultimodalApp class which is the base class for cre-

ating jME applications that utilize EMMET for multimodal input support. The

MultimodalApp class extends jME’s FixedFramerateGame class which creates and

initializes a basic fixed frame rate jME three-dimensional rendering environment.

However, MultimodalApp also provides a globally accessible reference the singleton

MultimodalInputManager which it both creates and initializes. In addition, Multi-

124

Figure 3.46: CommandStatistics Class

modalApp creates and initialize both the WorldObjectRegistry and the WorldObject-

TypeRegistry. Finally, MultimodalApp calls the MultimodalInputManager’s update

method every frame to drive EMMETs multimodal input recognition processing.

125

Chapter 4

EMMET Proof of Concept Tests,

Function Verification Tests, and

Demonstration Applications

1 Pre-EMMET Proof of Concept Tests

Early research into the development of EMMET involved the creation of several proof-

of-concept test cases. These test cases were created to explore possible solutions

to a number of unresolved issues integral to the implementation of EMMET. The

resolution of these issues required answers to the following questions:

� What technologies support the required speech and gesture recognition capa-

bilities?

� For those technologies that meet those required capabilities, can they be used

simultaneously, and can they be easily packaged with an application to be

126

launched remotely?

� Which 3D rendering environment should be used?

� Which 3D rendering environments can be easily packaged with an application

and launched remotely?

� How should applications be made launchable from the Web?

1.1 Early Speech Recognition Tests

1.1.1 Hello World Speech Applet

One early proof-of-concept test explored Java speech recognition technology. This

test required the creation of a simple Hello Speech World Java applet that recognized

the utterances of three salutations: “Hello World,” “Hello Computer,” and “Good

Morning.” Upon the utterance of any one of these phrases, the applet would display

the text of the utterance, thereby confirming its speech recognition. This applet

utilized the IBM JavaSpeech SDK, which includes both a speech recognition engine

and an implementation of the Java Speech API (JSAPI). The Hello Speech World

applet implementation experience provided an introduction to the Java Speech API

and placed this API atop the list of possible speech recognition solutions. This test

demonstrated that that speech recognition could be included in interfaces to Web

accessible Java applets.

1.1.2 PollyWorld Layout Tester

A subsequent proof of concept test that addressed speech recognition technologies was

the PollyWorld Layout Tester. The goal for this test was to build a speech recognition

127

interface that allowed users to direct the behavior and alter the appearance of simple

anthropomorphic, wedge-shaped characters known as “Pollys.” These Pollys and the

world in which they existed were rendered using Ken Perlin’s Java 3D renderer being

run in a Web accessible Java Applet. Figure 4.1 is a screen capture of the PollyWorld

Layout Tester applet.

In this applet, users could utter the following phrases to produce the associated

results:

“Name Polly” Names the currently selected Polly. The currently selected Polly

is the one most recently added, unless the user selected a different Polly by

clicking on it with the mouse.

“Color <Polly name> <color>” Colors the addressed Polly the requested color.

The available colors are red, blue, green, purple, yellow, or orange.

“Tell <Polly name> to <action>” Tells the addressed Polly to perform the re-

quested action. The available actions are stop, idle, scamper, swagger, broad-

jump, prowl, lumber, dejected, no, yes, dance, hotfeet, run, sprint, hop

The PollyWorld Layout Tester confirmed that the JSAPI was indeed a viable

solution for the implementation of speech recognition support in EMMET. The tester

also demonstrated an ability to support multimodal speech recognition with mouse

input, and speech recognition with a dynamic grammar. However, a discouraging

discovery made from both the Hello Speech World and PollyWorld Layout Tester

tests was that Java applications and applets utilizing the JSAPI were dependent on

the presence of a local speech recognition engine. Also, as the JSAPI implementation

used in the development of these test cases was IBM’s JavaSpeech SDK, there existed

128

Figure 4.1: PollyWorld Layout Tester Java Applet with Speech Recognition

a more specific requirement that the local speech recognition engine be from the

commercial IBM ViaVoice product line. Thus, while utilizing this technology would

prove useful in developing EMMET, it would not prove practical. Because ViaVoice

is a commercial product, utilizing it in EMMET would rely on the users’ ownership

of ViaVoice and would, therefore, diminish the availability of EMMET developed

applications.

However, further research revealed a number of JSAPI implementations and even-

tually led to the discovery of CloudGarden’s JSAPI implementation, the TalkingJava

SDK. As described earlier in the discussion of EMMET’s Foundational Technologies,

section 2.1, the TalkingJava SDK supports a variety of of speech recognition engines.

Most importantly, it supports Microsoft’s speech recognition engines, which are now

widely accessible as they are packaged with the prevailing Microsoft operating sys-

tems, Windows 2000 and WindowsXP.

129

Furthermore, these early proof-of-concept tests provided assurance that speech

recognition could be integrated into interfaces to Web accessible 3D rendered envi-

ronments and used in conjunction with conventional keyboard and mouse input.

1.2 Speech and Gesture Based Geometry Placer

The previously described speech recognition tests helped to answer some of the un-

resolved issues integral to the implementation of EMMET. However, the Speech and

Gesture Based Geometry Placer was a proof-of-concept test intent on categorically

resolving all of the remaining issues such that the implementation of EMMET could

commence. This geometry placer test was the culmination of a long series of tests that

were each implemented to address some subset of the remaining unresolved issues.

The comprehensive goal of the geometry placer was that it exhibit all of the

capabilities desired for applications that would eventually be developed using EM-

MET. Thus the geometry placer demo was to be a Web launchable application with a

multimodal speech and gesture based interface to a 3D rendered environment. Such a

solution would have to resolve what technologies are required to implement an appli-

cation that supports the simultaneous use of speech and gesture recognition, and can

easily be packaged and launched remotely via the Web. The resulting implementation

of the Speech and Gesture Based Geometry Placer did indeed provided these answers.

The geometry placer first established the solution for symbol gesture recognition

by successfully utilizing the HHReco Graphics Symbol Recognition Toolkit, described

in the EMMET Foundational Technologies section. The geometry placer used this

toolkit to allow users to add various objects to a finite planer area in a 3D rendered

environment. Users could make a circular gesture to create a new ball object, a square

gesture to create a new cube object, a triangle gesture to create a new cone object,

130

and a Christmas tree like gesture to create a new tree object. The location of these

objects was determined by calculating the center point of the gesture drawn on the

screen and projecting that point onto the planar floor upon which the objects were

added. Note that if the ray projected from the calculated center point intersected

an existing object prior to reaching the floor, then the new object was rooted at the

intersection point instead. An additional non-symbolic gesture recognition was added

in which the user could draw a slash mark across any of the existing objects to request

that they be erased. Determining exactly which object the user intended to erase was

similarly resolved by projecting the center of the slash mark until it intersected with

an existing object. The scale of the added object was also proportional to the size

of the gesture drawn. The successful implementation of these gesture recognition

interface capabilities for the geometry placer confirmed that the HHReco toolkit was

sufficient for implementing the gesture recognition support in EMMET.

Similar to the early speech recognition tests, the JSAPI was used to code the

speech recognition for the geometry placer. However, the geometry placer test used

the Cloudgarden’s TalkingJava SDK implementation of the JSAPI and used the Mi-

crosoft speech recognition engine packaged with current Microsoft operating systems.

The speech recognition capabilities for the geometry placer allowed the user to ut-

ter phrases such as “Add a <object type> here” to request that a cube, ball, or

cone object be added at the location indicated by the current mouse cursor. The

user could also utter the phrase “Erase this” to remove the object under the current

mouse cursor location. A rudimentary dialog history was used to allow user to say

“undo that” or “erase it” and resolve the anaphor to the last thing done or the last

thing added. Finally, users could speak the phrase, “Color this <color>” to request

that the object located under the current mouse point cursor be colored the requested

131

color. This successful implementation of this speech recognition confirmed that the

use of Cloudgarden’s JSAPI couple with the built-in Microsoft speech recognition

engine was a sufficient solution for the implementation of speech recognition support

in EMMET.

The 3D rendering environment used for the geometry placer was Ken Perlin’s 3D

renderer running in OpenGL hardware accelerated mode. The successful simultaneous

use of this rendering environment, HHReco gesture recognition, and Cloudgarden’s

speech recognition confirmed that these three technologies could be used together to

implement EMMETs full multimodal interface support.

Finally, a WebStart JNLP script was configured to launch the Speech and Gesture

Based Geometry Placer along with all resources required for the rendering environ-

ment, and speech and gesture recognition support. The geometry placer’s successful

launch from the Web using the JNLP file confirmed that all of the confirmed tech-

nologies could be used to implement EMMET applications that could be launched

via the Web. Figure 4.2 shows a screen capture of an interaction session with the

geometry placer as it appeared upon being launched via the Web.

2 EMMET Development Function Verification

Tests

During the development of EMMET a number of milestones were reached that marked

the completion of logical units of functionality. Each of these units encompassed the

implementation of a particular feature supported by EMMET:

1. use of each modality running in unimodal input mode,

132

Figure 4.2: Speech and Gesture Based Geometry Placer Proof-Of-Concept

2. use of multiple modalities running in unimodal input mode,

3. use of commands and triggers, and hence use of multimodal input mode,

4. use of multimodal usage statistics collection,

5. remote use via the Web, and

6. use of remote statistics collection and reporting via the Web.

As implementation of the early features listed in item one reached completion, a

concise test case was developed to ensure that each feature functioned correctly. Thus

function verification test cases were developed for testing EMMET’s unimodal input

mode support for mouse and keyboard handling, gesture recognition, and speech

recognition. Next, a function verification test was developed for testing feature item

133

two, EMMET’s support for the combined use of these modalities in unimodal input

mode. The remaining features listed in items three through six were function tested

in progressive steps that were made in the development of a final EMMET version of

the Pre-EMMET Speech and Gesture Based Geometry Placer application.

2.1 EMMET Unimodal Input Mode Test Applications

The function test cases used to verify the implementation of the early features

supported by EMMET are included in the tests package. These test cases in-

clude TestKeyboardInput, TestMouseInput, TestGestureInput, and TestSpeechInput.

These tests were critical in ensuring the completeness and correctness of EMMETs

support for each modality before moving on to the next. Each test also verified that

EMMET’s use of the underlying technology was successful.

2.1.1 Keyboard and Mouse

The first two test cases, TestKeyboardInput and TestMouseInput, validated the

implementation of keyboard and mouse support in EMMET. These test cases are

grouped together because EMMET’s support for both of these modalities utilizes

the conventional input handling interface provided by jME. However, the purpose of

providing replacement EMMET implementations of these modalities, as has already

been discussed, is to align with EMMETs overarching goal of providing a consistent

input handling interface across all modalities.

Figures 4.3 and 4.4 contain code excerpts from TestKeyboardInput and TestMou-

seInput. Each excerpt shows the instantiation of the respective modality’s singleton

input manager and the registration of one or more simple input handlers with that

input manager. The code for each callback implemented in these simple handlers

134

merely prints to standard output the contents of the ModalInput parameter passed

to them. For all of unimodal input mode tests, the 3D rendered environment is a

placeholder terrain generated from a height map.

KeyboardInputManager keyboardManager =
KeyboardInputManager.getKeyboardManager(input);

keyboardManager.addKeyHandler(new KeyHandler()
{
public void onKeyPressed(KeyContent c)
{

System.out.println("Key Pressed: " + c);
}

public void onKeyReleased(KeyContent c)
{

System.out.println("Key Released: " + c);
}

});

Figure 4.3: TestKeyboardInput Excerpt

Note the similarity between EMMET’s interfaces for conventional modality input

handling and other commonly used interfaces for such input handling like Swing

and AWT. This similarity is intentional and evolved from the belief that EMMET’s

conventional input modality interfaces could be both familiar to users of existing

input handling interfaces, and, yet, consistent with EMMET’s additional speech and

gesture input handling interfaces.

135

MouseInputManager mouseManager =
MouseInputMananger.getMouseManager(input);

mouseManager.addMouseHandler(new MouseHandler() {

public void onMouseDown(MouseContent c)
{

System.out.println("MouseDown: " + c);
}

public void onMouseUp(MouseContent c)
{

System.out.println("MouseUp: " + c);
}

});

mouseManager.addMouseMotionHandler(new MouseMotionAdapter() {

public void onMouseDragged(MouseContent c)
{

System.out.println("MouseDragged: " + c);
}

public void onMouseMoved(MouseContent c)
{

System.out.println("MouseDragged: " + c);
}

});
}

Figure 4.4: TestMouseInput Excerpt

136

2.1.2 Gesture

The TestGestureInput application parallels the structures of TestKeyboardInput and

TestMouseInput to verify EMMET’s gesture recognition input handling interface.

The relevant TestGestureInput excerpt is shown in Figure 4.5. Similar to the key-

board and mouse test cases, a GestureHandler, in which each callback implementation

simply prints the input parameters, is registered with the singleton GestureInput-

Manager. Prior to registering the Gesture Handler, however, the TestGestureInput

application also calls upon the gesture manager to load an HHReco gesture training

file. This file was created using the HHReco toolkit and contained training samples

for shapes such as a star, cloud, tree, and squiggle.

GestureInputManager gestureManager =
GestureInputManager.getGestureManager();

gestureManager.loadGestureTrainingFile(
getClass().getResource("data/gesture/simple_gestures.sml"));

gestureManager.addGestureHandler(new GestureHandler()
{

public void onGestureBegun(int x, int y)
{
System.out.println("Gesture Begin: (" + x + "," + y + ")");

}

public void onPointAdded(int x, int y)
{
System.out.println("Gesture Point Added: (" + x + "," + y + ")");

}

public void onGestureCompleted(GestureContent c)
{
System.out.println("Gesture Complete: " + c);

}
});

Figure 4.5: TestGestureInput Excerpt

137

TestGestureInput verifies EMMET’s unimodal gesture recognition support, first

by ensuring that user drawn gestures are accurately recognized by the GestureInput

manager, second by ensuring that the results of the recognition are properly converted

into a GestureContent object, and third by ensuring that all registered GestureHan-

dler implementations are properly notified and passed the generated Gesture object.

The screen grab shown in Figure 4.6, is of a running TestGestureInput application in

which the user is drawing a tree gesture object.

Figure 4.6: TestGestureInput Application with User Drawing a Tree Gesture

2.1.3 Speech

The final installment of the individual modal input manager test cases is TestSpeech-

Input. For this test case, a number of RuleHandlers were bound to dynamically

defined speech rules allowing the user to exit the test, regenerate the terrain, and

138

look around the world by turning to the left or right. Figure 4.7 is an excerpt from

TestSpeechInput showing the instantiation of the speech input manager following

by the code for defining and registering each speech rule. TestSpeechInput verifies

the EMMET implementation of unimodal speech recognition, by ensuring that new

speech rules could be dynamically defined and added to the SpeechInputManagers

grammar, and that RuleHandlers could be defined and registered to receive notifica-

tion when certain speech rules are recognized.

2.1.4 Combined Speech and Gesture in Unimodal Input Mode

The prior testcases verified the implementation of each EMMET modal input manager

when used individually in unimodal input mode. The next step was to verify that

these input managers could all be instantiated and coexist in one application that

simultaneously allowed any modality to be used in unimodal input mode.

To provide the aforementioned verification, a test case aggregate of the individual

modal input testcases was developed called TestAllModalInputs. In TestAllModal-

Inputs, the user can provide keyboard, mouse, gesture, or speech input. Also, the

instantiation of each input manager and both the creation and registration of each

manager’s corresponding input handlers was derived from the individual modal input

test cases. Thus in TestAllModalInputs, the response to each user input is the same

as the response implemented for the same input in its associated individual modal

input test case.

For example, a user of TestAllModalInputs can draw a symbol gesture and wit-

ness the response implemented in TestGestureInput, which was to see the resulting

recognized symbol name printed to standard output. The user can also utter the

phrase, “Turn left”, to witness the TestSpeechInput response of turning the viewing

139

SpeechInputManager speechManager = SpeechInputManager.getSpeechManager();

speechManager.addRule("exitTest", "Exit Test", new RuleHandler()
{
public void onRuleRecognized(RuleContent c)
{
System.out.println(c); finish();

}
});

speechManager.addRule(
"NewTerrain", "[Generate] New Terrain", new RuleHandler()

{
public void onRuleRecognized(RuleContent c)
{
System.out.println(c); regenerateTerrain();

}
});

speechManager.addRule("turnLeft", "Turn Left", new RuleHandler()
{
public void onRuleRecognized(RuleContent c)
{
System.out.println(c); actionInProgress = LEFT;

}
});

speechManager.addRule("turnRight", "Turn Right", new RuleHandler()
{
public void onRuleRecognized(RuleContent c)
{
System.out.println(c); actionInProgress = RIGHT;

}
});

speechManager.addRule("turnStop", "Stop turning", new RuleHandler()
{
public void onRuleRecognized(RuleContent c)
{
System.out.println(c); actionInProgress = NONE;

}
});

Figure 4.7: TestSpeechInput Excerpt

140

camera to the left.

TestAllModalInputs verified the combined use of EMMET’s modal input managers

running in unimodal input mode. Such verification was essential before an attempt

could be made to implement EMMET’s true multimodal support which would allow

cross-modal interpretation of input events and input event history lookup.

141

2.2 EMMET Multimodal Input Mode Test Application

The final test case developed, prior to work on a full EMMET demonstration appli-

cation, was TestMultimodalInput. This test case moved into the use of the Multi-

modalInputManager as the central access point for input event handling. Thus the

instantiation of all the single input managers was left to the MultimodalInputMan-

ager. Also, calls to commonly used methods in any individual input managers, could

be made via the convenience methods provided by the MultimodalInputManger. In

addition, a reference to the MultimodalInputManager was readily available, as it is

already instantiated and initialized by the MultimodalApp base class from which

TestMultimodalInput was derived. This reference to the MultimodalInputManager is

the emmetInputHandler variable and is available to any multimodal application that

extends the MultimodalApp base class.

The TestMultimodalInput test case also utilizes the command and triggers

methodology introduced for multimodal input mode event handling. Thus, simple

speech rules are defined and activated by using the CommandDefinitionRegistry’s

addBasicSpeechDefinition() method. Figure 4.8 shows the definition of a new

speech command for responding to the user’s utterance of the phrase “Test Speech”.

Note that addBasicSpeechDefinition() is a convenience method that performs a

number of tasks in the background. For example, the following tasks are performed

when addBasicSpeechDefinition() is called in the code excerpt:

1. create new Command named “TestSpeech”,

2. define a new grammar rule called <testSpeech> that recognizes the utterance

“Test Speech”,

3. create a new SpeechRuleTrigger that is triggered by the recognition of the

142

<testSpeech> speech rule, and

4. register the new “TestSpeech” Command with the CommandDefinitionRegistry.

The CommandDefinitionRegistry’s convenience methods for defining new

commands return the new CommandDefinition object defined. There-

fore, in the code excerpt, the new CommandDefinition object returned by

addBasicSpeechDefinition() is used to call addCommandListener(), which is

passed a new CommandAdapter argument that responds when the “Test Speech”

command is triggered.

CommandDefinitionRegistry.
addBasicSpeechDefinition("TestSpeech", "testSpeech", "Test Speech").
addCommandListener(
new CommandAdapter()
{
public CommandExitState onSpeechTrigger(RuleContent content,

CommandEvent event)
{
System.out.println{"\"Test Speech\" Recognized");

return CommandExitState.SUCCEEDED;
}

});

Figure 4.8: Basic Speech Definition Use of Command and Trigger

The code excerpt in Figure 4.9 shows the implementation of a “Look left” Com-

mandDefinition. In the code excerpt a new CommandDefinition is being added to

the CommandDefinitionRegistry via a call to addDefinition(). This command and

trigger implementation mimics the <turnLeft> SpeechRule creation and RuleHandler

registration performed in TestSpeechInput.

Similar to addBasicSpeechDefinition(), the addDefinition() method per-

forms many tasks in the background for the programmer. However, addDefinition()

143

CommandDefinitionRegistry.addDefinition(
"LookLeft",
new ModeTrigger[] {
new SpeechRuleTrigger("lookLeft", "Look Left"),
new KeyboardTrigger(Keyboard.KEY_LEFT, KeyInputType.KEY_DOWN)

}).addCommandListener(
new CommandAdapter()
{
public CommandExitState onCommandTrigger(ModeContent content,

CommandEvent event)
{
actionInProgress = TURNING_LEFT;
return CommandExitState.SUCCEEDED;

}
});

Figure 4.9: Look Left Definition Responds to Speech or Keyboard Triggers

requires the programmer to manually create the ModeTriggers for the Command and

to pass those triggers in an array argument. This requirement is necessary to allow

the addition of an indefinite number of command triggers from multiple modalities

to the command definition being defined. Thus, in the TestMultimodalInput code

excerpt, both a SpeechRuleTrigger and a KeyboardTrigger are defined and added to

the same CommandDefinition. The SpeechRuleTrigger defines a new grammar rule

called <lookLeft> which is fired by an utterance of the phrase “Look Left”, while the

KeyboardTrigger is defined to respond when the left arrow key is down.

Upon creating the “LookLeft” CommandDefinition and adding both speech and

keyboard ModeTriggers, a CommandListener is added to the CommandDefinition.

The command listener implements the generic onCommandTrigger() method, that

responds to the firing of either ModeTrigger, to set the enclosing application’s action-

InProgress state variable to turning left. Because there are no tag or modal con-

tent references required by the CommandListener, the call to onCommandTrigger()

144

is assumed to have been successful and, hence, CommandExitState.succeeded is

returned.

The TestMultimodalInput code excerpt in Figure 4.10 illustrates how one would

utilize multimodal input mode to color objects in a rendered world. The “Color-

Something” Command Definition being created in the excerpt defines a command

that required cross-modal interpretation of both mouse and speech input. To achieve

this cross-modal interpretation, tags are included in the speech rule definition and are

later referenced to resolve the object being diecticly indicated by the mouse cursor.

CommandDefinitionRegistry.addBasicSpeechDefinition(
"ColorSomething",
"colorSomething",
"color <object_ref> {world_object} <color> {color}").addCommandListener(
new CommandAdapter()
{
public CommandExitState onSpeechTrigger(RuleContent content,

CommandEvent event)
{
System.out.println("color "
+ event.getTagContents("world_object").getClass().getName()
+ " "
+ (ColorRGBA)event.getTagContents("color"));

return CommandExitState.SUCCEEDED;
}

});

Figure 4.10: ColorSomething Speech Definition Responds to Multimodal Input

The “colorSomething” SpeechRuleTrigger is defined and added to the “Color-

Something” CommandDefinition as described earlier in the “TestSpeech” explana-

tion. However, the CommandListener registered with the “ColorSomething” Com-

mandDefinition implements onSpeechTrigger() to additionally take advantage of

the built in tag support provided by multimodal input mode. With this tag sup-

145

port, EMMET’s MultimodalIntegrationAgent internally resolves the {world object}

tag into the object indicated by the user during the utterance of the <object ref>.

For testing purpose, onSpeechTrigger() simply obtains and displays the resolved

{world object}’s class along with the resolution of a second tag, {color}, which is

resolved to the color specified by the <color> utterance.

Note that a CommandDefinition’s dependence upon input from multiple modali-

ties does not entail a need for multiple triggers. Triggers only define the input events

that trigger or initiate the recognition of a command. For example, the “Color-

Something” CommandDefinition depends on both speech and mouse input. Yet the

definition only has a trigger for speech because it is the utterance of the phrase that

triggers the command, not any input from the mouse.

Also note that, for simple function verification testing, the CommandListener

defined in the code excerpt always returns CommandExitState.succeeded. How-

ever for accurate statistics collection and multimodal input mode use, the conscien-

tious programmer should consider returning CommandExitState.failed if either of

the tag contents are null, or possibly returning CommandExitState.ignored if the

{world object} tag resolves to a world object that can not be colored.

The TestMultimodalInput function test verified EMMET’s implementation of the

command-and-triggers architecture and multimodal input mode. In addition to the

discussed code excerpts, the following CommandDefinitions were defined in TestMul-

timodalInput to verify other aspects of EMMET’s support:

� a CommandDefinition triggered by inputs from all modalities,

� a CommandDefinition using combined input from both speech and gesture,

� speech triggered CommandDefinitions dependent on multiple tags requiring

146

mouse location or world object resolution,

� at least one CommandDefinition for each CommandDefintion creation conve-

nience method provided by the CommandDefinitionRegistry, and

� a CommandDefinition utilizing input event history support.

3 EMMET Geometry Placer Demonstration Ap-

plication

Upon verifying EMMET’s implementation of unimodal and multimodal input mode

support, work commenced on the development of an application to exhibit the pre-

viously verified support as well as the support provided by EMMET for remotely

launching EMMET applications and for remote statistics collection. This exhibitory

application utilized EMMET to rapidly reproduce and also enhance the pre-EMMET

Speech and Gesture Based Geometry Placer proof-of-concept test.

Figure 4.11 shows a screen capture of a user drawing a square gesture in the

EMMET Geometry Placer application. In the EMMET Geometry Placer the user

interacts with a 3D rendered world in a manner similar to that of the pre-EMMET

version. However, the EMMET Geometry Placer uses a jME sky box to create a

mountainous feel for that world and a transparent plane, floating above, to provide

the floor upon which objects are created. The purpose of the sky box is to establish

that the underlying jME 3D renderer, upon which EMMET is built, can produce rich

and sometimes complex content. In actuality, the environment used for the EMMET

Geometry Placer merely hints at the capabilities of the jME 3D render.

Figure 4.12 shows the EMMET Geometry Placer registering the types of ob-

147

Figure 4.11: EMMET Geometry Placer

148

jects that can be created in the world. These object types are registered with the

WorldObjectTypeRegistry and are used by the WorldObjectTypeResolver to resolve

tagged occurrences of the <object type> rule when used in defining speech rules.

The Geometry Placer next registers the root node of the 3D modeled scene with the

WorldObjectRegistry. This root node is used by the WorldObjectResolver in travers-

ing the scene graph to resolve the tagged occurrence of the <object ref> rule when

used in defining speech rules.

// Register world object types with the world object type registry
WorldObjectTypeRegistry.getInstance().registerWorldObjectType("ball");
WorldObjectTypeRegistry.getInstance().registerWorldObjectType("pyramid");
WorldObjectTypeRegistry.getInstance().registerWorldObjectType("cube");

// Initialize the world object registry with this world’s root scene node
WorldObjectRegistry.initalizeInstance(rootNode);

Figure 4.12: Registering World Object Types and the WorldObjectRegistry

The code excerpts in Figures 4.13 and 4.14 show the Geometry Placer’s use

of EMMET’s full multimodal input mode capabilities. The first code excerpts shows

the definition and registration of an “addNewObject” CommandDefinition for adding

objects to the 3D rendered world. Triggers are defined for “addNewObject” that

respond to input from any of EMMET’s supported modalities.

Two speech rule triggers are defined for “addNewObject.” The first speech rule,

“addObject,” recognizes utterances in which the user requests that an object of a

certain type be added to the 3D world at a diecticly indicated location on the planar

floor. The user may optionally specify what color the new object should be. Note

that the object types recognized by this speech rule are the types that were registered

with the WorldObjectTypeRegistry. Tags are also defined in the first speech rule to

149

CommandDefinitionRegistry.addDefinition(
"addNewObject",
new ModeTrigger[]
{

new SpeechRuleTrigger(
"addObject",
"Add [(a|an)] [<color> {color}] <object_type> {object_type}
<diectic_ref> {location}"),

new SpeechRuleTrigger("addAgain", "and <diectic_ref> {location}"),

new GestureTrigger("ball", GestureType.SYMBOL_GESTURE),
new GestureTrigger("cube", GestureType.SYMBOL_GESTURE),
new GestureTrigger("pyramid", GestureType.SYMBOL_GESTURE),

new KeyboardTrigger(Keyboard.KEY_B, KeyInputType.KEY_DOWN),
new KeyboardTrigger(Keyboard.KEY_C, KeyInputType.KEY_DOWN),
new KeyboardTrigger(Keyboard.KEY_P, KeyInputType.KEY_DOWN),

new MouseTrigger(MouseInputType.MOUSE_DOWN,
MouseButtonStateType.MOUSE_BUTTON_2)

})

Figure 4.13: Geometry Placer “addNewObject” CommandDefinition Triggers

allow “addNewObject” CommandListeners to retrieve the color, object type, and

screen location specified. The second speech rule, “addAgain,” allows the user to

use phrases such as “and here” or “and there” to request the creation of another

instance of the same object type specified in a prior utterance of “addObject.” A

CommandListen

Three gesture rule triggers are also defined for the “addNewObject” Command-

Definition. Each of these gesture triggers responds to the recognition of a symbol

gesture that is associated with a certain world object type. Hence, gesture triggers

are defined to recognize a circle gesture, to add a new ball; a square gesture, to add

a new cube; and a triangle gesture, to add a new pyramid.

150

Similarly, three keyboard triggers are defined for “addNewObject”. These triggers

allow the user to press the ‘B’, ‘C’, or ‘P’ key to respectively add a new ball, cube,

or pyramid object.

Finally, a mouse trigger is defined for “addNewObject” to add a new object when

the user presses the right (or second) mouse button.

The code excerpt in Figure 4.14 shows the CommandListener implemented to

handle the triggering of “addNewObject” command events. Although each callback

implemented in the listener ultimately calls the addObject() method, passing object

type and mouse location parameters, a modal callback for each modality was required.

This requirement stems from differences in the means used to obtain the object type

and mouse location parameters. For example, the mouse location is obtained in the

onGestureTrigger() callback on line 5 from the drawn gesture’s center point, and

obtained in the onSpeechTrigger() callback from the {location} tag contents on line

27.

A number of seemingly unusual steps are taken in the implementation of

onMouseTrigger(). The steps on lines 18–19 ensure that the current mouse cur-

sor location is not over a graphic user interface (GUI) widget, such as the “Object

Creation Mode” button. If the mouse cursor is over a GUI button then the triggering

of the command event should be ignored. The step on line 20 that follows is used to

obtain the objectType from the current state of the “Object Creation Mode” button.

Lines 21–22 ignore the trigger when the “Object Creation Mode” state is “erase.”

The “addNewObject” CommandListener’s onSpeechTrigger() callback is imple-

mented in lines 25–34. As previously mentioned, the mouse location corresponding to

the diectic reference, made in the speech utterance, is obtained from the {location}

tag contents. The object type specified in the utterance is dependent on which speech

151

1 new CommandListener()

2 {

3 public CommandExitState onGestureTrigger(GestureContent content, CommandEvent event)

4 {

5 Point mouseLocation = content.getGestureCenterPoint();

6 String objectType = content.getGestureSymbol();

7 return CommandExitState.booleanToSuccessOrFailure(addObject(objectType, mouseLocation));

8 }

9 public CommandExitState onKeyTrigger(KeyContent content, CommandEvent event)

10 {

11 Point mouseLocation = event.getTriggerMouseLocation();

12 String objectType = keyCodeToObjectName(content.getKeyCode());

13 return CommandExitState.booleanToSuccessOrIgnore(addObject(objectType, mouseLocation));

14 }

15 public CommandExitState onMouseTrigger(MouseContent content, CommandEvent event)

16 {

17 Point mouseLocation = content.getLocation();

18 if (uiManager.isUIManagedObjectAt(JMEUtil.awtToJME3D(mouseLocation)))

19 return CommandExitState.IGNORED;

20 String objectType = modeButton.getCurrentMode();

21 if (objectType.equalsIgnoreCase("erase"))

22 return CommandExitState.IGNORED;

23 return CommandExitState.booleanToSuccessOrIgnore(addObject(objectType, mouseLocation));

24 }

25 public CommandExitState onSpeechTrigger(RuleContent content, CommandEvent event)

26 {

27 Point mouseLocation = (Point)event.getTagContents("location");

28 String objectType = null;

29 if (content.isInstanceOfRule("addAgain"))

30 objectType = WorldObjectTypeRegistry.getInstance().getLastResolveObjectType();

31 else

32 objectType = (String) event.getTagContents("object_type");

33 return CommandExitState.booleanToSuccessOrFailure(addObject(objectType, mouseLocation));

34 }

35 });

Figure 4.14: Geometry Placer “addNewObject” CommandDefinition Listener

rule trigger occurred. For the “addAgain” speech rule, the object type is the last re-

solved object type from the WorldObjectTypeRegistry as shown in line 30. Otherwise,

the trigger was “addObject” and the object type is obtained from the {object type}

tag.

The Java Network Launching Protocol (JNLP) file used to launch the EMMET

152

Geometry Placer via Java� WebStart is shown in Figure 4.15. This JNLP file is

included with EMMET and can be used as a template for launching future EMMET

based applications. The required resources and JARs referenced by the JNLP file per-

tain to the HHReco Toolkit, jME, CloudGarden’s TalkingJava SDK, and the JavaMail

API. The one native library resource in the JNLP file includes the DLLs required for

jME and CloudGarden. Some resources can be omitted depending on which EMMET

features are used: the activation, mailapi, and smtp JAR files are only required for

remote statistics collection; the cgjsapi JAR is only required if speech recognition is

utilized; and the hhreco JAR is only requires if gesture symbol recognition is utilized.

While the Geometry Placer application is running, EMMET’s statistic collection

engine is constantly accumulating data about modal input events, command triggers,

and command listener calls. By default, this statistics collection is automatically

engaged and requires no additional code in EMMET applications. When launched

via the Web, an application can activate the remote reporting of these statistics just

prior to exiting the application as shown in Figure 4.16. The SMTPResultMailer

sends the collected statistics to the e-mail address specified during its instantiation.

An excerpt from the statistics report sent from an interaction with the Geometry

Placer is shown in Figure 4.17. This excerpt shows the usage statistics for the afore-

mentioned “addNewObject” command. These statistics provide a detailed account of

which modalities and combinations of modalities were used to add objects and with

what degree of success. Note that both of the SpeechRuleTriggers for “addNewOb-

ject” utilized tags and thus any successful triggering of the command by speech would

be considered multimodal. The details pertaining to multimodal speech usage also

include the resolved values for each tag. Additionally, note that the KeyboardTrig-

gers for “addNewObject” required the mouse location in order to place the objects

153

<?Xml version="1.0" encoding="utf-8"?>
<!-- EMMET API Demo via Web Start -->
<jnlp spec="1.0+" codebase="http://cat.nyu.edu/~robbins/EMMET/" href="EMMET.jnlp">
<information>
<title>EMMET API GeometryPlacer Demo</title>
<vendor>Christopher Robbins</vendor>
<homepage href="http://mrl.nyu.edu/~robbins/"/>
<description>EMMET API Demo</description>
<description kind="short">

Extensible MultiModal Environment Toolkit API Demo
</description>
<offline-allowed/>

</information>
<security><all-permissions/></security>
<resources>
<j2se href="http://java.sun.com/products/autodl/j2se" version="1.4+"\

initial-heap-size="64m" max-heap-size="192m"/>
<jar href="EMMET.jar"/>
<jar href="jars/hhreco.jar"/>
<jar href="jars/jme.jar"/>
<jar href="jars/lwjgl.jar"/>
<jar href="jars/jmeui.jar"/>
<jar href="jars/libsvm.jar"/>
<jar href="jars/cgjsapi.jar"/>
<jar href="jars/activation.jar"/>
<jar href="jars/mailapi.jar"/>
<jar href="jars/smtp.jar"/>

</resources>
<resources os="Windows">
<nativelib href="lib/EMMET-native-win32.jar"/>

</resources>
<application-desc main-class="demos.EMMETGeometryPlacer"></application-desc>

</jnlp>

Figure 4.15: EMMET Geometry Placer Java� WebStart JNLP File

and thus are also considered multimodal.

In conclusion, the EMMET Geometry Placer application verified EMMET’s im-

plementation of all proposed features. These features included support for: unimodal

and multimodal user interface development utilizing less conventional input methods

such as gesture and speech recognition; remote launching of EMMET created appli-

154

String results =
metInputHandler.getStatisticsCollector().getCommandCallStatistics();

SMTPResultsMailer.sendResults(results);

Figure 4.16: EMMET Geometry Placer Remote Statistics Reporting

cation via the Web, and interface usage statistics gathering and remote reporting.

155

A
D
D
N
E
W
O
B
J
E
C
T
:

S
u
m
m
a
r
y
:

M
U
L
T
I
M
O
D
A
L
:

[
t
o
t
a
l
=

1
1
;

s
u
c
c
e
s
s
e
s
=

1
0

(
9
0
.
9
%
)
;

f
a
i
l
u
r
e
s
=

0
(
0
.
0
%
)
;

i
g
n
o
r
e
d
=

1
(
9
.
1
%
)
]

S
P
E
E
C
H
:

[
t
o
t
a
l
=

0
]

G
E
S
T
U
R
E
:

[
t
o
t
a
l
=

3
;

s
u
c
c
e
s
s
e
s
=

3
(
1
0
0
.
0
%
)
;

f
a
i
l
u
r
e
s
=

0
(
0
.
0
%
)
;

i
g
n
o
r
e
d
=

0
(
0
.
0
%
)
]

M
O
U
S
E
:

[
t
o
t
a
l
=

1
1
;

s
u
c
c
e
s
s
e
s
=

6
(
5
4
.
5
%
)
;

f
a
i
l
u
r
e
s
=

0
(
0
.
0
%
)
;

i
g
n
o
r
e
d
=

5
(
4
5
.
5
%
)
]

K
E
Y
B
O
A
R
D
:

[
t
o
t
a
l
=

0
]

D
e
t
a
i
l
s
:

(
S
U
C
C
E
E
D
E
D
;

M
U
L
T
I
M
O
D
A
L
(
<
a
d
d
O
b
j
e
c
t
>
,

A
d
d

a
g
r
e
e
n

b
a
l
l

h
e
r
e
)
;

[
S
P
E
E
C
H
(
<
c
o
l
o
r
>
,

g
r
e
e
n

)
,

S
P
E
E
C
H
(
<
o
b
j
e
c
t
_
t
y
p
e
>
,

b
a
l
l

)
,

S
P
E
E
C
H
(
<
d
i
e
c
t
i
c
_
r
e
f
>
,

h
e
r
e

)
,

M
O
U
S
E
(
<
M
O
U
S
E
_
H
O
V
E
R
>
,

j
a
v
a
.
a
w
t
.
P
o
i
n
t
[
x
=
5
3
6
,
y
=
3
6
4
]
,

M
O
U
S
E
_
B
U
T
T
O
N
_
N
O
N
E
)
,

S
P
E
E
C
H
(
<
a
d
d
O
b
j
e
c
t
>
,

A
d
d

a
g
r
e
e
n

b
a
l
l

h
e
r
e
)
]
)

(
S
U
C
C
E
E
D
E
D
;

M
U
L
T
I
M
O
D
A
L
(
<
a
d
d
O
b
j
e
c
t
>
,

A
d
d

a
r
e
d

b
a
l
l

h
e
r
e
)
;

[
S
P
E
E
C
H
(
<
c
o
l
o
r
>
,

r
e
d

)
,

S
P
E
E
C
H
(
<
o
b
j
e
c
t
_
t
y
p
e
>
,

b
a
l
l

)
,

S
P
E
E
C
H
(
<
d
i
e
c
t
i
c
_
r
e
f
>
,

h
e
r
e

)
,

M
O
U
S
E
(
<
M
O
U
S
E
_
H
O
V
E
R
>
,

j
a
v
a
.
a
w
t
.
P
o
i
n
t
[
x
=
3
0
2
,
y
=
4
8
0
]
,

M
O
U
S
E
_
B
U
T
T
O
N
_
N
O
N
E
)
,

S
P
E
E
C
H
(
<
a
d
d
O
b
j
e
c
t
>
,

A
d
d

a
r
e
d

b
a
l
l

h
e
r
e
)
]
)

(
S
U
C
C
E
E
D
E
D
;

M
U
L
T
I
M
O
D
A
L
(
<
a
d
d
O
b
j
e
c
t
>
,

A
d
d

a
y
e
l
l
o
w

b
a
l
l

h
e
r
e
)
;

[
S
P
E
E
C
H
(
<
c
o
l
o
r
>
,

y
e
l
l
o
w

)
,

S
P
E
E
C
H
(
<
o
b
j
e
c
t
_
t
y
p
e
>
,

b
a
l
l

)
,

S
P
E
E
C
H
(
<
d
i
e
c
t
i
c
_
r
e
f
>
,

h
e
r
e

)
,

M
O
U
S
E
(
<
M
O
U
S
E
_
H
O
V
E
R
>
,

j
a
v
a
.
a
w
t
.
P
o
i
n
t
[
x
=
6
7
8
,
y
=
2
8
2
]
,

M
O
U
S
E
_
B
U
T
T
O
N
_
N
O
N
E
)
,

S
P
E
E
C
H
(
<
a
d
d
O
b
j
e
c
t
>
,

A
d
d

a
y
e
l
l
o
w

b
a
l
l

h
e
r
e
)
]
)

(
S
U
C
C
E
E
D
E
D
;

M
U
L
T
I
M
O
D
A
L
(
<
a
d
d
O
b
j
e
c
t
>
,

A
d
d

a
p
u
r
p
l
e

b
a
l
l

h
e
r
e
)
;

[
S
P
E
E
C
H
(
<
c
o
l
o
r
>
,

p
u
r
p
l
e

)
,

S
P
E
E
C
H
(
<
o
b
j
e
c
t
_
t
y
p
e
>
,

b
a
l
l

)
,

S
P
E
E
C
H
(
<
d
i
e
c
t
i
c
_
r
e
f
>
,

h
e
r
e

)
,

M
O
U
S
E
(
<
M
O
U
S
E
_
H
O
V
E
R
>
,

j
a
v
a
.
a
w
t
.
P
o
i
n
t
[
x
=
5
2
4
,
y
=
5
7
0
]
,

M
O
U
S
E
_
B
U
T
T
O
N
_
N
O
N
E
)
,

S
P
E
E
C
H
(
<
a
d
d
O
b
j
e
c
t
>
,

A
d
d

a
p
u
r
p
l
e

b
a
l
l

h
e
r
e
)
]
)

(
S
U
C
C
E
E
D
E
D
;

M
U
L
T
I
M
O
D
A
L
(
<
a
d
d
O
b
j
e
c
t
>
,

A
d
d

a
c
u
b
e

h
e
r
e
)
;

[
S
P
E
E
C
H
(
<
o
b
j
e
c
t
_
t
y
p
e
>
,

c
u
b
e

)
,

S
P
E
E
C
H
(
<
d
i
e
c
t
i
c
_
r
e
f
>
,

h
e
r
e

)
,

M
O
U
S
E
(
<
M
O
U
S
E
_
H
O
V
E
R
>
,

j
a
v
a
.
a
w
t
.
P
o
i
n
t
[
x
=
8
2
4
,
y
=
3
8
8
]
,

M
O
U
S
E
_
B
U
T
T
O
N
_
N
O
N
E
)
,

S
P
E
E
C
H
(
<
a
d
d
O
b
j
e
c
t
>
,

A
d
d

a
c
u
b
e

h
e
r
e
)
]
)

(
S
U
C
C
E
E
D
E
D
;

M
U
L
T
I
M
O
D
A
L
(
<
a
d
d
O
b
j
e
c
t
>
,

A
d
d

a
p
y
r
a
m
i
d

h
e
r
e
)
;

[
S
P
E
E
C
H
(
<
o
b
j
e
c
t
_
t
y
p
e
>
,

p
y
r
a
m
i
d

)
,

S
P
E
E
C
H
(
<
d
i
e
c
t
i
c
_
r
e
f
>
,

h
e
r
e

)
,

M
O
U
S
E
(
<
M
O
U
S
E
_
H
O
V
E
R
>
,

j
a
v
a
.
a
w
t
.
P
o
i
n
t
[
x
=
2
1
2
,
y
=
6
5
0
]
,

M
O
U
S
E
_
B
U
T
T
O
N
_
N
O
N
E
)
,

S
P
E
E
C
H
(
<
a
d
d
O
b
j
e
c
t
>
,

A
d
d

a
p
y
r
a
m
i
d

h
e
r
e
)
]
)

(
S
U
C
C
E
E
D
E
D
;

G
E
S
T
U
R
E
(
<
b
a
l
l
>
,

9
3
.
7
%
)
;

[
]
)

(
S
U
C
C
E
E
D
E
D
;

G
E
S
T
U
R
E
(
<
p
y
r
a
m
i
d
>
,

6
0
.
4
%
)
;

[
]
)

(
S
U
C
C
E
E
D
E
D
;

G
E
S
T
U
R
E
(
<
c
u
b
e
>
,

9
2
.
6
%
)
;

[
]
)

(
S
U
C
C
E
E
D
E
D
;

M
U
L
T
I
M
O
D
A
L
(
<
B
>
,

K
E
Y
_
D
O
W
N
)
;

[
M
O
U
S
E
(
<
M
O
U
S
E
_
H
O
V
E
R
>
,

j
a
v
a
.
a
w
t
.
P
o
i
n
t
[
x
=
4
6
0
,
y
=
4
6
0
]
,

M
O
U
S
E
_
B
U
T
T
O
N
_
N
O
N
E
)
,

K
E
Y
B
O
A
R
D
(
<
B
>
,

K
E
Y
_
D
O
W
N
)
]
)

(
S
U
C
C
E
E
D
E
D
;

M
U
L
T
I
M
O
D
A
L
(
<
P
>
,

K
E
Y
_
D
O
W
N
)
;

[
M
O
U
S
E
(
<
M
O
U
S
E
_
H
O
V
E
R
>
,

j
a
v
a
.
a
w
t
.
P
o
i
n
t
[
x
=
3
1
8
,
y
=
2
7
8
]
,

M
O
U
S
E
_
B
U
T
T
O
N
_
N
O
N
E
)
,

K
E
Y
B
O
A
R
D
(
<
P
>
,

K
E
Y
_
D
O
W
N
)
]
)

(
S
U
C
C
E
E
D
E
D
;

M
U
L
T
I
M
O
D
A
L
(
<
C
>
,

K
E
Y
_
D
O
W
N
)
;

[
M
O
U
S
E
(
<
M
O
U
S
E
_
H
O
V
E
R
>
,

j
a
v
a
.
a
w
t
.
P
o
i
n
t
[
x
=
3
6
6
,
y
=
5
9
4
]
,

M
O
U
S
E
_
B
U
T
T
O
N
_
N
O
N
E
)
,

K
E
Y
B
O
A
R
D
(
<
C
>
,

K
E
Y
_
D
O
W
N
)
]
)

(
S
U
C
C
E
E
D
E
D
;

M
U
L
T
I
M
O
D
A
L
(
<
P
>
,

K
E
Y
_
D
O
W
N
)
;

[
M
O
U
S
E
(
<
M
O
U
S
E
_
H
O
V
E
R
>
,

j
a
v
a
.
a
w
t
.
P
o
i
n
t
[
x
=
6
4
0
,
y
=
3
7
4
]
,

M
O
U
S
E
_
B
U
T
T
O
N
_
N
O
N
E
)
,

K
E
Y
B
O
A
R
D
(
<
P
>
,

K
E
Y
_
D
O
W
N
)
]
)

(
S
U
C
C
E
E
D
E
D
;

M
O
U
S
E
(
<
M
O
U
S
E
_
D
O
W
N
>
,

j
a
v
a
.
a
w
t
.
P
o
i
n
t
[
x
=
2
3
8
,
y
=
3
4
6
]
,

M
O
U
S
E
_
B
U
T
T
O
N
_
2
)
;

[
]
)

(
S
U
C
C
E
E
D
E
D
;

M
O
U
S
E
(
<
M
O
U
S
E
_
D
O
W
N
>
,

j
a
v
a
.
a
w
t
.
P
o
i
n
t
[
x
=
6
0
4
,
y
=
4
5
6
]
,

M
O
U
S
E
_
B
U
T
T
O
N
_
2
)
;

[
]
)

(
S
U
C
C
E
E
D
E
D
;

M
O
U
S
E
(
<
M
O
U
S
E
_
D
O
W
N
>
,

j
a
v
a
.
a
w
t
.
P
o
i
n
t
[
x
=
1
0
4
,
y
=
5
2
2
]
,

M
O
U
S
E
_
B
U
T
T
O
N
_
2
)
;

[
]
)

(
S
U
C
C
E
E
D
E
D
;

M
O
U
S
E
(
<
M
O
U
S
E
_
D
O
W
N
>
,

j
a
v
a
.
a
w
t
.
P
o
i
n
t
[
x
=
5
5
6
,
y
=
6
1
2
]
,

M
O
U
S
E
_
B
U
T
T
O
N
_
2
)
;

[
]
)

(
S
U
C
C
E
E
D
E
D
;

M
O
U
S
E
(
<
M
O
U
S
E
_
D
O
W
N
>
,

j
a
v
a
.
a
w
t
.
P
o
i
n
t
[
x
=
4
5
4
,
y
=
2
4
4
]
,

M
O
U
S
E
_
B
U
T
T
O
N
_
2
)
;

[
]
)

(
S
U
C
C
E
E
D
E
D
;

M
O
U
S
E
(
<
M
O
U
S
E
_
D
O
W
N
>
,

j
a
v
a
.
a
w
t
.
P
o
i
n
t
[
x
=
3
2
8
,
y
=
4
6
8
]
,

M
O
U
S
E
_
B
U
T
T
O
N
_
2
)
;

[
]
)

F
ig

u
re

4.
17

:
G

eo
m

et
ry

P
la

ce
r

“a
d
d
N

ew
O

b
je

ct
”

C
om

m
an

d
U

sa
ge

S
ta

ti
st

ic
s

156

Chapter 5

Conclusion

The research work for this dissertation resulted in a number of contributions to the

field of multimodal interfaces. These contributions arise from the implementation of

a programmers’ toolkit, called EMMET, that aids user interface designers in rapidly

prototyping and evaluating speech and gesture based multimodal interfaces. Further-

more, the exhaustive explanation of EMMET’s design and architecture provides a

foundation upon which future researchers can build similar toolkits that may provide

more functionality or support additional modalities.

The contributions resulting from the development and explanation of EMMET

directly address Oviatt et al.’s summary of research challenges involved in advancing

the field of multimodal interfaces [46]. Firstly, EMMET contributes to the field by

providing a tool that facilitates the development of multimodal software. Secondly,

EMMET contributes to the field by providing a method for collecting multimodal

usage statistics to aid in the evaluation of alternative multimodal interface designs.

Finally, the results obtained from such statistics provide insight and guidance for the

design of future multimodal interfaces. Thus, as proposed, EMMET allows program-

157

mers to:

� explore speech and gesture based interface design without requiring an under-

standing of the details involved in the low-level implementation of speech or

gesture recognition;

� quickly distribute these multimodal interface prototypes via the Web; and

� receive multimodal usage statistics collected remotely after each use of the pro-

grammer’s application.

The application programmer interface provided by EMMET is consistent across

all modalities and the details pertaining to the low-level implementation of each

modality are hidden from the programmer. This consistency allows programmers

who use EMMET to select which modality is best for a particular interaction, without

this selection being influenced by any perceived or actual difficulties associated with

using one modality versus another modality. Furthermore, this consistency facilitates

programmers in quickly switching between the modalities used and, thus, it allows

rapid prototyping and testing of alternative interface solutions.

EMMETs architecture is also highly modularized which allows the toolkit to be

easily extended in order to support additional modalities. Examples of how to utilize

this extensibility are presented throughout the discussion of EMMET’s architecture,

particularly in the section regarding the controllers package.

A command and trigger paradigm for writing multimodal interfaces is also in-

troduced in EMMET. This paradigm moves the focus of user input handling to the

interpretation of multimodal input events, rather than the input events themselves.

Hence, programmers first write commands that encompass some functionality avail-

able to the user, and then identify which modal input events or combinations of modal

158

input events will trigger these commands. Thus, programmers can evaluate various

command and trigger combinations without making changes to the commands driven

by the occurrence of these triggers.

EMMET’s support for speech triggers includes the ability to define tags within

the grammar rules. These tags specify that certain words or phrases be automatically

resolved, via multimodal integration, into representations that are meaningful to the

application. For example, tagged diectic words are resolved into screen locations, and

tagged words referring to objects in the 3D world are resolved into corresponding

world objects.

The remote launching and remote usage statistics collection supported by EM-

MET’s allows programmers to easily distribute their multimodal applications to an

unlimited number of usability testers and receive nearly immediate feedback on how

the application’s interface is being used.

Future research and development possibilities include expanding EMMET to sup-

port additional modalities or to provide additional functionality within each modality.

These additional modalities include but are not limited to eye tracking, 3D gesture

recognition and lip feature recognition. Additional functionality includes: porting

the tagging support provided for speech triggers to other modalities; augmenting

statistics collection to provide more detailed data or mutual disambiguation statis-

tics; automating the generation of JNLP scripts for launching EMMET applications;

and implementing database server support for recording remotely collected statistics.

159

Appendix A: Glossary of Terms

This glossary provides definitions for many of the Java and Object-Oriented

Programming terms used throughout the explanation of EMMET’s implementa-

tion and architecture. For a more complete glossary of such terms, please refer

to glossary provided by David J. Barnes in his book, Object-Oriented Program-

ming with Java: An Introduction [15]. Barnes’ glossary is also available online at

http://www.cs.kent.ac.uk/people/staff/djb/book/glossary.html.

adapter class A class in Java that implements an interface with a set of dummy or

default methods. Allows one to subclass the adapter class and override just the

methods needed.

argument In the definition of a method, arguments describe the data that will be

passed as parameters. When the method is invoked, the data provided are

called the parameters.

array A fixed length block of primitives or references

callback method A method defined in a class or interface designed to be overridden

in a subclass or implementer to receive notification of events.

constructor The method or set of methods defined by a class to create new instances

of that class.

convenience method A method defined in a class to provide access to information

maintained by the class. Often, this same information can already be obtained,

but in a more complicated and roundabout manner.

160

derived class Another term for a subclass. A class extends a base class, in order to

derive a new class with all of the base class’ variables and methods, plus some

of its own.

extend Java terminology meaning to subclass. (eg. if class B is a subclass of class

A, then class B extends class A)

field A class attribute. In other words, classes define fields that can be set to values

in instances of that class.

getter A method that returns the value of a private or protected class field.

instance An instantiation of a class.

list A list of items which is theoretically unlimited in size.

listener An implementer of an interface or extender of an adapter class that overrides

callbacks and is registered to receive notification of certain events.

object An instantiation of a class.

parameter A data item passed on the invocation of a method. In the definition of

a method, the arguments describe the data to be passed as parameters.

query method A method defined in a class that returns information that is not

otherwise accessible. The general difference between query methods and getters

is that query methods connote information the must be generated or somehow

derived from information maintained by the class, whereas getters just provide

access to information already stored in existing fields.

161

register From the perspective of a listener implementation; to be added to a class

in order to receive event notifications.

singleton A class design pattern in which only one instance of the class can exist at

a time. Usually singletons are designed to be globally accessible.

setter A method that sets the value of a private or protected class field.

subclass A class which inherits from, or extends, a given class.

162

Appendix B: UML Class Diagram Reference

The Unified Modeling Language (UML) class and package diagrams used exten-

sively throughout the description of EMMET’s implementation follow the UML Ver-

sion 2.0 specification as maintained by the Object Management Group (OMG) at

http://www.uml.org. The one variation on this specification is with regard to the

icons used in the class diagrams to indicate field and method properties. The follow-

ing table is provided as a reference for interpreting these icons:

163

Bibliography

[1] R. A. Bolt. ’Put-that-there’: Voice and gestures at the graphics interface. In
Proceedings SIGGRAPH ’80, volume 14, pages 262–270, July 1980.

[2] James H. Bradford. The human factors of speech-based interfaces: A research
agenda. ACM SIGCHI Bulletin, 27(2):61–67, 1995.

[3] Tom Brφndsted. Evaluation of recent speech grammar standardization efforts.

[4] Jarir K. Chaar and M. J. Halliday. In-process evaluation for software inspection
and test. Research Report RC 18630, IBM Corporation, 1993.

[5] Adam Cheyer and Luc Julia. Multimodal maps: An agent-based approach,
July 08 1995.

[6] Chih chung Chang, Chih jen Lin, and Chih wei Hsu. A practical guide to support
vector classification, October 29 2003.

[7] J. D. Clarkson and J. Yi. Leathernet: A synthectic forces tactical training system
for the usmc commander. In Proceedings of the Sixth Conference on Computer
Generated Forces and Behavioral Representation, pages 275–281, Univ. of Cen-
teral Florida, Orlando, 1996.

[8] Jean claude Martin. TYCOON: Theoretical framework and software tools for
multimodal interfaces, October 24 1998.

[9] Joshua Clow and Sharon Oviatt. STAMP: A suite of tools for analyzing multi-
modal system processing, July 15 1998.

[10] P. R. Cohen. The role of natural language in a multimodal interface. In ACM
UIST’92 Symp. on User Interface Software & Technology, pages 143–149. 1992.

[11] P. R. Cohen and S. L. Oviatt. The role of voice input for human-machine com-
munication. August 25 2001.

164

[12] Philip Cohen, David McGee, Sharon Oviatt, Lizhong Wu, Joshua Clow, Robert
King, Simon Julier, and Lawrence Rosenblum. Projects in VR: Multimodal inter-
action for 2D and 3D environments. IEEE Computer Graphics and Applications,
19(4):10–13, July/August 1999.

[13] Philip R. Cohen, Michael Johnston, David McGee, Sharon Oviatt, Jay Pittman,
Ira Smith, Liang Chen, and Josh Clow. Quickset: multimodal interaction for
distributed applications. Proceedings of the ACM International Multimedia Con-
ference and Exhibition 1997., pages 31–40, 1997.

[14] Derek Coleman, Patrick Arnold, and Stephanie Bodiff. Object-Oriented Devel-
opment: The Fusion Method. Prentice Hall, jul 1993.

[15] David J. Barnes. Object-Oriented Programming with Java: An Introduction.
Prentice-Hall, January 2000.

[16] Sorin Dusan and James Flanagan. A system for multimodal dialogue and lan-
guage acquisition. In The 2nd Romanian Academy Conference on Speech Tech-
nology and Human-Computer Dialogue, Bucharest, Romania, April 2003. Roma-
nian Academy.

[17] Jarkko Enden. Java speech API, January 11 2001.

[18] Frans Flippo, Allen Krebs, and Ivan Marsic. A framework for rapid development
of multimodal interfaces. In Proceedings of the 5th International Conference
on Multimodal Interfaces (ICMI-03), pages 109–116, New York, November 5–7
2003. ACM Press.

[19] M. Fowler and K. Scott. UML Distilled: Applying the Standard Object Modeling
Language. Object Technology Series. Addison Wesley, New York, 1997.

[20] Micheal A. Grasso. Speech Input in Multimodal Environments: Effects of Per-
ceptual Structure on Speed, Accuracy, and Acceptance. PhD thesis, University of
Maryland, Baltimore, 1997.

[21] S. Harada, J. Hwang, B. Lee, and M. Stone. “Put-That-There”: What, where,
how? integrating speech and gesture in interactive workspaces. In UBIHCISYS
2003 Proceedings, UbiComp 2003 Workshop 7, October 2003.

[22] Hartwig Holzapfel, Kai Nickel, and Rainer Stiefelhagen. Implementation and
evaluation of a constraint-based multimodal fusion system for speech and 3d
pointing gestures. In ICMI ’04: Proceedings of the 6th international conference
on Multimodal interfaces, pages 175–182, New York, NY, USA, 2004. ACM Press.

165

[23] Thomas G. Holzman. Computer-human interface solutions for emergency medi-
cal care. interactions, 6(3):13–24, 1999.

[24] H. Hse and A.R. Newton. Graphic symbol recognition toolkit (hhreco) tutorial,
2003.

[25] H. Hse and A.R. Newton. Sketched symbol recognition using zernike moments.
In Proceedings of the 17th International Conference on Pattern Recognition
(ICPR’04), volume 1, pages 367–370, Electronics Research Lab, Department of
Electrical Engineering and Computer Sciences, University of California, Berkley,
2004. Pattern.

[26] Andrew Hunt and David Thomas. The Pragmatic Programmer. Addison Wesley,
2000.

[27] Michael Johnston. Unification-based multimodal parsing, 1998.

[28] Clare-Marie Karat, Christine Halverson, John Karat, and Daniel Horn. Pat-
terns of entry and correction in large vocabulary continuous speech recognition
systems. In Proceedings of ACM CHI 99 Conference on Human Factors in Com-
puting Systems, volume 1 of Speech and Multimodal Interfaces, pages 568–575,
1999.

[29] N. Krahnstoever, E.S Schapira, S. Kettebekov, and R. Sharma. Multimodal
human-computer interaction for crisis managament systems, 2003.

[30] Joseph J. Laviola. MSVT: A virtual reality-based multimodal scientific visual-
ization tool, November 27 1999.

[31] C. Magerkurth, R. Stenzel, N. A. Streitz, and E. Neuhold. A multimodal inter-
action framework for pervasive game applications. In Antonio Krger and Rainer
Malaka, editors, Artificial Intelligence in Mobile Systems 2003 (AIMS 2003),
pages 1–8, Seattle, USA, October 2003.

[32] John Makhoul, Josh Bers, and Scott Miller. Designing conversational interfaces
with multimodal interaction, April 03 1998.

[33] Jack T. Marchewka and Tanya Goette. Implications of speech recognition tech-
nology. Business Forum, 17:26–30, Spring 1992.

[34] D. Mcgee, I. Smith, J. Clow, M. Johnston, P. R. Cohen, and S. L. Oviatt. The
efficiency of multimodal interaction: A case study, February 23 1998.

[35] David Mcgee, Ira Smith, James A. Pittman, Michael Johnston, Philip R. Cohen,
and Sharon L. Oviatt. Unification-based multimodal integration, 1997.

166

[36] David Mcgee, Ira Smith, Jay Pittman, Josh Clow, Liang Chen, Michael Johnston,
Philip R. Cohen, and Sharon Oviatt. Quickset: Multimodal interaction, April 07
2003.

[37] Bertrand Meyer. Object-Oriented Software Construction. Prentice Hall, Inc, 2
edition, apr 1997.

[38] J. G. Neal and S. C. Shapiro. Intelligent multi-media interface technology. In J. W
Sullivan and S. W. Tyler, editors, Proc. Architectures for Intelligent Interfaces:
Elements and Prototypes, pages 69–91, Lockheed AI Center, 1988. Superseded
by [39].

[39] Jeannette G. Neal and Stuart C. Shapiro. Intelligent multi-media interface tech-
nology. In Joseph W. Sullivan and Sherman W. Tyler, editors, Intelligent User
Interfaces, pages 11–43. Addison Wesley, Reading, MA, 1991.

[40] Mike O’Docherty. Object-Oriented Analysis and Design: Understanding System
Development with UML. Wiley, John & Sons, Incorporated, may 2005.

[41] Sharon Oviatt. Multimodal interfaces for dynamic interactive maps. In Pro-
ceedings of ACM CHI 96 Conference on Human Factors in Computing Systems,
volume 1 of PAPERS: Multi-Modal Applications, pages 95–102, 1996.

[42] Sharon Oviatt. Mutual disambiguation of recognition errors in a multimodal
architecture. In Proceedings of ACM CHI 99 Conference on Human Factors in
Computing Systems, volume 1 of Speech and Multimodal Interfaces, pages 576–
583, 1999.

[43] Sharon Oviatt. Ten myths of multimodal interaction. Communications of the
ACM, 42(11):74–81, November 1999.

[44] Sharon Oviatt. Multimodal system processing in mobile environments, July 31
2000.

[45] Sharon Oviatt. Multimodal interfaces. In Handbook of Human-Computer Inter-
action. Lawrence Erlbaum, June 02 2003.

[46] Sharon Oviatt, Phil Cohen, Lizhong Wu, Lisbeth Duncan, Bernhard Suhm, Josh
Bers, Thomas Holzman, Terry Winograd, James Landay, Jim Larson, and David
Ferro. Designing the user interface for multimodal speech and pen-based gesture
applications: State-of-the-art systems and future research directions. Human-
Computer Interaction, 15(4):263–322, 2000.

167

[47] Sharon Oviatt, Antonella DeAngeli, and Karen Kuhn. Integration and synchro-
nization of input modes during multimodal human-computer interaction. In
Proceedings of ACM CHI 97 Conference on Human Factors in Computing Sys-
tems, volume 1 of PAPERS: Speech, Haptic, & Multimodal Input, pages 415–422,
1997.

[48] Stepher R. Palmer and John M. Felsing. A Practical Guide to Feature-Driven
Development. Pearson Education, nov 2001.

[49] Hitesh Seth. Intoduction to SALT. XML-Journal, November 2002.

[50] Mary Shaw and David Garlan. Software Architecture: Perspectives on an Emerg-
ing Discipline. Prentice Hall, Saddle River, New Jersey, 1996.

[51] Ben Shneiderman. Designing the User Interface. Addison Wesley Longman,
third edition, 1998.

[52] Ian Sommerville. Software Engineering. Addison Wesley, 7 edition, may 2004.

[53] Stephen Stelting and Olav Maassen. Applied Java Patterns. The Sun Microsys-
tems Press Java Series. Sun Microsystems Press, A Prentice Hall Title, Palo
Alto, California, 2002.

[54] Bernhard Suhm, Brad Myers, and Alex Waibel. Multimodal error correction
for speech user interfaces. ACM Transactions on Computer-Human Interaction,
8(1):60–98, 2001.

[55] Harald Trost, Michel Gnreux, and Ra Klein. A multimodal speech interface for
accessing web pages, May 05 2000.

[56] J. Vergo. A statistical approach to multimodal natural language interaction.
In Proceedings of the AAAI98 Workshop on Representations for Multimodal
Human-Computer Interaction, pages 81–85. AAAI Press, 1998.

[57] Wolfgang Wahlster. User and discourse models for multimodal communication,
October 30 1991.

[58] Willie Walker, Paul Lamere, Philip Kwok, Bhiksha Raj, Rita Singh, Evandro
Gouvea, Peter Wolf, and Joe Woelfel. Sphinx-4: A flexible open source framework
for speech recognition. Technical Report SMLI TR2004-0811, Sun Microsystems
Incorporated, 2004.

[59] Bauhaus Universitaet Weimar, Doug A. Bowman, Ernst Kruijff, Ivan Poupyrev,
and Joseph J. Laviola. An introduction to 3-D user interface design, July 02
2001.

168

[60] Lizhong Wu, Philip R. Cohen, and Sharon L. Oviatt. Multimodal integration -
A statistical view, December 13 1999.

[61] Benfang Xiao, Cynthia Gir, and Sharon Oviatt. Multimodal integration patterns
in children, July 08 2002.

[62] M. Yeasin, N. Krahnstoever, R. Sharma, and S. Kettebekov. A real-time frame-
work for natural multimodal interaction with large screen displays, October 29
2002.

169

