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Abstract

3D printing and other modern manufacturing technologies enabled accessible customized fabrica-

tion of small-batch and unique objects, with unparalleled flexibility in shape design. However,

creating structures that are able to meet the design requirements is not an easy task, and doing

it manually can be a very slow and tedious process. In this context, structural optimization

techniques can be very useful and help automate the design and analysis process.

This thesis describes techniques that expand the usage of structural optimization for digital

fabrication by formulating optimization to be used with more realistic simulation models. We

develop an efficient method (differentiable simulation) to compute gradients of optimization

objectives depending on solutions of the physical deformation equations, which can be used to

optimize the shape, material, and physical properties of our domain. We provide ways of expanding

the use of two-scale topology optimization by presenting microstructures that have a smooth

map from material to geometry and which can be used on curved shapes defined by irregular

lattices with close to rhombic cells. Finally, we introduce two low-parametric microstructures

that together are able to cover almost the whole possible range of elastic properties for isotropic

metamaterials.

Our results in simulation and physical experiments, both for static and time-dependent scenarios,

show the advantages of our techniques and how they can be applied in practice.
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1 | Introduction

In recent years, advances in manufacturing technologies made highly customized objects, from

toys to aerospace components, easier and cheaper to fabricate. These technologies include 3D

printing, laser cutting, and modern CNC milling, with each technology having its own limitations

and advantages.

A common characteristic of some of these technologies, 3D printing in particular, is that production

cost is usually not directly linked with geometry complexity. Moving from a simple shape to a

more complex and lighter one that can serve the same purpose may improve cost by reducing the

amount of material and time used for production. As a consequence, there is a need to develop

automated technologies that allow to create highly complex geometric structures optimized for a

specific goal, a task for which conventional CAD software is ill-suited.

In this context, structural optimization plays a crucial role and includes a large set of techniques

that can help designers to build new and improved objects and tools, according to users’ needs.

The overall goal is to optimize a mechanical structure under possibly multiple and time-varying

conditions and external forces defining loads and displacements. Structural optimization involves

simulating the physical behavior of the object, extracting quantities of interest from the solution (for

example, displacements and stress distributions), and modifying the shape or material properties

to improve an objective function depending on these quantities, which measures the quality and
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performance of the object.

Two main techniques are widely used in structural optimization: topology optimization (TO)

and shape optimization (SO). While they share similarities, there are also important differences

between these methods. TO uses implicit surface representations and optimizes quantities on a

fixed spatial mesh or grid, while SO more commonly uses a Lagrangian surface description and

evolves the mesh, which may require frequent remeshing. One of the main advantages of TO

is that it supports topology changes, which is not necessarily true for shape optimization, even

though some methods may enable limited variations. On the other hand, having a fixed mesh

or grid makes it more difficult to compute physical properties which may be critical for specific

objectives, especially close to the surface (e.g., rapid stress variations near corners), given that

the boundary is represented only implicitly and approximately. In contrast, it is much easier to

resolve such boundary effects in SO context. The choice between using one or the other technique

(or maybe even both) depends on the objective and constraints of the user and the application.

Notice that, while Structural Optimization algorithms are widely used in academic research, they

also have been increasingly applied in the industry in the latest decades, and can be found in

software platforms of companies like nTopology, Altair, AutoDesk, 3D Systems, Dassault Systemes,

and PTC. Most of the methods developed in this thesis are released as open-source software.

In this thesis, our objective is to develop structural optimization in a number of contexts making

it more practical (1) by including more realistic physical models, friction and contact in particular;

(2) by developing more efficient optimization pipelines; (3) by increasing the number of scenarios

where optimization can be used; and (4) by expanding the use of microstructures. In the next

chapters, we detailed how SO and TO techniques can be applied in different scenarios to achieve

our goal. In projects presented in Chapters 2 and 3, our main focus is on stress optimization and

handling contact simulations (where boundary shape is extremely important), so we choose SO.
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On the other hand, in Chapters 4 and 5, we focus on a particular type of two-scale TO techniques,

mixing material optimization with the use of microstructures (which are, in turn, obtained with

the help of SO).

1.1 Realistic Differentiable Simulation

An important focus of this thesis is to use more realistic simulations together with optimization,

reducing the reality/simulation gap in order to better predict the behavior of objects produced

through digital fabrication. In this context, finding ways of modeling and solving common

physical behavior problems becomes an essential question. One of these problems in elasticity

and mechanical simulation is dealing with contact accurately and robustly.

Moreover, computing gradients of the objective with respect to optimization parameters (shape,

initial conditions, material properties, etc) is essential for efficient optimization, as gradient-based

methods for sufficiently well-behaved objectives significantly outperform gradient-free methods.

Since our objectives may depend on the simulated behavior of objects, such as displacements,

our objective will depend on solutions of physical equations, making it important to have a

differentiable formulation and solver for elasticity and contact/friction, i.e., a solver that outputs

not just the solution but its gradients (sensitivities) with respect to optimization parameters. In

our work, we present consistent and efficient ways of computing gradients for different contact

models based on adjoint formulations and show how we can use optimization tied to these

models to improve the performance of objects and structures in practice, and also reduce the

reality/simulation gap by computing unknown parameters for our physical models.

In chapter 2, we focus on optimizing shapes of assemblies, i.e., objects constructed from separate

parts that are held together by contact and friction. These assemblies are useful in a variety

of scenarios: for example, to fabricate larger objects piece by piece, or in cases when different
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materials need to be used for different parts (e.g., a chair made of wood with plastic joints), or e.g.,

to make it possible to disassemble and store an object in a more compact way. Since we expect

objects to be mostly stationary and with the same areas of contact between different parts during

operation, we use a simplified contact and friction model with static elasticity simulation where

we know beforehand the areas of contact between different bodies.

Next, in Chapter 3, we focus on extending our adjoint formulation to a more robust contact

model based on incremental contact potentials (IPC), [Li et al. 2020b] which is also differentiable

in time-dependent cases. We present a consistent formulation that allows optimizing shape,

material/physical parameters, and initial conditions. Our method uses higher-order FEM for space

and time and can be used with a general class of elasticity models. In addition, we handle complex

geometry for contact and friction, as proven in our many examples. In the end, we also present

physical experiments showing how our results can match well with reality.

1.2 Two-scale Optimization with Microstructures

Using formulations like the ones presented in Chapters 2 and 3 allows for optimizing material

distribution in a given domain, in a similar way to TO. The standard approach in TO is to use

densities (one per cell) as optimization parameters and then map these to elasticity properties in

our shape, but this may present critical drawbacks. A very important issue is related to resolution,

since for a 3D shape the number of density parameters increases as the third power of size, making

large-scale problems expensive to solve.

In addition, the map from density to elasticity may not be realistic. For example, 50% density

doesn’t necessarily translate to half Young’s modulus. Finally, due to a large number of cells and

optimization parameters, it ends up being necessary to apply smoothness and other filters to avoid

falling into low-quality local optima.
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Instead, we attempt a so-called two-scale scheme, where we directly optimize the material proper-

ties (like Poisson’s ratio and Young’s modulus, for isotropic materials) in each cell of our domain

in order to achieve our desired behavior, while assuming constraints on material properties. Then,

we place microstructures corresponding to materials in each cell and stitch them together to obtain

our final shape. The direct use of elastic properties makes it possible to obtain a more realistic

behavior and the use of microstructures reduce the number of variables in our optimization, since

each microstructure occupies a larger portion of the object compared to a single density cell.

Another important reason for using microstructures is that most 3D printers are only able to print

with a single or a small number of different materials, which limits the design options or quality

of the objects produced. The idea of varying macroscopic material properties through small-scale

geometric changes can increase the range of effective material properties one can obtain.

However, there are obvious difficulties with the two-scale approach: first, we need a direct map

from material properties to geometry (which can limit our achievable material properties); second,

we need to be able to tile consecutive microstructures (which may be very different); and, third,

microstructures are usually defined on square (in 2D) or cubic (in 3D) cells, which makes it difficult

to adapt to curved shapes. We propose solutions to these three problems in Chapters 4 and 5.

In chapter 4, we demonstrate how to produce a map from a range of material properties to a

family of microstructures, with a smooth change of geometry for small perturbations in material.

Our family of microstructures has guaranteed tiling and smooth transitions between consecutive

cells. Smooth dependence on parameters makes it possible to represent the family as 8 splines,

which means having a constant time computation for our geometries. In addition, our family

supports non-square cells, which enables much better adaptation to complex domains without

losing material property accuracy.

Then, in chapter 5, we explain how to expand the range of material properties that can be achieved
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with microstructures by using two families of structures that fit in hexagonal shape cells. Our

objective is to have a large range of effective material properties offering the most flexibility in

design.

We show how to achieve that with microstructures that can be parameterized with only four

parameters and are sufficiently simple, and, at the same time, they can attain a large range of

elasticity properties, close to the theoretical limits. We were able to approach the theoretical

bound for positive Poisson’s ratio arbitrarily closely, within limits of numerical accuracy. For

negative Poisson’s ratio, we cover a larger fraction of the region defined by the known theoretical

bounds than all previously known work.
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2 | Optimizing Contact-based Assemblies

This chapter presents our work on shape optimization for static simulations with contact. It is

largely based on my publication at SIGGRAPH Asia 2021[Tozoni et al. 2021] in collaboration

with my colleague YunFan Zhou from NYU and my advisor, Prof. Denis Zorin. In this work,

I was responsible for formulating the physical model, deriving the shape derivative formulas,

and implementing the nonlinear simulation and the shape optimization technique. In addition, I

performed computational experiments, designing models/examples and running optimization/sim-

ulation at NYU’s HPC, besides analyzing the corresponding data. Finally, I also helped in physical

experimentation in our laboratory.

Modern fabrication methods have greatly simplified manufacturing of complex free-form shapes

Figure 2.1: Coat rack stress: stress concentrations on coat rack example. Left figure presents how load is
applied. Middle figures show stresses on each PLA piece. Right figures show the optimized coat rack and
3d printed connectors assembled with wooden dowels.
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at an affordable cost, and opened up new possibilities for improving functionality and customiza-

tion through automatic optimization, shape optimization in particular. However, most existing

shape optimization methods focus on single parts. In this work, we focus on supporting shape

optimization for assemblies, more specifically, assemblies that are held together by contact and

friction. Examples of which include furniture joints, construction set assemblies, certain types

of prosthetic devices and many other. To enable this optimization, we present a framework sup-

porting robust and accurate optimization of a number of important functionals, while enforcing

constraints essential for assembly functionality: weight, stress, difficulty of putting the assembly

together, and how reliably it stays together. Our framework is based on smoothed formulation of

elasticity equations with contact, analytically derived shape derivatives, and robust remeshing

to enable large changes of shape, and at the same time, maintain accuracy. We demonstrate the

improvements it can achieve for a number of computational and experimental examples.

2.1 Introduction

Creating shapes optimized for a particular function is one of the main tasks in computer-aided

design. Modern fabrication methods have greatly simplified the creation of complex free-form

shapes at an affordable cost and opened up new possibilities for improving functionality and

customization through automatic optimization.

Methods for constructing optimal shapes have enjoyed considerable attention in a variety of

settings, such as large-scale architectural forms, engine parts, footwear, medical prosthetic devices

andmetamaterial structures. Notably, most of the work focuses on designing continuous structures,

fabricated from one material, or a set of materials fused or glued together.

In this work, our focus is on supporting shape optimization for assemblies, and more specifically

for assemblies that are held together by contact and friction, a setting which has received relatively
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little attention. At the same time, assemblies are ubiquitous, as most manufactured objects around

us are assembled from separate parts, often made from different materials. For example, the steel

legs of a table may be inserted into openings of a wooden or MDF top; a phone may have a

snap-on plastic protector or cover; a prosthetic device is attached to the body with friction. While

the specific mechanisms for holding objects together may vary broadly, they are all based on

combining deformation with contact and, in many cases, friction.

In all these cases, contact plays a major role in the function and mechanical behavior of the

assembled object. Shape optimization helps to achieve better performance or save on the costs

of material for fabrication (for additive fabrication these two are closely related). Some of the

important measures of performance of assemblies include total volume or weight, total deformation

energy, maximal stress and more complex measures such as permeability.

In this paper, we present a formulation and a robust numerical method for computing optimized

shapes in the presence of contact and friction. Compared to shape optimization tasks not involving

contact, the problem is significantly more difficult to solve, as it involves complex inequality

constraints required for handling collisions and friction. The resulting problem is non-smooth,

and often hard to solve sufficiently accurately. Our overall approach is to use a smoothed version

of the problem [Eck et al. 2005] amenable to standard optimization techniques on the one hand,

and allowing us to approximate the desired solution as close as possible on the other hand.

Contributions. In summary, the contributions include

• A shape derivative-based formulation for optimization problems with contact and friction,

building on [Maury et al. 2017];

• A novel shape-optimization framework based on FEM discretization of this formulation,

capable of handling contact regions between two deformable objects as well as a deformable
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and a rigid object. It provides sufficiently accurate elastic deformation computations to

support, e.g., max stress reduction.

• The frameworks supports conventional functionals (stress-based and volume) and new,

contact-specific functionals (assembly and disassembly, parallel alignment) that ensure that

connection strength is maintained and that at the same time the parts held together by

contact can be assembled. The framework also supports optimization involving multiple

load scenarios.

• We demonstrate a range of 2D and 3D examples of shape optimization, and qualitatively eval-

uate these examples using laser cutting and 3D printing to fabricate them and demonstrate

the expected behavior.

2.2 Related Work

There is a broad range of work on shape/topology optimization and related methods, but relatively

few works were trying to solve problems with contact. We focus on related work on shape

optimization with contact, and briefly mention other shape/topology optimization research that

we rely on.

Shape optimization with contact.. Some previous works have considered contact of a soft body

with rigid surfaces, for example, [Beremlijski et al. 2014], [Haslinger et al. 1986] and [Herskovits

et al. 2000]. While other some other works have studied the interaction of two or more bodies in

contact, like recent works from [Maury et al. 2017], [Desmorat 2007] and [Stupkiewicz et al. 2010].

Most papers do not consider friction, and those which do often consider simplified (compared to

the standard Coulomb) friction models as discussed in [Maury et al. 2017].

For contact models, there are two families of algorithms, Lagrangian and the penalization methods.
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The first type of methods adds Lagrange terms for the model constraints to the objective function

and uses sub-gradient-based optimization to deal with the fact that the problem is non-smooth.

Examples can be found in [Herskovits et al. 2000] and [Stupkiewicz et al. 2010] , where a bilevel

approach and an augmented Lagrangian method are used. The second type of methods, penal-

ization methods, use smooth approximations to the problem, which add terms to the variational

formulation. Our method belongs to this category. For this type of method, the objective function

is smooth, which considerably simplifies optimization. In our work, we choose to use penalization

method following the mathematical model presented by Eck et al. [Eck et al. 2005]. In [Maury

et al. 2017], a similar overall approach with level-set discretization. While level-set modeling has

many advantages (e.g., allowing for easy topology changes) in our experience, it is not well-suited

for handling important types of problems, in particular, those involving stress reduction, which is

our focus in this work, as stress is harder to resolve precisely.

Stress minimization. Maximal stress minimization was considered in a number of papers; the

formulation closest to ours is [Panetta et al. 2017c], where worst-case optimization for periodic

metamaterial structures is considered; it uses parametric periodic shapes, which are meshed for

shape derivative computation, and does not consider contact. Earlier work on minimization of

maximal stress is [Allaire et al. 2004], which applies topology optimization to design lightweight

minimal-stress objects built from sequentially laminated composites. Another similar work is

[Allaire and Jouve 2008], which applies the level-set topology optimization method to minimize

the 𝑝-norm of stress. None of these works consider contact, and level-set methods (with Eulerian

discretizations on a fixed grid) require impractically fine meshes for accurate optimization of high

𝑝 norms of stress. Other works considering max stress include [Xia et al. 2012; Polajnar et al.

2017; Lian et al. 2017; Sonmez 2009; Van Miegroet and Duysinx 2007]. In the computer graphics

community, [Stava et al. 2012] was one of the first works to introduce heuristic shape correction

techniques that effectively result in stress reduction. [Zhao et al. 2016; Zhou et al. 2016] consider
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problems involving bounding von Misses tress.

Contact and friction modeling.. The literature on contact is extensive, and we mention only

few most closely related works here; for general theory see e.g., [Stewart 2001]. Typically, contact

problems are viewed as constrained optimization problems, with per-element-pair constraints.

In particular, contacts between deformable objects that we consider in this paper, are defined as

constraints between surface primitives (triangles, edges and vertices); some examples include

[Belytschko et al. 2000; Bridson et al. 2002; Otaduy et al. 2009; Harmon et al. 2009; Verschoor

and Jalba 2019]. Penalty-based methods for handling these constraints are among the oldest,

but were largely supplanted by constraint formulations and LCP (linear complemenarity)-based

or SQP solution methods. [Harmon et al. 2009] developed a method for which progressively

high penalties are applied as the distance decreases, growing arbitrarily large as the distances

to the object decreases. A recent work [Geilinger et al. 2020a] provides a differentiable method

for solving dynamic problems with contact and Coulomb friction using a penalty based model

combined with equality constraints for static friction, which can be used with gradient-based

optimization. Also dealing with Coulomb Friction, [Ding and Schroeder 2020] proposes a penalty

based solution that can be used coupling rigid to deformable bodies and material point method

(MPM). Another recent method [Li et al. 2020b] shares some aspects with the approach we use,

specifically, smoothed version of constraints is used, in particular for friction. However, we use

finite penalties, rather than infinite barriers for constraints, and add smoothing both to contact

and friction formulations.

It is well-known (see, e.g., [Moreau 1973]) that friction introduces significant non-smoothness

to solutions, and due to their dissipative nature, solutions of problems with friction cannot be

obtained using energy minimization. A variety of iterative methods for solving resulting problem

were developed [Jean and Moreau 1992; Alart and Curnier 1991; Daviet et al. 2011]. Nonsmooth

solution methods were applied in recent work with some success [Macklin et al. 2019], but are
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very difficult to use in the optimization context. Smoothed version of friction were proposed both

in simulation and optimization context in the works we have mentioned.

Contact-based Assemblies. It is also important to mention works designing contact-based

assemblies using geometric techniques and not necessarily relying on elasticity simulations to

achieve their goal. Works like [Vouga et al. 2012; Panozzo et al. 2013; Wang et al. 2019] consider

stability for self-supporting surfaces. Other works [Sun and Zheng 2015; Ureta et al. 2016; Yao

et al. 2017] consider the design of joints for more general objects, including furniture.

2.3 Problem Formulation

2.3.1 Overview

We start with a high-level overview of the general problem we are solving. The input to our

algorithm is a collection of 3D meshed objects, some of which may be in contact (the meshes will

be updated in the process of optimization).

We solve the problem of the general form

𝑚𝑖𝑛Ω(𝑝) 𝐽 (𝑢), s.t., 𝐹 (𝑢) = 0, 𝐵(𝑢) ⩽ 𝐵0 (2.1)

The main components of this formulation include the following.

• The unknowns in the optimization are shape parameters 𝑝 , in our case displacements of

mesh vertices on the boundary, defining the domain Ω(𝑝), and displacements 𝑢 of the points

of Ω(𝑝) resulting from elastic deformation with contact. (We use 𝑢 for the continuous

solution of the elasticity problem, and 𝑢 for the vector of displacements of vertices of a

meshed Ω(𝑝)). Note that while 𝑢 corresponds to the deformations of the shape Ω(𝑝) in our
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simulation, displacements 𝑝 (on 𝜕Ω(0)) define how the rest-state object shape is changed by

optimization.

• The PDE constraint 𝐹 (𝑢) = 0 is a FEM-discretized elasticity equation for 𝑢 on Ω(𝑝)with

contact and friction, leading to a non-linear system of equations in 𝑢.

• The objectives in our optimization are of the one of two forms below, as we have objectives

with computation on the whole object domain (e.g., stress) or only on its boundary (e.g.,

disassembly objective)

𝐽 (𝑢) =
∫
Ω𝑢

𝑒 (𝑢, 𝑥)𝑑𝑥, or 𝐸 (𝑢) =
∫
Γ𝑜𝑢

𝑒 (𝑢, 𝑥)𝑑𝑠 (2.2)

where both the domain of integration and the integrands depend on the unknowns, and 𝑒

represents a pointwise measure (e.g., stress), computed as a function of FEM solution defined

by the discrete vector 𝑢. Each objective can be either an optimization target to minimize as

in (2.1) or a part of an inequality constraint (upper bound on an objective) described below.

As optimization targets, we consider 𝐿𝑝-norms of stress, yielding compliance for 𝑝 = 2 and

a close approximation of the maximum stress for large 𝑝 and volume, of a part or the whole

assembly. Other objectives are used primarily as constraints.

• The inequality constraints, critical for our formulation, are of the form 𝐵(𝑢) ⩽ 𝐵0, where

𝐵(𝑢) is an integral of the type (2.2). 𝐿𝑝 norm of stress (effectively allowing to bound maximal

stress) and volume objectives can also be used as constraints, e.g., we can impose a bound

on the maximum volume allowed.

Other objectives used primarily in constraints are the assembly constraint, ensuring that two

parts can be assembled together; disassembly constraint, ensuring that once assembled, the

object does not fall apart; and parallel alignment constraint, which makes it more difficult
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to disassemble the object using any direction other than the disassembly one.

Shape derivatives. The key element of the optimization process is computing objective and con-

straint gradients with respect to 𝑢, required for any first- or second-order optimization algorithm.

There are two main approaches to this problem: one can discretize the problem first, fixing the

mesh for Ω(𝑝) for all 𝑝 , and a FEM basis. This converts the problem into a finite-dimensional

nonlinear algebraic problem, and then compute gradients of the objectives and constraints with

respect to 𝑝 , the positions of boundary mesh vertices. The alternative is the "differentiate-first"

approach. Specifically, for each objective and constraint 𝐽 (𝑢), before it is discretized, we derive its

shape derivative, a continuous analog of the gradient with respect to 𝑢. The shape derivative is

a functional 𝑑 𝐽 [𝑣], where 𝑣 is a velocity field of the deformations of the domain Ω(𝑝) (i.e., the

displaced position of a point 𝑞 is 𝑞 + 𝑡𝑣). 𝑑 𝐽 [𝑣] yields the rate of change of 𝐽 as 𝑡 → 0. 𝑑 𝐽 is defined

by a function 𝜌 on Ω, which can be obtained by solving a 𝑃𝐷𝐸, similar in structure to the elasticity

equation (the adjoint equation). The advantage of the latter approach is that it naturally allows for

remeshing and refinement (the adjoint equation solver is just a standard elasticity solver), which

is essential for large changes in the object shape: any method used to solve large-deformation

elasticity PDEs can be used to compute 𝜌 , without fixing the discretization in advance.

The cost of each optimization step is approximately equal to solving two elasticity problems, the

nonlinear elasticity problem, and the linear adjoint problem, to obtain the solution and shape

derivative respectively.

In the rest of the section, we provide more specifics on the components of the formulation described

above and their discretizations. The complete derivations are included in the supplementary

material.
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2.3.2 Notation

We use the following notation, also illustrated in Figure 2.2

• Ω: optimization domain (may consist of multiple objects)

• Γ𝐷 , Γ𝑁 , Γ𝐶 , Γ𝑆 : parts of the domain boundary where Dirichlet, Neumann, rigid-deformable

(𝐶) and deformable-deformable (𝑆) contact boundary conditions are applied.

• superscripts +,− denote surface quantities on two sides of a contact surface between two

deformable objects; [·] denotes the difference of two one-sided quantities.

• 𝑢 (𝑥), 𝑥 ∈ Ω: displacements.

• 𝐷 [𝑓 ] for a function 𝑓 , its material derivative 𝜕𝑓

𝜕𝑡
+𝑢 · ∇𝑓 , where 𝑡 is a deformation parameter.

• 𝜎 , 𝜀 = 𝜀 (𝑢) = 1
2 (∇𝑢 + ∇

𝑇𝑢): stress and linearized elasticity strain.

• 𝐶: elasticity tensor.

• 𝑇 : tractions on Γ𝑁 , i.e., surface force density on the boundary.

• 1/𝛼 : penalty parameter for constraints;

• 𝜌 (𝑥): solution of the adjoint PDE used to compute shape derivatives.

• 𝜙𝑖,𝜓𝑖 : volumetric finite element basis functions at node 𝑖 .

• 𝜆𝑚: basis functions on the boundary.

• 𝑝: optimization degrees of freedom (boundary vertices of Ω)
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ΓS

Figure 2.2: Notation for boundary parts for a simple assembly: Γ𝐷 is attached to the vertical wall (red), Γ𝐶
can slide along the ground (yellow), Γ𝑁 is where the load is applied, and Γ𝑆 is the contact area of two parts.
We view both parts as a single domain Ω consisting of detached parts.

2.3.3 Elastic deformations with contact

In this paper, we only consider static problems, so there is no time dependence in the equations

we use.

The basic form of static equations of linearized elasticity (without contact or friction yet) is

∇ · 𝜎 = 0 on Ω

𝑢 = 𝑢 on Γ𝐷

𝜎𝑛 = 𝑔 on Γ𝑁

(2.3)

The variational form of this problem, that we rely on to formulate the contact constraints in a

computationally practical way, as well as for the finite element discretization, is given by the

equation ∫
Ω
𝜖 (𝑢) : 𝐶 : 𝜖 (𝑤) 𝑑𝑉 −

∫
Γ𝑁

𝑤 · 𝑔𝑑𝑆 = 0 (2.4)

satisfied for any𝑤 in an appropriate function space with𝑤 = 0 on Γ𝐷 , and𝑢 satisfying the Dirichlet

boundary conditions on Γ𝐷 .
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Contact constraints. We consider two forms of contact constraints, rigid-deformable (RD) and

deformable-deformable (DD), defined on the parts of the boundary Γ𝐶 and Γ𝑆 respectively.

The former type of constraints involves a fixed boundary to which we refer as obstacle, on one

side, which can be considered rigid, e.g., legs in contact with the floor.

𝑢 · 𝑛 ⩽ 0 on Γ𝐶

𝜎𝑛 · 𝑛 ⩽ 0 on Γ𝐶

(𝜎𝑛 · 𝑛) (𝑢 · 𝑛) = 0 on Γ𝐶

(2.5)

The first equation on Γ𝐶 says that the displacement should move the object points away from the

obstacle; the second equation says that the normal force on this boundary should be 0 or point

towards the other object; and finally, the last equation, the complementarity condition, ensures

that if the force is nonzero, the displacement in the normal direction is zero, i.e., there is contact.

The DD contact constraints are similar, however, because we have deformable material on both

sides of the boundary, and the differences in stress need to be considered. Normals 𝑛− and 𝑛+ and

displacements 𝑢− and 𝑢+ correspond to the parts on the opposite sides of contact, and [𝑢] is the

jump 𝑢− − 𝑢+.

[𝑢] · 𝑛− ⩽ 0 on Γ𝑆

[𝜎]𝑛− · 𝑛− ⩽ 0 on Γ𝑆

( [𝜎]𝑛− · 𝑛−) ( [𝑢] · 𝑛−) = 0 on Γ𝑆

(2.6)
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Friction constraints. Similarly, there is a set of equations for friction:

∥(𝜎𝑛)𝑡 ∥ ⩽ 𝜇 | (𝜎𝑛)𝑛 | on Γ𝐶

∥(𝜎𝑛)𝑡 ∥ < 𝜇 | (𝜎𝑛)𝑛 | =⇒ 𝑢𝑡 = 0 on Γ𝐶

∥(𝜎𝑛)𝑡 ∥ = 𝜇 | (𝜎𝑛)𝑛 | =⇒ 𝑢𝑡 = −𝜆(𝜎𝑛)𝑡

(2.7)

where 𝜆 > 0, and 𝜇 is the friction coefficient; 𝑡 and 𝑛 refer to tangential and normal components of

the force. The first inequality captures the main aspect of Coulomb static friction model (the force

is bounded by 𝜇 times the normal force). The second equation states that if the force is below

maximal, no displacement happens, and the third one that the displacement at maximal friction

force is parallel to it and opposite in direction.

A modification (2.6) (replacing one-sided constraints with differences), applies to friction (please

see the supplementary document), yielding deformable-deformable contact.

2.3.4 Variational form and constraint approximation

While the basic elasticity problem (2.4) is quite straightforward to solve and well-understood,

contact constraints, especially friction constraints, result in numerous difficulties: (1) the system

becomes highly nonlinear and non-convex; (2) the solutions may be non-smooth; (3) due to

dissipative nature of friction, the problem cannot be cast as a (constrained) energy minimization

problem. This makes even the direct solution of the problem difficult to make robust, and presents

a particular challenge for shape optimization.

The key mathematical ideas for resolving these difficulties can be found in [Eck et al. 2005], further

developed in [Maury et al. 2017]. (Recent work [Li et al. 2020b] also follows a related approach for

dynamic deformable contact).

The main elements of the approach include:
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Figure 2.3: Smoothing function 𝑁𝜂 , ℎ𝜂 , and 𝑔𝜖

• Use smooth approximations of contact with friction (these are used to prove solution exis-

tence in [Eck et al. 2005], but are also valuable computationally). In particular, the norms

in (2.7), that result in non-smoothness of the constraints are replaced by a smoothed norm

that will be described in detail in this section.

• Replace the inequality constraints by suitable (also smooth) penalty functions, added to the

variational formulation of the problem (2.4); a number of works (see [Maury et al. 2017]

for discussion) show that the results converge to the true solution, as the penalty weight

1/𝛼 →∞. Like penalty approaches commonly used in graphics, using these methods has

the benefit of replacing constrained optimization with unconstrained, and the downside of

potential constraint violations which we discuss below.

We largely follow the smooth formulation of [Eck et al. 2005], which demonstrates that the

solution to the smooth problem exists under typical assumptions, and with smoothing parameters

approaching zero, converges to a solution of the original problem.
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Smoothed contact functional. We introduce a smoothing function [Eck et al. 2005]

ℎ𝜂 (𝑦) =



0 𝑦 ⩽ −𝜂

1
4𝜂𝑦

2 + 1
2𝑦 +

𝜂

4 −𝜂 ⩽ 𝑦 ⩽ 𝜂

𝑦 𝑦 ⩾ 𝜂

(2.8)

approximating𝑚𝑎𝑥 (0, 𝑦) as 𝜂 → 0. This is the same function used in [Maury et al. 2017].

The contact equations (2.5) lead to the following objective

𝑗 ′𝑁,𝛼 (𝑢,𝑤) =
1
𝛼

∫
Γ𝐶

ℎ𝜂 (𝑢 · 𝑛) 𝑤 · 𝑛 𝑑𝑆 (2.9)

As 𝛼 → 0, the solutions obtained with this term added to (2.4) converge to solutions satisfying

the constraint 𝑢 · 𝑛 ⩽ 0. Similarly, we have

𝑗 ′𝑆,𝛼 (𝑢,𝑤) =
1
𝛼

∫
Γ𝑆

ℎ𝜂 ( [𝑢] · 𝑛−) [𝑤] · 𝑛− 𝑑𝑆 (2.10)

for DD contact.

Friction functionals. The Coulomb friction constraints (2.7) and the analogous constraint for

DD friction, are expressed in terms of norms. For the smoothed functional, we use the following

function to approximate |𝑦 |, as 𝜂𝑛 → 0:

𝑁𝜂 (𝑦) =


∥𝑦∥ ∥𝑦∥ ⩾ 𝜂𝑛

− 1
8𝜂3 ∥𝑦∥4 + 3

4𝜂 ∥𝑦∥
2 + 3

8𝜂 ∥𝑦∥ ⩽ 𝜂𝑛
(2.11)
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Then friction constraints are captured by the following objectives [Eck et al. 2005]:

𝑗 ′𝐶𝐹,𝛼 (𝑢,𝑤) =
𝜇

𝛼

∫
Γ𝐶

ℎ𝜂 (𝑢 · 𝑛) 𝑁 ′𝜂 (𝑢𝑡 ) ·𝑤𝑡 𝑑𝑆

𝑗 ′𝑆𝐹,𝛼 (𝑢,𝑤) =
𝜇

𝛼

∫
Γ𝑆

ℎ𝜂 ( [𝑢] · 𝑛−) 𝑁 ′𝜂 ( [𝑢]𝑡 ) · [𝑤]𝑡 𝑑𝑆
(2.12)

Smoothed elasticity with contact and friction. Four objectives (2.9)- (2.12) are added to (2.3)

to model contact with friction both for deformable-deformable and deformable-rigid contacts on

parts of boundaries.

∫
Ω
𝜖 (𝑢) : 𝐶 : 𝜖 (𝑤) 𝑑𝑉 −

∫
Γ𝑁

𝑤 · 𝑔𝑑𝑆

+ 𝑗 ′𝑁,𝛼 (𝑢,𝑤) + 𝑗 ′𝑆,𝛼 (𝑢,𝑤) + 𝑗 ′𝐶𝐹,𝛼 (𝑢,𝑤) + 𝑗 ′𝑆𝐹,𝛼 (𝑢,𝑤) = 0 (2.13)

for any 𝑤 . The finite element discretization of these equations is standard and leads to a non-

linear system of equations, because of the nonlinear functions. This system requires computing a

Jacobian of the left-hand-side to solve efficiently. We refer to the supplementary document for the

derivation of the Jacobian.

2.3.5 Optimization objectives

Next, we describe the optimization problem we solve, specifically, the set of objectives we use in

the functional 𝐽 as optimization targets or inequality constraints, and how their shape derivatives

are computed.

In our model, we consider only the simplest type of assembly, namely, moving parts together

in a specific direction 𝑦. This can be generalized to nonlinear trajectory settings (e.g., a screw

motion trajectory) but this will make these constraints substantially more complex. 𝐿𝑝 stress and
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volume. These objectives are standard, and expressed as

𝐽
𝑝
𝜎 (Ω, 𝑢) =

(∫
Ω
(∥𝜎 (𝑢)∥𝐹 )𝑝𝑑𝑉

)1/𝑝
; 𝐽𝑉 (Ω) =

(∫
Ω

1𝑑𝑉
)2

(2.14)

The stress objective for large 𝑝 approximates the non-smooth maximum-stress functional well.

Following [Panetta et al. 2017c], we consider the average stress at each element. Also, we use

value 𝑝 = 20 in most cases. We note that von Mises stress can be used just as easily. In addition,

we have options for setting target stress and target volume, which are expressed as follows:

𝐽 𝑡𝜎 (Ω, 𝑢) =
∫
Ω
𝜑 (∥𝜎 [𝑢] ∥𝐹 − 𝑆𝑡 )𝑑𝑉 ; 𝐽 𝑡𝑉 (Ω) = 𝜑

(∫
Ω
𝑑𝑉 −𝑉𝑡

)
(2.15)

where 𝑆𝑡 and 𝑉𝑡 represent the stress and volume targets and 𝜑 is the following function

𝜑 (𝑧) =


0 if 𝑧 ⩽ 0

𝑧2 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

(2.16)

We normalize our objective approximating maximal stress by the ratio between the load (in our

boundary conditions) and the area of our shape’s surface, which has units of stress. For the volume

objective, we use 1/𝑉 2
𝑡 as a normalization constant.

We assume an disassembly direction 𝑦 per connection, with assembly happening in opposite

direction −𝑦. We define two objectives, an assembly objective, which ensures that parts can be put

together without much deformation in direction −𝑦, and dissasembly objective, which penalizes

parts moving apart along 𝑦, under the loads specified by the user.

Assembly objective. A fully physical treatment of assembly would require simulating the

assembly process, leading to a large number of nonlinear solves for different time steps for a
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Figure 2.4: Assembly, disassembly and parallel alignment objectives. Top: left shape is easy to assemble
in −𝑦 direction, while shape on the right cannot be assembled without effort (high objective value, due
to normals pointing in the direction opposite to 𝑦). Middle: For the same disassembly direction 𝑦, and
user-defined load 𝑙 , the assembly on the right falls apart under the load; for the shape on the left, the parts
cannot move apart in direction 𝑦 under load 𝑙 . Bottom: left shape has a large region parallel to disassembly
direction (marked in blue), making it hard to disassemble in any direction other than 𝑦, while shape on the
right allows for multiple easy disassembly directions (shown in light red).

single gradient evaluation. Instead, we use a geometric heuristic with negligible cost to allow

parts in contact to be assembled without a large deformation while moving a part along an a

priori fixed direction in space. Assembly is ensured if the contact surface is a height field when we

view 𝑦 as a vertical direction. The angle between the direction of connection/disconnection and

surface normal needs to be less than 𝜋/2. In our experiments, we always start with assemblable

non-optimized parts, in order to facilitate the optimization.
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This is not a hard constraint for deformable objects, as it can be violated by a small amount, to

squeeze in a connector. We do not attempt to bound maximal possible deformation, but empirically

it can be easily controlled by increasing the weight of this objective.

𝐽𝑎 (Ω) = 1
|Γ𝑆 |

∫
Γ𝑆

𝜑 (−𝑛(𝑥) · 𝑦)𝑑𝑠 (2.17)

where 𝑦 is the disassembly direction vector (and −𝑦 the assembly direction), 𝑛(𝑥) is the normal at

the contact position 𝑥 , and |Γ𝑆 | is the area 𝐴𝑆 =
∫
Γ𝑆

1𝑑𝑠 .

Disassembly objective. This objective ensures that under user-defined loads, or for a collection

of different user-defined loads, the parts should not move away from the assembled positions.

We formalize this by requiring that the optimized shape in equilibrium does not move in the

disassembly direction, i.e., the forces holding contact points together are sufficient.

𝐽𝑑 (Ω, 𝑢) = 1
|Γ𝑆 |

∫
Γ𝑆

𝜑 (𝑢 (𝑥) · 𝑦 − 𝑢𝑡𝑜𝑙 ) 𝑑𝑠 (2.18)

A tolerance 𝑢𝑡𝑜𝑙 is added, allowing a small displacement in the assembly direction. While the

assembly term is purely geometric, the disassembly objective relies on actual simulation responses

and it bounds how much optimized parts can move. As long as it is finite, the assembly does not

fall apart.

Although the last two objective terms may work against each other in the cases when the loads

have a significant component along the disassembly direction, in other situations they work

together to provide structures that are, at the same time, both assemblable and are not prone to

accidental disassembly under user-defined load. See Figure 2.33 for an example.

Parallel alignment objective. Finally, this objective is a secondary heuristic that is not essential

25



for solving the problems but empirically makes the structure more robust with respect to being

disassembled by forces close to assembly direction, since it favors solutions with larger contact

zones tangential to the assembly direction. When such zones are present, forces deviating from the

disassembly direction have normal components resulting in deformations and friction keeping the

parts from accidental disassembly. In the bottom of Figure 2.4, we can see how the shape without

parallel alignment allows for easy disassembly in different directions (shown in red), without any

reaction force (normal or friction), while the shape on the left allows for a single disassembly

direction 𝑦.

This term is defined per continuous contact area Γ𝑆 with respect to a disassembly direction 𝑦:

𝐽 𝑝 (Ω) = 𝜑
(
𝑊𝑡𝑎𝑟𝑔𝑒𝑡 −

1
|Γ𝑆 |

∫
Γ𝑆

𝑔𝜖 (𝑛(𝑥) · 𝑦)𝑑𝑠
)

(2.19)

where𝑊target is the target percentage area in the connection which should be parallel to the

disassembly direction, which can help increasing/decreasing reaction forces avoiding disassembly.

The function 𝑔 is parameterized by 𝜖 , defining the interval for which 𝑔 is positive and 𝛽 setting

the linear decay of the function when 𝑎𝑏𝑠 (𝑧) is larger than 𝜖 . It has the following form:

𝑔(𝑧) =



𝛽 (𝑧 + 𝜖) if 𝑧 ⩽ −𝜖

−𝑎𝑧3 + 𝑏𝑧2 + 1 if 𝑧 ⩽ 0

𝑎𝑧3 + 𝑏𝑧2 + 1 if 𝑧 ⩽ 𝜖

−𝛽 (𝑧 − 𝜖) otherwise

(2.20)

where 𝜖 is a smoothing constant and where 𝑎 and 𝑏 are defined as:

𝑎 = −𝛽/𝜖2 + 2/𝜖3 and 𝑏 = −𝑎 𝜖 − 1/𝜖2
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Summary. To summarize, our solver solves problems of the form (2.1), for which

𝐽 (𝑢) =
∑︁
𝑖

𝑘𝑖 𝐽𝑖, (2.21)

where each of 𝐽𝑖 is one of the objectives, enumerated above, combined with weights. The equality

constraint 𝐹 (𝑢) = 0 is given by (2.13), the static elasticity equation with smoothed contact and

friction.

The inequality constraints are of the form 𝐽𝑚 < 𝐽𝑏𝑛𝑑𝑚 where 𝐽𝑚 are some of the remaining objectives

for which upper bounds are imposed (e.g., a bound on 𝐿𝑝 norm of stress). These are imposed as

soft constraints by adding
∑
𝑖

1
𝜖𝑖
𝜙 (𝐽𝑏𝑛𝑑𝑚 − 𝐽𝑖) to 𝐽 (𝑢).

2.4 Shape Derivatives and Discretization

In this section, we describe our approach to computing the discretization of the problem and the

gradient of the functional projected to the constraint space 𝐹 (𝑢) = 0 (i.e., space of displacements

satisfying the elasticity equation with contact and friction).

2.4.1 Shape derivatives

For each objective, regardless of it is used as an optimization target, we need to compute the

gradient with respect to 𝑝 . As explained in Section 2.3.1, we use shape derivatives, which are

computed using the solution of an adjoint equation. More specifically, the solution is used to

construct a form 𝑑 𝐽𝑑 on the surface, which, when applied to changes 𝛿𝑝 of vertex positions on the

boundary, produces the (linearized) change of the functional 𝐽 :

𝑑 𝐽 [𝛿𝑝] = lim
𝑡→0

𝐽 (Ω(𝑝 + 𝑡𝛿𝑝), 𝑢𝑡 ) − 𝐽 (Ω(𝑝), 𝑢0)
𝑡

(2.22)
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where 𝑢𝑡 is the solution of the elasticity equations obtained on the domain with deformation 𝑡𝛿𝑝 .

The theory of shape derivatives is well-established, and we refer to [Bonnetier and Dapogny 2020].

Here, we only present a brief summary of the steps for computing these derivatives. A detailed

derivation can be found in the supplementary material. Our formulation follows [Panetta et al.

2017c], in that we consider volume, rather than surface integrals, which proved to be critical for

derivative accuracy, at a moderate additional cost, compared to the elasticity solves involved.

Adjoint equation. The first step in computing 𝑑 𝐽 is to solve the adjoint equation, which in our

case has the following form:

∫
Ω
𝜖 (𝜌) : 𝐶 : 𝜖 (𝜓 ) 𝑑𝑉 =

∫
Ω
𝜏 : 𝜖 (𝜓 ) 𝑑𝑆 − (𝑇 ′𝐶 +𝑇 ′𝑆 +𝑇 ′𝐶𝐹 +𝑇 ′𝑆𝐹 ), (2.23)

for any𝜓 , where the terms𝑇 ′
𝑋
, corresponding to the contact and friction smoothed penalties are of

the form
∫
Γ𝑋
𝐹 [𝑢] ·𝜓𝑑𝑆 , and 𝜌 is the unknown. We observe that this is a linear elasticity equation

which is relatively inexpensive to solve compared to the primal nonlinear elasticity equation. The

quantity 𝜏 is defined as the sum of 2𝑒′𝜎 : 𝐶 for all objectives of the form (2.2) where 𝑒 (𝑠 (𝑢), 𝑥) is a

function on a stress measure, as our case. Then, 𝑒′ means the partial derivative of 𝑒 with respect

to our stress measure.

Shape derivative. If the boundary deformation is defined by a set of basis functions 𝜆𝑚 , with the

deformation expressed as 𝑣 =
∑
𝑚 𝛿𝑝𝑚𝜆𝑚 , where 𝛿𝑝 is the vector of changes of our variables, it is

possible to express the shape derivative as a dot product

𝑑 𝐽

[∑︁
𝑚

𝛿𝑝𝑚𝜆𝑚

]
= 𝑆 [𝑢, 𝜌] · 𝛿𝑝 (2.24)

where 𝑆 [𝑢, 𝜌] is a vector of the same length as 𝑝 of vector valued functions depending on 𝑢 and 𝜌 .

The expressions for these functions are included in the appendix, and derived in the supplementary

28



document. We emphasize that no discretization, other than discretization of the deformation of

the boundary was performed so far.

The vector 𝑆 [𝑢, 𝜌] computed by numerical integration of FEM solutions of two elasticity problems

for 𝜌 and 𝑢 is the gradient of the functional 𝐽 with respect to 𝑝; this is what we use in the

optimization process as discussed in Section 2.5.

2.4.2 Discretization

To make our discussion of the formulation complete, we summarize the discrete form of the

problems we solve. The exact expressions are straightforward to derive but tedious (please see the

supplementary material). We use quadratic Lagrangian elements on tetrahedras for discretization

of (2.13) to obtain a system of the form

𝐹 (𝑢) = 𝐾𝑢 − 𝐹𝑁 + 𝑁𝐶 (𝑢) + 𝑁𝑆 (𝑢) + 𝐹𝐶 (𝑢) + 𝐹𝑆𝑢 = 0 (2.25)

The first two terms come from the standard elasticity equation, and the rest correspond to the

remaining terms in (2.13). The remaining terms, while simple, are not linear, so the system after

discretization is a general algebraic system, and requires a non-linear solver. We also derive

expressions for the Jacobians 𝐷𝑁 and 𝐷𝐹 , which are needed for efficient optimization.

In contrast, the adjoint PDE (2.23) is linear and has the form

(𝐾 + 𝐷𝑁𝐶 + 𝐷𝑁𝑆 + 𝐷𝐹𝐶 + 𝐷𝐹𝑆 ) 𝜌 = 𝐷 (2.26)

i.e. involves exactly the Jacobians of the constraint functions. The right-hand side𝐷 is expressed in

terms of 𝜏 . Formulas for the entries of these matrices are provided in the supplementary document.

Finally, once𝑢 and 𝜌 are available, the coefficients of the shape derivative are computed from these
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values by integration, following formulas in the appendix, using numerical quadrature described

in Section 2.5.

2.5 Method

Input. The input to our algorithm is a collection of tetrahedral meshes, with some parts of their

surfaces in contact, and with boundary conditions applied to other parts of surfaces. Each object

can be designated as deformable or rigid.

Our overall method is conceptually straightforward (Algorithm 1). The functions used in the

pseudocode are:

• ElasticitySolve solves the nonlinear elasticity system (2.3), to obtain 𝑢;

• AdjointSolve solves the adjoint system (2.26) to obtain 𝜌 ;

• DiscreteShapeDerivative, given 𝑢 and 𝜌 , computes the gradient 𝑆 [𝑢, 𝜌] with respect to

vertex positions on the boundary using (2.24).

• Converged is the outer iteration stopping criterion discussed below.

The inner loop works on a fixed connectivity for Ω(𝑝), and is close to the standard BFGS algorithm:

at each step, a descent direction is computed, and a line search is performed to determine our

step size. There are three important differences: (1) we check for any inversions of tetrahedra

and choose a step that maintains a bound on mesh element shape quality; (2) after each update

of the boundary vertices, we call the SLIM smoothing algorithm [Rabinovich et al. 2017a] on

interior vertex positions 𝑝𝑖𝑛𝑡 with boundary vertices 𝑝 fixed, to move the interior vertices so that

the quality of the mesh is improved; (3) with a valid mesh, we run simulation and if it doesn’t

converge in a maximum number of iterations, we reduce step by half in the line search.

30



If the step becomes too small, the inner loop is terminated, and the domain is remeshed in the

outer loop.

A natural stopping criterion for the algorithm consists of three parts: (1) the objective reduction

obtained in a step of (outer) iteration is below a threshold 𝜖𝑟 computed relative to the initial

objective value; (2) the step size of the line search falls below a threshold (3) the maximal number

of iterations𝑚𝑎𝑥_𝑜𝑖 is exceeded. Due to remeshing, the energy however may oscillate slightly,

and for robust behavior we require that sufficient energy decrease does not happen over𝑚 steps.

While many other options are possible (e.g., relative or absolute gradient norm threshold), we

consider the rate of change in the objective to be most appropriate: our goal is to obtain a reduction

in the objective, and a slow rate of reduction indicates that optimization will not improve the

target by much more in a reasonable number of iterations; this happens either due to being close

to a local minimum value or step size going to zero for geometric reasons, typically thin regions,

resulting in distorted elements.

We discuss the choices for 𝜖𝑟 and𝑚 in Section 2.6, as well as examine convergence for specific test

cases.

For remeshing, we use Triangle in 2D, and CGAL and fTetWild [Hu et al. 2020a] for 3D tetrahedral

meshing. More information on meshing is presented in the Appendix 2.9.5.

Smoothness penalty. In addition to all optimization targets described in Section 2.3, we use a

discrete regularization term 𝑆𝑝 (Ω) =
∑
𝑣∈𝑉 ∥𝑠 (𝑣)∥𝑝 where

𝑠 (𝑣) =
∑
𝑢∈𝑁𝑣 (𝑢 − 𝑣)∑
𝑢∈𝑁𝑣 ∥𝑢 − 𝑣 ∥

and 𝑁𝑣 is the neighborhood of 𝑣 . The value of power 𝑝 can be adjusted to obtain smoother surfaces

at the cost of less optimal shapes; we use value 2 for most cases, increasing it to 4 for some objects.
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Algorithm 1 contact optimization
function Gradient(𝑝)

𝑢 ← ElasticitySolve(Ω(𝑝))
𝜌 ← AdjointSolve(Ω(𝑝),𝑢)
𝑔← DiscreteShapeDerivative(𝑢,𝜌)

end function

function ShapeOptimization
𝑝 ← non-fixed boundary vertex positions
repeat

repeat
𝑑 ← BFGSdirection(Gradient, 𝑝)
𝜎, 𝑠, 𝑔← LineSearch( Gradient,𝑑)
𝑝 ← 𝑝 + 𝑠𝑑
SLIM(𝑝𝑖𝑛𝑡 )
𝑖𝑖 ← 𝑖𝑖 + 1

until 𝑠 < 𝛿 or 𝑖𝑖 = 𝑜𝑖_𝑚𝑎𝑥_𝑖𝑖
Remesh(Ω(𝑝))
𝑜𝑖 = 𝑜𝑖 + 1

until 𝑜𝑖 =𝑚𝑎𝑥_𝑜𝑖 or not Converged
end function

This term is scale-invariant and pushes the triangles/tetrahedra of the mesh toward equilateral.

Elasticity solver. In ElasticitySolve we use the standard Newton’s method with line search

to solve the nonlinear elasticity system with contact. We consider the simulation solved when

residual is lower than a given tolerance. For 2D, we use 10−10 for the tolerance, while the value of

10−8 is used for our 3D examples. Moreover, for solving linear systems at each iteration of the

Newton’s method, we use CHOLMOD (for frictionless scenarios) and UMFPACK (when friction is

present) in 2D. In 3D, we use MKL Pardiso library.

Adaptive Quadrature. An extremely important aspect of our implementation is the quadrature

used to compute the integrals in the FEM system discretization, as well as in the shape derivative

coefficient formulas. For problems with friction, precise computation of these integrals proved to

be very important. At the same time, due to functions like ℎ𝜂 , the functions we integrate, while
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Figure 2.5: Convergence plots for connector (Figure 2.9) on the left and stool (Figure 2.24) on the right
side. The charts show stress objective vs iterations.

smooth, have higher derivative discontinuities. We use a combination of adaptive refinement on

triangles and high-order (order equals to 10) Gaussian quadrature to integrate all functions to

high precision. For more information, see Section 2.9.4 in the Appendix.

Convergence behavior. Figure 2.5 shows the objective as a function of iteration number for a

2D connector (Figure 2.9) and a 3D stool (Figure 2.24). For both cases, we optimized 𝐿𝑝 norm of

stress, while keeping volume below or equal the initial value. For the connector, during the last

200 iterations, the energy decreased only by 0.87%, while for the stool, the minimum decreased by

0.27% in the last 30 iterations. We provide additional data in Section 2.6.

Observe that there are increases in energy at some of our iterations, corresponding to the remeshing

of the current solution. However, after that the objective function quickly decreases, which

motivates our formulation of the convergence criterion.

2.6 Evaluation

Simulation Validation. As we use approximations to the standard physical models of contact

and friction we evaluate the accuracy of these models. We use two examples. The first one is box

in contact with a rigid surface. The second one is joint in contact with a holder as shown in Figure
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Figure 2.6: Examples used for validation. The left: box in contact with a rigid surface. The right: joint in
contact with a holder. We use the same notations for boundary parts as in Fig. 2.2. Starts from this Figure,
all the orange arrows in the following figures illustrate the direction of load.
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Figure 2.7: Simulation validation for box in contact with rigid surface. The left is relative displacement
error with changing 𝛼 . The right is relative displacement error with changing 𝜂

2.6.

The results for both cases are largely the same. Thus, we will only show the results for box in

contact with a rigid surface in this section and leave out the results for joint in contact with holder.

We first change the value of 𝛼 and 𝜂 The reference value we use for comparison is obtained by

simulation with 𝛼 = 𝜂 = 10−6. We set the smallest value of 𝛼 to be 10−7 and scale it by the power

of 2. The relative value of the difference in relative displacement |𝑢 − 𝑢𝑟𝑒 𝑓 |/|𝑢𝑟𝑒 𝑓 | is shown in

Figure 2.7.
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Figure 2.8: Simulation validation for box in contact with rigid surface. The left is relative displacement
error with changing 𝜂𝑛 . The right is relative displacement with changing 𝜇

Then, we test the same scenarios but with friction at contact regions. First, we consider the

dependence of accuracy on 𝜂𝑛 , using 𝜂𝑛 = 10−4 as the reference value, as for friction we typically

need more smoothing in the constraints. To test how friction coefficient affects simulation, we

add in a small horizontal load that is 10% of the vertical load for the box example. Test with 𝜇

ranging from 0.1 to 0.16 and increase 𝜇 every time by 0.01 for the two examples. We compare the

tangential displacement of the examples with respect to different 𝜇 to the tangential displacement

of the examples with respect to 𝜇 = 0.1 and take the ratio. We get the plots shown in Figure 2.8.

Effects of optimization targets and constraints. We use a simple two-dimensional connector

example to demonstrate the effects of various optimization objectives and constraints (Figure 2.9)

We compare stress distribution and maximal stress in different cases.

For most of the examples related to this scenario, we used a similar optimization configuration,

running a maximum of 1000 iterations and remeshing at least every 100 iterations (𝑚𝑎𝑥_𝑖𝑖 = 100

and𝑚𝑎𝑥_𝑜𝑖 = 10).

The most radical difference is between minimizing the volume while bounding stress and mini-

mizing maximal stress.
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Figure 2.9: Optimization results when using different combinations of objectives. For both baseline
(𝑝 = 20) and compliance (𝑝 = 2) scenarios, we use a target volume equal to the original one.
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stress 21.2

22.6

0.0
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22.6 3.2

optimized

3.3

Figure 2.10: Optimization considering multiple loads.

We also compared the scenario of minimizing maximal stress with and without a bound on volume

(equal to the initial volume). In this comparison, stress results were actually very close to each

other, with a slight advantage to the version with the constraint.

Multiple loads. Our framework allows optimizing for multiple separate acting forces, meaning

that the energy related to stress will be a combination of the values from each separate scenario.

An example is shown in Figure 2.10, where forces of the same intensity are applied to the right

and to the left of the top piece. The stress results of the optimized shape are very close to each

other and the final shapes present considerable symmetry, even though we are not enforcing any

geometry symmetry through constraints.

Differences in material properties. Figure 2.11 shows how the results of optimization are
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0.26
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Figure 2.11: Multimaterial optimization. The stiff material has Young’s modulus equal to 100 and Poisson’s
ratio of 0.3, while the flexible one has Young’s modulus equal to 1.0 and Poisson’s ratio of 0.0.

no
friction

with friction
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�xing
top piece 

2.2 2.35 10.2
max

stress 22.6

22.6

0.0

original

Figure 2.12: Middle shapes: with and without friction; rightmost shape: the optimization of the top
assembly is disabled.

affected by combining a highly flexible and a stiff material on our two different pieces. (In both

cases the target is the baseline case of minimizing stress with no constraints). We observe that the

stress reduction is similar, although shapes required for this are substantially different.

Role of friction. In the next comparison (see Figure 2.12), we observe that in the presence of

friction (𝜇 = 1.0), we achieve a similar maximum stress value with the assembly not needing a

more extreme protrusion to stay together, due to additional forces resulting from friction. This is

demonstrated in Figure 2.12. The rightmost example shows the drastic effect of fixing only one

part.

Assembly/disassembly and parallel alignment constraints. We show the effects of our

connection-related constraints presented in Section 2.3.5.
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Figure 2.13: Optimization results when using assembly and parallel alignment objectives, with two
different strengths. The white arrow demonstrates the dissemble direction.

Figure 2.13 shows the baseline optimization (minimizing maximal stress with a bounded volume)

compared to different cases when our assembly constraint in all cases, and different target parallel

alignments. Observe that, as expected, the contact area aligned with the disassembly direction

increases.

All three examples are possible to assemble in vertical direction without deformation. Also, the

parallel alignment objective guarantees that the desired proportion (30% and 50%) of the contact

walls are parallel to the input direction.

Figure 2.14 shows the baseline case compared to one using a disassembly constraint with a very

small tolerance. Compared to the the baseline optimization, two pieces do not detach when the

disassembly constraint is applied. Another example of the importance of this constraint is shown

in Figure 2.20.

Assembly/disassembly tradeoff. Finally, we also studied the effect of choosing different balance

of assembly and disassembly objectives, in a setting when these counteract each other. Consider

the case of Figure 2.15, where a force is pulling the top part of the connector up and we initially

optimize the shapes using the same weight (100.0) for both terms and weight 1.0 for stress. Then,

we reran our optimization using three lower weights for the assembly term. Figure 2.15 shows

that, by reducing assembly’s importance, almost no movement is observed in the last shape where
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Figure 2.14: Optimization results when using a disassembly energy term with low tolerance. As before,
the white arrow demonstrates the dissemble direction.

Table 2.1: Final state of objective term values when running optimization with different assembly weights

Assembly weight
Objective 100 10 1 0.1
Assembly 0.02598 0.06968 0.35474 1.34750

Disassembly 0.01302 0.00275 0.00033 0.00003
Stress 2.53228 1.95349 1.35349 0.83647

assembly weight equals 0.1. When the disassembly term is dominant, the optimized shape has

small protrusions on both sides that keep it firmly in place, at the expense of greater effort required

for (dis)assembling it along the (dis)assembly direction.

Table 2.1 presents a comparison of our main energies in this study. Note how assembly objective

values increase when it’s weight is reduced, while, at the same time, disassembly and stress values

decrease considerably.
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Figure 2.15: Displacement results when optimizing our connector using varying assembly weights and a
fixed disassembly weight.

2.7 Examples

To validate our framework, we computed optimized shapes for a number of 2D and 3D realistic

scenarios. In all illustrations in this section, parts of the object boundary with Dirichlet conditions

are shown in red, and contact regions with external supports in yellow. We use 𝑝 = 20 for stress

optimization in all examples. Except for specific scenarios, in most of our examples we used the

same objective function weights. A summary of our experiments in presented in Table 2.2, where

we add information about the simulation, as well as objective functions used in each example,

instance size and initial and final maximum values of stress.

2.7.1 2D examples

Lever. In this example shown in Figure 2.16, one part of the boundary of the black piece of the

assembly is clamped to the table and in simulation assumed to satisfy the Dirichlet boundary

condition; the part touching the vertical wall has an RD contact condition. Maximal stress is

optimized, with no constraints imposed. As seen in Figure 2.16, we are able to reduce maximum
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Table 2.2: Summary of experiments. In constraints column, “/” means that the weight is modified after
each remeshing and varies between these values linearly. Column Relative gradient norm presents
the ratio of the final gradient norm and the initial one from the first iteration. The last column (Final
𝐿𝑝-norm reduction) shows the reduction in the stress objective due to the last outer iteration, expressed
as a percentage of the initial objective value. ∗For both bridge and coat rack (hooks), running 5 more outer
iterations reduces stress to 1.80 and 346.51, relative gradient norm to 2.6e-2 and 2.81e-2, and final 𝐿𝑝 -norm
reduction to 0.95% and 0.00%, respectively. For fabrication, we used optimization results at outer iteration
5 for lever, hook, crane and at iteration 10 for bridge and coat rack.

Instance
Contact

parameters
𝛼/𝜂/𝜇/𝜂𝑛

Iterations
𝑜𝑖 /𝑚𝑎𝑥_𝑜𝑖 Constraints (= weights)

Post
vol.
min.

BCs Tets
Initial
stress

Final
stress

Relative
gradient
norm

Final
Lp-norm
reduction

2D
examples
Connector 10−5/10−5/0.1/10−3 10/10 𝐽 𝑡

𝑉
= 102/103 no Γ𝐷 + DD + Γ𝑁 1250 22.6 2.18 2.38e-3 0.24%

Lever 10−5/10−5/0.1/10−3 10/10 𝐽 𝑡
𝑉

= 102/103 , 𝐽𝑑 = 102/103 no Γ𝐷 + RD + DD + Γ𝑁 1447 8.46 0.49 2.88e-5 0.31%
Bridge∗ 10−5/10−5/0.1/10−3 10/10 𝐽 𝑡

𝑉
= 200/2000, 𝐽𝑑 = 102/103 no Γ𝐷 + RD + DD + Γ𝑁 2073 7.33 2.21 1.55e-1 4.92%

Hook 10−4/10−4/0.0/− 9/10 𝐽 𝑡
𝑉

= 102/103 no RD + Γ𝑁 1279 16.5 2.97 1.11e-2 0.00%
Hook

(disassembly) 10−5/10−5/0.0/− 6/10 𝐽 𝑡
𝑉

= 102/103 , 𝐽𝑑 = 102/103 no RD + Γ𝑁 1279 16.5 3.82 2.11e-2 0.74%

Crane 10−5/10−5/0.1/10−3 10/10 𝐽 𝑡
𝑉

= 102/103 , 𝐽𝑑 = 102/103 no Γ𝐷 + DD + Γ𝑁 2087 8.47 1.09 7.81e-4 0.40%
3D

multimaterial
Stool 10−4/10−4/0.4/10−2 10/10 𝐽 𝑡

𝑉
= 104/105 no RD + DD + Γ𝑁 58264 2.68 1.12 3.23e-2 0.00%

Bench
Twisted 10−4/10−4/0.2/10−2 8/10 𝐽 𝑡

𝑉
= 104/105 no RD + DD + Γ𝑁 12731 4.38 1.71 5.31e-2 0.00%

Bench
Bended 10−4/10−4/0.2/10−2 10/10 𝐽 𝑡

𝑉
= 104/105 no RD + DD + Γ𝑁 12362 2.82 1.99 1.23e-1 0.00%

Coat rack
(base) 10−4/10−4/0.4/10−2 10/10 𝐽 𝑡

𝑉
= 104/105 no RD + DD + Γ𝑁 15464 47 22.7 2.28e-2 0.17%

Coat rack∗
(hooks) 10−4/10−4/0.4/10−2 10/10 𝐽 𝑡

𝑉
= 104/105 no Γ𝐷 + DD + Γ𝑁 15726 1260 385 7.53e-2 2.16%

3D
pipe-like

Tent
(baseline) 10−5/10−5/0.4/10−3 50/50 𝐽 𝑡

𝑉
= 104/105 , 𝐽 𝑎 = 10 yes RD + DD + Γ𝑁 15325 119 59.3 2.73e-2 0.24%

Tent
(disassembly) 10−5/10−5/0.4/10−3 50/50

𝐽 𝑡
𝑉

= 104/105 , 𝐽 𝑎 = 10
𝐽𝑑 = 1.0

no RD + DD + Γ𝑁 15325 119 59.1 5.06e-2 0.84%

Tent
(parallel) 10−5/10−5/0.4/10−3 50/50

𝐽 𝑡
𝑉

= 104/105 , 𝐽 𝑎 = 10
𝐽𝑑 = 1.0, 𝐽 𝑝 = 0.1

no RD + DD + Γ𝑁 15325 119 70.8 2.33e-2 0.08%

Truss 10−5/10−5/0.4/10−3 50/50
𝐽 𝑡
𝑉

= 104/105 , 𝐽 𝑎 = 10
𝐽𝑑 = 1.0, 𝐽 𝑝 = 0.1

yes Γ𝐷 + DD + Γ𝑁 29882 136 48.7 2.63e-2 0.15%

Dodecahedron 10−5/10−5/0.4/10−3 50/50
𝐽 𝑡
𝑉

= 104/105 , 𝐽 𝑎 = 10
𝐽𝑑 = 1.0, 𝐽 𝑝 = 1.0

yes DD + Γ𝑁 23121 239 26.1 2.12e-2 0.00%

stress more than 14 times compared to the initial shape. The optimized shape naturally evolves

into an interlocking assembly that can support a far higher load without large deformation.(see

the video in supplementary material). We fabricated resulting shape (the process is described

in Appendix 2.9.3, and performed a stress test on it, by loading it with increasing weight. Our

setup is shown on Figure 2.17. The unoptimized lever breaks with a weight of 400g, whereas the

optimized lever can endure more than 6400g, consistently with simulated results.

Bridge. Our second 2D example is a simple bridge model (Figure 2.18), with Dirichlet conditions

on fixed rectangular parts, 3 optimizable parts, with boundaries of the supports partially fixed,
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max
stress8.46

0.0

original:

optimized:

8.46

0.60

ΓC

ΓD

Figure 2.16: Lever optimization

Figure 2.17: Lever optimization fabrication

and DD contact conditions between parts. Due to symmetry, we run the optimization on one half

of the shape, resulting in 3 times stress reduction.

The left and right support parts of the bridge were clamped to the table and weights were attached

to the middle of the bridge. The experiments show that unoptimized bridge breaks at the left or

right assembly with a load of 1500g, whereas the optimized bridge can hold more than 5800g of

weights. See photo of our bridge in Figure 2.19.

max
stress7.33 original:

optimized:
7.33

2.21

ΓC
ΓD

0.0 re�ection symmetry

Figure 2.18: Initial and optimized bridge model.
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Figure 2.19: Fabricated initial and optimized bridge shapes.

Hook. Figure 2.20, where we built an optimized hook that fits on the top of a door, with a single

large contact area Γ𝐶 , and 𝑅𝐷 boundary conditions on that part. In this scenario, we use multiple

separate loads, one emulating, e.g., a coat hanging from the hook, and the other a force exerted

when it is taken off the hook. In addition to multiple loads, this example also demonstrates the

importance of disassembly energy: we make sure that accidental push from below does not result

in the hook getting detached. The disassembly direction is shown in Figure 2.20. We perform stress

minimization with a volume bound equal to the original volume, and compare the results with

and without the disassembly constraint. Note that when the hook optimized without disassembly

constraint is loaded, the left part lifts up, resulting in detachment from the support (Figure 2.20,

middle) It remains stable once the disassembly constraint is enabled (Figure 2.20, right).

Figure 2.21 shows the experiments with 3 versions of 3d printed hook (unoptimized and optimized

with and without disassembly constraint). The unoptimized hook breaks with 4500g load. The

two optimized hooks can hold weights more than 19000g. Qualitatively, the behavior of loaded

hooks matches the simulation.

Tower Crane. Our last 2D example is the tower shown in Figure 2.22, demonstrating an assembly

consisting of four pieces with a Dirichlet condition on the bottom one, and DD contact conditions

on the remaining parts.

In this example we demonstrate how our method can be combined with a simple ESO-like topology

optimization technique (e.g., [Huang and Xie 2010]). to decrease the weight beyondwhat is possible

with shape optimization only. We used a filtering technique to remove triangles with average stress
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initial
baseline:

min max stress
w/ bounded vol.

disassembly
penalization

max 
stress 3.05

16.5

0.0

16.5 3.94

0.57

0.0

disassembly 
direction

main load

aux. load

0.57 0.11 0.17
max

displacement

ΓC

Figure 2.20: Top: undeformed shapes of different versions of the hook model. bottom: deformations under
load (displacements exaggerated).

Figure 2.21: 3D printed Hook loading (Please see supplementary video.)
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8.47 0.0

8.47 1.12

0.85

max stress

ΓD

topology �ltered

optimized

max stress

original

max stress stress

Figure 2.22: Tower crane optimization

Figure 2.23: Tower crane fabrication

lower than 10% of the maximum value. The filtered mesh was then again optimized, obtaining

the result shown on the bottom-right. The laser-cut tower model is shown in Figure 2.23. In

our experiment, the base of the tower was clamped to the table. Experiments show that the

unoptimized tower breaks with 700g load, whereas the optimized tower can sustain more than

4600g load.
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Figure 2.24: Left: the initial stool model; Right: the result after optimizing the white (PLA) pieces.

2.7.2 3D examples

In the next 3 examples, we apply our algorithm to 3D assemblies of parts made of different

materials: wood (𝐸𝑤𝑜𝑜𝑑 = 10000,𝜈𝑤𝑜𝑜𝑑 = 0.3), MDF (𝐸𝑀𝐷𝐹 = 4000,𝜈𝑀𝐷𝐹 = 0.25) and PLA plastic

(𝐸𝑃𝐿𝐴 = 3500,𝜈𝑃𝐿𝐴 = 0.36). Moreover, in these examples, only some pieces of the shape (those

made of PLA, which can be 3D printed) were optimized.

Stool. Our first example was a stool assembly with a fixedMDF top, fixed wood legs and connectors

made of PLA (Figure 2.24). In this example, we use volume constraints. The stress concentrations

for optimized and noncan be seen on Figure 2.25.

The optimization reduces stress 2.5 times without changing the total volume. If 10% increase in

the volume is allowed, the stress decreases to 0.88, and to 0.85 at 20%.

Bench. Our second example is a bench with fixed parts (seat,legs) made of wood and optimizable

PLA connectors ( Figure 2.26). We consider two different leg shapes and show how connectors are

optimized for each. We observe that, depending on the type of legs, we obtain a very different

level of stress reduction: 30% in one case, and 2.5x times in the other (see Figure 2.27).
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2.68

0.0

2.68 1.12
stress

max stress:max stress:

cross section

Figure 2.25: Stool stress: stress concentrations on stool example. Top figures present how load is applied
and general stresses (restricted to PLA). Middle figures show stresses on each PLA piece. Bottom figure
shows cross section of region where stress is more concentrated.

Figure 2.26: Bench model with two different types of legs and the initial and optimized connectors.
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stress

4.38

0.0

1.71max stress:4.38max stress:

1.99max stress:2.82max stress:

stress

2.82

0.0

Figure 2.27: Bench stress for twisted and bended set of legs
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47.0

0.0

47.0 22.7max stress:max stress:

cross section

Figure 2.28: Coat rack base stress distribution.

Coat rack. Our final multimaterial example is a coat rack made of wood and plastic (Figure 2.1).

Differently from both previous examples, this object is modular, in the sense that you can always

use a longer cylinder and add identical plastic parts to increase the height and the amount of

hangers in your object. Here, we optimized our two different plastic parts for separate sets of

loads, the leg connector and the hook.

The leg connector is optimized with (fixed) legs in contact with the ground and the load applied

at the top (Figure 2.28).

The hook attachment was optimized with loads applied to hooks. As shown in Figure 2.29, our

framework was able to lower maximum stress more than 3 times.

We 3D printed the result using PLA (Figure 2.30).

For our last set of experiments, we implemented a framework for generating pipe assemblies from

graphs, where each vertex of our graph becomes a sphere and each edge becomes a pipe. See an
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0

1260.0 385.0max stress:max stress:

1260.0

cross section

Figure 2.29: Coat rack hook connector stress distribution.

Figure 2.30: Mounted coatrack
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Original: Optimized:

Figure 2.31: Initial and optimized tent assemblies.

example on Figure 2.31.

We used this tool to generate three different simple instances of our problem: a tent, a truss-like

bridge and a dodecahedron. Below we detail more about each of these assemblies.

Tent. This object (Figure 2.31) is composed of 5 ball connectors and 8 pipes. A load is applied on

the top of the structure pointing down and the bottom part of the object is in contact with the

ground. We minimize stress, while keeping the same volume impose the assembly constraint. We

were able to reduce stress by a factor of 2. We again ran our framework for reducing the volume of

the shape, while keeping the stress bounded by the result of the previous optimization for stress

(Figures 2.31 and 2.32). Then we add disassembly and parallel alignment objectives and the results

are shown in Figure 2.33. Note that we optimize both the bars and connectors.

While the resulting structure can support this particular load well, it is likely to fall apart if

any lateral load is applied, as resulting connectors are very shallow. Adding disassembly and

parallel alignment constraints produces more resilient connectors (Figure 2.33). When using only

disassembly constraint, the final stress (59.1) obtained was similar to the baseline case (59.3),

while adding parallel alignment constraint to make at least 20% of the connection surface (in each

connector) parallel to the disassembly direction increased stress to 70.8. Dodecahedron. This

example is shown in Figure 2.34. For this example we use symmetric compression loads at the

connectors at dodecahedron vertices. Using reflection symmetry on the three axes (x,y and z), we
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Figure 2.32: Tent stress

Baseline: Disassembly
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Figure 2.33: Tent connections
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Figure 2.34: Dodecahedron

Stress

239

0.0
max stress: 239 max stress: 27

Figure 2.35: Dodecahedron stress: simulation and optimization are executed on an octant of the original
shape, using reflection symmetry on all three axes. A diagonal force to the center of the shape is used.

were able to run our optimization on an eighth of the shape, as presented in Figure 2.35, where

our boundary conditions are also shown.

We use a similar optimization setup as for tent: first, run stress minimization with a volume con-

straint, then minimize volume with a stress constraint, and including fixed assembly, disassembly

and parallel alignment constraints. Notice in Figure 2.35 we were able to reduce stress by almost

10 times, while reducing volume in 12.6% compared to the initial dodecahedron. The emerging

twisted shape for the bars are optimal for load support.
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externalinternal

Figure 2.36: Connectors optimization: result after optimizing only sphere connectors. We show our two
different types of connector (showing two sides of each) and two different types of pipes, which were not
optimized with exception of their tips.

We also investigated the effect of optimizing only the connectors (balls) of the dodecahedron

example. Again, we first minimize stress and then, in the second step, minimize the volume. We

were able to reduce stress by around 28% to 172, and reduce the volume by 22%. The result can be

seen in Figure 2.36.

Truss. The initial shape and the optimized result are shown in Figure 2.37. Similar to the

dodecahedron, we optimized for strength (keeping initial volume) and then for volume (keeping

stress close to its minimum level). We were able to reduce stress by more than half and volume

by 20%. Notice that the optimized connectors are smaller than original ones while keeping deep

connections. This result can be obtained thanks to the disassembly and parallel alignment energies.

Termination and convergence. To understand the convergence behavior of the method, we run

our optimization for a fixed number of iterations which we aimed to set high enough for obtaining

maximal possible improvement. Table 2.2 lists several indicators of convergence termination:

number of actual iterations performed before stopping, relative gradient norm, and per-step

objective reduction, expressed as a percentage of the initial objective value.

In the cases when the optimization reached the maximal number of steps (10 outer iterations for
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Figure 2.37: Truss

2D and multi-material examples and 50 for 3D examples), the result is close to a local minimum,

or the maximal number of iterations is insufficient. In most cases, relative gradient norm is 5% or

significantly less of the original, indicating that the result is close to local minimum. In one case,

(Bridge) additional iterations also decrease the relative norm below 5%.

In several cases (hook and two bench variations) the optimization stops for geometric reasons (in

some cases, topology changes are needed to achieve an optimum); in this case, the optimization

cannot reach a local minimum by additional iterations, although the gradient reduction is also

high in most cases.

Examining how the objective changes with iteration suggests that values 𝑚 = 2 and 𝜖𝑟 = 1%

are adequate for all examples (considering the criterion discussed in Section 2.5 for our stress

objective), except truss-like structures, where values𝑚 = 5 and 𝜖𝑟 = 0.5% are more suitable due

to higher oscillations in the objective early in the optimization. We emphasize that many other

convergence criteria can be used; determining an optimal one is not our focus.
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2.8 Conclusions and limitations

We have described a framework for shape optimization with contact and friction, using a smoothed,

penalty-based model, and applied it to optimization of assemblies in which parts are held together

by contact and friction forces. We demonstrated that in our framework a number of functionals can

be optimized reliably, producing significant improvements e.g., in stress concentrations or volume,

while maintaining various types of constraints. We validated the results with computational

experiments in two and three dimensions and with qualitative experiments using fabricated

objects. The experiments confirmed significant improvements in strength. In addition, since

we support nonlinear solves, our model can be easily extended to a variety of functionals and

constraints. The code for this project will be open-sourced.

Limitations. Our algorithm may (1) not reach a minimum or (2) find a local minimum that does

not improve the objective much. In the first case, the optimization stalls: no progress is possible

for one of the following reasons: (a) nonlinear solve does not converge (e.g, if the system has

no static equilibrium or bad-quality elements not allowing to achieve residual tolerance in max

number of iterations); (b) inversions of elements lead to a severe line search step restriction, as

mesh quality improvement is not guaranteed to succeed; (c) meshing with tolerance using fTetwild

may produce volume meshes for pieces with non-manifold surfaces, while surface-preserving

remeshing does not improve quality enough. In case (2), the algorithm may reach a local minimum

without significant decrease of the objective value, while other minimal with lower values exist.

Case (1) was the most observed in our experiments, occurring in our hook and bench examples due

to narrowing regions during optimization; note that we still obtain a significant stress reduction.

In addition, we use linearized elasticity model that does not account well for large deformations.

As the contact and friction terms in our equations are already non-linear and we use a nonlinear

solver, extension to nonlinear elasticity is likely to be straightforward. While the functionals we
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have introduced in this work perform quite well for a number of tasks, there are restriction on the

type of connections they can capture. E.g., snap connections are not handled easily with these

constraints only. Expanding the range of objectives is an important direction for future work.

The method can be considerably sped up but using parameterized geometric models, or model

reduction, as well as more efficient solvers.

2.9 Chapter Notes

2.9.1 Formulas for the adjoint eqation terms.

𝑇 ′𝐶 =
1
𝛼

∫
Γ𝐶

(
ℎ′𝜂 (𝑢 · 𝑛) (𝐷 [𝑢] · 𝑛)

)
𝑤 · 𝑛 𝑑𝑆

𝑇 ′𝑆 =
1
𝛼

∫
Γ𝑆

(
ℎ′𝜂 ( [𝑢] · 𝑛−) (𝐷 [[𝑢]] · 𝑛−)

)
𝑤 · 𝑛 𝑑𝑆

𝑇 ′𝐶𝐹 =
𝜇

𝛼

∫
Γ𝐶

ℎ′𝜂 (𝑢 · 𝑛)(𝑛 · 𝐷 [𝑢]) 𝑁 ′𝜂 (𝑢𝑡 ) ·𝑤 +

+ ℎ𝜂 (𝑢 · 𝑛) 𝑁 ′′𝜂 (𝑢𝑡 )
(
𝐼 − 𝑛𝑛𝑇

)
𝐷 [𝑢] ·𝑤 𝑑𝑆

𝑇 ′𝑆𝐹 =
𝜇

𝛼

∫
Γ𝑆

(
ℎ′𝜂 ( [𝑢] · 𝑛−) 𝑛 · 𝐷 [𝑢 − 𝑢𝑜 ]

) (
𝑁 ′𝜂 ((𝑢 − 𝑢𝑜 )𝑡 ) ·𝑤

)
+ ℎ𝜂 ( [𝑢] · 𝑛−) 𝑁 ′′𝜂 ((𝑢 − 𝑢𝑜 )𝑡 )

(
𝐼 − 𝑛𝑛𝑇

)
𝐷 [𝑢 − 𝑢𝑜 ] ·𝑤 𝑑𝑆

2.9.2 Formulas for the discrete shape derivative coefficients 𝑆𝑚 [𝑢, 𝜌]

𝑆𝑚 [𝑢, 𝜌] = 𝑆𝑒𝑚 + 𝑆𝑐𝑚 , where the first term is related to the elasticity equation and the second to contact and friction

terms. In turn, 𝑆𝑐𝑚 = 𝑆𝐶 + 𝑆𝑆 + 𝑆𝐶𝐹 + 𝑆𝑆𝐹 , the sum of terms for different types of contact forces. For these terms we

have the following expressions, where we consider uniform surface load 𝑔 = 𝐺
|Γ𝑁 | :
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𝑆𝑒𝑚 =

(∫
Ω
[𝑒 − 𝜀 (𝜌) : 𝜎]∇𝜆𝑚 + [∇𝜆𝑚 · (𝜎𝜌𝑛 + (𝜀 (𝜌) : 𝐶 − 𝜏)𝑢𝑛)]∇𝜑𝑛𝑑𝑉

)
+(

− 1
|Γ𝑁 |

(∫
Γ𝑁

𝜌 · 𝑔𝑑Γ𝑁
) (∫

Γ𝑁

∇𝜆𝑚 𝑑Γ𝑁
)
+

(∫
Γ𝑁

(𝜌 · 𝑔) ∇𝜆𝑚 𝑑Γ𝑁

))
(2.27)

𝑆𝐶 = − 1
𝛼

∫
Γ𝐶

ℎ′𝜂 (𝑢 · 𝑛) (𝜌 · 𝑛) (−(𝑢 · ∇𝜆𝑚) + (𝑢 · 𝑛) (∇𝜆𝑚 · 𝑛))𝑛

+ℎ𝜂 (𝑢 · 𝑛) (−(𝜌 · ∇𝜆𝑚) + (𝜌 · 𝑛) (∇𝜆𝑚 · 𝑛))𝑛

+ℎ𝜂 (𝑢 · 𝑛) (𝜌 · 𝑛)∇𝜆𝑚 𝑑𝑆

𝑆𝑆 = − 1
𝛼

∫
Γ𝑆

ℎ′𝜂 ( [𝑢] · 𝑛−) (𝜌 · 𝑛)
[
− ([𝑢] · ∇𝜆𝑚) + ([𝑢] · 𝑛−) (∇𝜆𝑚 · 𝑛−)

]
𝑛−

+ℎ𝜂 ( [𝑢] · 𝑛−) (−(𝜌 · ∇𝜆𝑚) + (𝜌 · 𝑛) (∇𝜆𝑚 · 𝑛))𝑛

+ℎ𝜂 ( [𝑢] · 𝑛−) (𝜌 · 𝑛)∇𝜆𝑚 𝑑𝑆

𝑆𝐶𝐹 =
𝜇

𝛼

∫
Γ𝐶

−ℎ′𝜂 (𝑢 · 𝑛)𝜌 · 𝑁 ′(𝑢𝑡 )((𝑢 · 𝑛) (∇𝜆𝑚 · 𝑛) − 𝑢 · ∇𝜆𝑚)𝑛

+ℎ(𝑢 · 𝑛) (𝑁 ′′(𝑢𝑡 ) · 𝜌) · (−𝑢 · ∇𝜆𝑚𝑛+

(𝑢 · 𝑛) (∇𝜆𝑚 · 𝑛)𝑛 + (𝑢 · 𝑛) (−∇𝜆𝑚 + (∇𝜆𝑚 · 𝑛)𝑛))𝑛

− ℎ(𝑢 · 𝑛)𝜌 · 𝑁 ′(𝑢𝑡 )∇𝜆𝑚 𝑑𝑆

58



𝑆𝑆𝐹 =
𝜇

𝛼

∫
Γ𝑆

−ℎ′𝜂 ( [𝑢] · 𝑛−)𝜌 · 𝑁 ′( [𝑢]𝑡 ) (( [𝑢] · 𝑛−) (∇𝜆𝑚 · 𝑛−) − [𝑢] · ∇𝜆𝑚)𝑛−

+ℎ( [𝑢] · 𝑛) (𝑁 ′′( [𝑢]𝑡 ) · 𝜌) · (−[𝑢] · ∇𝜆𝑚𝑛−+

([𝑢] · 𝑛−) (∇𝜆𝑚 · 𝑛−)𝑛− + ([𝑢] · 𝑛−) (−∇𝜆𝑚 + (∇𝜆𝑚 · 𝑛−)𝑛−))𝑛−

− ℎ( [𝑢] · 𝑛−)𝜌 · 𝑁 ′( [𝑢]𝑡 )∇𝜆𝑚 𝑑𝑆

2.9.3 Fabrication processes

We have validated the performance of our system on several simple assemblies fabricated with 3D

printing and laser-cutting. These are shown in Figures 2.17-2.18-2.20-2.22. For the lever and hook

example as shown in Figures 2.17, 2.21, the fabrications are done with 3D printing (Ultimaker

3), using PLA material. For these experiments, we used Ultimaker Cura for slicing. We used fine

printing setting, with 0.1mm layer height and infill density equal to 100%. The general print speed

was also altered to 40mm/s and reduced to 12𝑚𝑚/𝑠 (18𝑚𝑚/𝑠) when printing the inner (outer) walls

of the object, in order to have a more precise printing of connections. In addition, to guarantee

that objects connect, we offset the polygon shapes by 0.05mm, reducing them to account for the

printing thickness.

For the bridge and tower examples (see Figures 2.18, 2.23), the experimented objects were

obtained through laser-cutting 1/8" (3.175mm) acrylic boards, using Epilog Mini cutter. Notice

that laser-cutting removes material, so we perturbed the models to account for that, offsetting the

polygonal shapes by 0.05mm.

For our 3D examples, we also 3D printed our coat rack optimized model, shown in Figure 2.30. We

used the fast setting on Cura software, with 0.2mm layer height, and reduced the speed to 50mm/s.

Even though we assembled with wood dowels, which can carry imprecision in the measures, the

pieces still fit tightly.
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2.9.4 Adaptive Quadrature

In different steps of our algorithm, during the simulation and also shape derivative computation,

we need to perform the computation of integrals. For simpler cases using linear elasticity, this is

not a challenge and we can simply use Gaussian quadrature, for example. However, when adding

penalization due to normal contact and friction, the choice of how to perform these computations

becomes very important.

As an example,consider the discretized normal contact force. Here, we assume we are using

quadratic FEM elements. Our discretized contact function per contact element Γ𝑒
𝑆
is:

𝑗 ′𝐷𝑁,𝛼 (𝑢) =
1
𝛼

∫
Γ𝑒
𝑆

𝜑𝐴 (𝑝 (𝑥))𝑛𝑖 ℎ𝜂 ((𝑢 (𝑝 (𝑥)) · 𝑛) 𝑑𝑆

where 𝛼 is a constant, 𝑛 is constant for each element, 𝑝 (𝑥) maps each point 𝑥 into barycentric

coordinates of the element,𝜑 corresponds to the quadratic baricentric basis and𝑢, the displacement,

is also quadratic. ℎ𝜂 is the same as previously defined:

ℎ𝜂 (𝑦) =



0 𝑦 ⩽ −𝜂

1
4𝜂𝑦

2 + 1
2𝑦 +

𝜂

4 −𝜂 ⩽ 𝑦 ⩽ 𝜂

𝑦 𝑦 ⩾ 𝜂

Notice that 𝑢 (𝑝) · 𝑛 defines the region of the piecewise function. To find the boundary between

each of these regions, we would need to solve 𝑢 (𝑝) · 𝑛 = ±𝜂. Notice that this corresponds to a

quadratic 2D equation and the solution corresponds to a conic section: parabola, hyperbole, ellipse

or circle. We have 2 equations, so our original domain is partitioned by a maximum of 2 conic

sections. Since the two equations differ only by 𝜂, we expect that the regions boundary are going

to have very similar shapes. See an example in Figure 2.38:
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Figure 2.38: Example of different regions in piecewise quadrature computation with 𝜂 = 10−2. In this case,
we have two hyperbolas. So, in total, 5 different regions. On the right side, an example of how the triangles
can be split.

To show the accuracy of the quadrature computation, consider the following example in 3D:

𝑢0 = [0.0, 0.1,−0.05], 𝑢1 = [0.1, 0.2;−0.03], 𝑢2 = [−0.1, 0.0,−0.02], 𝑢3 = [−0.05, 0.01, 0.02], 𝑢4 =

[−0.02,−0.02, 0.01], 𝑢5 = [0.02,−0.03, 0.01], 𝑛 =

[
1√
3
, 1√

3
, 1√

3

]
, 𝛼 = 10−4, 𝜂 = 10−4 and nodes and

coordinates 𝐴 = 0 and 𝑖 = 0. Here, 𝑢 𝑗 corresponds to the discrete displacement at each of our 5

nodes of our triangle element. Using Matlab’s integral2 function (with absolute tolerance set

at 10−10), we can compute 𝑗 ′𝐷
𝑁,𝛼

to obtain −0.329516. Using (order 10) Gaussian quadrature, we

obtain −0.438527. These errors can accumulate and generate problems in convergence for our

simulation.

We implemented then an adaptive approach for computing integrals in our framework. First, we

define the scheme to be used by the regions of our triangle. We evenly sample the triangle using

𝑚 points, identifying the regions where these points are contained. In our case, we used𝑚 = 10.

If not all 𝑚 points are from the same region (easily verified by computing 𝑢 (𝑝) · 𝑛 value), we

split the triangle into 4 pieces of same area and repeat this process recursively, until a maximum

depth is reached. See an example on the right side of Figure 2.38 In our case, we identified that

depth equal to 5 guarantees good results. Inside each of the final triangles, we use (order 10)

Gaussian quadrature to compute the integral. Using this method, for the same example as above,

we obtained result −0.329560, which is accurate up to 4th digit after the decimal point when

compared to the numerical result of the integral2 function.
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2.9.5 Meshing

We use triangle meshes in 2D and tetrahedral meshes in 3D for our shapes.

For 2D, we define shape outlines using Adobe Illustrator, encoding boundary conditions using

color; shared boundaries between parts are represented as single polylines. We then transform the

geometry in the resulting SVG file into the input format for Triangle [Shewchuk 1996a], removing

the duplicate edges defining the contact area between different pieces. After obtaining the mesh

for the interior, we split the triangle mesh into part meshes. At the end of each inner loop in

Algorithm 1, we extract the polygonal boundary of the current solution and remesh it using

Triangle again.

In 3D, the input to the meshing process is a collection of surface meshes of individual parts. We

assume that in the contact zone, the distance between meshes is small, (in our specific examples

we use boolean operations to produce surface for parts, with connectors obtained, e.g., by adding

a cylinder to one part, and subtracting it for another, which produces close surfaces. After that,

we generate the volumetric mesh using fTetWild [Hu et al. 2020a] with surface meshes from the

previous step as input. fTetWild has a threshold 𝜖𝑚 within which close parallel triangles of a

surface mesh are merged; we set it to a sufficiently large value to obtain a single contact surface.

For most cases, we used the default value of 1e-3 for 𝜖𝑚 , but increased the value to adjust to

different gaps coming from the surface mesh generation.

As in 2D, we apply remeshing to keep a good mesh quality after a sequence of optimization steps.

In 3D, remeshing is done in different ways: (a) preserving mesh surface, which is done with

CGAL’s package for tetrahedral remeshing [Tournois et al. 2021]; or (b) remeshing the boundary

as well, by reapplying fTetWild. Choosing between this two options is also a parameter in our

framework. We used option (a) for most of our scenarios, but for truss and dodecahedron example,

boundary remeshing was used at every 5 remeshing operations. If remeshing the boundary with
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fTetWild fails, e.g., due to generation of pieces with non-manifold meshes, option (a) is used

instead.

63



3 | Differentiable solver for

time-dependent deformation

problems with contact

This chapter is based on a recently submitted work [Gjoka et al. 2022] in which I share the first

authorship with Zizhou Huang from NYU. This work is also co-authored by Arvi Gjoka, Zachary

Ferguson and Professors Daniele Panozzo and Denis Zorin from NYU, and Prof. Teseo Schneider

from the University of Victoria.

My contribution to this project was working on the adjoint formulation and the algorithm for

optimizing the shape, material, and other physical properties of our simulations, which can include

contact and friction. I also participated in analyzing results and designing, fabricating, and running

physical experiments in our hardware laboratory.

We introduce a general differentiable solver for time-dependent deformation problems with contact.

Our approach uses a finite element discretization with a high-order time integrator coupled with

the recently proposed incremental potential contact method for handling contact and friction

forces to solve PDE- and ODE-constrained optimization problems on scenes with a complex

geometry. It support static and dynamic problems, it support differentiation with respect to all
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physical parameters involved in the physical problem description, which include shape, material

parameters, friction parameters and initial conditions. Our analytically derived adjoint formulation

is efficient, with an overhead of not more than 2 times the forward simulation, and shares many

similarities with the forward problem, allowing reusing large parts of the code of an existing

forward simulator code.

We implement our approach on top of the open-source PolyFEM FE library, and demonstrate the

applicability of our solver to shape design, initial condition optimization, and material estimation

on both simulated results and in physical validations.

3.1 Introduction

PDE-constrained and ODE-constrained optimization problems, i.e. theminimization of a functional

depending on the state of a physical system modeled using a set of (partial) differential equations,

appear in many application areas: optimized design in engineering and architecture, metamaterial

design in material science, inverse problems in biomedical applications, controllable physically-

based modeling in computer graphics and policy optimization and physical parameter estimation

in robotics.

A common family of PDE-constrained optimization problems in graphics, robotics, and engineering

involve static or time-dependent elastic deformation problem (which can be infinitely stiff, leading

to rigid simulation problems), often interacting between each other via contact and friction forces.

Due to their wide and cross-disciplinary interest, a large number of approaches have been proposed

to tackle PDE-constrained optimization. However, as discussed in Section 3.2, these approaches

often make application-specific assumptions usually aimed at simplifying the differential simulator,

on either robustness (e.g., using a non-robust contact model), accuracy (e.g., using inaccurate spatial

discretizations, non-physical material models, or simplified contact/friction models), geometric
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complexity (e.g., using coarse geometric proxies in lieu of a high resolution geometry), or scalability

(e.g., restricting the number of dofs that can be optimized).

We describe a differentiable solver for this family of problems with the following characteristics:

1. We use a standard finite element discretization of arbitrary order, both in space and time for

both linear and non-linear elasticity material models.

2. We support differentiation with respect to all physical parameters involved in physical

problem description: shape, material parameters, friction parameters and initial conditions.

An arbitrary subset of these parameters can be used in the objective function.

3. Our contact/friction formulation builds upon the recently proposed Incremental Potential

Contact approach [Li et al. 2020a], which uses a linear approximation of the boundary to

define contact and friction forces. Our differentiable simulator supports complex geometry,

is automatic and robust (with only two major parameters to tweak to control the accuracy

of the spatial and temporal discretizations), and guarantees physically valid configurations

at all timesteps, without intersections and without inverted elements.

4. Our formulation supports both static and dynamic problems.

5. Our approach is efficient. The computation of the derivatives for one PDE-constrained

optimization step is at most 2 times more expensive than a forward evaluation of the

underlying forward simulation of the physical systems.

Overview. We summarize the key elements we use in our differentiable solver. Most importantly,

we use the adjoint equation approach to computing functional gradients with respect to all parame-

ter types, including, e.g., shape parameters affecting the PDE domain, or material properties. While

this approach requires extensive PDE- and objective-specific analytic derivations, it has significant
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advantages over techniques based on either automatic differentiation or finite differences:

1. It is efficient for large number of degrees of freedom, as the overhead of computing deriva-

tives is less than a factor of 2 with respect to a forward solve;

2. It allows to reuse the majority of the forward PDE solver code, as the adjoint equations

are very similar to forward equations. In our case, we use the open-source solver PolyFEM

[Schneider et al. 2019], inheriting its ability to use high order basis, high order elements,

and its framework for ℎ- and 𝑝- refinement.

Other important technical features of our approach include:

• Our discretization of the adjoint equations is consistent, i.e., yields exactly the derivatives of

the discrete objective with respect to discretized optimization variables; See Section 3.4.

• We use the perturbed-domain parameterization of PDE solutions for derivatives, which

considerably simplifies the gradient formulations in the case when shape differentiation is

needed (Section 3.7).

• We build on a fully differentiable formulation of contact and friction, avoiding the need for

handling non-smooth constraints: all types of forces are handled in a uniform manner.

We demonstrate the effectiveness of our approach on a set of examples involvingmultiple objectives

and optimizing for the shape, material parameters, friction parameters, and initial conditions.

3.2 Related Work

We summarize the most relevant simulation frameworks, primarily focusing on those supporting

differentiable simulation of elastic deformable objects and robotics systems.
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Differentiable Deformable Object Simulators. Numerous bespoke differentiable elastic body

simulators have been developed for applications in generative design of shapes [Panetta et al.

2017c; Tozoni et al. 2020], actuators [Skouras et al. 2013a; Chen et al. 2020; Maloisel et al. 2021],

and sensors [Tapia et al. 2020], material characterization [Hahn et al. 2019; Schumacher et al. 2020],

and robotic control [Bern et al. 2019; Hoshyari et al. 2019]. These simulators broadly fit into three

categories: (i) those employing analytic derivatives computed using sensitivity analysis; (ii) those

using generic automatic differentiation libraries [Hu et al. 2019a; Heiden et al. 2020]; and (iii) neural

surrogate models replacing the entire simulation with a differentiable neural network [Chang

et al. 2016; Zhang et al. 2016; Baque et al. 2018; Bern et al. 2020]. Analytic sensitivity analysis is

the most common, but generally requires manual differentiation of the physics equations and

construction of the adjoint equations for specific functionals [Liang et al. 2019; Qiao et al. 2020;

Bern et al. 2019; Rojas et al. 2021; Du et al. 2021]. One exception is Dolphin-Adjoint [Mitusch

et al. 2019], which automatically and robustly derives adjoint models for models written in the

finite element software FEniCS. Automatic differentiation is more flexible but requires existing

simulators to be essentially rewritten and incurs a performance penalty, especially for complex

solvers. Surrogate models, though promising dramatic speedups, require huge training sets for

even simple design spaces [Gavriil et al. 2020], are unsuitable for high-precision applications,

and are opaque black boxes [Bächer et al. 2021]. To the best of our knowledge, none of these

simulators support robust handling of contact and friction for complex geometries, and they only

support a subset of the design parameters compared to the generic formulation of this paper.

Meshfree Methods. Especially for shape optimization, methods like XFEM [Schumacher et al.

2018b; Hafner et al. 2019] and MPM [Hu et al. 2019b] that do not maintain conforming meshes

might appear attractive to circumvent remeshing-induced discontinuities [Bächer et al. 2021].

However, these methods sacrifice accuracy [de Vaucorbeil et al. 2019], particularly for stress

minimization problems [Sharma and Maute 2018]. Furthermore, for remeshing to alter the
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objective or constraint functionals to the degree that it impacts optimization, those functionals

must not have been sufficiently resolved by the mesh to begin with. Our approach computes

accurate displacement and stressed by using a finite element method framework using high-order

elements, coupled with dynamic remeshing to compensate for the distortion introduced by large

deformations.

Differentiable Simulations with Contact. Differentiable simulators incorporating various

contact models have recently been developed for rigid [Heiden et al. 2020] and soft bodies [Liang

et al. 2019; Qiao et al. 2020; Geilinger et al. 2020b]. These models unfortunately suffer the same

robustness issues as the underlying physics engines. Differently, our approach uses the recently

proposed Incremental Potential Contact (IPC) formulation [Li et al. 2020a], replacing the traditional

zero-gap assumption [Wriggers 1995; Kikuchi and Oden 1988; Stewart 2001; Brogliato 1999;

Belytschko et al. 2000; Bridson et al. 2002; Otaduy et al. 2009; Harmon et al. 2008, 2009; Daviet

et al. 2011; Verschoor and Jalba 2019] with a smooth version ensuring minimal separation between

objects at every frame of the simulation. This approach was designed with the explicit goal to

guarantee robustness and its smooth formulations of contact and friction avoids the need for

handling non-smooth constraints. In our formulation, all types of forces are handled in a uniform

manner.

Optimization with Contact. In recent years, advances were obtained in using techniques like

shape and topology optimization in the context of contact and friction. Some previous works have

considered the specific case of contact between a soft body with rigid surfaces, like [Beremlijski

et al. 2014], [Haslinger et al. 1986] and [Herskovits et al. 2000]. Other works, like ours, have

studied the interaction of two or more bodies in contact, as recent works from [Desmorat 2007],

[Stupkiewicz et al. 2010], [Maury et al. 2017] and [Tozoni et al. 2021]. It is worth mentioning that

most papers do not consider friction or use a simplified model (compared to the standard Coulomb

formulation) as discussed in [Maury et al. 2017].
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Due to their results and similarity with our work, it’s worth looking at two of these techniques

with deeper attention. In 2017, Maury et al. [Maury et al. 2017] presented a level set discretization

technique where contact and friction were modeled through penalization energies, using smooth

approximations to the problem. Using a similar contact and friction model, Tozoni et al. [Tozoni

et al. 2021] designed a shape optimization technique that focused on reducing stress of assemblies

that are held together by contact and friction, while enforcing constraints essential for assembly

functionality, like weight, difficulty of putting the assembly together, and how reliably it stays

together. Both these works followed the mathematical model of contact presented by Eck et

al. [Eck et al. 2005].

Physics Engines for Graphics and Robotics. Physics engines for games, visual effects, and

robotics prioritize fast, often real-time simulation over accuracy. Three in particular have gained

widespread popularity in robotics research: Bullet [Coumans et al. 2013], NVIDIA PhysX [NVIDIA

2022], and Mujoco [Todorov et al. 2012]. These libraries support dynamics simulations of rigid

and soft bodies, joints and actuators, and contact. However, the deformable objects in each

engine are of limited accuracy and generality, and all engines encounter convergence failures and

other catastrophic robustness issues in challenging contact scenarios, particularly with complex

geometry. Furthermore, none of these engines offers parameter estimation, derivatives, or shape

optimization support. Those features must be implemented separately, which is complicated by

the nonrobustness. More advanced support for deformable object simulation is provided by the

SOFA framework, which includes a robotics simulation plug-in [Faure et al. 2012; Coevoet et al.

2017] used in a number of works [Navarro et al. 2020; Coevoet et al. 2019; Goury and Duriez 2018;

Morzadec et al. 2019]. However, SOFA suffers from the same robustness issues as other simulation

frameworks in its current form (see [Li et al. 2020a] for comparisons).

Engineering Solvers. Commercial multiphysics software packages used in engineering prioritize

accuracy and sophisticated material, damage, and frictional contact models over efficiency. Despite
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Domains and bases

𝐷𝑑 Domain dimension, 2 or 3

𝐷𝑠 Solution dimension, 1, 2 or 3

Ωref Reference domain Ωref ⊂ R𝐷𝑑 consists of copies
of identical reference elements �̂�𝑗 , 𝑗 = 1 . . . 𝑛𝐾
identified along edges.

𝑥ℓ and 𝑧ℓ Nodes are points in Ωref used to define bases,
ℓ = 1 . . . 𝑛𝑥

𝑁
, and 1 . . . 𝑛𝑧

𝑁
respectively The set of

nodes 𝑧ℓ does not include nodes with Dirichlet bound-
ary conditions; the set of nodes 𝑥𝑖 does include these
nodes. .

𝜙ℓ and 𝜉ℓ FE basis functions are scalar basis functions de-
fined on Ωref ; 𝜉ℓ correspond to nodes 𝑥𝑖 , and is
used for geometric maps (we use p.w. linear basis);
𝜙ℓ correspond to 𝑧ℓ and used for all other quanti-
ties (arbitrary order Lagrangian).

𝑞, 𝑞 𝑗 (𝑦 𝑗 ) , q̄,
𝑥ℓ

Geometric map 𝑞 embedding a reference element
in space, is defined on each �̂�𝑗 in Ωref with local
coordinates 𝑦 𝑗 as 𝑞 𝑗 (𝑦 𝑗 ) = ∑

ℓ 𝑥ℓ𝜉
ℓ (𝑦 𝑗 ), where

𝑥ℓ ∈ R𝐷𝑑 are the positions of the nodes of the
element 𝑗 forming the vector q̄.Concatenation of
these maps yields the global geometric map 𝑞 :
Ωref → R𝐷𝑑 .

Ωq̄ Physical domain is the domain on which the PDE
is solved, parametrized by q̄, Ωq̄ = 𝑞 (Ωref ) . The
global coordinate on Ωq̄ is 𝑥 = 𝑥 q̄ ∈ R𝐷𝑑 .

𝜙ℓ (𝑥) ,𝜉ℓ (𝑥) FE bases on Ωq̄. The bases 𝜙ℓ and 𝜉ℓ can be
pushed forward to the domain Ωq̄ via 𝜙 (𝑥) =

𝜙 ◦ 𝑞−1 (𝑥) and 𝜉 (𝑥) = 𝜉 ◦ 𝑞−1 (𝑥) .
Ωq̄+𝜽𝑡 Perturbed domain obtained using a perturbation

direction 𝜽 in q̄. Perturbation 𝜃 (𝑥) ∈ R𝐷𝑑 is: 𝜃 =

𝜃 (𝑥) = ∑
ℓ 𝜃ℓ 𝜉

ℓ ◦ (𝑞 𝑗 )−1 (𝑥) = ∑
ℓ 𝜃ℓ 𝜉

ℓ (𝑥)

Functions on physical domain Ωq̄

𝑢q̄ (𝑥) ,u PDE solution defined on Ωq̄ with values in R𝐷𝑠 .
We denote the vector of coefficients of 𝑢 in the
FE basis 𝜙 by u. 𝑢 (𝑥) =

∑
ℓ 𝑢ℓ𝜙

ℓ ◦ 𝑞−1 (𝑥) =∑
ℓ 𝑢ℓ𝜙

ℓ (𝑥)
𝑤 (𝑥) ,
𝜓 (𝑥) ,w,𝝍

Test functions (scalar) defined similarly to 𝑢 (𝑥)
in the same basis and vectors of their coefficients
are w and 𝝍 .

𝑝 (𝑥) ,p Adjoint solution - the solution of the adjoint equa-
tion and the vector of its coefficients, with values
in R𝐷𝑠 .

𝑞𝑚 (𝑥) ,
q𝑚

𝑚-th optimization parameter 𝑞𝑚 (𝑥) =∑𝑛𝑚𝑞
ℓ=1 𝑞

𝑚
ℓ 𝜁

ℓ (𝑥) with a basis 𝜁 ℓ with values in R𝐷
𝑚
𝑞

parameters can be material properties, boundary
conditions etc, defined on all or parts of Ω�̄� . For
the geometry map 𝑞, 𝜉 on Dom(𝑞) = Ωref , and
𝜁 ℓ = 𝜉ℓ .

PDE and derivatives

h(u, q) = 0 Discretized form of the PDE, i.e., a system of
𝑛𝑢 algebraic equations with components of u as
unknowns.

𝐽 (u, q) Discretized form of the objective.

𝜕q𝑎 (u, q) Derivative of a (possibly) vector quantity 𝑎
with respect to a vector of optimization pa-
rameters, not including dependence through 𝑢.
The vector is the vector of coefficients of one of 𝑞𝑚
or 𝑞. If we the dimension of 𝑎 is 𝑛𝑎 , then 𝜕qa is a
matrix of size 𝑛𝑎 ×𝐷𝑚𝑞 𝑛𝑚𝑞 .

𝜕u𝑎 (u, q) Derivative of a quantity 𝑎 with respect to the
the PDE solution 𝑢; it is a vector of length 𝐷𝑠𝑛𝑢 .

𝑑q𝑎 (u, q)) Full derivative of 𝑎 with respect to q, including
through the dependence on 𝑢.

∇𝑎 (𝑣) ,
∇𝑖𝑎 (𝑣, 𝑤)

Derivatives of 𝑎 with respect to arguments
𝑣, 𝑤 ∈ R𝐷 .

Table 3.1: Notation.

their improved accuracy, they suffer many of the same robustness issues as physics engines, often

requiring parameters to be tuned for specific scenes to achieve reliable convergence for complex

geometry; see [Li et al. 2020a]. Consequently, batch processing for different boundary conditions

and especially for different geometries as needed for PDE-constrained optimization problems is

problematic and can require significant manual effort [Whalen et al. 2021]. While some of these

packages provide basic support for shape optimization, gradients cannot be obtained efficiently.
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3.3 General static formulation

We start with formulating a general static problem with few assumptions on the specific physics

involved; we generalize to time-dependent problems in Section 3.5; we describe the details of the

physical formulation in Section 3.6.

Typographical conventions. We use lower-case italic for functions 𝑎(𝑧) and variables 𝑧, with

both 𝑧 and 𝑎 in R𝐷 , where 𝐷 = 2, 3.

Boldface lower-case letters for vectors of coefficients of a FEM (or any other) discretization of a

function: a.

For a vector or matrix quantity, superscripts refer to the quantity as a whole, e.g., a𝑖 is the value of

a at time step 𝑖 . Subscripts are used for the indices of components of a vector. The components

themselves are denoted with italic letters. E.g.,

𝑎(𝑧) =
𝑛∑︁
ℓ=1

𝑎ℓ𝜙
ℓ (𝑧) (3.1)

means that the function 𝑎(𝑧) : R → R𝐷 is a linear combination of 𝜙 ℓ , with coefficients 𝑎ℓ ; the

vector of 𝑎ℓ is a.

If 𝑎(𝑧) has values in R𝐷 , its coefficients in a scalar basis 𝜙 ℓ are 𝐷-dimensional, so these can be

represented by a 𝐷 × 𝑛 matrix. a is the flattened form of this matrix i.e., a vector of length 𝐷 · 𝑛,

with coordinates of each components 𝑎ℓ in sequential entries.

Notation. We summarize the notation used in the general formulation and the variable-coefficient

Poisson example above in a more systematic way in the Table 3.1 assuming a static problem. For

time-dependent case, it is mostly the same, but all quantities depend on time 𝑡 or time step 𝑖 after

discretization.
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Static problem formulation. We consider an optimization problem with force equilibrium

equations imposed as a constraint:

min
𝑞
𝐽 (𝑢, 𝑞), such that,H(𝑢, 𝑞) = 0 (3.2)

In this problem, the function𝑢 is the solution of the equationH(𝑢, 𝑞) = 0, (e.g., elastic equilibrium)

with parameters 𝑞 (e.g., material properties, external forces, domain shape parameters) defined

pointwise on the domain Ω𝑞 . We use the weak form of the constraintH(𝑢, 𝑞,𝑤) = 0, for any test

function𝑤 , by integrating against arbitrary𝑤 from a suitable functional space on Ω𝑞 . Equation

H(𝑢, 𝑞) may include local forces depending on 𝑢 and its derivatives (elasticity) as well as forces

involving integration over Ω𝑞 or its parts, as it is the case, e.g., with smoothed versions of contact

forces.

In these equations, 𝑞 is the collection of optimization parameters 𝑞, 𝑞1 . . . 𝑞𝑛𝑝𝑎𝑟 . The first of these,

𝑞 plays a special role: it determines the shape of the domain on which the PDE is defined; it is a

function on Ωref defining its deformation.

Each of the remaining optimization parameters 𝑞𝑚 is either a function on Ω𝑞 , or its part (e.g.,

boundary), or a globally defined scalar or vector; e.g., it may be a variable elasticity tensor defined

per point of Ω𝑞 , the friction coefficient of a pair of regions on its boundary, or the force applied by

an actuator at a particular point.

Example. Consider a variable-coefficient Poisson equation ∇ · (𝑐 (𝑥)∇𝑢) = 𝑓 and zero Neumann

boundary conditions on a domain Ω𝑞 that can be changed by the optimization. Let the optimization

objective be the squared 𝐻1 seminorm of the solution on the domain. Then

• 𝑞 = [𝑞, 𝑐],
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• The PDE functional is

H(𝑢, 𝑞,𝑤) = H(𝑢, 𝑞, 𝑐,𝑤) =
∫
Ω𝑞

𝑐∇𝑢∇𝑤 − 𝑓 𝑤 𝑑𝑥

.

• The objective is

𝐽 (𝑢, 𝑞) =
∫
Ω𝑞

∥∇𝑢∥2𝑑𝑥

Discrete problem. Once the problem is discretized in a FE basis, we obtain a discrete problem:

min
q
𝐽 (u, q), s.t., h(u, q) = 0 (3.3)

where u is the vector of FE basis coefficients of 𝑢 and q is the concatenation of the vectors of

coefficients of q̄, q1 . . . q𝑚 , expanded in a suitable basis on their respective domains of definition.

Notice that h(u, q) is a vector valued function.

Example. For the variable-coefficient Poisson example above, discretized in FE basis with basis

functions 𝜙 ℓ , and with the shape function discretized with basis functions 𝜉 ℓ (generally different,

but we can assume both to be piecewise linear for simplicity) on a triangulated domain Ωref ⊂ R2,

we have:

• q = [q̄, c] = [𝑥1 . . . 𝑥𝑛𝑁 , 𝑐1 . . . 𝑐𝑛𝑁 ], where 𝑥ℓ ∈ R2 are vertices of the deformed domain Ωq̄,

and 𝑐ℓ are the coefficients of 𝑐 in FE basis;

• 𝑞(𝑥) = ∑𝑛𝑁
ℓ=1 𝑥ℓ𝜉

ℓ .

• The PDE discretization is

h(u, q) = 𝑆 (q)u −𝑀 (q)f,
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where 𝑆 (q) is the matrix with entries

𝑆𝑚ℓ =
∑︁

𝑐𝑘

∫
Ωq̄

𝜙𝑘 (𝑥)∇𝜙𝑚 (𝑥) · ∇𝜙 ℓ (𝑥)𝑑𝑥, 𝑀𝑚ℓ =

∫
Ωq̄

𝜙𝑚 (𝑥)𝜙 ℓ (𝑥)𝑑𝑥

with 𝜙 ℓ = 𝜙 ℓ ◦ 𝑞−1 and 𝜙 ℓ is the FE basis on the Ωref .

• The discrete objective is:

𝐽 (u, q) = u𝑇𝑇 (q)u

where

𝑇 (q)𝑚ℓ =
∫
Ωq̄

∇𝜙𝑚 (𝑥) · ∇𝜙 ℓ (𝑥)𝑑𝑥

Figure 3.1: Notation for domains and maps we use, see Table 3.1.

Figure 3.2: Domain perturbation 𝜃 , see Table 3.1.

3.4 Adjoint-based objective derivatives in general form

We now describe a general form of computing derivatives of an objective with respect to opti-

mization parameters, assuming the problem is discretized e.g., using FEM spaces. We follow the

adjoint approach, minimizing the computational expense.

75



First, consider the following Lagrangian for our constrained problem:

L = 𝐽 (u, q) {objective term} (3.4)

+ p𝑇 h(u, q) {physical constraint term} (3.5)

We can compute the derivative with respect to parameters q as:

𝑑qL 𝜽 = 𝜕q𝐽 𝜽 + 𝜕u𝐽 𝛿u + p𝑇 𝜕qh𝜽 + p𝑇 𝜕uh𝛿u (3.6)

where 𝛿u = 𝑑qu𝜽 and where 𝜽 is an arbitrary parameter perturbation vector, i.e., if parameters

are changed by 𝜽 , up to higher order terms in ∥𝜽 ∥, the functional changes by 𝑑qL 𝜽 .

𝑑qL is expensive to compute if the dimension of q is large; a direct computation involves solving

h(u, q) = 0 once for each component of q. In the adjoint approach only one solve is needed for

any dimension of q.

Isolating all terms multiplying 𝛿u:

𝑑qL = 𝜕q𝐽 𝜽 + p𝑇 𝜕qh𝜽 +
(
𝜕u𝐽 + p𝑇 𝜕uh

)
𝛿u (3.7)

We can then eliminate the last term by finding p such that 𝜕u𝐽 + p𝑇 𝜕uh = 0. This problem is called

the adjoint problem and p the adjoint variable:

p𝑇 𝜕uh = −𝜕u𝐽 (3.8)

Then, by plugging the solution p of the adjoint PDE into the Lagrangian, we obtain the final shape
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derivative:

𝑑q𝐽 𝜽 = 𝑑qL(p) = 𝜕q𝐽 𝜽 + p𝑇 𝜕qh𝜽 (3.9)

Combining contributions from different forces together. Our discretized equation has the

form ∑︁
𝑘

h𝑘 (u, q) = 0

where h𝑘 is a contribution from each type of force (elasticity internal forces, contact forces, friction,

and anything else we choose to add).

Similarly, the objective 𝐽 is a sum of contributions from several objective components or constraints

in penalty form:

𝐽 (u, q) =
∑︁
ℓ

𝐽 ℓ (u, q)

Thus, the full parametric derivative has the form, for a perturbation 𝜽 :

𝑑q𝐽𝜽 =
∑︁
ℓ

𝜕q𝐽
ℓ 𝜽 +

∑︁
𝑘

p𝑇 𝜕qh𝑘 𝜽

Similarly, the adjoint equation has the form

𝑑q𝐽𝜽 =
∑︁
ℓ

𝜕q𝐽
ℓ 𝜽 +

∑︁
𝑘

p𝑇 𝜕qh𝑘 𝜽

p𝑇
(∑︁
𝑘

𝜕uh𝑘
)
𝝍 = −

∑︁
ℓ

𝜕u𝐽
ℓ𝝍, ∀𝝍 (3.10)
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Thus, for each force-optimization parameter pair, we need to get the expressions for

𝐵𝑘 (p, 𝜽 ) = p𝑇 𝜕qh𝑘 𝜽 , 𝐴𝑘 (p, 𝝍) = p𝑇 𝜕uh𝑘𝝍 (3.11)

for 𝜽 going over basis vectors for this parameter type, p going over adjoint variable components,

and 𝝍 over the test function basis vectors for the adjoint; i.e., two matrices of size 𝐷𝑠𝑛𝑧𝑁 × 𝐷𝑠𝑛
𝑧
𝑁
.

For each objective-optimization parameter pair, 𝜕q𝐽
ℓ 𝜽 and 𝜕u𝐽

ℓ𝝍, i.e., two vectors of size 𝐷𝑠𝑛𝑧𝑁 .

3.5 Time-dependent problems

In this section, we show how to transition from the adjoint equation for the static equation to

the time-dependent. We do this in general form, only assuming that the force terms depend on

solution and optimization parameters, but not explicitly on time.

Problem setup. We consider the following problem, already discretized in space but not yet in

time:

¤u = v; 𝑀 (q) ¤v = h(u, q); u(0) = g𝑢 (q); v(0) = g𝑣 (q)

where𝑀 (q) is the mass matrix, which may also depend on parameters 𝑝 .

For time discretization we use a BDF scheme of order𝑚:

¤u ≈ 1
𝛽Δ𝑡
(u𝑖 +

min(𝑖,𝑚)∑︁
𝑗=1

𝛼𝑖𝑗u
𝑖− 𝑗 )

In general, 𝛼𝑖𝑗 does not depend on 𝑖 , except at the first𝑚 − 1 steps, when a higher-order scheme

needs to be initialized with lower-order steps; more specifically, 𝛼𝑖𝑗 is 𝑗-th coefficient of BDFi, for

1 ⩽ 𝑖 < 𝑚, and 𝑗-th coefficient of BDFm otherwise.
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In the formulation above, h(u, q) does not depend on velocities v. If the dependence on velocities

is needed, we discretize in time, and handle it as dependence on u at different time steps; in the

physical problem we solve, this happens only for damping forces.

The discrete system has the form

u𝑖 +
min(𝑖,𝑚)∑︁
𝑗=1

𝛼𝑖𝑗u
𝑖− 𝑗 = 𝛽𝑖Δ𝑡 v𝑖

𝑀

(
v𝑖 +

min(𝑖,𝑚)∑︁
𝑗=1

𝛼𝑖𝑗v
𝑖− 𝑗

)
= 𝛽𝑖Δ𝑡 h𝑖 (u𝑖, u𝑖−1, q) = ĥ𝑖 (3.12)

where𝑀 is the mass matrix.

Objectives. For time-dependent problems, we consider functionals of the form

𝐽 (u, q) =
∫ 𝑇

𝑡=0
𝐽 (u, 𝑡, q)𝑑𝑡 (3.13)

where 𝐽 (u, 𝑡, q) is a spatial functional, e.g., integral over the solid Ωq̄(𝑡) or its surface of some

pointwise quantity depending on the solution and/or its derivatives pointwise. In discretized form,

𝐽 (u, q) =
𝑁∑︁
𝑖=0

𝑤𝑖 𝐽𝑖 (u𝑖, q) =
𝑁∑︁
𝑖=0

𝐽 𝑖 (3.14)

where𝑤𝑖 are quadrature weights (e.g., all 𝑑𝑡 in the simplest case), and 𝑁 is the number of time

steps.

Remark on notation. We omit most of the explicit arguments in functions h and 𝐽 used in the

expressions, to make the formulas more readable. The following is implied: h(u𝑖, u𝑖−1, q, 𝑡𝑖) =

h𝑖 (u𝑖, q) = h𝑖 and similarly for 𝐽𝑖 .
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Summary. Computing the derivative 𝑑q𝐽 requires the following components

• Derivatives 𝜕u𝐽𝑖 , 𝜕uh𝑖 , 𝜕q𝐽𝑖 and 𝜕qh𝑖 for each time step 𝑖 . See Sections 3.7 to 3.8.2 for corre-

sponding formulas.

• 𝜕qg𝑢 and 𝜕qg𝑣 , derivatives of the initial conditions. See Section 3.5.3.

To compute the parametric derivative of 𝐽 , the steps are as follows:

• Solve the forward system (3.12), and store the resulting solutions u𝑖, v𝑖 , 𝑖 = 0 . . . 𝑁 at every

step.

• Initialize adjoint variables p𝑁 ,𝝂𝑁 by solving (3.17) and (3.20).

• Perform backward time stepping using (3.16) (general BDF: (3.19)).

• At every step, evaluate derivative of the mass matrix 𝑑q𝑀 , if applicable, and use formulas

(3.18) and (3.22) to update 𝑑q𝐽 .

3.5.1 Implicit Euler

Discrete time-dependent Lagrangian. We write the time-dependent Lagrangian L for the

functional 𝐽 viewing the equations for ¤v and ¤u as constraints with Lagrange multipliers p and 𝝁.

For the solution (u, v) for any optimization parameter values, the constraints are satisfied, 𝑑q𝐽 =

𝑑qL, as the constraint terms identically vanish. The goal of introducing the adjoint variables is

to eliminate the direct dependence of 𝑑q𝐽 on the displacement and velocity derivatives: 𝑑qu𝑖 or

𝑑qv𝑖 . To achieve our objective, we expand the derivative 𝑑qL, and isolate the terms multiplying

𝑑qu and 𝑑qv. By setting the sum of each of these two sets of terms to zero (which corresponds to

our adjoint equations), we can find p and 𝝁 so that the derivative of the functional 𝑑q𝐽 does not

directly depend on 𝑑qu𝑖 or 𝑑qv𝑖 .
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For clarity, we start with the simplest case, implicit Euler/BDF1:

u𝑖 − u𝑖−1 = Δ𝑡 v𝑖

𝑀 (v𝑖 − v𝑖−1) = Δ𝑡 h𝑖 = ĥ𝑖 (3.15)

In this case, the Lagrangian L has the form

L =

𝑁∑︁
𝑖=0

𝐽 𝑖 {objective terms}

+ p𝑇0 (v0 − g𝑣 ) + 𝝁𝑇0 (u0 − g𝑢) {initial condition terms}

+
𝑁∑︁
𝑖=1

p𝑇𝑖 (𝑀 (v𝑖 − v𝑖−1) − ĥ𝑖) + 𝝁𝑇𝑖 (u𝑖 − u𝑖−1 − Δ𝑡 v𝑖) {PDE terms}

Introducing a new variable 𝝂 satisfying 𝝁 = 𝑀𝑇𝝂 , adjoint equations in this case have the following

form (see supplementary material for derivation):

p𝑖 − p𝑖+1 = Δ𝑡 𝝂𝑖

𝑀𝑇 (𝝂𝑖 − 𝝂𝑖+1) = (𝜕u𝑖 ĥ𝑖)𝑇p𝑖 + (𝜕u𝑖 ĥ𝑖+1)𝑇p𝑖+1 − (𝜕u𝑖 𝐽
𝑖)𝑇

(3.16)

Note that this systems is very similar to the forward time-stepping, with the following differences:

it proceeds backwards, from 𝝂𝑖+1 to 𝝂𝑖 ; there is a single linear solve per time step, rather than

a nonlinear solve as for the forward system. If we introduce p𝑁+1 and 𝝂𝑁+1, with actual initial

values p𝑁 and 𝝂𝑁 obtained from (3.16), the inital conditions can be taken to have a particularly

simple form:

p𝑁+1 = 0

𝝂𝑁+1 = 0
(3.17)
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For p0,𝝂0, which are a special case, as these correspond to initial conditions, and satisfy different

equations compared to the rest, we have𝑀𝑇𝝂0 = −(𝜕u0 𝐽 0)𝑇 +𝑀𝑇𝝂1 + p𝑇1 𝜕u0 ĥ1 and p0 = 𝑀
𝑇p1

Finally, the expression for 𝑑q𝐽 is

𝑑q𝐽 = 𝜕q𝐽
0 − p𝑇0 𝜕qg𝑣 − 𝝁𝑇0 𝜕qg𝑢 − p𝑇1 𝜕q𝑀v0

+
𝑁∑︁
𝑖=1

𝜕q𝐽
𝑖 − p𝑇𝑖 𝜕qĥ𝑖 + Δ𝑡 𝝂𝑇𝑖 𝜕q𝑀v𝑖

(3.18)

3.5.2 General BDF time integration

For completeness, we include equations for BDFn adjoint system, also derived in supplementary

material: (
p𝑖 +

min(𝑚,𝑁−𝑖)∑︁
𝑗=1

𝛼
𝑖+ 𝑗
𝑗

p𝑖+ 𝑗

)
= 𝛽𝑖Δ𝑡 𝝂𝑖

𝑀𝑇

(
𝝂𝑖 +

min(𝑚,𝑁−𝑖)∑︁
𝑗=1

𝛼
𝑖+ 𝑗
𝑗
𝝂𝑖+ 𝑗

)
=

(𝜕u𝑖 ĥ𝑖)𝑇p𝑖 + (𝜕u𝑖 ĥ𝑖+1)𝑇p𝑖+1 − (𝜕u𝐽
𝑖)𝑇

(3.19)

Similarly to the BDF1 case, by introducing p𝑁+1, 𝝂𝑁+1, the initial condition can be simplified as

p𝑁+1 = 0

𝝂𝑁+1 = 0
(3.20)

and similarly, the first (last in the adjoint solve) values need to be treated separately:

𝝁0 = −(𝜕u𝐽
0)𝑇 −

𝑚∑︁
𝑗=1

𝛼
𝑗

𝑗
𝝁 𝑗 + p𝑇1 𝜕u0 ĥ1, p0 = −

𝑚∑︁
𝑗=1

𝛼
𝑗

𝑗
𝑀𝑇p 𝑗 (3.21)
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Computing the derivative of 𝐽 from the forward and adjoint solutions. From the adjoint

variables, we can compute 𝑑q𝐽 = 𝑑qL:

𝑑q𝐽 = −p𝑇0 𝜕qg𝑣 − 𝝁𝑇0 𝜕qg𝑢

+
𝑁∑︁
𝑖=0

𝜕q𝐽
𝑖

+
𝑁∑︁
𝑖=1
−p𝑇𝑖 𝜕qĥ𝑖 + 𝛽𝑖Δ𝑡 𝝂𝑇𝑖 𝑑q𝑀v𝑖

+
𝑚∑︁
𝑗=1

𝛼
𝑗

𝑗
p𝑇𝑗 𝑑q𝑀v0

(3.22)

Partial derivatives 𝜕qĥ, 𝜕uĥ and 𝜕q𝐽𝑖 , 𝜕u𝐽𝑖 are exactly the same as used in the construction of the

system for static adjoint and computation of the functional. The differences, specific to time

discretization, are:

• Mass matrix derivative 𝑑q𝑀 . See supplemental material.

• Partial derivatives of the initial conditions with respect to parameters 𝜕qg𝑣 and 𝜕qg𝑢 , for

positions and velocities. See Section 3.5.3. Typically, a 3d position and velocity for the whole

object (or angular velocity for the object rotating as a rigid body) are used as parameters, so

these are trivial to compute.

3.5.3 Initial condition derivatives

We need to compute partial derivatives of the initial conditions with respect to optimization

parameters q: 𝜕qg𝑣 and 𝜕qg𝑢 , for positions and velocities. Notice that both 𝜕qg𝑣 and 𝜕qg𝑢 are

discrete vector fields on domain Ωq̄. Consider we have one vector value q𝑚 per node of the

domain.
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If (g𝑣 )𝑠 = q𝑚 , where (g𝑣 )𝑠 is initial condition at node 𝑠 , the derivative with respect to 𝑞𝑚 is simply

the identity matrix (𝜕q𝑚g𝑣 = 𝐼 ). At the same time, it is the zero matrix w.r.t. any other 𝑞𝑚∗ , with

𝑚∗ ≠𝑚. Same thing goes for g𝑢 .

3.6 Physical model and discretization

In this section, we summarize the physical model we use. The model is similar to the one used in

[Li et al. 2020a], with some modifications, most importantly, addition of damping.

On discretization side, we use arbitrary-order Lagrangian elements and arbitrary-order BDF time

stepping (although above order 6, BDF time stepping is not zero-stable).

The forces, which contribute to the PDE and need to be included in the adjoint equations and

corresponding parametric gradient terms are:

• geometrically non-linear elasticity (with linear and neo-Hookean constitutive laws as op-

tions);

• contact forces in smoothed IPC formulation;

• friction forces also in smoothed IPC formulation;

• strain-rate proportional viscous damping for elastic objects;

• external forces such as gravity or surface loads.

Additionally, we support contact with stationary obstacles.
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The right-hand side of the system of equations we solve on 𝑖-th time step can be written as

h𝑒 (u𝑖 ; 𝜆(𝑥), 𝜇 (𝑥)) + h𝑐 (u𝑖) + h𝑓 (u𝑖, u𝑖−1; 𝜇 (𝑥,𝑦))

+ h𝑑 (u𝑖, u𝑖−1;𝛼 (𝑥), 𝛽 (𝑥))

where h𝑒 is the discrete elastic PDE term, h𝑐 and h𝑓 define contact and friction forces and h𝑑

defines damping. In greater detail, all these forces are defined in the next section, along with 𝜕uh

and 𝜕qh for each.

The physical parameters q of the model, with respect to which it can be differentiated, include:

(possibly spatially variant) Lame coefficients for elasticity 𝜆(𝑥), 𝜇 (𝑥), friction coefficient between

pairs of points 𝜇 (𝑥,𝑦) (we consider it fixed for each pair of objects, to reduce the number of

variables involved), damping coefficients 𝛼 (𝑥), 𝛽 (𝑥), and all external forces.

3.7 Parametric derivatives of forces

In this section, we derive expressions for 𝜕uh and 𝜕qh for specific forces needed for the adjoint

equations and the final derivative formula respectively.

3.7.1 Obtaining shape derivatives on perturbed domain

While it is conceptually straightforward to plug in FE basis expressions for𝑢 = 𝑢 ◦ q̄, and geometric

maps q̄ into the PDE and functionals, obtaining expressions for all quantities as functions on the

fixed reference domain Ωref which can be differentiated with respect to all parameters, doing this

directly yields unwieldy expressions in the case of shape derivatives.

For this reason, we perform most of the derivations for shape derivatives considering functions

on Ωq̄, where we can perform all manipulations in coordinates on Ωq̄ and substitute expressions
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involving the basis on Ωref in the end. If the domain does not change, approaches using Ωref and

Ωq̄ are similar in complexity.

To compute 𝜕qℎ, or 𝜕q𝐽 , we consider the perturbed domain Ωq̄+𝜽𝜖 , and compute the full derivative

as limit of, e.g.
1
𝜖
(𝐽 (𝑢q̄+𝜽𝜖, q̄ + 𝜽𝜖) − 𝐽 (𝑢q̄, q̄)

as 𝜖 → 0. In the resulting expression, the terms not containing derivative 𝛿𝑢 (𝑥) correspond to

𝜕q𝐽𝜽 , and the terms containing derivatives of 𝑢 (𝑥) are transformed to 𝜕u𝐽𝝍 by substituting 𝜓

instead of 𝛿𝑢 (𝑥).

3.7.2 Volume forces

Many forces in continuum mechanics have the general weak form

H 𝑣 (𝑢,𝑤, 𝑞) =
∫
Ωq̄

𝑓 𝑣 ((∇𝑢 (𝑥), 𝑞(𝑥)) : ∇𝑤 𝑑𝑥 (3.23)

with the components of the vector h𝑣 (u) obtained as H 𝑣 (𝑢, 𝜙 ℓ , 𝑞), for all basis functions 𝜙 ℓ . In

our case, elastic forces, irrespective of the constitutive law used, belongs to this category.

In these expressions 𝑓 𝑣 (∇𝑢, 𝑞) is a tensor of dimension 𝐷𝑑 × 𝐷𝑠 ; e.g., for elasticity, 𝐷𝑑 = 𝐷𝑠 , and

this expression is the stress tensor, as function of ∇𝑢.

If the force is associated with a volume energy density𝑊 𝑣 (∇𝑢, 𝑞) or surface density𝑊 𝑠 (𝑢, 𝑞),

associated forces have the form above, specifically, 𝑓 𝑣 (∇𝑢, 𝑞) = ∇1𝑊
𝑣 . (Here, ∇1 means the

gradient with respect to the first parameter, which in this case is ∇𝑢).

We also formulate damping in a similar way, as explained in more detail below, except at each

timestep𝑊 𝑣 depends on displacements 𝑢𝑖 and 𝑢𝑖−1 at the current and previous time steps. The

formulas for 𝐴𝑣 and 𝐵𝑣 in this case are obtained in exactly the same way as for dependence on 𝑢𝑖
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only, separately for 𝑢𝑖 and 𝑢𝑖−1, corresponding to 𝜕u𝑖h
𝑖 and 𝜕u𝑖−1h

𝑖 respectively.

To obtain matrices 𝐴𝑣 and 𝐵𝑣 corresponding to 𝜕uh𝑣 and 𝜕qh𝑣 (3.11), we split 𝜕qh𝑓 into 𝜕q̄h𝑓 and

𝜕q1h𝑓 , the shape and non-shape parameter derivatives, assuming 𝑓 depends on a single volume

vector of parameters 𝑞 = q1 (e.g., Lame constants). We treat these two types of parameters

separately, as q̄ affects the domain of integration but not the integrand, and conversely, 𝑞 affects

the integrand but not the domain.

Shape derivatives. For the shape derivative contribution, we obtain the following forms (the

derivation and explicit form of matrix entries can be found in supplementary material).

𝐵𝑣 (𝜃, 𝑝) =
∫
Ωq̄

−𝑓 (∇𝑢)∇𝜃𝑇 : ∇𝑝

− (∇1𝑓 (∇𝑢) : (∇𝑢∇𝜃 )) : ∇𝑝 + (𝑓 (∇𝑢) : ∇𝑝 )∇ · 𝜃 𝑑𝑥 (3.24)

𝐵𝑣 (𝜃, 𝑝) is linear in 𝜃 and 𝑝 , and we convert it to a matrix form by substituting basis functions for

𝜃 and 𝑝 .

The contribution to the left-hand side of the adjoint equation is

𝐴𝑣 (𝜓, 𝑝) =
∫
Ωq̄

(∇1𝑓 (∇𝑢) : ∇𝜓 ) : ∇𝑝 𝑑𝑥 (3.25)

Non-shape volumetric parameter derivatives. We assume that the force depends on 𝑞 = 𝑞(𝑥),

a function of the point in Ωq̄, defined by its values q at the same nodes as the solution, and

interpolated using the same basis 𝜙 .

In this case, the relevant forms are:

𝐵𝑣 (𝜃, 𝑝) =
∫
Ω
(𝜕𝑞 𝑓 · 𝜃 ) : ∇𝑝 𝑑𝑥
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The contribution to the left-hand side of the adjoint equation is identical to the shape derivative

case.

In our implementation we consider two versions of elastic forces, both defined by Lame parameters

specified as functions on Ωref : 𝑞(𝑥) = [𝜆(𝑥), 𝜇 (𝑥)]. The only quantities we need are derivatives of

𝑓 (∇𝑢) with respect to ∇𝑢, and material parameters.

Linear elasticity. For linear elasticity, we replace 𝑓 𝑣 with

𝑓 𝑒 (∇𝑢, q) = 𝜎 (∇𝑢, q) = 𝐶 (q) : 𝜀 (∇𝑢) = 1
2
𝐶 (q) : (∇𝑢𝑇 + ∇𝑢),

with 𝐶𝑖 𝑗𝑘𝑙 (𝜆, 𝜇) = 𝜆𝛿𝑖 𝑗𝛿𝑘𝑙 + 𝜇 (𝛿𝑖𝑘𝛿 𝑗𝑙 + 𝛿𝑖𝑙𝛿 𝑗𝑘).

For computing 𝐴𝑒 and 𝐵𝑒 we need partial derivatives of 𝑓 𝑒 with respect to relevant parameters:

∇1𝑓
𝑒 (∇𝑢,𝝀, 𝝁) = 𝐶

𝜕𝜆 𝑓
𝑒 (∇𝑢,𝝀, 𝝁)𝑖 𝑗 = 𝛿𝑖 𝑗𝛿𝑘𝑙𝜀𝑘𝑙

𝜕𝜇 𝑓
𝑒 (∇𝑢,𝝀, 𝝁)𝑖 𝑗 = (𝛿𝑖𝑘𝛿 𝑗𝑙 + 𝛿𝑖𝑙𝛿 𝑗𝑘)𝜀𝑘𝑙

Neo-Hookean elasticity. For Neo-Hookean elasticity, the following formula is used for comput-

ing stress:

𝑓 𝑒 (∇𝑢, q) = 𝜇 (𝐹 (∇𝑢) −𝑄 (∇𝑢)) + 𝜆 log(det(𝐹 (∇𝑢)))𝑄 (∇𝑢)

where 𝐹 (∇𝑢) = ∇𝑢 + 𝐼 and 𝑄 (∇𝑢) = 𝐹 (∇𝑢)−𝑇 .
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We can then compute derivatives of 𝑓 (∇𝑢)

∇1𝑓
𝑒 (∇𝑢, q)𝑖 𝑗𝑘𝑙 = 𝜇 (𝛿𝑖𝑘𝛿 𝑗𝑙 +𝑄𝑖𝑙𝑄𝑘 𝑗 ) + 𝜆(𝑄𝑖 𝑗𝑄𝑘𝑙 − log(det(𝐹 ))𝑄𝑖𝑙𝑄𝑘 𝑗 )

𝜕𝜆 𝑓
𝑒 (∇𝑢, q) = 𝐹 (∇𝑢) −𝑄 (∇𝑢)

𝜕𝜇 𝑓
𝑒 (∇𝑢, q) = log(det(𝐹 (∇𝑢)))𝑄 (∇𝑢)

Damping. For damping, we have material parameters controlling shear and bulk damping 𝛼, 𝛽 .

We use the strain-rate proportional damping described in [Brown et al. 2018]. Given deformation

gradient 𝐹 = ∇𝑢 + 𝐼 , the Green strain tensor 𝐸 = 1
2 (𝐹

𝑇 𝐹 − 𝐼 ) is rotation-invariant. The viscous

Piola-Kirchhoff stress is of the form

𝑃 (∇𝑢,∇¤𝑢) = 𝐹 (2𝛼 ¤𝐸 + 𝛽 Tr ( ¤𝐸)𝐼 )

where ¤𝐸 denotes the time derivative, and the weak form of the corresponding force

H𝑑 (𝑢, ¤𝑢,𝑤) =
∫
Ωq̄

𝑃 (∇𝑢,∇¤𝑢)∇𝑤𝑑𝑥

In our case, to fit this force into our differentiable formulation, we discretize ¤𝐹 using as ¤𝐹 𝑖 =
1
Δ𝑡 (𝐹

𝑖 − 𝐹 𝑖−1); this yields a force expression of the form

H𝑑 (𝑢𝑖, 𝑢𝑖−1,𝑤) =
∫
Ωq̄

𝑃 (∇𝑢𝑖,∇𝑢𝑖−1)∇𝑤𝑑𝑥

which is identical to (3.23), except it depends on both ∇𝑢𝑖 and ∇𝑢𝑖−1.

As a consequence, expressions for 𝐴𝑑 (𝜓, 𝑝) and 𝐵𝑑 (𝜃, 𝑝) are obtained in the same way as in (3.25)

and (3.24), except two pairs of matrices are obtained, one for ∇𝑢𝑖 the other for ∇𝑢𝑖−1, using ∇1𝑃

and ∇2𝑃 as ∇1𝑓 respectively.

89



Contact. The contact forces are added to the formulation using the formulation of [Li et al. 2020a],

with a small change. While the original formulation is introduced in a discrete form, with minimal

changes, [Li et al. 2022] it can be derived as a linear finite-element discretization of a continuum

formulation.

The contact formulation uses log barrier function 𝑏 (𝑦), where 𝑏 is a truncated log barrier function,

approaching infinity, if 𝑦 → 0, and vanishing for 𝑦 ⩾ 𝑑 for some small distance 𝑑 . For any pair of

primitives 𝑘 (vertices, edges and faces) of the surface mesh 𝜕Ωq̄, the distance 𝑑𝑘 (xd) is computed.

𝐶 denotes the set of primitive pairs in contact, i.e., pairs of of primitives with 𝑑𝑘 < 𝑑 .

The contact forces are derived from the following potential, which can be obtained as a discretiza-

tion of an integral over the surface:

𝐸 (u, q̄) = 𝜅
∑︁
𝑘∈𝐶

𝑏 (𝑑𝑘 ( q̄ + u︸︷︷︸
xd

))𝐴𝑘 =
∑︁
𝑘∈𝐶

𝑊𝑘 (u, q̄)𝐴𝑘 ,

where 𝜅 > 0 is a conditioning parameter controlling the barrier stiffness and 𝐴𝑘 corresponds to

the sum of surface areas associated with each primitive in 𝑘 (1/3 of the sum of areas of incident

triangles for vertices and edges, and the area for triangles); distances 𝑑𝑘 depend on the initial

positions 𝑥 ∈ Ωq̄.

We define 𝐹 𝑐
𝑘
(u, q̄) = 𝜕u𝑊𝑘 (u, q̄) = 𝜅𝑏′(𝑑𝑘 (u + q̄))𝜕xd𝑑𝑘 .

The contact force is then

h𝑐 =
∑︁
𝑘∈𝐶

𝐹 𝑐
𝑘
(u, q̄)𝐴𝑘
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The terms 𝐵𝑐 and 𝐴𝑐 have the form

𝐵𝑐 (𝑝, 𝜃 ) =
∑︁
𝑘

(
𝜕q̄𝐹

𝑐
𝑘
𝜃 · 𝑝 + 𝐹 𝑐

𝑘
· 𝑝 𝜕q̄𝐴𝑘

)
𝐴𝑘

𝐴𝑐 (𝑝,𝜓 ) =
∑︁
𝑘

𝜕u𝐹
𝑐
𝑘
𝜓 · 𝑝 𝐴𝑘

where

𝜕u𝐹
𝑐
𝑘
= 𝜅 (𝑏′′(𝜕xd𝑑𝑘) (𝜕xd𝑑𝑘)𝑇 + 𝑏′𝜕xd (𝜕xd𝑑𝑘))

𝜕q̄𝐹
𝑐
𝑘
= 𝜕u𝐹

𝑐
𝑘
𝑀∗

and 𝜕q̄𝐴𝑘 corresponds to the gradient of the area term, which varies depending on the type of

primitive pairs corresponding to 𝑘 .

The matrix 𝑀∗ is upsampling matrix to bring dimension of q̄ to the same as discrete solution

u, as the surface geometry 𝑞 is represented in the basis 𝜉ℓ , for which we always use piecewise-

linear elements, and 𝑢 can be represented in a Lagrangian basis of any order. The upsampling is

performed by linear interpolation from 𝑥ℓ to nodes 𝑧ℓ .

Friction. In general, the friction coefficient 𝛾 (𝑥1, 𝑥2) is a function of surface material points in

𝜕Ωq̄. As a simplification, in our implementation, we assume that each pair of objects (𝑚,𝑛), in

the simulation has a single coefficient 𝛾𝑚,𝑛 , which can vary through the optimization. To simplify

notation, we use 𝛾𝑘1,𝑘2 for a pair of primitives 𝑘1 and 𝑘2 to indicate the friction coefficient between

objects these primitives belong to.

We follow IPC definition of friction [Li et al. 2020a]. The key feature it has for our purposes is that

it is a differentiable function of displacements, which determine the contact forces, and relative
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velocities, which we discretize in this formulation by 𝑢𝑖−1 − 𝑢𝑖 , where 𝑖 is the time step, so the

function depends on displacements at two sequential time steps.

The friction force for each active pair of primitives 𝑘 is defined as:

𝐹
𝑓

𝑘
(u𝑖−1, u𝑖) = −𝛾𝑘1,𝑘2𝑁𝑘𝑇𝑘 𝑓𝜂 (∥𝜏𝑘 ∥)

𝜏𝑘

∥𝜏𝑘 ∥
(3.26)

where 𝑁𝑘 is the contact force magnitude, 𝑇𝑘 is a tangential frame matrix, constructed from as

described in [Li et al. 2020a], and 𝜏𝑘 = 𝜏𝑘 (u𝑖−1, u𝑖) is the relative tangential sliding defined below.

h𝑓 =
∑︁
𝑘∈𝐶

𝐹
𝑓

𝑘
(u, q̄)𝐴𝑘

It is very important to notice that our method for solving friction is implemented with a lagging

formulation, where solution 𝑢lagged from previous solution of the Newton method solve is used

as input for both 𝑇𝑘 and 𝑁𝑘 (together with the contacting set), in order to obtain current time

step solution 𝑢𝑖 . In our time dependent case, we always use a single lagged step and assume

𝑢lagged = 𝑢
𝑖−1 See below the formula showing how each term depends on 𝑢𝑖−1 and 𝑢𝑖 .

𝜏𝑘 = 𝑇𝑘 (q̄ + u𝑖−1︸   ︷︷   ︸
xp

)𝑇 (u𝑖 − u𝑖−1)

𝑓𝜂 (𝑦) =


−𝑦

2

𝜂2 + 2𝑦
𝜂

𝑦 ∈ [0, 𝜂)

1 𝑦 ⩾ 𝜂

To compute the shape derivative term 𝐵 𝑓 =
∑
𝑘 (𝐹

𝑓

𝑘
)𝑥𝜃 · 𝑝 𝐴𝑘 + 𝐹 𝑓𝑘 · 𝑝 𝜕q̄𝐴𝑘 𝐴𝑘 , we need to compute
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the derivative of each 𝑓𝑘 term with respect to components 𝑥ℓ of q̄, obtaining:

𝜕𝑥ℓ 𝐹
𝑓

𝑘
= −𝛾𝑘1,𝑘2 𝑇𝑘 𝑓𝜂 (∥𝜏𝑘 ∥)

𝜏𝑘

∥𝜏𝑘 ∥
×(

𝜅
𝑁𝑘

∥𝑁𝑘 ∥
· (𝑏 ′′(𝜕xd𝑑𝑘 ) (𝜕xd𝑑𝑘 )𝑇 + 𝑏 ′𝜕xd (𝜕xd𝑑𝑘 )) 𝑀∗

)
ℓ

+

− 𝛾𝑘1,𝑘2 𝑁𝑘 (𝜕xp𝑇𝑘 𝑀
∗)ℓ 𝑓𝜂 (∥𝜏𝑘 ∥)

𝜏𝑘

∥𝜏𝑘 ∥
+

− 𝛾𝑘1,𝑘2 𝑁𝑘𝑇𝑘
𝜏𝑘

∥𝜏𝑘 ∥

(
𝑓 ′𝜂

𝜏𝑘

∥𝜏𝑘 ∥
· ((𝜕xp𝑇𝑘 𝑀

∗)𝑇ℓ (u𝑖 − u𝑖−1))
)
+

− 𝛾𝑘1,𝑘2 𝑁𝑘𝑇𝑘 𝑓𝜂 (∥𝜏𝑘 ∥)
((

𝐼2

∥𝜏𝑘 ∥
−
𝜏𝑘𝜏

𝑇
𝑘

∥𝜏𝑘 ∥3

)
(𝜕xp𝑇𝑘 𝑀

∗)𝑇ℓ (u𝑖 − u𝑖−1)
)

(3.27)

The derivative with respect to friction coefficient values is easily obtained as the force is linear in

friction coefficients. If q is a vector of friction coefficients,

𝜕𝑞ℓ𝐹
𝑓

𝑘
=


−𝑁𝑘𝑇𝑘 𝑓𝜂 (∥𝜏𝑘 ∥) 𝜏𝑘∥𝜏𝑘 ∥ if 𝑞ℓ corresponds to 𝛾𝑘1,𝑘2

0 otherwise

To compute the term on the left side of the adjoint equation (𝐴𝑓 (𝜓, 𝑝) = ∑
𝑘 (𝐹𝑘)𝑢𝜓 · 𝑝 𝐴𝑘 ), we

need to compute the derivative of each 𝐹𝑘 term with respect to 𝑢𝑖 and 𝑢𝑖−1:

𝜕𝑢𝑖
ℓ
𝐹
𝑓

𝑘
= −𝛾𝑘1,𝑘2 𝑁𝑘𝑇𝑘

𝜏𝑘

∥𝜏𝑘 ∥

(
𝑓 ′𝜂

𝜏𝑘

∥𝜏𝑘 ∥
·
(
𝑇𝑇
𝑘

)
ℓ

)
+

− 𝛾𝑘1,𝑘2 𝑁𝑘𝑇𝑘 𝑓𝜂 (∥𝜏𝑘 ∥)
((

𝐼2

∥𝜏𝑘 ∥
−
𝜏𝑘𝜏

𝑇
𝑘

∥𝜏𝑘 ∥3

) (
𝑇𝑇
𝑘

)
ℓ

)
(3.28)
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𝜕𝑢𝑖−1
ℓ
𝐹
𝑓

𝑘
= −𝛾𝑘1,𝑘2 𝑇𝑘 𝑓𝜂 (∥𝜏𝑘 ∥)

𝜏𝑘

∥𝜏𝑘 ∥
×(

𝜅
𝑁𝑘

∥𝑁𝑘 ∥
· (𝑏′′∇𝑑𝑘∇𝑑𝑇𝑘 + 𝑏

′∇2𝑑𝑘)
)
ℓ

+

− 𝛾𝑘1,𝑘2 𝑁𝑘 (𝜕xp𝑇𝑘)ℓ 𝑓𝜂 (∥𝜏𝑘 ∥)
𝜏𝑘

∥𝜏𝑘 ∥
+

− 𝛾𝑘1,𝑘2 𝑁𝑘𝑇𝑘
𝜏𝑘

∥𝜏𝑘 ∥

(
𝑓 ′𝜂

𝜏𝑘

∥𝜏𝑘 ∥
· (𝜕xp𝑇𝑘)𝑇ℓ (u𝑖 − u𝑖−1))

)
+

− 𝛾𝑘1,𝑘2 𝑁𝑘𝑇𝑘 𝑓𝜂 (∥𝜏𝑘 ∥)
((

𝐼2

∥𝜏𝑘 ∥
−
𝜏𝑘𝜏

𝑇
𝑘

∥𝜏𝑘 ∥3

)
(𝜕xp𝑇𝑘)𝑇ℓ (u𝑖 − u𝑖−1)

)
(3.29)

3.8 Objective derivatives

In this section, we define 𝜕q𝐽 and 𝜕u𝐽 terms needed for gradient computation (3.9).

3.8.1 General forms of objectives

Consider general types of objectives, which will be used for a number of specific objectives in

Section 3.8.2. This includes inequality constraints in penalty form.

For each different objective 𝐽𝑜 , we obtain vectors 𝑅𝑜 (𝜓 ) and 𝑆𝑜 (𝜃 ) corresponding to 𝜕u𝐽
𝑜 and 𝜕q𝐽

𝑜 ,

which are necessary to compute the adjoint solution and the final shape derivative. The vectors

𝜕u𝐽
𝑜 and 𝜕q𝐽

𝑜 are obtained by plugging in the basis functions 𝜙ℓ int 𝑅𝑜 and 𝑆𝑜 .

Objectives depending on gradient of solution and shape.

Consider an objective that depends on both the solution of the PDE and the domain :

𝐽𝑜 (∇𝑢, 𝑞) =
∫
Ωq̄

𝑗 (∇𝑢, 𝑥)𝑑𝑥 (3.30)
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In this case, as derived in the supplementary document,

𝑆𝑜 (𝜃 ) =
∫
Ωq̄

−∇1 𝑗 : ∇𝑢∇𝜃 + ∇2 𝑗 · 𝜃 + 𝑗 (∇𝑢, 𝑥)∇ · 𝜃 𝑑𝑥 (3.31)

and

𝑅𝑜 (𝜓 ) =
∫
Ωq̄

∇1 𝑗 : ∇𝜓 𝑑𝑥 (3.32)

Objectives depending on solution and shape. We also an objective that depends on both the

solution of the PDE and the domain :

𝐽𝑜 (𝑢, 𝑞) =
∫
Ωq̄

𝑗 (𝑢, 𝑥)𝑑𝑥 (3.33)

In this case,

𝑆𝑜 (𝜃 ) =
∫
Ωq̄

∇2 𝑗 · 𝜃 + 𝑗 (𝑢, 𝑥)∇ · 𝜃 𝑑𝑥 (3.34)

and,

𝑅𝑜 (𝜓 ) =
∫
Ωq̄

∇1 𝑗 ·𝜓 𝑑𝑥 (3.35)

3.8.2 Specific objectives

𝐿𝑝 norm of stress. For 𝑝 = 2 this objective measures the overall average stress, and for high 𝑝 ,
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e.g., 𝑝 = 6, 𝐿𝑝-norm of stress approximates maximal stress:

𝐽𝜎 =

(∫
Ωq̄

∥𝜎 (∇𝑢)∥𝑝
𝐹
𝑑𝑥

)1/𝑝

(3.36)

where 𝜎 (∇𝑢) = 𝑓 (∇𝑢) represents stress, which depends on ∇𝑢. Following the chain rule:

𝜕q𝐽
𝜎𝜃 =

1
𝑝
((𝐽𝜎 )𝑝)

1−𝑝
𝑝 𝜕q(𝐽𝜎 )𝑝 𝜃

Since (𝐽𝜎 )𝑝 is on the form
∫
Ωq̄
𝑗 (∇𝑢, 𝑥)𝑑𝑥 , we can use the expressions for the general objective (3.30),

for which we just need the derivative ∇1 𝑗 , since ∇2 𝑗 = 0:

∇1 𝑗 = 𝑝 ∥𝜎 ∥𝑝−2 𝜎 : ∇𝑓 (∇𝑢)

Weighted difference from target deformations.

𝐽 𝑡𝑟 𝑗 (𝑥,𝑢) =
∫
Ωq̄

𝑤 (𝑔(𝑥, 𝑞)) ∥𝑥𝑑 − 𝑥𝑡𝑟𝑔 (𝑔(𝑥, 𝑞))∥2 𝑑𝑥 (3.37)

where 𝑥𝑑 = 𝑥 + 𝑢, the deformed state of the object, 𝑔 is a function mapping the current position 𝑥

to our original shape prior to optimization, weight 𝑤 determines relative imporance of points,

and 𝑥𝑡𝑟𝑔 is the target configuration, defined as function on Ωref .

𝐽 𝑡𝑟 𝑗 is a function of 𝑥 and 𝑢, and using the formulas for the general objective (3.33), compute 𝑆𝑡𝑟 𝑗

and 𝑅𝑡𝑟 𝑗 as

∇1 𝑗 = ∇2 𝑗 = 2𝑤 (𝑔(𝑥)) (𝑥𝑑 − 𝑥𝑡𝑟𝑔 (𝑥))
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If we define only the shape on the boundary as the target, then we have:

𝐽𝑏𝑡𝑟 𝑗 =

∫
𝜕Ωq̄

𝑤 (𝑔(𝑥, 𝑞)) ∥𝑥𝑑 − 𝑥𝑡𝑟𝑔 (𝑔(𝑥, 𝑞))∥2 𝑑𝑥

Formulas for the derivatives follow the same idea, with:

𝑆𝑏𝑡𝑟 𝑗 =

∫
𝜕Ωq̄

∇2 𝑗 · 𝜃 + 𝑗 (𝑢, 𝑥) ∇𝑠 · 𝜃 𝑑𝑥

𝑅𝑏𝑡𝑟 𝑗 =

∫
𝜕Ωq̄

∇1 𝑗 ·𝜓 𝑑𝑥

where ∇𝑠 denotes the surface derivative.

Target center of mass trajectory. A related objective is the deviation of the center of mass of

the object from a target trajectory:

𝐽 𝑐𝑡𝑟 =






∫
Ωq̄
𝜌 (𝑥) 𝑥𝑑 𝑑𝑥∫

Ωq̄
𝜌 (𝑥) 𝑑𝑥

− 𝑥𝑐𝑡𝑟




2

= ∥ Δ𝑐𝑡𝑟 ∥2 (3.38)

Following the chain rule:

𝜕q 𝐽
𝑐𝑡𝑟𝜃 = 2



Δ𝑐𝑡𝑟 

 𝑑

𝑑𝜖

���
𝜖=0



Δ𝑐𝑡𝑟 


As 𝑑

𝑑𝜖

���
𝜖=0
∥Δ𝑐𝑡𝑟 ∥ = Δ𝑐𝑡𝑟

∥Δ𝑐𝑡𝑟 ∥ ·
𝑑
𝑑𝜖

���
𝜖=0

Δ𝑐𝑡𝑟 , it is sufficient to compute 𝑑
𝑑𝜖

���
𝜖=0

Δ𝑐𝑡𝑟 :

𝑑

𝑑𝜖

���
𝜖=0

∫
Ωq̄
𝜌 𝑥𝑑 𝑑𝑥∫

Ωq̄
𝜌 𝑑𝑥

− 𝑥𝑐𝑡𝑟 =

=

∫
Ωq̄
𝜌 𝑑𝑥

∫
Ωq̄
𝜌 (𝜃 + 𝛿𝑢) + 𝜌𝑥𝑑∇ · 𝜃 𝑑𝑥 −

∫
Ωq̄
𝜌 𝑥𝑑 𝑑𝑥

∫
Ωq̄
𝜌∇ · 𝜃 𝑑𝑥(∫

Ωq̄
𝜌 𝑑𝑥

)2
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Separating contributions for shape derivative and adjoint system, we have the following for Δ𝑐𝑡𝑟 :

𝑆𝑐𝑡𝑟 (𝜃 ) =

∫
Ωq̄
𝜌 𝑑𝑥

∫
Ωq̄
𝜌 𝜃 + 𝜌𝑥𝑑∇ · 𝜃 𝑑𝑥 −

∫
Ωq̄
𝜌 𝑥𝑑 𝑑𝑥

∫
Ωq̄
𝜌∇ · 𝜃 𝑑𝑥(∫

Ωq̄
𝜌 𝑑𝑥

)2

𝑅𝑐𝑡𝑟 (𝜓 ) =

∫
Ωq̄
𝜌 𝜓 𝑑𝑥(∫

Ωq̄
𝜌 𝑑𝑥

)2

Height. This functional aims to maximize the height of the center of mass:

𝐽 𝑧max = −

∫
Ωq̄
𝜌 (𝑥)𝑥𝑑𝑧𝑑𝑥∫

Ωq̄
𝜌 (𝑥)𝑑𝑥

(3.39)

where 𝑢𝑧 is the z (vertical) component of the solution (displacement) 𝑢, 𝑥𝑧 is the z component of

the original position x.

Using the quotient rule, we obtain:

𝑆𝑧max (𝜃 ) =
−

∫
Ωq̄
𝜌 𝑑𝑥

∫
Ωq̄
𝜌𝜃𝑧 + 𝜌𝑥𝑑𝑧 ∇ · 𝜃 𝑑𝑥 +

∫
Ωq̄
𝜌𝑥𝑑𝑧 𝑑𝑥

∫
Ωq̄
𝜌∇ · 𝜃 𝑑𝑥(∫

Ωq̄
𝜌 𝑑𝑥

)2

𝑅𝑧max (𝜓 ) = −

∫
Ωq̄
𝜌 𝜓𝑧 𝑑𝑥∫

Ωq̄
𝜌 𝑑𝑥

Upper bound for volume. This is a constraint on the volume, most relevant in shape optimization,

defined in penalty form:

𝐽𝑉 = 𝜑 (𝑉 (Ωq̄) −𝑉𝑡 ) = 𝜑 (Δ𝑉 ) (3.40)

where 𝑉 corresponds to the volume of shape Ωq̄ (
∫
Ωq̄
𝑑𝑥), 𝑉𝑡 to the target volume and 𝜑 (𝑧) is a
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function that penalizes quadratically values above our target, as follows:

𝜑 (𝑧) =


0 if 𝑧 ⩽ 0

𝑧2 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

(3.41)

Our derivative is then:

𝜕q𝐽
𝑉𝜃 = 𝜑′ 𝜕qΔ

𝑉 𝜃

Following the expressions for the general objective (3.33), we can compute the shape derivative

for 𝐽 𝐼𝑉 by building vectors 𝑅𝑉 and 𝑆𝑉 with ∇1 𝑗 = ∇2 𝑗 = 0, since 𝑗 (𝑢, 𝑥) = 1.

Upper bound for stress. Similarly, we can impose an approximate upper bound on stress via a

penalty:

𝐽𝜎𝑡 =

∫
Ωq̄

𝜑 (∥𝜎 ∥ − 𝑠𝑡 )𝑑𝑥 (3.42)

where 𝑠𝑡 is the stress magnitude target. This means that we are penalizing quadratically elements

with higher stress than expected. As our 𝐿𝑝 stress energy, our integrand 𝜑 (∥𝜎 ∥ − 𝑠𝑡 ) depends only

on ∇𝑢 and we have:

∇1 𝑗 = 𝜑
′ 𝑓 (∇𝑢)
∥𝜎 ∥ : ∇𝑓 (∇𝑢)

∇2 𝑗 = 0
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Scale-invariant smoothing.

𝐽 smooth =
∑︁
𝑖∈𝐵
∥𝑠𝑖 ∥𝑝 𝑠𝑖 =

∑
𝑗∈𝑁 (𝑖)∩𝐵 (𝑣𝑖 − 𝑣 𝑗 )∑
𝑗∈𝑁 (𝑖)∩𝐵 ∥𝑣𝑖 − 𝑣 𝑗 ∥

(3.43)

where 𝐵 contains the indices of all boundary vertices, 𝑁 (𝑖) contains the indices of all neighbor

vertices of vertex 𝑖 , and 𝑣𝑖 is the position of vertex 𝑖 . The value of 𝑝 can be adjusted to obtain

smoother surfaces at the cost of less optimal shapes, normally we use 𝑝 = 2. This term is

scale-invariant and pushes the triangles/tetrahedra of the mesh toward equilateral.

Material parameter spatial smoothing.

𝐽 𝜆,𝜇 smooth =
∑︁
𝑡∈𝑇

∑︁
𝑡 ′∈𝐴𝑑 𝑗 (𝑡)

(
1 − 𝜆𝑡

′

𝜆𝑡

)2
+

(
1 − 𝜇𝑡

′

𝜇𝑡

)2
(3.44)

where 𝑇 is the set of all triangles/tetrahedra, 𝐴𝑑 𝑗 (𝑡) is the set of triangles/tetrahedra adjacent to 𝑡 .

𝜆, 𝜇 are the material parameters defined per triangle.

3.9 Implementation

FE Solver. We implemented our solver in C++ using the PolyFEM library [Schneider et al. 2019]

for the forward solve, the IPC Toolkit [Ferguson et al. 2020] for computing contact and friction

potentials, and Pardiso [Alappat et al. 2020; Bollhöfer et al. 2020, 2019] for solving linear systems.

Optimization. To minimize the objective function we use the L-BFGS implementation in [Wi-

eschollek 2016], with backtracking line search. If the line search fails to find a valid descent step

that decreases the energy, we reset the Hessian approximation to identify and take a gradient

descent step instead.

Meshing. Shape optimization might negatively affect the elements shape, and for large defor-
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mation introduce inverted elements. After every optimization iteration, we evaluate the element

quality using the scaled Jacobian quality measure [Knupp 2001], and we optimize the mesh if it is

below a threshold experimentally set to 10−3.

For 2D examples, we keep the mesh boundary fixed and we regenerate the interior using GMSH

[Geuzaine and Remacle 2009]. For 3D examples, we similarly fix the boundary and then use the

mesh optimization procedure of fTetWild [Hu et al. 2020b] to improve the quality of the interior

until its quality is above the threshold.

The reason for fixing the boundary is that our optimization objectives (Section 3.8.1) often depend

on quantities on the boundary: if the boundary is remeshed, we will need a bijective map between

the two boundaries. Meshing methods providing this map exist [Jiang et al. 2020], but their

integration in our framework, while trivial from a formulation point of view, is an engineering

challenge that we leave as future work.

Reproducibility. The reference implementation of our solver and applications will be released as

an open source project.

3.10 Results

We partition our results in three groups depending on the type of the dofs used in the objective

function: shape, initial conditions, or material. For each group we provide a set of examples of

static and dynamic scenes of increasing complexity. We run our experiments on a workstation

with a Threadripper Pro 3995WX with 64 cores and and 512 Gb of memory. For a selection of

problems, we validate our results with physical experiments using items fabricated in silicon

rubber (we use 1:1 SMOOTH-ON OOMOO 30 poured into a 3D printed PVA mold) or 3D printed

PLA plastic.
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Problem setup. Initial shape. Optimized shape.

Figure 3.3: The result of the shape optimization (blue surface) matches the target shape (wire-frame).

We additionally provide a video showing the intermediate optimization step for all the results in

the paper as part of our additional material.

Color Legend. We use a colorscale from blue to red to indicate von Mises stress, green arrows to

indicate Neumann boundary conditions, and black square to indicate nodes that have a Dirichlet

boundary condition. To reduce clutter, we use a uniform gray to indicate objects with a uniform

Dirichlet boundary condition on all nodes.

To avoid singularities in the optimization we add, to the objective function, a boundary smoothing

term (3.43) in all our shape optimization experiments, and a material regularization term (3.44) to

all our material optimization experiments.

3.10.1 Shape Optimization Without Contact

We start our analysis with shape optimization problems without contact or friction forces.

Static: Bridge. We fabricate a 2D solution to verify the correctness of our formulation and

implementation. Starting from the shape of a bridge (Figure 3.3) we run a forward linear elasticity

simulation with the two sides fixed and gravity forces. We now perturb the geometry of the rest

pose and solve a shape optimization problem to recover the original rest pose, i.e. we remove the

perturbation we introduced by minimizing the objective in (3.37).

We use the same model for a more challenging problem (Figure 3.4): we use the same Dirichlet
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Initial stress distribution.

Optimized stress distribution.

Figure 3.4: Result of shape optimization to minimize the average stress.

conditions and material model, replace the gravity forces by 3 Neumann conditions on the lower

beams, and minimize the average stress (3.36). To avoid trivial solutions we add a constant volume

constraint (Section 3.8.2).

Static: 3D Beam. Moving to 3D (Figure 3.5), we perform static optimization of maximum the

stress using Neo-Hookean materials on a beam standing on a fixed support at the center (all black

nodes have zero Dirichlet boundary conditions), and with two side loads applied as Neumann

boundary conditions. The maximum stress is reduced from 2, 788 to 1, 531.
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Initial stress distribution.

Optimized stress distribution.

Figure 3.5: Result of stress minimization on a beam standing on a platform, with two loads on its sides.

3.10.2 Shape Optimization Contact

Our framework supports contact and transient friction forces between objects without requiring

explicit definition of contact pairs.

Static: Interlocking. We borrow the experimental setup used in [Tozoni et al. 2021]: we optimize

Initial stress distribution. Optimized stress distribution.

Figure 3.6: Result of shape optimization to minimize the maximum stress.

104



the shape of two interlocking 2D parts (Figure 3.6) to minimize maximum the stress (3.36). For this

example we use a non-linear material. The bottom part is fixed and a force pointing downright is

applied to the top. Figure 3.6 shows how the shape changes to reduce the maximum stress from

1.624 to 1.003.

Initial stress distribution.

Optimized stress distribution.

Optimization result from [Tozoni
et al. 2021]

Figure 3.7: Shape optimization of a hook to reduce stress concentration (left). Fabricated results with
maximum load before failure (right).

Static: 2D Hook. To physically validate our shape optimization results we reproduce the exper-

iment in [Tozoni et al. 2021, Figure 21 ], where a hook is optimized to minimize the maximum

stress (3.36) when a load is applied to one of its ends (Figure 3.7). The grey block is fixed with

zero Dirichlet conditions on all nodes. We physically validate that the optimized shape is able to

withstand a load of over 3× the unoptimized shape before breaking (Figure 3.7). The hook has
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Initial configuration. Optimized configuration.

Figure 3.8: Result of shape optimization of a hanger to reduce stress concentration.

been fabricated using an Ultimaker 3 3D printer, using black PLA plastic. Despite the different

contact model, the result is quite similar to the one presented in [Tozoni et al. 2021]: our approach

has the advantage of not requiring manual specification of the contact surfaces.

Static: 3D Hanger. We also reproduce the experiment [Tozoni et al. 2021, Figure 29]: a coat

hanger is composed of two cylinders and a hanger keeping the together. The shape of the hanger

is optimized to minimize the maximum internal stress (3.36) when two loads are applied on its

arms (Figure 3.8). The maximal stress is reduced from 56.451 to 17.888.

Transient: Bouncing ball. As a demonstration of shape optimization in a transient setting, we

run a forward non-linear simulation of a ball bouncing on a plane and use its trajectory as the

optimization goal (3.38). We then deform the initial shape into an ellipse and try to recover the

original shape (Figure 3.9).

Transient: Sliding Ball. We optimize the shape of a ball sliding down a ramp to minimize the

internal stress (3.36). Perhaps unsurprisingly, the ball gets flattened on the side it contacts with

the ramp as this leads to a major reduction of max stress, from 16, 274 to 5, 432.
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Initial shape. Optimized shape.

Iteration 20. Iteration 50. Iteration 70.

Figure 3.9: The result of the shape optimization (blue surface) matches the desired trajectory (wire-frame).

Problem setup. Initial stress distribution. Optimized stress distribution.

Figure 3.10: Result of shape optimization to reduce stress.

3.10.3 Initial Conditions

Our formulation supports the optimization of objectives depending on the initial conditions. We

show two examples, the first involving an object sliding on a ramp with a complex geometry, and

the second simulating a game of pool, using bunnies instead of spheres.

Transient: Puzzle Piece. We synthesise a trajectory using a forward simulation, and we then

perturb the initial conditions and try to reconstruct them minimizing (3.37), with an additional

integration over time (Figure 3.11). The puzzle piece uses a Neo-Hookean material.
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Initial trajectory. Iteration 3.

Iteration 5 . Optimized result

Figure 3.11: Optimizing the initial velocity of a bouncing puzzle. Target is shown as a black outline while
the trajectory being optimized is blue.

Transient: Bunny Pool. We use our solver to optimize the throw (initial position and velocity) of

a bunny on a pool table to hit and displace a second bunny into the corner (Figure 3.12), minimizing

(3.38). This example involves complex contact between the bunnies and the pool table, and also

friction forces slowing down the sliding after contact.

3.10.4 Material Optimization

Finally, we look at material optimization problems, where our differentiable simulator is used to

estimate the material properties of an object from observations on its displacement.
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𝑡 = 0

𝑡 = 0.6

𝑡 = 1.4

𝑡 = 2.15

Figure 3.12: The initial conditions of the green bunny (left) are optimized to push the blue bunny in the
corner of the pool table (right).
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Initial displacement. Optimized displacement.

Optimized 𝐸 pattern. Optimized 𝜈 pattern.

Figure 3.13: Optimized material parameters to obtain a displacement (blue surface) in 𝑦-direction similar
to a sine function for a linear material model (wire-frame).

Static: Sine. We optimize the material of a bar to match the shape of a sine function (wire-frame)

when Dirichlet boundary conditions are applied at its ends (3.37). The rest shape of this bar is a

rectangle [−4, 4] × [−0.3, 0.3], the left and right surfaces are fixed by Dirichlet boundary condition

of 𝑢𝑦 = 0.7 sin(𝑥 + 𝑢𝑥 ) and 𝑢𝑥 = −𝑠𝑖𝑔𝑛(𝑥), and no body force is applied. Figure 3.13 shows that

deformed bar is aligned with a sine function.

Static: Bridge. We assign material parameters 𝜆 = 160, 𝜇 = 80 to a bridge shape and run a linear

forward simulation to obtain the target displacement 𝑢★ (Figure 3.14 in gray), using the same

set of boundary conditions as Figure 3.3. We initialize the optimization using uniform material

𝜆 = 100, 𝜇 = 50 and minimize (3.37).

Static: Cube. We set up a physical experiment with a silicon rubber cube compressed by a vise.

The deformation is acquired using an HP 3D scanner, and a set of marker points is manually

extracted from the scan. We minimize (3.37) to find the material parameters which produce

the observed displacements. We found that the material parameter that lead to smaller error is
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Problem setup. Initial displacement. Optimized displacement.

Optimized 𝐸 pattern. Optimized 𝜈 pattern.

Figure 3.14: Optimization of the materials of a bridge (blue surface) to match a forward simulation
(wire-frame).

Initial shape. Initial optimized.

Figure 3.15: Material optimization (blue) to match real data (orange).

𝜈 = 0.4817 (the Young’s modulus does not affect its deformation in this setting) and the L2 error

in markers position is 1.48353 × 10−5 𝑚2.

Static: Micro-Structure. We repeat the same experiments with the complex geometry of a micro-

structure tile from [Panetta et al. 2017c]. This is a challenging example, as the micro-structure

beams come in contact after compression. Our solver can find material properties 𝐸 = 2.27×105Pa,

𝜈 = 0.348 with a L2 error on the markers of 7.9 × 10−5 𝑚2.
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Initial. Optimized. Physical Experiment Setup.

Figure 3.16: We acquire the deformation of a silicon micro-structure using a 3D scanner, and use the
observed displacement, created by a controlled load, to reconstruct its material parameters. The simulated
mesh (transparent blue) matches well the 3d scan data (orange). The optimization is initialized with
𝐸 = 1𝑒6Pa, 𝜈 = 0.3 and converges to 𝐸 = 2.27 × 105Pa, 𝜈 = 0.348.

Initial displacement. Optimized displacement.

Figure 3.17: Non-linear transient simulation of a kangaroo (blue surface) bouncing on a plane to match a
target shape (wire-frame).

Transient: Kangaroo. As an example of reconstruction of material parameters from a transient

simulation, we run a forward simulation to obtain a transient non-linear target displacement.

Then we minimize (3.37) to reconstruct the material parameters (Figure 3.17). The initial material

parameters are 𝐸 = 3 × 106Pa, 𝜈 = 0.5, and the target material parameters are 𝐸 = 107Pa, 𝜈 = 0.3.

Transient: Sliding Puck. A similar experiment is repeated for the friction coefficient using a

more challenging object geometry (Figure 3.18) of a puck sliding over a curved ramp. The initial

friction coefficient is 𝜇 = 0.5, and the target friction coefficient is 𝜇 = 0.2.
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Initial guess. Optimized result.

Figure 3.18: Optimization of the friction (blue surface) to match the target shape (wire-frame).

Initial 𝐸. Optimized 𝐸.

Initial 𝜈 . Optimized 𝜈 .

Figure 3.19: Material optimization to increase the bouncing height.

Transient: Bouncing Ball. We show that the height of the bounce of a ball can be optimized by

changing the material parameters (Figure 3.19). The optimization was done in 𝜆 and 𝜇, although

we show the results using 𝐸 and 𝜈 to give intuition. Initial material parameters for the ball and

plank were 𝐸 = 105Pa, 𝜈 = 0.48 and 𝐸 = 109Pa 𝜈 = 0.48, respectively and the elasticity model

used was NeoHookean. Note that we added a smoothing term to the optimization to increase

smoothness in the material parameters.

Transient: Physical Experiment Bouncing Ball. Finally, we show that we can optimize for

the material parameters, friction coefficient, and damping parameters of a silicone rubber ball
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Initial displacement.

Optimized displacement.
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optimized trajectory
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Figure 3.20: Material optimization (blue) to match experimental data (orange).

bouncing on an incline, using trajectory data from a physical experiment. The real world dynamics

of the ball are captured using a high speed camera and used to formulate a functional based on

(3.38), which penalizes differences between the observed and simulated barycenter of the ball.

The material model used is NeoHookean and we match initial conditions by optimizing for them

using the observed barycenters of the ball before it hits the ground.
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3.11 Concluding Remarks

We introduced a generic, robust, and accurate framework for PDE-constrained optimization

problems involving elastic deformations of multiple objects with contact and friction forces. Our

framework supports customizable objective functions and allows for optimization of functionals

involving the geometry of the objects involved, material parameters, contact/friction parameters,

and boundary/initial conditions. The formulation applies to both 2D and 3D problems.

We believe the benefits of our analytic derivation of the adjoint system (efficiency, generality,

guarantee of converge under refinement) outweighs its downsides (complexity of derivation,

difficulty in implementation, and requirement of an explicit FE mesh). We plan to extend our

approach to a wider set of PDE-constrained problem and to further optimize it for common

use cases in material design and robotics. In particular we would like to explore the following

directions:

1. Add support for periodic boundary conditions, which are required for the design of mi-

crostructure families [Tozoni et al. 2020].

2. Add support for rigid and articulated objects (i.e. allow the material stiffness to be infinite).

We plan to incorporate the IPC formulation introduced in [Ferguson et al. 2021] to improve

performance in design problems involving rigid objects.

3. Many robotics problems involve manipulation of plastic objects or interaction with fluids:

adding support for additional physical models will widen the applicability of our simulator.

4. We designed our system to provide accurate modeling of elastic, contact, and friction forces,

as the majority of PDE-constrained applications requires accurate simulations faithfully

reproducing the behaviour observable in the real works. However, there are applications
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where this is not necessary, and in these cases it would be possible to either use simpler elastic

models, or reduce the accuracy of the collision/friction forces by using proxy geometry.

This is commonly done in graphics settings, and it would be interesting to add this option

to our system to accelerate its performance.
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4 | A Low-Parametric Rhombic

Microstructure Family for Irregular

Lattices

This chapter, which is based on a paper published in SIGGRAPH 2020 [Tozoni et al. 2020], in-

vestigates a two-scale topology optimization approach where a curved shape can first be split

into close to rhombic shapes and then filled with microstructures (one in each cell) according to a

smooth material to geometry map.

This work was done in collaboration with Jérémie Dumas, Zhongshi Jiang, Julian Panetta, Daniele

Panozzo, and Denis Zorin. My role in this paper was designing the algorithm for, and computing

the smooth map of microstructures from material to geometric parameters. In addition, I also

participated in designing and running experiments for specific shapes, analyzing results and

the accuracy of our method, fabricating our examples using laser cutting, and running physical

experiments.

New fabrication technologies have significantly decreased the cost of fabrication of shapes with

highly complex geometric structure. One important application of complex fine-scale geometric

structures is to create variable effective elastic material properties in shapes manufactured from
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a single material. Modification of material properties has a variety of uses, from aerospace

applications to soft robotics and prosthetic devices. Due to its scalability and effectiveness, an

increasingly common approach to creating spatially varying materials is to partition a shape

into cells and use a parametric family of small-scale geometric structures with known effective

properties to fill the cells.

We propose a new approach to solving this problem for extruded, planar microstructures. Differ-

ently from existing methods for two-scale optimization based on regular grids with square periodic

cells, which cannot conform to an arbitrary boundary, we introduce cell decompositions consisting

of (nearly) rhombic cells. These meshes have far greater flexibility than those with square cells

in terms of approximating arbitrary shapes, and, at the same time, have a number of properties

simplifying small-scale structure construction. Our main contributions include a new family of 2D

cell geometry structures, explicitly parameterized by their effective Young’s moduli 𝐸, Poisson’s

ratios 𝜈 , and rhombic angle 𝛼 with the geometry parameters expressed directly as smooth spline

functions of 𝐸, 𝜈 , and 𝛼 . This family leads to smooth transitions between the tiles and can handle

a broad range of rhombic cell shapes. We introduce a complete material design pipeline based

on this microstructure family, composed of an algorithm to generate rhombic tessellation from

quadrilateral meshes and an algorithm to synthesize the microstructure geometry. We fabricated

a number of models and experimentally demonstrated how our method, in combination with

material optimization, can be used to achieve the desired deformation behavior.

4.1 Introduction

Advances in fabrication of highly complex geometry using additive manufacturing and other

technologies resulted in new opportunities for shape design. In particular, small-scale, topologically

and geometrically complex structures make it possible to achieve variable effective material

properties using a single material for fabrication, including material properties not easily obtained
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Figure 4.1: The cells of a quadrilateral mesh are optimized to become quasi-rhombic; then material
properties (variable Young’s moduli and Poisson’s ratio) are assigned to the cells. The assigned material
properties are used to evaluate the geometric parameters of a tileable microstructure, encoded with a
smooth spline map.

by other means (such as negative Poisson’s ratio) or material properties needed for precise control

of deformation behavior of a shape. Realizing the potential of microstructures requires automatic

generation and high-level control of the geometry, absent from commonly used geometricmodeling

tools.

A variety of approaches were developed for generating small-scale structures. Global methods, like

topology optimization, are flexible but require very expensive computations to obtain high-quality

results for fine-scale structures (cf. [Aage et al. 2017]). Other approaches partition the problem

into different scales, using a variety of methods to generate a small-scale structure locally from a

coarse-scale assignment of spatially-varying target properties. In this paper we present a method

for design of small-scale structure families supporting an approach of the second type; specifically,

• Partition an input shape into quadrilateral cells, possibly with irregular connectivity; each

cell is assigned target elastic properties;

• Assign to each cell a geometric microstructure, chosen from a family of such structures

directly parameterized by their effective elastic properties and cell shapes.

The main goals for the choice of the microstructure family include: (1) cover a broad range

of material properties, (2) be simple enough for fabrication at a small scale (i.e. avoiding thin
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features and small holes), (3) handle a range of cell shapes, (4) be easily tileable without significant

modifications, (5) depend smoothly on the target effective elasticity tensor to avoid discontinuities

in transitioning between varying material properties, and (6) be efficient to compute to enable

tiling of large lattices.

The question of designing such microstructures is extensively studied in the literature, although

advances in design of practical families covering large ranges of material properties are more

recent. Existing techniques fall somewhat short of meeting the requirements above. First, these

methods are exclusively based on periodic cell tilings with squares, regular triangles, or hexagons:

only a single cell shape is used. This restricts the shapes that can be tiled to those constructed of

this single cell type. Other shapes require either cutting cells, or deforming cells; both changes to

the cell shape lead to a significant deviation from the intended deformation behavior (Section 4.8).

Most closely related previous work constructs large libraries of cell geometries [Panetta et al.

2015a; Schumacher et al. 2015], with a separate shape or topology optimization performed for a

dense set of values of material properties (Young’s modulus and Poisson’s ratio combinations for

isotropic materials), and a specific base material. While this is generally adequate, if variable cell

shapes are used, the size of the needed library will become prohibitively large (and still be limited

to a discrete set of shapes). Furthermore, a different set of microstructures needs to be computed

if some aspects of the properties of the base material change. These approaches do not provide

the guarantee of smooth dependence of the resulting geometry on the material properties, and, as

a consequence, a large number of samples are needed and interpolation between samples cannot

be used.

In this paper, we address these problems for extruded, planar microstructures, aiming to meet the

requirements listed above. The main aspects of our approach include the following.

• We choose to use rhombic cells, among different classes of tileable cells, since they have the
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Figure 4.2: An array of microstructures with Young’s modulus 𝐸 varying from 0.005 to 0.1 and 𝜈 varying
from -0.15 to 0.5. Top: obtained by pointwise inverse homogenization of [Panetta et al. 2017a]; Bottom: our
family.

flexibility to approximate arbitrary boundaries and can be connected in arbitrary orientations

while being sufficiently simple to define microstructures for all members of the family in a

compact way.

• We develop a parametric family of structures (Figure 4.2) completely described by: (1) Eight

geometric parameters, defined as smooth spline functions P(𝐸, 𝜈 ;𝛼) of material properties

(Young’s modulus 𝐸 and Poisson’s ratio 𝜈 in the isotropic case) and the cell shape parameter

(rhombus angle 𝛼). (2) The domain of this parameterization in (𝐸, 𝜈) space is defined by three

simple linear constraints ℓ (𝛼) dependent on the angle. This enables efficient optimization

of material properties.

• Our family is tileable, i.e., the structures for adjacent cells connect with little or no modifi-

cations. Our tiles have matching topology and positions in the boundary. In addition, due

to the smoothness of our mapping functions, if the transition of materials is smooth, the

change in the connection region will also be smooth and almost no difference exists in the
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shape between neighboring cells.

• We demonstrate that the set of geometries is universal, i.e., can be used for any base material

(although the ranges of realizable material properties do change).

• We present an algorithm for optimizing a quadrangulation of a planar domain to minimize

the deviation of quads from the rhombic shape and demonstrate that this approach yields

nearly-rhombic cells so that our microstructure family can be used.

We will make the data for computing microstructure geometric parameters, and constructing

microstructure geometry from these parameters, publicly available.

4.2 Related Work

We build on the foundation of previous work on construction of microstructure families and mesh

quality optimization.

Periodic homogenization. Homogenization is a central tool in our construction. We use an

extension of the FEM-based formulation used in [Panetta et al. 2015a, 2017a], which, in turn, goes

back to [Allaire 2002a], and is widely used in the literature. [Schumacher et al. 2018a] presents an

efficient homogenization approach tailored to rod structures. In these papers, regular lattices are

used. We instead perform homogenization on a range of rhombic cell shapes, by transforming the

problem to a domain where the cell is square, and replacing the target tensor with a transformed

one. Transformations of the homogenized material properties when the base material is changed

are considered in [Cherkaev et al. 1992].

Microstructure design and optimization. Many papers considered different aspects of mi-

crostructure design, see e.g., books [Cioranescu and Donato 1999; Milton 2002b; Torquato 2002a;

Allaire 2002a; Cherkaev 2000], and references in [Schumacher et al. 2015] and [Panetta et al. 2015a],
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which represent topology and shape optimization approaches to microstructure optimization

respectively. We refer to these methods as pointwise inverse homogenization, as they construct

microstructures separately for each combination of effective material parameters.

Other examples of topology-optimization based work can be found in [Bendsøe 1989; Bendsøe

and Sigmund 2003; Nakasone and Silva 2010; Chen et al. 2018]. Initially, mostly the problem

of identifying extremal microstructures are considered (i.e., microstructures with properties at

the boundary of the ranges that can be achieved). Recent works, e.g., [Schumacher et al. 2015;

Panetta et al. 2015a; Zhu et al. 2017; Ostanin et al. 2018] consider the question of constructing

families spanning a broad range of elastic properties. In particular, [Ostanin et al. 2018] shows

that near-optimal ranges of isotropic material behaviors can be achieved in 2D with hexagonal

and triangular cells and a small number of microstructure parameters. We discuss the differences

from this work in Section 4.4. [Milton et al. 2017] provides a characterization of achievable elastic

tensors in terms of energies in 2D and 3D.

Most of the works designing microstructure families use an ad hoc approach to connecting

structures corresponding to adjacent cells. [Garner et al. 2019] takes a more systematic approach

for structures obtained using topology optimization by adding additional terms to the functional.

A recent concurrent work [Martínez et al. 2019] introduces a metric that can be used to interpolate

between a variety of microstructures on 2D regular grids, allowing to create smooth variation

of material properties similar to our construction (but limited to regular lattices). [Konaković-

Luković et al. 2018] uses a special type of 2D triangular auxetic structure to effect conformal surface

deformations. This method requires domain meshing with triangles close to regular. Similarly, a

recent paper [Malomo et al. 2018] uses 2D spiral microstructures for controlling deformation of

sheets into a target shape. Varying geometric properties of spirals allows for a restricted control

over material properties.
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As an alternative to periodic microstructures, [Martínez et al. 2016; Martínez et al. 2017] con-

struct randomized printable structures with control over Young’s moduli both for isotropic and

anisotropic target properties, but cannot independently control the Poisson’s ratio. [Ion et al. 2016,

2019] describe a simple set of small-scale two-dimensional structures that can be assembled into

mechanisms, and a computational design tool creating this type of mechanisms. While a range of

properties can be obtained by changing the basic structure parameters their properties are difficult

to control precisely.

A number of works apply the two-scale approach in a different way in 2D, using a simple rectan-

gular cell structure and obtaining a directional field and scalar fields for geometric parameters

defined on a regular grid. A field-aligned coarse mesh is extracted from the directional field and

then filled with microstructures with parameters determined by the scalar fields [Groen et al. 2019;

Groen and Sigmund 2017; Gil-Ureta et al. 2019]. Compared to these works, we do not require the

mesh cell orientations to be physically meaningful: in our case the effective material distribution

and meshing are independent.

Global topology optimization. In [Wu et al. 2016; Aage et al. 2017; Liu et al. 2018], topology

optimization was scaled up to high-resolution uniform and adaptive 3D grids. [Wu et al. 2018]

performs high-resolution topology optimization with additional constraints to create an evenly

distributed porous small-scale structure minimizing compliance for specific loading scenarios. The

two-scale methods based on microstructures can always be combined with topology optimization

to improve efficiency or resolution achievable in a given time.

Fabrication. [Lin et al. 2004b,a; Hollister 2005; Kang 2010] have demonstrated fabrication of

optimized microstructures in the context of bone scaffold and fusion cage design. [Greaves et al.

2011; Schwerdtfeger et al. 2011; Bückmann et al. 2012; Andreassen et al. 2014] have shown the

possibility of manufacturing auxetic materials. The idea of manufacturing objects with spatially
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varying properties using tileable structures also appears in [Hiller and Lipson 2009]. [Bickel

et al. 2010] designs and fabricates objects satisfying an input deformation by optimizing for the

best combination of stacked layers of their multi-material 3D printer’s base materials. [Skouras

et al. 2013b] applies discrete material optimization to achieve desired deformations of complex

characters with actuation, fabricating the results with multi-material printing.

Fabrication constraints. [Qian 2016; Gaynor and Guest 2016; Langelaar 2016] have made recent

progress in incorporating undercut/overhang angle constraints in the topology optimization frame-

work. However, these method enforce the constraints only approximately, requiring parameter

tuning, and add nonlinearities to the problem that hinder convergence [Gaynor and Guest 2016].

[Panetta et al. 2015a] enforces approximate printability via constraints on the skeleton defining

the structure. In our planar case, there is no need to impose fabrication constraints other than

requiring that the geometry should stay connected, and the minimal feature size is large enough

for the chosen fabrication process.

Mesh optimization. The optimization of the element shape of discrete meshes has been studied

in many disciplines. In the context of finite element simulations, the shape is optimized to reduce

the distortion introduced by the geometric map [Livesu et al. 2015; Brewer et al. 2003]. Similarly,

for texture mapping and quadrilateral meshing applications the distortion of a map from a surface

to a plane is minimized by either evolving a Tutte’s parameterization [Hormann and Greiner 2000;

Sander et al. 2001; Sorkine et al. 2002; Degener et al. 2003; Schüller et al. 2013; Aigerman et al.

2014; Poranne and Lipman 2014; Smith and Schaefer 2015; Fu et al. 2015; Kovalsky et al. 2016;

Shtengel et al. 2017; Zhu et al. 2017] or recovering from a possibly inverted initial guess [Lipman

2012; Aigerman and Lipman 2013; Kovalsky et al. 2015; Fu and Liu 2016]. These maps are also

commonly used for mesh deformation applications [Sorkine and Alexa 2007; Bouaziz et al. 2012],

and special constraints are often used in architectural geometry to generate meshes with planar

faces [Bouaziz et al. 2014; Deuss et al. 2015; Poranne et al. 2013; Jiang et al. 2015; Tang et al. 2014].

125



We introduce an algorithm to optimize a quadrilateral mesh to have rhombic elements, a re-

quirement that, to the best of our knowledge, has never been studied before. Our algorithm

follows the paradigm introduced in ShapeUp [Bouaziz et al. 2012], alternating the projection to

the space of rhombic shapes and a continuous optimization, and it relies on the solver introduced

in [Rabinovich et al. 2017b] to speed up convergence.

4.3 Problem formulation and solution overview

Problem. Our goal is to approximate a distribution of (potentially variable) material properties

given by a spatially variable symmetric elasticity 4-tensor s𝐶 (x) on a two-dimensional polygonal

domain Ω, by partitioning it into constant-material cells, and assigning a microstructure to each

cell. We assume that a single base material with known elastic properties given by the tensor𝐶base

is used for all small-scale geometry.

The geometry of each cell𝑄 is chosen so that its homogenized or effective elasticity tensor matches

that of the assigned material s𝐶 (𝑄).

Informally, the effective elasticity tensor can be understood as follows. If the cell 𝑄 were repeated

periodically, a block of material consisting of sufficiently large number of such cells would behave

as if it were made of a homogeneous material with elasticity tensor s𝐶 (𝑄). In this work, we focus

on isotropic target material distributions, for which the elasticity tensor is defined by a pair of

parameters𝑀 = (𝐸, 𝜈), Young’s modulus and Poisson’s ratio.

We focus on isotropic materials since the effective orthotropic elasticity tensors that rhombic cells

can produce have principal axes aligned with the diagonals of the rhombi; while for some purposes

this broader space can still be used, the space of possible materials becomes mesh-dependent,

complicating and restricting material optimization. In contrast, considering isotropic materials

makes the result much more mesh-independent.
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As mentioned in Section 4.1, our goal is to design the geometry in individual cells to have the

following properties: (1) cover a broad range of material properties, (2) be simple enough for

fabrication at small scale (i.e. avoiding thin features and small holes), (3) handle a range of

cell shapes, (4) be easily tilable without significant modifications, (5) depend smoothly on the

target effective elasticity tensor to avoid discontinuities in transitioning between varying material

properties, and (6) be efficient to compute to enable tiling of large lattices.
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Figure 4.3: Parameters defining our elementary cell geometry: 4 displacement parameters (two nodes 3,4
have only one free displacement and the node 1 is fixed, due to symmetry), and 4 radii, one per node. The
displacements are specified in barycentric coordinates with respect to the triangle OAB.

Notation. We use rhombic cells 𝑅 and a specific parametric cell geometry structure, which respects

the two reflection symmetries of the rhombus. The shape of the rhombic cell is described by a

single parameter, 𝛼 ⩽ 𝜋/2, the smaller angle of the rhombus.

The geometry of each cell is defined by a vector of parameters p ∈ R𝑛, 𝑛 = 8, (Figure 4.3); the

geometry is generated from parameter values using a 2D version of the method of [Panetta et al.

2017a], described in Appendix 4.10.1. The reasons for this choice are summarized in Section 4.4.

We assume that for each parameter a range [𝑝𝑚𝑖𝑛𝑖 , 𝑝𝑚𝑎𝑥𝑖 ] is provided. The 𝑛-dimensional box of

admissible parameter values is denoted 𝐵𝑝 . In particular, for any choice of parameters, the resulting

homogenized elasticity tensor is orthotropic, and completely determined by four components, e.g.,

Young’s moduli 𝐸1, 𝐸2 along two directions, shear modulus 𝐺 , and one of two Poisson’s ratios 𝜈12.

The function 𝐻 (p;𝛼) : 𝐵𝑝 → R4, the homogenization function, computes the effective elasticity

tensor components of a cell with angle 𝛼 from its geometry parameters. We describe a way to

compute this function on arbitrary parallelogram cells, including rhombic, in Section 4.5. We use
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𝐻𝐸 (p) and 𝐻𝜈 (p) to denote the Young’s modulus and Poisson’s ratio corresponding to 𝐻 (p) when

it is isotropic.

Solution overview. Our approach is composed of two main components:

• We construct a parametric family of cell structures solving the inverse homogenization

problem for a range 𝐷 (𝛼) ⊂ 𝐻 (𝐵𝑝 ;𝛼) of material properties (𝐸, 𝜈) ∈ 𝐷 (𝛼), where 𝐸 is the

Young’s modulus and 𝜈 is the Poisson’s ratio, for a range of cell angles 𝛼 , [𝛼𝑚𝑖𝑛, 𝜋/2]. This

family is described by the material-to-geometry map P(𝐸, 𝜈 ;𝛼) : 𝐷 (𝛼) → 𝐵𝑝 .

• We optimize a quadrangulation to obtain quasi-rhombic cells, so that the map P(𝐸, 𝜈, 𝛼)

can be used to fill in the small-scale geometry.

The difficulty of the problem of inverse homogenization is due to several factors. The homog-

enization map 𝐻 (p) is straightforward, but expensive, to compute, because it requires several

finite-element solves as a part of its computation. More fundamentally, for a fixed 𝛼 , we need to

invert the map 𝐻 : 𝐵𝑝 ⊂ R𝑛 → R4 on a two-dimensional subspace Iso ⊂ R4 of isotropic materials.

This is challenging, since the inverse is far from unique. Last but not least, the map depends on

the base material properties 𝐶base, in addition to the homogenized parameters and cell geometry.

We introduce a novel, smooth, closed form material-to-geometry map P(𝐸, 𝜈 ;𝛼,𝐶base) covering

a broad range of material properties and rhombus angles 𝛼 , that can be used for an arbitrary

isotropic base material with tensor 𝐶base. This map is uniquely determined by selecting a suitable

four-dimensional subspace of the geometric parameter space R𝑛 , and can be represented in a very

compact form by a set of 3D spline.

In the next sections, we discuss our choice of cell shape (Section 4.4), review homogenization

(Section 4.5) and show how it can be extended to rhombic cells. Then we explain how we solve the

inverse homogenization problem (Section 4.6), and how to compute a tiling with quasi-rhombic
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cells (Section 4.7).

4.4 Choice of cell shape and structure

The choice of cell structure (i.e., topology of small-scale geometry, and parameters defining the

geometry) is not unique: many choices may have similar behavior. We outline the heuristics we

have used to select our structure for quadrilateral cells and briefly compare to alternatives.

Our choice of structure follows the general procedure outlined in [Panetta et al. 2015a], applied

to planar square cells. On the one hand, we want to minimize the number of parameters and

topological complexity of the structure, as complex cells are difficult or impossible to manufacture.

On the other hand, we want to maximize the coverage that can be achieved by the structure, that is,

the range of material properties (𝐸, 𝜈). To obtain a rough prediction of coverage, we run a coarse

sampling of geometric parameter space, evaluating the material parameters for each sample. In

these sweeps, we enforce square symmetry (Figure 4.5), so that the resulting elastic tensor has

only three free parameters (𝐸, 𝜈,𝐺), and we look at the coverage we get in the projection to the

(𝐸, 𝜈) plane as an indicator of what one can expect for inverse homogenization.

Among simplest topology patterns, the specific one we have chosen has the largest area covered.

Expanding this area requires increasingly complex topology which negatively affects manufac-

turability.

Figure 4.4: We consider structures consisting of edges of the graph depicted on the left, with degrees of
freedom consisting of radii at nodes and node displacements. Right: several examples of structures with
few edges/simple topology.
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Figure 4.5: Coverage in (𝐸, 𝜈) space for three cell structures, with smaller and larger coverage.

Choice of cell shape. As we would like to partition arbitrary shapes into cells, using square

cells is not possible: in general, we cannot conform to an arbitrary boundary without introducing

cells of other shapes. At the same time, the cells need to be close to periodically tileable, i.e., if

we use quadrilateral cells, close to parallelograms. Parallelograms have only central symmetry,

which does not restrict the possible homogenized (averaged) elasticity tensors much; on the

other hand, rhombic cells have two reflectional symmetries with respect to diagonals, and, as a

result (Section 4.6), its elasticity tensor is orthotropic, as long as the small-scale geometry satisfies

the same constraint. This considerably simplifies the construction of the material-to-geometry

properties map, by decreasing the dimension of the space of possible materials.

As an alternative, regular triangular and hexagonal cells as shown in [Ostanin et al. 2018] can

span a large range of material properties, and have an important advantage of being isotropic

by construction, i.e., any geometry can be used on a cell as long as it has the symmetries of

the cell (regular triangle or regular hexagon). While this significantly simplifies the problem of

constructing geometries with target properties for regular cells, using distorted triangular or

hexagonal cells as we need to tile an arbitrary shape, nullifies this advantage.

For triangular cells, we can enforce an additional symmetry by requiring the cells to be isosceles;

in a periodic tiling, this is equivalent to using rhombic cells. At the same time, triangular cells

are more restrictive in terms of choosing structure topology, if it needs to have the symmetry

of the regular triangle. Finally, and perhaps most importantly, due to non-existence of regular

tetrahedral tilings in 3D, methods based on quadrilateral tilings generalize better to 3D. For these,
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reasons, we choose rhombic cells.

To define the actual microstructure geometry, we use an implicit function parametrized by an

edge skeleton vertices and radii, using the method of [Panetta et al. 2017a], This method, on the

one hand, allows for explicit control of topology through the skeleton connectivity, on the other

hand, allows for merges of parts of the structure when these run into each other due to parameter

choices, which is critical for robustness of the optimization process.

4.5 Homogenization and shape optimization

We briefly review the standard homogenized tensor computation on square cells and show how it

extends to rhombic cells. We also discuss how the inverse homogenization problem can be solved

using optimization.

4.5.1 Homogenization and shape optimization on sqare cells

Our formulation follows [Panetta et al. 2015a]. Suppose that a planar domain Ω is tiled by identical

square cells 𝑄 , each with the same microstructure 𝜔 . At a large scale, we can consider averaged

deformations: in the limit of infinitesimal cells, these deformations can be viewed as linear on each

cell, and the actual deformation as a sum of the averaged one and a local fluctuation on the cell.

The averaged deformation is the elastic deformation when the solid Ω is viewed as a completely

filled volume with variable material properties defined by cell small-scale geometry, in the limit of

zero cell size. The averaged deformation su satisfies the macroscopic elasticity equation

−∇ · [s𝐶 : 𝜀 (su)] = sf in Ω, (4.1)

where the elasticity tensor s𝐶 is the effective elasticity 4-tensor with entries s𝐶𝑖 𝑗𝑘𝑙 and the 𝜀 (u) B
1
2 (∇u + (∇u)

𝑇 ) is the linearized Cauchy strain tensor of the averaged deformation. The colon
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notation is used for contraction over the last two indices: 𝐴 : 𝐵 = 𝐴𝑖 𝑗𝑘𝑙𝐵𝑘𝑙 , in the Einstein

summation notation.

ε
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Yω

Figure 4.6: A tiling of a domain Ω with base cell 𝑌 having geometry 𝜔 [Panetta et al. 2015a].

On a single cell, in the limit of zero cell size in a periodic tiling, we can view elastic deformations

as having a constant averaged strain 𝜀 (su) and a periodic “microscopic fluctuation” component

w, having zero average strain by periodicity. We consider fluctuations w for three constant

average strains forming a basis for all possible constant strains 𝑒11 = e1 ⊗ e1, 𝑒22 = e2 ⊗ e2, and

𝑒12 = e1 ⊗ e2 + e2 ⊗ e1. Then the expressions for the components of s𝐶 , are given by [Panetta et al.

2017a]:

s𝐶𝑖 𝑗𝑘𝑙 =
1
|𝑄 |

∫
𝜔

𝐶base
𝑖 𝑗𝑝𝑞 [𝜀 (w𝑘𝑙 ) + 𝑒𝑘𝑙 ]𝑝𝑞 dx. (4.2)

To obtain the microscopic fluctuation term, the force balance equation in the cell 𝑄 is solved for

each of the three basis strains:

−∇ ·
(
𝐶base : [𝜀 (w𝑘𝑙 ) + 𝑒𝑘𝑙 ]

)
= 0 in 𝜔, (4.3a)

n̂ ·
(
𝐶base : [𝜀 (w𝑘𝑙 ) + 𝑒𝑘𝑙 ]

)
= 0 on 𝜕𝜔 \ 𝜕𝑄, (4.3b)

w𝑘𝑙 (x) 𝑄-periodic, (4.3c)∫
𝜔

w𝑘𝑙 (x) dx = 0. (4.3d)

Inverse homogenization and shape derivatives. The conceptually straightforward, but tech-

nically difficult, way to solve the inverse homogenization problem for a given target tensor s𝐶∗
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is by shape optimization, i.e. by varying the geometry 𝜔 using shape parameters p as variables

to minimize a functional. In the case of inverse homogenization, the functional penalizes the

difference of the homogenized elasticity tensor and the target s𝐶∗:

𝐽 (p) = ∥ s𝐶 (p) − s𝐶∗∥2 +𝑤𝐸𝑟𝑒𝑔 (p), (4.4)

with the norm taken to be e.g., the Frobenius norm. A combination of regularizing terms can be

used as 𝐸𝑟𝑒𝑔, the most common being the volume of the structure defined by p and the proximity

to the initial solution [Panetta et al. 2015a, 2017a].

Unfortunately, due to non-uniqueness of the solution, resulting geometry parameters typically

do not depend smoothly on the input material properties which has a number of negative conse-

quences. We compare direct pointwise optimization to our approach in Section 4.8.

To minimize the functional (4.4) efficiently, we need derivatives of 𝐽 (p) with respect to the

geometry parameters p. Note that this requires differentiating s𝐶 (p); the computation of s𝐶

requires solving elasticity PDEs on a domain depending on p. This type of derivatives are called

shape derivatives; these are computed by solving an adjoint PDE, which in our case is identical

to elasticity, but with redefined volume forces. The details of the computation can be found in

[Panetta et al. 2017a].

Discretization. To solve the PDEs (4.3), as well as similar equations needed for shape derivative

computation, we use a standard FEM discretization. The domain is remeshed at each iteration

using marching squares to extract the boundary and Triangle [Shewchuk 1996b] to mesh the

domain.

We discretize the cell problems with quadratic triangle elements, which we found essential for ac-

curate stress and homogenized tensor evaluation. We use straight-edged elements (subparametric
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FEM) for representing the geometry to simplify meshing and the shape derivative formulas (edge

nodes are placed at the edge midpoints).

In our experiments, running 2D homogenization usually took under 1s for meshes with an order

of 4000 vertices. The mesh resolution (and hence the number of vertices) is determined by the

maximal triangle area constraint (flag -a in Triangle) and the marching squares grid size (used to

compute the boundary polygon), which we chose to be 5 × 10−4 and 256 respectively for most of

our experiments. Figure 4.7 shows an example of the resolution we used.

Figure 4.7: Left: An example of the cell geometry discretization. Right: fluctuation strain norm obtained
from (4.3) for the constant strain 𝑒11.

4.5.2 Deformed structure homogenization

Computing the homogenization map 𝐻 (p) is the essential step in our process for obtaining a

parametric family of structures. We use a modification of the standard homogenization method

on square cells to handle arbitrary rhombi. Homogenization for an arbitrary rhombic cell (more

generally parallelogram) can be transformed to homogenization on a square cell by a change of

basis for elasticity tensors 𝐶base and s𝐶 .

Suppose we have a cell 𝑅 (rhombus with unit sides) and we want to write all our equations on a

domain 𝑄 (unit square). Let 𝐹 be the affine map 𝑄 → 𝑅 and let its inverse be 𝐺 .
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Proposition 1. Let (e1, e2) be a nonorthogonal basis aligned with the sides of 𝑅; in this coordinate

system, the domain is a unit square, i.e., the map 𝐹 maps (e1, e2) to the unit coordinate vectors. If

displacements u satisfy the elasticity equation on domain 𝑅, −∇ · [𝐶 : 𝜀 (u)] = f, then if ũ and f̃ are

the displacements and forces expressed in the coordinate system (e1, e2), they satisfy the elasticity

equation

−∇ · [𝐶′ : 𝜀 (ũ)] = f̃, (4.5)

where the transformed tensor 𝐶′ components are given by

𝐶′
𝑖 𝑗𝑘𝑙

= 𝐺𝑝𝑖𝐺𝑞 𝑗𝐺𝑟𝑘𝐺𝑠𝑙𝐶𝑝𝑞𝑟𝑠 . (4.6)

The proposition is verified directly by the change of variables in (4.1) and (4.3).

Note that the components of𝐶 can be expressed in terms of the components of𝐶′ using the inverse

relation:

𝐶𝑖 𝑗𝑘𝑙 = 𝐹𝑝𝑖𝐹𝑞 𝑗𝐹𝑟𝑘𝐹𝑠𝑙𝐶
′
𝑝𝑞𝑟𝑠 . (4.7)

This observation applies both to the microscopic equation on the domain in 𝑅 filled with the base

material, as well as to the homogenized equation. This leads to the following 3-step procedure for

determining the homogenized properties of a rhombic cell:

• Transform the base material tensor 𝐶base to the coordinate system (e1, e2) using (4.6).

• Compute the homogenized tensor s𝐶′ on 𝑄 , as described in Section 4.5.1.

• Transform s𝐶 back to the original coordinate system, using (4.7).
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This allows us to solve the forward problem: given the geometry in a rhombic cell, compute

the homogenized elasticity tensor. As the problem is reduced to square-cell problems, shape

derivatives are computed exactly in the same way, and the problem is discretized using the same

approach.

We describe our solution to the inverse problem in the next section.

4.6 Material-to-geometry map construction

In this section, we explain the steps for constructing a map P from isotropic material parameters

to geometry parameters. We assume in most of the exposition that 𝐶base is fixed, and show how

this assumption can be removed in Section 4.6.3. We use 𝐸 = 1 and 𝜈 = 0 for the base material, but

the specific choice does not matter.

4.6.1 Orthotropy

The fact that the rhombic cells always have orthotropic elasticity tensor is of critical importance

in our construction, since it determines the dimension of the image of 𝐻 (p, 𝛼). We consider this

fact in more detail and define the measures of deviation from isotropy tailored for orthotropic

materials.

The rhombus has two reflection symmetries with respect to its diagonals, and we consider ge-

ometries that by construction have the same symmetries. This means that the periodic structure

obtained by repeating the elementary cell 𝑅 is invariant with respect to these two transformations.

As a consequence, the elasticity tensor s𝐶 is also invariant with respect to these transformations.

This implies orthotropy:

Proposition 2. [Love 1944] If an elasticity tensor is invariant with respect to reflections about two

136



orthogonal axes, then it is orthotropic with respect to these axes and in the coordinate system aligned

with these axes has the form (in Voigt notation)

©­­­­­­­­­«

𝐶11 𝐶12 0

𝐶12 𝐶22 0

0 0 𝐶33

ª®®®®®®®®®¬
(4.8)

This means, in particular, that only two additional constraints need to be satisfied to obtain an

isotropic elastic tensor:

𝐶11 = 𝐶22; 2𝐶33 = (𝐶11 +𝐶22)/2 −𝐶12 (4.9)

We use two anisotropy measures, corresponding to these two constraints:

𝑎1 =
|𝐶11 −𝐶22 |

max(𝐶11,𝐶22)
, 𝑎2 =

| (𝐶11 +𝐶22)/2 −𝐶12 − 2𝐶33 |
max(𝐶11,𝐶22,𝐶33)

. (4.10)

We note that principal directions of the tensor are exactly the diagonals of the rhombus, so cannot

be set independently of the mesh directions.

4.6.2 Map construction for 𝛼 = 𝜋/2 (sqares)

Recall that the material-to-geometry map P(𝐸, 𝜈 ;𝛼) for a given 𝛼 , is not uniquely defined; we

describe a simple way to obtain a unique initial map on a smaller initial domain 𝐷 (𝛼), for 𝛼 = 𝜋/2,

which we then expand. For clarity, we drop the dependence on 𝛼 in this section.

137



We explain the general form of construction, to clarify how it can be used for other types of

structures (e.g., 3D), and explain how it applies in the specific case of planar rhombic structures.

Recall that 𝑝 = 8 is the number of geometric parameters and we denote𝑚 = 4 the number of

material parameters for 2D orthotropic materials.

We start with the homogenization map 𝐻 : 𝐵𝑝 → R𝑚 , 𝑝 ⩾ 𝑚. In general, a 𝑝 −𝑚-dimensional

submanifold of 𝐵𝑝 is mapped to each orthotropic elasticity tensor in 𝐻 (𝐵𝑝). 𝐼𝑠𝑜 corresponds to

the set of possible isotropic materials in the space of material parameters R𝑚 , e.g., it is defined by

equations 𝑎1 = 0 and 𝑎2 = 0 for orthotropic materials.

Our key idea is to restrict 𝐻 to a carefully chosen𝑚-dimensional affine subspace 𝑉 ⊂ R𝑝 , for

which 𝐻 has large coverage, i.e. 𝐻 (𝑉 ∩ 𝐵𝑝) ∩ Iso, the set of isotropic material properties covered

by geometries in 𝑉 , is not too far from 𝐻 (𝐵𝑝) ∩ Iso. We refer to 𝑉 as the transversal subspace.

p3

H

p1

p2

E

ν

V H(Bp)

Figure 4.8: Transversal subspace 𝑉 illustrated for the simplified case of a 3-parametric structure and
2-dimensional property space (𝐸, 𝜈) (In our construction, we consider spaces that are 8 and 4-dimensional
respectively). The curved surfaces are isosurfaces of 𝐸 (p). The map 𝐻 , restricted to 𝑉 , is bijective.

𝐻 ′ : 𝑉 → R𝑚, the restriction of 𝐻 to 𝑉 , is locally injective near all points where it is non-

degenerate.

The map portho : 𝐷 = 𝐻 (𝐵𝑝) → R𝑝 , can be constructed by inverting 𝐻 ′ as described below, and

its restriction to isotropic materials Iso ∩ 𝐷 yields the desired material-to-geometry map p. Note

that if non-isotropic orthotropic materials are desired, this map also can be used to compute these.
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As the 𝐻 (p) depends on p smoothly, almost everywhere we expect P(𝐸, 𝜈) to be smooth as well:

the only places where a jump is possible is in the areas where the the differential of 𝐻 (p) is

degenerate, or at the boundary of 𝐻 (𝐵𝑝), which naturally defines the domain 𝐷 for P(𝐸, 𝜈). In

practice, we have not observed the degeneracies of P(𝐸, 𝜈) for the shape and material parameter

ranges that we have considered, and the smooth approximation we obtain matches the samples

closely.

Defining the transversal subspace𝑉 . We start with identifying a𝑚-dimensional affine subspace

containing a large range of geometric configurations with isotropic elasticity tensor, i.e., has large

isotropic coverage. A direct approach to this would be to sample 𝐻 sufficiently densely on 𝐵𝑝 ,

select points for which the anisotropy measures 𝑎1 and 𝑎2 are small, and fit an𝑚-dimensional

hyperplane to this set, e.g., via PCA. Unfortunately, densely sampling the 𝑝-dimensional set (even

for 𝑝 = 8) is prohibitively expensive, as each evaluation of 𝐻 requires meshing and solving three

elasticity problems at sufficiently high resolution.

By considering a coarse sampling of 𝐵𝑝 , we experimentally observed that, for our setting, 𝐵𝑝

contains an axis-aligned hyperplane subset of dimension 𝑝′, 𝑝 ⩾ 𝑝′ ⩾ 𝑚, which has good coverage.

Intuitively, this corresponds to fixing the geometry parameters that can be fixed without decreasing

the range of material properties; we refer to these as redundant. This reduction leads to a practical

two-stage algorithm: first, remove the redundant parameters that have the least effect on coverage.

Once no dimensions can be dropped, use denser sampling and PCA for the final reduction to𝑚

dimensions. In our case, 𝑝′ = 5, so only one extra dimension needs to be eliminated.

Next, we discuss these two steps in greater detail:

1. Finding redundant parameters. We compute a coarse regular grid sampling 𝑞 𝑗 = 𝐻 (p 𝑗 ) of

the full homogenization map 𝐻 : 𝐵𝑝 → R𝑚. Each geometric parameter 𝑝𝑖 is uniformly

sampled at values 𝑐𝑖
𝑘
, 𝑘 = 1 . . . 𝑛𝑖 . In our case, a total of 540𝑘 data points were collected (see
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more information in Appendix 4.10.2). Then we extract a subset of p 𝑗 with the deviation

from anisotropy sufficiently small (in our case 0.005 for both 𝑎1 and 𝑎2). Consider slices 𝜋𝑖𝑘

consisting of all samples p 𝑗 with a fixed value of 𝑝 𝑗
𝑖
= 𝑐𝑖

𝑘
: by direct check of the coverage

area of each slice, we identify the geometric parameters 𝑖 for which there is a 𝑘 such that

coverage of 𝜋𝑖𝑘 is close to complete coverage, i.e., the coverage area obtained with the initial

sweep, where we use all parameters as variables. Figure 4.9 shows the observed coverage

for a sequence of expanding sets of fixed parameters.

For the rhombic structures, we observe that the offset parameters 𝑝1, 𝑝2, and the thickness

parameter 𝑝5 all have such values 𝑐𝑖
𝑘
(0.5, 0.25, and 0.3 respectively). This is a particularly

convenient set of parameters to fix, since this allows us to merge cells perfectly as the radius

on the boundary is fixed and thus the same for all cells. Fixing 𝑝1, 𝑝2, and 𝑝5 reduces the

Figure 4.9: Material properties coverage for the subset of samples of 𝐵𝑝 with constant values of 𝑝1 and
𝑝2 fixed (6D space, samples shown in green), 𝑝1, 𝑝2, 𝑝5 fixed (5D space, samples shown in blue) and 𝑉 (4D
space, shown in red), compared to the full set of samples p𝑗 , shown in purple.

dimension of the geometry space to just 5, leading to a 5D affine subspace 𝑉 5𝐷 . It remains
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to reduce the dimension by 1.

2. Reduce to𝑚 dimensions by PCA. The restriction of the map 𝐻 to 𝑉 ′ ∩ 𝐵𝑝 , where 𝑉 ′ is the 𝑝′-

dimensional subspace obtained by dropping dimensions, can be sampled much more densely

(we use 15 samples per dimension for 5-dimensional 𝑉 ′). To obtain the 𝑚-dimensional

transversal space 𝑉 , we approximate 𝐻 (p) with a linear map on 𝐵𝑝 : 𝐻 (p) ≈ 𝑄p̄ + 𝐻0,

where 𝑄 is a𝑚 × 𝑝′ matrix, and p̄ is obtained from p by discarding the fixed coordinates.

We compute 𝑄 and 𝐻0 using PCA. Let𝑊 be the matrix spanning the nullspace of 𝑄 , i.e.,

𝑄𝑊 = 0, and𝑊 has dimension 𝑝′ × (𝑝′ −𝑚) and maximal rank. For all points p̄ +𝑊𝑢,

where 𝑢 is (𝑝′ −𝑚)-dimensional, the value of the map is constant. Then the condition

𝑊 𝑇 (𝑝 − p̄0) =𝑊 𝑇 p̄ + 𝑐0 = 0, where p̄0 is a point in 𝑉 ′, defines an𝑚-dimensional subspace

𝑉 ⊂ 𝑉 ′, perpendicular to the constant-value affine spaces, on which 𝑄p̄ +𝐻0 is one-to-one.

For rhombic structures, we obtain 𝑝′ −𝑚 = 1, and𝑊 has dimensions 𝑝′ × 1, i.e., it is a

vector in this case.𝑊 is approximated well by a vector with nonzero components 𝑣3 = 1

and 𝑣7 = 1, and with 𝑐0 = −0.82.

This gives us a complete description of 𝑉 = {p | 𝑝1 = 0.5, 𝑝2 = 0.25, 𝑝5 = 0.3, 𝑝8 = 0.82 − 𝑝4}.

Geometrically,𝑉 is described as the space of structures where node 2 is fixed at the default position

at barycentric coordinates (0.5, 0.5, 0), the radius of node 1 connecting the cell to other cells is

fixed at 0.3, and the radius and displacement of node 4 are related linearly.

Inverse of 𝐻 ′ on the isotropic subspace. First, we construct a piecewise-linear interpolant of

the samples of 𝐻 ′. The map 𝐻 ′ is defined as the restriction of 𝐻 to 𝑉 ∩ 𝐵𝑝 . We sample 𝐻 ′ on a

regular grid in 𝑉 . For the rhombic structure, we use 𝑝3, 𝑝4, 𝑝6, 𝑝8 as coordinates for sampling. We

sample at the points of the grid 𝑞 𝑗 = (𝐸 𝑗 , 𝜈 𝑗 ) contained inside 𝐵𝑝 .

As samples 𝑞 𝑗 are on a regular𝑚-dimensional grid, they form mD cubes, which we then subdivide

into 𝑚-simplices. We discard all simplices with one of the two possible orientations (as 𝐻 ′ is
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not guaranteed to be injective everywhere, simplices may have both orientations; we choose the

predominant orientation to be the “correct” one). The map is defined by linear interpolation on

each simplex.

For each sample 𝑞 on a regular 2D grid of samples in 𝐼𝑠𝑜 , we search for m-simplex 𝑆ℓ in 𝑉 , such

that 𝐻 (𝑆ℓ) contains 𝑞. While the simplices found in this way may be not unique, in practice we do

not observe this problem. The value of P(𝑞) is obtained by interpolating the values of p at the

corners of each simplex 𝑆ℓ . Finally, we fit a B-spline to the sampled values of 𝑞 with Laplacian

regularization. We use 20 × 20 control points for rhombic structures.

Increasing coverage of the material-to-geometry map. Constraining the map 𝐻 to 𝑉 makes

the map invertible, and we observe the inverse to be smooth. However, this also restricts the

coverage, as the inverse image 𝐻−1(𝐼𝑠𝑜 ∩𝐻 (𝐵𝑝)) in 𝐵𝑝 is not necessarily contained in 𝑉 . We can

expand the range by the following procedure using optimization-based inverse homogenization,

similar to [Zhu et al. 2017].

For each regular-grid sample point 𝑞 𝑗 in (𝐼𝑠𝑜), for which P(𝑞 𝑗 ) is not defined, but which is adjacent

to a point 𝑞ℓ where P is defined, we initialize the shape optimization for the functional (4.4) using

the spline approximation to P obtained above evaluated at 𝑞 𝑗 . Then we optimize using all 8

geometry parameters as variables (and not only the 4 independent variables used in the sampling

procedure), thus taking the value of P(𝑞 𝑗 ) out of 𝑉 . If the optimization converges to a value

sufficiently close, using a tolerance of 0.005 for Poisson’s ratio and 0.001 for Young’s modulus, we

include the additional point in the set, and refit the splines to the new set of points.

We note that, in principle, this process may suffer from the same flaws as the original inverse

homogenization of [Panetta et al. 2015a] (cf. Figure 4.10) as the map P(𝐸, 𝜈 ;𝛼) may become

non-smooth for lower values of 𝛼 . However, the procedure defined above prevents this from

happening, and the map P(𝐸, 𝜈 ;𝛼𝑚𝑖𝑛) remains smooth (Figure 4.18).
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Figure 4.10: Plots of parameters 𝑝1 and 𝑝4 for pointwise inverse homogenization. Note the lack of
smoothness; other parameters also have a varying degree of noise. The color in the charts represents the
geometric parameter value, varying from blue to red.

Figure 4.11: Changes of geometry as a result of small changes in Young’s modulus Top: obtained by
pointwise inverse homogenization [Panetta et al. 2017a]; Bottom: our family.

Figure 4.12: Expanding the initial material-to-geometry map coverage. Left: original coverage; Right:
expanded coverage.
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Bounds for the domains 𝐷 (𝛼). For applications using optimization of material properties on a

partitioned domain (Section 4.8), it is useful to ensure that the values used in the optimization

stay within the coverage zone of the material-to-geometry function p. To keep these constraints

efficient, we approximate the coverage area by a convex polygon bounded by a set of a maximum

of 6 lines: 2 horizontal lines defining minimum and maximum Young’s modulus 𝐸𝑚𝑖𝑛 and 𝐸𝑚𝑎𝑥 , 2

vertical lines for minimum and maximum Poisson’s ratio 𝜈𝑚𝑖𝑛 and 𝜈𝑚𝑎𝑥 , and 2 additional slanted

lines, 𝑠𝑙 and 𝑠𝑟 , that allow for larger non-rectangular domains (see Figure 4.13).

E

ν

Figure 4.13: Lines defining the shape of our convex domain.

The lines are defined to maximize a weighted sum of the area and the height (maximum Young’s

modulus) of the convex polygon while keeping it completely inscribed in the domain coverage

region. Below, we explain this process in more detail.

In our coverage data, we first identify two sets of points on the boundary of our covered area.

For each value of Young’s modulus, the minimum achieved Poisson’s ratio is added to 𝐵𝑙 , while

the maximum should be in 𝐵𝑟 . Then, we iteratively run the following two steps, trying different

values for lines 𝜈𝑚𝑖𝑛 , 𝜈𝑚𝑎𝑥 , 𝐸𝑚𝑖𝑛 and 𝐸𝑚𝑎𝑥 at each time:

1. Filtering. We filter out boundary points in 𝐵𝑙 and 𝐵𝑟 that are outside the square defined by

𝜈𝑚𝑖𝑛 , 𝜈𝑚𝑎𝑥 , 𝐸𝑚𝑖𝑛 and 𝐸𝑚𝑎𝑥 , creating new boundary sets 𝐵′
𝑙
and 𝐵′𝑟 .

2. Optimization. We optimize the slanted lines as follows. We create one linear constraint for

each boundary point 𝑏 in 𝐵′
𝑙
(resp. 𝐵′𝑟 ), making sure that slanted line 𝑠𝑙 (resp. 𝑠𝑟 ) is to the
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right (resp. left) of 𝑏. After building our constraint matrix, we run the fmincon() solver

inMatlab to optimize our objective function (composed of area and height of the convex

domain) given our new linear constraints.

At the end, the objective function values obtained for all iterations are compared and we select

the 6 lines corresponding to the best value achieved. In our own case, we decided to fix minimum

and maximum Young’s modulus (𝐸𝑚𝑖𝑛 and 𝐸𝑚𝑎𝑥 ) to 0.005 and 0.32, due to our observed coverage.

However, we tried multiple values for maximum and minimum Poisson’s ratio (𝜈𝑚𝑖𝑛 , 𝜈𝑚𝑎𝑥 ). Notice

that these values can also be chosen according to the application.

Figure 4.14: Domain coverage for 𝛼 = 𝜋/2, with approximating linear bounds. Left: resulting polygon
when restricting minimum and maximum Young’s modulus to 0.01 and 0.1; Right: convex polygon (in
yellow) when Young’s modulus minimum and maximum values are unlimited. We show a comparison
with the bounds in the constrained case (in red). Depending on the Young’s modulus range the application
needs, a different polygon may be obtained in the optimization. If the application requires larger stiffness
values, the polygon on the right should be preferred. On the other hand, if a larger range on Poisson’s
ratio values is needed, the polygon in red is a better option.

4.6.3 Arbitrary angles and base materials

We extend the map to all angles in the range [𝛼𝑚𝑖𝑛, 𝜋/2]. We use 𝛼𝑚𝑖𝑛 = 𝜋/4 since the coverage

becomes very small below this value. In our experiments, the range [𝜋/4, 𝜋/2] proved to be

sufficient, as, after quad optimization, the minimum angle for quads was larger than 𝜋/4. It is

however possible that for complex geometries smaller angles are needed.

We perform the extension incrementally for a sequence of angles 𝛼𝑖 = 𝜋/2 − 𝑖 𝑑 , where 𝑑 = 1.25◦.
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Using the geometric parameters for 𝛼𝑖−1 as a starting point, we use shape optimization to obtain a

point for the same target value (𝐸, 𝜈) but for 𝛼𝑖 , with a regularization term ∥𝒑 − 𝒑0∥2 penalizing

deviation from the initial value of each parameter, where 𝒑 and 𝒑0 represent the current and the

initial parameter values during the optimization, respectively.

Once the whole range of angles is covered, we fit a 3D spline in variables (𝐸, 𝜈, 𝛼) to the whole set

of points. The resulting change of geometry parameters as a function of 𝛼 is smooth (Figure 4.15).

For spline fitting, we use least-squares on the whole cube. An extra regularization term, the

Laplacian of the function at grid points, is added in the cost, which promotes smoothness and

eliminates the null space corresponding to the regions with a few or no data points.

Complete map description. The final map P is defined as:

• a 3D uniform spline approximation on a 12 × 12 × 12 grid of 8 geometric parameters, for a

total of 8 × 123 coefficients;

• a 1D splines in 𝛼 for each of the coefficients defining the lines of the convex polygon

approximating the domain coverage region 𝐷 (𝛼).

The complete description of the map is relatively compact, requiring less than 14k coefficients.

The plots for the eight components are shown in Figure 4.17 for 𝛼 = 𝜋/2, while Figure 4.18 shows

plots for two of the parameter when 𝛼 = 𝜋/4. In addition, Figure 4.11 illustrates (non-)smoothness

of the map obtained by pointwise shape optimization, compared to our map, for small changes of

𝐸 and 𝜈 for three choices of (𝐸, 𝜈).

Change of the base material. In principle, we would need to compute a new map P each

time the base material changes, as the homogenization map 𝐻 depends on the choice of material.

However, two observations show that s𝐶 for any base material (𝐸′, 𝜈′) can be obtained from a base

material (𝐸, 𝜈) by a simple transformation.
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Figure 4.15: Dependence of the geometry parameters p on the angle, for 𝐸 = 0.076 and 𝜈 = 0.263 (using
base material 𝐸 = 1, 𝜈 = 0).

Figure 4.16: Left: coverage for 𝜈 = 0, 𝐸 = 1. Right: coverage for 𝜈 = 0.3, 𝐸 = 2.

The first simple observation is that the expressions for the components of s𝐶 and the solution for

(4.3) depend linearly on the base elastic tensor𝐶base, i.e., if the base Young’s modulus 𝐸 is replaced

with 𝑠𝐸, the homogenized one 𝐸𝐻 becomes 𝑠𝐸𝐻 .

The less trivial part are the changes due to changes in the Poisson’s ratio. Fortunately, if 𝜈 is

replaced with 𝜈′, the new homogenized elasticity tensor s𝐶′ is characterized by the CLM theorem,

a corollary of which for isotropic materials can be formulated as follows.

Theorem 4.1. [Cherkaev et al. 1992] Suppose a periodic 2D medium with holes is filled with material

with Young’s modulus 𝐸 and Poisson’s ratio 𝜈 , and the effective (homogenized) properties of this

medium are 𝐸𝐻 and 𝜈𝐻 . Suppose 𝜈 is replaced with 𝜈′. Then the effective Young’s modulus is preserved,

147



and the Poisson’s ratio changes as

𝜈′𝐻 = 𝜈𝐻 − (𝜈 − 𝜈′)
𝐸𝐻

𝐸𝑏
.

This immediately leads to the change of variables in the function 𝐻 (𝐸, 𝜈) that corresponds to the

change of base material properties (𝐸, 𝜈) → (𝐸′, 𝜈′):

𝐸′𝐻 =
𝐸′

𝐸
𝐸𝐻 ,

𝜈′𝐻 = 𝜈𝐻 − (𝜈 − 𝜈′)
𝐸′𝐸𝐻/𝐸
𝐸′

= 𝜈𝐻−(𝜈 − 𝜈′)
𝐸𝐻

𝐸
.

(4.11)

Discussion of alternative approaches. The closest works on 2D microstructures are [Ostanin

et al. 2018] and [Martínez et al. 2019], which introduce low-parametric families of structures.

However, both approaches are limited to regular grids in a profound way: they rely on symmetries

of triangular/hexagonal grids to produce isotropic effective properties, a requirement that is lost

on deformed lattices with fewer symmetries.

Regular quad/hex grids are used by topology optimization-based methods [Schumacher et al. 2015;

Zhu et al. 2017], and in the family of structured proposed in [Panetta et al. 2015a, 2017a]. While

these methods could be adapted to rhombic tiles by applying a bilinear map to their structures,

this construction introduces large errors (see Section 4.8 for more details).

Our construction is based on the optimization techniques introduced in [Panetta et al. 2015a,

2017a], by addressing two of their limitations: (1) we lift the regular lattice cell assumption (for

the 2D planar case), directly targeting rhombic tiles and (2) we address the lack of smoothness of

P (cf. Figures 4.17 and 4.11).
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Figure 4.17: Plots of parameters 𝑝1 . . . 𝑝8 as functions of (𝐸, 𝜈) for 𝛼 = 𝜋/2. The color of the surface
corresponds to parameter values.

4.7 Quad mesh optimization

We tessellate the polygonal domain Ω into (nearly-)rhombic elements by starting with a quadran-

gulation of Ω and optimizing the shape of its cells.
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Figure 4.18: Plots of parameters for 𝛼 = 𝜋/4. The color of the surface corresponds to the parameter values.

Quad mesh generation. Our algorithm can be applied to any planar quadrilateral mesh: for the

examples in the paper, we used a combination of meshes automatically generated using the Integer

Grid Maps algorithm [Bommes et al. 2013] (Figure 4.34, disk), Pattern-Based Quadrangulation

[Takayama et al. 2014] (Figure 4.34, bar), and manually designed using Blender (Figure 4.34, pliers,

ghost). Generally, denser meshes are easier to optimize for our algorithm since they have more

degrees of freedom.

Quad to rhombi projection.

Our algorithm uses an alternating optimization inspired by ShapeUp [Bouaziz et al.

2012]: we compute a target rhombic shape for each quad (see inset), and then optimize

the vertex positions to match the target shape of each element in least-squares sense.

To obtain the ideal rhombic shape 𝑅 for a quad 𝐹 , we fit a linear transformation 𝑇

of a canonical unit square 𝑄 (a parallelogram) to 𝐹 , after translating its barycenter to

the origin:

min
𝑇

∑︁
𝑖

∥ 𝑓𝑖 −𝑇𝑞𝑖 ∥2, (4.12)

where 𝑓𝑖 and 𝑞𝑖 are the vertices of 𝐹 and 𝑄 respectively. Letting 𝜃𝑇 be the smaller angle of the

parallelogram, we define the unit target rhombic shape 𝑅𝑢 as the rhombus with unit length edges

and minimal angle𝑚𝑎𝑥 (𝜃𝑇 , 𝜃𝑚), where 𝜃𝑚 is the smallest angle covered by our parameter sweep
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(45 degrees). Capping the minimal angle pushes the optimization toward rhombic shapes within

the reachable range of our parametric family. The scaled target rhombic shape 𝑅 is computed by

translating (by a vector 𝑡 ) and scaling (by a diagonal matrix 𝐴) 𝑅𝑢 to best fit the quad 𝐹 :

min
𝐴,𝑡

∑︁
𝑖

∥ 𝑓𝑖 −𝐴𝑟𝑖 − 𝑡 ∥2, (4.13)

where 𝑟𝑖 and 𝑓𝑖 are the vectors of vertices of 𝑅𝑢 and 𝐹 respectively.

Exponential rhombic distortion energy. Equipped with a target reference for each quad, we

define a distortion energy by penalizing the deviation of each element from its ideal rhombic

shape using the symmetric Dirichlet energy [Smith and Schaefer 2015]:

D(𝐽𝐹 ) = ∥ 𝐽𝑄 ∥2𝐹 + ∥ 𝐽
−1
𝑄 ∥

2
𝐹 ,

where 𝐽𝐹 is the Jacobian of the bilinear map mapping 𝐹 to its target rhombic shape 𝑅. Ideally, we

would like to minimize the 𝐿∞ norm of the distortion integrated over the entire domain Ω, which

is however a challenging problem to solve numerically. We opt for an approximation, using a

continuation approach [Rabinovich et al. 2017b] minimizing the following exponential energy for

increasing values of 𝑠:

𝐸D (𝑥) =
∑︁
𝑄∈Ω

𝐴𝑄𝑒
𝑠D(𝐽𝑄 ) (4.14)

where 𝐴𝑄 is the area of the quad 𝑄 .

Boundary projection. Without additional constraints, minimizing (4.14) would change the shape

of the boundary of Ω (Figure 4.19). We add a penalty term to avoid changes to the boundary, while

allowing nodes to slide on it:

𝐸𝜕 (𝑥,𝑦) =
∑︁
𝑥𝑖∈𝜕Ω

∥𝑥𝑖 − 𝑦𝑖 ∥2, (4.15)
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Figure 4.19: A quadrilateral mesh (left) is optimized with (right) and without (middle) the boundary term.
The shape of the eyes and the mouth is lost in the middle image, while it is preserved on the right. The
color for each quad maps to 𝛼 (the minimum angle of the cell).

where 𝑥𝑖 are the coordinates of a boundary vertex of a point on the boundary of the quad mesh,

and 𝑦𝑖 = Φ(𝑥𝑖) is the closest point on the boundary of Ω.

Optimization. We create a rhombic mesh by minimizing the combined energy:

𝐸 (𝑥) = (1 − 𝜆)𝐸D (𝑥) + 𝜆𝐸𝜕 (𝑥,Φ(𝑥)), (4.16)

with 𝜆 = 10000 a weight balancing the two terms. We use the solver proposed in [Rabinovich et al.

2017b] to find vertex positions minimizing eq. (4.16). This solver uses a local/global optimization

strategy in order to minimize eq. (4.16). In the local step, the target rhombi are rotated to minimize

𝐸D (𝑥) (eq. (4) in [Rabinovich et al. 2017b]), and we compute 𝑦𝑘𝑖 = Φ(𝑥𝑘𝑖 ), the projection on the

boundary 𝜕Ω for border vertices after iteration 𝑘 . In the global step, the Jacobian 𝐽𝑄 in 𝐸D is

replaced by 𝐽𝑘
𝑄
= 𝐽𝑄 (𝑥𝑘), 𝐸𝜕 (𝑥,Φ(𝑥)) is replaced by 𝐸𝜕 (𝑥,𝑦𝑘), and 𝐸 is minimized wrt 𝑥 .

4.8 Evaluation and examples

In this section, we explore the advantages of our approach, compared to "naive" application of

existing techniques, and its limitations. Specifically, we explore the following features of our

method:
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• the use of boundary-aligned, irregular quad meshes instead of regular grids with cut cells;

• the optimization of the cell geometry structure taking cell shape into account, compared to

remapping geometry optimized for square cells;

• continuous dependence of geometric parameters on material parameters, compared to

pointwise inverse homogenization used in previous work;

• mesh independence and the effects of deviation from rhombicity on the accuracy of the

method.

Finally, we show how our method handles a number of test problems. Many of the comparisons

are performed on models with variable material properties generated using material optimization,

as in [Panetta et al. 2015a]. Specifically, the deformation on one part of the boundary is given, and

the material properties for interior cells are optimized to obtain a user-defined target deformation

on an other part of the boundary. For example, we use a plier shape for several examples; the

prescribed deformation moves the handles together, and the target deformation moves the jaws

together. In the optimization, the cells of the mesh are used as finite elements with constant

material properties.

Comparison with regular grids with cut cells. The simplest approach that allows one to use

existing techniques with microstructures optimized for squares is to overlay a regular grid on the

geometry of the shape and remove parts of the cells outside the input shape boundary. We used a

regular grid with square side length equal to the average edge length of our rhombic geometry

to obtain approximately the same number of cells. The material optimization was performed

with the same boundary conditions and target deformations but for each mesh separately (cut

regular grid vs rhombic cells), rather than, e.g., interpolating target material properties from one

mesh to the other. For the purposes of FEM simulation used in the material optimization, cut
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cells are triangulated. In both cases we assign the geometry for each cell based on the computed

material. As an additional step for the regular cell grid, we crop the final fine-scale geometry using

the original object’s boundary. We run the deformation simulation on full fine-scale geometry

for comparison. Figure 4.20 shows an example with significant deformations compared to the

ground truth. We note that one feature of our method, the continuous dependence of geometric

parameters on material parameters remains useful even for objects that can be meshed with

regular grids, and improves accuracy.

Figure 4.20: Top left: example of a cropped regular grid of perfect square cells. Top right: deformation
using the model produced with square grid as shown on the left. Bottom: result using our new method.

To experiment with higher resolution quad meshes, we applied one level refinement on each

of the two configurations shown in Figure 4.20, keeping the same material distribution. The

result is presented in Figure 4.21. For both methods, the error is reduced, although it is still

considerably higher when using regular grids with cut cells. Notice, however, that (although being

a valid experiment) refinement is not a very practical solution in real world scenarios since most

fabrication technologies have resolution limitations.

Comparison with remapping square cell structures. In principle, the structures obtained for

square cells can be directly applied to rhombic cells, by simply applying a bilinear transformation

to the geometry. Figure 4.22 shows the effect of not using structures specialized to set with specific
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Figure 4.21: Left: deformation result after one level of quad mesh refinement when using our new method.
Right: result using regular grid with cut cells.

angles: the increase in the error is substantial.

Figure 4.22: Middle: non-deformed solid shape. Left: deformation of the structure using geometry
optimized for 𝛼 = 𝜋/2 everywhere; the solid shape in the background shows the reference deformation
of a single-material solid. Right: using correct cell geometry with parameters P(𝛼) everywhere. The
microstructure has material parameters 𝐸 = 0.02 and 𝑣 = −0.4. Bottom part is fixed (0 Dirichlet), and on
the top part we apply a force parallel to the slanted side (at an angle of 4𝜋/3).

Comparison with pointwise inverse homogenization. In this experiment, the same mesh and

the same variable material properties, resulting from optimization, are used with two different

ways of assigning a structure to each cell (Figure 4.23). The first approach performs the nearest-

neighbor lookup in the database of structures obtained by pointwise shape optimization [Panetta

et al. 2017a], the other using our smooth parametric family P(𝐸, 𝜈 ;𝛼). In both cases, the structures

are mapped to the arbitrary quads of the mesh by a bilinear map. We observe that the result is

closer to the reference simulation using a variable-material solid. Figure 4.24 shows that the 𝐸 − 𝜈

space coverage of two methods is close.

Mesh independence. If all cells are assigned the same effective material properties, the resulting

deformation should not change significantly as we change the domain discretization.
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Figure 4.23: Left: deformation of an object constructed using a table of structures obtained using pointwise
inverse homogenization as in [Panetta et al. 2017a]. Right: deformation of the object constructed using our
family, with the same boundary conditions. The gray shape in the background shows the ground truth
obtained by simulation on a solid quad mesh with materials assigned per quad.

Figure 4.24: Coverage in (𝐸, 𝜈) plane for 𝛼 = 𝜋/2 obtained by pointwise shape optimization (blue) in the
range 𝐸 = 0.01 . . . 0.1 and 𝜈 = −0.4 . . . 0.9. The coverage of our family is shown in orange.

We performed two experiments to evaluate the effect of changing the mesh. The first experiment

(Figure 4.25) confirms that the deformations obtained for an irregular mesh on a bar, which requires

different rhombic structures for different cells, are nearly the same as for a regular mesh with

identical structure, optimized for the same square cell everywhere.

In the second experiment, we study how deviation from rhombic shape affects the result, when

the cell shape is intentionally distorted to be far from rhombic. We create a twisted structure – a

compound cell subdivided into 4 non-square subcells, and compute the properties of the material
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Figure 4.25: Top: deformation of a shape with constant assigned materials and regular connectivity.
Bottom: deformation of the same shape, with irregular mesh connectivity. The deformed pattern (simulated
using FEM on a fine mesh) is compared to the simulated homogeneous mesh with equivalent material
properties (𝐸 = 0.05, 𝜈 = 0.4). In both cases, a uniform vertical load is applied on the top, while we keep a 0
Dirichlet condition at the bottom.

composed of such compound cells, using homogenization on the whole cell. Specifically, starting

from a 4× 4 square quad mesh on the cell, with each quad assigned 𝐸 = 0.05, 𝜈 = 0.0, we gradually

rotate the cross formed by the edges incident at the central vertex of the mesh (5 degrees at a time),

and optimize the shape of the elements of the twisted mesh (keeping the cross fixed, Figure 4.26).

Figure 4.27 shows how the Frobenius norm of the distance between the target elasticity tensor

used to obtain the structure in each subcell and the homogenized elasticity tensor of the compound

cell changes with rotation angle. In the plot, we also show the error we observe if we use the

structure optimized for 𝛼 = 𝜋/2 everywhere.

Notice how the error stays stable when we increase the rotation angle, which is not the case

when using only the structures for 𝛼 = 𝜋/2 in all quads. We emphasize that this experiment

was intentionally conducted with a very coarse grid of subcells. The error of our method further

decreases for a finer grid: if we subdivide each quad and placing the same initial structure in all
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Figure 4.26: An example of the twisted structure. Left: initial mesh with perfect squares. Middle: twisted
mesh by a rotation 𝑟 of 20 degrees. Right: final structure after rotation.

Figure 4.27: Plot of twisting accuracy when the rotation angle 𝑟 is increased. The plot shows the Frobenius
norm of the distance between the target elasticity tensor and the actual elasticity tensor obtained by
running homogenization on the compound pattern.

sub-quads (see Figure 4.28). For example, for a rotation angle of 10 degrees, we had an initial

error of 0.0123 with our method, while, with one level of refinement, the error is almost halved,

decreasing to 0.0069, and two levels decrease the error to 0.0040.

Non-rhombicity error. In our approach, all cells are approximated by rhombi for the purposes

of computing the cell structure. To study the effect of deviation of cell shapes from rhombic, we

experimented with a simple example shown in Figure 4.29. Using a 2× 2 quad grid in a compound

cell, and starting from 4 perfect squares, we move the center vertex in the direction of the top-right

corner by an increasing distance 𝑑 in each axis, which increases the non-rhombicity of every cell.

For each 𝑑 , the homogenized properties of the material consisting of compound cells is computed.

We compute then, for each value of 𝑑 , the rhombic errors of each of the 4 quads as the sum of the

distances from the quad vertices to the vertices of the closest rhombus (which can be obtained as
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Figure 4.28: Refinement of the twisted structure. Left: one level of quad refinement. Right: two levels of
quad refinement.
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Figure 4.29: Non-rhombic cell deformation: the center vertex is slowly translated from (0, 0) to (1, 1),
increasing non-rhombicity of cells and distance from the homogenized properties of the target cell to
target material properties.

explained in Section 4.7). We also compute the target error as the Frobenius norm of the difference

between the homogenized elasticity tensor for the compound cell and the target one. Results are

shown in Figure 4.30. The distance to target material changes smoothly with the total rhombic

error. Moreover, to analyse quantitatively the quality of our quad meshes and to show how much

damage non-rhombicity could cause in accuracy, we computed the average rhombic error for

our meshes in Figure 4.34, normalizing the results with the squared root of the average area of

quads. The resulting numbers for pliers, ghost, disk and bar models can be seen on the right side

of Figure 4.30. Notice that these numbers would indicate a low target error.

Scalability. Using the same example shown in Figure 4.29 with 𝑑 fixed at 0.25, we also exper-

imented with the scalability of our solution by running the entire pipeline (quad optimization,

material optimization, material to geometry mapping and final mesh construction) on different

levels of refinement on the initial quad mesh. The result is shown in Figure 4.31. Notice that our
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Figure 4.30: Plots of accuracy in non-rhombicity experiment. Left: plot shows how rhombic error varies
when 𝑑 value is increased. Notice that the change is almost linear and, as expected, error for Q1 and
Q3 are the same. Right: smooth variation of target error when rhombic error increases. Dots indicate
corresponding error for our example models in Figure 4.30.

Figure 4.31: Scalability experiment. Left: example of optimized structure with 4 levels of refinement on
the initial mesh, which means a final number of 1024 faces. Right: Plot (in log–log scale) showing how our
running time grows with the number of quad faces. For this experiment, we used a machine with 20 cores
and 32GB of RAM.

running time scales linearly with the number of cells of the quad mesh.

Merge error. Once the geometry is defined per cell, it needs to be merged into a single geometry

for the whole object. For our choice of pattern (but without using our smooth spline fit), adjacent

cells share a single node and the structures of two cells may have different geometric parameters

(radii) assigned to the shared node: these radii need to be averaged, affecting the properties of cells.

In contrast, with our microstructures family, if the transition of materials is smooth, the change

in radii will also be smooth and almost no averaging will be required. In fact, for square cells

(𝛼 = 𝜋/2), the radius at the boundary will always be very close to 0.3 (see Figure 4.17), because of
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the way we fix 𝑝5 in our map construction, as described in Section 4.6.2.

Figure 4.32 shows an example where there is a significant mismatch between radii assigned to

the shared node by two cell structures that have same material properties (𝐸 = 0.0315, 𝜈 = 0.75

and anisotropy measurements 𝑎1 and 𝑎2 in the order of 10−5 and 10−4, respectively). After the

merge, the new homogenized properties can be obtained by building a new square cell as shown

on the right side of Figure 4.32. The new material has significantly different properties, not being

isotropic anymore (𝑎1 = 0.028 and 𝑎2 = 0.037).

Figure 4.32: Error due to merging cell structures. Left: radii of contact nodes of two structures with same
material properties (in red) and resulting radius after merge (in blue). Right: base homogenization cell to
verify the properties of merged structure (which are significantly different than original).

Interpolation accuracy. Finally, we show that our spline approximation is quite accurate.

Figure 4.33 shows the absolute differences |𝐻𝜈 (P(𝐸 𝑗 , 𝜈 𝑗 )) − 𝜈 𝑗 | and |𝐻𝐸 (P(𝐸 𝑗 , 𝜈 𝑗 )) − 𝐸 𝑗 |, at points

(𝐸 𝑗 , 𝜈 𝑗 ) not present in the originally sampled set: these are differences between actual homogenized

material properties of the geometric structures obtained using our map P, and the values at which

P was evaluated. Smoothness of the map P is essential for the interpolation of the relatively

sparse set of values to be accurate.

Examples of manufactured structures. Finally, we applied our complete pipeline for a set of

2D examples similar to [Panetta et al. 2015a], with a crucial difference being that we use irregular,

boundary-conforming meshes optimized for rhombic shape of cells. The per-cell material property
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Figure 4.33: Accuracy of P away from sample points, measured as the difference between directly
computed and interpolated 𝐸 and 𝜈 .

distribution is obtained using the optimization described in [Panetta et al. 2015a]: we prescribe

fixed Dirichlet boundary conditions on a part of the boundary, and target positions of another

(target) part, optimizing the material distribution to obtain the desired deformation.

As we worked with 2D elasticity, we used 0.5” sheets of closed-cell foam with small (< 0.2 mm)

foam cell size to fabricate our examples using a laser cutter. We also experimented with other

materials, as 1/8” acrylic sheets, which allow for higher resolution when compared to foam (see

pliers example in Figure 4.34). These examples have primarily illustrative purpose. We expect

more practical applications to be accomplished by integration into new CAD design pipelines

e.g, nTop Platform [nTopology 2020], which already supports a range of small-scale parametric

structures.

4.9 Conclusions and Limitations

We have demonstrated that it is possible to construct a family of geometric structures for rhombic

shapes with a large range of angles, parameterized directly by material parameters of these shapes.

The map from the material parameters to the geometric parameters is smooth and represented

in a compact form as a set of 3D splines. Within explicitly defined bounds, any structure in the

family is isotropic. While the material-to-geometry map depends on the base material properties,
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𝛼 𝐸 𝜈 pattern simulated fabricated (photograph)

Figure 4.34: Summary table of the results fabricated with our method. The plier model was laser-cut in
acrylic, while the rest were laser-cut from foam. From left to right: angle per quad on the optimized mesh,
optimized material distribution (Young’s modulus and Poisson’s ratio), final geometry at rest, deformed
pattern (simulated) and photograph of deformed pattern (fabricated). Video clips of the deformation of the
fabricated results are provided in the additional material. The minimum angle after optimization is 57.4 deg
for the pliers, 64.5 deg for the ghost, 66.0 deg for the disk, and 67.2 deg for the bar. On these examples, our
Young’s moduli ranges from 0.005 to 0.25, and our Poisson’s ratio ranges from -0.27 to 0.8.

the transformation between different materials can be achieved with a simple analytic formula;

for this reason, the proposed family can be viewed as independent of the base material properties.
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We demonstrate that using this family improves the accuracy with which target material properties

can be approximated using cellular structures manufactured from a single material.

This work is a first step towards explicitly defined material-to-geometry maps of this type. We

note that as an intermediate step in our construction we have obtained a map from arbitrary

orthotropic, not just isotropic, properties to geometric parameters. Orthotropic materials may

be useful in many contexts, and our work can be extended to this. Previous work [Ostanin et al.

2018; Milton et al. 2017] demonstrates that much broader, nearly optimal, range of parameters can

be obtained by using more complex structure topology; expanding the range further is another

possible future direction of work.

This work forms a foundation for developing similar parametric families in 3D, since, although

requiring more parameters and computational time, we do not foresee any fundamental problems

in extending the construction of cell geometry families to 3D structures. As a proof-of-concept, we

produced a smooth family of microstructures for cubic cells in 3D, following exactly the process

described in Section 4.6.2, with 2D homogenization replaced with 3D. We used a cell geometry

with cubic symmetry, guaranteeing orthotropy with same Young’s modulus in all directions, which

means having a three dimensional material space (𝑚 = 3). Initially, 9 parameters defining the

geometry were considered (𝑝 = 9). This number was reduced to 7 and then to 5 with parameter

elimination step (𝑝′ = 5). Then, we used PCA for the final reduction from 5 to 3. Figure 4.35

shows the initial and also the final coverage with our 3-parameter space, from which a nonlinear

map for isotropic structures can be extracted. We note that the second component of the method,

decomposing shapes into hexahedral cells of suitable shape, e.g., close to rhombohedra, requires

much greater adaptation, although hex meshing methods can be used as a starting point.
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Figure 4.35: Left: example of geometry in our 3D family. Right: comparison of the material properties
obtained with our initial 9 parameters and the reduced set of only 3.

4.10 Chapter Notes

4.10.1 Microstructure geometry representation

In this appendix we summarize how the geometry of the microstructure is computed from the

geometry parameters 𝑝𝑖 . We use the approach of [Panetta et al. 2017a] in 2D.

Inflation Graph. Microstructure is described by a graph of edges, with positions and radii and

blending ratios associated with vertices. The geometry itself is a level set of a signed distance

function constructed by combining distance functions associated with a primitive assigned to

each edge.

Let𝐺 = (V, E) be the graph, whereV = {𝑣𝑖}𝑛𝑖=1 represents the vertex indices and E = {𝑒 𝑗 }𝑚𝑗=1 are

the edges. Recall that 𝐹 : 𝑄 → 𝑅 is the map from a unit square to the rhombus of interest. The

shape parameters are {q𝑖, 𝑟𝑖, 𝑏𝑖}𝑖 where:

• q𝑖 = 𝐹 q̃𝑖 are the position of the vertices of 𝐺 in 𝑅, and q̃ are positions in 𝑄 ,

• 𝑟𝑖 are per-vertex radii,

• 𝑏𝑖 are per-vertex blending parameters.
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In the family described in this paper, there are 12 nodes, but due to diagonal symmetries, only 4

have independent parameters, these can be chosen as in Figure 4.3. Moreover, symmetries also

require nodes 3 and 4 to stay on diagonals (i.e., their coordinates have equal in magnitude values),

and for node 1 to remain fixed. In our family we also do not vary the blending parameters keeping

them at value 0.01.

Note that the positions {q̃𝑖}𝑖 correspond to the reference unit square, while {q𝑖}𝑖 correspond to

the rhombus.

Edge Geometry. A disk of radius 𝑟𝑖 is placed at each vertex; then two outer common tangents

are constructed for the disks centered at vertices 𝑣𝑖 and 𝑣 𝑗 at the endpoints of an edge.

We define a signed distance function for each primitive described above, associated with an edge,

and combine them together for a final shape.

Joints Geometry. The next step in the construction of the SDF for the graph 𝐺 , is to determine

the smooth blended geometry at a joint. A joint is defined as a pair (𝑣𝑖, {𝑒𝑘 |𝑘 = 1 . . . 𝑁𝑖}), with a

central vertex 𝑣𝑖 and the list of its incident edges 𝑒𝑘 .

Given the SDF distance 𝑑𝑘 from query point x to each incident edge primitive (as defined above),

the SDF to the blended joint is defined as a smooth minimum over the𝑦𝑘 with a blending parameter

𝜌𝑖 :

𝐾𝑆 (𝑑1, . . . , 𝑑𝑁𝑖 , 𝜌𝑖) = −
1
𝜌𝑖

ln

(∑︁
𝑘

exp(−𝜌𝑖𝑑𝑘)
)

(4.17)

The blending parameter 𝜌𝑖 is obtained as by multiplying the vertex blending parameter 𝑏𝑖 with

two spatially-varying modulation terms. One term depends on the convex hull of the joint, to

avoid bulging. Another term depends on the minimum incident angle of the joint (between each
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pair of incident edges). The idea of the latter is to smooth more joints with small angles. [Panetta

et al. 2017a] explains how these quantities are computed.

Combining the Joints. The last element to consider when building the SDF for the graph as

a whole, is to avoid sharp creases that can arise when combining to joints together. Here, the

idea is to blend the SDF of the two closest joints using the smooth-min function Equation (4.17),

with a blending factor that depends on the difference between the “hard-union” distance and the

“smooth” SDF to those joints. More details can be found in [Panetta et al. 2017a].

4.10.2 Sweep parameters

Displacements. In the initial 8-dimensional sweep, Node 2 displacement parameters (𝑝1, 𝑝2)

vary in the range (0.1, 0.5), as 𝑝1 + 𝑝2 > 0.5 would take the node out of the triangle. Node 3 and

node 4 displacements 𝑝3, and 𝑝4 vary in the range (0.1, 0.9), to span most of the allowed range (we

avoid placing nodes too close to the boundary as this is likely to result in difficult-to-manufacture

structures). We use 5 samples for all 4 offset parameters.

Radii. All radii 𝑝5, . . . 𝑝8 are allowed to vary in the 0.05 . . . 0.3 range, and the number of samples

was 6 for 𝑝5, 𝑝7, 𝑝8, and 4 for 𝑝6. The upper bound was chosen somewhat lower than the values

needed to produce a solid cell, as we focused on the range of Young’s moduli 0.01 . . . 0.3 relative

to the base material, and using radii about 0.3 produces 𝐸 close to 0.33.
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5 | A parametric class of composites

with a large achievable range of

effective elastic properties

In order to successfully produce objects using microstructures, it is important to have geometries

that can reach a large range of elasticity responses. In this context, this final chapter, based on a

published work in collaboration with Igor Ostanin, George Ovchinnikov, and Denis Zorin [Ostanin

et al. 2018], explores how close one can get to the theoretical limits in 2D with physically realizable

structures. We present two families of hexagonal microstructures that are able to achieve effective

material properties covering most of the theoretical possible range for isotropic metamaterials.

In this project, I was responsible for designing, running, and analyzing homogenization sweeps

to identify the relationship between geometric parameters and material properties for different

families of microstructures. I also performed shape optimization experiments targeting extreme

material properties in order to perform a shape derivative study and show that our structures are

close to local optima.

We study an instance of the G-closure problem for two-dimensional periodic metamaterials.

Specifically, we consider composites with isotropic homogenized elasticity tensor, obtained as a
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mixture of two isotropic materials. We focus on the case when one material is has zero stiffness

i.e., single-material structures with voids. This problem is important, in particular, in the context

of designing small-scale structures for metamaterials that can be manufactured using additive

fabrication. A range of effective metamaterial properties can be obtained this way using a single

base material.

We demonstrate that two closely related simple parametric families based on the structure proposed

by O. Sigmund in [Sigmund 2000] attain good coverage of the space of isotropic properties

satisfying Hashin-Shtrikman bounds. In particular, for positive Poisson’s ratio, we demonstrate

that Hashin-Shtrikman bound can be approximated arbitrarily well, within limits imposed by

numerical approximation: a strong evidence that these bounds are achievable in this case. For

negative Poisson’s ratios, we numerically obtain a bound which we hypothesize to be close to

optimal, at least for metamaterials with rotational symmetries of a regular triangle tiling.

5.1 Introduction

The relationship between the geometric structure of a periodic composite material and its effective

properties (elastic properties in particular) is a central question in mechanics of composites. The

direct problem – finding the effective elastic properties from the known periodic structure of the

composite material – is solved by means of homogenization theory. The inverse problem (finding a

periodic structure yielding specific material properties) is more challenging: in general, it requires

solving a non-convex non-linear PDE constrained optimization problem with highly nonunique

solution (inverse homogenization). Most importantly, it is not known in which cases this problem

has feasible solutions, i.e., for which target elasticity tensors a corresponding composite structure

with a given base material exists. This problem is known as the G-closure problem [Allaire 2002b].

While for the heat conduction explicit solutions are known in some cases, for elasticity this is a

long-standing problem. The outer bounds of the feasible region in the space of elasticity tensors
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are given by the well-known Hashin-Shtrikman bounds [Hashin and Shtrikman 1963] on the bulk

and shear moduli, as well as their refinement [Cherkaev and Gibiansky 1993]. For positive Poisson

ratios, the answer is provided in the recent work [Milton et al. 2017]. The right Hashin-Shtrikman

bounds are achieved by sequential laminates, i.e., assuming infinite geometric complexity and

separation of scales (i.e., very large differences in periods of laminations in sequence). In general,

these materials cannot be practically realized, although one can manufacture, with considerable

difficulty, finite-resolution approximations.

We explore solutions to this problem numerically, using specific simple parametric families of

structures inspired by several previous papers. We show that with modest geometric complexity,

and no separation of scales, one can approach the boundaries closely. Thus, a large fraction of

our structures can be, in principle, manufactured and can serve as a starting point for further

simplification. Our experiments provide an estimate on the topological complexity required to

achieve a particular percentage of coverage of the area in the space of elastic properties defined

by Hashin-Shtrikman bounds.

Contributions. We explored two families of structures (depicted in Figure 5.1(A, B)), using a

hexagonal base cell, and symmetric with respect to rotation of the cell by 𝑛𝜋/3, which ensures

that their effective elastic tensors are perfectly isotropic. Each structure has only four parameters.

We observe that these structures have the following properties:

• For positive effective Poisson’s ratio and volume fractions approaching one, the bounds of

the Hashin-Shtrikman region are approached arbitrarily closely, within limits of numerical

accuracy.

• For negative effective Poisson’s ratio and volume fractions approaching one, chirality

parameter allows us to cover a larger fraction of the region defined by the Hashin-Shtrikman

bounds than all previously known.
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Figure 5.1: (A,B) parametric structure families, (C) Domains of achievable effective elastic properties and
Hashin-Shtrikman theoretical bounds ( 𝐸𝑏 = 1, 𝜈𝑏 = 0 ) in (𝐸, 𝜈) domain.

• The low number of parameters of the structure allows for simple mapping of material

parameters to structure parameters, potentially avoiding inverse homogenization entirely.

• We show that for volume fractions different from one and positive effective Poisson’s ratios,

proposed structures are also close to the Hashin-Shtrikman bounds.

• For negative effective Poisson’s ratios, we show evidence that our structures are close to

locally optimal (i.e., increasing the number of structure parameters is not likely to lead to

improvements)

• Our family of structures in 2D covers a larger fraction of the Hashin-Shtrikman domain

than all previously known families.

Figure 5.1(C) shows the set of Young’s moduli and Poisson’s ratios that could be achieved by

tuning the parameters of structures (A) and (B), as related to the known theoretical bounds on

these moduli (see the discussion in the next section).

Remark. To illustrate material property coverage, in most of our figures we use Young’s modulus

– Poisson’s ratio coordinates, vs. bulk-shear modulus more commonly found in the literature: the

distance in this space captures the differences in material behavior in a more intuitive way. We
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discuss the relationship between these two parameterizations of material properties below.

5.2 Background and related work

Bounds on elastic properties of isotropic materials. The elastic tensor characterizing prop-

erties of a periodic composite material is obtained by homogenization over a base cell of the

composite structure (Section 5.4). In this work, we consider composite structures that are isotropic

due to spatial symmetries of the base cell. Such composites can be described by two independent

elastic moduli (bulk and shear moduli or Young’s modulus and Poisson’s ratio). The best known

bounds for composite properties are Hashin-Shtrikman bounds [Hashin and Shtrikman 1963]. In

case of well ordered strong (𝜅𝑠, 𝜇𝑠 ) and weak (𝜅𝑤 , 𝜇𝑤 ) phases ( (𝜅𝐻𝑆𝑠 − 𝜅𝐻𝑆𝑤 ) (𝜇𝐻𝑆𝑠 − 𝜇𝐻𝑆𝑤 ) > 0), the

HS bounds are:

𝜅𝐻𝑆
𝑙

< 𝜅 < 𝜅𝐻𝑆𝑢 , 𝜇𝐻𝑆
𝑙

< 𝜇 < 𝜇𝐻𝑆𝑢 ,

𝜅𝐻𝑆𝑢 = 𝜅𝑠 +
1 − 𝜙

1
𝜅𝑤−𝜅𝑠 +

𝜙

𝜅𝑠+𝜇𝑠

, 𝜅𝐻𝑆
𝑙

= 𝜅𝑤 +
𝜙

1
𝜅𝑠−𝜅𝑤 +

(1−𝜙)
𝜅𝑤+𝜇𝑤

,

𝜇𝐻𝑆𝑢 = 𝜇𝑠 +
1 − 𝜙

1
𝜇𝑤−𝜇𝑠 +

𝜙 (𝜅𝑠+2𝜇𝑠 )
2𝜇𝑠 (𝜅𝑠+𝜇𝑠 )

, 𝜇𝐻𝑆
𝑙

= 𝜇𝑤 +
𝜙

1
𝜇𝑠−𝜇𝑤 +

(1−𝜙) (𝜅𝑤+2𝜇𝑤)
2𝜇𝑤 (𝜅𝑤+𝜇𝑤)

.

Figure 5.2 showsHashin-Shtrikman bounds for void-material (A,B) and bimaterial (C,D) composites,

in terms of bulk and shear moduli (A,C) and Young’s modulus and Poisson’s ratio (B,D) for arbitrary

volume fractions 0 . . . 1 and for several fixed volume fractions. These bounds are known not to be

optimal the general case: Cherkaev-Gibiansky bounds are substantially tighter [Cherkaev and

Gibiansky 1993]. However, in the case when the weak phase has zero elastic tensor, these bounds

exactly coincide with the Hashin-Shtrikman bounds. In terms of volume fraction 𝜙 , and bulk and

shear moduli of the base material equal to 𝜅𝑏 and 𝜇𝑏 respectively, the bounds on effective bulk
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moduli 𝜅 and 𝜇 in this case reduce to:

0 < 𝜅 < 𝜅𝐻𝑆𝑢 , 0 < 𝜇 < 𝜇𝐻𝑆𝑢 ,

𝜅𝐻𝑆𝑢 = 𝜅𝑏 +
1 − 𝜙

− 1
𝜅𝑏
+ 𝜙

𝜅𝑏+𝜇𝑏

, 𝜇𝐻𝑆𝑢 = 𝜇𝑏 +
1 − 𝜙

− 1
𝜇𝑏
+ 𝜙 (𝜅𝑏+2𝜇𝑏 )

2𝜇𝑏 (𝜅𝑏+𝜇𝑏 )

. (5.1)

Expressing bulk and shear moduli as 𝜅 = 𝐸
2(1−𝜈) , 𝜇 = 𝐸

2(1+𝜈) , one obtains the isotropic bounds in

terms of Young’s modulus and Poisson’s ratio, forming a triangular region:

0 < 𝐸 (𝜈) < −2𝐶1𝜈 + 2𝐶1, 0 < 𝐸 (𝜈) < 2𝐶2𝜈 + 2𝐶2,

𝐶1 =
𝐸𝑏

2(1 − 𝜈𝑏)
+ 𝐸𝑏 (1 − 𝜙)
𝜙 (1 − 𝜈2

𝑏
) − 2(1 − 𝜈𝑏)

,

𝐶2 =
𝐸𝑏

2(1 + 𝜈𝑏)
+ 2𝐸𝑏 (1 − 𝜙)
𝜙 (3 − 𝜈𝑏) (1 + 𝜈𝑏) − 4(1 + 𝜈𝑏)

. (5.2)

where 𝐸𝑏 and 𝜈𝑏 are the Young’s modulus and Poisson’s ratio of the base material. For the case of

𝜙 = 1, expressions (5.1,5.2) are reduced to

0 < 𝜅 < 𝜅𝑏, 0 < 𝜇 < 𝜇𝑏,

𝐸 (𝜈) < − 𝐸𝑏

1 − 𝜈𝑏
𝜈 + 𝐸𝑏

1 − 𝜈𝑏
, 𝐸 (𝜈) < 𝐸𝑏

1 + 𝜈𝑏
𝜈 + 𝐸𝑏

1 + 𝜈𝑏
. (5.3)

Note that the rational transformation between (𝜅, 𝜇) and (𝐸, 𝜈) coordinates is not globally one-to-

one: in the extreme case of vanishing Young’s modulus, both 𝜅 and 𝜇 go to zero, so the lower side

of the triangle in (𝐸, 𝜈) domain collapses to a single point 𝜅 = 0, 𝜇 = 0, except points 𝜈 = ±1. These

two points in (𝐸, 𝜈) coordinates correspond to the lines 𝜅 = 0 and 𝜇 = 0 in (𝜅, 𝜇) coordinates. This

in part explains why we view (𝐸, 𝜈) coordinates as more intuitive: for low 𝐸, there is a substantial
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difference in measurable behavior between, e.g., materials with 𝜈 = −1, and 𝜈 = 1, while both 𝜅

and 𝜇 are close to zero.

G-closure. The problem of G-closure was extensively studied. It is known to have a solution for

thermal properties; however the problem remains unsolved for elasticity. Related theory is covered

in several books [Allaire 2002b; Torquato 2002b; Milton 2002a; Cherkaev 2012]. The first theoretical

example of a composite attaining maximum bulk modulus, a random assemblage of coated spheres

(Figure 5.3(A)) – was identified by Hashin [Hashin 1962]. Another type of structures attaining

extremal bulk modulus without separation of scales was found by Vigdergauz for anisotropic

[Vigdergauz 1989] and later isotropic (Figure 5.3(B)) case [Vigdergauz 1999]. Several authors

[Lurie and Cherkaev 1985; Norris 1985; Francfort and Murat 1986; Milton 1986] demonstrated that

sequential laminates can achieve extreme bulk and shear modulus simultaneously (Figure 5.3(C)).

Milton has shown [Milton 1992] that sequential laminates can demonstrate negative Poisson’s ratio

close to -1 (Figure 5.3(D)). Milton and Cherkaev [Milton and Cherkaev 1995] have demonstrated

the attainability of G-closure for infinitely rigid and void phases. They describe an approach for

constructing composites with any given tensor using elementary structures as building blocks

(an example of such structure is given in Figure 5.3(E)). For the same purpose Sigmund adopted

laminated regions, and suggested [Sigmund 2000] earlier unknown class of extreme isotropic

composites (Figure 5.3(G)), that display high bulk modulus while maintaining low shear modulus.

Our approach is based on this work.

An important related direction is the design of materials with negative Poisson’s ratio (also known

as auxetic, or dilational). Auxetic materials were first described in the work of Lakes [Lakes 1987],

and developed in many papers (see a recent review [Lakes 2017] ). Many different types of auxetic

materials were identified: beyond already named sequential laminates [Milton 1992] and unimode

structures [Milton and Cherkaev 1995] presented in Figures 5.3(D,E), there are structures based

on rigid rotating units, connected with hinges (Figures 5.3(I,F)) [Grima and Evans 2000; Grima
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Figure 5.2: (A, B) Hashin-Shtrikman bounds for the elastic moduli of isotropic void-material composites:
(A) in bulk and shear modulus coordinates and (B) the same bounds transformed to Poisson’s ratio and
Young’s modulus coordinates. (C,D) Hashin-Shtrikman (grey) and Cherkaev-Gibiansky (blue) bounds
for elastic moduli of isotropic bimaterial composite (𝜈𝑠 = 𝜈𝑤 = 0, 𝐸𝑤 = 0.001𝐸𝑠 ) (C) in terms of bulk
and shear moduli and (D) in terms of Poisson’s ratio and Young’s modulus. For brevity, here and below
Hashin-Shtrikman bounds are labeled on images as HS bounds and Cherkaev-Gibiansky bounds – as CG
bounds.
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Figure 5.3: Known extremal composites (A) Coated spheres assemblage, exhibiting extremal bulk modulus,
(B) Vigdergauz structure, achieving maximum bulk modulus (C) rank 3 sequential laminate, exhibiting
maximum bulk and shear modulus (D) “Herringbone” laminate structure providing Poisson’s ratio of -1
and (E) and its unimode analog. (F) Auxetic material made of rotating squares [Grima et al. 2005] (G)
Sigmund extremal structure, providing maximum bulk and minimum shear modulus(H) Chiral isotropic
auxetic material[Prall and Lakes 1996] and (I) similar structure, suggested in [H et al. 2011]
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et al. 2005; H et al. 2011; Milton 2015], and honeycomb chiral auxetic structures(Figures 5.3(H))

[Prall and Lakes 1996]. We use the latter idea in our current work.

In their recent work [Milton et al. 2017], Milton et al. identify optimal bounds and corresponding

microgeometries for both 2D and 3D anisotropic composites. This work demonstrates that the

right Hashin-Shtrikmann bound for any volume fraction is achieved by a finite-rank laminate

composite. In our work, we demonstrate that the right bound for isotropic 2D composites can

be approached arbitrarily closely for any volume fraction by a family of realizable structures,

approaching a two-scale composite in the limit, a subclass of which has been earlier found and

studied by Sigmund [Sigmund 2000].

Topology optimization was used for the purpose of extremal material design (see [Xia and Breitkopf

2015] for an overview). New periodic structure designs were obtained in [Sigmund 1994; Neves et al.

2000; X. Huang 2011]. However, the problem of finding a structure with specific properties is highly

nonconvex; as a result, the optimization often fails to reach the target properties. Use of filtering

techniques for suppression of checkerboard effects makes it difficult to obtain complex-topology

designs which appear to be necessary for target parameters close to the theoretical bounds. Shape

optimization is often more successful at achieving specific target material properties, but topology

preservation means that initial design topology needs to be obtained by other means.

Wide use of additive fabrication lead to renewed interest in using small-scale structure to achieve

specific material behaviors: on the one hand, additive technology makes fabrication of these

complex structures possible; on the other hand, these structures allow to manufacture strong

parts with lower weight, or objects with continuously variable material properties, e.g., for

manufacturing prosthetic devices, or for “soft” robotics. In this context, a number of additional

practical issues become of importance – printability of the structure, the absence of extreme

stress concentrations that lead to structure damage, its stability towards unwanted nonlinear
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behavior. Panetta and co-authors [Panetta et al. 2015b, 2017b] presented a framework for the

structural design based on ground state search for topology with subsequent low-parametric

shape optimization to achieve the desirable elasticity tensor while satisfying a set of additional

constraints (e.g. constraint on maximum von Mises stress).

In this work, rather than using topology or shape optimization to solve the problem of G-closure

numerically, we opt for an intermediate approach: we integrate features of several proposed

structures into two parametric families with a small number of parameters. As a result, the

material property space coverage of these structures can be explored in brute-force way by

parameter sweeps. This achieves two goals: first, this allows us to find an inner bound on the

G-closure domain (with Hashin-Shtrikman bounds providing the outer domain). Second, we can

straightforwardly tabulate the necessary structures parameters for any desirable effective elastic

properties.

5.3 Periodic structure families

Our families are based on synthesis of hexagonal/triangular isotropic structures invented by

Sigmund [Sigmund 2000] (Figure 5.3(C)), and the chiral structures proposed in [Prall and Lakes

1996; H et al. 2011; Milton 2015] (Figure 5.3(H,I)) for negative Poisson’s ratio.

Figure 5.4(A,B) shows the proposed new periodic structures. The starting point is the Triangle

and Hexagon structures presented in [Sigmund 2000]. These structures consist of triangular or

hexagonal solid areas, connected by rectangles partitioned into separate beams (we refer to these

rectangles as laminate areas). We extend these structures in a very simple way, by allowing the

beams of laminate region to have arbitrary orientation – this considerably extends the range of

materials represented by the structure, providing auxetic behavior via the mechanism described

in [Prall and Lakes 1996]. Structures of this type are described by four parameters shown in the
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Figure 5.4: (A,B) Structure families: (A) Triangle, (B) Hexagon. (C,D) Limit structures: (C) Triangle, (D)
Hexagon
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figure (size of the solid region 𝑝1, width of the laminate area 𝑝2, period of the beams in the laminate

area 𝑝3, and width of a beam 𝑝4, with each dimension measured relative to the previous (e.g., 𝑝2

is a fraction of 𝑝1, in the range 0 . . . 1). It is important to note that all parameters are continuous,

including the one determining the number of beams 𝑝3; if it is not of the form 1/𝑛, where 𝑛 is an

integer, the resulting structure has thinner “remainder” beams, which we place on the sides of

the laminate area. In this way, all parameters can be changed continuously, and optimized more

easily.

We also consider a limit case of these structures, to provide a validation of the hypothesis that with

the number of beams in the laminate areas going to infinity (i.e., the resulting structure becomes

two-scale), the material properties approach the boundary of the reachable domain (Figure 5.4(C));

these structures are parametrized in a similar way, but have only three parameters, as the beam

period approaches zero. Parameter 𝑝1 is defined in the same way as for finite structures, and the

two remaining parameters 𝜃 and 𝛼 (shown in Figure 5.5(B) below), define the volume fraction and

the orientation angle of the laminated areas. Parameters 𝛼 and 𝜃 are used to set the elastic tensor

in the laminated region.

5.4 Methods

In order to perform the parametric studies of the new periodic structures, we use a FEM-based,

regular-grid homogenization code, extending [Xia and Breitkopf 2015]. Our algorithm of periodic

homogenization follows the method of mutual energies, as described in [Xia and Breitkopf 2015].

The homogenized tensor of elasticity of the rectangular cell 𝑌 ∈ R2 is found as:

𝐶𝐻
𝑖 𝑗𝑘𝑙

=
1
|𝑌 |

∫
𝑌

𝐶𝑝𝑞𝑟𝑠 (𝑦)𝜀
𝐴𝑖 𝑗
𝑝𝑞 (𝑦)𝜀

𝐴𝑘𝑙
𝑟𝑠 (𝑦)𝑑𝑌 . (5.4)
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Here |𝑌 | is the area of the cell, 𝐶𝑝𝑞𝑟𝑠 (𝑦) is the tensor of elasticity of the material at the point 𝑦

inside the cell domain, and 𝜀𝐴𝑖 𝑗𝑝𝑞 (𝑦) are the strain fields induced by the imposition of three constant

macroscopic unit test strains 𝐴𝑖 𝑗 . These strains are found by solving three (𝑝𝑞 = 11, 22, 12) cell

problems:

(
𝐶𝑖 𝑗𝑘𝑙 (𝑦)𝜀

𝐴𝑝𝑞

𝑘𝑙
(𝑦)

)
, 𝑗
= 0,

𝜀
𝐴𝑝𝑞

𝑘𝑙
(𝑦) = 𝑤𝑘𝑙 (𝑦) +𝐴𝑘𝑙 ,

𝑤𝑘𝑙 (𝑦)is Y-periodic. (5.5)

Constant unit test strains 𝐴𝑝𝑞 are imposed on the domain boundary in the form of periodic

boundary conditions on displacements 𝑢𝑘+𝑖 , 𝑢𝑘−𝑖 in the elements nodes (Figure 5.5(A)):

𝑢𝑘+𝑖 − 𝑢𝑘−𝑖 = 𝐴𝑖 𝑗 (𝑦𝑘+𝑗 − 𝑦𝑘−𝑗 ) = 𝐴𝑖 𝑗△𝑦𝑘𝑗 . (5.6)

Here 𝑘 = 1, 2 stands for the domain boundaries perpendicular to the 𝑘-th coordinate axis. The

homogenized elasticity tensor is found as follows:

𝐶𝐻
𝑖 𝑗𝑘𝑙

=
1
|𝑌 |

𝑁∑︁
𝑒=1

u𝐴𝑖 𝑗𝑒 k𝑒 (u𝐴𝑘𝑙𝑒 ), (5.7)

where index 𝑒 stands for the element, k𝑒 is the element stiffness matrix, and u𝐴𝑖 𝑗𝑒 is the vector of

displacements at the nodes of 𝑒-th element upon imposition of 𝐴𝑖 𝑗 -th test strain.

The computational domain is the rectangle comprising 𝑁 = 𝑁1 × 𝑁2 4-node isoparametric finite

elements (Figure 5.5(A)). For every element, we specify its density 𝜌 and the type and parameters

of its stiffness matrix k𝑒 . Finite element stiffness matrix k𝑒 (𝐷) is computed based on the material
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elasticity tensor in matrix notation 𝐷 , which is the elasticity tensor.

For finite structures, we use isotropic elasticity tensor.

𝐷 (𝐸, 𝜈) = 𝜌

1 − 𝜈2

©­­­­­­­­­«

𝐸 𝜈𝐸 0

𝜈𝐸 𝐸 0

0 0 𝐸
2 (1 − 𝜈)

ª®®®®®®®®®¬
, (5.8)

where 𝐸 and 𝜈 are the Young’s modulus of either the strong or weak material (the void is approxi-

mated with a very weak material).

To explore the limit case as the genus of the structure goes to infinity, as we increase the number

of parallel beams in a particular region, we use the anisotropic rank-one laminate tensor [Allaire

2002b].

𝐷 (𝛼, 𝜃, 𝐸𝑚, 𝐸) = 𝜌𝑇 (𝛼)𝐿(𝜃, 𝐸𝑚, 𝐸)𝑇𝑇 (𝛼), where

𝐿(𝜃, 𝐸𝑚, 𝐸) =

©­­­­­­­­­«

(1 − 𝜃 )𝐸𝑚 + 𝜃𝐸 0 0

0 1
𝜃
𝐸𝑚
+ 1−𝜃

𝐸

0

0 0 1
2( 𝜃
𝐸𝑚
+ 1−𝜃

𝐸
)

ª®®®®®®®®®¬
,

𝑇 (𝛼) =

©­­­­­­­­­«

cos2 𝛼 sin2 𝛼 −2 sin𝛼 cos𝛼

sin2 𝛼 cos2 𝛼 2 sin𝛼 cos𝛼

sin𝛼 cos𝛼 − sin𝛼 cos𝛼 cos2 𝛼 − sin2 𝛼

ª®®®®®®®®®¬
. (5.9)
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Figure 5.5: Diagrams of (A) a cell computational domain (B) rank-1 laminate (C) prescribed rotational
symmetries of a computational domain.

In this equation, 𝛼 is a lamination direction, 𝐸𝑚 is the Young’s modulus of the laminate’s soft

material (in void-material simulations 𝐸𝑚 = 10−6 · 𝐸), 𝜃 is the volume fraction of the laminate’s

strong phase(Figure 5.5(B)).

We ensure that the effective elasticity tensor obtained by homogenization is isotropic, by using

hexagonal/triangular cells, and imposing symmetries of structures with respect to 𝜋/3 rotations,

as any elasticity tensor invariant with respect to these symmetries is isotropic [Love 1944]. It is

important to note that reflectional symmetries are not required for isotropy. This makes it possible

for us to use chiral structures to create isotropic materials.

We use a rectangular computational domain with the ratio of the sides 3 :
√

3 (Figure 5.5(C)). This

rectangular base cell has the area of two hexagonal base cells.

Each square element overlapping the structure is assigned elasticity tensor of the base material (or

laminate, if this part is marked as laminate area). Our drawing system uses geometric primitives

(polygons) to define the structure that are rendered with anti-aliasing to obtain gray-scale density

values in 0 to 1 range on a regular grid, that are used to scale the elasticity tensor.

The net effect of replacing the precisely defined structure with its anti-aliased rasterization is
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hard to estimate precisely, although it can be expected to improve accuracy vs. using a binary

density. Experimentally, we have observed that this discretized family of structures has Poisson

ratio range for a given Young modulus, to the family of obtained by conforming triangulation of

the precise structure, as discussed in more detail in Appendix A. The regular grid approximation

is significantly faster to evaluate.

For the verification purposes, our computations were also checked with an alternative homog-

enization tool [Panetta et al. 2015b], which is based on representing the shape as an implicit

function, and meshing the domains with an unstructured triangular mesh. These two approaches

yield close results – see Appendix A for details.

Our homogenization and structure generation codes are available at https://bitbucket.org/

iostanin/pco_toolbox_matlab.

5.5 Numerical studies

We explore the coverage of the families of structures described above using homogenization under

several scenarios, as well as provide evidence, using shape optimization, that the boundary we

obtain is likely to be close to optimal. For simplicity and ease of understanding, we use a base

material with Poisson’s ratio 𝜈𝑏 = 0. However, our results can be straightforwardly generalized

to any Poisson’s ratio, thanks to the CLM theorem [Cherkaev et al. 1992]. The specific value of

𝐸𝑏 simply sets the scale, as we use linear elasticity, so in all plots we use the ratio 𝐸/𝐸𝑏 for the

effective Young’s modulus 𝐸.

We define the coverage of a family of structures as the set of points in effective material properties

space that can be obtained by varying structure parameters. In order to quantify coverage,

we introduce coverage coefficients Δ𝑅,Δ𝐿 , defined as ratios of the highest (lowest) achievable

Poisson’s ratio at 𝐸/𝐸𝑏 = 0.5, and the corresponding theoretical limit value of Poisson’s ratio at
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𝐸/𝐸𝑏 = 0.5, 𝜙 = 1 (in case of 𝜈𝑏 = 0, these limit values are 𝜈𝑅 = 0.5, and 𝜈𝐿 = −0.5).

Figure 5.6(A, B) shows the coverage we were able to obtain with two structure families (Triangle

and Hexagon). Figure 5.6(A) provides the areas covered by two structures, whereas Figure 5.6(B)

shows raw datasets, as well as the analytical conjectured bounds based on these datasets (see the

discussion below). For comparison, we also sketch the approximate positions of several known

extremal composites, shown in Figure 5.3. Figure 5.6(C) gives an idea how the coverage depends

on the number of beams 𝑛 = 1/𝑝3 for single scale structures.

Relatively few papers attempted to design families of structures with a large coverage area. The

best coverage known to us was obtained in [Panetta et al. 2015b, 2017b] in 3D. For comparison,

we applied the same approach to two-dimensional structures with square symmetries, to estimate

coverage that can be compared to the families of structures considered in this paper.

More specifically, a ground structure was obtained by subdividing a square into smaller squares

and triangulating each of these. These ground structures are parametrized by node sizes and

displacements. Initially, a combinatorial search is performed by removing edges from the ground

structure (while maintaining the square symmetries) and generating a set of initial structures

that are estimated to yield the largest range of material properties. Then the parameters of each

identified structure are optimized multiple times, to minimize the deviation of the homogenized

material properties from a set of target pairs (𝐸𝑖, 𝜈𝑖) in the admissible region. This optimization

is performed by solving the adjoint equations of elasticity at every step to compute the shape

derivative. The topology of each structure remains fixed during the optimization.

Figure 5.6(D) gives the comparison of the performance of our new structures with the ones found

previously by ground-state combinatorial search with subsequent shape optimization which

provided the widest coverage known so far. We use coverage data for two structures, shown in the

same figure, that cover essentially the whole domain covered by any structure obtained by edge
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removal. We can see that our new Triangle and Hexagon structures (𝑛 = 30) significantly improve

the coverage of possible elastic properties of composites for the same base material’s elastic moduli.

Fig 6(D) also provides the coverage of effective elastic properties achievable with the isotropic

laminates described in [Milton 1992] (yellow line). As one can see, in case of vanishing weak

phase and negative Poisson’s ratio, these laminates appear to be much more compliant than our

microgeometries.

Below we take a closer look at the obtained numerical results.

Optimality of Hashin-Shtrikman bounds for positive Poisson’s ratios.

Our results provide compelling numerical evidence that the right Hashin-Shtrikman bound for

non-fixed volume fraction can be approached with good precision with Hexagon structures as the

number of beams 𝑛 approaches infinity (𝑛 = 1/𝑝3). This is confirmed using simulation with limit

laminate structures, which approach the boundary very closely. Figure 5.7(A) demonstrates the

increase of coverage with increase of 𝑛, figure 5.7(B) demonstrates the limit case of the structures

with 𝜙 → 1, 𝑛 → ∞, achieving right Hashin-Shtrikman bound. Figure 5.7(C) indicates that

limit laminate structures also remain very close to Hashin-Shtrikman bound for volume fractions

smaller than 1 (see also Figure 5.10). These results are consistent with the ones obtained previously

in [Sigmund 2000] and recent work [Milton et al. 2017], establishing the attainability of the right

Hashin-Shtrikman bound for volume fractions smaller than 1.

We observe that chirality (captured by the parameter 𝑝2, or 𝛼 for a limit two-scale structure ) does

not play a major role in this case, i.e. the right Hashin-Shtrikman bound is closely approximated

by structures with no chirality.

The stiffness of such structures (for the considered case 𝜈𝑏 = 0 – the position (𝐸, 𝑣) on 𝐸 + 𝜈 = 1

straight line) is defined solely by the stripe’s relative thickness (𝑝4 for type one structure and 𝜃 for
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the limit two-scale structure).

Best achievable bound for negative Poisson’s ratios.

Introduction of nonzero chirality leads to a decrease of the effective Poisson’s ratio due to the

rotation of solid segments of the structure (Figure 5.8). Extremal values that closely approach the

left theoretical bound (Figure 5.9(A)) are achieved by the Triangle structure, which is, in a sense, a

geometric dual of the Hexagon structure. Similarly to the right bound, increasing the number of

beams in the laminate area leads to structures closer to the boundary (Figure 5.6(C). However,

in this case, the limit structure does not follow the boundary. Figure 5.9(B) demonstrates this

coverage coefficient as a function of the volume fraction𝜙 . The coverage curve grows rapidly when

approaching volume fraction 1. However, reasonable extrapolation indicate that the coverage does

not exceed 0.7. The angle of chirality 𝛼 of the extreme structures is always close to 𝜋/3, however,

it depends slightly on the Young’s modulus (Figure 5.9(C)).

The right bound achieved in our numerical tests is reasonably well approximated by a fourth

order polynomial (Figure 5.6(B)):

𝐸 (𝜈) = 1 + (1 + 𝑐1 − 𝑐2 + 𝑐3)𝜈 + 𝑐1𝜈
2 + 𝑐2𝜈

3 + 𝑐3𝜈
4 (5.10)

with the constants 𝑐1 = 3.477, 𝑐2 = 3.098, 𝑐3 = 0.988.

Intermediate volume fractions.

Above we could see that our Triangle and Hexagon structures exhibit wide coverage of elastic

properties for volume fractions approaching 1. Next, we examine the performance of these

structures for intermediate volume fractions.
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Figure 5.6: (A, B) Coverage of Hashin-Shtrikman bounds with the new structures of all types. Letters
denote tentative positions of the extremal composites presented in Figure 5.3. (A) - covered sets, (B) -
raw data samples and the conjectured analytical bounds. (C) Expansion of the coverage as the number
of beams 𝑛 = 1/𝑝3 increases. (D) Comparison of the coverage obtained in this work with Triangle and
Hexagon structures with (𝑛 = 30, 𝜈𝑏 = 0, only extreme structures are shown, red points), in comparison
with the widest coverages obtained based on previous numerical studies [Panetta et al. 2015b, 2017b] (blue
points), and analyticaly computed coverage achieved with isotropic laminates proposed in [Milton 1992]
(yellow region, parameters of lamination are sweeped maintaining isotropy, the ratio between stiffnesses
of weak and strong phases is 10−6.
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Figure 5.7: (A) Coverage of elastic properties for positive Poisson’s ratios as a function of the number of
beams in the joint (B) Coverage achieved in the limit case of two-scale structure (C) coverage measure Δ𝑅
as a function of volume fraction 𝜙

Figure 5.8: Displacement fields in the horizontal tension (𝑝𝑞 = 11, Triangle limit structure) cell problem.
Rotation of solid parts of the structure, leads to auxetic behavior.
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Figure 5.9: Limit structures approaching left HS bound. (A,B) Left-bound extreme elastic moduli, achieved
with the Hexagon limit structure; chart colored by values of 𝑝1 (A) and 𝑝2 (B). (C) Dependence of the
achievable negative Poisson’s ratio as the function of chirality angle. Chirality angle 𝑝3 sweeps are
performed for several values of 𝑝2.

Figure 5.10: Coverage of Hashin-Shtrikman bounds with triangular and hexagonal structures for a set
of intermediate volume fractions. (A) Structures of the first type, (B) structures of the second type. (C)
Coverage of Cherkaev-Gibiansky bounds with bimaterial composite for two volume fractions.
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For both Triangle and Hexagon structures the volume fraction is given by:

𝜙 = 2𝑝4𝑝1(1 − 𝑝1) + 𝑝2
1, (5.11)

or, for the limit two-scale structure,

𝜙 = 2𝜃𝑝1(1 − 𝑝1) + 𝑝2
1 . (5.12)

Considering that for the extremal composites 𝑝4(𝜃 ) has to stay very close to 1, the volume fraction

can be viewed primarily as the function of a single argument 𝑝1.

Figure 5.10 illustrates the coverage of Hashin-Shtrikman bounds for a set of intermediate volume

fractions. Figure 5.10 (A) shows the parametric sweeps for structures with fixed number of beams,

Figure 5.10 (B) demonstrates the behavior of their two-scale counterparts.

For both single scale and two-scale structures, we explored the parameter 𝑝1 in the range 0.1 . . . 0.9.

We can see that in both cases the right Hashin-Shtrikman bound is easily approached with Hexagon

structures with zero chirality angle, however, the coverage on the left side deteriorates dramatically

with decrease of the base material volume fraction. This effect has trivial explanation. Consider

the case of two-scale limit structure. Clearly, if 𝜃 < 1 and the lamination angle is steeper than the

diagonal of the rectangular joint region, the stiffness of the joint drops to zero. Therefore, for the

values of 𝑝1 smaller than the critical value defined by

sin𝛼 =
𝑝1√︃

3(1 − 𝑝1)2 + 𝑝2
1

, (5.13)

the stiffness of the Hexagon structure will drop to zero. For 𝛼 = 𝜋/6, the critical value of 𝑝1 = 0.5,

and the corresponding volume fraction 𝜙 = 0.75. Figure 5.10(B) shows that all structures with this
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volume fraction and 𝑝2 < 1 have nearly zero stiffness, with the remaining response is determined

by the nonzero density of the ersatz material.

Non-void weak material. In case of a bimaterial mixture, the range of the elastic properties

that could be achieved with our structures shrinks significantly compared to the corresponding

theoretical bounds. Figure 5.10(C) gives the coverage achieved for the composite material with the

weak phase 1000 times softer than the strong phase. For these cases we performed same parameter

sweeps that provided us the most extreme properties in the case of void-material composite.

We can see that though the structures without chirality remain close to right bound, the chiral

bimaterial structures are very far from the extreme properties.

Expanding the parameter space.

Potentially, expanding the parameter space may improve the performance of our structures. One

obvious way to improve the performance is to modify the configuration of joints, that are supposed

to be very strong in axial compression, but very compliant in shear. The performance of the joints

can be improved by introducing "indentation" regions at the tips of the beams (Figure 5.11(A)). In

our numerical experiments the structures with indented beams does not improve the coverage

of the elastic moduli at large volume fractions, since the features of sharpened stripes simply

can not be resolved. However, they can be useful for the case of intermediate volume fractions –

low values of shear modulus can be reached at a lower complexity of the structure (i.e. smaller

number of stripes), which can be important in practical situations. Figure 5.11(B) illustrates the

improvement of the coverage achieved with the structures with intended beams compared to the

original ones. However, this relatively insignificant improvement comes at a cost – higher stress

concentrations at the tips of the stripes, that make failures more likely (Figure 5.11(C)).

Optimality of the negative Poisson’s ratio bounds.
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(A) Expanding parameter space: a parameterization of the structure with indented beams.

Figure 5.11: (B) Change in coverage with addition of indentations. (C) Von Mises stress concentrations
caused by the introduction of beam indentations.

It is difficult to establish with certainty that no points closer to the Hashin-Shtrikman bounds can

be found. However, it is highly likely that a very different structure would be needed for this. To

validate this conjecture numerically, we have performed the following numerical experiments.

Starting from a structure with effective elastic parameters far away from the achievable boundary

(but of sufficiently large number of beams), we vary the parameters of the structure to optimize the

goal functional. We consider the functional 𝐽 = 1
2 ∥𝑆

𝐻 − 𝑆∗∥2
𝐹
, the Frobenius norm of the difference

between the effective elasticity tensor of our structure, and a target tensor 𝑆∗, which we take to

be a point on the Hashin-Shtrikman boundary (−0.5, 0.5). We optimize this functional until the

point reaches a minimum which is on the achievable boundary.

At this point, the gradient of the functional, with respect to the structure parameters, is zero (or,

rather, its projection on the hyperplane orthogonal to the constraint gradients). This of course,

does not imply optimality, as we are considering only a small number of parameters. However,

we can measure the norm of the shape derivatives vector with respect to positions of all points on

the shape boundary.

The shape derivative measures how perturbing the shape affects the objective function (given by
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𝐽 = 1
2 ∥𝑆

𝐻 − 𝑆∗∥2
𝐹
). To compute it, we use the following formulation [Panetta et al. 2015b]:

𝑑 𝐽 [𝑣] = [𝑆𝐻 − 𝑆∗] : 𝑑𝑆𝐻 [𝑣]

𝑑𝑆𝐻 [𝑣] = −𝑆𝐻 : 𝑑𝐶𝐻 [𝑣] : 𝑆𝐻

𝑑𝐶𝐻 [𝑣] = 1
|𝑌 |

∫
𝜕𝑤

[(𝐴𝑖 𝑗 + 𝜖 (𝑤𝑖 𝑗 )) : 𝐶base : (𝐴𝑘𝑙 + 𝜖 (𝑤𝑘𝑙 ))] (𝑣 · �̂�) 𝑑𝐴(𝑦)

Here, 𝑣 is a vector field corresponding to the velocity of the shape. Also, as described before, 𝐴𝑘𝑙

represents the unit test strain, while𝑤𝑘𝑙 is the microscopic fluctuation in base cell 𝑌 .

In the discrete setting, the shape derivative can also be written as a sum of inner products:∑
𝑚 𝑠𝑑𝑚 · 𝑣𝑚 , where 𝑣𝑚 is the velocity on vertex𝑚 of the input mesh and 𝑠𝑑𝑚 represents the shape

derivative at this same node. This enable us to compute the norm of the derivative.

The values of shape derivative are tabulated in Table 1, as a function of the iteration number.

We see that close to the boundary the derivative declines by more than an order of magnitude.

Examining the distribution of nonzero values, we see that these are almost entirely close to sharp

corners of the structure, and are close to zero elsewhere. This suggests that adding degrees of

freedom to optimization is not likely to improve how close one can get to the Hashin-Shtrikman

bound for negative Poisson’s ratios. The bound we observe appears to be very close to a local

optimum for the topology we consider. This does not imply golbal optimality of our structures;

however, a large change in geometry or topology is likely to be needed for further improvement.

5.6 Discussion, conclusions and future work

In our work we have demonstrated nearly complete G-closure for positive Poisson’s ratio –

effectively, attainability of Hashin-Shtrikman bounds for the elastic properties. While for negative

Poisson’s ratio we have not reached the bound, and it remains unclear whether Hashin-Shtrikman
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Table 5.1: Norm of the shape derivatives vector as a function of iteration number

N ∥∇∥2 N ∥∇∥2
1 172.64 11 19.24

2 170.82 12 18.65

3 169.76 13 13.73

4 168.05 14 13.67

5 165.05 15 10.15

6 117.15 16 10.37

7 90.77 17 8.78

8 90.54 18 9.00

9 51.56 19 9.03

10 31.42 20 8.67

bounds are optimal in this case, presented family of structure has broader coverage that any

previously considered family.

The region that is left not covered by our structure is the neighborhood of the left HS bound

with values of Young’s modulus close to 0.5. A number of alternative approaches (e.g topology

optimization) did not allow us to reach the extremal composite that would attain an isotropic

elastic tensor in that region. The questions of the existence of such microstructures, as well as the

optimality of Hashin-Shtrikman bounds in that neighborhood remains unanswered.

The range of achievable elastic properties available with our two microstructures covers all known

two-dimensional isotropic void-material composites (some of them are shown in Figures 3 and

6(A,D)). We are not aware of the regular isotropic structures, random assemblages or general

topology optimization solutions that provide elastic moduli that fall out of the coverage presented

in our work. Therefore, our work suggest the most robust solution of the two-dimensional problem

of inverse homogenization of void material isotropic composites available today.
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Figure 5.12: Possible generalizations of the extremal structures. (A) Structure with an improved strength
due to elimination of stress concentrations (B) Structurewithwide coverage of elasticmoduli at intermediate
volume fractions.

The theoretical structures suggested in our work can be adapted for practical usage. For example,

sharp corners causing stress singularities can be smoothened out (Figure 5.12(A). On the other

hand, a straightforward modification of the structure (Figure 5.12(B)) can dramatically improve

the performance of the microstructures with intermediate volume fractions.

Although the microstructures suggested in this work do not allow straightforward generalization

of the three-dimensional case, similar ideas (laminate-like regions and chirality) can be used

to improve the performance of the earlier developed 3D patterns with programmable elastic

properties [Panetta et al. 2015b, 2017b].

5.7 Chapter Notes - Approximation accuracy

The discretization used in our study introduces errors in the behavior of homogenized elastic

constants, we have compared our approach to a more precise, but significantly slower approach

based on unstructured conforming meshing of structure boundaries.

The counteracting sources of this discrepancy is inadequate stiffness of inclined beam elements
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Table 5.2: Matching regular grid computations and unstructuredmesh computations. Beam thicknesses pa-
rameter for the regular grid is chosen to match the values of the Young’s modulus found on an unstructured
grid

Type Grid 𝐸 𝜈 𝑝1 𝑝2 𝑝3 𝑝4 𝜀

Hexagon

Reg. 0.3553 0.4917 0.75 0.1 1.0 0.77
0.0073

Unstr. 0.3554 0.4873 0.75 0.1 1.0 0.74

Reg 0.3121 0.4595 0.74 0.2 1.0 0.546
0.0173

Unstr. 0.3123 0.4500 0.74 0.2 1.0 0.526

Reg 0.6846 0.1734 0.88 0.1 1.0 0.657
0.0111

Unstr. 0.6845 0.1656 0.88 0.1 1.0 0.642

Triangle

Reg. 0.1408 -0.5154 0.73 0.2 0.7 0.805
0.0098

Unstr. 0.1409 -0.5205 0.73 0.2 0.7 0.787

Reg 0.0760 -0.7337 0.84 0.2 0.65 0.794
0.0051

Unstr. 0.0759 -0.7375 0.84 0.2 0.65 0.769

Reg 0.7685 0.0112 0.93 0.2 0.9 0.846
0.0143

Unstr. 0.7681 0.0010 0.93 0.2 0.9 0.812
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that are represented on a regular grid and replacement of very low stiffness soft phase with a

stiffer material. To compare effective properties achieved by the two discretization, we match the

effective Young modulus for two structures, by varying the beam thickness (𝑝4) while keeping

other parameters the same and compare the effective Poisson ratio. One achieves the accuracy

better than one percent (Table 5.2) on several samples for both structures, which indicates that

the coverage obtained by using the alternative slow method is very close.

This level of accuracy applies only for the situations when the grid refinement is sufficient to

resolve fine features, beam elements and notches between them.
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