Highly Efficient Instruction Scheduling of Real-
time Programs on RISC Processors*

Allen Leung Krishna V. Palem
COURANT INSTITUTE COURANT INSTITUTE
OF MATHEMATICAL SCIENCES OF MATHEMATICAL SCIENCES
leunga@cs.nyu.edu palem@cs.nyu.edu

Amir Pnueli
THE WEIZMANN INSTITUTE
OF SCIENCE
amir@wisdom.weizmann.ac.il

Abstract

Enabled by RISC technologies, low-cost commodity microprocessors are performing at ever in-
creasing levels, significantly via instruction level parallelism (ILP). This in turn increases the
opportunities for their use in a variety of day-to-day applications ranging from the simple control
of appliances such as microwave ovens, to sophisticated systems for cabin control in modern air-
craft. Indeed, “embedded” applications such as these represent segments in the computer industry
with great potential for growth. However, this growth is currently impeded by the lack of robust
optimizing compiler technologies that support the assured, rapid and inexpensive prototyping
of real-time software in the context of microprocessors with ILP. In this paper, we will present
fast (polynomial-time) algorithms for compile-time instruction scheduling, of programs instru-
mented with timing-constraints, on processors with ILP. Our algorithms can be distinguished
from earlier work in that they are guaranteed to find feasible schedules — those satisfying the
timing-constraints — whenever such schedules exist, in cases of practical interest. Consequently,
they can serve as powerful engines and can simultaneously support the “analysis” of the pro-
gram prior to compilation, as well as during compilation once a feasible schedule is identified
via analysis. We will also describe a novel notation, Time_tract, for specifying timing-constraints
in programs, independent of the base language being used to develop the embedded application;
Time_tract specifications are language independent and can be instrumented into imperative and
object-oriented languages non-intrusively. As we will show, the instruction scheduling ques-
tions that arise out of Time_tract specifications are always “tractable”. In contrast, a range of
specification mechanisms proposed earlier yield substantially intractable instruction scheduling
questions, thereby limiting their potential utility. We will sketch a formal and precise comparison
of the tractability and related expressive power issues between Time_tract and some of the extant
mechanisms for specifying properties of timed programs; this will be done using the canonical
framework of timed-automata.

New York University
Computer Science Department
Technical Report Number 723

*Supported in part by an award from Hewlett-Packard Corporation, from IBM corporation, and an NYU
Research Challenge Grant.

1 Introduction

The last decade has seen an explosion in the availability of low-cost microprocessors enabling
a range of new applications. The embedded systems area wherein a microprocessor executes a
control function such as in a hand-held video game or in a cardiac arrythmia monitor, represents
an area with great potential for growth. A significant part of this growth is spurred by
innovations centered around RISC technology [42, 48], instruction level parallelism (ILP) being
a notable example [47], [44]. These “multiple-issue” RISC architectures rely crucially on high-
quality optimizing compilers to unlock their performance potential. In particular, compile-time
instruction scheduling is a singular example of such an optimization [39] ubiquitous to any
modern optimizing compilers targeting an ILP processor.

A significant hurdle to the extensive use of ILP processors in the context of embedded
applications is the lack of automatic tools that support the rapid-prototyping of these applica-
tions [48]. Notably, these tools should be able to enforce timing constraints between specific
program “events” and hence the corresponding instructions. Currently, much of this develop-
ment is done by hand, with the programmer typically designing the program in a language
such as C (or possibly C4+4 to some extent), tuning and running the program to see if the
informally specified timing relationships are satisfied. This process is repeated till a satis-
factory execution is found. While this is quite arduous even for “single-issue” processors, it
is virtually impossible to consider without some form of automatic support, when multiple
instructions are issued in a single cycle. This difficulty is a key limitation in the use of ILP
platforms in the embedded systems domain, motivating the need for launching a substantial
software development effort in this direction [48].

Conventional tools and optimizations are not very applicable to this task since, for example,
they restructure the program quite substantially thereby changing their (programmer) intended
order of execution. This makes typical optimizations untrustworthy to developers of embedded
programs. Changing this situation and making optimizing compiler technology accessible and
applicable is the key to increasing the use of ILP processors within the context of embedded
system development.

In this paper, we take a concrete step in this direction and provide algorithms for instruc-
tion scheduling programs, instrumented with timing constraints. An important aspect of our
approach is that we provide a novel notation Time_tract for specifying timing relationships
between program “points” [1]. Both our instruction scheduling algorithms as well as the in-
troduced specification notation are rigorously presented. The correctness of the algorithms
is established by rigorous proofs, and the Time tract specification language is given a precise
semantics. For loop-free programs, we establish a connection between the model considered
here and the now canonical timed-automata [4]. Using this connection, we will characterize the
expressive power of our notation, in comparison with previous proposals aimed at expressing
timed properties of programs.

A significant property of Time_tract specifications are that they can be instrumented to
encode timing relationships independent of the control-flow of the base program, which can
be implemented in a conventional language such as C or C4++ for example. In this regard,
the results and algorithms presented in this extended abstract are independent of the base

language used to develop the embedded application itself.

Furthermore, as we show here, the instruction scheduling problems derived from Time_tract
specifications are amenable to solution by fast algorithms. Concretely, for the canonical case
that model early RISC processors such as the IBM 801 [44], Berkeley RISC [30], and the Stan-
ford MIPS [27] machine, we provide a fast algorithm that can provably find a feasible schedule
whenever such a schedule exists, for arbitrary basic-blocks [1] of code and Time-tract specifi-
cations. We note that the provable results of this kind are known for instruction scheduling,
only in the context of basic-blocks [40, 9]; however, as detailed in Section 7, previously known
algorithms are applicable in the context where there are no time-constraints [9], or when very
limited form of time constraints in the form fixed individual deadlines are associated with each
instruction [40].

An interesting aspect of instruction scheduling algorithms for basic-blocks is that histori-
cally, in the absence of time-constraints, they have provided crucial building blocks that work
very well in heuristics for scheduling global program regions beyond basic-blocks [15, 32, 39, 46].
We anticipate that this will be the case when we experiment with our algorithms presented
here, in the context of scheduling beyond basic-blocks. As further evidence of the tractability
of the global scheduling problems generated from Time_tract, we shown in this paper that they
can be reduced in polynomial time to global instruction scheduling problems that are solved
routinely by modern optimizing compilers, in the absence of time constraints. Based on this
“evidence”, we also propose extensions to Time tract which share this property while offering
a richer language for expressing time constraints.

1.1 Summary of Main Results

Let us now consider the main results presented in this paper.

1. We introduce a language-independent notation Time_tract for specifying timing con-
straints in programs (Section 2). These constraints permit placing absolute bounds on
the actual times when specific program events occur; additionally, absolute and relative
bounds on the “start-times” and “deadlines” for these events [18] can be specified.

2. We provide a fast instruction scheduling algorithm that runs in time O(rn?logn + I'n)
given a basic block of n instructions and a Time_tract specification of size I'.

For machine models representing early RISC processors [30, 27, 44, 21] this algorithm
will

(a) provably find a “feasible” schedule relative to any Time_tract specification, whenever
such a schedule exits,

(b) and in O(log n) invocations, can find a schedule with minimum “tardiness” when a
feasible schedule does not exist.

Informally, the tardiness of a schedule is the maximum amount of time by which an

instruction has exceeded its deadline. A feasible schedule has zero tardiness'.

1Standard techniques will yield a schedule with minimum overall completion time among all feasible sched-
ules, as a special case of minimizing tardiness.

Detailed definitions of instruction scheduling terminology can be found in Section 3.

3. In Section 4, we formulate the problem of global scheduling, whose complexity is analyzed
in the next section.

4. We propose an extension to Time_tract referred to as Fatended Time_tract (ET_Tract)
that permits specification of relative time-constraints between the times when events oc-
cur; this has to be contrasted with Time_tract where such constraints can only be abso-
lute. For the case of global scheduling, we also introduce the notion of dynamic markers.
We show that the scheduling problems for acyclic program regions with ET _Tract speci-
fications (and dynamic markers) are no harder than their counterparts[10, 39] which do
not involve time constraints at all.

We show (Section 5) that if we admit these more general type of constraints the instruc-
tion scheduling problems arising out of E'T _tract specifications are NP-complete even for
the simplest RISC-machine model discussed above.

5. Finally (Section 6), we introduce the notion of a guarded command real-time program
(RTP, [13]), which is a model semantically equivalent to timed automata [4]. We show that
the scheduling problem for basic blocks under ET _tract specifications is reducible to the
reachability problem of RTP’s. In general, this problem is PSPACE-complete, however for
the class of RTP’s obtained by a reduction from a basic-blocks scheduling problem (which
we term acyclic RTP’s), the reachability problem is NP-complete. In the more general
case of (possibly branching) acyclic regions scheduling under ET _tract specifications,
we cannot reduce the problem to RTP-reachability and, instead, use a new problem:
the realizability problem for RTP’s. The complexity of this problem is the same as the
reachability problem. That is, in the general case it is PSPACE-complete but, restricted
to RTP’s derived from an acyclic-regions scheduling problem, it becomes NP-complete.

In this extended abstract, we only consider loop-free programs. This will be extended in the
full paper to programs with loops?

2 The Time_tract Specification Language

For convenience, we will first present the notions in the context of basic-blocks [1, 39] in this
section. We will then build on this and discuss the context beyond basic-blocks in Section 4.

2.1 An Example Embedded Program

Consider an example program that controls a typical Cardiac Arrythmia monitor in a modern
ICU [51]. In this case, we have a program P specified in an imperative or object-oriented
language such as C or C++, as shown in Figure 1 (a) at the granularity of functional basic-
blocks. The points of the program of interest are denoted by “markers” My, M, ..., Mg
(Figure 1 (b)), between which timing relationships are to be enforced. Markers are associated

?In particular, we will deal with the problem of periodicities and how are markers associated with program
points within loops.

with “events” of interest; by convention, let us associate the event associated with marker M;
to be the execution of the instruction immediately following it?.

Start “
* M1

Gather Data Gather Data

M2
m
M3

[f A [— L ”””” i
: - ; <=30msec) '
: : e I il I
i I ! Il

‘ ‘
‘ ‘
1 :

N Y
=
Al
(a) (b)

Figure 1: An Example Embedded Application Program

M5

<=0.55¢ Sound Alarm

M6

The two constraints of interest, stated informally here and comprehensively developed below
require that:

1. any iteration of the loop to be completed in 30 msec and

2. whenever an abnormality (arrythmia) is detected, software sound an alarm in 500 msec.

Throughout this paper, we will assume that all our formal specifications refer to structured
programs [1], and that all times are expressed in milliseconds.

2.2 Time_tract for Basic-blocks

Continuing with the example, let us consider the basic-block enclosed by markers My and Ms.
For illustration, we will consider this basic block in isolation in what follows, and will discuss
its interaction with the rest of the program in Section 4*. Considering this block in isolation
implies that, at time 0, we are ready to begin the execution of Mj.

Under this simplifying assumption, the constraint that the alarm be activated in 500 msec
can be easily captured as constraints on the times 75 and 74 when the events associated with
markers M5 and Mg respectively start. In this case, the constraints we need to specify are
75 > 0 and 76 + d¢ < 500 where d is the (possibly 0) duration of the event associated with
marker Ms.

Equivalently, with each marker, we can specify a start-time s; and a deadline d;. Informally,
the start-time indicates a lower-bound or an earliest time by which the event associated with
M; can occur, whereas the dual notion of a deadline indicates the latest time when this same
event must complete; as we will see below, deadlines can be absolute or relative.

3We can accommodate alternate conventions which associate the execution of the instruction immediately
preceding the marker to be its associated event.
4In fact, in this example application, all of the constraints can be evaluated strictly on basic-blocks.

Returning to the basic-block in the example of interest, the constraints between markers
M5 and Mg bounding the delay in sounding the alarm can be encoded by absolute constraints
as follows:

s5 = 0;dg = 500

Since the constraints associated with My and Mg are both local to the enclosed basic-block, we
have simplified the overall problem by associating a (virtual) start-time of zero with the start
of this basic block via marker M5. Now, requiring that this basic block execute in 500msec
simply requires imposing an absolute bound on the deadline dg < 500 (from a start-time of 0

for Ms).
2.2.1 The Notation

As is standard, we assume that the program has a set a set of program points [1] p1,p2,...pa
Thus, given a program point j, we have a well-defined notion of an instruction (5 — 1) that
precedes it and an instruction j that succeeds it>. A set of markers My, M, ... M, will be
associated with some selected subset p of the set of program points, which identify the points
in the program associated with “events” of interest.

Timing relationship between markers are specified as a family of constraints C on the
scheduled-time ;, start-time s; and deadline d; associated with marker M;. For convenience,
in what follows, we will directly associate constraints with instructions rather than markers
without loss of generality, since there is one-one correspondence between them.

In general, the constraints in C can be absolute or relative as follows. Absolute constraints
in Time_tract on instruction /; are of the form a < 7; < b for non-negative integers a and b. Or
equivalently, we can also have constraints on the start-times and deadlines of the form s; > «a
and d; < b for non-negative integers a and b. Informally, this implies that the event associated
with marker M; must occur in the interval of time (a,b) where a < b. For convenience, we
refer to constraints of this form as type-1 constraints.

Finally, we also permit relative constraints between the start-times of various markers, as
well as the deadlines. The most natural case is one in which only one variable occurs on each
side of the inequality, i.e., s; > s; + aj;; similar constraints can hold between the deadlines as
well. We note that in Time_tract, start-times are only related to other start-times, whereas
deadlines are only related to other deadlines. We refer to these relative constraints as type-2
constraints.

Relationship Between Type-1 and Type-2 Constraints While type-2 constraints seem to
permit a more general framework for specifying timing relationships, they are in fact equivalent
to type-1 constraints. As shown in Section 5, we can always reduce a mixed system of type-1
and type-2 constraints of size I' with n variables in O(I'n) time to an equivalent system of
type-1 constraints alone.

Actually, this equivalence and all our instruction scheduling algorithms and related claims
are valid even if the relative constraints are further extended as follows®. Consider constraints
of the from s; > a-s+a; a = (ayj,...au;), s = (s1j...5,;) and a = (ayj,...a,;) are all

®As usual, we assume that all the n instructions/statements of the program are labeled from the set 1,...n.
6Except that the complexity while remaining to be in P, increases.

non-negative rational vectors of length p, and «;,a; = 0. Informally, this allows us to relate
the start-time of M; to a linear combination of that of the other markers. We can similarly
have deadline constraints of the form d; < 3-d + b.

3 Instruction Scheduling Algorithms

We are now ready to introduce our primary technical result, namely an algorithm with provably
good properties for scheduling basic-blocks derived from programs annotated with Time tract
specifications. In the interests of ease of exposition, we will first develop the algorithm for
the restricted case wherein instructions only have type-1 constraints only. Subsequently, in
Section 3.4.2, we will use this as “black-box” with well-defined and proven properties, to solve
inputs with type-2 Time_tract specifications as well.

3.1 An Example and Problem Definition

Let us consider the example basic-block shown in Figure 2 below, denoted as a directed acyclic
graph (DAG). The nodes of this DAG are the set of instructions in the original program I, with
the edges denoting data-dependences [1, 39]. Let us consider scheduling it on a processor with
a single pipelined functional unit, with two stages; examples include early RISC processors
mentioned above [44, 30, 27]. A directed edge (I;, I;) implies that due to data-dependence,
instruction I; must complete executing on the processor before I; can start (we denote this as
I; T I;). This is reflected in schedule 57, wherein all data-dependence relations are obeyed.

Figure 2: An Example Basic-block

In keeping with conventional modeling in this domain [9, 40], each instruction I € I takes
one cycle to execute. Additionally, load/store instructions take an extra cycle due to memory
latencies”. This extra cycle is the inter-instructional latency associated on the edges of the
DAG and specified as the function w : I x I — N. As shown in Figure 2, w(/Is, Is), w(l4, I5)
and w(ly, I5) are all equal to unity, whereas all other inter-instructional latencies are zero. Due
to this latency, instruction /g cannot start till one cycle after I3 completes (in one cycle). This
is indicated by the idle cycle, denoted by ¢, in step 7 of the schedule presented in Figure 3,
when no other eligible instruction is available, and hence the pipelined functional unit is idle.
Similar delays apply to instructions I3 and [5 caused by the latencies due to instruction Iy,
during step 4.

“Here, memory latency refers to a cache hit; misses can result in substantially higher latencies.

Furthermore, in our example, since there is only one functional unit in the target, no more
than one instruction can be scheduled on any cycle of the target; this is referred to as a resource
constraint in scheduling parlance. In general, we can have num; units of type [—types could
be floating point, fixed point and branch prediction for example. Each node/instruction [
is to be executed on a functional unit of a particular type specified via the function type(7).
Furthermore, a unit of type [can be pipelined to have k; + 1 stages for a non-negative integer
;. Now, give an instruction [such that type(l) = [, any edge starting at I (of the form (7, 1'})
can be labeled by an inter-instructional latency no greater than k;.

Figure 3: Example Schedule

Returning to the example with markers M; and M, we have absolute Time_tract constraints
sy = 1 and dy = 2, as well as the relative constraint d; < dy. The absolute constraints force
instruction /4 to be scheduled at time 2 in S;. Given the resource constraint imposed by the
single pipeline, we cannot schedule instruction /5 at time 2. Therefore, in order to satisfy the
relative constraint d; < dy, the only choice is to schedule I3 at time 1.

Additionally, for each marker say M; in our example, we permit a start-time constraint s;
and a deadline constraint d;. In case an instruction [is missing a start-time constraint, s; = 0;
similarly, if the deadline is missing, d; = s + (k + 1).n where s is the largest of all the absolute
start-times and & is the largest inter-instructional latency in the input®. We can also have a
range of relative time constraints as stated before, between pairs of markers and C denotes the
entire family of start-time and deadline constraints.

Given an instance of the scheduling problem specified as above, a feasible schedule is an
assignment of time o for initiating each instruction I € I such that,

1. whenever (I;, I;) is defined and labeled by an inter-instructional latency w(/;, I;), o(1;) >
o(1) + (T 1) + 1

2. the number of instructions with o(I) = j and type(l) = [for all j and [is no more than
num;; and

3. there exists an assignment to s; and d; such that for all ¢, s; < o(1;) < d; is satisfied.
In section 3.4.2 we’ll discuss efficient methods for separating C from the rest of the
inequalities.

An initial objective of instructional scheduling is to find a feasible schedule such that
max{o(l)} over all instructions I € I is minimized; this gives us a feasible schedule with mini-
mum overall completion time® Another objective of interest here and one which we can optimize

8Essentially, choose the deadline to be a reasonably large value by which the unconstrained instruction is
guaranteed to complete.

“Note that dropping the time constraints will yield a schedule with minimum overall completion time—the
goal of classical instruction scheduling [39].

using our algorithm is the tardiness of a schedule S. Let Tar(l;,S) = maz{(c(l;) +1—d;,0}
be the tardiness of instruction [I; in S. Then, the tardiness of S is the maximum value of
tardiness over all instructions /; in S.

Returning to the example DAG introduced above in Figure 2, we note that by interchanging
the order of execution of instructions I3 and [5 in schedule Sy (Figure 3), we get a feasible
schedule Sy with a smaller completion time as shown in Figure 4; it is easy to verify that S
has optimum completion time for the given example.

Figure 4: A Feasible Schedule with Minimum Completion Time

3.2 A Framework for Instruction Scheduling

In the past, a canonical framework has been developed for scheduling basic-blocks of instruc-
tions [26, 9, 39], and beyond [15]. This framework has the substantial advantage of being
validated in practice in product quality compilers for RISC processors. Our algorithms also
uses this framework for scheduling using Time tract specifications.

The canonical framework has the following steps.

1. For each I € I, compute its modified deadline and rank the instructions in non-increasing
order of their modified deadlines, with ties broken arbitrarily. Call the resulting (pri-
ority) list of instructions L. Intuitively, the ranks will help distinguish the instructions
so that those that are “likely to” help minimize the completion time and/or make the
schedule feasible schedule are given priority; this step is the heart of our construction
and Section 3.3 and 3.4 are dedicated to its description and properties.

2. Greedily list-schedule and construct a schedule ¢ : I — IN from L, as follows: An
instruction I; is termed ready at time ¢ iff

(a) o(l;) +w(l;, [;) + 1 <t for all predecessors [; of I;, and
(b) S; § t

For each successive time step ¢, list scheduling scans the priority list £ looking for ready
instructions. FEach ready instruction /; is assigned to a functional unit of type type([l;),
as long as one remains available at the time step. Instructions are removed from the
priority list as they are assigned, and this process repeats until all the instructions have

been scheduled.

The challenge and novelty of our work is in constructing an appropriate rank function,
which is also the most computationally intense part of this framework; we will consider this
next.

3.3 Computing Ranks

Our approach to computing ranks for the instructions is via computing modified deadlines
as detailed below; the modified deadlines will serve as ranks. Our proposed algorithm will
compute modified deadlines for an arbitrary number of pipelines and arbitrary latencies. How-
ever, for simplicity we’ll consider only the case where there are m identical pipelines and all
instructions are of this type.

The auxiliary routine backschedule is used to construct a backward schedule. The ideas
behind this subroutine and its description were first presented in [40]. The routine

backschedule : T x 2" x (I - N) - N

takes an instruction /;, a set of instructions I’ C I which may affect the deadline of I; (which in-
clude the successors of I; and instructions independent of [;) and a set of preliminary deadlines
d on I, and using this information, computes a new modified deadline for I;. The backward
schedule is constructed in the following manner: first, assign each instruction I; € I’ a lexical-

A

graphical rank (@(1;, 1;),d;) where @ is defined as

([Z []) = w([i,[j) if I, C []‘

w(/i,
w(l, l;) = —oo otherwise

Notice that this definition of @ generalizes that of [40]. We then construct a list L from [’
by sorting the instructions in non-decreasing order of this rank, and proceed to schedule the
instructions in the order of L with ties broken arbitrarily. For each [; € L, we assign to it
the largest time step ¢ such that (1) ¢ is consistent with [;’s deadline, i.e. ¢ < Jj, and (2) no
more than m — 1 previous instructions have been assigned to the same time step. The effect
of the rank is that instructions of larger latencies from [; are considered first (ties are broken
by deadlines) and instructions independent with I; are considered last. Finally, we assign
to I; the largest time step ¢ such that ¢ is consistent with the deadline of [; and respecting
the resource constraint as in (1) and (2) above, and moreover, (3) ¢ is consistent with the
precedence constraint and latencies, i.e. for all j € I’ t +w([;, I;) +1 < o(j) in the backward
schedule. The new modified deadline of I; is then ¢ 4+ 1.

Handling individual deadlines For simplicity, let us first suppose that the given problem
instance only has absolute deadlines. We can obtain a set of modified deadlines using instruc-
tions I;’s successors (which we denote as the set suce;) and their already computed modified
deadlines as input. A derived deadline d is any function that assigns non-negative integer val-
ues to the instruction. A derived deadline is consistent provided that in every feasible schedule
o(l;) < d; and vice-versa.

That is, we compute the modified deadlines d. as
d: = backschedule(/;, succ;, d)

where d is the modified deadlines of I;’s successors. This computation can proceed in re-
verse topological order of the precedence. Intuitively, the backschedule procedure attempts to

schedule all the successors of I; on the processors so as to ensure that they meet their (modi-
fied) deadlines. In order to satisfy this condition, it starts with the sink nodes (those without
any successors) and works inwards in topological order. For example, it would start with /6
followed by I3,15,12 and 4. Intuitively, if an instruction [; has a successor [; that must
complete by time ¢ and the current deadline of [; is greater than ¢ then d; can be “pushed
forward” without changing the problem.

Instruction | Deadlines | Successors

I 7 {1l I3, 14, I5, I}
Iy 4 {3, 15, Is}

I3 6 {ls}

Iy 5 {3, 15, Is}

Is 8 {ls}

Is 3 {1

Figure 5: Example Deadlines for Basic Block.

For example, suppose we take the DAG presented in Figure 2 and impose on the instructions
the deadlines in Figure 5. We can see that a possible processing order for the instructions
is Ig, Is, I3, 14, I3, I,. Given the resource constraint of one pipeline, Figure 6 illustrates the
backward schedules constructed from running the backschedule subroutine.

Instruction | Modified Deadlines Backward schedules

0|12 345|167
Is 8 Is
Is 6 Is | & | I
I3 5 Is | ¢ | I
14 4 I | I3 | Is | ¢ | Ig
15 4 Ly | I3 | Is | ¢ | Ig
I 1 Lo | L |1Iy|1s|I5| 9|1

Figure 6: Example Modified Deadlines and Backward Schedules.
Modified deadlines computed in this manner have an interesting property: all feasible
schedules that meet the original deadlines must also meet the modified deadlines. Stated

formally, we can easily prove the following useful property:

Lemma 1 Let d} = backschedule([i,succi,cZ). If d is consistent then a schedule o meels all
its original deadlines d; iff all instructions I; also meels the deadlines d..

10

Handling individual start-times and deadlines In the presence of both individual start-
times and deadlines, the modified deadline computation scheme presented above will have to
be generalized to take independent instructions into account. We say that two instructions [;
and [; are independent iff I; Z I; and [; iZ ;. We denote this condition as I; || I; and set of
instructions independent of I; by indep;. Intuitively, the deadline d; of I; have to made smaller
in a schedule if some instruction [; independent of /; can only start after d;. This can happen
if there is not enough idle time slot after d;.

Instruction | Modified Deadlines Backward schedules
0|12 3|45 |6|7
Iy 3 L\ L |1z 15| ¢ s
I L I35 9|1
I 1 Lo | L\ L ||| 9]l

Figure 7: Example Modified Deadlines and Backward Schedules with s, > 4.

To illustrate, let’s take the running example in Figure 2 with the deadlines presented in
Figure 5. In addition, we impose the start-time constraint of s, > 4 to the problem while all
other instructions are available at time 0. Observe that [, must be scheduled by time step 2 in
all feasible schedules or else there will not be any available time slots remaining to schedule /5.
This fact is reflected in the enhanced backward schedule of I4 constructed from the successors
and instructions independent of I; (Figure 7). It is easy to verify that the backward schedule
constructed yields dj < 2; contrast this with dj < 3 in Figure 6 when no start-times are
involved.

In general, in the presence of start-times, any pair of independent instructions /; and I;
may exert “pressure” on each other forcing each other to be scheduled earlier in a feasible
schedule. This phenomenon can be stated formally as follows. Define

d'(1,1) = backschedule(7;, succ; U {1 € indep;|sp > t},aAl)
and d is consistent as before.

Lemma 2 If for some time step t, d'(1,t) < t then I; must meet the deadline d'(i,1) in all
feasible schedules.

Proof: Define the modified deadline on 7, d; as follows:

d: = gngl backschedule(/;, suce; U {1y € indep;|sp > t},aAl)
€

Consider the deadline r; = backschedule([i,succi,az). If di = r; the theorem is immediate

from lemma 1. Now suppose d; < r; and consider the backward schedule computed for
d: = backschedule(z, S, d) (for some set S) and the backward schedule computed for r;. We

11

Backward schedule A
wi (i)

B

0}

Backward schedule B

d'(i) inst. independent with i with start time >= d'(j)

Figure 8: Proof of lemma 1.

know that the independent instructions [€ S must be the last to be backward scheduled.
Furthermore, if d; < r;, the time slots between [d....r;) must be filled with these independent
instructions. We know that for all I, € S,¢ || k, the start-times s, > d., from the definition
of set S. Figure 8 illustrates this phenomenon. In this figure, the backward schedule A
corresponds to that of r; and the backward schedule B corresponds to that of d.. The shaded
region must contain only instructions [such that I; || .

If I; were to be pushed back in any schedule, then at least one of the instructions [in the

time steps [d....r;) will have to be moved before d., by a pigeon hole argument. But this will

violate the start-time constraint of this instruction /. Thus the lemma holds. []
This lemma extends the preliminary statement in lemma 1 which held only for deadlines,
to include start-times as well.

Suggested Approach to an Algorithm The above lemma hints at an iteration scheme
for computing the modified deadlines: iteratively compute d'(7,t) for all ¢ and ¢ whenever the
deadlines of suce; and/or indep; has been altered until all the modified deadlines become sta-
ble. We say that the modified deadline of an instruction has stabilized if it cannot be decreased
further without violating the start-time constraint of some instruction. Instruction with stabi-
lized deadlines are called stable. Clearly this process will terminate since all numbers involved
are integral and bounded. However, this naive process may be very inefficient. Instead, we
will organize the computation of modified deadlines in the following fashion, yielding a very
efficient scheme while retaining this intuition.

Algorithm 1 (Modified Deadlines Computation)

1. Run the algorithm from [40] and compute the modified deadlines d' using the initial
deadlines d. If in this step and in any other subsequent steps s; > d. for some 7, we can
stop immediate and conclude that no feasible schedule exists.

2. Sort the instructions in non-increasing modified deadline order and process the instruc-
tions subsequently in this order.

12

3. For each instruction [; to be processed, compute the set of successors suce; and the list
of independent instructions indep; sorted in the order of non-increasing start-times s.

4. (a) For each start-time ¢ in the list of independents, compute the value of d'(7,t) using
the current modified deadlines as input. If for some ¢, d'(1,t) < ¢, set d} to be
min(d},d'(1,1)).

(b) Notice that step (a) can be computed efficiently by first constructing a backward
schedule Sy from only the successors suce;, then incrementally add the new sets of
independent instructions {1 € indep;|s; =t} to Sp.

5. Repeat from steps (2) to (4) to verify that the deadlines have indeed been stabilized. If
any of the deadlines change during this iteration also output “infeasible schedule.”

6. Return the set of modified deadlines d'.

3.4 Main Properties of Our Algorithm

Let us start with the following technical lemma before establishing the most interesting prop-
erties of the algorithm.

Lemma 3 Let s C 1 be a set of stable instructions and let I; be some instruction with the
largest current modified deadline in the set 1 —s. Then d; will be stabilized after running step
(4) of algorithm 1 on I;.

Proof: Since I; C I; implies d; < d;, we know that all successors of I; are stable. Consider
the backward schedule(see Figure 9) that computes the new deadline upper-bound d,,.,,(¢) with
dpew(1) < d;: ie. for some t,

dpew (1) = backschedule(1;, suce; U {1y € indep;|sk > t})

The backward schedule can contain three different types of instructions: (a) successors of [,
all of which are stable; (b) instructions /; independent of I; that are stable; and (c) instructions
I; independent of [; that are unstable and with start-times s; > d,c,,(¢) and deadlines d; < d;.
Furthermore, the backward schedule from time step at from d,.,(¢) to d; + 1 must be filled
completely with instructions of type (b) or type (¢): type (a) instructions cannot appear in this
region due to the initialization done in step (1) of the algorithm. Of these, only the deadlines
of type (c¢) instructions can be decreased. It can be seen with a pigeon hole argument that
decreasing these deadlines cannot change d,,..,(7) if a feasible schedule exists. Thus d,.,(z) has
been stabilized.

Now assume that a feasible schedule exists. Since algorithm 1 always choose an unpro-
cessed instruction I; with the largest current modified deadline, by applying the above lemma
inductively we know that all instructions are stable after they have been processed in step (4).
Step (6) of the algorithm makes sure that the deadlines have indeed been stabilized: i.e. if
any changes occur during this iteration, we can assume that from the definition of stability

13

d @ (i)

N/

. . . successors of i
instructions |

independent of i
d() <= d(i)
s(j) >=d (i)

new

Figure 9: Backward schedule for ¢ in the proof for lemma 3.

no feasible schedule exists. If this does not occur and stabilized deadlines are computed, we
can then construct a priority list and perform list scheduling. We can further prove that this
process is optimal if we are scheduling on one pipeline and (0,1)-latencies:

Theorem 4 [f there is only one pipeline and if the individual latencies are restricted to {0,1},
the rank algorithm and list scheduling will find a feasible schedule iff one exists.

Proof: Suppose that given a feasible instance of the problem the algorithm constructs
an infeasible schedule o. Since we know that the greedy list scheduling algorithm will not
violate precedence, resource or start-time constraints, some instruction /; must have failed its
deadline constraint di. By lemma 2 we know that k& will also have failed the modified deadline
d,.. Without loss of generality, consider the first instruction £ in the schedule that fails its
modified deadline. In particular, consider all the time steps from 0 to o (k).

We say that a time step ¢ is free if it is idle or if the instruction [; scheduled at the time
step has a modified deadline d; > d},. Otherwise, we say the time step is bound. There are
four cases to consider (see Figure 4'9):

case 1 — The segment 7" from 0 to o(1}) is bound (i.e. scheduled with instructions such that
for all I; € T, d; < d}). By a pigeon hole argument we can show that at least one of
I; € T will miss its modified deadline in all schedules, contradicting the assumption that
1 is the first instruction to miss its deadline.

case 2 — The segment 7' from 1 to (/) is bound but time step 0 is free. This can only
happen in the greedy schedule if for all /; € T', s; > 1. By a similar pigeon hole argument

107, is notated as simply k in this figure.

14

idle or with d’(i) > d'(k)

) i A3
| ! /‘

k

R T forallxinT d'(x)<=d'(k) - TEF T forallxinT d'(x)<=d'(k) -
idle or with d'(i) > d'(k)

at least two time steps that are idle or with d'(i) > d’(k)

N i ,

‘ b K

o “ooT forallxin T d'(x) <= d'(k) -’

1Y
/ T forallxinT d'(x) <= d'k) - t1 ot
time t d'() <=d'(k)

Figure 10: The four cases in the proof of theorem 4: instruction £ is the first to miss the
deadline and free time slots are shaded.

at least one of I; € 1" will miss its modified deadline in all schedules. This case also
contradicts the assumption.

case 3 — There exists a bound segment 7' from time ¢ to o(/y). Furthermore, time steps ¢ — 1
and ¢t — 2 are free. By greediness this implies for all I; € T', s; > t. But then by a pigeon
hole argument at least one of I; € T" will miss the deadline.

case 4 — There exists a bound segment 7' from time ¢ to o([;). Furthermore, time step
t — 1 is free but time step ¢ — 2 is bound. By greediness this implies that for all I; € T,
(LT L Nw(l,e) > 1)V s; > t. By the definition of the modified deadline and lemma 2
we know that either (1) one of /; € T must miss the deadline in all schedules, or (2) [,
must miss the deadline, thus contradicting that [is the first to miss the deadline.

This completes the proof. []

Our algorithm also yields a similar theorem when applied to the problem of precedence
constrained 2-processor scheduling with individual start-times and deadlines[18]. The proof of
this result is similar and is omitted.

We can invoke the previous algorithm in a binary search mode to locate either the minimal
makespan and/or the minimal tardiness schedule, which takes at most O(logn) trials. Let
Smaz denote the maximal start-time, then any feasible schedule must have makespan between
Smaz + 1 and S, + 2n. Thus we have the following corollary:

Corollary 5 For the restricted instances of one-pipeline and (0,1)-latencies, the minimal
makespan schedule can be computed with O(log n) invocation of the rank algorithm. Similarly,
the minimal tardiness schedule can be computed in the same time bound.

15

3.4.1 Running Time

We have already shown the correctness of the rank algorithm and its other properties. Let us
now analyze its running time.

Theorem 6 Algorithm 1 is correct and terminates with stabilized modified deadlines or with
“infeasible schedule” as outpul in time O(n®logn) for an arbitrary number of pipelines, laten-
cies, and type-1 constraints, when the input is given in transitively closed form.

Proof: Step (1) of the algorithm takes time O(FE'logn) as shown in [40], where E’ is
the number of data-dependence edges in the transitively closed DAG!'. Sorting the modified
deadlines and the start-times in steps (2) and (3) can be performed in time O(nlogn). Back-
ward scheduling with the successors in step (4) takes a total time of O(FE’logn). In each
iteration of step (4) the set indep; can be added to the initial successors backward schedule
in time O(nlogn). Finally, step (5) just reiterates the algorithm once so it does not alter the
complexity. The time is bounded by the iteration in step (4), and is thus O(E’logn + n*logn)
or O(n?logn).]
3.4.2 The Algorithm for Time _tract Specifications

Utilizing the above algorithm as a “black-box,” it i1s now possible to reduce type-2 constraints
described in section 2.2.1 to type-1 constraints. In fact, w.l.o.g. we’ll consider general (mono-
tone) constraints of the form s; > oo-s+aand d; > 3-d +b where o, € Q}, a,b € Q with
the restriction that a; = 0 and 3; = 0'2.

Partition the constraints into start-times and deadlines inequalities. Observe that the min-
imal solution for s and the maximal solution for d in IN" are well-defined if they exist. For
the general monotone constraints, the optimization problem can be readily formulated as a
linear programming problem and solved using linear programming techniques. For the type-
2 constraints of interest to us, the decision question is reducible to computing single-source
shortest paths. Given I' inequalities on n variables this problem can be solved efficiently using
the Bellman-Ford algorithm in time O(I'n).

4 Global Scheduling Issues

We now refocus our attention on global scheduling.

As is standard in conventional global scheduling [3, 10, 15, 46], we treat separately loop
scheduling [46, 32] and acyclic program regions scheduling [3, 10, 15]. We advocate taking this
approach also for the case of scheduling programs instrumented with Time _tract specifications.
In this extended abstract, we only discuss key issues in scheduling acyclic program regions;
related expressive power questions will be discussed in Section 6. Details of loops will be
deferred to the full paper.

The input to an acyclic global scheduler is very similar to the that for basic-blocks defined
in Section 3.1 with a few essential extensions. First, because of branching, we must also be

11Please note that transitive closure is a standard preprocessing step and the E’ term plays a role in the
running times of conventional instruction scheduling algorithms as well [41].
12Q, is the set of non-negative rationals.

16

sensitive to the program’s control-flow in addition to data-dependence. In particular, moving
instructions out of their initial basic-blocks past program branch and merge points [1] in the
CFG lead to “side-effects” which require special attention and add to the complexities.

SPECULATION

REPLICATION

@D - Branch Instruction @ < Instruction being moved

Figure 11: Speculation and replication.

A significant issue that arises in the context of moving instructions globally is the effects
of speculation and replication. In either case these movements may require expensive repair,
leading to overheads, as detailed in Figure 11; for a complete discussion of these issues, please
see [15].

In this figure, the top row details code motion where the instruction goes from being executed
sometimes since it is on one of the two conditional branches, to being executed always after
the code-motion. This type of an execution is referred to as speculative. The complementary
situation i1s shown in the two figures in the bottom row. In this case, after code motion,
instruction [is executed only when the left branch is taken, whereas previously, it is executed
independent of the branch. The solution to preserving the semantics of the program in this
case is to make a copy of I on the right branch as well — hence, the term replication.

Both of these side-effects can lead to extra costs and consequently the designers limit the
degree to which instructions can cross basic-block boundaries.

In our global scheduling model, we will permit instructions that are not branches or merges
to be moved without any restrictions. In contrast, branches (and merges) are treated differently
since the corresponding overheads can be prohibitive [16]. Consequently, current approaches
to scheduling is to limit the relative reordering of these instructions completely. We will retain
this restriction in our subsequent discussion.

Assume an acyclic (possibly branching) program P with instruction set I. Such a program
can be represented as an acyclic directed graph (the control flow graph) in which each node is
labeled by a single instruction. Branching instructions label nodes with two departing edges,
while merge node have two entering edges. The start node has a single successor but no
predecessor, while the stop node may have several predecessors (if it is also a merge node) but

17

no successors. All other nodes have each a single successor and a single predecessor. We refer
to the branching, merge, start, and stop nodes as the pivotal nodes in the program.

A schedule for program P is another DAG S such that there is a 1-1 type-preserving cor-
respondence between the pivotal nodes of P and the pivotal nodes of S. For simplicity, we
assume that they are called by the same names (or same indices) in both graphs. Type preser-
vation means that a node n has the same number of successors and predecessors in P as it
has in S. Nodes in a schedule may be labeled by sets of instructions, implying that all the
instructions labeling a node are initiated at the same execution cycle. The instructions of S are
partitioned into I=1U I', where I are duplicates of the instructions of P, while I’ are repair
instructions intended to undo the effect of some preceding instructions. The need for more
than one copy of an original P-instruction and for repair instructions rises due to speculative
code motion, which is allowed in our model. It is required that the instruction labeling a start
or a branching node n in P is included in the label of n in S, and that these instructions have
precisely one copy in 1. We also disallow including in a single S-label two instructions which
assign values to the same variable.

For a given set of inputs, we can simulate the execution of S by performing at each cycle all
the instructions labeling the current control node, and branching whenever we reach a branch
node. In such a simulation, we should take care that the execution of an instruction I with
latency 1 should have its effect (e.g., a value assigned to a variable) with the appropriate delay
of one cycle. A schedule S is considered to be feasible schedule of program P if

1. Each label of S contains no more than num,; instructions of type [.

2. For each set of inputs, the final state reached by program P is identical to the final state
reached by simulation of S on these inputs.

3. For each original instruction I € I, no simulation run of S should execute more than a
single copy of I.

For the case that timing constraints are associated with program P, we say that the P-feasible
schedule S respects the timing constraints if it also satisfies

4. For each timing constraint o(/;) — o(I;) ~ k;; (where ~ is < or >), and each simulation
run of S in which some copy of instruction /; was executed at cycle 7; while some copy
of instruction [; was executed at cycle 7;, it is required that

T — T [{?”

5 ET_Tract and Notation

Starting with the case of basic-blocks, we consider permitting constraints on the time differ-
ences between the execution of instructions associated with markers (relative time constraints).
Given instructions I; and /;, we allow constraints of the form (o(/;)) — (o(1;)) < ¢j;. We refer
to this extended specification language by the name of ET _tract. We note that this small exten-
sion of the language causes the problem of determining the existence of a feasible schedule to

18

become NP-complete even for the following very restricted family of constraints, basic-blocks
and processor.

Theorem 7 Finding feasible schedules is NP-complete for E'T tract specifications even for the
case of a single non-pipelined processor (k =1), basic-blocks which have no data-dependences,
and only relative time constraints of the form o(I;) — o(l;) < ¢;;, where all non-zero values
of the constant c; ; are equal to one another.

We note that in contrast, with arbitrary Time_tract specifications, we have a fast polynomial
time algorithm for instruction scheduling detailed before, which can cope with (¢) arbitrary
data-dependences, (i¢) two-stage pipelines (Theorem 4).

5.1 Dynamic Markers and Global scheduling

Let us further consider global scheduling as described before for acyclic regions. In particular,
we wish to permit the possibility of a marker in this context to denote an event which occurs
when an instruction is executed while a certain data-dependent predicate holds. For instruc-
tions I;, I;, and predicates p;, p;, we allow constraints of the form o(I; Ap;) —o(I; Ap;) < ¢ j.
We refer to the conjunction I; A p; as a dynamic marker. In ET _Tract, we permit predicates
which, given a global schedule for the acyclic program (region), can be verified in NP. So, for
example, p; and p; can be arbitrary propositional formulas, or a system of integer linear con-
straints on the program variables. Of course, the programmer can involve auxiliary predicates
which are not part of the program itself as parts of a dynamic marker.

Comment about NP membership: We advocate limiting the power of predicates to those
that can be determined in NP since classical global scheduling problems—most of which are
NP-complete—have “industrial strength” heuristics. Therefore, membership in NP is pre-
liminary theoretical evidence of being amenable to such techniques and hence tractable in a
pragmatic sense.

6 Expressive Power and Timed-automata

To compare the approach presented here with other time analysis approaches, we show how
to formulate the scheduling problems we consider in this paper in terms of timed automata
[4]. The presentation of timed automata adopted here is a variation on the model of guarded-
command real-time programs presented in [13].

We assume a finite set of system variables V which can be partitioned into V=D U C,
where D = {xy,...,x,,} is the set of discrete control variables, ranging over the finite domain
D =4{0,...,d} and C = {ty,...,1,} is a set of clocks, ranging over the natural numbers IN.
A state s is an interpretation of all system variables by values of their corresponding types,
ie., s[z;] € {1,F} and s[t;] € N, for every 7 € {1,...,m} and j € {1,...,n}. We denote by
INT the set of all positive integers. For a state s and delay §, we denote by s 4 § the state
s" obtained by adding ¢ to all clocks. That is, §'[z;] = s[z;] and &'[t;] = s[t;] + 9§, for every
ie€{l,...,m}and 5 €{1,...,n}.

19

The sets of state predicates ¢ and D-expressions E are defined inductively by the grammars

1) = ri=c | <a | a<t; | ti+a<ty+b | —¢ | 1 A o
E = T | c | if ¢ then K else F

for discrete variable z; € D, clocks {;,1; € C', and natural constants ¢ € D and a,b € IN. State
predicates and D-expressions are evaluated over states in the usual way, and we denote by s[¢]
and s[F] the result of such evaluation. We write s |= ¢ to indicate that s[¢] = T.

A (guarded command) real-time program (RTP) P = (V, 0, G, ¢") consists of
o V =D UC — the set of system variables.

o O — the wnitial condition, a state predicate characterizing all the initial states of the
program. It is required that @ — ¢; = 0, for every j € {1,...,n}.

o (7 — the program body. a set of guarded commands. Each guarded command is of the
form

¢ — (ZL’l,...,l’m,tl,...,tn = E17---7Em7f17---7fn)7 (1)

where 1) is a state predicate (the guard of the command), followed by a multiple assign-
ment assigning new values to all system variables, such that f; is either ¢; or 0. Thus, a
clock that is not reset to 0 retains its previous value. Assignments of the forms z; := z;
or t; :=1; are omitted from the presentation of concrete RTP’s.

o ¢° — the program invariant, identifying a condition which all program states should
satisfy. We require that ¢” be past-closed; that is, for all states s and delay § € N*,
s+ = ¢ implies s = ¢°.

For § € IN, we say that the state s’ is a d-successor of state s, denoted by s L>P s', in one of
two cases:

(1) either § > 0, and s’ = s + § satisfies ¢, or

(2) § = 0, and there exists a guarded command of the form (1), such that s = ¢, s'[2;] =
s[F;] and §'[t;] = s[fj], for every ¢ € {1,...,m} and 5 € {1,...,n}, where s[0] = 0.

A computation of an RTP P is an infinite sequence of states and nonnegative delays
50 51 52 53
K=8) — =75 81 — 75 S2 — 25 83—, """,

starting with an initial state (so = ©), and proceeding by legal P-steps (s; i>p Sit1, for
every ¢ = 0,1,...).

The Reachability Problem for RTP’s

A reachability problem consists of an RTP P and a state predicate ¢ over the system variables
of P. The problem is to decide whether there exists a P-computation x : Sgp,81,... and a
position p € N such that s, | ¢. As can be inferred from the analysis presented in [4], this
problem is PSPACE-complete.

Encoding Instruction Scheduling Problems as RTP’s

20

We will show that any instruction scheduling problem (ISP) can be encoded as an RTP reach-
ability problem. Here we restrict our attention to the case of basic blocks scheduling and M
functional units, all of the same type.

We assume that an ISP is presented by a dependency graph (I, £), where I = {Iy,...,[,}
are the program’s instructions, and £ C I x I is a set of edges, denoting the dependencies
between the instructions. The latency information is presented by the latency function w. Also
given is a parameter M, specifying the number of available functional units.

The timing constraints are partitioned into the set of lower-bounds £ and the set of upper-
bounds U. Each lower-bound constraint has the form ¢; — o; > L;;, where o; and o, are the
initiation times for the execution of instructions I; and I;, respectively, and L;; € IN. An
upper-bound constraint has the form o; — o; < U;;, where U;; € IN.

The dependency conditions can be integrated into the lower-bounds constraints by defining
an extended lower-bound set L1 which consists of the original lower-bound constraints £, to
which we add for each dependency (/;, [;) € E the constraint o; — o; > 1 + w(1;, 1;).

Given an 18P Il = (I, K, w, L,U, M), we will show how to encode it as an RTP reachability
problem (P, ém).

As system variables we take Vi =wu,zy,...,2, U, t1,...,1,,
D c

consisting of the funclional unit counter u, instruction stalus variables z4,...,z,, indicating
the initiation status of the instructions, and instruction clocks 1y,...,1,, measuring the time
since the initiation of the corresponding instruction. The clock {5 measures the time from the
beginning of the execution of the program. The variable u ranges over the domain {0,..., M},
while xy,...,z, range over {0, 1,2}.
The initial condition is givenby Om: u=M A zy=---=2,=0 A to=1, =--- =
l, = 0.
The body: With each instruction I;, y = 1,..., ¢, we associate the following commands:

g5 u>0Az;=0A A (x;, >0ANt; > Lij) — (u,zj,t; = uw—1,1,0)

(oj—0i>Lij)eLt
gi: ri=1ANt;=1 — (u,x;t; = u+1,2,1))

Command g? initiates the execution of instruction [;. It is enabled only when at least one
functional unit is available (v > 0), I; has not been previously initiated (z; = 0), and no
(extended) lower-bound constraint of the form o; — 0; > L;; would be violated if we initiate
I; now. The command subtracts 1 from the available-units counter, sets the status variable
z; to 1, and resets the clock ;. Command g} releases of the functional unit which has been
executing [;.

The program invariant: For each upper-bound constraint (¢; — o; < U;;) € U, invariant
¢q contains the conjunct z; >0 A z; =0 — ¢; < U;, implying that the value of ¢; cannot
exceed Uj; if instruction /; has been initiated while /; has not. This forces [; to be initiated
no later than U;; time units after /; is initiated.

In addition, ¢ contains, for each instruction /;, the conjunct z; =1 — ¢; < 1. This
conjunct requires the release of the functional unit executing /; no later than one time unit

21

after its initiation. This shows that the guarded commands take care of the lower bounds,
while the program invariant takes care of the upper bounds.

The goal predicate is given by ¢n: x; = --- = x, = 2. This predicate describes a state
in which all instructions have completed their execution. If such a state is reached it implies
that we managed to find a computation which satisfies all the originally specified real-time
constraints.

Complexity of the Translated Problem

As previously stated, the complexity of the general reachability problem for RTP’s is PSPACE-
complete. However, the RTP we get by encoding an instruction scheduling problem has a
special structure, which leads to a better complexity.

An RTP P is called acyelic if, in every computation of P, every guarded command can
be executed at most once. It is not difficult to see that the translation of an an instruction
scheduling problem (for an acyclic dependency graph) yields an acyclic RTP. The reachability
problem for acyclic RTP’s is considerably simpler than for the general case, as is stated by the
following claim.

Claim 1 The reachabilily problem for acyclic RTP’s is NP-complete.

If we restrict our attention to 1SP’s with Time_tract constraints and 0-1 latency, this leads
to a still simpler version of RTP’s. Namely, this corresponds to the case that the only references
to clocks in the state predicates are of the forms {y < a, {yp > b, or t; = 1, for an arbitrary
J # 0. For this restricted type of RTP’s (which we call Time_tract rtp’s), we have the following
stronger claim:

Claim 2 The reachability problem for a Time_tract-RTP can be solved in time O(n*logn).
Extensions of the Reduction

Let us consider the extensions that are necessary in order to handle the more general cases.
Extending the translation to handle functional units of different types is straightforward. Deal-
ing with possibly branching acyclic regions is more intricate. For this more complex case, we
no longer use a reduction into an RTP-reachabilty problem. Instead, we formulate a new re-
alizabilty problem for RTP’s, and show that the scheduling problem for acyclic regions with
ET _tract specifications can be reduced to the realizabilty problem for RTP’s. The situation
here is similar to the one described in Claim 1 (without the specially efficient case discussed in
Claim 2). Namely, the general realizability problem is PSPACE-complete. However, restricted
to acyclic RTP’s it becomes “only” NP-complete. This will be discussed in greater detail in the
full paper.

7 Comparison with Other Work and Remarks

We are the first to present a fast (polynomial time) algorithm in the context of RISC pipelines
with 0/1 latencies that can provably solve the scheduling problem given Time tract specifica-
tions; for the same specifications, the algorithm in [18] can solve the problem for the simpler
case of two independent and identical processors; chain data-dependence structures are known
to be schedulable in O(r?) time [24]. Given a program with ET _Tract constraints, linear
task dependences but the task execution times are known only in terms of upper- and lower-

22

bounds—this is the case for coarse granularity tasks at the OS level for example—a scheduling
algorithm called parametric dispatching is known [19]'3'4. We are the first to formally charac-
terize and analyze the expressive power of Time_tract and ET_Tract (Sections5 and 6), which
are specification languages whose decision questions are in NP. A notation for specifying time
called TCEL and a framework for scheduling programs derived from TCEL specifications were
introduced in [22]. Contrasting with our approach and results here, TCEL is a programming
language wherein timing constraints are explicitly specified as part of control-flow of the ap-
plication program; in this sense, the programmer must write TCEL programs. Furthermore,
this approach does not specify an algorithm with provable properties, nor a formal model and
characterization of the expressive power of TCEL; additional heuristic proposals for scheduling
tasks with ET_Tract constraints have also been made [49]. In the context of basic-blocks, we
have verified that, in terms of expressibility, Time_tract C ET _Tract = TCEL. For acyclic
program regions, ET Tract C? TCEL C RTP (defined in Section 6). We conjecture that
TCEL encodes more complex decision questions than ET _Tract for acyclic program regions,
but as denoted by C7, this inclusion is open at the time of writing this paper. The inclusions

are based on the standard separations holding between P, NP, Co-NP and PSPACE.

13For more general constraints, this paper proposes an exponential time algorithm based on Fourier-Motzkin
elimination

14Our comparison is restricted to work on instruction scheduling which has to be contrasted with classical
real-time process scheduling [34] and the related large body of work including interactions between the compiler

and the OS schedulers [23].

23

References

1]
2]
3]

[4]

[10]

[11]

[12]

[13]

[14]

Compiler Construction A. Aho, R. Sethi and J. Ullman, Addison-Wessley, 1984.
Reference Manual for the Ada Programming Language ANSI/MIL-STD-1815A-1983.

A. Aiken and A. Nicolau. Loop quantization; An analysis and algorithm. Tech report
87-821, Cornell University, March, 1987.

R. Alur and D. Dill. A Theory of Timed Automata. In Theoretical Computer Science,
vol. 126, 183-235, 1994.

R. Alur and T. Henzinger. Logics and Models of Real-time: A Survey. In Real-time
Theory in Practice, Lecture Notes in Computer Science, 600, Springer-Verlag, 1991.

E. Asarin, O. Maler and A. Pnueli. Symbolic Controller Synthesis for Discrete and Timed
Systems. In Hybrid System Il Lecture Notes in Computer Science, 999, Springer-Verlag,
1995.

T. Ball and J. Larus. Branch Prediction for Free. Proceedings of the SIGPLAN93

Conference on Programming Language Design and Implementation June 1993.

R. E. Barr, J. Bashyam, D. Messenger, P. Norwood and K. Palem Multichannel Real-Time
Analysis of the Clinical EEG on a Dual Microprocessor System. .J. Clinical Engineering,
Vol. 9, 1984.

D. Bernstein and 1. Gertner. Scheduling Expressions on a Pipelined Processor with a
Maximal Delay of One Cycle. In ACM Transactions on Programming Languages and
Systems, 11(1), 57-66, 1989.

D. Bernstein and M. Rodeh. Global Instruction Scheduling for Superscalar Machines. In
Proceedings of SIGPLAN’91 Conference on Programming Language Design and Imple-
mentation, 1991.

Pradeep. Dubey, Kevin. O’Brien, Kathryn. O’Brien and Charles Barton. Single-Program
Speculative Multithreading (SPSM) Architecture: Compiler-assisted Fine-grained Multi-
threading. preprint, 1995.

S. Moon and K. Ebciougulu. An Efficient Resource-constrainted Global Scheduling Tech-
nique for Superscalar and VLIW Processors. Proceedings IEEFE MICRO-25, 1992.

T. Henzinger, X. Nicollin, J. Sifakis and S. Yovine. Symbolic Model-Checking for Real-
Time Systems. In Inform. and Comput., vol. 111, 193-244, 1994.

J. Ferrante K. J. Ottenstein and J. D. Warren. The Program Dependence Graph and its
use in Optimizations, ACM Transaction on Programming Languages and Systems, vol.

9, 319-349, 1987.

24

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

J. Fisher. Trace Scheduling: A General Technique for Global Microcode Compaction.
IEEE Transactions on Computers, C-30(7):478-490, 1981.

Joseph Fisher. Global Code Generation for Instruction-level Parallelism: Trace

Scheduling-2 1991

M. Garey and D. Johnson Computers and Intractability: A Guide to the Theory of
NP-Completeness. W. H. Freeman and Company, 1979.

M. Garey and D. Johnson Two-processor Scheduling with Start-times and Deadlines.
SIAM J. Computing, vol. 6: 416-426, 1977.

R. Gerber, W. Pugh and M. Saksena Parametric Dispatching of Hard Real-time Tasks
IEEFE Transactions on Computers, vol. 44: 1995.

S. Freudenberger, T. Gross, P. Lowney. Avoidance and Suppression of Compensation
Code in a Trace Scheduling Compiler. ACM Transactions on Programming Languages
and Systems, vol. 16, 1156-1214, July 1994.

P. Gibbons and S. Muchnick. Efficient Instruction Scheduling for Pipelined Architecture.
Proceedings of the ACM Symposium on Compiler Construction, 11-16, 1986.

S. Hong and R. Gerber. Compiling Real-Time Programs with Timing Constraint Refine-
ment and Structural Code Motion. IEEFE Transactions on Software Engineering, vol. 21,
May 1995; preliminary version appeared in Compiling Real-Time Programs into Schedu-
lable Code. In Proceedings of the SIGPLAN‘93 Conference on Programming Language
Design and Implementation, 1993.

S. Hong and R. Gerber. Scheduling with Compiler Transformations: the TCEL Approach.
Proc. IEEE Workshop on Real-lime Operating Systems and Software, May 1993.

C.Han and K. LIn. Job Scheduling with Temporal Distance Constraints, TR-UIUCDCS-
R-89-1560, Univeristy of Illinois, 1989.

D. Harel. Statecharts: A Visual Formalism for Complex Systems. Secience of Computer
Programming, vol. 8, 1987.

J. Hennessy and T. Gross. Postpass Code Optimization of Pipeline Constraints. ACM
TOPLAS, 5(3), 1983.

J. Hennessy, N. Jouppi, J. Gill, F. Baskett, A. Strong, T. Gross, C. Rowen and J. Leonard.
The MIPS Machine Proceedings IEEE Compcon, 2-7, February 1982.

J. Hennessy and D. Paterson. Computer Architecture: A Quantitative Approach Morgan
Kaufmann, 1990.

W.-M. W. Hwu et al. The Superblock: An Effective Technique for VLIW and Superscalar
Compilation. The Journal of Supercomputing, Vol. 7 (1993), 229-248.

25

[30]

31]

32]

M. Katavenis. Reduced Instruction Set Architecture for VLSI. MIT Press, Cambridge
MA, 1984.

V. Kathail, M. Schlansker and B. R. Rau. HPL PlayDoh Architecture Specification
Version 1.0 HPL-93-80, HP Labs, Palo Alto, CA, February 1994.

M. Lam. Software Pipelining: An Effective Scheduling Technique for VLIW Machines.
Proceedings SIGPLAN’88 Symposium on Programming Language Design and Implemen-
tation, 318-328, 1988.

M. Smith, M. Horowitz and M. Lam. Efficient Superscalar Performance Through Boost-
ing. Proceedings Fifth International Conference on Architectural Support for Programming
Languages and Operating Systems, 248-261, 1992.

C. Liu and J. Layland. Scheduling Algorithms for Multiprogramming in a Hard-Real
Time Environment. J. ACM, vol. 20 (1), 1973.

O. Maler, A. Pnueli and J. Sifakis. On the Synthesis of Discrete Controllers for Timed
Systems. In Proc. of STACS’95, Lecture Notes in Computer Science, 900, Springer-Verlag,
229-242. 1995.

7. Manna and R. Waldinger, Fundamentals of Deductive Program Synthesis. [FFEFE
Transactions on Software FEngineering, Vol. 18, 674-704, 1992.

N. Nachiappan. Personal Communications and Memorandum of Support. 1995.

K. Palem On the Complexity of Precedence Constrained Scheduling. TR-86-11, Univer-
sity of Texas, Austin, TX, 1986.

K. Palem and V. Sarkar. Code Optimization in Modern Compilers. Western Institute of
Computer Science, Stanford University, CA, 1995.

K. Palem and B. Simons. Scheduling Time-critical Instructions on RISC Machines. ACM
TOPLAS, 5(3), 1993.

K. Palem and B. Simons. Instruction Scheduling. In Optimization in Compilers, (eds:

F. Allen, B. Rosen and K. Zadeck). ACM Press and Addison-Wesley (to appear).

D. Paterson. Reduced Instruction Set Computers. Communications of the ACM, 28(1):8-
21, 1985.

D. Paterson. T. Anderson, D. Culler and D. Patterson, A Case for NOW (Networks of
Workstations. IEEFE Micro, vol. 1995.

G. Radin. The 801 Minicomputer. IBM Journal of Research and Development, 27(3):237—
246, 1983.

Proceedings of the ACM Sigplan Workshop on Languages, Compilers and Tools for Real-
time Systems, La Jolla, California, June 1995.

26

[46]

[47]

[48]

[49]

[50]

[51]
[52]

B. Rau. Iterative Modulo Scheduling: An Algorithm for Software Pipelining Loops.
Proceedings of the 27th Annual Symposium on Microarchitecture, December 1994.

B. Rau and J. Fisher. Instruction Level Parallel Processing: History, Overview and
Perspective. J. Supercomputing, vol.7, 9—50, 1993.

R. Russell and R. Grewell. Software Aids Pull for Real-time RISC: RISC/CISC Tradeoffs.
Electronic Engineering Times, September 1994, Vol. 51.

M. Saksena, R. Gerber and A. Agrawala Scheduling with Relative Timing Constraints.
IEEFE Workshop on Real-time Operating Systems and Software, May 1993.

D. Wall. Predicting Program Behavior Using Real or Estimated Profile. In Proceedings of
SIGPLAN‘91 Conference on Programming Language Design and Implementation, pp. 59—
70, 1991.

Venix Real-time Programmers Manual Venturcom, 1989.

H. Warren. Instruction Scheduling for the IBM RISC System /6K Processors. IBM Journal
of Research and Development, 85-92, 1990.

27

