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Abstract. In this paper, a dual-primal FETI method is developed for incompressible Stokes
equations approximated by mixed �nite elements with discontinuous pressures. The domain of the
problem is decomposed into nonoverlapping subdomains, and the continuity of the velocity across
the subdomain interface is enforced by introducing Lagrange multipliers. By a Schur complement
procedure, solving the inde�nite Stokes problem is reduced to solving a symmetric positive de�nite
problem for the dual variables, i.e., the Lagrange multipliers. This dual problem is solved by a
Krylov space method with a Dirichlet preconditioner. At each step of the iteration, both subdomain
problems and a coarse problem on the coarse subdomain mesh are solved by a direct method. It is
proved that the condition number of this preconditioned dual problem is independent of the number
of subdomains and bounded from above by the product of the inverse of the inf-sup constant of
the discrete problem and the square of the logarithm of the number of unknowns in the individual
subdomain problems. Illustrative numerical results are presented by solving a lid driven cavity
problem.
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1. Introduction. The �nite elment tearing and interconnecting(FETI) methods
were �rst proposed by Farhat and Roux [4] for elliptic partial di�erential equations.
In this method, the spatial domain is decomposed into nonoverlapping subdomains,
and the interior subdomain variables are eliminated to form a Schur problem for the
interface variables. Lagrange multipliers are then introduced to enforce continuity
across the interface, and a symmetric positive semi-de�nite linear system for the
Lagrange multipliers is solved by using the preconditioned conjugate gradient (PCG)
method. This method has been shown to be numerically scalable for second order
elliptic problems if a Dirichlet preconditioner is used. Thus, Mandel and Tezaur [9]
have proved that the condition number grows at most as C(1+log(H=h))3 both in two
and three dimensions, where H is the subdomain diameter and h is the element size.
Klawonn and Widlund [7] proposed new preconditioners of this type and proved that
the condition numbers are bounded from above by C(1 + log(H=h))2; these bounds
are also independent of possible jumps of the coeÆcients of the elliptic problem.

For fourth-order problems, a two-level FETI method was developed by Farhat and
Mandel [5]. The main idea in this variant is that an extra set of Lagrange multipliers
should be used to enforce the continuity at the subdomain corners in every step of the
PCG algorithm. A similar idea was used by Farhat et al [6] to introduce the Dual-
Primal FETI (FETI-DP) methods in which the continuity of the primal solution is
enforced directly at the corners, i.e., the values of the degrees of freedom at the vertices
of the subdomains remain the same. In [6], the FETI-DP methods were further
re�ned to solve three-dimensional problems by introducing Lagrange multipliers to
enforce a continuity constraint for the average of the solution on interface edges.
This set of Lagrange multipliers, together with the corner variables, form the coarse
problem of this FETI-DP method. This coarse, primal problem is necessary to obtain
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a satisfactory convergence rate for this method. A convergence analysis of dual-primal
FETI methods was given by Mandel and Tezaur [10] for two-dimensional problems
and by Klawonn et al. [8] for three dimensions.

In this paper, we develop a dual-primal FETI method for the Stokes problem in
two dimensions and give a convergence analysis. In contrast to elliptic problems, the
Stokes equation is an inde�nite problem which involves pressure variables to impose
the incompressibility condition for the velocity. In our algorithm, the pressure space
is decomposed into two orthogonal parts; we exclusively deal with �nite element ap-
proximations which use discontinuous pressures. The �rst part consists of subdomain
interior pressures with zero average on each subdomain, and the second is spanned
by the subdomain constant pressures with one average pressure for each subdomain.
The velocity space is decomposed into three parts, the velocities interior to the subdo-
mains, the velocities at subdomain corners and the velocities on the remaining part of
the interface. By using this decomposition of the solution space, solving the original
Stokes problem is replaced by solving subdomain Stokes problems, with a continuity
constraint of the velocity �eld across the subdomain interface. The continuity of the
velocities at the subdomain corners is enforced directly in our algorithm, the continu-
ity of the velocities across the remaining interface is enforced by introducing a set of
Lagrange multipliers, and the continuity of a weighted average of the velocities across
each interface edge is enforced by using an additional set of Lagrange multipliers. By
reducing the problem to a Schur complement, we obtain a symmetric positive de�nite
problem for the dual variables, i.e., the �rst set of Lagrange multipliers. This dual
problem is solved by an iterative method, either GMRES or the conjugate gradient
method, with a Dirichlet preconditioner. We note that the additional set of Lagrange
multipliers are important here because on the one hand it augments the corner veloc-
ities and the subdomain constant pressures to form a inf-sup stable coarse problem
which is solved directly at each step of the iteration, and on the other hand it en-
sures that the subdomain Dirichlet Stokes problems, solved in the preconditioning
procedure, are always compatible.

The remainder of this paper is organized as follows. In section 2, the Stokes prob-
lem is described in brief, and the domain decomposition method based on a decom-
position of the solution space is proposed. The preconditioned augmented FETI-DP
algorithm is derived in section 3. In section 4, an equivalent form of the algorithm is
given in preparation of the convergence analysis, and an upper bound of the condition
number of the algorithm is proved. In section 5, numerical experiments are presented
for a lid driven cavity problem on a square.

2. Stokes problem and domain decomposition method. We are solving
the following Stokes problem on a two-dimensional, bounded, polyhedral domain 
,8<

:
��u+rp = f ; in 

�r � u = 0; in 

u = g; on @
 ,

(1)

where the boundary velocity g satis�es the compatibility condition
R
@

g � n = 0.

The equivalent variational problem is to �nd the velocity u 2W and the pressure
p 2 � such that,�

(ru;rv)
 � (p;r � v)
 = (f ;v)
; 8v 2 (H1
0 (
))

2

�(r � u; q)
 = 0; 8q 2 � ,
(2)
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where W = fu 2 (H1(
))2 j u = g on @
g, � = fp 2 L2(
) j
R


p = 0g, and where

(:; :)
 denotes the inner product in L2(
).
The domain 
 is decomposed into N non-overlapping polyhedral subdomains 
i

of characteristic size H. On each subdomain, function spaces Wi and �i are de�ned
as, Wi = fui 2 (H1(
i))2 j ui = g on @
i \ @
g, �i = fpi 2 L2(
i) j

R

i p

i = 0g.
The subdomain interface is de�ned as � = ([@
i)n@
, and the interface edge �i;j =
@
i \ @
j is given for any two neighboring subdomains 
i and 
j . If we require
that the subdomain velocities be continuous across �, then the variational problem
(2) can be formulated as the following subdomain variational problems on a subspace
of W ��: �nd ui 2Wi, pi 2 �i, and p0 2 �0, such that8<

:
(rui;rvi)
i � (pi + pi0;r � vi)
i = (f i;vi)
i ; 8vi 2 (H1(
i))2

�(r � ui; qi)
i = 0; 8qi 2 �i ,
�(r � ui; qi0)
i = 0; 8q0 2 �0 ,

(3)

where the subdomain velocities, ui, are required to be continuous across the subdo-
main interface �, and �0 = fp0; p0(


i) = pi0,
P

i(p
i
0m(
i)) = 0g is a space for the

subdomain constant pressures with m(
i) the measure of the subdomain 
i.
Each subdomain 
i is triangulated into shape-regular elements of characteristic

size h, with the �nite element nodes on the boundaries of the neighboring subdomains
matching across the interface �. A stable mixed �nite element method is chosen for
each subdomain saddle point problem. In our experiments, we are using the inf-
sup stable P1(h) � P0(2h) �nite elements; see Brezzi and Fortin [3]. The velocities
are continuous piecewise linear functions on a triangular mesh of size h, and the
pressures are piecewise constant (discontinuous) functions on a coarser mesh of size
2h. If we denote the subdomain interior velocities, of the subdomain 
i, by uiI and
the subdomain interface velocities by ui

�
, then the discrete linear system for solving

problem (3) can be written as:0
BB@

AII BII AI� BI0

BT
II 0 BT

�I 0
AT
I� B�I A�� B�0

BT
I0 0 BT

�0
0

1
CCA
0
BB@

uI
pI
u�
p0

1
CCA =

0
BB@

fI
0
f�
0

1
CCA , (4)

where uI , pI , and u� are direct sums of uiI , p
i
I , u

i
�
, respectively, for i = 1; 2; :::; N . It

follows from the divergence theorem that BI0 = 0.
In this paper we make no distinction, in our notations, between a �nite element

function and the corresponding vector, for example, ui is used to denote either a �nite
element function or the corresponding vector, and the same applies to the notations
Wi;�i;�0, etc.

It still remains the problem of how to handle the continuity of the subdomain
interface velocity u� across �. Denote W� as the function space of u�, and W� is
decomposed into a subdomain corner velocity part Wc and the remaining boundary
velocity part W�, i.e.,

W� =Wc �W� .

The continuity of the element inWc is enforced directly, i.e., the degrees of freedom at
a cornerpoint are common to all subdomains sharing this corner. W� is decomposed
into a direct sum of subdomain boundary velocity spaces Wi

�
, i.e.,

W� = �iW
i
� ,

3



and the continuity constraint is of the form

B�w� = 0; for any w� 2W� , (5)

where the matrix B� is constructed from f0,1,-1g such that the values of w� coincide
across the subdomain interface � when B�w� = 0. We also introduce a redundant
continuity constraint of the form

QT
�B�w� = 0; for any w� 2W� , (6)

which will be enforced at each iteration step of our algorithm, while the equation (5)
is not satis�ed until convergence. The matrix Q�, in equation (6), is constructed such
that, for any function w� 2W�, Q

T
�
B�w� = 0 implies that,Z

�i;j

(wi
� �w

j
�
) = 0

for any edge �i;j between two neighboring subdomains 
i and 
j . We note that the
matrix notations B� and Q� can also be used to denote the corresponding operators.

By introducing Lagrange multipliers � and � to enforce the continuity constraint
equations (5) and (6) for the functions in W�, equation (4) can be written as0
BBBBBBBB@

AII BII AI� AIc 0 0 0
BT
II 0 BT

�I BT
cI 0 0 0

AT
I� B�I A�� A�c B�0 BT

�
Q� BT

�

AT
Ic BcI AT

�c Acc Bc0 0 0
0 0 BT

�0
BT
c0 0 0

0 0 QT
�
B� 0 0 0 0

0 0 B� 0 0 0 0

1
CCCCCCCCA

0
BBBBBBBB@

uI
pI
u�
uc
p0
�
�

1
CCCCCCCCA

=

0
BBBBBBBB@

fI
0
f�
fc
0
0
0

1
CCCCCCCCA

. (7)

In the following section, we propose an augmented FETI-DP method for solving
equation (7).

3. The augmented FETI-DP algorithm. In Section 2, two sets of Lagrange
multiplies �; � were introduced to enforce the continuity of the velocity across the
interface �, and equation (7) was formed. In fact, � is redundant because B�u� = 0
implies QT

�
B�u� = 0: But in our algorithm, � and � are treated di�erently. We

iterate on the dual problem variable �, and the continuity condition B�u� = 0 is
not satis�ed until convergence. The Lagrange multiplier �, on the other hand, is
treated together with the primal variables and it augments the corner velocities to
form the coarse problem variables, together with the subdomain constant pressures
p0. By solving the augmented coarse problem exactly in each step of the iterations,
QT
�
B�u� = 0 will be satis�ed throughout.
By using the notations

~ur =

0
@ uI

pI
u�

1
A , ~uc =

0
@ uc

p0
�

1
A , (8)

equation (7) can be written as,0
@ Krr Krc BT

r

KT
rc Kcc 0

Br 0 0

1
A
0
@ ~ur

~uc
�

1
A =

0
@ ~fr

~fc
0

1
A , (9)
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where Krr;Krc;Kcc; Br;~fr, and ~fc, are the corresponding block matrices and block
vectors.

Our algorithm results from two consecutive elimination procedures applied to
equation (9). We �rst eliminate the subdomain variables ~ur and obtain�

~Kcc
~Kcl

~KT
cl

~Kll

��
~uc
�

�
=

�
~f�c
dl

�
, (10)

where

~Kcc = Kcc �KT
rcK

�1
rr Krc , ~Kll = �BrK

�1
rr B

T
r , ~Kcl = �KT

rcK
�1
rr B

T
r ,

and

~f�c = ~fc �KT
rcK

�1
rr
~fr , dl = �BrK

�1
rr
~fr .

We then eliminate ~uc from equation (10), and obtain a linear system for the Lagrange
multipliers �,

( ~Kll � ~KT
cl
~K�1
cc

~Kcl)� = dl � ~KT
cl
~K�1
cc
~f�c . (11)

Our preconditioned augmented FETI-DP algorithm solves equation (11) with a
preconditioned CG or GMRES method to obtain �, and we then obtain ~uc and ~ur from
equations (10) and (9). The preconditioner involves solving subdomain incompressible
Stokes problems with Dirichlet boundary conditions and will be discussed in the next
section.

We note that K�1
rr ,

~Kll, ~Kcl and ~KT
cl require subdomain Dirichlet solvers with

the corner velocities given. If a stable mixed �nite element method is used for each
subdomain, then we know that these problems are stable. Applying ~K�1

cc to a vector
requires solving a coarse problem with the corner velocities, the subdomain constant
pressures, and the Lagrange multipliers � as variables. Solving this augmented coarse
problem is similar to solving a Stokes problem on the coarse subdomain mesh by
using the stable Q2�Q0 mixed �nite elements. Numerical evidence shows that this
augmented coarse problem satis�es a discrete inf-sup condition.

4. Convergence analysis. Preparing for our convergence analysis, we derive
equation (11) in another way. We reorder the unknowns in equation (7) to obtain0
BBBBBBBB@

AII BII AIc 0 0 AI� 0
BT
II 0 BT

cI 0 0 BT
�I 0

AT
Ic BcI Acc Bc0 0 AT

�c 0
0 0 BT

c0 0 0 BT
�0

0
0 0 0 0 0 QT

�
B� 0

AT
I� B�I A�c B�0 BT

�
Q� A�� BT

�

0 0 0 0 0 B� 0

1
CCCCCCCCA

0
BBBBBBBB@

uI
pI
uc
p0
�
u�
�

1
CCCCCCCCA

=

0
BBBBBBBB@

fI
0
fc
0
0
f�
0

1
CCCCCCCCA

. (12)

De�ne a subspace fW� of W� as,

fW� = fw� 2W� j QT
�B�w� = 0g .

Solving (12) is then equivalent to solving the following problem: �nd u� 2 fW�; � 2

� = Range(B�
fW�), such that�

~S BT
�

B� 0

��
u�
�

�
=

�
f�
�

0

�
, (13)
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where the Schur complement ~S is de�ned by0
BBBB@

AII BII AIc 0 AI�

BT
II 0 BT

cI 0 BT
�I

AT
Ic BcI Acc Bc0 AT

�c

0 0 BT
c0 0 BT

�0

AT
I� B�I A�c B�0 A��

1
CCCCA

0
BBBB@

uI
pI
uc
p0
u�

1
CCCCA =

0
BBBB@

0
0
0
0
~Su�

1
CCCCA . (14)

We can show that the Schur complement ~S de�ned in equation (14) can also be de�ned

variationally on fW�: for any u� 2 fW�

uT�
~Su� = min

vI

min
vc

max
pI

fvTKv j v� = u� and BT
c0vc +BT

�0v� = 0g , (15)

where

K =

0
BB@

AII BII AIc AI�

BT
II 0 BT

cI BT
�I

AT
Ic BcI Acc AT

�c

AT
I� B�I A�c A��

1
CCA , v =

0
BB@

vI
pI
vc
v�

1
CCA .

Lemma 1. ~S is symmetric, positive de�nite on fW�.
Proof: It is easy to see, from the de�nition (14) , that ~S is symmetric. We next

just need to show that ( ~Su�;u�) > 0, for any nonzero function u� 2 fW�. For any

given function u� 2 fW�, there is a vector (uI ; pI ;uc; p0; ) such that equation (14) is
satis�ed. Therefore,

( ~Su�;u�) = uT�
~Su�

=

0
BBBB@

uI
pI
uc
p0
u�

1
CCCCA

T 0
BBBB@

AII BII AIc 0 AI�

BT
II 0 BT

cI 0 BT
�I

AT
Ic BcI Acc Bc0 AT

�c

0 0 BT
c0 0 BT

�0

AT
I� B�I A�c B�0 A��

1
CCCCA

0
BBBB@

uI
pI
uc
p0
u�

1
CCCCA

=

0
@ uI

uc
u�

1
A

T 0
@ AII AIc AI�

AT
Ic Acc AT

�c

AT
I� A�c A��

1
A
0
@ uI

uc
u�

1
A

+2

�
pI
p0

�T �
BT
II BT

cI BT
�I

0 BT
c0 BT

�0

�0@ uI
uc
u�

1
A+

�
pI
p0

�T �
0 0
0 0

��
pI
p0

�

=

0
@ uI

uc
u�

1
A

T 0
@ AII AIc AI�

AT
Ic Acc AT

�c

AT
I� A�c A��

1
A
0
@ uI

uc
u�

1
A ,

where the last equality results from BT
IIuI+B

T
cIuc+B

T
�Iu� = 0 and BT

c0uc+B
T
�0
u� =

0, because the vector (uI ; pI ;uc; p0;u�) satis�es equation (14) . Since the matrix0
@ AII AIc AI�

AT
Ic Acc AT

�c

AT
I� A�c A��

1
A

is just a symmetric positive de�nite discretion of a direct sum of two Laplace operators,

we �nd that ( ~Su�;u�) > 0, for any nonzero function u� 2 fW�.
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2

We therefore know, from Lemma 1, that the equivalent problem (13) can be

reformulated as a minimization problem over fW�, with the constraints given by
the continuity requirement of the velocity across the subdomain interface �: �nd

u� 2 fW�, such that

1

2
( ~Su�;u�)� (f��;u�)! min ; with B�u� = 0 . (16)

Equation (13) can be further reduced to a linear system for the Lagrange multi-
pliers �, which is of the form,

F� = B�
~S�1f�� , (17)

where F = B�
~S�1BT

�
. F is symmetric positive de�nite because we are using nonre-

dundant Lagrange multipliers and the matrix BT
�
has full column rank. It is also easy

to see that equation (17) is the same as equation (11).
We solve the dual system (17) using the preconditioned conjugate gradient method

or GMRES with the preconditioner

M�1 = B�S�B
T
� ,

where S� is de�ned as

uT�S�u� = min
vI

max
pI

fvTKv j v� = u� and vc = 0g , (18)

or in matrix form,0
@ AII BII AI�

BT
II 0 BT

�I

AT
I� B�I A��

1
A
0
@ uI

pI
u�

1
A =

0
@ 0

0
S�u�

1
A . (19)

Then the preconditioned system is,

B�S�B
T
�B�

~S�1BT
�� = B�S�B

T
�B�

~S�1f�� , (20)

In order to use the conjugate gradient method for this preconditioned system (20),
we have to show that the preconditioner M�1 is symmetric positive de�nite. In fact

we just need to show that S� is symmetric positive de�nite on the space BT
�
B�
fW�,

because S� is always applied to a vector in this space. We need the following lemma,

Lemma 2. For any function w� 2 fW�, B
T
�
B�w� 2 fW�, and BT

�
B�w�

satis�es:
R

i r �

�
BT
�
B�w�

�i
= 0, for any subdomain 
i.

Proof: Given a function w� 2 fW�, we know that QT
�
B�w� = 0, i.e.,

R
�i;j (w

i
�
�

w
j
�
) = 0, for any edge �i;j common to the neighboring subdomains 
i and 
j . By

using

(BT
�B�w�)

ij�i;j = �(wi
�j�i;j �wj

�
j�i;j ) ,

we have Z
�i;j

(BT
�B�w�)

i = 0 . (21)
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In the same way, we have
R
�i;j (B

T
�
B�w�)

j = 0, and therefore we obtain that

Z
�i;j

((BT
�B�w�)

i � (BT
�B�w�)

j) = 0 .

Therefore QT
�
B�(B

T
�
B�w�) = 0, and BT

�
B�w� 2 fW�.

To prove
R

i r �

�
BT
�
B�w�

�i
= 0, we just need to use the divergence theorem

and equality (21), and it follows,Z

i

r �
�
BT
�B�w�

�i
=

Z
@
i

�
BT
�B�w�

�i
� n =

X
j

Z
�i;j

�
BT
�B�w�

�i
� ni;j = 0 .

2

Lemma 3. S� is symmetric positive de�nite on the space BT
�
B�
fW� .

Proof: We �rst need to show that S� is well de�ned on the space BT
�
B�
fW�.

From its de�nition in equation (19), we see that to apply S� to a vector of the

form BT
�
B�w�, where w� 2 fW�, is reduced to solving subdomain incompressible

Stokes problems with BT
�
B�w� as the given subdomain boundary velocities. For

these subdomain Dirichlet problems to be well posed, BT
�
B�w� has to satisfy the

compatible condition,
R

i r�

�
BT
�
B�w�

�i
= 0, in each subdomain 
i, which has just

been proven in Lemma 2. Therefore, S� is well de�ned.

Then, by arguments similar to those in the proof of Lemma 1, we �nd that S� is

symmetric positive de�nite on space BT
�
B�
fW�.

2

Lemma 4. jBT
�
B�w�j ~S � jBT

�
B�w�jS�, for any w� 2 fW�.

Proof: If we can prove that BT
�0
(BT

�
B�w�) = 0, for any w� 2 fW�, then the

constraints in equation (18), v� = BT
�
B�w� and vc = 0, implies the constraints

v� = BT
�
B�w� and BT

c0vc + BT
�0
v� = 0 in equation (15). It then follows that

wT
�
BT
�
B�

~SBT
�
B�w� � wT

�
BT
�
B�S�B

T
�
B�w�.

In order to show that BT
�0
(BT

�
B�w�) = 0, we just need to note that the restric-

tion of BT
�0
(BT

�
B�w�) to any subdomain 
i is just

R

i r �

�
BT
�
B�w�

�i
, which is

zero according to Lemma 2.

2

In the remainder of this section, we give an upper bound for the condition number
of the operator M�1F . We start by introducing some notations as in Mandel and
Tezaur [10]. We denote by Ei;j the operator that extends a vector of values of the
degrees of freedom on �i;j , excluding the corners, by zero to a vector on @
i. Let E i

be the set of all indices of the neighbors 
j of the domain 
i with a common edge
�i;j . Denote by Vh(


i) the linear �nite element space on the subdomain 
i and by Si

the Schur complement on @
i obtained by eliminating the interior degrees of freedom
in the subdomain 
i, i.e.,

ui�;c
T
Siui�;c = minvi

I
maxpi

I
fvi

T
Kivi j vi�;c = ui�;cg ,

where Ki is the block corresponding to subdomain 
i in the matrix K introduced in
equation (15), and ui

�;c denotes the vector u
i
�
+ uic.

The following well-known estimate can be found in Widlund [12], and Bramble
et al. [1]. Here we are using the version in Mandel and Tezaur [10].
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Lemma 5. Let w 2 Vh(

i) such that w = 0 at the corners of 
i. Let wL 2 Vh(


i)
be linear on all edges �i;j � 
i, and for each j 2 E i let wi;j be de�ned by wi;j = w on
�i;j and by wi;j = 0 on @
in�i;j. Then

X
j2Ei

jwi;j j2
1=2;2;@
i � C(1 + log

H

h
)2jw + wLj

2

1=2;2;@
i .

The following lemma can be found in Bramble and Pasciak [2],

Lemma 6.

C1�ju�;cjSi � ju�;cj1=2;2;@
i � C2ju�;cjSi ,

where � is the inf-sup constant of the chosen mixed �nite element space.

Lemma 7. For every w�;c, and for all i, and j 2 E i,

jEi;j(ws
� � IHwi

c)jSi � C
1

�
(1 + log

H

h
)2jws

�;cjSs , s = i; j ,

where IHwi
c is the linear interpolant of wi

c on the subdomain boundary.

Proof: Write w�;c = (w�;c � IHwc) + IHwc. It follows from Lemma 5 that

jEi;j(wi
� � IHwi

c)j
2

1=2;2;@
i � C(1 + log
H

h
)2jwi

�;cj
2

1=2;2;@
i .

By using the uniform equivalence of the seminorms,

jvj1=2;2;@
i � jvj1=2;2;@
j ; if v = 0 on @
i [ @
jn�i;j ,

we have

jEi;j(ws
� � IHwi

c)j
2

1=2;2;@
i � C(1 + log
H

h
)2jws

�;cj
2

1=2;2;@
s , s = i; j ,

and we then obtain from Lemma 6

�jEi;j(ws
� � IHwi

c)j
2

Si � C(1 + log
H

h
)2jws

�;cj
2

Ss , s = i; j .

2

We next prove the following key estimate.

Lemma 8. For all w� 2 fW�,

jBT
�B�w�j

2

S� � C
1

�
(1 + log(H=h))2jw�j

2
~S
,

where C > 0 is independent of H and h.

Proof: Given w� 2 fW�, we know from the de�nition of ~S in equation (14) that
we can �nd wc such that

jw�j
2
~S
=

NX
i=1

jwi
�;cj

2

Si .

9



It is also true that BT
�
B�w� = BT

�
B�(w� � bw�), for any function bw� which is

continuous across the subdomain interfaces. If we choose bw� as IHwc, the linear
interpolant of wc on the coarse subdomain grid, we have

jBT
�
B�w�j

2
S�

= jBT
�
B�(w� � bw�)j

2
S�

= jBT
�
B�(w� � IHwc)j

2
S�

=
PN

i=1 jv
i
�;cj

2

Si ,

with

vi�;c = vi� + vic ,

where

vi� = BT
�B�(w� � IHwc); and v

i
c = 0 .

Using the de�nition of Ei;j , vi
�;c can be written as,

vi�;c =
X
j2Ej

Ei;jvi� .

and from (BT
�
B�w�)

ij�i;j = �(wi
�
j�i;j �wj

�
j�i;j ), we have

jvi
�;cjSi �

P
j2Ei jEi;jvi

�
jSi

=
P

j2Ej jEi;jBT
�
B�(w� � IHwc)jSi

�
P

j2Ei(jEi;j(wi
�
� IHwc)jSi + jEi;j(wj

�
� IHwc)jSi) .

By using Lemma 7, we have

jvi�;cj
2

Si � C
1

�
(1 + log

H

h
)2
X
j2Ei

(jwi
�;cj

2

Si + jwj
�;cj

2

Sj ) ,

and therefore

jBT
�
B�w�j

2
S�

=
PN

i=1 jv
i
�;cj

2

Si

� C 1

� (1 + log(H=h))2
PN

i=1

P
t2Ei(jwi

�;cj
2

Si + jwj
�;cj

2

Sj )

� C 1

� (1 + log(H=h))2
PN

i=1 jw
i
�;cj

2

Si

= C 1

� (1 + log(H=h))2jw�j
2
~S
,

where C > 0 is independent of H and h.
2

We are now in the position to prove our main result.
Theorem 1. The condition number of the preconditioned augmented FETI-DP

algorithm (20) satis�es,

cond(M�1F ) � C
1

�
(1 + log

H

h
)2 ,

where C is independent of H and h.
Proof: We will show that

4�TM� � �TF� � C
1

�
(1 + log

H

h
)2�TM� , 8� 2 � .
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Lower bound: From Klawonn et al. [8] or Mandel and Tezaur[10], we have

�TF� = max
06=v�2 eW�

j(�;B�v�)j
2

jv�j2~S
.

From Lemma 2, we know that BT
�
B�
fW� � fW�, and from Lemma 4 we know that

jw�j ~S � jw�jS� for all w� 2 BT
�
B�
fW�. Since B�B

T
�
= 4I , we have

�TF� � max
06=w�2 eW�

j(�;B�B
T
�
B�w�)j

2

jBT
�
B�w�j2~S

= 4 max
0 6=w�2 eW�

j(�;B�w�)j
2

jBT
�
B�w�j2S�

.

Since for any � 2 � there is a w� 2 fW� such that � = B�w�, we have

�TF� � 4
j(�; �)j2

jBT
�
�j2S�

.

Choosing � =M�, we �nd

�TF� � 4
j(�;M�)j2

jBT
�
M�j2S�

= 4
(�;M�)2

�TMTB�S�BT
�
M�

= 4
(�;M�)2

�TM�
= 4�TM� .

Upper bound: Using Lemma 8, we have

�TF� = max
06=v�2 eW�

(�;B�v�)
2

jv�j2~S

� C
1

�
(1 + log

H

h
)2 max

06=v�2 eW�

(�;B�v�)
2

jBT
�
B�v�j2S�

= C
1

�
(1 + log

H

h
)2 max

06=v�2 eW�

(�;B�v�)
2

(M�1B�v�; B�v�)

= C
1

�
(1 + log

H

h
)2max

�2�

(�; �)2

(M�1�; �)

= C
1

�
(1 + log

H

h
)2(M�; �) :

2

5. Numerical results. We have tested our algorithm by solving a lid driven
cavity problem on the domain 
 = [0; 1] � [0; 1], with f = 0, gx = 1; gy = 0 for
x 2 [0; 1]; y = 1, and g = 0 elsewhere on the boundary. We have used both GMRES
and CG to solve the preconditioned linear system (20), as well as the nonprecondi-
tioned linear system (11). The initial guess is � = 0 and the stopping criterion is
jjrkjj2=jjr0jj2 � 10�6, where rk is the residual of the Lagrange multipliers at the k-th
iteration.

Figure 1 gives the number of GMRES iterations for di�erent number of subdo-
mains with a �xed subdomain problem size H=h = 8, and for di�erent subdomain
problem size H=h with 4 � 4 subdomains. We see, from the left �gure, that the
convergence of the augmented FETI-DP method, with or without a preconditioner,
is independent of the number of subdomains, while the preconditioned version needs
less iterations. The right �gure shows that the GMRES iteration count increases, in
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both the preconditioned and the nonpreconditioned cases, with the increase of the
size of subdomain problem, but that it is growing much slower with the Dirichlet
preconditioner than without.

Similar tests were also carried out with a conjugate gradient method, and the
results are shown in Figure 2. It is interesting to see that for smaller problem, the
nonpreconditioned algorithm behaves better, but for bigger problem the precondi-
tioned version becomes advantageous. The reason is that the condition number of
the preconditioned problem is bounded from above by the square of the logarithm of
H=h, while the condition number of the nonpreconditioned problem is expected to be
bounded only by a linear function of H=h.

In Figure 3, we demonstrate that the coarse saddle point problem in the precondi-
tioner procedure is inf-sup stable, which means that the inf-sup constant of the coarse
problem is bounded below from zero, with the increase of the size of the problem.

Acknowledgments. The authur is grateful to Olof Widlund for proposing this
problem and giving many helpful suggestions.

REFERENCES

[1] J. Bramble, J. Pasciak and A. Schatz, The construction of preconditioners for elliptic problems
by substructuring, I, Math. Comp., 47:103-134, 1986.

[2] J. Bramble and J. Pasciak, A domain decomposition technique for Stokes problems, Appl.
Numer. Math., 6:251-261, 1989/90.

[3] F. Brezzi and M. Fortin, Mixed and Hybrid Finite Element Methods, Springer-Verlag, Berlin,
1991.

[4] C. Farhat and F.-X. Roux, An unconventional domain decomposition method for an eÆcient
parallel solution of large-scale �nite element systems, SIAM J. Sci. Stat. Comput., 13:379-
396, 1992.

[5] C. Farhat and J. Mandel, The two-level FETI method for static and dynamic plate problems
- Part I: An optimal iterative solver for biharmonic systems, Comp. Meth. Appl. Mech.
Engrg., 155:129-152, 1998.

[6] C. Farhat, M. Lesoinne and K. Pierson, A scalable dual-primal domain decomposition method,
Numer. Lin. Alg. Appl., 7(7-8):687-714, 2000.

[7] A. Klawonn and O. B. Widlund, FETI and Neumann-Neumann iterative substructuring meth-
ods: connections and new results, Comm. Pure Appl. Math., 54:57-90, January 2001.

[8] A. Klawonn, O. B. Widlund and M. Dryja, Dual-primal FETI methods for three-dimensional el-
liptic problems with heterogeneous coeÆcients, Technical report TR2001-815, Department
of Computer Science, Courant Institute, 2001

[9] J. Mandel and R. Tezaur, Convergence of a substructuring method with Lagrange multipiers,
Numer. Math., 73:473-487, 1996.

[10] J. Mandel and R. Tezaur, On the convergence of a dual-primal substructuring method, Technical
report, University of Colorado at Denver, Department of Mathematics, January 2000. To
appear in Numer. Math.

[11] K. Pierson, A family of domain decomposition methods for the massively parallel solution
of computational mechanics problems, PhD thesis, University of Colorado at Boulder,
Aerospace Engineering, 2000.

[12] O. B. Widlund, Iterative substructuring methods: Algorithms and theory for elliptic problems in
the plane, in Proceedings of the First International Symposium on Domain Decomposition
Methods for Partial Di�erential Equations, R. Glowinski, G. H. Golub, G. A. Meurant,
and J. P�eriaux, eds., Philadelphia, PA, 1988, SIAM.

12



Fig. 1. GMRES iterations counts for the Stokes solver vs. number of subdomains for H=h = 8
(left) and vs. H=h for 4� 4 subdomains (right)
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Fig. 2. CG iterations counts for the Stokes solver vs. number of subdomains for H=h = 8 (left)
and vs. H=h for 4� 4 subdomains (right)
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Fig. 3. Inf-sup constant of the coarse saddle point problem vs. number of subdomains for
H=h = 8 (left) and vs. H=h for 4� 4 subdomains (right)
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