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1 Introduction

In the classical theory of games, common knowledge of rationality, together
with common knowledge of the underlying structure of a game, gives rise
to the Nash equilibrium solution concept. If all the players are rational,
and if they all know that they are all rational, and so on, then they all
know that the others all play best responses, and as a result, they all play
best responses to those best responses; this implies the Nash equilibrium
solution concept. However, common knowledge of rationality and payoff
functions are very strong assumptions. Throughout this paper, the common
knowledge assumptions are dropped in varying capacities, thereby limiting
the credibility of the Nash equilibrium solution concept in its usual form.
This research focuses on alternative forms of equilibria which arise as a result
of learning in repeated games in the absence of common knowledge.

Without the assumptions of common knowledge of rationality and payoff
structure, games are not conducive to deductive solutions, such as Nash
equilibrium. One of the focal points of modern game theory is inductive
reasoning in repeated games, which is described as follows in Arthur [1]:

Each agent keeps track of the performance of a private collection
of belief-models. When it comes time to make choices, he acts
upon his currently most credible (or possibly most profitable) one.
The others he keeps at the back of his mind, so to speak. Alter-
natively, he may act upon a combination of several...Once actions
are taken, agents update the track record of all their hypotheses.

This type of reasoning is known as belief-based learning. Examples of belief-
baser learning algorithms include Bayesian updating and calibration. Under
certain conditions, Bayesian learning converges to Nash equilibrium, while
calibrated learning always converges to a generalization of Nash equilibrium
known as correlated equilibrium. The intent of this thesis research is to
develop efficient learning algorithms which quickly converge to reasonable
approximations of equilibria in game-theoretic models of network routing
and congestion problems.



2 Nash Equilibrium

If all the players in a game know the strategies and payoff functions of all the
other players, and all the other players know that they know this information,
and so on, and if all the players in a game are rational, and all the players
know that all the players are rational, and so on, then the players deduce the
optimal moves of the other players and their own optimal responses; this is
precisely a Nash equilibrium. In this way, common knowledge of rationality
and the underlying structure of a game gives rise to the traditional Nash
equilibrium solution concept in strategic form games of complete information.

2.1 Examples

The most well-known game-theoretic scenario is the paradoxical situation
known as the Prisoner’s Dilemma, which was popularized by Axelrod [5]
in his popular science book. The following is one variant of the story from
which this game derives it name.!

An awful crime has been committed for which two suspects are being
held incommunicado. The district attorney questions the two suspects. If
both suspects confess, they are both punished, but not terribly severely, as
the D.A. rewards them for their honesty (both payoffs equal 4). If only
one suspect confesses, the confessor is severely punished for carrying out the
crime singlehandedly (payoff equals 0), while the other suspect is let off scot
free (payoff equals 5). Lastly, if neither suspect confesses, the D.A. has no
choice but to convict both suspects, although the shared punishment is not
as severe as the punishment of a single convict (both payoffs equal 1).

The Prisoner’s Dilemma is a two player, strategic (or normal) form game.
Such games are easily described by payoff matrices, where the strategies of
player 1 and player 2 serve as column and row labels, respectively, and the
corresponding payoffs are listed as pairs in matrix cells such that the first
(second) number is the payoff to player 1 (2). A payoff matrix which describes
the Prisoner’s Dilemma is depicted in Figure 1, with C denoting “confess”,
or “cooperate”, and D denoting “don’t confess”, or “defect”.

!For the usual interpretation, see Rapoport [14], the two-time winner of the Prisoner’s
Dilemma, computer tournament organized by Axelrod.
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Figure 1: The Prisoner’s Dilemma

2 H T
H| 1-1 | -11
T|-11 | 1-1

Figure 2: Matching Pennies

This game is known as the Prisoner’s Dilemma because the outcome of the
game is (D, D), which yields suboptimal payoffs of (1,1). This equilibrium
solution arises as a direct consequence of rationality. The reasoning is as
follows. If player 1 plays C, then player 2 is better off playing D, since D
yields a payoff of 5, whereas C yields only 4; but if player 1 plays D, then
player 2 is again better off playing D, since D yields a payoff of 1, whereas
C yields 0. Hence, regardless of the strategy of player 1, a rational player 2
plays D. By a symmetric argument, a rational player 1 also plays D. Thus,
the outcome of the game is (D, D).

A second well-known example of a two-player game is a game called
Matching Pennies. In this game, each of the two players flips a coin, and
the payoffs are determined as follows (see Figure 2). Let player 1 be the
matcher, and let player 2 be the mismatcher. If the coins come up matching
(i.e., both heads or both tails), then player 2 pays player 1 the sum of $1.
Otherwise, if the coins do not match (i.e., one head and one tail), then player
1 pays player 2 the sum of $1. This is an example of a zero-sum game where
the interests of the players are diametrically opposed; this class of games is
so-called because the payoffs in the matrix do indeed sum to zero.
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Figure 3: Battle of the Sexes

Another popular two-player game is called the Battle of the Sexes. A
man and a woman would like to spend an evening out together; however, the
man prefers to go to a football game (strategy F'), while the woman prefers
to go to the ballet (strategy B). Both the man and the woman prefer to
be together, even at the event that is not to their liking, rather than go out
alone. The payoffs of this coordination game are shown in Figure 3; the
woman is player 1 and the man is player 2.

The last example that is presented is an ecological game which was studied
by Maynard Smith [15] in his analysis of the theory of evolution in terms
of games. The game is played between animals of similar physique who
live in the wilderness and encounter one another in their search for prey.
During an encounter between two animals, each animal has a choice between
behaving as a hawk: i.e., fighting for the prey; or as a dove: i.e., running
away peacefully. If both animals decide to play like hawks, then each animal
has an equal chance of winning the value v of the prey or of losing the fight
at cost ¢, where 0 < v < ¢; thus, the expected payoff to both players is
(v—c)/2. Alternatively, if both animals act as doves, then the prey is shared
with equal payoffs v/2. Finally, if one animal behaves like a hawk and the
other behaves like a dove, then the hawk gets a payoff worth the full value
of the prey and the other gets nothing. In this game, the animals prefer to
choose opposing strategies: if one animal plays hawk, then it is in the best
interest of the other to play dove; and inversely, if one animal plays dove,
then it is in the best interest of the other to play hawk.

This section included several popular examples of strategic form games.
The next section presents the formal theory of strategic form games and
the Nash equilibrium solution concept, which follows directly from common
knowledge.
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Figure 4: Hawks and Doves

2.2 Strategic Form Games

This section develops the formal theory of finite games in strategic form. Let
Z ={1,...,1} be a set of players, where I € N is the number of players.
The (finite) set of pure strategies available to player i € Z is denoted by
S;, and the set of pure strategy profiles is the cartesian product S = []; S;.
By convention, write s; € S; and s = (s1,...,87) € S. In addition, let
S_; = [l S; with element s_; € S_;, and write s = (si,s_i) € S. The payoff
(or reward) function r; : S — R for the i** player is a real-valued function
on S; in this way, the payoffs to player 7 depend on the strategic choices of
all players. This description is summarized in the following definition.

Definition 2.1 A strategic form game I' is a tuple
I'=(Z, (Si; ri)iez)
where
e T={1,...,1} is a set of players (i € T)
e S, is a finite strategy set (s; € S;)

o 7, : S — R is a payoff function

Example 2.1 Formally, the Prisoner’s Dilemma consists of a set of players
T = {1,2}, with strategy sets S;1 = Sy = {C, D}, and payoffs as follows:
7‘1(0, C) = 7“2(0, C) = 4, 7“1(0, D) = T‘Q(D,C) = 0, Tl(D,C) = 7‘2(0, D) = 5,
and r1(D, D) = ro(D, D) = 1.



A Nash equilibrium is a strategy profile from which none of the players
has any incentive to deviate. In particular, no player can achieve strictly
greater payoffs by choosing any strategy other than the one prescribed by
the profile, given that all other players choose their prescribed strategies.
In this sense, a Nash equilibrium specifies optimal strategic choices for all
players.

In the Prisoner’s Dilemma, (D, D) is a Nash equilibrium because given
that player 1 plays D, the best response of player 2 is to play D; and, given
that player 2 plays D, the best response of player 1 is to play D. The Battle of
the Sexes has two pure strategy Nash equilibria, namely (B, B), and (F, F),
by the following reasoning. If the woman chooses B, then the best response
of the man is B; and if the man chooses B, then the best response of the
woman is B. Analogously, if the woman chooses F', then the best response
of the man is F'; and if the man chooses F', then the best response of the
woman is F'. Note that the game of Matching Pennies does not have a pure
strategy Nash equilibrium. If player 1 plays H, then the best response of
player 2 is T'; but if player 2 plays T, the best response of player 1 is not H,
but 7. Moreover, if player 1 plays 7', then the best response of player 2 is H;
but if player 2 plays H, then the best response of player 1 is not 7', but H.
However, this game does have a mixed strategy Nash equilibrium. A mixed
strategy is a randomization over a set of pure strategies. In particular, the
probabilistic strategy profile in which both players choose H with probability
% and T with probability % is a mixed strategy Nash equilibrium.

A mixed strategy set for player ¢ (notation ;) is the set of probability
distributions over the pure strategy set S;: i.e.,

Qi={q:Si—1[0,1] | Y qls;) =1}

S$;€8;

The notational conventions extend to mixed strategies, e.g., ¢ = (¢;,q i) € Q.
In the context of mixed strategies, the expected payoffs to player ¢, from
strategy profile ¢, is given by:

Elri(q)] = Z ¢i(si) - 73 (54, g—i)

$;€S;

As usual, the payoffs to player 7 depend on the mixed strategies of all players.



Definition 2.2 Given an opposing strategy q_; € Q_;. A strategy q; € Q; s
rational for player i iff for all strategies q; € Q;,

Elri(q,q-:)] > E[ri(¢, q-i)]

Definition 2.3 A strategy profile ¢* = (¢}, q";) is a Nash equilibrium ff
strategy q; is rational, given opposing strategy q*,;, for all players i € Z.

An implication of the assumption of rationality is that a rational player
always plays a best response to the strategies of the other players, where a
best response is an optimizing strategy. A Nash equilibrium is a strategy
profile in which all players choose strategies that are best responses to the
strategic choices of the other players. An alternative characterization of Nash
equilibrium is given in terms of best response sets.

Definition 2.4 The set of best responses for player i to strateqy profile q is:

BR;(q) = {¢; € Qi | E[ri(q],q-i)] > E[ri(g,9-:)],Vai € Qi}

Let BR(q) = II;BRi(q)-

A Nash equilibrium is a strategy profile in which the players all play best
responses to all the other players’ strategies.

Definition 2.5 A Nash equilibrium is a strategy profile ¢* s.t. ¢* € BR(q*).

It is apparent from this definition that a Nash equilibrium is a fixed point
of the best response relation. The proof of existence of Nash equilibrium
utilizes a fundamental result in topology: namely, Kakutani’s fixed point
theorem, which is a generalization of Brouwer’s fixed point theorem.

Theorem 2.1 (Nash, 1951) Fuvery finite, strategic form game has a mized
strategy Nash Equilibrium.

Although Nash equilibrium is the generally accepted solution concept in
the deductive analysis of strategic form games, it should be noted that the



Nash equilibrium solutions in the stated examples are somewhat peculiar. In
particular, in the Prisoner’s Dilemma, the Nash equilibrium payoffs are sub-
optimal. Moreover, in the game of Matching Pennies, the Nash equilibrium
solution is probabilistic. Finally, in the Battle of the Sexes and the game
of Hawks and Doves, the Nash equilibrium is not unique. In view of these
quirky outcomes, this thesis considers alternative forms of equilibria which
arise as a result of various learning processes in repeated games.

3 Other Equilibria

In this section, two generalizations of the Nash equilibrium solution concept
are introduced and their relationship is explored. Bayesian Nash equilibrium
arises in games of incomplete information when players maximize expected
payoffs with respect to beliefs. Correlated equilibrium generalizes Nash by
allowing for possible dependencies in strategic choices. Information games
provide an appropriate framework in which to interpret these equilibria.

3.1 Information games

An information game is a strategic form game in which players maintain
a database of knowledge and beliefs about the state of the world. This
information is stored in a knowledge belief system, which is defined as follows.

Definition 3.1 A knowledge belief system is a probability space
K = (, (Pi, mi)iez)
where
e O is a finite set of possible states of the world (w € Q)
e P; is an information partition®> on Q (P; € P;)

e p; is a prior probability® on

2Technically, P; is a o-field.
3 Assume p; is measurable: i.e., for all i € Z, for all w,w’ € Q, m;(w) = 7;(w') whenever
Pi(w) = P;(w').



An element of an information partition P; is called an information set
of player i at state w, and is denoted by P;(w). Intuitively, P;j(w) is an
equivalence class consisting of those states that are indistinguishable from w
from the point of view of player .

Example 3.1 Consider the state of knowledge today about the price of IBM
stock tomorrow for two players. In this scenario, the possible states of the
world are up and down: i.e., Q = {U, D}. The information partition of both
players is the trivial partition, namely {0, Q}, since neither player knows the
state of the world tomorrow. However, the prior probabilities, or beliefs, of
the two players need not agree. For example, player 1 may attribute equal
prior probabilities to both up and down: i.e., m(U) = my(D) = %; while player
2 might attribute prior probabilities of% to up and % to down: i.e., m(U) = %

3
and T (D) = 2.

Definition 3.2 An information game ' is a strategic form game T together
with a knowledge belief system K.

Example 3.2 Consider the Battle of the Sexes, which is described in the
formal framework as follows. The set of players Z = {W, M }, with strategy
sets Sy = Sy = {B, F'}, and payoffs as follows:

TW(B’B):TM(F’F) =2 TW(F,F) :TM(B,B) =1
rw(B,F)=ry(B,F)=0 rw(F,B)=ry(F,B)=0

In the Battle of the Sexes viewed as an information game, the set of states
of the world consists of all possible outcomes of the strategic form game:
i.e., Q = {(B,B), (B, F),(F,B),(F,F)}. If the woman is playing strategy
B, then the woman’s knowledge of the world is described by information
partition Py = {0, Q, {(B, B), (B, F)}, {(F, B), (F, F)}}. In addition, if the
man is playing strategy B, then the man’s knowledge of the world is described
by information partition Py = {0, {(B, B), (F, B)},{(B, F),(F,F)}}. In
this case, the woman will attribute prior probabilities py to state (B, B) and
1 — pw to state (B, F), according to her beliefs about the man’s strategy,
while the man will attribute prior probabilities pys to state (B, B) and 1—px,
to state (F, B), according to his beliefs about the woman’s strategy.

10
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Figure 5: The Battle of the Sexes Revisited

3.2 Correlated Equilibrium

The notion of correlated equilibrium generalizes that of Nash equilibrium,
by eliminating the independence condition among the mixed strategies of
the players. In particular, correlated equilibrium allows for dependencies in
the players’ choices of randomizations over their pure strategies. A daily
example of a correlated equilibrium is a traffic light; red (green) traffic signal
suggests that cars should stop (go), and in fact, these suggestions are best
responses to the simultaneous suggestions for the actions of others.

As another example, consider once again the Battle of the Sexes. This
game has three Nash equilibria, two of which are pure strategy equilibria,
namely (B, B) and (F, F), and the mixed strategy (3,3) for the woman and
(3, %) for the man, which yields equal expected payoffs of (%, %) to both. A
correlated equilibrium of this game which yields expected payoffs of (13,11) is
given by the distribution (3(B, B), 5(F, F)). Figure 5 presents this correlated

equilibrium in convenient form.

In general, it is possible to achieve correlated equilibrium payoffs from
any convex combination of Nash equilibrium. Moreover, it is also possible
to achieve payoffs via correlated equilibrium outside the convex hull of Nash
equilibrium payoffs. For example, in the game depicted in Figure 6, the Nash
equilibrium payoffs achieved via mixed strategies (1, 3) and (%, 1) for players
1 and 2, respectively, yield expected payoffs of 4 for both players. In contrast,
the correlated equilibrium strategies presented in Figure 6 generate expected

payofts of 4%.

11
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Figure 6: Correlated Equilibrium

In information games, expected payoffs are computed in terms of prior
probabilities, or beliefs. Given pure strategy profile s, the payoff that player
j expects to be rewarded to player i is as follows:

Ejlri(s)] = p;(s) - ri(s)

A strategy is rational for player ¢ which maximizes ¢’s expectation of ’s
payoffs. A player is rational who plays only rational strategies.

Definition 3.3 Given an opposing strategy s_; € S_;. A strategy s; € S; is
rational for player i iff for all strategies s; € S;,

E;[ri(s7, s—i)] > Ei[ri(si, s-)]

The following two definitions make explicit the relationship between Nash
equilibrium and correlated equilibrium, by defining correlated equilibrium
and redefining Nash equilibrium, both in terms of information games.

Definition 3.4 Given an information game. A strategy profile s* = (s}, s*;)
is a correlated equilibrium iff for all players i € I, strategy s} is rational,
gwen opposing strategy s*;, and the common prior assumption holds.

Definition 3.5 Given an information game. A strategy profile s* = (s}, s*;)
s a Nash equilibrium iff for all players i € I, strategy s; is rational, given

opposing strategy s* ;, the common prior assumption holds: (i.e., p; = p), and
the information partitions P; are independent.

12



3.3 Bayesian Nash Equilibrium

This section considers Bayesian games of incomplete information, in which
the missing piece of information is the common payoff structure of the game.
A well-known game of incomplete information is the envelope paradox. A
father offers each of his two sons an envelope with either $10™ or $10™,
where |m — n| =1, for 0 < m,n < 6. Each brother can accept his envelope,
or chose to engage in a bet in which he pays the father $1 for the right to
swap envelopes with his brother, provided that his brother has also chosen to
engage in this bet. Otherwise, he simply loses $1. In this scenario, the payoffs
to the brothers are private; thus, the envelope paradox can be modeled as
a Bayesian game. The missing information regarding payoffs is described
in terms of an unknown state of the world. In particular, let (m,n) denote
the state of the world, where m (n) is the exponent of the payoff to the first
(second) brother. The pure strategy sets of the brothers are BET and NO BET.
The payoff matrix in Figure 7 depicts the outcomes of the envelope game in
terms of the unknown state of the world. The envelope paradox is so-called
because regardless of what the father gives to his sons, it appears that it is
always in both of their best interests to accept the bet. In general, since
the probablity that the second brother receives 10 times as much money
as the first brother is %, the expected value of the second brother’s lot,
given the information that the first brother has about his own lot, is always
approximately 5 times greater than the first brother’s lot. Thus, it is in the
first brother’s best interest to bet. The reasoning is analogous for the second
brother. This paradox is resolved via game-theoretic reasoning.

Definition 3.6 A Bayesian game is an information game in which payoffs
are a function of the state of the world. In particular, r; : Q2 x S — R, for
all players i € T.

Bayesian rationality is an extension of the usual economic understanding
of rationality in which players choose strategies that maximize their expected
payoffs, according to their beliefs. Given strategy profile s, the expected
payoffs to player ¢ at state wy as predicted by player j is based on player j’s
beliefs, which are described j’s information partition P;:

Ej[ri(s,wo)[Pil = Y. pj(w|Pj(wy)) - ri(s,w)

wEP;(wo)

13



1 B NB

10'-1, | 10'-1,
Bl 10m1 | 10
m
NB 139_1’ 10" 10'
Figure 2

Figure 7: The Envelope Paradox

A strategy is Bayesian rational for player ¢ which maximizes i’s expectation
of i’s payoffs, given 7’s beliefs. A player is Bayesian rational who plays only
Bayesian rational strategies.

Definition 3.7 Given an opposing strategy s_; € S_;. A strategy s; € S;
1s Bayesian rational for player i iff given information partition P;, for all
w € Q, for all strategies s; € S;,

Ei[ri((sf,8-i),w)|Pi] = Ei[ri((si, 5-i),w)|Pi]

Definition 3.8 Given a Bayesian game. A strategy profile s* = (sf, s*;) is
said to be a Bayesian Nash equilibrium iff strategy s; is Bayesian rational,

*

gien opposing strategy s*,, for all players i € Z, and p; = p, for alli € T.

The strategy profile (NB, NB) is the unique Bayesian Nash equilibrium
in the Bayesian game which depicts the envelope paradox. The game is such
that the brother’s have common prior beliefs about the possible states of
the world. Now, given that the first brother chooses not to bet, the second
brother also chooses not to bet, since he incurs a loss of $1 otherwise; this is
the case at all states of the world. The situation is symmetric for the second
brother. Moreover, these strategic choices form the unique Bayesian Nash
equilibrium, since the strategy (B, B) is necessarily a strictly sub-optimal
choice for one of the brothers.

14



4 Belief-Based Models

In strategic form games of complete information, deductive reasoning gives
rise to Nash equilibrium, assuming common knowledge of rationality and the
underlying payoff structure. However, the common knowledge assumption is
very strong and often unrealistic in real-world games, such as internet and
other network games. Consequently, this assumption is dropped in varying
capacities throughout the remainder of this paper. In order to reconstruct
a small part of this lost information, the situations considered allow players
to learn via repeated play of games. This section considers two examples
of belief-based learning models, namely Bayesian updating and calibrated
learning.

4.1 Repeated Games

This section describes belief-based models of learning in repeated games (see
Figure 8). Players have an initial set of beliefs. Given these beliefs, players
play the game: i.e., players choose a strategy from their respective strategy
sets. Then, based on the actual strategies that are played, players learn: i.e.,
update their beliefs. Recall that a mixed strategy ¢; € @Q); for the ith player
is a probability distribution over the set of pure strategies. On the other
hand, a belief is a probability distribution over the set of opponents’ pure
strategies, denoted p_; € QQ_;. Intuitively, a strategy implicitly encodes how
players behave as they learn from opponents’ past actions. Likewise, a belief
records how players think other players will behave as the other players learn
about the repeated play of the game.

Definition 4.1 A history of length t is a sequence of plays drawn from S:
ht = (s',...,s"). Let H' denote the set of all t-histories, and let H = J, H'.

The play of the game is prescribed by behavioral strategies, and the way
in which players learn is given by a learning rule. In repeated games, a
behavioral strategy for the ith player is a function g; : H — @; from the set
of all possible histories to the ith mixed strategy set. Likewise, a learning
rule is for the ¢th player is a function f; : H — Q)_; from the set of all possible
histories to the set of opponents’ mixed strategy sets.

15
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Definition 4.2 A learning process is a family of pairs {(fi, g:)icz} where f;
is a learning rule and g; is a behavioral strategy for the it player.

Definition 4.3 A learning process induces a learning path, which is defined
as a sequence {(h*,pt;, ¢})icz | t =0,1,...}, where

e hl is a t-history (assume h° = ()

e p', = f;(h*™1) is player i’s belief at time t

e ¢! = g;(h*™1) is player i’s strategy at time t

The remainder of this paper focuses on different learning processes and
the corresponding solution concepts which arise as a result of repeated play

of information games, in the absence of common knowledge. The rationality
assumption is maintained throughout this section in the following formalism:

Vitha qf € BRZ(pt—z)

In other words, all players choose best responses to their beliefs, at all times.
More specifically, given player i’s beliefs p’ ; at time ¢, the best response set
for player 7 is:

BR;(pL;)
= {q € Qi | Eilri(g;,9-:)] > Eilri(gi, -i)], Va: € Qs}
= {g €Qilp (qg,q)- ria;,q ) > (g9 ) (g0 4),Yq € Qi}
= {g @i Zh. pLy(ht) - ri(ht) > o pLi(Y) - mi(RY), Vg € Qi}

where Xht is the sum over all histories induced by strategy profile q.

16



4.2 Bayesian Learning

This section discusses convergence to Nash equilibrium. The principal result
is that learning processes which satisfy an asymptotic property known as
merging converge to Nash equilibrium. Moreover, Bayesian learning indeed
satisfies the merging property. In the following section, a generalization of
merging known as calibration is considered, and convergence to correlated
equilibrium, a generalization of Nash equilibrium, is established.

Lemma 4.1 A learning path {(h',p",,¢})icz | t = 0,1,...} converges to
Nash equilibrium if the following mathematical conditions are satisfied:

e RATIONALITY: Vi,Vt, ¢¢ € BR;(p!,)

® COMMON PRIOR ASSUMPTION: Vi # j,lim; o || p*; —p"; ||

=0

e INDEPENDENCE: Vi # j, P; and P; are pairwise independent

A learning rule satisfies the merging property if beliefs eventually agree
with, or merge into, the truth. In particular, if for all players ¢ and j, the
probability measures (p_;); and g¢; eventually coincide, then the merging
property holds for the corresponding learning process.

Definition 4.4 A learning path {(h',p";,¢})icz | t = 0,1,...} satisfies the
merging property iff Vi # j,

lim [| (p"); — ¢ =0

The following theorem states that if players are rational, and if a learning
path in a repeated game satisfies the merging property, then the learning
path converges to Nash equilibrium.

Theorem 4.1 (Kalai and Lehrer, 1990) Given a game U that is played
repeatedly among rational players. If a learning process {(fi, 9:)iez} induces
a learning path {(h',p";, ¢ )icz | t = 0,1,...} for which the merging property
holds, then ¢ = (¢*)icr 1s a Nash equilibrium.

17



Proof 4.1 (Idea) By assumption, all players are rational. Thus, it suffices
to show that merging implies independence in information partitions and
the common prior assumption. The merging property holds when players
learn the truth about other players’ mixed strategies. At that point, players’
strategic choices do not affect their beliefs about other players’ distributions:
i.e., the knowledge among the players is independent.

Common priors follow from the merging property via the following:
Vit j#k, limg e || (pL)e— gk || =0
and  Timg oo || (006 — b || =0
= im0 || (pLo)k = (PLy)k || =0

The lemma below states that if initial beliefs satisfy a grain of truth, then
learning via Bayesian updating satisfies the merging property. A player’s
beliefs are said to contain a grain of truth if they assign positive probability
to the actual strategies employed by the other players. It follows from this
lemma together with the theorem above that a learning path that is induced
by a Bayesian learning rule asymptotically approaches a Nash equilibrium
path of play.

Definition 4.5 Given time t and strategy profile q*; for players other than
player i. Player i’s beliefs, namely pt ., are said to contain a grain of truth
iff 3Gt € Q4,0 < a <1 s.t.

27

ptfi = O‘qii + (1 - Of)qti

Lemma 4.2 (Kalai and Lehrer, 1990) If for all players i € Z, the initial
beliefs p°, € Q_; contain a grain of truth and the learning rule f; is Bayesian
updating, then the learning path {(h*,p";,q")icz | t =0,1,...} induced by the
learning process {(fi, gi)icz} satisfies the merging property.

Proof 4.2 (Idea) The sequence of posterior probabilities that result from
Bayesian updating satisfies a property like consistent estimation, which says
that this sequence tends to get closer and closer to the actual distributions
of play, as t increases, provided that actual strategies are in the support of
players’ prior belief distributions. In other words, the belief distributions
eventually merge with the actual distributions of play.
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The above results show that repeated play of information games among
rational players converges to approximate Nash equilibrium provided that
players’ initial beliefs assign positive probability to the strategies that their
opponents actually play: ¢.e., contain a grain of truth.

4.3 Calibrated Learning

The previous section considered a merging property which arises as a result
of Bayesian learning in repeated information games. This section considers a
statistical notion known as calibration, which is used to gauge the credibility
of forecasting methods, such as weather predictors. Recall that a forecast
satisfies the merging property if forecast beliefs converge to actual empirical
frequencies. A calibrated forecast is one in which beliefs converge to empirical
frequencies which are conditioned on those beliefs. Calibration is weaker
than merging; thus, calibrated learning processes converge to a more general
equilibrium concept than Nash, namely correlated equilibrium.

Dawid [7] gives the following intuitive description of calibration:

Suppose that, in a long sequence of weather forecasts, we look at
all those days for which the forecast probability of precipitation
was, say, close to some given value p and (assuming these form
an infinite sequence) determine the long run proportion p of such
days on which the forecast event (rain) in fact occurred. The
plot of p against p is termed the forecaster’s empirical calibration
curve. If the curve is the diagonal p = p, the forecaster may be
termed well-calibrated.

For example, suppose it rains every other day; the empirical distribution
of rain is given by the sequence 1,0,1,0,.... The forecast 1,0,1,0,... is
well-calibrated, since it rains with probability 1 on the days in which rain is
predicted with probability 1. On the other hand, a daily forecast of rain with
probability % is also well-calibrated, since it rains on exactly half the days
in which the forecast probability equals % The latter example demonstrates
that calibration is an extremely weak requirement; as such, it is often viewed
as a minimal necessary condition of reliable forecasting techniques.
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Game-theoretically, beliefs are well-calibrated with empirical frequencies
iff for all histories h, for all 0 < p <1,

Elg_i(hlp-i(h) =p)] =p

In other words, the expected empirical probability ¢ ; of history h, given
that beliefs p_; attribute probability p to history A, is in fact equal to p.
Let P[(¢'|p",;);] denote the conditional probability that the strategy ¢! is the
actual randomization that is played by player j at time ¢, given beliefs player
i’s beliefs about j, namely (p*,);. In particular, if ¢ is the indicator function,

#((pt— )j ) 6q],p
#((pL); = p)

P[(q'[p%,);] =

Definition 4.6 A learning path {(h',p';,q¢})icz | t = 0,1,...} is calibrated
Wvi# g,
lim || (pL;); — Pl(¢'[pL:);] || =0

t—00

It follows from this definition that merging implies calibration, since true
probability is stronger than conditional probability. Analogous to the result
that a learning process which satisfies the merging property converges to
Nash equilibrium, a calibrated learning process, gives rise to a correlated
equilibrium.

Lemma 4.3 A learning path {(h',p';,¢})icz | t = 0,1,...} converges to
correlated equilibrium f the following two conditions hold:

e RATIONALITY: Vi,Vt, ¢! € BR;(p';)

® COMMON PRIOR ASSUMPTION: Vi # j,lim; ,o || p*; —p; || =0
Theorem 4.2 (Foster and Vohra, 1995) Given a game I that is played
repeatedly among rational players. If a learning process {(fi, g:)iez} induces

a calibrated learning path {(h',p" ;, ¢! )iez | t = 0,1,...}, then ¢"* = (¢! )iez
18 a correlated equilibrium.
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Proof 4.3 (Idea) Calibrated learning implies that beliefs eventually agree
with empirical frequencies. But empirical frequencies necessarily agree; thus,
beliefs eventually agree, satisfying the common prior assumption. Now by
assumption, all players are rational. Therefore, since players are rational and
have common prior beliefs, it follows that calibrated learning converges to
correlated equilibrium.

More formally, calibrated learning implies the common prior assumption
via the following reasoning. The crucial observation is that the expected long-
run frequencies, conditioned on beliefs, are the actual long-run frequencies,
and therefore must agree. Moreover, these frequencies yield a correlated
equilibrium.

Vi#j#k, lime,eo || (pL)k — Plalp-i)i [| =0
and limy o || (pt,j)k — P(qlp—)i Il =0
= im0 || (PLi)e — a&" [ =0
and lim; o || (pij)k —q =0
= limy oo || (P2)k — (pij)k =0

This section described several formal results regarding belief-based models
of learning in repeated information games. In particular, learning processes
which satisfy the merging property necessarily converge to Nash equilibrium,
while calibrated learning processes give rise to correlated equilibrium. One of
the primary goals of this research is to exhibit efficient algorithms that satisfy
properties such as merging and calibration in order to guarantee convergence
to equilibrium solutions in network games, such as those presented in the
final section.
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5 Network Games

This section presents three examples of interesting network games. The first
is the Santa Fe bar game, which is an abstraction of the problem of routing
packets over a network. This game is analyzed without assuming common
knowledge of rationality. Secondly, a congestion game is introduced that
serve as a more realistic model of network interaction. The congestion game
assumes neither common knowledge of rationality nor of payoffs; moreover,
players do not even know their own payoffs. The last game is a traditional
problem in economics, known as the free-rider problem, which is relevant in a
network setting. This problem is described as a Bayesian game of incomplete
information in which payoffs (costs) are private.

5.1 Santa Fe Bar Problem

This section describes an interesting example of a repeated game, namely
the Santa Fe bar problem. This game is one of complete information that
affords a deductive solution, assuming common knowledge of rationality. In
addition, computer simulations of a form of inductive reasoning give rise
to convergent behavior, in the absence of common knowledge, but in the
presence of a small random component.

The Santa Fe bar problem was invented by Brian Arthur [1], an economist
at the Santa Fe Institute, in order to illustrate how one might model inductive
reasoning. Here is the scenario, in a nutshell:

There is one bar in Santa Fe. Every night, the city dwellers make
a decision as to whether or not they will go to the bar. They
would all like to be at the bar if and only if it is not too crowded.
More specifically, if there is an available seat, they all prefer to
go to the bar, but if not, they all prefer to stay at home.

The Santa Fe bar problem is a non-cooperative game. As such, it can be
expressed formally as a repeated strategic form game. The players in this
game are the inhabitants of Santa Fe. The strategy set of the players consist
of two strategies, namely go to the bar or stay home. The payoffs of the
game are determined by the number of players that choose to go to the bar.
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Definition 5.1 During round t, for a bar of capacity c, the Santa Fe bar
game is defined as follows:

e 7T={1,...,1}
e S; ={G, H}, where G means go to the bar and H means stay home

e Algorithm A: S x C — R measures the level of dissatisfaction of the
bar attendees due to overcrowding, based on the capacity C' of the bar

o The payoffs r;(si, A(s)) depend on the player’s strategic choice as well
as the output of algorithm A

This Santa Fe bar game is an abstraction of the so-called uniform network
game in which user applications have two strategic choices, namely transmit
or skip.

The Nash equilibrium solution of this game is a mixed strategy profile. If
there are 100 inhabitants of Santa Fe (I = 100), and if the capacity of the bar
is 60 (¢ = 60), then the Nash equilibrium strategy for all players is to go to
the bar 60% of the time and to stay home 40% of the time. Like the game of
Matching Pennies, the Santa Fe bar game is a game of complete information
with a mixed strategy Nash equilibrium. If all players deduce this Nash
equilibrium a priori, and if all players solemnly play this Nash equilibrium
strategy at all times, then indeed play converges to the Nash equilibrium, and
attendance at the bar converges to capacity. This unlikely outcome occurs
only under the assumption of common knowledge of rationality.

In an attempt to find a solution to this game in the absence of common
knowledge, Arthur noted the following. On a given night, the inhabitants of
Santa Fe must decide whether or not to go to the bar. At one extreme, if
everyone predicts that everyone else will go to the bar, then no one goes to
the bar; but then, no one is happy with their decision. On the contrary, if
everyone predicts that no one is going to go to the bar, then everyone will
indeed go to the bar; once again, no one is happy with their decision. In either
case, no one is happy; thus, neither of the above situations will persist. In
particular, the conclusion is that there is no uniform rational behavior which
maximizes overall happiness. (This outcome is reminiscent of the ecological
game of Hawks and Doves in which it is also preferable to behave in contrast
with the behavior of others.)
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Based on these observations, Arthur simulated the behavior of boundedly
rational agents who use inductive reasoning to build expectational models.
These models are formed from a pool of simple functions which aim to predict
attendance at the bar. Initially, the agents randomly select a fixed number of
predictor functions from the pool: py, ..., pgx. All agents maintain a vector of
non-negative weights associated with their predictor functions. In particular,
w!(pg) is the weight associated with the kth predictor function by agent i
at time . Initially, all weights are uniform. Throughout the simulation,
the agents monitor the accuracy of their predictor functions and update the
corresponding weights accordingly. The play of the game is prescribed by
the most accurate predictor functions, which is indicated by their relative
weights. Agent ¢ utilizes the following algorithm, during round ¢ of the game:

1. PLAY: st = p*({s'™'}), where w!™' (p*) > wi™ (py), for all py

2. LEARN: for all predictors py, w!(py) = f(w ' (pg)), where f is s.t.:

o wi(py) > wi (py), if pr({s*~'}) is accurate,
e wi(p) < wi '(py), otherwise.

In this model of belief-based reasoning, agents exhibit rational play and
boundedly rational learning. Their play is rational in the sense that it is
optimal with respect to their beliefs, where beliefs are described by predictor
functions. Their capacity for learning is bounded by their pool of simple
predictor functions. Arthur simulated this repeated game and obtained an
efficient solution in which the overall attendance at the bar stabilized near
the capacity of the bar. The outcome of this simulation is consistent with
the theoretical results reported in the last section. Moreover, the general
specification of the above learning algorithm gives rise to an entire class of
algorithms, some of which may satisfy merging and/or calibration, thereby
converging to Nash and/or correlated equilibrium.

The Santa Fe bar game can easily be extended to a New York City bar
game in which there are N bars of capacity ¢,, for 1 < n < N. This extension
lends itself as an abstraction of the problem of routing network packets. In
particular, links have fixed bandwidth capacities, and routers make on-line
decisions as to the best possible route based on their congestion forecasts.
The study of on-line learning algorithms that play such games well is the
focus of this thesis research.
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5.2 Congestion Game

The congestion game is a model of a more general network setting in which
players choose a rate of transmission, and receive a payoff based on this rate
together with the overall network delay. The game is described as follows.
The possible range of transmission rates form the strategy sets S; = [0, 1],
for all players 1 € Z. Given a vector C of link bandwidths, a prespecified
routing algorithm A: S x C' — R, routes the information imposing a delay of
§ units. The payoffs are given by r;(s;, A(s)); in other words, the payoffs to
player 7 depend on 7’s selected transmission rate as well as the overall delay
that results from congestion throughout the network. The congestion game
can be further generalized by integrating it with the New York City bar game
described above. In particular, players choose both the transmission rate and
the route by which to transmit; the strategy sets S; = [0,1] x {1,..., N}.

The congestion game is difficult to analyze because it does not incorporate
most of the usual game-theoretic assumptions. In particular, there is no
common knowledge of rationality; players do not know the others, and so
cannot be sure that the others are rational. In fact, it is straightforward to
interpret this game as a game against nature. Moreover, the payoff structure
of the game is not commonly known; players do not necessarily know even
their own payoffs. Since the congestion game provides its players with so little
a priori information, belief-based models of this game are cumbersome and
difficult to analyze. This thesis will investigate the development of learning
algorithms for this and related games which weight strategies solely on the
basis of performance, without requiring that players maintain prior beliefs
about expected network congestion.

5.3 Free-Rider Problem

The provision of a public good, such as the internet, is a standard example
of the free-rider problem in economics. Specifically, although all participants
benefit from the supply of a public good, everyone prefers not to contribute
to the cost of supplying the good. The free-rider problem can be analyzed as
a Bayesian game of incomplete information, under the assumption that the
preferences of the players are not common knowledge. On the contrary, the
costs incurred by the players are private information.
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Figure 9: The Free-Rider Problem

Consider the following description of the free-rider problem as a two player
Bayesian game. Two players make a simultaneous decision about whether or
not they wish to incur some of the cost involved in supplying a public good.
The costs to the players are private knowledge, denoted c¢; and co, where
0 < ¢q,c9 < 1. If neither player chooses to contribute, then the good is not
provided and the payoff to both players is 0. If both players contribute, then
the good is provided at a cost to them both, yielding payoffs of 1 — ¢; and
1 — ¢y to players 1 and 2, respectively. There are two symmetric Bayesian
Nash equilibria in which the cost of the good is incurred by only one of the
players, but both players benefit from its provision. The payoff matrix in
Figure 9 depicts the various outcomes.

A learning algorithm such as Bayesian updating that satisfies the merging
property could potentially provide a long-run solution to this game. However,
this game poses an additional complication, namely the existence of multiple
equilibria. It is unclear how to design a learning algorithm which gives rise to
an equilibrium that alternating between these two equilibria, thereby fairly
distributing the cost of supplying this public good among its beneficiaries.
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6 Conclusion

The idea of learning to play equilibrium strategies in repeated games is an
active area of research in the game-theoretic community. Game theorists are
primarily concerned with the outcome of learning algorithms in the limit:
i.e., over an infinite amount of time. One of the goals of this research is
to apply computer science ideology to learning theory. In particular, this
thesis will consider imposing restrictions on traditional learning algorithms
such that players learn to play approximations to equilibrium strategies in
bounded amounts of time. The idea of such bounded learning algorithms is
to quickly learn to exploit the obvious, while ignoring any subtleties.

Bounded learning is applicable to network games, in which players learn
to utilize networks during times of minimal congestion. These games are
atypical as compared with traditional games described in the game-theoretic
literature, since their underlying structure is not commonly understood by
the players, and moreover, common knowledge of rationality is not a valid
assumption. As such, this class of repeated games does not naturally lend
itself to belief-based learning algorithms. Rather, this thesis will investigate
learning algorithms for network games that are analyzed solely on the basis
of performance, without requiring that players maintain prior beliefs about
expected network congestion. In sum, the initial focus of this thesis is to
explore an application of computer science ideology to learning algorithms
in game theory; secondly, bounded game-theoretic learning will be applied
to routing and congestion problems in network environments.
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