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Abstract

We propose to provide new mathematical foundations for the de-
sign of knowledge-based systems. The underlying idea is that the
knowledge with which the computer (“artificial agent”) operates is
considered as a kind of abstract data type. In this context, a rela-
tion of approximation arises in a natural way when one imagines the
computer as operating in a changing information environment (“infor-
mation flow”). This notion of approximation can be studied using the
techniques that have been developed for domain theory in the context
of denotational semantics of programming languages.
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1 Introduction

The main thrust of the proposed investigation is to provide new mathemati-
cal foundations for knowledge maintenance systems. The point of departure
is to regard the states of knowledge of the system as elements of an ef-
fectwvely presented domain. The main purpose is to find and develop the
notions of many-valued structures appropriate for the representation of for-
malized declarative knowledge. Many-valued logics based on such structures
are meant to determine the epistemic states of a knowledge-based system.
The search for suitable deductive systems will need to yield descriptions
of suitable Scott information systems determining (up to isomorphism) the
domains which result from the semantic description of epistemic states. Em-
phasis should be placed on research on computability and tractability of the
relations arising from the approximation, and of the operations of the knowl-
edge transformation, as well as of dependence of the domain structure on the
structure of information flow.

A principal area to be studied is the characterization of continuous com-
putable operations on the domains being considered, which are thought of
simply as knowledge transformers by means of which the system maintains
itself. Strategies correcting the computer’s behavior such as backtracking
can be studied cf. e.g. [Mur 94a]), although such considerations are omitted
in this paper. In Section 4, we propose the analysis of the possible evolution
of a computer’s knowledge by means of one or another epistemic logic.

The approach to be taken, on which considerable progress has already
been made [KM 90, KM 93, Mur 93, Mur 94a, Mur 94b], involves combin-
ing two paradigms from different areas in computer science: Scott domains
from denotational semantics and the use of non-classical logics to represent
possibly inconsistent information. Although the intention in the proposed
research will be to avoid concentrating exclusively on procedural definitions,
as has tended to be the case in work on plan-recognition, contact with prac-
tice will be maintained by emphasis on the computability and tractability of
relations and operations.

Our point of view is to be sharply distinguished from the anthropomorphic
approach based on an attempt to directly model human behavior in computer
systems. Although of course the modeling of the human mind remains one
of the long term goals of artificial intelligence research, it may well be noted
that in this field many techniques that originated in analytic philosophy are



used, techniques that fundamentally depended on formalization in terms of
abstractions rather than on anthropomorphic entities [Rus 18].

The knowledge representation process is taken to be a relation between
information flow and an artificial agent, i.e., a computer based question-
answering database system which responds to incoming information by ap-
propriate changes in its data. The system is intended to be able to interact
with changing information coming to it from a variety of sources. Conse-
quently, it is appropriate to assume that the system can tolerate contradic-
tory information in the form of an inconsistent input or as a side-effect of an
“inoffensive” input. We consider the structure of information flow as repre-
sented by the propositions of a formal language, making assertions about the
external world, labeled by values of an epistemic structure, symbolically A : T,
and constraintsthat determine regularities taken into consideration, which we
symbolically denote via A; : 71 — A, : 5. Remaining within the framework
of the linguistic interpretation of information knowledge, which can be traced
back at least to Frege (cf. e.g. [Fre 18]), and which is an element of the
well-known Knowledge Representation Hypothesis, [Smi 82, Lev 86, Isr 93]
the propositions are considered in the framework of a many-valued logic. As
to constraints, they are realized in the knowledge representation process as
Scott-continuous computable operations on the domain. In fact, such oper-
ations are the only ones permitted either for maintaining the state of an
agent’s knowledge or corresponding to the acquisition of new data.

The underlying idea of the “information-knowledge” relation is that the
computer acquires information from the outer word in the form of Scott-
continuous operations on the domain of “real” and “ideal” epistemic states
of the computer’s knowledge and corrects it in accordance with imposed
constraints that are also Scott-continuous operations on this domain. It is
important that these operations be computable on the “real” elements of
that domain — on its effective basis.

2 Representing Knowledge As a Domain

Recall (cf. [DB 90, GS 90] or [DSW 94, Chapter 16]) that a partially ordered
set P is called complete if it has a bottom element | and the least upper
bound UD exists for each directed subset D C P. An element z € P is said



to be compact, if for any such directed subset D C P,
z <UD = z < d for some d € D.

A complete partially ordered set is a complete semulattice, if each of its non-
empty subsets has a greatest lower bound. And finally, a complete semilattice
P is a domain if for each z € P,

z = {y|y € P, y is compact }. (1)

A complete partially ordered set P is called a Scott domain, if equation (1)
is satisfied and if, in addition, the set

{z |z < zg,z is compact }

is directed for each element o € P. Notice that every domain is also a Scott
domain.

Given a partially ordered set (P,<)and z € P,let | = &ef {yly e P,y <z}
Then, denote for any subset © C P, u <1 P as meaning that for every z € P,
the set uN | z is a directed subset of P. Finally, let D be a (Scott) domain
and let K(D) be the set of compact elements of D. The domain D is said
to be effectively presented if the relation < on K(D) is recursively decidable
(with respect to some effective enumeration) and for every finite v C K(D),
it is effectively decidable whether v <1 K (D).

The importance of many-valued logics in computer science is generally
recognized. They have been used in artificial intelligence [Gin 88], logic pro-
gramming [Fit 85], algebraic specification of data types [Pig 90] and in other
fields. In our work, we use the notion of epistemic structure to represent
the (generally many-valued) truth values of propositions about the external
world. This notion is in turn defined in terms of what we call pre-epistemic
structures.

A pre-epistemic structure is an algebraic system (S, A,V,—, f,t,C) sat-
isfying the conditions:

e ($,0) is a finite complete semilattice with respect to C;

e (3,A,V) is a bounded lattice with: f,¢t € S and f < z <t for every
z € S, where
r<y < zAy=z,or equivalently z Vy = y;
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e the operations A, V and — are monotone on & with respect to C with:

-f=tand -t =Ff.

Example 1: Kleene’s 3-valued logic K3 and Belnap’s 4-valued bilattice
B4.

Figure 1: Pre-epistemic structures K3 and B4
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Let us fix some pre-epistemic structure &. Let Var stand for the set of

atomic assertions of a formal language. By a setup, we understand simply

a mapping s : Var — &. We begin by considering a quite simple formal

propositional language with connectives: A (conjunction), V (disjunction)
and — (negation). Denote this language by L. Each setup can then be

extended to the set of formulas of the language L as follows:
o s(AAB)=s(A)A(B),
o s(AV B)=s(A)V(B),
o s(~A) = s (A).
A setup s is called finite if the set

V(s) ¥ {r|r € Var,s(dr) # L}



is finite.
Following [Bel 75, Bel 76], we introduce an order on the setups as follows:

s<s; EL s(x) C sy(n) for every 7 € Var.

This relation is obviously a partial order. We denote the partially ordered set

of setups by Se. Notice that for the finite setups, the relation < is recursively
decidable.

Theorem 1 ( [Mur 95a]) The partially ordered set Se is a complete semi-
lattice. Furthermore, every finite setup is a compact element of Se, that is,
for any directed set D of setups,

s <UD = s < 8y for some 31 € D,

and conversely, every compact element in Se s a finite setup. Moreover, for
every setup s the equation

s = L{s"|s' € Se, &' s finite, and s' < s}
holds. Hence, Se 1s an effectively presented domain.

Following [Bel 75, Bel 76], we define an epistemic state to be any nonempty
set of setups. Consider three orderings on the set of epistemic states:

o ¢; < g, iff for every s; € €5 there is s; € €; such that s; < ss;
o &1 = &, iff for every s; € €; there is s; € €5 such that s; < s5;

[ ] €1§|€2iﬂ€1§€2 andsljez.

As easy to check, these orderings are pre-orders, that is, reflexive transitive
relations.
An epistemic state is called finite, if the set

V(e) & u{V(s)|see}

is finite, that is, if ¢ is a finite set of finite setups.

Now following [KM 93], let us write m(¢) to stand for the minimal element
of a finite state e. Note that m(¢) exists, is unique, and is itself a finite state,
because of the Descending Chain Condition. It is easy to check that each
m(e) consists of incomparable setups. We call a finite state ¢ minimal if
m(e) = €. Let the partially ordered set of minimal states be denoted by ME.
Let Se* be the upper powerdomain of the domain Se in the sense of [GS 90].
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Theorem 2 ( [Mur 95a]) Se* is an effectively presented domain. The par-
tially ordered set of compact elements of Se* is isomorphic to ME. Moreover,
for any €1,e2 € ME, sup{e;,e2} € ME, provided that sup{ci,e,} exists.

Example 2: In the case of Belnap’s bilattice B4, ME can be proved to
be a distributive lattice [KM 93, Mur 94a]. On the other hand, in the case
of K3, if setups s; and s, are such that

31(71-):{ t form=p and 32(71-):{ f form=p

1 otherwise L otherwise,

then sup{{s1},{s2}} does not exist.

The structure of the domain Se* with ME as the compact elements is
still rather complicated to work with, but it appears to be a good point of
reference. We would like to have an observable structure so that it is easy
to determine appropriate Scott-continuous operations to serve as knowledge
transformers of the intelligent system. One way of doing this is to impose
stronger conditions on pre-epistemic structures. A pre-epistemic structure is
called an epistemic structure if it additionally satisfies:

erly <— (flzandtZz)or(tLzand yZt)or
(fLzandy L f)or (y Lt andylL f);

e {zlzeS,fCz}and {z|z € S,z Ct} are V-semilattices.

Note that K3 and B4 both satisfy these additional conditions so they are
epistemic structures.

Following [Bel 75, Bel 76], we define:
def
e(A) = M{s(4)|s e}

for every epistemic state ¢ and any formula A of L. Two epistemic states
€1 and €, are said to be formula indistiguishable if €1(A) = e3(A) for every
formula A.

Theorem 3 ( [Mur 95a]) With respect to a fized epistemic structure two
mainimal states are formula indistinguishable if and only if they are equal.



Theorem 3 seems to take a step towards a deductive characterization
of minimal states. For Belnap’s case (i.e. &=B4), this was made explicit
in [Mur 94a] (Cf. Lemmas 10 and 12 there). In turn, we were able to obtain
in [Mur 94b| a direct description of the domain Se* via the notion of Scott
information system [Sco 82, DB 90]|. Our description was based on the first
degree entailment relation Ey4. from [AB 75].

3 Knowledge Transformers

Having obtained an appropriate space for knowledge representation, we now
must consider knowledge transformers. It is natural to take for these partially
recursive functions of type ME — ME. However, in order to take into account
the domain structure of Se* and the role of ME in Se*, we propose to first
investigate computable continuous operations on Se* coordinated with ME
in a sense to be explained. An operation F : Se* — Se* is called Scott-

continuous, [Sco 72, GHKLMS 80] if for every directed {z;|: € I} and = €
Se*,

z=U{z; | € [} implies F(z) = U{F(z;)|i € I}.

We say that F'is coordinated with ME, if F is closed on ME, that is, F((z) €
ME whenever z € ME [KM 93]. Finally, we define the set of pairs Gg C
ME x ME as follows:

Gr ¥ {(e1,2) |62 < F(e1)}.

The operation F' is then called computable, if the corresponding relation Gg
is recursively enumerable (with respect to a suitable effective enumeration)
[GS 90]. Also, to make precise the natural stipulation that incoming infor-
mation never decrease the computer’s knowledge, we call the operation F
ampliative, if ¢ < F(z) for every = € Se* [Bel 75].

To begin with, we consider for each formula A and element 7 € S, the
operation [A : 7] ([A : T]-action), defined as follows:

[A:7)(e) & eum({s|s € Se,7 C s(4),V(s) CV(4)}),

where V(A) 4 {7 |r € Var and 7 occurs in A}. Notice that if ¢ < &1 and
[A:7](e1) is defined, then, because Se* is a domain (cf. Theorem 2), it
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must be a complete semilattice, so that [A:7](¢) is defined as well. The
intutive meaning is to inform the computer that the assertion expressed by
the proposition A has a truth value of at least 7. Receiving information, the
computer changes its current state of knowledge in a “minimal” way.

Although this definition is certainly analoguous to the corresponding def-
inition in Belnap’s treatment (cf. [KM 93] and Theorem 4 in [Mur 94al),
they are not the same. The question arises here: How can we extend [A : 7]
defined in this manner to the entire domain Se* and then prove that this
extended operation is continuous. We can attempt to proceed as follows: we
define for every = € Se*,

[A:7](z) ~U{[A:7](e)|c € ME,e < z},

where ~ is Kleene’s identity symbol for partially defined functions from [Kle 52].
The first questions arising here are to find conditions when [A : 7] is defined
in z and continuous at this point. In the latter case, we will have to refine the
definition of continuity above to be suitable for partially defined functions.

We may well hope to be able to give a characterization of all continuous
ampliative functions coordinated with ME via [A : 7]-actions in the same
way as was done for the case of Belnap’s 4-valued bilattice in [Mur 94b]. It
was established there that every continuous ampliative operation coordinated
with ME (with respect to B4) is determined in terms of [A]-actions and a
classification of such operations was proposed. Notice, however, that in the
present case, we are dealing in general with partial operations.

Now let us turn to constraints. Recall that the constraints in this ap-
proach are to be certain continuous operations on Se* that are computable
on ME. Thus, their definitions depend on the prior development of the the-
ory of such operations. On the other hand, constraints have to reflect reg-
ularities of the external world. Their definitions on Se*, must therefore be
intutively acceptable. We could begin by defining a constraint of the type
Ay : 11— Ay : T to be a partial operation on ME by analogy with Belnap’s
treatment for the operation [A — B] (cf. Theorem 4 in [Mur 94a]). However,
the proof of the Theorem 4 in [Mur 94a| made essential use of the fact that
ME (with respect to epistemic structure B4) is a distributive lattice.



4 An Epistemic Logic

Now we wish to consider what a computer can know about its own state of
knowledge and how this state can evolve. We suppose that an intelligent
system is formed to include facilities for knowledge revision in the form of
continuous operations on the space of Se*, which are coordinated with ME,
and of some epistemic logic as the computer’s knowledge of its epistemological
capacity. The knowledge being embodied in such an intelligent system must
be effectively accessible. In our case, it can be expressed in an epistemic
language by means of epistemic formulas (e-formulas, for short) that are
built up from atomic e-formulas of the form (A : 7), where 7 € S, using
ordinary propositional connectives A, V, = and modality <.

Thus, we define A as being an e-formula whenever A is an atomic e-
formula or of the form (B A C), (B V C), =B or ©B, where B and C are
e-formulas.

Let F be a class of computable (or continuous, or continuous and amplia-
tive) operations on (or, respectively, coordinated with) ME. We say that the
minimal state e; is accessible from e¢ (symbolically, Reoeq), if there exists
an operation F' € F such that F(eg) = ;. (cf. [Mur 93]). It might seem
that is necessary to introduce the transitive closure of . However, since the
class F is closed under the composition of a finite number of operations, R
is transitive.

Now, we define the notion of validity of an e-formula in a minimal epis-
temic state (symbolically, ¢ = A) as follows:

eE(A:7) if e(A)=r1, where 7 € S

eE=(BAC) iff e¢l=B and ¢ [ C;

eE(BVC) iff eEBorel=C;

e =B iff not ¢ | B;

e = OB iff there is a state g9 such that Reeq and ¢ = B.
We think of ¢ = (A : 7) as meaning that the computer knows that an
assignment of the formula A takes the value 7 at the state ¢. Then, we
can consider three kinds of epistemic logic with respect to the class F and
epistemic structure .

Let S(F,S) be the set of all the e-formulas valid in every minimal epis-
temic state. We may call S(F,S) a logic, because it is not empty and is
closed under modus ponens, although the operation of substitution is not
defined for it. Then, let So(F, ) be the set of formulas of the purely modal
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propositional language such that each formula that results on substituting
atomic epistemic formulas for propositional variables is a valid formula of
S(F,S). Finally, let S;(F,S) be the set of modal formulas, each substitu-
tion instance of which belongs to So(F, ). We see that, by definition, this
last logic is closed under substitution. Note that for the class F of continu-
ous ampliative operations coordinated with ME, the logic S(F,B4) has been
proved to be decidable (cf. [Mur 93]).

5 Implementation and Further Research

Although the field of knowledge-based systems has been of increasing im-
portance in industrial and commercial settings during the two past decades,
“the difficulties associated with market and technology development have
created a widespread impression that the [existing] technology somehow
failed” [HJ 94]. This feeling of failure has been recently expressed in the
proceedings of a workshop on Theoretical Foundations of Knowledge Repre-
sentation and Reasoning as follows:

“We concede that a large amount of KR research probably
does not have any immediate impact on building Artificial Intel-
ligence systems” [LN 94].

Nonetheless, we wish to develop the approach described in the previous
sections for designing experimental knowledge-processing systems. We are
encouraged in this direction by our recent developments both in the investi-
gation of domains based on the simplest epistemic structures of Kleene’s and
Belnap’s logics in [KM 93, Mur 93, Mur 94a, Mur 94b, Mur 95b| and also
in the more general considerations in [Mur 95a] where the computational
aspect is stressed. Moreover, building and evaluating real experimental sys-
tems is the only way to understand the problems of knowledge maintenance
efficiency in the framework of the new proposed techniques.

The starting point is to choose an appropriate epistemic structure §
generating the corresponding effectively presented domain Se*. Thus, the
computer-represented knowledge is seen to be realized in the domain’s com-
pact elements, ME, with which each element in Se* can be approached with
any precision that the Scott topology admits. The elements of ME, in turn,
being objects to deploy knowledge, can be represented semantically, that is,
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in the form of epistemic states, or deductively, in the form of finite elements of
relevant information systems. Notice that, though semantic representation is
often more intuitively transparent, the deductive representation of a domain,
and especially of its compact elements, facilitates investigation of operations
on the domain, considered as appropriate knowledge transformers. It is more
satisfactory to work with formulas rather than with a set (even if it is finite)
of setups (that is, an epistemic state). All the more so because the relation
< on the epistemic states is replaced by set inclusion C on sets of formulas.
Problems of more than theoretical interest arise here concerning constructing
an effective inference engine, for example, in connection with decidabilty of
equality of two [A : 7]-operations.

The principal goal is to investigate computable operations on ME and, to
begin with, continuous and ampliative operations on Se* coordinated with
ME understood to be knowledge transfomers for different natural epistemic
structures. For implementation purposes, the characterization of all contin-
uous computable ampliative operations, obtained in [Mur 94b| for the case
S = B4, can be used. We also aim to consider, along with Se*, the cases
of the lower and convex powerdomains in the sense of [GS 90], that is, the
powerdomain constructions with respect to the relations < and < as defined
in Section 2, respectively.

Concerning epistemic logics as defined in the Section 3, the problems
are to find tractable algorithms for their decidability. The question of their
complexity may turn out to be quite difficult even for particular epistemic
structures. Recall that for the case § = B4, the epistemic logic can be used
as part of a knowledge-processing system aiming to tolerate contradictory
information.

Finally, an important problem is to go beyond the propositional language
or to consider richer propositional languages. The second alternative leads
to the enrichment of the notion of epistemic structure with all the new prob-
lems arising from this. The first poses the problem of how to handle with
the computer’s finite resources potentially infinite information in a chang-
ing environment. (This problem was clearly recognized by Nuel Belnap;
cf. [Bel 75, Bel 76].)

Indeed, assume that we have a constraint VzQ(z) : ¢ — P(a) : t and
that the computer receives the message that Q(a) : ¢, and a is its only
individual symbol. Then the computer must conclude that P(a) : ¢t. If we
become aware subsequently that Q(b) : f, we certainly cannot apply that
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constraint any longer. However, our information that P(a) : ¢t has become
questionable as well. Notice that this criticism does not refer to a constraint
Va(Q(z) : t — P(a) : t). Under this constraint, after two messages Q(a) : ¢

and Q(b) :

f are received by the computer, we have P(a) : t, and we have no

reason to doubt it. Thus, a starting point here is to investigate constraints
having the form of Horn sentences. Note, by the way, that we thus accept
a structure of information flow that does not satisfy some of the rules of

inference of classical first-order logic.
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