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ABSTRACT. This report describes SDPpack Version 0.9 Beta for Matlab 5.0.
This version extends the previous release for semidefinite programming (SDP)
to mixed semidefinite—quadratic—linear programs (SQLP), i.e. linear optimiza-
tion problems over a product of semidefinite cones, quadratic cones and the
nonnegative orthant. Together, these cones make up all possible homogeneous
self-dual cones over the reals. The main routine implements a primal-dual
Mehrotra predictor—corrector scheme based on the XZ+7X search direction
for SDP. More specialized routines are also available, one to solve SDP’s with
diagonal constraints only, and one to compute the Lovasz 6 function of a graph,
both using the X7 search direction. Routines are also provided to determine
whether an SQLP is primal or dual degenerate at its solution and whether
strict complementarity holds there. Primal nondegeneracy is associated with
dual uniqueness and dual nondegeneracy with primal uniqueness, though these
conditions are not equivalent if strict complementarity fails to hold. A routine
is also provided to compute the condition number of an SQLP. The Matlab
code calls mex files for improved performance; binaries are available for several
platforms. Benchmarks show that the codes provide highly accurate solutions
to a wide variety of problems.
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1. INTRODUCTION

We treat the primal mixed semidefinite—quadratic-linear program (SQLP):

min CSOXS—}-CE;XQ—}-C%XL
s.t. (AS)k OXS—l—(AQ)gXQ—F(AL)gXLIbk k=1,...,m
XSEOJ XQ ZQOa XLZO

where X is a block diagonal symmetric matrix variable, with block sizes Ny, Ny,
.., N, respectively, each greater or equal to two; Xg is a block vector variable,
with block sizes ni,ns,...,n4 respectively, each greater or equal to two; and X,
is a vector of length ng. The quantities Cg and (Ag)g, ¥ = 1,...,m, are block
diagonal matrices. The quantities Cq and (Ag)x, k = 1,..., m are block vectors,
and Cr and (Ar)k, k = 1,...,m, are vectors. All vectors are column vectors. The
quantity C's @ Xg is the trace inner product (tr CsXg), i.e. Eiyj(cs)ij(xs)ij
Each of the three inequalities in this primal program has a different meaning,
each corresponding to a different kind of cone:

o The first kind of inequality is the semidefinite constraint. Xg > 0 means that
the matrix Xg is positive semidefinite, or equivalently that each of its blocks
1s positive semidefinite.
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o The second kind of inequality describes the quadratic cone' constraints. Writ-

ing * = X¢q for brevity, with block structure
(1) r= [ @) )]
where
= [mll h oz

the constraint Xg >¢g 0, 1.e.  >¢g 0 means that, for each block ¢,

Any convex quadratic constraint can be converted to this form.
e The third kind of inequality is the standard one: X7 > 0 means each compo-
nent of Xy, is nonnegative.

Thus the feasible set is a product of semidefinite, quadratic and nonnegative orthant
cones, intersected with m hyperplanes. It is possible that one or more of the three
parts of the SQLP is not present, i.e., any of s (the number of blocks in Xg), ¢ (the
number of quadratic blocks in Xq), or ng (the length of X ) may be zero. If ¢ = 0,
the SQLP reduces to an ordinary SDP and if s = 0 the SQLP reduces to QCLP
(convex quadratically constrained linear programming).
The standard form given here is a very convenient one. The dual SQLP is

bT

max Y

s.t. Sore1 Uk(As)k + Zs = Cs
Y oher Yk(AQ)k + Zg = Cq
Yore1 k(AL + Z1 = Cy,

Zs =0, Zg>0, Z>0.

Note again the three different kinds of inequalities on the three dual slack vari-
ables. In control applications, the first of the three 1s usually called a linear matriz
inequality (LMT), since it can also be written > ;- ; yx(As)s = Cs.

We shall use the following notation. Let

m 1/2
(3) pinfeas = (Z [bk — (Ag)k L] XS — (AQ)ZXQ — (AL)gXL]2>

k=1
(4) dinfeas = Cs —Zs — Zyk(AQ)k + CQ — ZQ — Z yk(AS)k

k=1 F k=1 2
+||Cr — Z1, — Zyk(AL)k
k=1 2

(5) comp = XgeZs+ XhZg+ X[ 7L

1 Also known as the second-order cone, Lorentz cone or ice cream cone.
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where ||-||p denotes the Frobenius matrix norm. Assuming the existence of a strictly
feasible primal or dual point, 1t is well known that the optimality conditions may
be expressed by the primal feasibility equation pinfeas = 0, the dual feasibility
equation dinfeas = 0, and the complementarity condition comp = 0 (together with
the inequality constraints). We will also wish to refer to the quantities

(6) normx = [[Xs[lr + || Xqll2 + [ XLll2, normz = [|Zs|r +[|Zqll2 + | 2Ll

2. OBTAINING AND INSTALLING SDPPACK

The current release of SDPpack is Version 0.9 Beta? and requires Matlab® Ver-
sion 5.0. Users who have not yet upgraded to Matlab 5.0 should use SDPpack
Version 0.8 Beta, which requires Matlab 4.2c.1 and solves standard SDP’s only, not
mixed SQLP’s. Both versions of the package can be obtained from the SDPpack
home page on the World-Wide Web:

http://www.cs.nyu.edu/faculty/overton/sdppack/sdppack.html

This page contains the complete distribution of the source code, compiled binaries
(mex files) for several platforms, online documentation, and information regarding
forthcoming releases, submission of bug reports, several test problems, etc.

After retrieving the files, use the following instructions to install the package.

Unix Platforms: (% denotes the shell prompt)

% gunzip sdppack-v0.9.tar.gz
% tar -xovf sdppack-v0.9.tar

Windows NT/95:
Move the ZIP file to the directory in which you want to install SDPpack
(typically Matlab\toolbox). Unzip the file, making sure the directory structure
is preserved (for example, if you use WinZip, make sure that the “Use Folder
Names” checkbox is checked).

This will produce a directory called sdppack, which will contain the main routines
of SDPpack, and the subdirectories support (support routines), special (special-
ized routines for certain problem classes), doc (this document), and mex (C sources
to generate mex files for Matlab 5). Although the software does not require the
use of mex files, it runs much faster with compiled mex files (binaries). There are
seven mex files, with source file names svec.c, smat.c, evsumdiv.c, lyapsol.c,
arwmul.c, arwimul.c, gqcschur.c. These C source routines are in the mex subdi-
rectory. The binaries (available separately from the SDPpack home page) have the
name format f ilename . mex**#* where *** is a string that is architecture-dependent.
The table below lists the binaries currently available; see the home page for updates.

Place the appropriate binary files in the main sdppack directory, so that they
reside with the corresponding m-files. If you cannot find compiled MEX files for
your platform, you will need to compile them yourself. A Unix make file is provided
for this purpose. To compile the MEX files on a Unix platform, type

2Preliminary versions of this software have been distributed privately since August 1995. The
first public release was Version 0.8 Beta, March 1997.
3Matlab is a registered trademark of The MathWorks Inc.
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TaBLE 1. MEX files available for SDPpack Version 0.9

| Operating System | Architecture | Compiled mex files available? |

TRIX-6.2 R8000/R 10000 Yes
TRIX-6.3 R5000 Yes
TRIX-5.3 R4400 Yes
Sun0S-4.1.4 Sparc Yes
SunOS-5.5.1 Sparc Yes
Windows NT/95 PC x86 Yes
MacOS (System 7) Macintosh Available soon
% make

after setting the current directory to the main sdppack directory. Depending on the
C compiler you use, the switches in the command line for mex (see the file Makefile)
could vary; consult the manual for your C compiler. (For SGI R10000 machines
running the 64 bit version of Matlab 5.0, the flags -64 -mips4 are needed to compile
the mex files.)

After starting Matlab, type

setpath

to add all the necessary subdirectories to the Matlab path. Information about spe-
cific routines can then be obtained by typing help routine name from within Mat-
lab.

The following sections describe how to use the package, giving an overview of
the main routines. Appendix A describes an ASCII storage format for SQLP’s
supported by SDPpack. Appendix B has several Matlab sessions illustrating how
to use the main routines in the package. Appendix C benchmarks this release of
SDPpack on a set of test problems.

3. THE SCRIPT sQL.M AND THE FUNCTION FSQL.M

The Matlab routines sql.m and £sql.msolve SQLP’s using a primal-dual Mehro-
tra predictor—corrector scheme based on the XZ+ZX search direction? [1]. Tts ex-
tension from SDP to SQLP is based on the discussion in [2] for quadratic cone
constraints and will be described in more detail in a forthcoming technical report
[3].

The simplest option for the user is to call the script sql.m, which automatically
calls the Matlab function £sql.m. Additional scripts are provided to help the user
set up the data, define necessary options, and initialize the variables (as described
shortly). The user who requires a function interface should bypass sql.m and call
fsql.m directly. In either case there are five steps to be followed:

set up the data (the use of makeA.m or import.m simplifies this process)

o set the options (the routine setopt.m sets these to their default values)

e provide initial values for the variables (the routine init.m provides default
settings)

o call either the script sql.m or the function £sql.m to solve the problem

e interpret the output

4Sometimes referenced as the AHO direction in the literature
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We now describe each of these steps in detail.

3.1. Preparing the data. The problem is defined by the following data:

A: a structure® with three fields:
A.s: a matrix with m rows and )", (N;(N; + 1)/2) columns. The kth row
holds the symmetric block diagonal matrix (As)x stored as a vector
A.g: a matrix with m rows and )", n; columns. The kth row holds the block
vector (Ag)F
A.1: a matrix with m rows and ng columns. The kth row holds the vector
(AL)i
b: the vector b defining the dual objective function. Its length m is equal to the
number of primal constraints
C: a structure with three fields, defining the primal objective function:
C.s: the block diagonal matrix C'g
C.q: the block vector Cg
C.1: the vector Cp,
blk: a structure with three fields defining the block sizes:
blk.s: a vector whose length is the number of blocks in the block diagonal
matrix Xg and with entries set to the matrix block sizes Ny, No, ..., N;.
Note that these numbers must be all greater or equal to two, as any blocks
with size one should be incorporated in the vector X,
blk.g: a vector whose length is the number of blocks in the block vector Xg
and with entries set to the vector block sizes nq,na,...,n,. Note that
these numbers must be all greater or equal to two, as each vector block
has a special first component and at least one other component
blk.1: the scalar ng (the length of X))

Important: If one or more of the three parts of the SQLP is not present, the
corresponding field of blk may be set to 0, or to the Matlab empty matrix [ ], or
left unspecified. In any of these cases, the corresponding fields of A and C, if set,
will be ignored.

Important: In order to be able to use the mex files, all block diagonal matrices
must be stored in Matlab’s sparse® format, unless they contain only one block.

In particular, C.s must be stored in sparse format, unless it has only one block. If
it has only one block, it may be stored in either sparse or full format. The vectors
C.q, C.1 and b are stored in full format. The matrices A.q and A.1 may be stored in
either sparse or full format. There are four different ways to set up the matrix A.s,
whose rows represent (Ag)g, k=1,... ,m:

1. Constructing A.s directly using the function svec.m, which converts block
diagonal matrices to vector representation. The function smat.m restores the
symmetric matrix from such a vector. These routines are invoked by

v = svec(M,blk.s) and M= smat(v,blk.s).

The block diagonal matrix ¥ passed to svec.m must be stored in sparse format
if it has more than one block. By default, the blocks are assumed to be dense.
If the user wishes to take advantage of the sparsity in the blocks of the matrix

5The fields of a structure may be assigned at the keyboard without initializing it otherwise, for
example A.q = [1 2; 2 2].
Stype help sparse in Matlab for more information.
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M, then a third, optional parameter sparseblks can be passed to svec.m.
When sparseblks = 1, svec.m treats the blocks as sparse, and returns a
sparse vector.

These routines preserve the inner product, i.e. if v = svec(M, blk.s) and w =
svec(N, blk.s) for block diagonal matrices M, N, then

vITw=MeN.

2. Using the routine makeA.m, which calls svec.m, to construct A.s from given

predefined matrices. This is invoked by
A.s = makeA(blk.s, Amat)

where blk.s is as above and Amat is a one-dimensional cell array. The kth
component of the cell array Amat is the matrix (Ag)x. Cell arrays are indexed
using braces {-}. For example, to set (As)s assign a matrix value to Amat{3};
this must be in sparse format if it has more than one block. The individual
blocks of the block diagonal data matrices are treated by default as being
dense. If they are sparse, and the user wishes to take advantage of this sparsity,
a third optional parameter spblocks may be passed to makeA.m, and this
parameter should be set to the value 1. In this case the matrix A will be
stored using the sparse matrix storage option.

3. Using the routine import.m to load all the data (4, b, C and blk) from a plain

ASCII file. This is invoked by
[A,b,C,blk] = import(filename)

The ASCII data in the file must be stored in a special compact format that is
described in Appendix A. The file name must have a period and an extension
(anything other than the standard Matlab extensions mat, mex etc.) following
the period. The user—specified extension is important as Matlab treats file
names without an extension as mat files. The routine export.m implements
the reverse operation, saving a problem’s data in an ASCII file, in a format
recognized by import.m.

. Loading a mat file defining the data A, b, C, blk, saved previously by Matlab’s
save command, using Matlab’s 1load command. This option may be used to
load all the examples (from control theory and truss topology design) bench-
marked in Appendix C, for which mat files are available from the SDPpack
home page.

3.2. Setting the options. Options are passed to the code by means of a structure
opt. It is important to set the options correctly in order to take full advantage of the
codes. Particular attention should be paid to the termination options opt.abstol,
opt.reltol and opt.bndtol, for which appropriate values are quite problem depen-
dent. All options are set to their default values by calling the routine setopt.m.
The default values demand high accuracy; the number of iterations required to meet
the termination criteria is reduced by requesting less accurate solutions.

opt.maxit: (Default value = 100)

The maximum number of iterations which may be taken by the algorithm. If
validate = 1 (see below), then explicitly setting maxit = 0 results in data
validation alone.
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opt.tau: (Default value = 0.999)
The fraction of the step to the boundary of the feasible cone taken by the
algorithm. This choice leads to fast convergence and is generally reliable, but
may occasionally lead to failures due to short steps (see below). In many
cases, the quantity comp (see (5)) is reduced by approximately a factor of
1/(1 — tau) per iteration in the last few iterations.

opt.steptol: (Default value = 1078)
Tolerance on the primal and the dual steplengths. If either one of these drops
below steptol, the algorithm terminates. If pinfeas, dinfeas or comp is
large, a restart is recommended, with either a reduced value of tau, or with
X and Z set to larger initial values (see below). This is done automatically
when the driver script sql.m is used, but is not done if the the driver script
is bypassed with a direct call to the function £sql.m.

opt.abstol: (Default value = 1078)
Absolute tolerance on the total error, imposing the condition

pinfeas + dinfeas 4 comp < abstol

(see (3), (4)).
opt.reltol: (Default value = 10711)
Relative tolerance on the total error, imposing the condition

pinfeas + dinfeas + comp < reltol x (normx + normz)

(see (6)). reltol is usually set to a value smaller than that of abstol. Suc-
cessful termination takes place when both the absolute and relative conditions
are satisfied. Either one can be relaxed by making the corresponding tolerance
large.

opt.gapprogtol: (Default value = 100)
Tolerance on progress; this parameter, in conjunction with feasprogtol (see
below), determines when the algorithm should terminate if significant progress
is not taking place. If comp is less than the previous value of comp divided
by gapprogtol, then the progress is considered “sufficient”. This check is
performed only when comp has been reduced below 100 times the value of
abstol.

opt.feasprogtol: (Default value = 5)
Tolerance on progress; this parameter, in conjunction with gapprogtol (see
above), determines when the algorithm should terminate if significant progress
is not taking place. If the new pinfeas is less than feasprogtol times the
previous pinfeas, or the new dinfeas is less than feasprogtol times the
previous dinfeas, then the loss of feasibility, if any, is considered “tolerable”.
Termination occurs if the loss of feasibility was not “tolerable” and the reduc-
tion in comp was not “sufficient” to justify this loss of feasibility. In short,
for the default values, these conditions mean that we are not willing to let the
algorithm continue if the primal or dual infeasibility worsened by a factor of 5
or more, unless the gap improved by a factor of at least 100. These options at-
tempt to achieve a judicious balance between feasibility and complementarity
by trading the former in return for the latter.

opt.bndtol: (Default value = 10%)
Tolerance on the norm of the solution; if any of the three terms in normx or in
normz (see (6)) becomes greater than opt.bndtol, the algorithm terminates.
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Unbounded primal (dual) feasible iterates suggest that the dual (primal) pro-
gram may be infeasible.

opt.prtlevel: (Default value = 1)
Determines print level; setting this to 0 produces no output from fsql.m.”
Setting opt.prtlevel to 1 produces one line of output per iteration (iteration
number, primal and dual step lengths, primal and dual infeasibilities pinfeas
and dinfeas, the inner product comp, and primal and dual objective values).
Upon termination, summary information is provided by the script sql.m re-
gardless of the value of opt.prtlevel.

opt.validate: (Default value = 0)
By default, several minor consistency checks on the dimension of the data are
performed. Additionally, if validate = 1, £sql.m makes a check to ensure
the initial X.s and Z.s conform to the block diagonal structure specified.

opt.uselyapsol: (Default value = —1)
Indicates whether or not to use the 1yapsol mex file. This affects the speed of
solving the Lyapunov systems required to construct the semidefinite compo-
nent of the Schur complement. Using lyapsol is usually advantageous, but is
not in the cases where Xg has only one block, or its blocks are all relatively
small. When the default value —1 is used, the code automatically decides
whether or not to use this mex file; the user may override this by specifying a
value of 0 (do not use it) or 1 (use it).

3.3. Initializing the variables. The user must provide initial values for the vari-
ables. This may be done by calling the script init.m, which sets default values as
follows, assuming that a scale factor scalefac is available in the workspace. The
choice of scalefac is discussed further below.

X, Z: structures, each with three fields:

X.s, Z.s : the block diagonal matrix variables Xg and Zg, which must be
positive definite. The default rule used by init.m is to set both to
scalefac times the identity matrix.

X.q, Z.g: the block vectors Xqg and Zg, whose blocks must lie in the interior
of their quadratic cones (see (2)). The default rule used by init.m is to
set the first entry in each block to scalefac and the rest to zero.

X.1, Z.1: the vectors X and 7, which must be positive. The default rule
used by init.mis to set all components to scalefac.

y: The dual variable y. Any initial values may be used; init.m sets this to zero.

If the block diagonal matrices X.s and Z.s have more than one block, they must
be stored as sparse matrices. If they contain a single block, it is recommended that
they be provided in full format, as the solutions will most likely be full. The vectors
are normally stored using full format.

The proper choice of scalefac is highly problem dependent. The routine setopt.m
sets scalefac to a default value of 100, but it may be necessary to change this to
a larger value. On the other hand, often scalefac = 1 is satisfactory and results in
a smaller number of iterations.

"Matlab warnings that ill-conditioned systems are being solved may be suppressed by typing
warning off. Such ill-conditioning is normal near the solution.
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3.4. Invoking sql.mor fsql.m. After preparing the data, initializing the variables
and setting the options, the user may simply type

sql

to solve the problem. Alternatively, the user who requires a function interface should
use the function call®

[X,y,Z,iter, compval, feasval, objval, termflag] = £sql(A,b,C, blk, X, y,Z, opt)

3.5. Interpreting the output. The following output parameters are provided by
both sql.m (as variables in the Matlab workspace) and £sql.m (as return values):

X, y, Z: The final values of the variables. As on input, X and Z are each structures
with three fields, X.s, X.q and X.1 and Z.s, Z.q and Z.1, respectively. If the
matrices X.s and Z.s have multiple blocks, they are stored using Matlab’s
sparse format. If they have only one block, then they are always full. As
long as termflag is not equal to one (see below), X.s and Z.s are numerically
positive definite in the sense that Matlab’s Cholesky function chol does not
encounter zero or negative pivots when applied to them; likewise the blocks of
the vectors X.q and Z.q strictly satisfy the quadratic cone constraints and the
vectors X.1 and Z.1 are strictly positive. If termflag equals one, at least one
component of the computed solution is (numerically) either outside the cone
or on its boundary.

iter: The number of iterations taken by the algorithm.

compval: A vector of length iter + 1, with entries equal to the value of comp
(see (b)) as a function of the iteration count. The first entry in the compval
array is the value of comp corresponding to the initial point provided.

objval: A matrix with two columns and iter + 1 rows, whose entries are the
values of the primal and the dual objectives in the first and the second columns
respectively, as a function of the iteration count.

feasval: A matrix with two columns and iter 4+ 1 rows, whose entries are the
values of pinfeas and dinfeas (see (3) and (4)) in the first and the second
columns respectively, as a function of the iteration count.

termflag: An integer informing the user why fsql.m terminated, with the fol-
lowing meanings:

termflag = 0: Successful termination: both the absolute and relative toler-
ances were satisfied.

termflag = 1: The iterate X or Z generated by the algorithm is numeri-
cally outside the cone or on its boundary. This would not occur in ex-
act arithmetic, and indicates that the computation has reached its lim-
iting accuracy. This is normal, and usually means that the problem
is essentially solved but the termination criteria were too stringent. If
prtlevel > 0 (see below), further information is printed. Specifically, if
Matlab’s Cholesky routine chol determines that either X.s or Z.s (or both)
is not positive definite, the smallest eigenvalue of X.s or Z.s (or both) is
computed (by blkeig: see Section 7) and printed. Likewise if X.q, X.1,
Z.q or Z.1 lies outside the cone or on its boundary, that information is
printed. If necessary, this information can be used to shift the solution

8The user need not specify all output parameters when invoking a Matlab function: any number
of leading output parameters may be requested. If only the right-hand side is specified, the function
returns only the first output parameter.



SDPpack User’s Guide (Version 0.9 Beta) 11

inside the cone or onto its boundary.® (If iter = 0, the initial X or Z
provided is not in the interior of the cone as required.)

termflag = 2: This occurs if the eigenvalue routine blkeig (see Section 7)
determines that Z.s has a zero (or negative) eigenvalue, even though chol
reported that Z.s is positive definite. This indicates that the algorithm
has reached its limiting accuracy. The minimum eigenvalue is printed
if prtlevel > 0. (The eigenvalues of Z.s (but not X.s) are required to
compute the search direction.)

termflag = 3: Termination occurred because the Schur complement was nu-
merically singular, i.e. the Matlab routine 1u generated a zero pivot, mak-
ing the search direction undefined. The most likely explanation is that the
matrix [A.s A.q A.1] is rank deficient. The routine preproc.m can help to
detect inconsistent constraints and eliminate redundant constraints (see
Section 7). Otherwise, this is a rare situation which might occur close to
the solution, if the termination criteria are too stringent.

termflag = 4: Termination occurred because the progress made by the al-
gorithm was no longer significant. See the description of the input options
gapprogtol and feasprogtol. This indicates that the termination crite-
ria may be too stringent. (If iter = 0, then the initial point was probably
already too close to the boundary.)

termflag = 5: Termination occurred because either the primal or the dual
steplength became too small. If pinfeas, dinfeas or comp is large, a
restart is recommended, with either a reduced value of opt.tau, or with
X and Z reset using a larger value of scalefac, or both. Such a restart is
done automatically when the driver script sql.m is used, but is the user’s
responsibility when the driver script is bypassed by a direct call to the
function £sql.m. (If iter = 0, then the initial guesses X and Z were most
likely too close to the boundary of the cone.)

termflag = 6: Termination occurred because the maximum number of iter-
ations was reached. (If maxit = 0, then the data passed the validation
test.)

termflag = 7: Termination occurred because data failed validation checks.
This means that some input argument was not of the correct dimen-
sion or f£sql.m was called with an incorrect number of arguments. If
validate = 1, this could alternatively mean that the initial X or Z did not
conform to the specified block structure.

termflag = —2: Termination occurred because at least one of the compo-
nents of normx (see (6)) exceeded bndtol, indicating possible dual infea-
sibility.

termflag = —1: Termination occurred because at least one of the compo-
nents of normz (see (6)) exceeded bndtol, indicating possible primal in-
feasibility.

The reader is encouraged to consult Appendix B which contains a sample Matlab
session illustrating the use of the sql script.

9Unfortunately, the output of Matlab’s chol function does not distinguish between the singular
and indefinite cases. Hence the need to rely on an eigenvalue routine to make this distinction.
Using blkeig is preferable to calling the Matlab built-in function eig directly, since it computes
eigenvalues one block at a time.
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4. PROBLEMS IN NONSTANDARD FORM

Often, problems arise in nonstandard form, but in many cases they are easily
converted to the SQLP form. For example, if one wishes to place nonnegativity
bound constraints on some or all of the components of Xg, one introduces a primal
constraint and a new component of X for each such bound, e.g. constraining
(Xs)12 = (X1)1 > 0. The disadvantage of this approach is the increase in dimension
size, but the advantage is its convenience. As another example, if one has upper and
lower bounds on a variable, one uses two inequality constraints: again, this approach
has disadvantages, but has the virtue of simplicity. A less obvious example is how
to handle mixed inequalities and equalities. For example, suppose one has the two
constraints

ZkukIFm Zykaij
k=1

k=1
where {Fy} and {Gy} are symmetric matrices. The first constraint is called an

LME (linear matrix equality) and the second an LMI. One introduces one dual
slack matrix for the LMI and two for the LME, giving

Zkuk+Z1 = Fy, Zyk(—Fk)+Z2=—Fo7

k=1 k=1
> wGr+Zs=Go,  Z1:=0,Zy 20,75 =0
k=1

which is then in the required dual block semidefinite form. The disadvantage of
this approach is that the corresponding primal solution set is not bounded; this
sometimes leads to numerical difficulties, but is worth trying.

5. SPECIALIZED ROUTINES

Specialized routines are available for two problem classes: (i) SDP’s with di-
agonally constrained variables, and (ii) the Lovdsz 6 function of a graph. These
routines may be found in the special subdirectory.!®

5.1. Diagonally constrained SDP’s. For the case of diagonally constrained prob-
lems (for example, MAX-CUT relaxations), the Schur complement equations can
be formed and solved very efficiently using the XZ search direction!! [4, 5]. The
specialized routines dsdp.m and fdsdp.m take advantage of this. As before, the five
steps involved in setting up and solving a problem are: preparing the data, set-
ting the options, initializing the variables, invoking the solver, and interpreting the
output. These are similar to those described in Section 3, except for the following
important differences:

e These routines solve a specialized SDP, not an SQLP. The quadratic and linear
parts of the SQLP are assumed to be empty.

e The k—th constraint matrix (Ag)y is assumed to be ey eg, where ey, 1s the k—th
unit vector (a vector of all zeros, except a 1 at the k—th position), so the matrix
Ags should not be stored explicitly. The user must provide the cost matrix Cg

10As long as setpath.m has been called, Matlab will be able to find routines in the various
subdirectories.

1Sometimes called the HRVW /KSH/M direction in the literature
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(stored in the field C.s) and the primal constraint right-hand side b, stored
in b. The fields C.q and C.1 are assumed to be empty, and are ignored. No
structure A is needed.

e There is a special initialization routine called dsetopt.m which sets the op-
tions to default values. The default value for reltol is larger than that used
by setopt.m, since the X7 method generally cannot achieve the same high
accuracy as the XZ+ZX method. Also the default value for tau is 0.99 (in-
stead of 0.999) since the XZ method performs poorly with values of tau close
to one.

e There is a special initialization routine called dinit.m which initializes X.s,
y, Z.s. It expects that C.s and b are available in the Matlab workspace.

o The script dsdp.m uses an additional parameter called useXZ, which when set
to 1 (this is the default set by dsetopt .m) solves the problem by the specialized
code £dsdp.m using the XZ method. When useXZ is set to 0, the specialized
code 1s not used, but instead dsdp.m calls £sql.m to solve the problem using
the XZ+7ZX method, after constructing the matrix Ag explicitly and setting the
structure A accordingly. The latter usually provides more accurate solutions,
but at substantially increased computation time.

e The problems that fall into this class are graph problems that usually require
the graph to be connected, and hence will usually be applied to problems with
a single block.’?> They do not use the validate parameter, i.e. no check
is made to ensure block structure compatibility. Nevertheless, a few simple
consistency checks are always made on the data.

e The user who wants a function interface can bypass the script dsdp.m by

typing
[X.s,y,Z.s,iter, compval,feasval,objval, iter, termflag] = £dsdp(C.s, b, X.s,y,Z.5, opt)

o When the output parameter termflag has the value 3, the meaning is slightly
different from the XZ+ZX case. Here, termflag = 3 means that the Schur
complement matrix, which is symmetric and mathematically positive definite
for the X7 method, was numerically indefinite or singular, i.e. Matlab’s chol
routine failed or generated a zero diagonal element. Also, the termination code
termflag = 2 is not used.

5.2. Loviész 6 function. A specialized solver to compute the Lovasz 6 function of
an undirected graph is also available. As in the diagonally constrained case, such
an SDP may be solved more efficiently by the XZ method than the XZ+7X method,
as long as the number of edges in the graph is not too large. The driver script is
1sdp.m and the specialized function is £1sdp.m. The five steps involved in setting
up and solving a problem are again similar to Section 3, except for the following
important differences:

e These routines solve a specialized SDP, not an SQLP. The quadratic and linear
parts of the SQLP are assumed to be empty.

e The k—th constraint matrix (Ag)g, k= 1,...,m—1, is eie]T + ejel | where
(4,7) is the kth edge in the graph, and (Ag)m, = I, with b = e,,. These should
not be constructed explicitly. The user must instead provide an edge list G (a
matrix with as many rows as there are edges and 2 columns, with each row of
this matrix defining an edge of the graph (listing its two vertices)) and a weight

12However, dsdp and fdsdp will function with multiple blocks.
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list w (a vector with one component for each vertex of the graph, specifying the
weight for that vertex). The cost matrix Cg is defined by (Cs);; = —\/w;w;
(and is not constructed explicitly). The optimal value of this SDP is actually
the negative of the value of the 6 function of the graph.

e The routine 1setopt .msets the options in the structure opt just as dsetopt.m
does.

e The initialization routine for the variables is called 1linit.m, which expects
the variables G and w to be available in the Matlab workspace.

e Like dsdp.m, the script 1sdp.m requires the parameter useXZ to be available,
and calls the specialized solver £flsdp.m only if useXZ equals 1 (the default
value set by 1setopt.m). Otherwise, it calls £sql.m to solve the problem by
the XZ+7ZX method, after constructing the matrices Ag and C's and the vector
b and setting the structures A and C and the vector b accordingly.

e The problems that fall into this class are graph problems that usually require
the graph to be connected. Hence, this specialized solver have been pur-
posefully designed to work with a single block only. If validate is set to 1,
flsdp.m checks to see if the graph is connected and prints a warning if it is
not.

e The user who wants a function interface can bypass the script by typing

[X.s,y,Z.s,iter, compval,feasval,objval, iter, termflag] = f1sdp(G, w, X.s,y, Z.5, opt);

o When the output parameter termflag has the value 3, the meaning is slightly
different from the XZ+ZX case. Here, termflag = 3 means that the Schur
complement matrix, which is symmetric and mathematically positive definite
for the X7 method, was numerically indefinite or singular, i.e. Matlab’s chol
routine failed or generated a zero diagonal element. Also, the termination code
termflag = 2 is not used.

Appendix B contains sample Matlab sessions that illustrate the use of dsdp.m
and 1sdp.m on these special types of problems.

6. COMPLEMENTARITY AND NONDEGENERACY

We provide routines to check the strict complementarity and the primal and dual
nondegeneracy conditions at the computed solution of an SQLP, and to estimate its
condition number. These routines may be found in the support subdirectory.

6.1. Strict complementarity. In order to define the strict complementarity con-
dition for given (Xs,Xq, X1) and (Zs, Zg, Z1,) satisfying the cone inequalities, we
must consider the three components separately:

The semidefinite part: The matrices Xg, 7 satisfy the complementarity con-
dition if Xg @ Zg = 0, iz.e., the matrix product XgZg = 0, and the strict
complementarity condition if, in addition, Xg + Zgs is strictly positive def-
inite. Alternatively, let Ay > --- > A, denote the eigenvalues of Xg and
wy < -+ < wy, denote the eigenvalues of Zs. Then Xg, Zs satisfy the com-
plementarity condition if, for all 7, the product A;w; 1s zero, and the strict
complementarity condition if, for all ¢, exactly one of the pair A; and w; is
zero.

The quadratic part: Using the notation (1)-(2), again writing * = X for
brevity, and likewise z = Zg: x,z satisfy the complementarity condition if
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zTz = 0, and the strict complementarity condition if, in addition, for each
block 7, exactly one of the pair

(7) 2y and  (5)° =) ()7
is zero, and exactly one of the pair
n;
(8) 4 amd (@)= (2))7)
j=2

is zero. Consequently, for each block, either the vectors z* and z* are both
nonzero boundary points, or one is zero and the other is in the interior of the
quadratic cone.

The linear part: X, 7Z; satisfy the complementarity condition if XgZL 18
zero, and the strict complementarity condition if, for each i, exactly one of the
pair (X); and (Z1); is zero.

Generally, £sql.m returns computed solutions approximately satisfying strict com-
plementarity when these exist. The routine which verifies strict complementarity
is

scomp.m: Verify strict complementarity at a computed solution. The calling
sequence is

[strictc,v] = scomp(X, Z, blk, tol);

where X, Z and blk are structures as before, and tol is a tolerance This rou-
tine first checks the global complementarity condition comp < tol. If violated,
it quits immediately with strictc = —1. Otherwise, it checks strict comple-
mentarity block by block, using the square root of tol to determine whether
the relevant quantities are sufficiently close to zero. The output vectors v.s
and v.q and scalar v.1 indicate the result for each block, with a value of
1 if strict complementarity holds in that block, and 0 if it is violated. The
summary flag strictc is then set to the minimum value of v.s, v.q and v.1.

The SDPpack routines are generally able to solve problems for which strict com-
plementarity holds, but the convergence rate is markedly slower, and generally less
accuracy is achieved. Note the use of the square root of the tolerance in scomp.m,
since if strict complementarity is violated, usually quantities which are mathemat-
ically zero are not reduced to very small values. The reason for the square root
is as follows. Suppose that an SDP where strict complementarity fails to hold is
approximately solved, obtaining computed solutions Xs and Zg with Xg e Zg = k.
This implies that the pairwise computed eigenvalue products satisfy \;w; < k. For
an index ¢ for which strict complementarity holds, one computed eigenvalue of the
pair is typically small (about the same order of magnitude as ) and the other is not.
For an index for which strict complementarity fails, both computed eigenvalues in
the pair typically have order of magnitude only x'/2, even though both are zero at
the true solution.

If scomp returns strictc = 0, check the output parameter v to identify which
blocks are relevant, and use the routines blkeig (for the semidefinite part) and
gcpos (for the quadratic part) to investigate further (see below). Consider also
experimenting with different values for tol.
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An example of a simple SDP for which strict complementarity fails is given in
the sample Matlab session in Appendix B. The ladder2 Steiner tree example in
Appendix C is an example of a QCLP for which strict complementarity fails.

6.2. Primal and dual nondegeneracy. Primal and dual nondegeneracy condi-
tions are defined for SDP’s in [6]. It is important to realize that these conditions are
defined with respect to the specified block structure (see [7]), so that they reduce to
standard LP conditions in the special case that all blocks are one. The extensions
of these concepts to SQLP’s will be discussed in [3]. See also the comments in
the codes for the definitions. The most important of these can be accessed using
Matlab’s help command. The routines are:

pcond.m: Given the constraints of an SQLP, its block structure and a primal
feasible point, this routine tests for primal degeneracy. The calling sequence
is:

[cndp,Dsize,D] = pcond(4,blk,X,tol)

where A, blk, X are structures as earlier and tol is a tolerance used to decide
whether components of X are or are not on the boundary of their cones. In
exact arithmetic, the routine would return the value endp = inf (4o00) if and
only if the problem is primal degenerate at X. A large value of cndp is a strong
indication that the problem is primal degenerate. Type help pcond for the
definition, as well as an explanation of the output parameters Dsize and D.

dcond.m: Given the constraint matrix of an SQLP, the block structure and a dual
feasible point, this routine tests for dual degeneracy. The calling sequence is:

[cndd,Bsize,B] = dcond(A,blk,Z,tol)

where A, blk, X are structures as earlier and tol is a tolerance used to decide
whether components of Z are or are not on the boundary of their cones. In
exact arithmetic, the routine would return the value cndd = inf (4o0) if
and only if the problem is dual degenerate at Z. A large value of cndd is a
strong indication that the problem is dual degenerate. Type help dcond for
the definition, as well as an explanation of the output parameters Bsize and
B.

As a rough guide, if X (Z) passed to pcond.m (dcond.m) is the solution of an SQLP
solved with the default parameter values in setopt.m, and if tol = 1076 then a
value exceeding, say 103, for cndp (cndd) is indicative of primal (dual) degeneracy.
Avoid setting tol too small, especially if strict complementarity does not hold, in
which case try values larger than 1075,

Primal (dual) nondegeneracy implies the uniqueness of dual (primal) solutions.
The converse is true if strict complementarity holds [6].

Before calling pcond.m or dcond.m for a diagonally constrained SDP or a Lovasz
) problem, the user must ensure that A.s, b and C.s have been constructed. This can
easily be done by calling the appropriate script (dsdp.m or 1sdp.m) with useXzZ =0
and opt.maxit = 0. Upon termination of the script, the variables will be defined in
the Matlab workspace.

6.3. The condition number. The condition number of an SDP is defined in [7]
and its significance is discussed there. Briefly, the condition number of an SQLP is
defined as the condition number of the Jacobian of the function to which Newton’s
method 1s applied in defining the XZ+Z7X search direction, evaluated at the solution.
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This quantity is +oco if and only if the solution of the SQLP fails to satisfy the strict
complementarity or primal or dual nondegeneracy conditions. The routine is

sqlcond.m: Given the data of an SQLP and the solutions X and Z, this routine
verifies the optimality conditions and computes a lower bound (in the 1-norm)
of the condition number of an SQLP. The calling sequence!? is:

[cndsql, comp,pinfeas,dinfeas,blkmat] = sqlcond(A,b,C,blk,X,y,Z)

In exact arithmetic, the routine would return the value cndsql = inf (+o00) if and
only if strict complementarity or primal or dual nondegeneracy are violated. A large
value of cndsql is a strong indication of that at least one of these three conditions
fails to hold. This routine takes a long time to execute compared to pcond.m and
dcond.m, and can therefore be used only for small problems, but its advantage is
that no tolerance is required to determine ranks.

In order to use sqlcond on a diagonally constrained SDP or a Lovasz # problem,
the user must ensure that 4, b and C have been constructed, by first calling the
appropriate script (dsdp.m or 1lsdp.m) with useXZ = 0 and opt.maxit = 0.

7. SUPPORT ROUTINES

Here we describe a number of support routines which are available. These rou-
tines are in the subdirectory support except where noted. More information is
available by typing help routine name from within Matlab.

export.m, import.m: These routines provide SDPpack’s interface with ASCII
data. The calling sequence for the first of these is

failed = export(fname, A, b, C, blk)

where fname is the name of the file (string) to which the data must be exported.
The data will be stored in one of the formats described in Appendix A. If the
data was successfully exported, export.m returns 0, otherwise 1. The file
name fname must have a period and an extension (other than the standard
Matlab extensions mat, mex etc.) following the period (see Section 3.1). The
calling sequence for import.m is

[A,b,C,blk] = import(fname)

where fname is the name of a file (string) containing an SQLP in one of the
two formats described in Appendix A.

plotcomp.m, plotfeas.m, plotobj.m: Plot comp; pinfeas, dinfeas; and the
primal and dual objective values, respectively, as a function of the iteration
count.

blkeig.m: Returns the eigenvalues of a symmetric block diagonal matrix, com-
puting them blockwise. The calling sequence is

[lam, Q, indef] = blkeig(M, blk, sortflag)

where M is a block diagonal matrix (not a structure), blk is a vector of block
sizes, and sortflag is an optional input argument. The vector of eigenval-
ues, lam, is sorted blockwise in ascending or descending order depending on
whether sortflag is 1 or —1. The matrix of eigenvectors, Q, has its columns
permuted accordingly. The output parameter indef is set to 1 if the input

13Recall that the user does not need to specify all output parameters.
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matrix X.s is not positive definite and 0 otherwise. For example, eigenvalue
complementarity may be checked by typing

[blkeig(X.s,blk.s,1) blkeig(Z.s,blk.s,—1)]

where the structures X and Z contain computed solutions of an SQLP. The
routine blkeig.m is in the sdppack directory since it is used by the main
routines.

qcfirst.m: Extract the special components z1,... z{ and z1,..., 27 from the
block vectors x and z (see (2)). The calling sequence is

[x0,20] = qcfirst(x, z, blk)

where x and z are block vectors with block sizes given by the vector blk, and
the output vectors x0 and z0 have entries consisting of the first entries of each
block of x and z respectively.

gcpos.m: Given a block vector x, this routine computes the vector of values given
by the right-hand component of (8). The calling sequence is

[dist, v] = qcpos(x, blk)

where x is the block vector, blk is the vector of block sizes, v is the vector on the
right-hand side of (8) and dist is the minimum entry in v (possibly negative
or zero, if x 1s outside the quadratic cone or on i1ts boundary. Using this routine
together with qcfirst.m, one can conveniently check strict complementarity
for the quadratic part of an SQLP, explicitly displaying the pairs of vectors in
(7) and (8) by

[x0,2z0] = gcfirst(X.q,Z.q,blk.q);

[distx,vx] = qcpos(X.q,blk.q);

[distz,vz] = qcpos(Z.q,blk.q);

[ x0 vz ] % check one complementary pair (x=0, z on boundary)

[ z0 wvx ] % check other complementary pair (z=0, x on boundary)

This routine is in the sdppack directory since it is used by the main routines.
arw.m: This routine computes the “arrow matrix” [2] which is used to derive the
search direction for the quadratic part. The calling sequence is

X = arw(x, blk)

This routine is called only by sqlcond.m.

svec.m, smat.m: These routines convert a symmetric block diagonal matrix
into its vector representation and vice versa. See Section 3.1. These routines
are in the sdppack directory.

skron.m: This routine computes the symmetric Kronecker product [1] of two
block diagonal matrices. The calling sequence is

K = skron(M, N, blk)

This routine is called only by sqlcond.m.
preproc.m: This routine can be used to detect inconsistency of the constraints,
or to identify and eliminate redundant constraints. The calling sequence is:

[Anew, bnew, flag] = preproc(4, b, tol)

where tol is a tolerance (e.g. 107¢) used to determine the rank of [A.s A.q A.1].
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makeA.m: This routine is used to construct the matrix A.s, the semidefinite part
of the primal linear constraints. The calling sequence is

A.s = makeA(blk.s, Amat)

where blk.s is as above and Amat is a cell array storing the block diagonal
matrices (Ag)1, ..., (As)m (see Section 3.1).
The package also provides routines to create a variety of randomly'* generated test
problems. There is also a routine to create SQLP’s with solutions having prescribed
properties. These routines are discussed below.

sqlrnd.m: This script assumes that blk and m are available in the Matlab envi-
ronment, and generates a random primal and dual feasible SQLP with block
structure specified by blk and with m primal constraints. The script init.m
must be called to initialize the variables to default (and generally infeasible)
values, before calling sql.m or £sql.m to solve the problem. This routine is
in the main sdppack directory.

drnd.m: This script assumes that n 1s available in the the Matlab workspace,
and randomly generates the vector b and matrix Cs defining a diagonally
constrained SDP (see Section 5.1), stored in b and C.s respectively. The script
dinit.m must be called to initialize the variables to default (and generally
infeasible) values, before calling the specialized routines dsdp.m or fdsdp.m
to solve the diagonally constrained SDP (see Section 5.1). This routine is in
the special subdirectory.

1rnd.m: This script assumes that n and dsty are available in the workspace, and
generates a random graph with n vertices and expected edge density approxi-
mately dsty, with edge list stored in G. The vertices are given random weights,
stored in w. A warning is printed if the graph is disconnected. The variables
G and w may then be used as input to the routines which compute a Lovasz
@ function. The script 1linit.m must be called to initialize the variables to
default (and generally infeasible) values, before calling the specialized routines
lsdp.mor £lsdp.m to solve the SDP which defines the Lovdsz 6 function (see
Section 5.2). This routine is in the special subdirectory.

snrnd.m: This script assumes that integers M, N and d are available in the workspace,
and generates a random “sum of norms” problem: the “dual” is

N
minz [|z:]] st BZ»Ty—i— z=c¢, 1=1 .. N

i=1

and the “primal” is

N N
maxz clz; st ZBZIZ =0, |zl <1
i=1 i=1

where the vectors z; and z; are of length d and the vector y is of length M (so
the matrices B; have size M by d). The routine converts this to a quadratically
constrained linear program expressed in SQLP format, so 1t can then be solved
by sql.m. This provides an interesting class of problems, since the blocks in
the resulting block vector Zg must always be on the cone boundary at the
solution, 7.e. with the right-hand component of (7) always zero. See the

14 All these routines generate data uniformly distributed in [—1,1]. They may be modified to
use the normal distribution by using randn instead of rand.
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comments in the code for further details. This routine is in the special
subdirectory.

makesql.m: This script assumes that integer m and structures blk, rx and rz
are available in the Matlab workspace, and creates an SQLP having a primal
and a dual solution with prescribed “rank” properties. The structure blk is
as before. The structure rx has three fields, rx.s, rx.q and rx.1. The field
rx.s is a vector specifying the desired rank of each block of the solution Xg.
The field rx.q is a vector of values, giving a number 0, 1 or 2 for each block of
Xq, specifying, respectively, whether the corresponding block of the solution
Xq is to be zero, a nonzero vector on the boundary of the quadratic cone, or
a vector in the interior of the quadratic cone. The scalar rx.1 specifies the de-
sired number of nonzero components in the solution vector X . The structure
rz with fields rz.s, rz.q and rz.1 specifies the corresponding information for
the dual solution (Zs,Zq,Z1). This routine is useful for creating test prob-
lems for which the strict complementarity or primal and dual nondegeneracy
conditions do not hold. However, the prescribed rank structures must not
violate the complementarity conditions. See the comments in the routine for
further explanation.

In addition, scripts sql2sdp and sdp2sql convert SDP’s in SQLP format to
the SDP format required by SDPpack Version 0.8 and vice versa, and sql2qc and
qc2sql likewise convert QCLP’s from SQLP format to a QCLP-only format and
vice versa.

8. SOFTWARE SUPPORT

Although SDPpack is provided “as is” without any warranty of software support,
the authors welcome your feedback and suggestions about the package via email.
Bug reports and test problems are especially valuable to the authors. While sending
a bug report by email, please be sure to include the version of the code, your Matlab
version, the details of your platform and a small example that causes the bug to
appear. To facilitate this, a “Bug Report Submission Form” is available from the
SDPpack web page. Test problems may be contributed either as mat files or as
ASCII files in the format described in Appendix A, and may be emailed to the
authors. UNIX users are requested to archive multiple files using tar, compress
using gzip and encode using uuencode.

News and information about SDPpack will be communicated via the Interior—
Point Mailing List (see http://www.mcs.anl.gov/home/otc/InteriorPoint/).

Warning: copying the value of a structure to another structure can, in certain
circumstances, lead to incorrect results, because of a bug in Matlab 5.0 which arises
when the structure includes a sparse matrix. See the routine matbug.m for an
example of the bug. The Mathworks has informed us that this bug will be fixed in
Matlab 5.1.

9. WORK IN PROGRESS

A version of SDPpack written in C is in preparation. How much speedup this will
gain over the present version is not yet clear, since use of mex files makes Matlab
quite efficient.

Other possible algorithmic improvements have been investigated. These include:
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e Variations on Mehrotra’s predictor-corrector scheme, including higher-order
corrections and other formulas for the choice of centering parameter. Typically
these lead to a reduction in the number of iterations, but increased CPU time.

e Extension of Gondzio’s multiple centrality corrections for LP to SQLP. This
led to a reduction in computation time on the largest of the truss problems
(truss8) discussed in Appendix C.

o A simplified homogeneous self-dual scheme, which in principle assists with
detection of infeasibility. However, when used to solve feasible problems we
found this scheme gave substantially less accurate solutions to the original
problem than the present code, and furthermore did not in practice resolve the
feasibility issue in cases where feasiblity is in doubt, for example the control
LMTI’s in Appendix C.

e Choosing the starting points by solving two least squares problems, as is
common in LP. This has not proved to be a good choice in our experience.

None of these show enough improvements to the present code to justify their inclu-
sion in the package, but this may change in the future.
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APPENDIX A. AN EFFICIENT STORAGE SCHEME FOR SQL

In the User’s Guide for SDPpack Version 0.8 Beta[8], an ASCII storage format
for SDP was suggested, based on one communicated to us by A. Nemirovskii. Here,
we further extend this to represent SQL problems. We essentially have two cases:
the matrices are (i) dense, or (ii) sparse, and in each case, the matrix is represented
in a different way. In all cases below, we store one number per line in the file (so
that the file may be read efficiently using Matlab’s load command), although the
text sometimes shows several entries on the same line for clarity.

Semidefinite part: We need to store the cost matrix C.s as well as the con-
straint matrices (Ag);, ¢ = 1,...,m corresponding to the rows of the matrix
A.s. Suppose X is a block diagonal matrix with block structure [Ny, ..., Ny].
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We respresent the ith diagonal block of this matrix by X (i), and the (j, k)
element within the ith block as X (1) k.
Case (i): For the first block, we first record a 0 (denoting that the block is
dense), and then the entries in the upper triangular part of the matrix are
provided row—wise.

XNy,

(Similar segments for the remaining blocks X(2),..., X(s).)

Case (ii): For the first block, we first record a 1 (denoting that the block is
sparse), then the number of nonzero entries in the upper triangular part
of the block, say n. Then, for 1 < j < n, we record the row number r;,
the column number c¢;, and the value of the corresponding nonzero entry

X(1L)rje;-
1

n
1 (] X(l)rlcl

o en X(1)rcn

(Similar segments for the remaining blocks X (2),..., X(N;).) The row
and the column indices are into the block, and not into the whole matrix
X.
Note: at present, the code does not permit mixing sparse and dense matrix
blocks: the blocks must be either all dense or all sparse.
Quadratic part: Here, we need to store the constraint matrix A.q, which has
m rows and > i_, n; columns.

Case (i): We first record a 0 if the constraint matrix is dense. Then, the
elements of the constraint matrix are given column—-wise.

Case (ii): We first record a 1 if the constraint matrix is sparse, then the
number of nonzero entries in the matrix. Then, for each nonzero en-
try, we record the row number, the column number and the value of the
corresponding entry.

Linear part: Here, we need to store the constraint matrix A.1 of size m x nq.

Case (i): We first record a 0 if the constraint matrix is dense. Then, the
elements of the constraint matrix are given column-wise.

Case (ii): We first record a 1 if the constraint matrix is sparse, then the
number of nonzero entries in the matrix. Then, for each nonzero en-
try, we record the row number, the column number and the value of the
corresponding entry.

In Table A, we describe the overall storage format for an SQLP; matrices for each
of the three parts (semidefinite, quadratic and linear) are stored as just described.
The C—style comments are not a part of the storage format.
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TABLE 2. ASCII storage format for SQLP’s

Line # Description
/* Common data */
1 m — the number of constraints

next m lines

b — one entry per line

/* SD data */

next line

s, the number of SD blocks (0 means no SD component)

next s lines

blk.s(i), 1 < i < s — the sizes of the semidefinite blocks

the cost matrix C.s

the matrix (As)1

the matrix (Ag)m

/* QC .ciata */

next line

q, the number of QC blocks (0 means no QC component)

next ¢ lines

blk.q(i), 1 < i < q — the sizes of the quadratic blocks

the cost vector C.q

next > ;_, blk.q(i) lines

the matrix A.q

/* LP data */

next line

blk.1l (0 means no LP component)

next blk.1 lines

the cost vector C.1

the matrix 4.1

APPENDIX B. EXAMPLES

This appendix illustrates the use of the main routines in SDPpack by a sample
Matlab session. In the examples below, >> denotes the Matlab prompt. Matlab was
invoked from the sdppack directory.

>> warning off % eliminate ill conditioning warnings
>>

>> setpath % set the path

>>

>> format short e

>>

>> clear all

>>

>> Ul bl ool o toto e o to s o To Toto o e Toto s o Jo o oo e To s oo fo o oo o Ta o

>> % Examples of setting up a problem using makel

>> bbbl o tatototetelolololelle o lolTolo o Tola o o o tolo o ta o to o oo oo o

>>

>> blk.s = [3 3]; % two semidefinite blocks of size 3 each
>>m = 2; % two primal constraints

>> Amat{1} = speye(6); ' sparse identity matrix

>> Amat{2}(1:3,1:3) = sparse([1 2 3; 2 4 5; 35 6]);

>> Amat{2}(4:6,4:6) = sparse([1 0 0; 0 2 2; 0 2 3]);

>> A.s = makeA(Amat, blk.s); % make the 2 x 12 matrix A.s
>> C.s(1:3,1:3) = sparse(ones(3,3));
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>>
>>
>>
>>
>>

tau

ite
0

D WN

7
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C.s(4:6,4:6)

b=[12]";

setopt;

init;

sql;

= 0.9990,

r p_step
0.000e+00
1.000e+00
1.000e+00
6.685e-01
9.699e-01
1.000e+00
9.990e-01
9.990e-01

fsql: stop sinc

sql:
sql:
sql:
sql:
sql:
sql:
sql:
sql:

>>

ans

>>

ans

sparse(zeros(3,3));

% set the options

scalefac = 100

d_step p_infeas d_infeas

0.000e+00 1.801et+03  2.437e+02
1.000e+00 7.183e-02 2.220e-16
9.916e-01 1.337e-15 2.320e-14
1.000e+00 2.701e-15 3.928e-16
9.827e-01  3.140e-16 2.629e-16
9.992e-01 1.554e-15 1.734e-16
9.990e-01 8.882e-16 2.923e-16
9.990e-01  2.220e-16 3.351e-16

e error reduced to desired value

D OO N0~

X . 2

.000e+04
.020e+02
.935e-01
.178e-01
.009e-03
.112e-06
.112e-09
.112e-12

elapsed time = 0.971 seconds
elapsed cpu time 0.300 seconds
number of iterations 7
final value of X . Z = 6.112e-12
final primal infeasibility = 2.220e-16
final dual infeasibility = 3.351e-16
primal objective value = 3.3864577808628837e-13
dual objective value = -5.7731216096433383e-12
full(X.s) % display solution as full matrix
9.7585e-02 -5.2413e-02 -4.5172e-02 0 0
5.2413e-02 1.1485e-01 -6.2439e-02 0 0
4.5172e-02 -6.2439e-02 1.0761e-01 0 0
0 0 0 1.5025e-01 0
0 0 0 0 2.3968e-01
0 0 0 0 1.0069e-01
full(Z.s) % display solution as full matrix
1.0000e+00  1.0000e+00  1.0000e+00 0 0
1.0000e+00  1.0000e+00  1.0000e+00 0 0
1.0000e+00  1.0000e+00  1.0000e+00 0 0
0 0 0 4.6022e-12 0
0 0 0 0 5.7731e-12
0 0 0 0 2.3418e-12

W ww~NEE,Wwww

pobj
.000e+02 0.
.349e-01 -9.
.155e-01 -5.
.279e-02 -2.
.435e-05 -3.
.387e-07 -5.
.387e-10 -5.
.386e-13 -5
0
0
0
0
1.0069e-01
2.9002e-01
0
0
0
0
2.3418e-12
6.9440e-12

dobj

000e+00
934e+01
781e-01
050e-01
935e-03
773e-06
773e-09

.773e-12
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>> bt totototstetelollotal o lololaToloToTola o tatatolatatotatototo o tatate
>> % Add a quadratic block to this problem
>> bbbl I tatotststets ol lololo e lololelolo o Tola o totatolatatotatotota s otate
>> blk.q = 3;
> A.q=1[123; 45 6];
> C.q=[1-1-1]1";
>> init;
>> sql;
tau = 0.9990, scalefac 100
iter p_step d_step p_infeas d_infeas X . Z
0 0.000e+00 0.000e+00 2.211e+03  3.427e+02 7.000e+04
1 1.000e+00 5.838e-01 1.271e-13  1.426e+02 2.041e+04
2 1.000e+00 9.527e-01  2.970e-11 6.746e+00 1.296e+03
3 1.000e+00 1.000e+00 1.748e-09 7.581e-16  2.743e+02
4 9.953e-01 1.000e+00 8.258e-12 2.544e-16 1.279e+00
5 1.000e+00 9.029e-01 1.512e-15 9.572e-16  2.875e-01
6 1.000e+00 6.339e-01 2.614e-14 2.435e-16 6.941e-02
7 4.536e-01 4.488e-01 3.991e-13 4.347e-16 5.265e-02
8 9.470e-01  1.000e+00 2.162e-14 3.220e-16 2.873e-03
9 9.990e-01 9.988e-01 1.510e-15 4.280e-16  3.227e-06
10 9.990e-01 9.990e-01 9.155e-16 2.922e-16  3.227e-09
11 9.990e-01 9.990e-01 8.006e-16 3.907e-16  3.228e-12
fsql: stop since error reduced to desired value
sql: elapsed time = 0.679 seconds
sql: elapsed cpu time = 0.390 seconds
sql: number of iterations 11
sql: final value of X . Z = 3.228e-12
sql: final primal infeasibility = 8.006e-16
sql: final dual infeasibility = 3.907e-16
sql: primal objective value = -7.0528980380840739e-02
sql: dual objective value = -7.0528980384069004e-02
>> [X.q Z.q] % quadratic part of solution
ans =
1.7078e-01  1.1404e+00
1.2339e-01 -8.2400e-01
1.1806e-01 -7.8841e-01
>> bbbl I Iatotststets ol lotolalololole ToloToTola o totatolatatotototota o tatate
>> Y Example of a randomly generated problem
>> WAL DDNLD kbbbt tslolelslololale
>>
>> blk.s = [60 5 5 5 5 20]; % semidefinite blocks
>> blk.q = [50 100 150]; % quadratic blocks
>> blk.1 = 100; % linear block

pobj
.000e+02
.047e+02
.857e+02
.734e+02
.522e-01
.095e-02
.025e-02
.841e-02
.976e-02
.053e-02
.053e-02
.053e-02

dobj

.000e+00
.802e+01
.707e+00
.276e-01
.264e-01
.266e-01
.197e-01
.106e-02
.264e-02
.0563e-02
.063e-02
.063e-02
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>>m = 100;

>> sqlrnd % generate random feasible problem

>> setopt % set default options

>> init % initialize variables (infeasible)

>> sql % solve problem

tau = 0.9990, scalefac = 100

iter p_step d_step p_infeas d_infeas X . Z pobj dobj
0 0.000e+00 0.000e+00 5.044e+04  2.099e+03 1.930e+06 3.963e+04 0.000e+00
1 1.000e+00 6.436e-01 3.510e-11 7.481e+02 5.628e+05 1.025e+04 -1.348e+03
2 1.000e+00 9.355e-01 3.058e-09 4.822e+01 4.299e+04 8.355e+03  2.328e+01
3 1.000e+00 9.410e-01 1.069e-08 2.844e+00 7.400e+03 5.799e+03 1.156e+02
4 7.786e-01 4.205e-01 2.382e-09 1.648e+00 1.956e+03 1.719e+03 1.190e+02
5 1.000e+00 1.000e+00 3.818e-08 1.221e-13 3.625e+02 4.880e+02 1.256e+02
6 7.567e-01 1.000e+00 9.289e-09 1.289e-13 8.980e+01 2.174e+02 1.276e+02
7 7.252e-01 7.134e-01 2.553e-09 1.205e-13 4.403e+01  1.849e+02 1.409e+02
8 8.715e-01 9.749e-01  3.308e-10 1.288e-13 1.853e+01  1.635e+02 1.449e+02
9 9.287e-01 9.833e-01 2.486e-11 1.252e-13  3.447e+00 1.491e+02 1.457e+02
10 9.789e-01 9.678e-01  2.278e-11 1.237e-13 4.773e-01 1.464e+02 1.459e+02
11 1.000e+00 1.000e+00 1.116e-11  1.248e-13 8.423e-02 1.460e+02 1.459e+02
12 9.474e-01 9.573e-01 3.018e-12 1.213e-13  4.430e-03 1.459e+02 1.459e+02
13 1.000e+00 1.000e+00 1.210e-10 1.288e-13 4.988e-04 1.459e+02 1.459e+02
14 9.980e-01 9.980e-01 1.016e-11 1.289e-13 1.021e-06  1.459e+02 1.459e+02
16 9.990e-01 9.990e-01  2.651e-11 1.292e-13 1.021e-09 1.459e+02  1.459e+02
16 9.989e-01 9.989e-01  3.060e-11 1.315e-13 1.118e-12 1.459e+02  1.459e+02

fsql: stop since error reduced to desired value

sql: elapsed time = 147.092 seconds

sql: elapsed cpu time = 113.480 seconds

sql: number of iterations = 16

sql: final value of X . Z = 1.118e-12

sql: final primal infeasibility = 3.060e-11

sql: final dual infeasibility = 1.315e-13

sql: primal objective value = 1.4592215412906933e+02

sql: dual objective value = 1.4592215412906256e+02

>>

>> % note the successive reductions of X . Z by factors

>> % of 1000 in final iterations (this is because tau = 0.999)

>>

>> pcond(A,blk,X,1.0e-06); % confirms that primal nondegenerate

primal condition number =  3.8717e+00

>> % (as expected since randomly generated)

>>

>> dcond(A,blk,Z,1.0e-06); % confirms that dual nondegenerate

dual condition number = 5.693e+00

>> % (as expected since randomly generated)

>>

>>
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>> bt totototstetelollotal o lololaToloToTola o tatatolatatotatototo o tatate
>> % Example from AHO paper where no strictly
>> % complementary solution exists
>> bbbl I Iatststststs ol ool lelololelololotols o totatalatatotatototats totote
>>
>> clear blk
> C.s =[000; 000; 00 1];
>> AA{1} = [1 00; 00 0; 0 O 0];
>> AA{2} = [001; 01 0; 10 0];
>> AA{3} =[010; 100; 00 1];
> b =1[100]";
>> blk.s = 3;
>>m = 3;
>> A.s = makeA(AA,blk.s);
>>
>> init
>> sql
tau = 0.9990, scalefac 100
iter p_step d_step p_infeas d_infeas
0 0.000et00 0.000e+00 1.726e+02 1.726e+02
1 8.615e-01 1.000e+00 2.392e+01 0.000e+00
2 9.837e-01 1.000e+00 3.887e-01 0.000e+00
3 1.000e+00 1.000e+00 4.965e-16 4.885e-15
4 1.000e+00 7.694e-01 1.295e-15  1.249e-15
5 8.536e-01 1.000e+00 8.311e-14 9.714e-17
6 2.734e-01 9.545e-01 6.046e-14 5.551e-17
7 1.000e+00 1.000e+00 1.117e-14 4.510e-17
8 9.296e-01 9.296e-01 9.447e-16 1.003e-16
9 1.000e+00 1.000e+00 1.221e-13 2.730e-17
10 9.439e-01 9.439e-01 6.217e-15 1.730e-18
11 1.000e+00 1.000e+00 1.999e-15 6.325e-17
12 9.271e-01  9.271e-01 1.735e-18 1.038e-16
13 1.000e+00 1.000e+00 2.221e-15 1.563e-17
14  9.327e-01 9.327e-01 4.441e-16 2.036e-18
15 1.000e+00 1.000e+00 1.110e-15  3.456e-18
fsql: stop since new point is substantially
X . Z= 3.541e-09
pri_infeas = 4.441e-16
dual_infeas =  9.704e-17
sql: elapsed time = 0.272 seconds
sql: elapsed cpu time = 0.270 seconds
sql: number of iterations 15
sql: final value of X . Z = 5.000e-08
sql: final primal infeasibility = 1.110e-15
sql: final dual infeasibility = 3.456e-18

sql:

primal objective value

OO = N WO R KB OO0 WN O RN W

X . 2

.000e+04
.842e+03
.521e+02
.861e+00
.285e+00
.873e-01
.702e-02
.225e-03
.538e-03
.144e-03
.536e-05
.232e-05
.431e-06
.350e-06
.324e-08
.000e-08
worse than current iterate

2.5001652697068844e-08

B O R R WO N O R N WO R

2.

pobj
.000e+02
.815e+01
.536e+00
.574e+00
.946e+00
.488e-02
.038e-02
.605e-03
.681e-04
.718e-04
.268e-05
.616e-05
.216e-06
.748e-07
.662e-08
500e-08

dobj

.000e+00
.201e+02
.090e+02
.288e+00
.382e-01
.324e-01
.664e-02
.620e-03
.700e-04
.719e-04
.268e-05
.616e-05
.216e-06
.748e-07
.662e-08
.500e-08
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sql: dual objective value = -2.5001652697556712e-08
>>

>> [blkeig(X.s,blk.s,-1) blkeig(Z.s,blk.s,1)]
ans =

1.0000e+00 1.5014e-08
1.9987e-04 9.9936e-05
1.5014e-08 1.0000e+00

>>

>> % note that convergence is much slower than usual,

>> % and that solution is much less accurate than usual.
>>

>> % confirm that solution is primal NONdegenerate

>> % (large tolerance since not strictly complementary)
>> pcond(A,blk,X,1.0e-3);

primal condition number = 1.0001e+00

>> % confirm that solution is dual NONdegenerate

>> dcond(A,blk,Z,1.0e-3);

dual condition number = 1.414e+00

>> % condition number is infinite, since SC failed

>> sqlcond(4,b,C,blk,X,y,Z);

sqlcond: comp = 5.000e-08
sqlcond: primal infeasibility 1.110e-15
sqlcond: dual infeasibility =  3.456e-18
sqlcond: cond estimate of 3x3 block matrix = 4.124e+04

>>

>>

>> b bl It Iototstststs ol atololalelolfololoToleloTotata o totto totatots tototo s

>> % Examples of degenerate problems

>> bbb eI Iototstststs ol atololalolol oo loToleloTotata o totato totatota tototots

>>

>> clear blk

>> blk.s = 10;

>>m = 50; % m chosen to ensure primal degeneracy
>> rx.s = 2; % choose primal solution rank and

>> rz.s = 7; % dual solution rank in advance

>> makesql % generated so solution is primal degenerate

makesql: strict complementarity violated for the SD part
>>

>> init

>> opt.prtlevel = O;

>> sql

tau = 0.9990, scalefac = 100
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sql: elapsed time = 0.460 seconds

sql: elapsed cpu time 0.460 seconds

sql: number of iterations 6

sql: final value of X . Z = 2.723e-10

sql: final primal infeasibility = 1.853e-12

sql: final dual infeasibility = 2.084e-13

sql: primal objective value = 2.8543802322637415e+00
sql: dual objective value = 2.8543802321029546e+00

>>
>> [blkeig(X.s,blk.s,-1) blkeig(Z.s,blk.s,1)] % sorted eigenvalues

ans =
1.0687e+00 4.8157e-11
6.4574e-01 1.3909e-10
2.8679e-13  7.6364e+01
2.0865e-13 8.0091e+01
1.7295e-13  8.4225e+01
1.5601e-13 9.1698e+01
1.0169e-13 1.0549e+02
9.2401e-14 1.1717e+02
6.1256e-14 1.2753e+02
4.5897e-14 1.8355e+02

>>

>> % note that convergence took place to a strictly complementary solution
>>
>> pcond(A,blk,X,1.0e-06); % confirms that solution is primal degenerate

primal condition number = Inf

>>

>> dcond(A,blk,Z,1.0e-06); % check if dual degenerate

dual condition number = 1.374e+00

>>

>> sqlcond(4,b,C,blk,X,y,Z); % confirms that SQL condition number is infinite,
sqlcond: comp = 2.723e-10

sqlcond: primal infeasibility = 1.853e-12

sqlcond: dual infeasibility = 2.084e-13

sqlcond: cond estimate of 3x3 block matrix = 1.017e+19

>> % since SQLP is degenerate

>>

>> clear blk

>> blk.s = [6 5 7]; % a bigger problem chosen so that strict
>> blk.q = [10 20 30]; % complementarity does not hold

>> blk.1 = 30;

>> rx.s = [2 3 4];

>> rx.q = [0 1 2];

>> rx.1l

20;
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>> rz.s = [2 2 3];
>> rz.q = [1 1 0];
>> rz.l = 5;
>>m = 100;
>> makesql;
makesql: strict complementarity violated for the SD part
makesql: strict complementarity violated for the QC part
makesql: strict complementarity violated for the LP part
>> init;
>> sql;
tau = 0.9990, scalefac = 100
sql: elapsed time = 12.593 seconds
sql: elapsed cpu time = 7.940 seconds
sql: number of iterations 18
sql: final value of X . Z = 1.575e-06
sql: final primal infeasibility = 5.345e-10
sql: final dual infeasibility = 3.706e-14
sql: primal objective value = 5.8737338167855953e+01
sql: dual objective value = 5.8737336592772962e+01
>> % even the solution of the linear part is not strictly
>> [X.1 Z.1] % complementary
ans =
1.1058e+00  2.8480e-08
1.0227e+00  3.0825e-08
1.9006e+00 1.6573e-08
1.5969e+00 1.9720e-08
1.8186e+00 1.7318e-08
1.6924e+00 1.8608e-08
1.0905e+00 2.8872e-08
1.4904e+00 2.1140e-08
1.8018e+00 1.7481e-08
1.5935e+00 1.9767e-08
1.1138e+00  2.8249e-08
1.4436e+00 2.1809e-08
1.9663e+00 1.6016e-08
1.4636e+00 2.1523e-08
1.4495e+00 2.1735e-08
1.8269e+00  1.7240e-08
1.2986e+00  2.4245e-08
1.7099e+00 1.8415e-08
1.6780e+00 1.8766e-08



>>
>>
>>
>>
>>
>>
>>
>>
>>
>>
>>
>>

.258
.392
.701
.238

.182
.716
.705
.973
.652
.952

o R RN WN RS

3e+00
9e-04
le-04
8e-04

.3974e-04

Oe-04
6e-08
0e-08
0e-08
0e-08
0e-08

N s N s s e S SOy N}
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.5036e-08
.0943e-04
.0190e-04
.1309e-04
.9792e-04
.5071e-04
.1595e+00
.8479e+00
.5970e+00
.9068e+00
.6144e+00

Il oo o o ToTaToTa T T o o o e
% A diagonally constrained SDP
Il oo o o ToToTaTa T T o o o e

n = 50;

drnd

dsetopt
scalefac = 1;

dinit
dsdp

h

n=m-= 50

% random C and b, but A_k = e_k e_k"T
% set useXZ = 1, tau =
% X0 = Z0 = I fine for random problems

% since useXZ = 1, special-purpose XZ code used

dsdp: using XZ method...

tau

iter

1

0

© 00 ~N O ;O WN

0

O 00 O ©OW O O b © 01O

9.

0.9900,

p_step

.000e+00
.346e-02
.345e-01
.907e-01
.152e-01
.631e-01
.646e-01
.151e-01
.620e-01
.724e-01

501e-01

B = O O R = 0= O

scalefac =

d_step

.000e+00
.000e+00
.959e-01
.000e+00
.000e+00
.604e-01
.555e-01
.000e+00
.000e+00
.000e+00
9.

894e-01

p_infeas

4.313e+00
4.083e+00
2.672e-01
.361e-01
.154e-02
.264e-04
.507e-05
.279e-06
1.766e-07
4.884e-09
6.289e-10

e i S o

.99

d_
2
6
7
4
4.
2
1
1
2
2
1

Stop since new point is substantially worse
2.569e-07

dsdp:
dsdp:

X .
pri_infeas

zZ =

dual_infeas

elapsed time
elapsed cpu time

2.708e-08
2.878e-1

5

5.556
3.080

infeas

.964e+01
.880e-15
.692e-15
.615e-15

529e-15

.220e-15
.884e-15
.601e-15
.738e-15
.391e-15
.332e-15
than current iterate

seconds
seconds

W ~NW W O~ ~NO

X .

Z

.000e+01
.776e+02
.110e+02
.926e+01
.287e+00
.821e-01
.960e-02
.484e-03
.022e-04
.878e-05
2.

054e-06

31

pobj
.187e+00
.254e+01
.191e+01
.020e+02
.363e+02
.427e+02
.430e+02
.431e+02
.431e+02
.431e+02
.431e+02

dobj

.000e+00
.767e+02
.632e+02
.519e+02
.448e+02
.431e+02
.431e+02
.431e+02
.431e+02
.431e+02
.431e+02
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dsdp: number of iterations
dsdp: final value of X . Z

dsdp: final primal infeasibility =

dsdp: final dual infeasibility
dsdp: primal objective value
dsdp: dual objective value

>>

>> setopt
>> dinit
>> dsdp

% sets useXZ =

1]
-
(=)

= 2.054e-06

6.289e-10

= 1.332e-15

= —-1.4306128549766009e+02
= -1.4306128752873551e+02

0, tau =

.999

% since useXZ = 0, general-purpose XZ+ZX code used

dsdp: using XZ+ZX method...

tau = 0.9990,

iter p_step

.000e+00
.981e-01
.933e-01
.877e-01
.685e-01
.764e-01
.000e+00
.110e-01
.000e+00
.987e-01
.990e-01
.990e-01

0 0
1 9
2 9
3 4
4 9
5 7
6 1
7 9
8 1
9 9
10 9
11 9

scalefac =

d_step

.000e+00
.000e+00
.944e-01
.000e+00
.000e+00

.000e+00
.678e-01
.000e+00
.987e-01
.990e-01
9.990e-01

© O O, 0 = O = O

100

infeas

P-
7.040e+02
1.307e+00
8.804e-03
4.511e-03
1.423e-04
.993e-01 3.
1
2
2
3
1
1

181e-05

.265e-14
.576e-15
.718e-13
.088e-15
.170e-14
.175e-14

infeas

.071e+02
.000e+00
.231e-14
.025e-14
.502e-14
.693e-14
.716e-15
.083e-15
.233e-15
.580e-15
.831e-15
.512e-15

fsql: stop since error reduced to desired value

dsdp: elapsed time

dsdp: elapsed cpu time
dsdp: number of iterations
dsdp: final value of X . Z

dsdp: final primal infeasibility

dsdp: final dual infeasibility
dsdp: primal objective value
dsdp: dual objective value

>> % notice that specialized XZ method is faster but less

>> % accurate than XZ+ZX method

16.932
= 15.000
= 11

seconds
seconds

= 6.612e-11

1.175e-14
2.512e-15
-1.4306128745773665e+02
-1.4306128745780248e+02

>> Whththtola o tototetololotots o ToleTotato ot oo Tototato oo Tot Tota o ot o T o
>> % A Lovasz problem

>> Whththtola oo totetololototsto ToleTotato ot oo Tototato oo Toto Tota o tote o e T o

>> Y%

>> n = 30;

% number of vertices

D OO, P O0WER = Wwom

pobj

.187e+02
.649e+00
.401e+01
.106e+01
.258e+02
.379e+02
.416e+02
.429e+02
.430e+02
.431e+02
.431e+02
.431e+02

dobj

.000e+00
.207e+03
.093e+02
.806e+02
.647e+02
.443e+02
.432e+02
.431e+02
.431e+02
.431e+02
.431e+02
.431e+02



>> ds
>> 1r
>>

>> 1s
>> sc
>> op
>> 13
>> 1s

1sdp:

tau =

iter

=
= O O 00 ~NO O WNEF~, O

12
13
14
15
16
17
18
Stop

1sdp:
1sdp:
1sdp:
1sdp:
1sdp:
1sdp:
1sdp:
1sdp:
1sdp:
>>
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ty = 0.2; % edge density is 20%
nd % random graph with random weights
etopt % set useXZ = 1, tau = .99
alefac = 1; % X0 = Z0 = I fine for random problems
t.validate = 1; % check connectivity
nit
dp % since useXZ = 1, special-purpose XZ code used
using XZ method...
0.9900, scalefac = 1
p_step d_step p_infeas d_infeas X . Z
0.000e+00 0.000e+00 2.900e+01 1.617e+01  3.000e+01 -1
5.544e-02 7.601e-02 2.739e+01  1.494e+01  3.420e+01 -9
2.382e-02 1.000e+00 2.674e+01 8.168e-15 2.980e+02 -8
9.867e-01 1.000e+00 3.548e-01 2.516e-15 1.276e+01 -5
9.788e-01 8.449e-01 7.535e-03 4.503e-15 1.862e+00 -4
2.080e-01 6.145e-01 5.968e-03 2.924e-15 1.565e+00 -4
4.847e-02 7.077e-01 5.678e-03 1.201e-15  1.434e+00 -5
5.645e-02 3.238e-01 5.358e-03 3.013e-15 1.337e+00 -5
1.674e-02 7.984e-02 5.268e-03 1.868e-15 1.293e+00 -5
6.391e-02 5.669e-01 4.932e-03 1.996e-15 1.237e+00 -5
9.836e-03 6.618e-02 4.883e-03 2.670e-15 1.198e+00 -5
4.878e-02 8.159e-01  4.645e-03 2.802e-15 1.224e+00 -5
1.757e-02 2.141e-01 4.563e-03 2.521e-15 1.159e+00 -5
2.718e-01  1.000e+00 3.323e-03 2.609e-15 1.034e+00 -5
1.000e+00 1.000e+00 4.589e-16 2.286e-15 3.246e-01 -5
9.318e-01 7.887e-01 4.712e-16 2.619e-15 3.868e-02 -6
7.006e-01 1.000e+00 5.176e-15 2.532e-15 1.423e-02 -6
9.823e-01 9.886e-01 3.423e-16 2.084e-15 3.803e-04 -6
9.881e-01  9.920e-01 1.443e-15 3.047e-15 4.407e-06 -6

since new point is substantially worse
X .Z= 8.274e-08

than current iterate

pri_infeas = 4.519e-14

dual_infeas = 2.341e-15

elapsed time = 14.388 seconds
elapsed cpu time = 7.270 seconds
number of iterations = 18

final value of X . Z = 4.407e-06

final primal infeasibility = 1.443e-15

final dual infeasibility = 3.047e-15

primal objective value = -6.0894182157068650e+00
dual objective value = -6.0894226229375326e+00
Lovasz theta function value = 6.0894204193221988e+00

33

pobj

.424e+01
.122e+01
.604e+01
.056e+00
.861e+00
.994e+00
.024e+00
.044e+00
.041e+00
.073e+00
.070e+00
.094e+00
.095e+00
.245e+00
.835e+00
.053e+00
.078e+00
.089e+00
.089e+00

dobj

.000e+00
.246e-01
.384e+01
.315e+01
.673e+00
.521e+00
.421e+00
.347e+00
.302e+00
.279e+00
.238e+00
.289e+00
.225e+00
.258e+00
.160e+00
.091e+00
.092e+00
.089e+00
.089e+00
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>> setopt
>> linit
>> 1lsdp

% sets useXZ = 0, tau =

.999

% since useXZ = 0, general-purpose

lsdp: using XZ+ZX method...

code XZ+ZX used

tau = 0.9990, scalefac 100

iter p_step d_step p_infeas d_infeas X . Z
0 0.000e+00 0.000e+00 2.999e+03 5.505e+02  3.000e+05
1 9.976e-01 1.000e+00 7.055e+00 4.041e-16 7.914e+02
2 1.000e+00  1.000e+00 1.003e-15 8.658e-16  7.540e+01
3 1.000e+00 9.348e-01  2.322e-16 2.228e-14 4.923e+00
4 7.859e-01 9.626e-01 6.440e-16 4.593e-15 1.175e+00
5 1.000e+00 1.000e+00 5.525e-15 3.058e-15  3.543e-01
6 8.798e-01 8.434e-01 8.686e-16 3.681le-15 5.603e-02
7 1.000e+00 1.000e+00 6.409e-15 3.610e-15 5.198e-03
8 9.980e-01 9.984e-01 8.893e-16 3.470e-15 1.023e-05
9 9.990e-01 9.990e-01 1.905e-17 4.081e-15 1.023e-08
10 9.990e-01 9.990e-01  2.126e-17 3.592e-15 1.024e-11

fsql: stop since error reduced to desired value

1sdp: elapsed time = 8.923 seconds

1sdp: elapsed cpu time = 6.890 seconds

1sdp: number of iterations = 10

1sdp: final value of X . Z = 1.024e-11

1sdp: final primal infeasibility = 2.126e-17

1sdp: final dual infeasibility = 3.592e-15

1sdp: primal objective value = -6.0894223218290779e+00

1sdp: dual objective value = -6.0894223218393178e+00

1sdp: Lovasz theta function value = 6.0894223218341974e+00

>>

>> % notice that specialized XZ method is faster

>> % but less accurate than XZ+ZX method

>>

>> % since useXZ = 0, A.s was formed; so we can now call pcond

>> % and dcond

>>

>> Y for random weights, usually Lovasz SDP is degenerate

>>
>>

an

>> rank(Z.s,1.0e-06)

S

rank(X.s,1.0e-06)

pobj

.424e+03
.781e+01
.330e+00
.646e+00
.323e+00
.832e+00
.036e+00
.084e+00
.089e+00
.089e+00
.089e+00

% for random weights, usually rank(X.s) is 1

% for random weights, usually rank(Z.s) is n-1

dobj

.000e+00
.005e+02
.773e+01
.568e+00
.499e+00
.187e+00
.092e+00
.090e+00
.089e+00
.089e+00
.089e+00
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ans =
29

>> pcond(A,blk,X,1.0e-06); % usually primal degenerate

primal condition number = Inf

>> dcond(A,blk,Z,1.0e-06); % usually dual nondegenerate
dual condition number = 1.000e+00

>>

>> w = ones(size(w)); ' change weights to all one

>> lsetopt % set useXZ = 1, tau = .99

>> opt.prtlevel = 0; % turn off detailed output

>> opt.validate 1;

>> linit

>> 1lsdp % since useXZ = 1, special-purpose XZ code used

lsdp: using XZ method...

tau = 0.9900, scalefac = 100

lsdp: elapsed time 7.271 seconds

1sdp: elapsed cpu time 4.890 seconds

1sdp: number of iterations 12

1sdp: final value of X . Z = 1.481e-06

1sdp: final primal infeasibility 4.993e-09

1sdp: final dual infeasibility 4.188e-15

1sdp: primal objective value = -1.2059530468726049e+01

1sdp: dual objective value = -1.2059532001323507e+01

1sdp: Lovasz theta function value = 1.2059531235024778e+01

>>

>> setopt % sets useXZ = 0, tau = .999

>> opt.prtlevel = 0;

>> linit

>> 1lsdp % since useXZ = 0, general-purpose XZ+ZX code used
lsdp: using XZ+ZX method...

tau = 0.9990, scalefac = 100

1sdp: elapsed time 8.710 seconds
1sdp: elapsed cpu time 7.740 seconds
1sdp: number of iterations = 12

1sdp: final value of X . Z = 6.871e-10
1sdp: final primal infeasibility = 9.010e-14
1sdp: final dual infeasibility = 6.881e-15
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1sdp: primal objective value = -1.2059531781985829e+01

1sdp: dual objective value -1.2059531782671732e+01

1sdp: Lovasz theta function value 1.2059531782328779e+01

>>

>> % notice that specialized XZ method is faster but less

>> % accurate than XZ+ZX method

>>

>> % since useXZ = 0, the matrix A.s was formed, so we can now call
>> % pcond and dcond

>>

>> % for weights all one, usually Lovasz SDP is not degenerate

>>

>> rank(X.s,1.0e-08) Y% for weights all one, usually rank(X.s) > 1

ans =

>> rank(Z.s,1.0e-08) Y% for weights all one, usually rank(Z.s) < n-1
ans =
21

>> pcond(4,blk,X,1.0e-06); ' sometimes primal nondegenerate

primal condition number = 1.4494e+01

>> dcond(A,blk,Z,1.0e-06); % sometimes dual degenerate
dual condition number = 4.092e+01

>>

>>

>> WIIIII T T T Tololololo oo o fato oo o oo TaToTo T o e o oo o fo F oo
>> Y Sample truss problem

>> Whththlolalotototelololotots o tole o toth tote oo Tototato ot Tot Toto o tote o To oo

>>

>> load testdata/truss/trussi % from Nemirovskii

>> setopt % sets scalefac = 100

>> init

>> sql

tau = 0.9990, scalefac = 100

iter p_step d_step p_infeas d_infeas X . Z pobj dobj
0 0.000e+t00 0.000e+00 7.803e+02 3.603e+02 1.300e+05 1.000e+02  0.000e+00
1 1.000e+00 7.344e-01 6.356e-14 9.570e+01 1.391e+04 2.565e+02 -6.643e+01
2 1.000e+00 1.000e+00 7.105e-13 4.600e-16 2.470e+02 2.471e+02 1.014e-01
3 6.313e-01 1.000e+00 2.558e-13 7.850e-17 9.229e+01 9.189e+01 -4.013e-01
4 8.211e-01  1.000e+00 5.357e-14 6.206e-17 1.668e+01 1.745e+01 7.700e-01
5 5.064e-03 4.190e-01 5.353e-14 9.930e-16 1.004e+01  1.746e+01  7.424e+00
6 1.000e+00 9.086e-01  2.365e-13 1.662e-15  1.254e+00 1.006e+01  8.809e+00
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9.886e-01
9.990e-01
9.990e-01  9.990e-01 2.
9.990e-01 9.990e-01 2.
stop since error reduced t

9.977e-01
9.990e-01

7.
8.

© 00 ~

10
fsql:

sql:
sql:
sql:
sql:
sql:
sql:

elapsed time

elapsed cpu time

number of iterations
final value of X . Z
final primal infeasibility
final dual infeasibility
sql: primal objective value
sql: dual objective value

>> pcond(A,blk,X,1.0e-06);
primal condition number =

>> dcond(A,blk,Z,1.0e-086);

dual condition number = 8.920e

>>

>>

>> R DI I I ST e o o foto fo o To e oo )

>> % Sample LMI problem

>> WD DD DI DK DD Kbt o totofoto footo o e toth!

>>

>> load testdata/lmi/hinfil

>> setopt

>> scalefac = 1000;

>> init

>> sql

tau = 0.9990, scalefac =

iter p_step d_step P-
0 0.000e+00 0.000e+00 4
1 8.700e-01 1.000e+00 5
2 9.987e-01 1.000e+00 7
3 9.159e-01 1.000e+00 6
4 8.825e-01 9.935e-01 7
5 9.912e-01 7.585e-01 6.
6 4.743e-01 1.000e+00 3
7 9.626e-01 1.000e+00 1
8 9.135e-01 9.854e-01 1
9 6.290e-01 1.000e+00 5
10 8.693e-01 9.966e-01 6
11 9.975e-01 1.000e+00 2
12 9.990e-01 9.990e-01 6

fsql:
(smallest eigenvalue of Z.s =

944e-14 2.267e-15 1.919e-02
889e-14 8.951e-186 1.948e-05
337e-14 1.332e-15 1.948e-08
368e-14 1.986e-15 1.949e-11
o desired value
= 0.994 seconds
= 0.420 seconds

10
= 1.949e-11
= 2.368e-14
= 1.986e-15
= 8.9999963153049691e+00
= 8.9999963152853759e+00

% check if primal degenerate
Inf

% check if dual degenerate

+00

YANNA

YANNA

% from Gahinet
% sets scalefac = 100
% better choice for these

1000

infeas d_infeas X . 2Z

.542e+03 3.742e+03 1.400e+07
.906e+02 6.355e-14 1.458e+086
.417e-01 4.032e-13 3.250e+03
.241e-02 1.995e-13 3.426e+02
.333e-03 3.108e-13 1.302e+01
439e-05 1.352e-13 1.309e+00
.385e-05 5.754e-13 6.506e-01
.265e-06 5.312e-13 2.088e-02
.095e-07 5.714e-13 1.360e-03
.246e-07 8.049e-13 1.131e-03
.712e-08 1.668e-12 1.019e-04
.433e-07 1.531e-12 5.992e-07
.823e-08 1.073e-12 6.020e-10

stop since limiting accuracy reached

-1.741e-12)

37

9.018e+00
9.000e+00
9.000e+00
9.000e+00

pobj
0.000e+00
.306e+00
.106e-02
.203e-02
.657e-02
.132e+00
.555e+00
.020e+00
.032e+00
.032e+00
.033e+00
.033e+00
.033e+00

8.999e+00
9.000e+00
9.000e+00
9.000e+00

dobj
0.000e+00
.431e+03
.425e+03
.534e+02
.348e+00
.373e+00
.126e+00
.038e+00
.033e+00
.033e+00
.033e+00
.033e+00
.033e+00
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sql: elapsed time 1.003 seconds
sql: elapsed cpu time 0.710 seconds
sql: number of iterations = 12

sql: final value of X . Z = 6.020e-10

sql: final primal infeasibility = 6.823e-08

sql: final dual infeasibility = 1.073e-12

sql: primal objective value = -2.0326845732912178e+00
sql: dual objective value = -2.0326421368134850e+00

>> pcond(A,blk,X,1.0e-06); % check if primal degenerate
primal condition number = 5.7041e+13

>> dcond(A,blk,Z,1.0e-06); % check if dual degenerate
dual condition number =  9.738e+00

>>

>> Whththtola o tototelo o lotots o Toletoto o tote e o Totolato o Tot Tota o ot to e T e

>> % A Steiner tree example (minimizing a sum of 2-norms)
>> % A special QCLP, written in SQLP format

>> Whththtola o tototelo o lotots ot Toletototo ot e o Toto oo o Tot Tota o ot to e T o

>>

>> load testdata/steiner/ladderl Y Chung-Graham ladder
>> %

>> % Only blk.q is nonempty

>> blk

blk =
s: 0

1: 0
q: [49x1 double]

>> setopt

>> init

>> sql

tau = 0.9990, scalefac = 100

iter p_step d_step p_infeas d_infeas X . Z
0 0.000e+00 0.000e+00 6.930e+02 7.009e+02 4.900e+05
1 1.000e+00 1.000e+00 6.646e-15 1.079e-16 4.802e+03
2 1.000e+00 9.927e-01  9.293e-16 2.579e-15  3.487e+01
3 8.302e-01 9.503e-01 2.513e-15 2.369e-15 4.777e+00
4 9.119e-01 9.978e-01  4.454e-14 2.709e-15 5.564e-01
5 1.000e+00 1.000e+00 1.522e-13  4.469e-15 1.071e-01
6 8.876e-01 8.595e-01 4.918e-14 2.957e-15 1.467e-02
7 1.000e+00 1.000e+00 5.491e-12 3.257e-15  2.940e-03
8 9.953e-01 9.983e-01 9.722e-14  3.450e-15 9.223e-06
9 9.990e-01 9.990e-01 7.714e-13 2.302e-15 9.223e-09
10 9.990e-01 9.990e-01 6.046e-13 2.578e-15 9.247e-12

fsql: stop since error reduced to desired value

pobj

.000e+00
.430e-01
.910e-01
.048e+01
.318e+01
.348e+01
.353e+01
.353e+01
.353e+01
.353e+01
.353e+01

dobj

.000e+00
.803e+03
.536e+01
.526e+01
.373e+01
.359e+01
.354e+01
.354e+01
.353e+01
.353e+01
.353e+01
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sql: elapsed time = 18.389 seconds
sql: elapsed cpu time = 12.580 seconds
sql: number of iterations = 10
sql: final value of X . Z = 9.247e-12
sql: final primal infeasibility = 6.046e-13
sql: final dual infeasibility = 2.578e-15
sql: primal objective value = -2.3534397500876146e+01
sql: dual objective value = -2.3534397500886332e+01
>> % verify that solution is strictly complementary
>> scomp(X,Z,blk,1e-5)
ans =
1
>>
>> load testdata/steiner/ladder2 Y a different ladder
>> %
>> %
>> % Only blk.q is nonempty
>> blk
blk =
s: 0
1: 0
q: [49x1 double]
>> setopt
>> init
>> sql
tau = 0.9990, scalefac = 100
iter p_step d_step p_infeas d_infeas X . Z pobj
0 0.000et00 0.000e+00 6.930e+02 7.009e+02 4.900e+05 0.000e+00
1 1.000e+00 1.000e+00 6.646e-15 9.310e-17 4.802e+03 -2.427e-01
2 1.000e+00 9.927e-01  8.237e-16 1.864e-15 3.490e+01 -4.902e-01
3 8.279e-01 9.385e-01  2.288e-15 3.655e-15 4.956e+00 -2.040e+01
4 9.305e-01 9.819e-01 1.014e-13 3.410e-15 4.794e-01 -2.320e+01
5 1.000e+00 1.000e+00 2.687e-13 4.627e-15 8.107e-02 -2.343e+01
6 8.911e-01 9.001e-01 7.657e-14 3.897e-15 8.711e-03 -2.346e+01
7 9.966e-01 9.955e-01 1.462e-12  3.440e-15 1.773e-03 -2.347e+01
8 1.000e+00 1.000e+00 1.543e-11 3.314e-15 4.066e-04 -2.347e+01
9 8.499e-01 8.496e-01  2.404e-12 4.447e-15 6.396e-05 -2.347e+01
10 1.000e+00 1.000e+00 4.716e-11 4.000e-15  1.527e-05 -2.347e+01
11 8.631e-01 8.630e-01 7.198e-12 3.821e-15 2.177e-06 -2.347e+01
fsql: stop since new point is substantially worse than current iterate

X .7Z= 5.038e-07

dobj

.000e+00
.803e+03
.539e+01
.536e+01
.368e+01
.351e+01
.347e+01
.347e+01
.347e+01
.347e+01
.347e+01
.347e+01
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pri_infeas = 2.882e-10
dual_infeas = 2.794e-15
sql: elapsed time = 19.491 seconds
sql: elapsed cpu time = 14.100 seconds
sql: number of iterations = 11
sql: final value of X . Z = 2.177e-06
sql: final primal infeasibility = 7.198e-12
sql: final dual infeasibility = 3.821e-15
sql: primal objective value = -2.3467622601298221e+01
sql: dual objective value = -2.3467624778208947e+01

>> % 1in this case, solution is NOT strictly complementary
>> [s,v] = scomp(X,Z,blk,1e-5)

0
v =
s: []
q: [1x49 double]
1: [1

>> [x0,z0] = qcfirst(X.q,Z.q,blk.q);
>> [distx,vx] = qcpos(X.q,blk.q);
> [ 20 vx ] Y% for some indices, z=0 and x is on boundary

ans =
7.5904e-01 5.8516e-08
3.7407e-01 1.1873e-07
1.5181e-01 2.9256e-07
6.0723e-01 7.3145e-08
3.0362e-01 1.4629e-07
4.5542e-01 9.7526e-08
4.5542e-01 9.7527e-08
3.0362e-01 1.4628e-07
6.0723e-01 7.3146e-08
1.5181e-01 2.9254e-07
7.5904e-01 5.8517e-08
1.4145e-07 3.1433e-01
2.7576e-04 7.1523e-04
5.7725e-01 5.3462e-08
5.7725e-01 5.3463e-08
2.7421e-04 7.1246e-04
4.3819e-07 1.0158e-01
6.3623e-01 6.9813e-08
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4.4721e-01 9.9313e-08
1.8901e-01 2.3500e-07
2.5820e-01 1.7203e-07
2.5820e-01 1.7201e-07
1.8901e-01 2.3497e-07
4.4721e-01 9.9318e-08
5.1640e-01 8.6011e-08
6.3623e-01 6.9810e-08
7.1836e-01 6.1830e-08
3.7407e-01 1.1874e-07
7.1836e-01 6.1829e-08
3.7407e-01 1.1874e-07
7.1836e-01 6.1829e-08
3.7407e-01 1.1874e-07
7.1836e-01 6.1829e-08
3.7407e-01 1.1874e-07
7.1836e-01 6.1830e-08
3.7407e-01 1.1873e-07
9.9986e-01 2.1123e-10
5.7718e-01 5.3475e-08
4.2292e-01 8.1495e-08
5.7718e-01 5.3475e-08
9.9986e-01 8.5694e-10
5.1640e-01 8.6011e-08
5.1640e-01 8.6009e-08
5.1640e-01 8.6011e-08
7.7460e-01 5.7339e-08
6.3623e-01 6.9811e-08
7.7460e-01 5.7341e-08
5.1640e-01 8.6011e-08
5.1640e-01 8.6009e-08

>> diary off

APPENDIX C. BENCHMARKS

This appendix provides benchmarks of SDPpack Version 0.9 BETA on some
randomly generated test problems, a set of 16 LMI problems'® from control appli-
cations (some of which apparently are infeasible), and a set of 8 problems'® from
truss topology design. The control and truss design problems are available as mat
files from the SDPpack home page.

All problems were solved using sql.m. The random problems and the truss
design problems used the default option values seet by setopt.m, i.e.:

e opt.prtlevel =1

e opt.validate=10

e opt.maxit = 100

e opt.tau = 0.999

15Provided to us by P. Gahinet.
16Provided to us by A. Nemirovskii.
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scalefac = 100.0
autorestart =1
opt.reltol = 10711
opt.abstol = 1078
opt.steptol = 1078
opt.gapprogtol = 100.0
opt.feasprogtol = 5.0
opt.bndtol = 108

The control LMI problems were solved with the same parameter settings above,
but with scalefac = 1000.0. The benchmarks were conducted on a dual-processor
Sparc Ultra-2 with 192 MB of main memory.

Table 3 shows a set of random problems with semidefinite blocks only. Each
problem has three semidefinite blocks of equal size. The number n shown in the
table is the sum of the block sizes. Thus, for example, the largest problem shown
has three blocks each of size 100.

Table 4 shows a set of random problems with quadratic blocks only. Each problem
has three quadratic blocks of equal size. The number n shown in the table is the
sum of the block sizes. Thus, for example, the largest problem shown has three
blocks each of size 250.

Tables 5 and 6 show the truss and control LMI results respectively. When the
symbol * appears next to the value of termflag, this indicates that a restart was
necessary.

TABLE 3. Randomly generated with semidefinite blocks only

| P || n | m | iter | pinfeas | dinfeas | XeoZ | CeX | bTy | CPU secs | termflag |
11 60 | 60 14 | 4.27e-13 | 3.52¢-14 | 8.86¢e-14 | 8.95¢400 | 8.95¢+00 | 1.88e+01 0
2120|120 | 13 | 2.72e-13 | 1.26e-13 | 2.43e-12 | 3.21e4+01 | 3.21e401 | 1.57e+402 0
3180|180 | 15 | 5.10e-12 | 3.28e-13 | 2.60e-11 | 6.31e+01 | 6.31e4+01 | 8.45¢+402 0
4 (240 | 240 | 13 | 2.75e-12 | 5.51e-13 | 1.54e-12 | 5.78e+01 | 5.78e+01 | 2.13e403 0
51300300 | 14 | 1.43¢-10 | 8.14e-13 | 9.74e-07 | 5.54e+01 | 5.54e4+01 | 5.72e4+03 4

TABLE 4. Randomly generated with quadratic blocks only

| P || n | m | iter | pinfeas | dinfeas | XeoZ | CeX | bTy | CPU secs | termflag |
1| 150 | 50 8 4.0le-14 | 9.67e-15 | 1.25e-10 | 2.52e401 | 2.52e4+01 | 5.40e-01 0
21300100 | 8 2.15e-13 | 2.80e-14 | 9.35e-13 | 7.66e4+00 | 7.66e+00 | 1.29e400 0
3 || 450|150 | 8 5.13e-13 | 3.39¢-13 | 1.54e-10 | 9.20e+01 | 9.20e+01 | 3.48e+00 0
4 (1600200 8 1.34e-12 | 9.08e-14 | 1.57e-11 | 1.38e+01 | 1.38¢+01 | 7.00e+00 0
5 (| 750 | 250 | 8 8.32e-13 | 9.55e-13 | 3.34e-10 | 8.25e+01 | 8.25e+01 | 1.28e+01 0
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| P || n | m | iter | pinfeas | dinfeas | XeoZ | CeX | by | CPU secs | termflag |
1] 13| 6 10 | 2.37e-14 | 1.99e-15 | 1.95e-11 | 9.00e4-00 | 9.00e400 | 4.20e-01 0
2133 58 | 12 | 1.71e-13 | 1.95e-14 | 2.31e-11 | 1.23e4+02 | 1.23e402 | 4.81e+00 0
3 31 | 27 | 15 | 5.99e-14 | 1.59¢-15 | 1.16e-08 | 9.11e4+00 | 9.11e400 | 1.86e+00 4
4 19 | 12 | 11 | 1.06e-13 | 6.33e-16 | 3.03e-11 | 9.01e+00 | 9.01e+00 | 6.10e-01 0
513311208 | 15 | 1.33e-10 | 2.09¢e-14 | 2.45¢-09 | 1.33e4+02 | 1.33e402 | 7.28e+01 0
6 || 451 | 172 | 28 | 2.10e-07 | 3.18e-13 | 2.44e-07 | 9.01e4+02 | 9.01e402 | 5.85e+01 4
71301 8 | 29 | 1.78e-06 | 4.38¢-13 | 9.71e-08 | 9.00e+02 | 9.00e+02 | 2.40e+01 4
8 || 628 | 496 | 18 | 8.97e-10 | 2.89¢e-14 | 2.16e-11 | 1.33e4+02 | 1.33e402 | 1.13e+403 0

TABLE 6. Benchmarks on LMI problems from control applications

| P || n | m | iter | pinfeas | dinfeas | XeoZ | CeX bTy | CPU secs | termflag |
1 (14|13 ] 12 | 6.82e-08 | 1.07e-12 | 6.02e-10 | -2.03e+00 | -2.03e+00 | 7.60e-01 2
2 |16 13| 14 | 7.81e-09 | 1.12e-11 | 4.98e-08 | -1.10e+401 | -1.10e4+01 | 9.20e-01 4
3 /16|13 16 | 1.28¢-05 | 4.70e-12 | 1.24e-10 | -5.70e+401 | -5.69e+01 | 9.90e-01 1
4 ||16 | 13| 15 | 1.18¢-06 | 2.94e-10 | 7.46¢-11 | -2.75e+02 | -2.75e+02 | 9.10e-01 2
5 |16 | 13| 17 | 5.60e-04 | 4.41e-12 | 4.31e-09 | -3.63e+402 | -3.63e+02 | 1.04e+400 1
6 || 16 | 13| 33 | 4.11e-02 | 4.66e-11 | 6.71e-08 | -4.49e+402 | -4.49e+02 | 2.00e+00 2
7T 16|13 11 | 3.84e-05 | 2.93e-11 | 1.49¢-07 | -3.91e+02 | -3.91e4+02 | 6.90e-01 1
8 || 16 | 13| 15 | 2.56e-05 | 1.15e-11 | 8.38e-09 | -1.16e+402 | -1.16e+02 | 9.10e-01 1
9 || 16 | 13| 17 | 3.44e-07 | 9.64e-13 | 2.00e-11 | -2.36e+402 | -2.36e+02 | 1.05e400 2
10 || 18 [ 21| 27 | 1.42¢-05 | 2.84e-07 | 1.99¢-05 | -1.09e402 | -1.09e+02 | 2.30e+00 -1
112231 23 | 9.24e-07 | 4.38e-07 | 5.66e-04 | -6.60e+01 | -6.59e+01 | 3.23e4+00 -1
12 (|24 | 43| 25 | 4.53e-08 | 1.04e-07 | 5.38e-01 | -2.00e-01 | -1.78e-01 | 5.31e400 -1
1330 [ 57| 29 | 2.10e-04 | 1.24e-09 | 1.76e-02 | -4.44e+401 | -4.44e+01 | 8.73e+400 2
14 (|34 | 73| 30 | 3.74e-07 | 3.59¢-09 | 4.73e-03 | -1.30e401 | -1.30e4+01 | 1.39e401 5
15 (|37 91| 18 | 7.79e-06 | 2.17e-08 | 3.33e-02 | -2.39e401 | -2.40e4+01 | 2.23e401 -1*
3716 | 13| 17 | 3.44e-07 | 9.64e-13 | 2.00e-11 | -2.36e+02 | -2.36e+02 | 1.08e+00 2
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