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1 Introduction

Let 8™ denote the vector space of real symmetric n X n matrices. Denote the
dimension of this space by

n? = 2l (1)

The standard inner product on §” is

AeB=tr AB=>_ A;B.
'7]’

By X =0 (X > 0), where X € §", we mean that X is positive semidefinite
(positive definite).
Consider the semidefinite program (SDP)

minxesn CoX
s.t. Are X =by, k=1,....m (2)
X >0,

where b € R™, C' € §", and Ay € §", k =1,...,m. The dual SDP is

max,egm zesn 'Y
s.t. Yohe Yk Ar+ 2 =C, (3)
Z = 0.
The following are assumed to hold throughout the paper.

Assumption 1. There exists a primal feasible point X > 0, and a dual
feasible point (y, Z) with Z > 0.

Assumption 2. The matrices Ax, kK = 1,..., m, are linearly independent,
i.e. they span an m-dimensional linear space in §™.

The central path consists of points (X#, y*, Z#) € §" x R™ x §™ satisfying
the primal and dual feasibility constraints as well as the centering condition

XFZP = pul (4)

for some p € R, p > 0. It is well known [NN94] that, under Assumptions
1 and 2, (X*#, y*, Z#") exists and is unique for all g > 0, and that

(X,y,2) = iiglo(X“,y“’Z“) (5)
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exists and solves the primal and dual SDP’s. Furthermore, because X* and
Z*" commute, there exists an orthogonal matrix Q* such that

X* = Q" Diag(Ay,...,AY) (Q““)T, Z* = Q" Diag(wy,...,w!) (Q““)T7
(6)

where the A" and w/, respectively the eigenvalues of X* and Z#, satisfy
Mol =p, 1=1,...,n. (7)
Without loss of generality, assume that
AP > > M and Wi << Wi (8)

As p — 0, the centering condition (4) reduces to the complementarity condi-
tion X Z = 0, implying that

X =@ Diag(A, ..., \,) Qf, z=0 Diag(wq,...,wn) QT, (9)

for some orthogonal matrix (), with the eigenvalue complementarity condition
Aiw; =0,i=1,...,n. Observe that A; and w; are the limits of A\¥ and w! as
pu — 0, and @ may be taken to be a limit point (not necessarily unique) of
the set {Q@* : u > 0}. We have

A > o> A, and w; << w,. (10)

Interior point methods for semidefinite programming were originally in-
troduced by [NN94, Ali91]. Early papers on primal-dual methods include
[VB95] and [HRVW96]. A preliminary version of the present work appeared
as [AHO94b]. Convergence analysis of primal-dual path-following methods
for SDP appeared first in [KSH94, NT94, NT95]. We are primarily con-
cerned with four methods, which we call respectively the X7, X7 + ZX,
Nesterov-Todd (NT) and ¢ methods. The X7 method first appeared in
[HRVWO96, KSH94]. The XZ + ZX method was introduced in [AHO94b]
and was recently analyzed by [KSS96]. The NT method was given by [NT94,
NT95] and its implementation was recently discussed in [TTT96]. The @
method originally appeared in [AHO94a]. Many other papers on semidefinite
programming have recently been announced.

The paper is organized as follows. In Section 2 we introduce several al-
gorithms in a common framework based on Newton’s method, focusing on
the X7 and XZ + ZX variants. In Section 3 we study the Jacobian of the
Newton system for the various methods under nondegeneracy assumptions,
and discuss implications for local convergence rates. In Section 4 we consider
the conditioning of the Schur complement matrix on the central path, again
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under nondegeneracy assumptions. This leads to the issue of numerical sta-
bility, discussed in Section 5. We introduce the ) method in Section 6. In
Section 7, we present computational results.

Our main focus is on the nondegenerate case; this assumption (defined in
Section 3) implies unique primal and dual solutions. We take the view that it
is important to understand how methods behave on nondegenerate problems.
This does not discount the significance of degenerate problems that may arise
in applications, as is common in linear programming (LP).

A word about notation: we use the symbols X, ¥ and Z to mean several
things. Depending on the context, they may refer to the variables of the SDP,
the iterates generated by a method, or a solution of the SDP.

2 The Methods in a General Framework

We consider only primal-dual interior-point path-following methods, generat-
ing a sequence of iterates approximating the central path and converging to
the primal and dual solutions. See [Wri96] for a detailed discussion of such
methods for LP. In LP, the basic iterative step can be readily derived using
Newton’s method. For SDP, points on the central path satisfy the nonlinear
equation
e yAr+ 2 -C
Al o X — bl
: =0. (11)
An e X — by,
XZ —pul

However, the matrix X7 is not symmetric in general. Consequently, the
domain and range of the function defined by the left-hand side of (11) are not
the same spaces, and Newton’s method is not directly applicable. For LP, on
the other hand, the standard primal-dual interior-point method is obtained
by applying Newton’s method to (11). In this case, X and Z are diagonal,
and X Z is also diagonal, so the domain and range of (11) reduce to R?"+™,

A key question in formulating primal-dual interior-point methods for SDP
is therefore: how should one appropriately formulate Newton’s method? We
consider here two possibilities. Other choices are discussed at the end of this
section.

The XZ Method. Use the centering condition (4) directly and view the
left-hand side of (11) as a function whose domain and range are both
U=R""xR™xR" ™. Then Newton’s method is well defined, though
the iterates are not symmetric matrices. (Actually, only the X iterates
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are not symmetric, since the dual feasibility equation forces Z to be
symmetric.) The X iterates can then be explicitly symmetrized before
continuing with the next iteration. Consequently, this method is not
strictly a Newton method. A different iteration is obtained by using
7 X = pl instead of (4).

The XZ + ZX Method. Rewrite (4) in the symmetric form

Substituting (12) for (4) in (11) gives a mapping with domain and range
both given by V = §” x R™ x 8§™. Application of Newton’s method to
(12) leads to symmetric matrix iterates X and 7.

We observe that (4) and (12) are equivalent when X > 0 (or Z > 0).
That (4) implies (12) is immediate. That the converse holds for X > 0 is
seen by using X = QAQT to reduce (12) to A(QTZQ) + (QTZQ)A = 2ul,
with A diagonal and nonnegative and Q7@ = I. The entries on the left-hand
side are (A; + A;)(QZQT);;, and so, since the off-diagonal entries must be
zero, either \; = X\; = 0 or (QZQT);; = 0 when i # j. Thus, A(QTZQ) is
diagonal, and (4) holds.

We now examine the steps defined by these methods in more detail. The
Newton step for the X Z method satisfies the linear equation

XAZ+AXZ=pl -XZ. (13)

Let nvec map R™*" to R”2, stacking the columns of a matrix in a vector.
Then we may rewrite (13) in the form

(I @ X)nvec(AZ)+ (Z® I)nvec(AX) = nvec (ul — X 7). (14)

where ® denotes the standard Kronecker product (see Appendix, equation

(59)).
To discuss the XZ + ZX method, we introduce a symmetric version of
the Kronecker product. The Newton correction for (12) satisfies the linear

equation

where AX and AZ are symmetric. Let svec be an isometry identifying
S™ with R™, so that K @ L = svec (K)Tsvec (L) for all K,L € 8" (see
Appendix). Then (15) can be written as:

(Z®I)svec(AX)+ (X ® [)svec(AZ) = svec (ul — %(XZ—l— ZX)) (16)
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where ® denotes the symmetric Kronecker product defined in the Appendix
(see (62)).

We shall now describe both methods in a common framework. Let vec
denote either nvec or svec, depending on the context. Specifically, vec will
mean nvec in the case of the X Z method and svec otherwise. The inverse
of vec is denoted by mat. We shall use lower case letters z and z to denote
vec X and vec Z respectively, and we shall use Az and Az interchangeably
with vec AX and vec AZ, to be defined shortly.

Let

(vecAp)T
A=| (17)
(vecA,,)T
and define
rp,=0b— Az, R;=C —Z— mat ATy,
and
no— ul — X7 X 7 method (18)
T wl-3(XZ+ZX) XZ + ZX method
with
rqy = vec Ry, r. = vec 2.
Let
G(mvyvz) = |:_rp (19)
_rc

Note that G maps U to U in the case of the X Z method and V to V otherwise.
Application of one step of Newton’s method to G(z,y, z) = 0 gives the linear

system
0 AT 1I7T1Az rd
A 0 0f]|Ay|= rp] . (20)
E 0 F Az Te
Here
B { ZeI X Z method }
Z®1 X7+ ZX method
and
P { 19X X Z method }
Xa®l X7+ ZX method

and I is the identity matrix of appropriate dimension (/® I for the X 77 method
and I ® [ for the XZ + ZX method). We denote the Jacobian matrix on the
left-hand side of (20) by J.
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Applying block Gauss elimination, (20) reduces to the system

-F'E AT Az rg—F~lr,
S v i

A second step of block Gauss elimination gives
MAy =r, + AE™ (Fry — r.), (22)

Az = —E7Y(F(rg — ATAy) — r.), (23)

and, from the dual feasibility equation,
Az =r;— ATAy, (24)

where
M = AE"!'FAT. (25)

We call M the Schur complement matrix. The main computational work is
the formation and factorization of M. The kth column of the matrix E-'FAT
is

nvec (X A, Z71) X 7 method
svec (L) X7 + ZX method

where Ly, is the solution of the Lyapunov equation (see Appendix)
ZLy+ LipZ = XA+ AR X. (26)

Formation of M thus requires a Cholesky factorization of Z, in the case of
the X Z method, and an eigenvalue factorization of Z, in the case of the
X7 + ZX method. If m > n and we neglect sparsity considerations, the
additional cost of the eigenvalue factorization is negligible in comparison to
the other operations required to form and factor M.

It is clear that, as long as X > 0 and Z > 0, nonsingularity of the
Jacobian matrix J is equivalent to nonsingularity of the Schur complement
M. In the case of the X Z method, M is symmetric and positive definite. In
the case of the XZ + ZX method, M is not symmetric, but can be shown
to be nonsingular if X7 + ZX > 0 [SSK96]. Equation (22) is solved by
using a Cholesky factorization of M in the case of the X Z method and an
LU factorization of M in the case of the X Z 4+ ZX method.

For the X7 + ZX method, the multiplications by E™' in (22) and (23)
require the solution of Lyapunov equations, using the eigenvalues of 7 already
computed to form M.

Both methods are then described by the following:
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Basic Iteration.

1. Choose 0 < ¢ < 1 and define

(27)

2. Determine AX, Ay, AZ from (20), equivalently (22)—(24).
3. In the case of the X7 method, replace AX by %(AX +AXT),
4. Choose steplengths «, 3 and update the iterates by

X « X+aAX
y — y+pAy
Z o~ Z+pAZ

Rules for defining o will be discussed later. A simple steplength rule is
given by choosing a parameter 7, 0 < 7 < 1, and defining

a =min(l, 74&) & =sup{a: X +aAX =0} (28)

and
ﬁ:min(l,rﬁ) ﬁ:sup{ﬁ:Z+ﬁAZt0}. (29)
Note that, except in the case AX > 0, we have 0 < & < oo with

d_l — Ama.x(_A)(7 /Y)7

where Apax(A, B) means the largest eigenvalue of the pencil (A4, B), i.e. the
largest root of det(AB — A) = 0.

Other methods can also be defined in the same framework; two of these
are discussed below. See [Zha95] for a class of methods that includes the
X7 4+ ZX method, and [KSH94, SSK96] for another class that includes all
those discussed here except the X Z 4+ ZX method.

The X~! Method. Replace R.in (19) by R, =puX ' - Z,soE=puX'®
X~LF =1I®I. A similar method can be defined with R, = uZ~! - X.
In fact, the method given by [VB95] is based on a combination of these
two steps.

The Nesterov-Todd Method. Use R. = uX ' - Z, E=Wle W™, F =
I® I, where W = XY2(X'/27X1/2)=1/2X1/2_ This form does not
actually arise from applying Newton’s method to (19). However, see
[TTT96] for a Newton interpretation of this method.
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Aslong as X > 0 and Z > 0, ET'F is symmetric and positive definite for
both these methods. However, in both cases, the function to which Newton’s
method is applied fails to exist at a solution. We call an algorithm a Newton
method if (AX, Ay, AZ) is derived by applying Newton’s method to a func-
tion that is well defined for all X > 0, Z > 0. Under this definition, of the
four variants defined so far, only X7 4+ ZX is a Newton method for SDP.

In the special case that SDP is an LP, the X7, XZ 4+ ZX and Nesterov-
Todd methods coincide, giving the X Z method for LP, which is a Newton
method.

In order to understand the asymptotic behavior of Newton’s method, it is
important to analyze the Jacobian at the solution itself. This is done in the
next section.

3 The Jacobian at the Solution

In this section we study the Jacobian of the function GG, appearing on the left-
hand side of (20), under nondegeneracy assumptions. To do this, we use the
notions of nondegeneracy that were introduced by the authors in [AHO95].

Definition 1. Let (X,y,7) solve SDP, with an orthogonal matrix ) sat-
isfying (9). Let X have rank r, with positive eigenvalues Aq,..., A,, and
partition Q = [@Q1 @Q2], where the columns of (); are eigenvectors correspond-
ing to A1,...,A.. We say that (X,y, 7) satisfies the strict complementarity
and primal and dual nondegeneracy conditions if the following hold:

1. rank(Z) =n —r,
2. the matrices

QT AxQr QT ArQ, L
QT A, 0 , fork=1,2,...,m, (30)

are linearly independent in §”, and

3. the matrices

QT AQ,, fork=1,2,...,m, (31)
span the space S§”.

These conditions are well defined even if () is not unique. The first re-
quirement is the strict complementarity condition. Conditions (30), (31) are
respectively primal and dual nondegeneracy conditions under the assumption
of strict complementarity. They immediately imply the inequalities

r§§m§r§+r(n—r) (32)
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(recalling the notation (1)). They also imply uniqueness of the primal and
dual solutions. Furthermore, the conditions are generic properties of SDP,
meaning roughly that they hold with probability one for an optimal solution
triple, given random data with feasible solutions. For motivation of these
conditions, and further details, see [AHO95].

The strict complementarity condition rank(X) = r, rank(Z) = n — r
implies, using (10), that

AIZ'.'ZAT>AT+1:"':A’IL:07 (33)

and
O=w = =w <wry1 < ... < Wy, (34)

Let By, = QT ALQ. From (62), we have
svec B, = (Q ® Q) svec Ay.

Recall the definition (17), and define
(svec B)7
B - s , (35)
(svec B,,)T
so that
A(Q®Q) =B.
Each column of B corresponds to an index pair (4, 7), identifying two
columns of @, with 1 < 7 < j < n. By choosing the ordering used by the
svec operator appropriately, we may write

B = [C; C; Cj] (36)

where C; contains r? columns corresponding to 1 < ¢ < j < r, C; contains
r(n — r) columns corresponding to 1 < ¢ < r, r+1 < j < n, and Cj
consists of (n — r)2 columns corresponding to r + 1 < ¢ < 57 < n. The
primal nondegeneracy condition (30) holds exactly when the rows of [C; Cs]
are linearly independent, i.e. [C; Csz] has rank m. The dual nondegeneracy
condition (31) holds exactly when C; has rank r?, i.e. the columns of C; are
linearly independent. Thus, the conditions (30) and (31) together imply that
it is possible to choose m — r? columns from Cjy so that, together with all the
columns of Cy, they form a nonsingular m X m matrix. In other words, we
can choose an ordering for the columns of C;, and therefore of B, so that

B = [B; B, (37)

where By € R™*™ is nonsingular.
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Theorem 1 Consider an SDP whose solution (X,y, Z) satisfies the strict
complementarity and primal and dual nondegeneracy conditions. Let J be
the Jacobian of the function G defining the X Z + ZX method, evaluated at
(X,y, 7). Then J is nonsingular.

Proof: We have

0 AT 1
J=|A 0 0
E 0 F

where E=Z®/land F=X® /. Let P =Q®(), and let S = Diag(P,I, P),
so that

0o BT 1
sT3s=|(B 0 0
Y 0 @

with & = PTFP and Y = PTEP. Using Lemma 2 (see Appendix) and (9),
we see that PTP = I and ® and Y are diagonal with entries A; + A; and
w; +wj, 1 <14 < j < n, respectively. Notice that the diagonal entry of ®
corresponding to the index pair (¢, ) is zeroif and only if r+1 <i < j<mn
(because of (33)), while the diagonal entry of Y corresponding to the pair
(2,7) is zero if and only if 1 <@ < j < r (see (34)).

Using the partitioning of B in (37), we have

0 0 BY 1
0 0 BI o
s’Js=|B; B, 0 0
Y, 0 0 &
0 Y, 0 0 &,

(38)

OO - O

where ¥ = Diag(Y;,Y2) and & = Diag(®,,®;). We have ®; > 0, since
none of the columns of C3 are included in By, and Y5 > 0, since all of the
columns of C; are included in Bj.

Interchanging the first and third rows and the second and last columns of
(38), we obtain

B, 0 0 0 By
0 I BI 0o o
0 0 B 1T 0

Y, 0 0 & 0
0 ® 0 0 Y,

We shall demonstrate the nonsingularity of this matrix using block Gauss
elimination. First, subtract Y1Bj" times the first block row from the fourth
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block row to eliminate Y; from the 4,1 position. This does not otherwise
change the lower triangle or the diagonal blocks, only introducing — Y B ' B,
into the 4,5 position. Second, subtract ®; times the second block row from the
fifth row, eliminating ®, from the 5,2 position; this introduces —®,B? into
the 5,3 position. This 5,3 block is then eliminated by adding '1>2B2TB1_T times
the third row to the fifth row, introducing cI>2B2TB1‘T into the 5,4 position,
giving

B, 0 0 0 B,
0 I B o 0
0 0 BT I 0
0 0 0 & -YTH
0 0 0 &HT T,

where H = Bl_lBg. In order to show that this matrix is nonsingular we need
only show that the trailing 2 by 2 block is nonsingular, or equivalently that
its positive row scaling

I ~&7'TH
Y, e,HT I

is nonsingular. A final step of block Gauss elimination yields a block upper
triangular matrix with last diagonal block given by

I+Y;'®H &', H.

This matrix is nonsingular, since it is of the form I + Ny N, with Ny > 0 and
N3 = 0. (The product of two symmetric and positive semidefinite matrices,
though nonsymmetric, has real nonnegative eigenvalues.)

O

Corollary 1 Consider an SDP whose solution (X,y,7) satisfies the strict
complementarity and primal and dual nondegeneracy conditions. Suppose
that the X Z + Z X method uses 0 =0 and o« = 3 = 1 in the Basic Iteration.
Then, there exists € > 0 such that, if the iteration is started at (Xo, yo, Zo),
with |[(Xo, yo, Z0) — (X, y, Z)|| < €, the iterates converge QQ-quadratically to
(X,y,7).

The proof of Corollary 1 is immediate from the standard convergence
theory for Newton’s method. It is clear that Corollary 1 holds also for less
restrictive assumptions on o, a and . See [ZTD92] for relevant results for LP.
There is no requirement that (Xo, yo, Zo) lie in a horn-shaped neighborhood
of the central path, or even in the feasible region. Note that the assumptions
of Corollary 1 do not guarantee positive definite iterates. These are not
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required to make (20) well-defined, though the equivalence of (20) with (22)-
(24) does not hold if X or Z is singular. In practice, conditions (28)—(29)
ensure positive definite iterates.

A result like Theorem 1 does not hold for any of the other methods dis-
cussed so far. As already noted, the function to which Newton’s method is
applied is, in the case of the X! and Nesterov-Todd methods, not defined
at an optimal point. For the X Z method, the function G is defined at the
solution, but it can be shown that the Jacobian J is always singular there.
More importantly, bearing in mind the symmetrization step, an example can
be constructed where J has a null vector (AX, Ay, AZ) with AX+AXT £ 0.

It is well known that a result like Theorem 1 holds for the X Z method
for LP, using LP nondegeneracy assumptions.

Nondegeneracy assumptions are not required to obtain superlinear con-
vergence results. This has been known for some years for LP [Wri96] and
is the subject of active current research for SDP. However, such results re-
quire that the iterates of a method stay close to the central path. Our point
here is that classical Newton theory applies to the X Z + ZX method, under
nondegeneracy assumptions, in SDP just as in LP.

4 Conditioning of the Schur Complement Matrix

In this section, we study the conditioning of the Schur complement matrix
M, introduced in Section 2, on the central path. It is important to note that,
when started on the central path, all the methods discussed so far generate
the same first iterate. On the central path, X and Z commute. Therefore,

1
E'F=—-Xa&X
I
in all cases except the X Z method for which we have E7'F = iX ® X. In

both cases the Schur complement matrix M = AE~'FAT is the same.
We now analyze the condition number of M on the central path, as p — 0.
We begin by considering its rank in the limit.

Theorem 2 Assume that (X*, y*, Z*) lies on the central path of an SDP
whose solution (X,y, Z) = lim,_,o(X*,y*, Z") satisfies the dual nondegen-
eracy condition (31), with r = rank(X). Let M* be the Schur complement
matriz defined at (X", y*, Z"). Then

lim (p M*)

n—0

exists and has rank r?.
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Proof: Clearly,
pMF 5 N=AX® X)AT

the matrix whose ([, k) element is tr (X A4; X Ay). Let @ and A; satisfy (9), and
write Ay = Diag(Aq,...,A,) > 0, with corresponding eigenvectors collected
in Qp, so that X = QA;QT. Let C; be the m x r? matrix introduced in
(36), and let Dy be the r2 x r? diagonal matrix

D; = Diag(\\j), 1<i<j<r,
using consistent orderings for C; and Dy. Then
N =C,D,cT
since the (/, k) element of the right-hand side is
tr (AMQTAQIAQTALQY) = tr (XA X Ay).

Since, by the dual nondegeneracy assumption, C; has linearly independent
columns, and since Dy > 0, this completes the proof of the theorem. O

Recall that the condition number of a symmetric positive definite matrix
1S Kmax/Kmin, Where Kmax and Kpin are respectively its largest and its smallest
eigenvalues.

Theorem 3 Suppose that the assumptions of Theorem 2 hold. Then, if m >
r? > 0, the condition number of M* (equivalently of uMH* ) is bounded below
by a positive constant times 1/p.

Proof: Let Q#, A satisfy (6), and let B¥# C# be the matrices introduced
in Section 3, evaluated at (X*,y*, Z#). Using Lemma 2 (see Appendix), we
have

pM* = A(X"*® X*)AT = B*D*(B*)T (39)

where D* is the diagonal n? x n? matrix
D" = Diag(A/)Y), 1<i<j<nm. (40)
The primal solution rank r defines a splitting
D* = Diag(D/, D}, D%)
consistent with (36), so that

pM* = CYD{(CY)" + C4D3(C5)" + CEDE(CE)T (41)
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Here the entries of the diagonal matrices DY, Dy and Df are AYAY, with
the indices 1 < i < j < rforDf; 1 < i <r < j < nfor Dj and
r+1<1i<j<nfor D5. Although Q" and C* do not generally converge
as  — 0, Theorem 2 shows that uM* — N = C;D;CT, with rank r2. By
assumption, m > r? > 0, so the largest eigenvalue of N is positive and the
smallest is zero. The norms of the second and third termsin (41) are O(u), so
the largest and smallest eigenvalues of y M* are, respectively, bounded away
from zero, and O(y). (Here we use the fact that eigenvalues of a symmetric
matrix are Lipschitz continuous functions of the matrix entries.) O

For LP, a result like Theorem 3 does not hold. On the contrary, under
assumptions of LP nondegeneracy and strict complementarity, the condition
number of the LP Schur complement matrix is bounded independent of p.

5 Stability

We have seen in the previous section that, for nondegenerate SDP’s, the con-
dition number of the Schur complement matrix, evaluated on the central path,
is bounded below by a positive constant times 1/ (ruling out the exceptional

cases r? = m and r = 0). Consequently, one expects that as g — 0, the com-

putation of Ay in (22) will become increasingly less accurate. Indeed, in our
original implementations we observed numerical instability leading to signif-
icant loss of primal feasibility near a solution. Recently, however, Todd, Toh
and Tiitiincii [TTT96] found that high accuracy is achievable. The main issue
is the choice of formulas for Ay and AX. Several mathematically equivalent
choices are possible, but these have quite different stability properties.
Formulas for Ay and AX are given in (22) and (23). Both include the
term Fry — r.. For the X7 4+ ZX method, this term (in matrix form) is

% ((X(C— 7~ mat ATy) + (C - Z — mat ATy)X) — (2] — X7 - ZX))

which can be rewritten as

% ((X(C — mat ATy) 4+ (C — mat ATy)X) - 2,u]) :

However, using this simplification to modify (22) and (23) leads to instability

and loss of primal feasibility. It is much better to implement (22) and (23)

directly. This is done in the computational experiments reported in Section 7.
The same issue applies to the X Z method. However, direct implementa-

tion of (22) and (23) does not give good results for the X Z method. Instead!,

'The discussion here is motivated by [TTT96].
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we use the fact that E7'F is symmetric positive definite to write
E"'F=7"9X=GTG, G=M'oL",
where L and M are respectively Cholesky factors of X and Z, i.e.
X ="LL", Z=MMT".
Noting that the first block in the right-hand side of (21) is
u= vecl = vec(C — uX~' — mat ATy),

we see that (21) is equivalent to

EHEE @

Az =G TAz = vec (L' AX M) = vec AX,
i=Gu= vec(LTUM™T) = vecl,

and
(vecLTA M~ T)T
A=AGT = ; (43)
(vec LA, M~T)T
The solution is given by
(AAT) Ay =r, + Ad (44)
(which may be solved with a Cholesky factorization) and
AX = LAXM™' = L(mat ATAy — U)M~". (45)
This last equation can be written in many ways, three of which are
AX = L(LT(mat ATAy)MT - LTUMT) M~ (46)

= LLT(matATAYM "M - LLTUM M (47)
= LLT <(mat ATAy) - U) M=TM (48)

Of these four mathematically equivalent formulas, (45) and (46) give the
highest accuracy, with smallest loss of primal feasibility. We used (45) in our
computational experiments, with Ay defined by (44).

For the Nesterov-Todd method, E7'F is also symmetric positive definite,
so similar considerations apply; see [TTT96].
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6 The () Method

In this section we change direction, deriving an alternative primal-dual interior-
point method that generates iterates (X, y, 7) with the property that X and

Z commute, i.e. XZ = ZX. This is motivated by the fact that this property

holds for all points on the central path. Instead of treating the variables X

and Z directly, we introduce as variables the eigenvalues of X and Z and

their common set of eigenvectors. In other words, the variables consist of an

orthogonal matrix €, diagonal matrices A and €2 and a vector y € R” that

must satisfy

QQQT + > mAr = C,
k=1

Are (QAQT) = by, k=1,...,m (49)
AQ = pul.

This defines a map from 0" x R#**™ to R”2+”+m, where O" is the Lie group
of orthogonal matrices with determinant one, whose dimension is n(n —1)/2.
(Since the signs of eigenvectors are arbitrary, it is not a restriction to impose
det Q = 1.) The price paid for the diagonalization is the nonlinear appearance
of the variable ) in the feasibility equations.

Let K™ denote the space of n X n skew-symmetric matrices, and consider
the exponential map from K™ to O" defined by

1
exp(S) =T+ + 55"+

This map is smooth, onto, and in a neighborhood of 0, also one-to-one. Bor-
rowing a technique used by [OW95], we derive a form of Newton’s method
based on parameterizing O™ near a given point ¢ by @ exp(S). Let kvec
be an isometry from K" to R™*(»=1)/2, stacking the upper triangular entries
of a skew-symmetric matrix in a vector, with a factor of v/2 to preserve the

inner product. Let us use the convention s = kvec (5), A = Diag()) and
Q2 = Diag(w). Define

vec (C' — Q exp(S)Qexp(—5)QT) — ATy
Go(My,w,s) = b — A vec(Qexp(S)Aexp(—9)QT) , (50)
AQe — pe

The function Gg maps R™+7+m to itself. Note that the third component of
G g has the form familiar from LP.
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Given an iterate (X,y, Z) = (QAQT, y, QQQT), we obtain a new iterate
by applying Newton’s method to the equation Gg = 0 at the point (A, y,w,0).
The Newton step (A, Ay, Aw, s) is obtained by replacing exp(S) by I + S
and discarding second-order terms. The resulting (n?+n+m) x (n?+n+m)
linear system is:

AQ+SQ-QS+ > AyB, = H-Q (51)

k=1
Bre(AA+SA—AS) = by—BreA, k=1,...m (52)
AAQ+ QAN = ul — AQ (53)

where By = QT A;Q and H = QTCQ — 7, yx By
The basic iteration for the ) method is therefore:

1. Choose 0 < ¢ < 1 and define

ATw
h=0o—.
n

2. Determine (AX, Ay, Aw, s) from (51)—(53).

3. Choose steplengths «, 3,y and update the iterates by

A« A+aAA
y <+ y+pAy
Q « Q45 AQ
Q + QUA+3vS)(I-3vS)™n

A simple steplength rule is a = min(1,7&), § = min(1,73), and v = \/aj,
where & and ﬁ are steps to the boundary of the positive orthant. The mul-
tiplicative factor updating ) is the Cayley transform, an easily computed
orthogonal matrix that approximates the matrix exponential to second order.

The equations defining the ) method can be rewritten as follows. First
note that (52) can be rewritten as

B e AA + tr ((ABk - BkA)S) =b,— Bre A

and write
b1 — B1 o A
v = .

by, — B, e A
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Let diag(Bj) be the vector consisting of the n diagonal entries of By and
offdiag(By) be the vector consisting of the n(n — 1)/2 entries of the upper
triangle of By, ordered consistently with the ordering chosen for the kvec
operator. Define

L = [diag(B)) - diag(B,)]",

R = [offdiag(B;) --- offdiag(B,)]".
Let
D = Diag(\; — );), F = Diag(w; — w;),

diagonal matrices of size n(n —1)/2 (corresponding to 1 < ¢ < 5 < n), whose
orderings are also consistent with that of the kvec operator. Then, writing
the diagonal and off-diagonal parts of (51) separately, we get the linear system

0 0 LT 717r1AM diag(H — Q)

0 E RT 0 s | | offdiag(H) (54)
L RD 0 0 Ay v

Q 0 0 Al lAw pe — AQe

We denote the matrix on the left-hand side of (54) by Jg.

Let (X,y,Z) be a solution of SDP satisfying (33), (34). The matrix @
simultaneously diagonalizing X and Z is unique (up to signs of its columns)
if and only if

A1> >0 >0 and 0<wryg < - < wy. (55)

Theorem 4 Let (X,y,7Z) = (QAQT,y, QQQT) be a solution of SDP satisfy-
ing the strict complementarity and primal and dual nondegeneracy conditions,
and also condition (55). Then the matriz Jg, evaluated at the solution, is
nonsingular.

Proof: First note that the assumptions on the eigenvalues imply that the
element of the diagonal matrix D corresponding to the index pair (,j) is
zero if and only if r+1 < ¢ < j < n, while the element of the diagonal matrix
FE corresponding to (i, 7) is zero if and only if 1 <7 < j < r. Let us rewrite
Jg as

0o 0 0 LT 1 07
0 0o o LI o I
0 0 E RT 0 0
L, Ly, RD 0 0 0
0 0 0 0 A O
L0 Q 0 0 0 0]
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where Ay > 0 and 5 > 0. As in the proof of Theorem 1, the nondegeneracy
assumptions permit us to collect all r columns of Ly and m — r columns of R
together in a nonsingular m X m matrix B;. We collect the remaining n(n —
1)/2 —m+r columns of R in a matrix Ry, and partition D = Diag(Dy, D3)
and E = Diag(Fy, F) accordingly. Observe that Dy > 0 since the columns
of By correspond to index pairs (7, ) with A; > X;. Likewise —Fj > 0 since
all columns corresponding to index pairs (¢, ) with w; = w; = 0 are contained
in Bl.

Let D = Diag(I, D;) and E = Diag(0, F;). Permuting the rows and
columns, Jg becomes

E 0o o B T o
0 0 0 LI o 1
0 0 E, RI' 0 o0
B:D L, RyDy 0 0 0
0 0 0 0 Ay O
L0 Q0 0 0 O]

where T is an m by r matrix containing r rows of the r by r identity matrix
and m — r zero rows. Interchanging the first and fourth rows and the second
and last columns, this becomes

B:D 0 RyDy 0 0 Ly
o I o LI o0 o0
0 0 FE, RI 0 o0
E 0 o BI' T o
0 0 0 0 Ay 0

L 0 0 0 0 0 Q)

Performing Gauss block elimination on this matrix we see that its nonsingu-
larity is equivalent to the nonsingularity of

BT + ED7'B7'R,D,E;'RY.
Multiplying on the left by BI_T we obtain the matrix
I+ (B;TED'B7Y)(RyD2E;'RY).

This is nonsingular since it is of the form I + Ny Ny with Ny, Ny symmetric
negative semidefinite. O

Corollary 2 Consider an SDP whose solution satisfies the strict comple-
mentarity and primal and dual nondegeneracy conditions, and also condition
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(55). Suppose that the () method uses 0 =0 and o« = =~ = 1. Then, if
the method is started with A\,w, y and Q) initialized sufficiently close to their
values at the solution, the iterates converge Q-quadratically to the solution.

The proof of Corollary 2 is more technical than that of Corollary 1, and
is omitted. It is necessary to establish that quadratic convergence is not
impeded by either (a) the use of the Cayley transform to approximate the
matrix exponential or (b) the dependence of the definition of G'g on Q.

As with the other methods, we see how to efficiently implement the @)
method by performing block Gauss elimination directly on Jg, without par-
titioning the blocks. The first step yields

—A71Q 0 LT AN diag(H — pA~1)
0 D-'E RT 5| = offdiag(H) ] ,
L R 0 Ay v

where S = kvec 3 is the symmetric matrix defined by
SZ']' = (/\Z — /\j)Sij-

One more step of block elimination then gives the Schur complement

Mg =[L R]

AQ7! 0 ] LT . (56)

0 —-DE-'| |RT

As in LP, the center factor of the Schur complement is diagonal, with entries

A . Ai— A
L1<i<n and = L
w; w; — w;

1<i< 3 <n.

Of course, the L and R blocks are not independent of the iteration count, as
they are in LP.

The ¢ method does not require computing eigenvalues. The variables
@), A and w are all updated using rational operations. This is in contrast
with the X 7+ Z X method which requires the computation of eigenvalues in
two places: the formation of the Schur complement matrix M (to solve the
Lyapunov equations) and in the steplength computation (to find the step to
the boundary). Finally, note that the Schur complement matrix is symmetric
for the Q matrix, but not for the X7 + ZX method.

When evaluated on the central path, the Schur complement matrix Mg
for the ) method is equal to the Schur complement matrix M* for the X Z
and X7 + ZX methods, assuming that (55) holds. To see this, let L*, R*,
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D# EF denote the matrices L, R, D, E evaluated on the central path. We
have A#(Q*)~! = Diag(\!/w!) = 1 Diag((A\})?) and

Tn

A= 2 1
—-DH(EM™ = Diag(wiz — w]“) = ;Diag(/\f/\f)
7 7

Thus,
1
My = ~B*D*(B*)T =M
Jv)

using (39) and (40).

Although the ) method has some attractive features, it is, at present, not
a practical alternative to the other algorithms. When initialized far from the
solution, convergence is generally not obtained. However, the quadratic local
convergence established here is observed in practice.

7 Computational Results

In this section we report on the results of some extensive numerical experi-
ments. We start by discussing some important implementation details.

Mehrotra’s predictor-corrector (PC) rule is a well known technique in LP
[Wri96]. It can easily be extended to the X7 and X7 + ZX methods, as
follows. In our implementation, we use the PC rule only if

[Irpll + 11 Rall < p,

where p is a given threshold value (107% in the runs reported here). This pre-
vents the PC rule from being applied until an approximately feasible point has
been reached. When the condition does not hold, we use the Basic Iteration
instead, with o = 0.25.

X7 and X7+ 7X Methods with Mehrotra Predictor-Corrector Rule

1. Determine AX, Ay, AZ from (20), using = 0in (18), and symmetrize
AX in the case of the X7 method.

2. Choose steplengths a, 8 using (28)—(29), and define

X +aAX)e (Z+BAZ)N\
0:<( . )3.(2 e )) (57)
Xeoe/
u=a .

n



Semidefinite Programming 23

3. Redetermine AX, Ay, AZ from (20), using

Ro— pl — (XZ+AXAZ) X 7 method
T wl-3(XZ+ZX+AXAZ+AZAX) XZ+ ZX method

symmetrize AX in the case of the X Z method, and update the iterates
by

/Y — /Y + (8% A/Y

y <« y+pAy

Z o~ Z+pAZ,

with a, 3 given by (28)—(29).

See [TTT96] for a PC version of the Nesterov-Todd method. (Our exper-
iments use (57) in the implementation of all the methods, although [TTT96]
use the exponent 2 instead of 3 in (57).)

Computational results are presented in Tables 1 through 4. Tables 1, 2
and 3 report results for randomly generated problems, for m = n, with the
Ay, generated first, and b and C' chosen to ensure existence of strictly feasible
primal and dual points. Such problems are expected to be nondegenerate. All
methods were initialized with the infeasible starting point (X,y, Z) = (1,0, I).
Table 1 shows results for the XZ + ZX, XZ and NT Basic Iteration, using
o = 0.25in (27), with various choices for the steplength parameter 7 in (28),
(29). We also implemented the X ! method but found it required many more
iterations than the others with the same parameter choices. Table 2 shows
results for the PC variants, with threshold p = 107%. Table 3 compares the
PC algorithms (with 7 = 0.99) for different values of n. In all cases, part (a)
of the table shows the number of iterations required to reduce the duality gap
by a factor of 10'2, averaged over 100 problems (20 for Table 3). Part (b)
shows the final value of

logyo (|Irpll + [12all) ,

averaged over the same data. A run was considered to be a failure (indicated
by I) if the duality gap and infeasibility norm were not reduced to at least
10~%; these runs are not included in the average statistics. The > symbol
in some iteration counts indicates that, in at least one run, the duality gap
was not reduced by the desired factor of 10'? before the maximum number
of iterations was exceeded. All experiments were conducted in Matlab, using
IEEE double precision arithmetic.

Let us first consider the results shown in Table 1 for the Basic Iteration
without the PC rule. For 7 = 0.9, all three methods show essentially the same
number of iterations. The X7 + ZX method achieves the highest accuracy
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(in terms of feasibility). More aggressive choices of the steplength parameter
have little effect on the X Z + ZX method but cause difficulties for the X 7
and NT methods. Choosing 7 = 0.999 causes the X7 and NT methods to
fail in many cases.

Table 2 shows the same experiment using the PC rule. With 7 = 0.9, the
PC rule greatly reduces the number of iterations, though with some loss of
feasibility for the X7 and NT methods. More aggressive choices of T give a
significantly reduced number of iterations (without loss of feasibility) for the
X7+ ZX method, but lead to many failures for the X Z and N'T algorithms.

Turning to Table 3, we see an iteration count which is essentially constant
as n increases, though with some loss of feasibility for larger n. Primal
feasibility can be regained by projecting onto the set {z : Az = b}, but this
generally fails to give a more accurate solution, as the duality gap usually
increases.

Table 4 shows results for the Lovdsz # function [GLS88] for randomly
generated graphs with varying edge density. Here n is the number of vertices
in the graph and m — 1 is the number of edges.

We also implemented the ) method and observed that it has essentially
the same rapid local convergence and high accuracy properties as the X 7 +
7 X method, although when initialized far from the solution, it generally fails
to converge.

The results show clearly that the X Z4+ 7 X PC method is the most efficient
in terms of number of iterations, and is the most robust with respect to its
ability to step close to the boundary. We make no claim regarding the best
overall method in practice, when costs per iteration are taken into account.

Acknowledgments. The third author is grateful to Richard Tapia, Bob
Vanderbei and Steve Wright for introducing him to primal-dual interior-point
methods for LP. The authors also thank Mike Todd for many helpful com-
ments, especially a suggestion concerning the ) method that makes the de-
velopment given here substantially simpler than the one given in [AHO94a].
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Method =09 | 7=0.99 7 =0.999
XZ+7X 21.5 21.1 21.1
X7 21.7 22.1 > 23.3 (F: 11%)
NT 21.6 >21.9 | >24.9 (F: 25%)

Number of iterations to reduce gap by 102
Averaged over 100 randomly generated problems
Basic iteration with ¢ = 0.25
Starting infeasible, n = 20, m = 20
F: Failed to reduce gap and feasibility norm to 104

Table 1a
Method | 7=0.9 | 7=0.99 7 =0.999
XZ+7X | —12.6 —12.6 —12.6
XZ —11.1 —11.0 | —11.0 (F: 11%)
NT -10.9 —10.8 | —10.9 (F: 25%)
Log norm infeasibility
Averaged over same data
Table 1b
Method T=09]|7=0.99 T =0.999
XZ+7ZX 15.0 10.2 9.3
X7Z 16.3 14.7 > 16.9 (F: 44%)
NT 15.6 >22.8 | > 30.0 (F: 98%)

Number of iterations to reduce gap by 10'2
Averaged over 100 randomly generated problems

Mehrotra predictor-corrector rule
Starting infeasible, n = 20, m = 20

F: Failed to reduce gap and feasibility norm to 104

Table 2a
Method =09 | 7=0.99 T =0.999
XZ4+7X | —12.1 —12.1 —-12.2
X7 —8.8 —-8.8 —9.5 (F: 44%)
NT -9.1 —-8.5 —11.3 (F: 98%)

Log norm infeasibility
Averaged over same data

Table 2b
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Method n=m=20|n=m=40 | n=m =80
XZ+7X 10.2 10.5 10.4
XZ 14.7 14.8 14.6
NT > 22.8 > 23.1 > 22.0

Number of iterations to reduce gap by 102
Averaged over 20 randomly generated problems
Mehrotra predictor-corrector rule with 7 = 0.99
Starting infeasible

Table 3a
Method |n=m=20|n=m=40| n=m =280
XZ+7ZX —-12.1 -11.3 -10.5
X7 —8.8 -84 -7.8
NT —8.5 -7.9 -7.5
Log norm infeasibility
Averaged over same data
Table 3b
Method Density= 0.25 | Density= 0.5 | Density= 0.75
XZ+7ZX 9.1 9.2 8.7
X7 > 13.6 (F: 7%) | > 17.4 (F: 9%) | 12.4 (F: 1%)
NT > 12.3 13.6 13.1

Lovasz 8 function
Number of iterations to reduce gap by 10'2
Averaged over 100 randomly generated problems
Mehrotra predictor-corrector rule with 7 = 0.99
Starting infeasible, n = 10
F: Failed to reduce gap and feasibility norm to 104

Table 4a
Method Density= 0.25 | Density= 0.5 | Density= 0.75
XZ+7ZX —14.5 —14.5 —14.6
X7 —12.2 (F: 7%) | =124 (F: 9%) | —13.2 (I': 1%)
NT —-12.0 —12.1 —12.5

Log norm infeasibility
Averaged over same data

Table 4b

26
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Appendix. Symmetric Kronecker Products

Consider the linear operator on R™*" defined by the map
K— NKMT (58)

where M, N € R™*™. It is standard to represent this linear operator by the
Kronecker product
MyyN -+ MyN
MoN=| : s
M, N - M,,N

2 . . .
where nvee maps R™"*™ to R"™", stacking the columns of a matrix in a vector,

since then
(M ® N)nvec(K) = nvec (NKMT). (59)

Other Kronecker product identities include
MeoN)'=M71'@N™?' and (MON)(K®L)=MK®NL. (60)

Now consider the linear operator on §™ defined by the map
1
K5 (NKMT + MKNT) (61)

where M, N € R™*™, To represent this map as a matrix, define M ® N by
the identity

(M @ N)svee (K) = svec (%(NKMT + MENT)) (62)

where svec maps 8™ to R™ by

T
svec (I() = |:I(117 \/§I(12, ey \/§I(1n7 1(22, ey \/5[(27“ ...... s I(,,m} .

Note that
K o L = svec (K)T svec (L).

Of course, the ordering used in (63) is arbitrary: the important point is that
each element of svec (K) is associated with an index pair (4, 7), with ¢ < j.
The ordering chosen for svee dictates a corresponding ordering for @®.
We call the matrix M ® N a symmetric Kronecker product. Note the
identity
M®N=N® M. (64)
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Furthermore (M ® M) =M@ M, but ( M®N)"' £ M@ N~ in
general.
We need the following lemmas whose proof are straightforward.

Lemma 1 Let V € R™ "™ and let v;, 1 < i < n, denote the columns of V.
The (i,7) column of V@V, 1<1i<j<n, is the vector

{ svec (v;v]) ifi=j

% svec (viv]T + vjviT) ifr< g

Lemma 2 Let M, N be commuting symmetric matrices, and let oy, ..., a,,
B1,...,0, denote their eigenvalues with vy,...,v, a common basis of or-
thonormal eigenvectors. The n(n + 1)/2 eigenvalues of M ® N are given
by
1 .
(@il + fray), 1<i<j<n,

with the corresponding set of orthonormal eigenvectors

{ svec (v;v]) ifi=j

% svec (viva +uol) difi<g

In other words, if V' = [vy---v,], then V ® V is an orthogonal matrix of
size n? x n? which diagonalizes M ® N. The standard algorithm for solving
the Lyapunov equation MXNT + NXMT = B (when M and N commute)
immediately follows: the solution is VC'VT, where C' is found by computing
VT BV and dividing its entries by the quantities (0;3;+B;a;) componentwise.
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