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Abstract

In this paper, we address the problem of the syn-
thesis of controller programs for a variety of robotics
and manufacturing tasks. The problem we choose for
test and illustrative purposes is the standard “Walk-
ing Machine Problem,” o representative instance of a
real hybrid problem with both logical/discrete and con-
tinuous properties and strong mutual influence with-
out any reasonable separation. We aim to produce a
“compiler technology” for this class of problems in a
manner analogous to the development of the so-called
“Silicon Compilers” for the VLSI technology. To cope
with the difficulties inherent to the problem, we resort
to a novel approach that combines many key ideas from
a variety of disciplines: namely, Discrete Event Su-
pervisory Systems [14] Petri Nets approaches [8], [10]
and Temporal Logic [5].

1 Introduction and Our Goals

This paper describes a “Controller Synthesis Sys-
tem” and its application in the development of a
walking machine. Our (admittedly ambitious) goal is
to build a comprehensive controller synthesis system
based on the Ramadge and Wonham’s DES theory
[14] and a form of temporal logic [5] widely used in
the field of verification.

Our synthesizer accepts a model of the legs (both
continuous and discrete) and a set of goals (express-
ible in temporal logic) and automatically synthesizes a
controller that controls the legs. The controlled walk-
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ing machine exhibits behaviors that are guaranteed
not to violate any of the desired goals. This class of
behaviors of the legs are called “gaits” and are ex-
pected to depend on the leg model and desired goals.
We also graphically simulate the gaits to gather in-
sights about the formulation and hope to provide the
designer feedback on how to make design changes.

However, the problem is not as straightforward as it
may seem at the first glance. We need to address the
problem resulting from inadequate formulations of the
close interplay between the discrete and the “underly-
ing” continuous levels. In the walking machine case,
the reciprocal influences between these levels must
be taken into account in order to produce a reason-
able integrated controller. The examples appearing in
the DES literature (mostly related to manufacturing)
seem to be tractable otherwise. We believe that, in
the case of walking machine, the difficulties in spec-
ifying the desired behavior arise from the fact that
the system is inherently tightly coupled. In contrast,
most examples seen in the DES literature appear to
be loosely coupled.

Other works in DES theory [1] and [17] pose
many interesting problems, especially with respect to
the inherent complexity of the manageability of the
systems!. For some related ideas, we refer the readers
to [2] and [7].

This paper is organized as follows. In the next sec-
tion, we describe the model of the walking machine we
are using. We discuss its DES components at length
and its kinematics/dynamics briefly. Finally, we de-
scribe how our work fits in with other ongoing research
at our Laboratory. The next two sections are devoted

IThe synthesis algorithms used run against a state space ez-
plosion, which is mostly unavoidable.
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Figure 1: Leg with frame assignments. Note that
{B} = {0} and {T} = {4}, following standard ter-
minology.

to an explanation of the interplay between the tem-
poral logic used, a Model Checker for it and how it
simplifies the use of DES theory for the walking ma-
chine system. We conclude the paper by pointing out
some problems we encountered and worthy of further
exploration.

2 Walking Machine Model

The Walking Machine Model we are building is a
four legged system based on Microcontroller and Di-
rect Drive Technology. We model the system as com-
prising of a discrete and of a continuous layer. Our

system follows standard modeling techniques proposed
in [6], [12] and [15].

2.1 Leg Model

We use a standard three link leg model which we
analyzed as a planar manipulator. Figure 2.1 shows
the geometry of the leg and the assignment of the stan-
dard coordinate frames. The Denavit-Hartenberg pa-
rameters for the Leg are shown in table 1.

At this point, it is fairly straightforward to derive
the kinematic and dynamic equations for the leg in
order to build position and force controllers for the
joints. Yet, our main interest remains to be in explor-
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Table 1: The Denavit-Hartenberg Link Parameters as-
stgnment.
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Figure 2: Model of the discrete transitions of a single
leg with an uncontrollable event (slip).

ing the interactions between the “low level” continu-
ous control and the “discrete” synchronization scheme
of the whole walking machine.

2.2 Discrete Event Model

Most studies on walking machines use a Finite State
Machine (FSM) approach to the problem of “high
level” synchronization ([6], [12]). Using DES Theory
we are able to take into account possible undesirable
behaviors. The finite state model we use for a single
leg is depicted in fig. 2. The six states Start, Unload,
Recover, Load, Drive and Slipping correspond to differ-
ent “movements” of the leg. E.g. in the Recover state
the leg is moving “forward” without contacts with the
ground; in the Slipping state, the leg has just lost the
stance on the ground and is conceivably not support-
ing the hip anymore. In the spirit of DES theory, the
events es, eu, er, el, ed and esl® are all controllable, slip
is instead uncontrollable.

The walking machine is modeled by slightly dif-
ferent equations in each state (with the possible ex-
ception of the Slipping state, for which we assume no
model). The role of the “high level” Discrete Con-
troller is to choose the appropriate set of control laws
for each discrete state. Such Discrete Controller is
synthesized using the Supervisor Synthesis schemes of
DES? [13].

We build the actual FSM for the DES “plant” lan-
guage L (in DES terminology) by taking the shuffle

2The prefix e- is intended to mean “end of”.
3We assume familiarity with the standard DES terminology.
Refer otherwise to [14] for a survey of the original DES Theory.



Figure 3: Prototypes of the mini actuator links for the
legs of the Walking Machine built by Richard Wallace
and Fred hansen.

product of the four distinct FSM’s, one for each leg.
This yields a FSM with 1296 states and 5184 transi-
tions. How this model will be used to synthesize the
actual DES Supervisor will be deferred to the next
sections.

2.3 System Software and Simulation

Our controller compiler was rapidly prototyped in
Common Lisp. Such a choice had many advantages
over a more traditional one, given the flexibility of the
Lisp environment. Moreover, it does not hinder the
actual production (through a “post processing” pro-
cess) of low level Assembly, C or Ada modules for some
of the architectures currently used in our laboratory
(Motorola MC68332'™ boards and VxWorks'™).

Under the supervision of R. Wallace, our robotics
laboratory has developed an inexpensive yet powerful
technology of mini actuators [16]. In collaboration
with this group, we have been designing direct drive
walking machines and constructing these out of mini-
actuators. Fig. 3 shows prototype leg joints.

3 Controller Synthesis

We modified the standard DES Theory approach to
the Supervisor Synthesis Problem by using a Temporal

Logic formalism for the specification and verification
of properties of the desired language K.

3.1 CTL Specifications and Supervisory
Synthesis

The Temporal Logics we use are the standard
Branching Time Logics of the CTL family [5]. We
are not the first to explore the use of Temporal Logic
in the DES realm (see [9]), but our approach (and the
Logic used) is different.

CTL is a Logic whose semantics is defined in terms
of a Kripke Structure which can easily be reinterpreted
in terms of FSM’s.

The well formed formulas of CT L are listed in ta-
ble 2 along with their semantics in terms of the un-
derlying FSM. This logic has been extensively used
in the field of Verification of VLSI circuits [3, 11]. Its
usefulness comes from the existence of a linear time
Model Checking algorithm that works by recursively
labeling the underlying finite state machine. When
coupled with hierarchical and State Space Compres-
ston techniques, such algorithm becomes usable in a
wide range of cases [4].

We specify the desired discrete behavior K by mark-
ing off “undesirable states”. We do so by using a modi-
fied version of the Model Checking Algorithm. A CTL
formula that specifies this for a train of legs (left or
right) is the following

AG( —state([Drivey, Drives)]) A
—state([Recover;, Recovera]) A
—state([Slipping,, Slipping,])).

The meaning of this formula is simply the statement
of a state avoidance problem. We do not want the
system to be in a state where both legs of a train are
both recovering, or driving, or (worse) slipping.

Another property that we would like to enforce
is what physiologists and zoologists call rear-to-front
waves in animal gaits [6]. This is a constraint on the
sequencing of events in the leg system. Specifying this
sequencing constraint for a train of legs is rather easy
using CT L.

AG.(state([Driver, Recover,))
= -EX.(state([Unload;, Recover,)))).

The meaning of this formula is that whenever the rear
leg (number 2) is recovering, the front leg (number 1)
cannot start unloading.

The Supervisory Synthesis theory does guarantee
that a Supervisor exists and that it is “minimally re-
strictive” [13]. Yet no guarantee is given that the su-
pervisor will maintain all the properties that we may



SYNTAX SEMANTICS DESCRIPTION
BASE FORMUL&E

P p € A(s) A proposition

f1V f2 f1 € A(s) or fa € A(s) A disjunction

fi A fa f1 € A(s) and f2 € A(s) A conjunction

-f f & A(s) A negation

f1= f2 f1 & A(s) or fa € A(s) An implication

TEMPORAL FORMULE

EX(f) f € A(s") and s’ is a successor state of s f will be true in some next state

AX(f) f € A(s") for every s’ successor of s f will be true in all the next states

E[f1 U f2] If s0,81,--.,8, i8 a sequence of states and at each of them f; € There is a sequence of states where f;
A(s;) for i < n and fo € A(sn) holds until fo will.

A[f1 U fo] For any sequence of states sg, s1,...,8» at each of them f; € There is a sequence of states where f;
A(si) for i < nand fo € A(sn) holds until fo will.

EF(f) There is a sequence of states where f will eventually hold (this This formula represents a potential
is actually an abbreviation for E[True U f]) event.

AF(f) For any sequence of states f will eventually hold (this is actually  This formula represents a necessary
an abbreviation for A[True U f]) event.

EG(f) There is a sequence of states, f will always hold (this is actually = The formula f will always hold on some
an abbreviation for = AF(—f)) path.

AG(f) For all sequences of states, f will always hold (this is actually an  This formula states a global and invari-

abbreviation for - EF(—f))

ant property of the system.

Table 2: Syntaz and informal Semantics for CT L. Note that A is an assignment of propositions and formule to
each state. A proposition p (or, recursively, a formula f) is True, or holds in a state s when p € A(s).

specify. We use the Modified Model Checker again to
debug the Synthesized Supervisor. This was actually
our original motivation for the use of the CT L.

As an example, our first attempts at the Supervi-
sory Synthesis for a train of legs, kept removing the
states [drive, recovery] and [recovery, drives]. We were
able to discover this fact only by means of graphical
simulation. The Model Checker turned out to be an
excellent tool for the debugging, significantly reducing
the turnaround time. Moreover we were able to prove
fancier properties for the controlled system. As an ex-
ample, we could check some liveness conditions such
as

AG(state([drive;,?]) = AF(state([?,drives)))),

and the fact that the supervised system were
still able to reach the states [drive;,recovers] and
[recovery , drives].

3.2 Continuous Control Constraints

The “desired behavior” of the Walking Machine
system is obviously not completely specified by the
constraints we posed on the discrete level. The transi-
tions between states are ruled by measurements taken
from sensors. We used only position information in or-
der to allow the transition from one state to the other
of the discrete control. This is sufficient to get nice
simulations and already poses interesting problems for
the control synthesis procedure.

The geometric model that we use for our Walk-
ing Machine is depicted in fig. 3.2. By following the

{B}

Leg2

Figure 4: Simplified Geometric Model of the Walking
Machine. {B} is a coordinate frame set in the body.
All measurements are taken with respect to it.

standard methodology, we obtain a discrete supervisor
that allows for

EF.state([load;, loads])

to be true for one train of legs*. In this state, the su-
pervisor has to choose which transition to make next
to either state [load;,drives] or [drive,loads]. Since
both transitions are controllable and not forbidden by
the supervisor, the system might end up “taking a step
longer than the leg” by cycling one too many times

4With respect to the “start” state. Actually we can prove

EG(state([Load, Loads])
= EX(EF(state([Load;, Loads])))).



through the [load:, loadz] state 5. In Petri Net termi-
nology, this is called a conflict and it really represents
a situation where “extra information” is needed (or
assumed) in the system.

We solved this problem by studying some algo-
rithms that will allow us to identify these “conflict
states” in order to reduce the actual behavior of the
system® to a “geometrically acceptable” one. In this
task we are doing something similar to [10].

When we consider a train of two legs, the transition
erl for the front leg (leg 1) in state [Recover;, Drives]
causes the difference in the position of the feet
A(pfeet) =| pf — pr | to change in the following way

A(pfeet)[Loady, Drivey] =
1
A(pfeet)[Recovery, Drives] + 5step,

if we assume the rear leg moved a “very small” dis-
tance,

A(pfeet)[l-oadl, Drivez] =
A(pfect)[Recovery, Drives] + 2 step

if we assume the both legs moved (almost) the full
step distance.

We can repeat this reasoning for all the other states.
This “interval” computation for the transitions can
be reconstructed from the description of the state in
which it is taking effect, hence we can set up a simple
graph traversal which will mark the states where a
given constraint could (but not necessarily would) be
violated. In our case the simple constraint we would
like to maintain is

A(pfeet) S éa

where £ is derived from the mechanics of the Walking
Machine.

The graph traversal simply maintains for each node
traversed a possible maximum and minimum value for
A(pfeet) while following only the controllable transi-
tions enabled by the Supervisor. Whenever there are
two or more such transitions outgoing a state s and
one of the reachable states (or the state itself) pos-
sibly violates the constraint, then s is marked as a
“choice point”. Eventually, we will be able to equip
the runtime of the system with appropriate tests that
will avoid the controllable transitions that in specific
occasions (usually after a few tours around a cycle in
the state space) would violate the constraint.

5This argument applies also when we consider two legs in
alternation — left and right — and wvirtual legs.

SNote that we will be giving up some of the properties of the
language found by the approximation algorithm. I.e. we will be
imposing further restrictions on the supremal language.

3.3 Example

In order to give a flavor of the current usage of our
system, we give some excerpts of a session where we
consider the behavior of one train of legs (i.e. a front

(1) and a rear (2) leg).
The state machine representing the behavior of one

leg is represented as follows”:

(define-state-machine leg?2
:states (s2 r2 12 d2 u2 sl2)
:start s2
:alphabet (es2 er2 el2 ed2 eu2 esl2 slip2)
:uncontrollable (slip2)
:delta ((s2 es2 u2) (r2 er2 12)
(12 el2 d2) (d2 ed2 u2)
(u2 eu2 r2)
(d2 slip2 u2) (sl2 esl2 u2)
)
:final-states (s2 r2 12 d2 u2 sl2)
)

In order to specify the machine representing the inter-
leaving of the discrete events we write

(define-state-machine legs :op (shuffle legl leg2))

which states that legs is the shuffle of the two ma-
chines at hand (legl and leg2). To remove the un-
desirable states we run the Model Checker, which, as
a side effect, marks the states that do not satisfy the
formula.

CMUCL 4> (model-check legs
(AG (and (not (state (d1 d2)))
(not (state (r1 r2)))
(not (state (sll s12))))))
NIL

The NIL result tells us that the unregulated shuffle
does not satisfy the property.

The resulting language K is not controllable, hence
we need to build an approximation for it. In this case
the approximation algorithm terminates after two it-
erations. The results are as follows:

CMUCL 7> (omega-op K legs uncontrollable-events)
;3 Debugging deleted...
>> OMEGA(0): removable states = ((D1 SL2) (SL1 D2))

;3 Debugging deleted...

>> OMEGA(1): removable states = NIL
#<Representation for the approximation to K>
CMUCL 8>

4 Conclusions and Open Problems

We have presented an application of DES theory
to a standard problem in robotics: the Walking Ma-
chine. Our goal was to build an easy-to-use “supervi-
sor compiler” system for a wide range of robotics and

"The notation and the tricks used are standard Common
Lisp. leg2 represents the state machine for the rear leg; s2 rep-
resents the relative start state and so on. define-state-machine
is a simple macro that extends the language.



o= P, B F AG (p)

o= B E AG (p)
o=n B AG ()

o=n B AG ()

Figure 5: A case where a naive CT L Supervisor Syn-
thesis approach fails. In state so we have that AG(p1)
is true for language By, while in state sy we have
AG(p2) true for (5.

manufacturing systems. There are still many open
problems which we expect to face before actually pro-
ducing a viable software environment capable of aiding
the practitioner in the production of code for PLC’s
or microcontroller programs.

One open problem that we are investigating con-
cerns the direct synthesis of the supervisory map from
a set of CT L specifications; i.e. without specifying K
as a language. This brought up some interesting ques-
tions about the satisfiability of CT L formulse under
the control action of the supervisor: see fig. 4 for an
example. Suppose we want a supervisor that achieves
a language satisfying the formula

AX(AG(p1)) VAX(AG(p2))

under the assignment A(s2) = p; and A(ss) = pa.
Then the maximal controllable sublanguage K is not
unique and hence not well-defined. The problem can
be traced to non-monotonicity of C7 L modal oper-
ators. We are investigating a solution based on a
restriction on the logic called CT L~ [11], which cir-
cumvents this problem. The resulting algorithm also
reduces the complexity of the synthesis by one order
of magnitude.
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