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Abstract. In this paper, a FETI-DP formulation for the three dimensional elasticity problem on

non-matching grids over a geometrically conforming subdomain partition is considered. To resolve

the nonconformity of the finite elements, a mortar matching condition on the subdomain interfaces

(faces) is imposed. By introducing Lagrange multipliers for the mortar matching constraints, the

resulting linear system becomes similar to that of a FETI-DP method. In order to make the FETI-

DP method efficient for solving this linear system, a relatively large set of primal constraints, which

include average and momentum constraints over interfaces (faces) as well as vertex constraints,

is introduced. A condition number bound C(1 + log(H/h))2 for the FETI-DP formulation with

a Neumann-Dirichlet preconditioner is then proved for the elasticity problems with discontinuous

material parameters when only some faces are chosen as primal faces on which the average and

momentum constraints will be imposed. An algorithm which selects a quite small number of primal

faces is also discussed.
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1. Introduction. We will develop an efficient FETI-DP algorithm for solving

linear systems arising from non-conforming discretization of compressible elasticity

problems in three dimensions. We consider a non-conforming discretization given by

finite elements on triangulations which are nonmatching across subdomain interfaces.

We note that nonmatching triangulations are important for generation of meshes,

especially in three spatial dimensions, for problems with singular points or joints, and

for problems with jumps in diffusion coefficients or material parameters.

Mortar methods have been developed as non-conforming approximation in or-

der to obtain as accurate an approximate solution as for conforming approximations;

see [7, 4, 5, 16, 31]. For this purpose, a mortar matching condition is imposed on the

subdomain solutions across the interfaces. The jumps of the solutions on the com-

mon interfaces are orthogonal to a certain Lagrange multiplier space. This condition

can be enforced directly by using non-conforming finite element functions or weakly

by introducing Lagrange multipliers. The second approach leads to a saddle-point
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problem similar to that considered in FETI-type algorithms.

FETI-type algorithms were originally developed for second order elliptic prob-

lems with conforming discretizations. These algorithms belong to the iterative sub-

structuring domain decomposition methods with dual variables. A separate set of

interface unknowns is assigned to each subdomain and point-wise continuity of solu-

tions across interfaces is enforced using dual Lagrange multipliers, leading to a saddle

point problem. The local unknowns are then eliminated and the resulting linear

system for the dual variables is solved iteratively with a preconditioner. These algo-

rithms have evolved from one-level FETI into two-level FETI, and FETI-DP methods;

see [15, 14, 12]. FETI-DP methods were introduced in [12] for plane linear elasticity

problems and further extended to three dimensional problems in [13] by introducing

an additional set of primal constraints. In FETI-DP methods, a certain set of primal

constraints are enforced throughout iterations while the remaining constraints are

imposed weakly by dual Lagrange multipliers. FETI-DP algorithms have been fur-

ther developed for three dimensional elliptic problems with discontinuous coefficients

by Klawonn, Widlund and Dryja [24]. They introduced a Dirichlet preconditioner

scaled with a weight matrix depending on the coefficients and showed that this pre-

conditioner gives a condition number bound C(1 + log(H/h))2 with the constant C

independent of the coefficients and mesh parameters.

FETI-type algorithms have also been applied to solving saddle-point problems re-

sulting from mortar discretization. A numerical study in [29] showed that FETI meth-

ods applied to these saddle-point problems are as efficient as the original FETI meth-

ods for conforming discretizations. Further FETI-DP algorithms for two-dimensional

elliptic problems were developed and the condition number bound of these algorithms

were analyzed in [10, 11] but these results depend on the ratio of the mesh sizes

between neighboring subdomains. The author with Lee [19] developed a different

FETI-DP algorithm for two-dimensional elliptic problems with discontinuous coeffi-

cients and showed that a condition number bound C(1+log(H/h))2 with the constant

C independent of the coefficients and mesh parameters. This preconditioner is similar

to previously developed FETI-DP preconditioners [24, 10, 11] except that its scaling

matrix has zero value for the unknowns except on nonmortar interfaces. We call

this preconditioner a Neumann-Dirichlet preconditioner. This algorithm has later

been extended to the Stokes problem and three-dimensional elliptic problems with

heterogeneous coefficients; see [18, 17].

The aim of our present study is to extend the FETI-DP algorithm of [19] to

three-dimensional compressible elasticity problems with mortar discretization. FETI-

DP methods for three dimensional elasticity problems with conforming discretization

have been studied extensively both theoretically and numerically; see [13, 23, 28, 20].
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In [13], Farhat et al. introduced face averages and vertex constraints as the set

of primal constraints and observed that these additional constraints give a scalable

method. Later Klawonn and Widlund [23] considered various primal constraints for

elasticity problems with discontinuous Lamé parameters. In their work, some faces

and edges are selected as fully primal faces and fully primal edges. They work with

edge average constraints on a fully primal face, and edge average and edge moment

constraints on a fully primal edge in order to get a scalable algorithm and to make the

subdomain problems invertible. However, edge constraints are not compatible with

mortar matching constraints. In our FETI-DP formulation, we therefore introduce

face average and face moment constraints on the faces. Further, we reduce the number

of primal constraints by selecting only some of the faces as primal faces for which the

face average and face moment constraints are applied.

This paper is organized as follows. In Section 2, we introduce the compressible

elasticity problems and Korn inequalities which will be used in our analysis. In Section

3, a non-conforming approximation space is introduced for the model elasticity prob-

lems and mortar matching constraints are considered as weak continuity constraints

in our FETI-DP formulation. We then construct primal constraints for the FETI-DP

formulation. Section 4 is devoted to condition number analysis of our FETI-DP al-

gorithm with the primal constraints introduced in Section 3. In the final section, we

propose an algorithm which selects a quite small number of primal faces and show

the performance of this algorithm both for cases with continuous and discontinuous

material parameters.

Throughout this paper, C denotes a generic constant independent of mesh pa-

rameters, the number of subdomains, and coefficients of the elasticity problems. We

will use hi and Hi to denote the mesh size and the subdomain size of Ωi, respectively.

2. A model problem and Korn’s inequality. Let Ω be a polyhedral domain

in R3. The Sobolev space H1(Ω) is the set of functions in L2(Ω) which are square

integrable up to first weak derivatives and equipped with the standard Sobolev norm;

‖v‖2
1,Ω := |v|21,Ω + ‖v‖2

0,Ω,

where |v|21,Ω =
∫
Ω ∇v · ∇v dx and ‖v‖0,Ω =

∫
Ω v2 dx.

We assume that ∂Ω is divided into two parts ∂ΩD and ∂ΩN on which a Dirich-

let boundary condition and a natural boundary condition are specified, respectively.

The subspace H1
D(Ω) ⊂ H1(Ω) is a set of functions having zero trace on ∂ΩD. We

introduce the vector valued Sobolev space

H1
D(Ω) =

3∏

i=1

H1
D(Ω), H1(Ω) =

3∏

i=1

H1(Ω)
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equipped with the norm

‖v‖2
1,Ω := |v|21,Ω + ‖v‖2

0,Ω,

where |v|21,Ω =
∑3

i=1 |vi|
2
1,Ω and ‖v‖2

0,Ω =
∑3

i=1 ‖vi‖
2
0,Ω for v = (v1, v2, v3).

We then consider the elasticity problem:

find u ∈ H1
D(Ω) such that

(2.1)

∫

Ω

G(x)ε(u) : ε(v) dx +

∫

Ω

G(x)β(x)∇ · u∇ · v dx = 〈F,v〉 ∀v ∈ H1
D(Ω),

where G = E/(1 + ν) and β = ν/(1 − 2ν) are material parameters depending on

the Young’s modulus E > 0 and the Poisson ratio ν ∈ (0, 1/2]. We assume that ν

is bounded away from 1/2 so that we exclude the case of incompressible elasticity

problems. The linearized strain tensor is defined by

ε(u)ij :=
1

2

(
∂ui

∂xj
+

∂uj

∂xi

)
, i, j = 1, 2, 3,

and the tensor product and the force term are given by

ε(u) : ε(v) =

3∑

i,j=1

εij(u)εij(v), 〈F,v〉 =

∫

Ω

f · v dx +

∫

∂ΩN

g · vdσ.

Here f is the body force and g is the surface force on the natural boundary part ∂ΩN .

The space ker(ε) has the following six rigid body motions as its basis, which are

three translations

(2.2) r1 =




1

0

0


 , r2 =




0

1

0


 , r3 =




0

0

1


 ,

and three rotations

(2.3) r4 =
1

H




x2 − x̂2

−x1 + x̂1

0


 , r5 =

1

H




−x3 + x̂3

0

x1 − x̂1


 , r6 =

1

H




0

x3 − x̂3

−x2 + x̂2


 .

Here x̂ = (x̂1, x̂2, x̂3) ∈ Ω and H is the diameter of Ω. This shift and the scaling make

the L2-norm of the six vectors scale in the same way with H . When Ω is partitioned

into a set of subdomains, the elasticity problem given on a floating subdomain has

purely natural boundary condition. The Korn inequalities provided in Section 2 of

[23] concern this case. Let Σ ⊂ ∂Ω with positive measure. We define an L2-inner

product (u, r)Σ by integrating u · r over Σ

(u, r)Σ =

∫

Σ

u · r ds.
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The following Korn inequality is provided in [23, Lemma 5]:

Lemma 2.1. Let Ω be a Lipschitz domain and Σ be a subset of ∂Ω with positive

measure. Then there exist a constant c > 0, invariant under dilation, such that

c|u|1,Ω ≤ ‖ε(u)‖0,Ω ≤ |u|1,Ω,

where u ∈ H1(Ω) satisfies (u, r)Σ = 0 for all r ∈ ker(ε).

Furthermore, we have similar inequalities for semi-norms defined in the space

H1/2(Σ) which is the trace space of H1(Ω) for Σ ⊂ ∂Ω. For u ∈ H1/2(Σ), we define

two semi-norms by

|u|1/2,Σ := inf
v ∈ H

1(Ω)

v|Σ = u

|v|1,Ω, |u|E(Σ) := inf
v ∈ H

1(Ω)

v|Σ = u

‖ε(v)‖0,Ω.

Lemma 2.2. Let Ω be a Lipschitz domain and Σ be a subset of ∂Ω with positive

measure. Then there exists a constant C > 0, invariant under dilation, such that

C|u|1/2,Σ ≤ |u|E(Σ) ≤ |u|1/2,Σ,

for u ∈ H1/2(Σ) satisfying (u, r)Σ = 0 ∀r ∈ ker(ε).

The lemma can be found in [23, Lemma 6]. Another important inequality, which

follows from this inequality and is useful for our analysis of the condition number

bound, is given in (see [23, Lemma 7]):

Lemma 2.3. Let Ω be a Lipschitz domain of diameter H and Σ ⊂ ∂Ω be an open

subset with positive measure. Then there exists a constant C > 0, not depending on

H, such that

inf
r∈ker(ε)

‖u− r‖2
0,Σ ≤ CH |u|2E(Σ) ∀u ∈ H1/2(Σ).

3. FETI-DP formulation.

3.1. Domain decomposition with mortar discretization. We divide the

domain Ω into a geometrically conforming partition {Ωi}
N
i=1, that is shape regular.

We consider a compressible elasticity problem with coefficients G(x) and β(x) positive

constants in each subdomain

G(x)|Ωi = Gi, β(x)|Ωi = βi.

The conforming P1-finite element space Xi is associated to a quasi-uniform triangu-

lation Ti of each subdomain Ωi. In addition, functions in the space Xi satisfy the

Dirichlet boundary condition on ∂Ωi ∩ ∂ΩD. The triangulations {Ti}
N
i=1 may not

match across the subdomain interfaces. We associate the finite element space Wi to

the boundary of subdomain Ωi; it is the trace space of Xi on ∂Ωi.
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In the three dimensional case, a pair of subdomains can have a face, an edge,

or a vertex in common. We will primarily consider only the common faces as the

interfaces of subdomains. On each face F ij = ∂Ωi ∩ ∂Ωj, we will choose one of the

two subdomains as the mortar side and the other as the nonmortar side depending

on the coefficients G(x), i.e., we will choose the subdomain with smaller G(x) as the

nonmortar side. We then introduce the finite element space

Wij =
{
w ∈ H1

0(F
ij) : w = v|F ij for v ∈ Xn(ij)

}
,

where n(ij) denotes the nonmortar side of F ij . This space is spanned by a nodal basis

{φk}
nij

k=1 related to the interior nodes of F ij with respect to the triangulation T n(ij)

of the nonmortar side. Based on this space, we construct a dual Lagrange multiplier

space Mij with a basis {ψk}
nij

k=1 satisfying

∫

F ij

φl · ψk ds = δlk

∫

F ij

φl ds ∀ l, k = 1, · · · , nij .

We refer to [16] for a detailed construction of the dual Lagrange multiplier space. The

standard Lagrange multiplier space was introduced in [6] for three spatial dimensions.

However the dual Lagrange multiplier space is more computationally efficient as well

as easier to implement compared to the standard one. The mortar matching condition

is then written as

(3.1)

∫

Fij

(vi − vj) · λ ds = 0 ∀λ ∈ Mij , ∀Fij .

For each subdomain Ωi, we define the set mi containing the subdomain indices j

which are the mortar sides of the faces F ⊂ ∂Ωi:

mi := {j : Ωj is the mortar side of F (:= ∂Ωi ∩ ∂Ωj) ∀F ⊂ ∂Ωi} .

We then introduce the finite element spaces on the interfaces

W =

N∏

i=1

Wi,

Wn =

N∏

i=1

∏

j∈mi

Wij ,

M =
N∏

i=1

∏

j∈mi

Mij .

Here the space Wn consists of functions defined on the nonmortar faces, while the

space W consists of functions defined on the whole interfaces, i.e. both on nonmortar

and mortar faces.
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3.2. Primal constraints in the FETI-DP formulation. Solving linear sys-

tems arising from the mortar discretization is a difficult task [3, 25, 2]. Construction

of coarse finite element space in Schwarz-type algorithms or iterative substructuring

algorithms, that provides scalability of the algorithms, is challenging in particular

for three-dimensional problems with a geometrically non-conforming subdomain par-

tition [1, 8]. On the other hand, the coarse problem in FETI-DP type algorithms

follows from algebraic elimination of primal unknowns associated to the primal con-

straints. The selection of the primal constraints is important in achieving a scalable

FETI-DP algorithm as well as in obtaining invertible subdomain problems.

For the case of point-wise matching constraints in conforming discretizations,

there have been studies for three dimensional elliptic problems [24, 21], three di-

mensional elasticity problems [22], and the Stokes problem [26, 27]. Face average

or edge average constraints were introduced for three dimensional elliptic problems

and condition number bounds in terms of polylogarithmic functions of the subdomain

problem size were shown for problems with discontinuous coefficients [24]. Klawonn

and Widlund [22] considered edge average and edge moment constraints, and vertex

constraints for elasticity problems to control the rigid body motions of the subdomains

as well as to obtain a scalable method. Furthermore they introduced the concepts of

an acceptable face path and an acceptable vertex path in an attempt to reduce the

number of primal constraints. Using constraints depending on edges is more promising

than relying on faces when there are general distributions of jumps in the coefficients.

Moreover the exchange of information between subdomains is related to a smaller set

of unknowns. Numerical results support that edge constraints are more effective than

face constraints [21].

For the case of mortar constraints, we are able to construct primal constraints

based on faces. In [17], we introduced face average constraints for three dimensional

elliptic problems with mortar discretizations and showed that the condition num-

ber is bounded by a polylogarithmic function of the subdomain problem size and is

independent of the coefficients of elliptic problems.

Our purpose is to select primal constraints for the elasticity problem with mortar

constraints. We will now introduce six primal constraints on each face based on the

idea in a recent study [23] by Klawonn and Widlund. On a face F ij , we consider the

rigid body motions {ri}
6
i=1 as in (2.2) and (2.3), where H is the diameter of the face

F ij and x̂ is a point in F ij . We define a projection Q : H1/2(F ij) → Mij by

∫

F ij

(Q(w) − w) · φds = 0 ∀φ ∈ Wij .

We then consider the projected rigid body motions {Q(ri)}
6
i=1. Since the translational

rigid body motions {ri}
3
i=1 are contained in Mij , Q(ri) = ri for i = 1, 2, 3. We now
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introduce the following constraints on the face F ij

∫

F ij

(vi − vj) ·Q(rl) ds = 0 ∀l = 1, · · · , 6.

For {Q(rl)}
3
l=1, these constraints are nothing but the average matching conditions

across the interface. The remaining constraints with {Q(rl)}
6
l=4, are similar to the

moment matching constraints which were introduced for fully primal edges in [23]

except that our constraints use the projected rotational rigid body motions and are

imposed on faces. In the following, we call these constraints of {Q(rl)}
6
l=4 the moment

constraints.

Even though we have introduced the set of primal constraints in order to make

the FETI-DP method more efficient, the enlarged coarse problem can be a bottle neck

of the computation. To compromise between the number of iterations of the FETI-

DP method and the size of coarse problem, we will not impose the primal constraints

over all faces. Among the faces, we select some as primal faces and we impose the

six constraints only over them. For the remaining (non-primal faces), we assume that

they satisfy an acceptable face path condition. This assumption makes it possible for

the FETI-DP method with primal faces to have a condition number bound comparable

to when all faces are chosen to be primal. We now define an acceptable face path.

Definition 3.1. (Acceptable face path) For a pair of subdomains (Ωi, Ωj)

having the common face F ij with Gi ≤ Gj, an acceptable face path is a path

{Ωi, Ωk1 , · · · , Ωkn , Ωj}

from Ωi to Ωj such that the coefficient Gkl
of Ωkl

satisfies the condition

TOL ∗ (1 + log(Hi/hi))
−1

(1 + log(Hkl
/hkl

))
2
∗ Gkl

≥ Gi

and the path from one subdomain to another is always through a primal face.

Some of faces are chosen as primal faces and the remaining are non-primal faces.

In Section 5, we will introduce an algorithm which selects relatively few primal faces as

well as keeps the condition number bound of the resulting FETI-DP operator within

C maxi=1,··· ,N

{
(1 + log(Hi/hi))

2
}
. Here the constant C depends on the parameters

TOL and L, the maximum number of subdomains on the acceptable face path. Fur-

thermore, we choose some of vertices as primal vertices at which we will impose a

point-wise matching condition. We assume that enough primal vertices are taken

so as to make each local problem invertible. Based on these primal constraints, we
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introduce the following subspaces

W̃ : = {w ∈ W : w satisfies the vertex constraints at the primal vertices

and the six face constraints across each primal faces} ,

W̃n : = {wn ∈ Wn : wn has zero average and zero moment

on each primal faces} .

For wn ∈ W̃n, let E(wn) ∈ W be the zero extension of wn to the whole interface,

i.e., mortar and nonmortar faces. We can easily see that E(wn) ∈ W̃.

3.3. The FETI-DP equation. Let Ai denote the stiffness matrix of the bilinear

form

ai(ui,vi) := Gi

∫

Ωi

ε(ui) : ε(vi) dx + Giβi

∫

Ωi

∇ · ui∇ · vi dx,

and let Si be the Schur complement of the matrix Ai. Moreover the matrix Bi is the

mortar matching matrix corresponding to the unknowns of ∂Ωi. The mortar matching

condition for w = (w1, · · · ,wN ) ∈ W can be written as

N∑

i=1

Biwi = 0.

We note that we choose some of the vertices as primal vertices at which we will impose

the point-wise matching condition. Let Vc be the set of unknowns at the global primal

vertices and let V
(i)
c be the set of unknowns at the primal vertices in the subdomain

Ωi. The mapping R
(i)
c : Vc → V

(i)
c is the restriction from the unknowns at the global

primal vertices to the unknowns at the local primal vertices. The matrix Bi and the

vector wi ∈ Wi are ordered as

Bi =
(
B

(i)
r B

(i)
c

)
, wi =

(
w

(i)
r

w
(i)
c

)
,

where c stands for the unknowns at the primal vertices and r stands for the remaining

unknowns. We then assemble vectors and matrices from the subdomains

wr =




w
(1)
r

...

w
(N)
r


 , Br =

(
B

(1)
r . . . B

(N)
r

)
, Bc =

N∑

i=1

B(i)
c R(i)

c .

The face constraints are selected from the mortar matching constraints and they can

be written as

(3.2) Rt(Brwr + Bcwc) = 0,
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where the matrix R gives the face constraints as linear combinations of rows of the

matrix
(
Br Bc

)
.

By introducing the Lagrange multipliers µ and λ for the primal face constraints

and for the mortar matching constraints, respectively, we get the following mixed

formulation of (2.1)




Srr Src Bt
rR Bt

r

Scr Scc Bt
cR Bt

c

RtBr RtBc 0 0

Br Bc 0 0







wr

wc

µ

λ




=




gr

gc

0

0




.

We now eliminate the unknowns other than λ and obtain

FDPλ = d.

This matrix FDP satisfies the well-known relation

〈FDPλ,λ〉 = max
w∈fW

〈Bw,λ〉2

〈Sw,w〉
,

where

S =




S1

. . .

SN


 , B =

(
B1 . . . BN

)
.

We now introduce the Neumann-Dirichlet preconditioner M−1 given by

(3.3) 〈Mλ,λ〉 = max
wn∈fWn

〈BE(wn),λ〉2

〈SE(wn), E(wn)〉
,

where E(wn) is the zero extension of wn into the space W. From the observation

that the extension E(wn) belongs to W̃ for wn ∈ W̃n, we get

(3.4) 〈Mλ,λ〉 = max
wn∈fWn

〈BE(wn),λ〉2

〈SE(wn), E(wn)〉
≤ max

w∈fW

〈Bw,λ〉2

〈Sw,w〉
= 〈FDPλ,λ〉.

Therefore the lower bound of the FETI-DP operator is bounded from below by the

value 1.

The explicit form of the preconditioner

(3.5) M−1 = P t
N∑

i=1

(Bi)(Di)
tSiDiB

t
iP

is similar to other FETI-DP preconditioners except that the scaling matrix Di is given

differently and a certain projection P appears. We now derive the explicit form in

detail. Let us define the space

MR =
{
λ ∈ M : Rtλ = 0

}
,
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where R is the matrix given in (3.2) related to the primal constants. We then introduce

the l2-orthogonal projections P and Pn

P : M → MR, Pn : Wn → W̃n.

Since the constraints on the spaces MR and W̃n are given based on the nonmortar faces

which are primal, these projections are composed of diagonal blocks of projections

defined on each nonmortar faces

(3.6) P = diagi=1,··· ,Ndiagj∈mi

(
P ij
)
, Pn = diagi=1,··· ,Ndiagj∈mi

(
P ij

n

)
.

Here P ij and P ij
n are l2-orthogonal projections given on the nonmortar face F ij

P ij : M |F ij → MR|F ij , P ij
n : Wn|F ij → W̃n|F ij .

Let us define the restriction

Rij : Wn → Wij

and the extension

Ei
ij : Wij → Wi.

We then express the zero extension E(wn) = (w1, · · · ,wN) by

(3.7) wi = Eiwn with Ei =
∑

j∈mi

Ei
ijRij .

By using this notation, we rewrite formula (3.3) as

〈Mλ,λ〉 = max
wn∈W̃n

〈B̂wn,λ〉2

〈Ŝwn,wn〉
,

where

(3.8) Ŝ =

N∑

i=1

Et
iSiEi, B̂ = diagN

i=1diagj∈mi
(Bij) .

Here the matrix Bij is a block of Bi corresponding to the unknowns of the nonmortar

face F ij . It is easy to check that

B̂ : W̃n → MR

is one-to-one for dim(W̃n) = dim(MR) and B̂(W̃n) ⊂ MR, and that Ŝ is symmetric

and positive definite on W̃n. Therefore the maximum occurs for wn ∈ W̃n, such that

P t
nŜPnwn = P t

nB̂tPλ.
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Let

(3.9) Bp = P tB̂Pn, Sp = P t
nŜPn.

As mentioned before, these operators are invertible and their inverses are denoted by

B−1
p and S−1

p , respectively. Since Bp is block diagonal, B−1
p can be written as

(3.10) B−1
p = diagN

i=1diagj∈mi

(
Bij

p

−1
)

, Bij
p = P ij t

BijP
ij
n .

By using the expressions in (3.6)-(3.10), we obtain

F̂−1
DP = (Bt

p)
−1ŜpB

−1
p ,

=

N∑

i=1

Bt
i,nSiBi,n.(3.11)

Here Bi,n is given by

Bi,n =


diagj∈mi

(
P ij

n Bij
p

−1
)

0


Ri,

where Ri : M → Πj∈miMij is the restriction and the zero submatrix corresponds to

the unknowns of the other than nonmortar faces, i.e. mortar faces and boundaries of

faces that belong to Ωi.

We now derive the factor Di in the right hand side of (3.5). (However, we will

use the formula (3.11) in implementation.) The matrix Bi,n can be written as

Bi,n =


diagj∈mi

(
P ij

n Bij
p

−1
)

0


Ri,

=


diagj∈mi

(
P ij

n (Bij
p

t
Bij

p )−1Bij
p

t
)

0


Ri,

=


diagj∈mi

(
P ij

n (Bij
p

t
Bij

p )−1P ij
n

t
Bt

ijP
ij
)

0


Ri,

=

(
Di,n 0

0 0

)
Bt

iP,

where

Di,n = diagj∈mi

(
P ij

n (Bij
p

t
Bij

p )−1P ij
n

t
)

.

Therefore, the scaling matrix Di in (3.5) is given by

Di =

(
Di,n 0

0 0

)
.
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The scaling matrix provides each subdomain problem with a zero Neumann boundary

condition on the mortar faces and Dirichlet boundary conditions on the remaining part

of the subdomain boundary. Hence we call it a Neumann-Dirichlet preconditioner.

4. Condition number analysis. In this section, we will consider an upper

bound of the FETI-DP operator with the Neumann-Dirichlet preconditioner M−1.

First, we will construct functionals {fl}
6
l=1, dual to the space ker(ε), which satisfy

the following properties:

fm(rk) = δmk, m, k = 1, · · · , 6,

|fm(w)|2 ≤ C
‖w‖2

0,∂Ωi

H2
for w ∈ L2(∂Ωi).(4.1)

Here {rk}
6
k=1 is a basis of ker (ε) with six rigid body motions scaled with respect to

a face F ⊂ ∂Ωi; this means that we take x̂ ∈ F and H = diam(F ) in (2.3). Such dual

functionals were first introduced by Klawonn and Widlund [23]. An arbitrary rigid

body motion r can be represented by a linear combination of the elements of the basis

{rk}
6
k=1

r =

6∑

k=1

fk(r)rk.

We will now choose six linearly independent functionals which are closely related

to the primal constraints given on the face F . The functionals {gl}
6
l=1 are given by

gl(w) =

∫
F w · Q(rl) ds∫

F
Q(rl) ·Q(rl) ds

, for w ∈ L2(∂Ωi), l = 1, · · · , 6.

Since these six functionals are linearly independent, they provide a basis of the dual

space (ker(ε))
′

. Thus there exists {βml}
6
m,l=1 such that

(4.2) fm =

6∑

l=1

βmlgl, m = 1, · · · , 6.

From the fact that the projection Q satisfies

‖Q(w) − w‖2
0,F ≤ Chi|w|21,Ωi

for w ∈ H1(Ωi)

(see [32, Lemma 1.6]), we can show that

‖Q(rl)‖
2
0,F ≥ CH2.

Here the constant C does not depend on any mesh parameters for sufficiently small

hi. From the above bound and Hölder’s inequality, we obtain

|gl(w)|2 ≤ C
‖w‖2

0,∂Ωi

H2
.



14 HYEA HYUN KIM

From this bound, (4.2), and the scaling of {rk}
6
k=1, the bound in (4.1) follows with

the constant C independent of the mesh parameters. We denote the dual functionals

described above as {fF
l }6

l=1 for the given face F . We can then express any rigid body

motion r ∈ ker(ε) as a linear combination using the basis:

r =

6∑

l=1

fF
l (r)rF

l .

In the following, we will provide several lemmas which will be used to analyze

an upper bound of the FETI-DP operator. For a face F ⊂ ∂Ωi, the space H
1/2
00 (F )

consists of the functions whose zero extension to the whole boundary ∂Ωi belongs to

the space H1/2(∂Ωi) and is equipped with the norm

‖v‖
H

1/2
00 (F )

:=

(
|v|2H1/2(F ) +

∫

F

v(x)2

dist(x, ∂F )
ds

)1/2

.

The norm can be extended to the product space H
1/2
00 (F ) := [H

1/2
00 (F )]3 by using

the usual product norm. Similarly, we can extend the edge and face lemmas to the

product space with the product norm. The edge and face lemmas can be found in

Toselli and Widlund [30, Lemma 4.24 and Lemma 4.25].

Lemma 4.1. (Edge lemma) Let E be an edge of ∂Ωi. Then for any wi ∈ Wi

we have

‖wi‖0,E ≤ C

(
1 + log

Hi

hi

)1/2(
|wi|

2
1/2,∂Ωi

+
1

Hi
‖w‖2

0,∂Ωi

)1/2

.

For any subset A ∈ ∂Ωi, let us define an interpolant Ii
A : C(∂Ωi) → Wi

Ii
A(v) =

{
v(x), for x ∈ A ∩ Nh,

0, else where.

Here Nh denotes a set of nodes in the finite element space Wi.

Lemma 4.2. (Face lemma) Let F be a face of ∂Ωi. Then, for any wi ∈ Wi,

we have

‖Ii
F (wi)‖

H
1/2
00 (F )

≤ C

(
1 + log

Hi

hi

)(
|wi|

2
1/2,∂Ωi

+
1

Hi
‖w‖2

0,∂Ωi

)1/2

.

We now provide several inequalities for the mortar projection of functions. We

recall that the space Wij , given on the nonmortar face of F ij , the space Mij , the

Lagrange multiplier space given on the face F ij . The mortar projection is defined as

follows.



A FETI-DP METHOD FOR ELASTICITY PROBLEMS WITH MORTAR METHODS 15

Definition 4.3. (Mortar projection) The mortar projection πij : L2(F ij) →

Wij is given by

∫

F ij

(πij(v) − v) ·ψ ds = 0 ∀ψ ∈ Mij .

The mortar projection is continuous in both the L2 and the H
1/2
00 -norms.

Lemma 4.4. Let F = ∂Ωi ∩ ∂Ωj. For wi ∈ Wi and wj ∈ Wj, we have

‖πij(wi − ri)‖
2

H
1/2
00 (F )

≤ C

(
1 + log

Hi

hi

)2

|wi|
2
E(∂Ωi)

,

‖πij(wj − rj)‖
2

H
1/2
00 (F )

≤ C

(
1 + log

Hj

hj

)(
1 + log

Hj

hj
+

hj

hi

)
|wj |

2
E(∂Ωj)

,

where ri and rj are the minimizing rigid body motions of Lemma 2.3 with Σ = ∂Ωi

and Σ = ∂Ωj, respectively.

Proof. Let us consider the first bound. We split the term into two parts

πij(wi − ri) = πij(I
i
F (wi − ri) + Ii

∂F (wi − ri)).

where Ii
F and Ii

∂F are the nodal value interpolants. From the stability of πij in

H
1/2
00 -norm and L2-norm, and an inverse inequality, we obtain

‖πij(wi − ri)‖
2

H
1/2
00 (F )

≤ 2‖πij(I
i
F (wi − ri))‖

2

H
1/2
00 (F )

+ 2‖πij(I
i
∂F (wi − ri))‖

2

H
1/2
00 (F )

≤ C
(
‖Ii

F (wi − ri)‖
2

H
1/2
00 (F )

+ h−1
i ‖Ii

∂F (wi − ri)‖
2
0,F

)
.(4.3)

Note that Ii
F (wi − ri) ∈ H

1/2
00 (F ) and Ii

∂F (wi − ri) ∈ H1/2(F ). From the quasi-

uniformity of the triangulation Ti of the space Xi, we get

(4.4) ‖Ii
∂F (wi − ri)‖

2
0,F ≤ Chi‖I

i
∂F (wi − ri)‖

2
0,∂F .

Combining (4.3) and (4.4), and Lemmas 4.1 and 4.2, we obtain

‖πij(wi − ri)‖
2

H
1/2
00 (F )

≤ C

(
1 + log

Hi

hi

)2(
|wi − ri|

2
1/2,∂Ωi

+
1

Hi
‖wi − ri‖

2
0,∂Ωi

)
.

Then using Lemmas 2.2 and 2.3, the first bound is shown.

For the second bound, we use the nodal interpolants Ij
F and Ij

∂F . We then get a

factor hj in (4.4) instead of hi. Arguing as before, we obtain the bound for the second

term.

The following lemma is a simple modification of Dryja, Smith, and Widlund [9,

Lemma 4.4].
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Lemma 4.5. Let F ⊂ ∂Ωi. For a linear function φ, we have

‖Ii
F (φ)‖2

H
1/2
00 (F )

≤ C

(
1 + log

Hi

hi

)
Hi‖φ‖

2
∞,F .

Lemma 4.6. For the basis {rF lk

m }6
m=1 of ker(ε) scaled with respect to the face

F lk = ∂Ωl ∩ ∂Ωk, we have

‖πij(r
F lk

m )‖2

H
1/2
00 (F ij)

≤ C

(
1 + log

Hi

hi

)
Hi‖r

F lk

m ‖2
∞,F ij .

Proof. Since each component of the function rF lk

m is linear, we can decompose the

function into

(4.5) rF lk

m = Ii
F ij (rF lk

m ) + Ii
∂F ij (rF lk

m ).

From the identity (4.5), an inverse inequality, the continuity of πij in both the L2 and

H
1/2
00 -norms, and Lemma 4.5, we then obtain

‖πij(r
F lk

m )‖2

H
1/2
00 (F ij)

≤ C
(
‖Ii

F (rF lk

m )‖2

H
1/2
00 (F ij)

+ h−1
i ‖Ii

∂F ij (rF lk

m )‖2
0,F ij

)

≤ C

((
1 + log

Hi

hi

)
Hi‖r

F lk

m ‖2
∞,F ij + ‖Ii

∂F ij (rF lk

m )‖2
0,∂F ij

)
,(4.6)

where we have used

h−1
i ‖Ii

∂F (rF lk

m )‖2
0,F ij ≤ C‖Ii

∂F ij (rF lk

m )‖2
0,∂F ij ,

which follows from the quasi-uniformity of the triangulation Ti. By employing Lemma 4.1

for the edges E ⊂ ∂F ij , we get

‖Ii
∂F ij (rF lk

m )‖2
0,∂F ij ≤ C

(
1 + log

Hi

hi

)(
|rF lk

m |21/2,F ij +
1

Hi
‖rF lk

m ‖2
0,F ij

)

≤ C

(
1 + log

Hi

hi

)(
|rF lk

m |21,Ωi
+

1

Hi
‖rF lk

m ‖2
0,F ij

)

≤ C

(
1 + log

Hi

hi

)(
H3

i

H2
lk

+
H2

ij

Hi
‖rF lk

m ‖2
∞,F ij

)
.(4.7)

Here Hkl and Hij denote the diameter of the face F lk and the face F ij , respectively.

The shape regularity of the subdomain partition implies that the diameters of neigh-

bors are comparable. The required bound follows by combining (4.6) and (4.7).

Remark 4.7. In Lemma 4.6, we may use the interpolants Ij
F ij and Ij

∂F ij for the

nodal set of the finite element space Xj instead of Xi. In this case, we obtain the

following bound

(4.8) ‖πij(r
F lk

m )‖2

H
1/2
00 (F )

≤ C

(
1 + log

Hj

hj

)
Hj

hj

hi
‖rF lk

m ‖2
∞,F .
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Lemma 4.8. Let F ij(= ∂Ωi ∩ ∂Ωj) be a primal face with Gi ≤ Gj. For w =

(w1, · · · ,wN ) ∈ W̃, we have

Gi‖πij(wi − wj)‖
2

H
1/2
00 (F ij)

≤ C

{(
1 + log

Hi

hi

)2

|wi|
2
Si

+
Gi

Gj

(
1 + log

Hj

hj

)(
1 + log

Hj

hj
+

hj

hi

)
|wj |

2
Sj

}
,

where |wl|
2
Sl

= 〈Slwl,wl〉 for l = i, j.

Proof. Let {rij
m}6

m=1 be a basis of ker(ε) scaled with respect to the face F ij .

Since w = (w1, · · · ,wN ) ∈ W̃ satisfies face constraints across the primal face F ij ,

the following identity holds

6∑

m=1

fm(wi)r
ij
m =

6∑

m=1

fm(wj)r
ij
m.

We then have

‖πij(wi − wj)‖
2

H
1/2
00 (F ij)

≤ 2

∥∥∥∥∥πij

(
wi −

6∑

m=1

fm(wi)r
ij
m

)∥∥∥∥∥

2

H
1/2
00 (F ij)

+ 2

∥∥∥∥∥πij

(
wj −

6∑

m=1

fm(wj)r
ij
m

)∥∥∥∥∥

2

H
1/2
00 (F ij)

.

We now estimate

∥∥∥∥∥πij

(
wi −

6∑

m=1

fm(wi)r
ij
m

)∥∥∥∥∥

2

H
1/2
00 (F ij)

=

∥∥∥∥∥πij

(
wi − ri −

6∑

m=1

fm(wi − ri)r
ij
m

)∥∥∥∥∥

2

H
1/2
00 (F ij)

≤ C

(
‖πij(wi − ri)‖

2

H
1/2
00 (F ij)

+

6∑

m=1

|fm(wi − ri)|
2‖πij(r

ij
m)‖2

H
1/2
00 (F ij)

)
,

where ri ∈ ker (ε) satisfies (wi − ri, r)∂Ωi = 0 ∀ r ∈ ker (ε).

From Lemma 4.4, the first term of the above expression is bounded by

‖πij(wi − ri)‖
2

H
1/2
00 (F ij)

≤ C
1

Gi

(
1 + log

Hi

hi

)2

|wi|
2
Si

,
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and from (4.1), Lemmas 4.6 and 2.3, the second term is bounded by

|fm(wi − ri)|
2 ‖πij(r

ij
m)‖2

H
1/2
00 (F ij)

≤ C
‖wi − ri‖

2
0,∂Ωi

H2
i

(
1 + log

Hi

hi

)
Hi‖r

ij
m‖2

∞,F ij

≤ C
1

Gi

(
1 + log

Hi

hi

)
Gi|wi|

2
E(∂Ωi)

≤ C
1

Gi

(
1 + log

Hi

hi

)
|wi|

2
Si

.

Similarly, we obtain

‖πij(wj − rj)‖
2

H
1/2
00 (F )

≤ C
1

Gj

(
1 + log

Hj

hj

)(
1 + log

Hj

hj
+

hj

hi

)
|wj |

2
Sj

,

and

|fm(wj − rj)|
2 ‖πij(r

ij
m)‖2

H
1/2
00 (F ij)

≤ C
1

Gj

hj

hi

(
1 + log

Hj

hj

)
|wj |

2
Sj

.

Here rj ∈ ker(ε) satisfies (wj − rj , r)∂Ωi = 0 for all r ∈ ker(ε). In the above bound,

we have used the bound (4.8) for the term ‖πij(r
ij
m)‖

H
1/2
00 (F ij)

.

Lemma 4.9. Let F (= ∂Ωi ∩ ∂Ωj) be a non-primal face with Gi ≤ Gj and

{Ωi, Ωk1 , · · · , Ωkn , Ωj} be an acceptable face path. Then, for w = (w1, · · · ,wN ) ∈ W̃

we have

Gi‖πij(wi − wj)‖
2

H
1/2
00 (F )

≤ C

{(
1 + log

Hi

hi

)2

|wi|
2
Si

+ L ∗

n∑

l=1

(
1 + log

Hi

hi

)
Gi

Gkl

|wkl
|2Skl

+
Gi

Gj

(
1 + log

Hj

hj

)(
1 + log

Hj

hj
+

hj

hi

)
|wj |

2
Sj

}
,

where the constant L is the number of subdomains on the acceptable face path.

Proof. Let {rik1
m }, {rk1k2

m }, · · · , {rknj
m } be bases of ker(ε) scaled with respect to

the primal faces F ik1 , F k1k2 , · · · , F knj on the acceptable face path, respectively. We

then have

wi − wj = wi −

6∑

m=1

f ik1
m (wi)r

ik1
m +

6∑

m=1

f ik1
m (wk1 )r

ik1
m −

6∑

m=1

fk1k2
m (wk1)r

k1k2
m

+

6∑

m=1

fk1k2
m (wk2)r

k1k2
m −

6∑

m=1

fk2k3
m (wk2)r

k2k3
m + · · ·(4.9)

+

6∑

m=1

fknj
m (wj)r

knj
m − wj .
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For the first and last terms in the above equation, the following bounds are given in

the proof of Lemma 4.8:

‖πij(wi −

6∑

m=1

f ik1
m (wi)r

ik1
m )‖2

H
1/2
00 (F )

≤ C
1

Gi

(
1 + log

Hi

hi

)2

|wi|
2
Si

,

‖πij(

6∑

m=1

fknj
m (wj)r

knj
m − wj )‖2

H
1/2
00 (F )

≤ C
1

Gj

(
1 + log

Hj

hj

)(
1 + log

Hj

hj
+

hj

hi

)
|wj |

2
Sj

.

We now consider

6∑

m=1

fk1k2
m (wk2)r

k1k2
m −

6∑

m=1

fk2k3
m (wk2 )r

k2k3
m ,

=

6∑

m=1

fk1k2
m (wk2 − rk2)r

k1k2
m −

6∑

m=1

fk2k3
m (wk2 − rk2)r

k2k3
m ,

where rk2 ∈ ker(ε) satisfies (wk2 − rk2 , r)∂Ωk2
= 0 ∀r ∈ ker(ε). From (4.1) and

Lemma 2.3, we obtain

|fk1k2
m (wk2 − rk2)|

2 ‖πij(r
k1k2
m )‖2

H
1/2
00 (F )

≤ C
‖wk2 − rk2‖

2
0,∂Ωk2

H2
k2

(
1 + log

Hi

hi

)
Hi‖r

k1k2
m ‖2

∞,F

≤ C ∗ L ∗
1

Gk2

(
1 + log

Hi

hi

)
|wk2 |

2
Sk2

,

where the constant L is the number of subdomains on the acceptable face path. The

rigid body motion rk1k2
m is scaled with respect to the face F k1k2 . From the regularity

of the subdomain partition, we may assume that the subdomain partition is locally

quasi uniform. Hence we can bound the term ‖rk1k2
m ‖2

∞,F by the face path length L.

The remaining terms in (4.9) can be bounded in a similar way leading to the required

bound of Gi‖wi − wj‖
2

H
1/2
00 (F )

.

From the bounds of Lemmas 4.8 and 4.9, we have learned that we need an as-

sumption on the mesh sizes to remove the factor (Gi/Gj)(hj/hi) in the bound.

Assumption 4.10. For the subdomains Ωi and Ωj which have a common face F

with Gi ≤ Gj, the mesh sizes hi and hj satisfy

(4.10)
hj

hi
≤ C

(
Gj

Gi

)γ

for some 0 ≤ γ ≤ 1.

Remark 4.11. Let F (= ∂Ωi ∩ ∂Ωj) be a face with Gi ≤ Gj. Then from the

assumption on the mesh sizes, we have

(4.11)
Gi

Gj

hj

hi
≤ C

(
Gi

Gj

)1−γ

≤ C.
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Moreover the acceptable face path assumption gives

(4.12)

(
1 + log

Hi

hi

)
Gi

Gkl

≤ TOL ∗

(
1 + log

Hkl

hkl

)2

.

Combining Lemmas 4.8 and 4.9 with (4.11) and (4.12), we obtain the following bound

for both the primal and non-primal cases

(4.13) Gi‖πij(wi − wj)‖
2

H
1/2
00 (F )

≤ C(TOL, L)
∑

l∈Nij

(
1 + log

Hl

hl

)2

|wl|
2
Sl

,

where Nij is the set of subdomain indices which appear on the acceptable face path.

The constant C depends on TOL and L but not on any mesh parameters and not on

the coefficients Gi.

Lemma 4.12. Assume that the mesh sizes satisfy the assumption (4.10) and that

every non-primal face satisfies the acceptable face path condition with given TOL and

L. We then obtain

〈FDPλ,λ〉2 = max
w∈fW

〈Bw,λ〉2

〈Sw,w〉
≤ C(TOL,L) max

i=1,··· ,N

{(
1 + log

Hi

hi

)2
}
〈Mλ,λ〉,

where the constant C depends on the TOR and L but not on any mesh parameters

and not on the coefficients Gi.

Proof. We consider

〈Bw,λ〉2 =




N∑

i=1

∑

j∈mi

∫

F ij

(wi − wj) · λ ds




2

=




N∑

i=1

∑

j∈mi

∫

F ij

πij(wi − wj) · λ ds




2

.

Let zn ∈ Wn such that zn|F ij = πij(wi − wj). On a primal face F ij , w satisfies

∫

F ij

(wi − wj) · Q(rl) ds = 0, l = 1, · · · , 6.

This implies
∫

F ij

πij(wi − wj) ·Q(rl) ds = 0, l = 1, · · · , 6,

so that zn belongs to W̃n. By the definition of M , we get

〈Bw,λ〉2 = 〈Bz,λ〉2

≤ 〈Mλ,λ〉〈Sz, z〉,

where z = E(zn) ∈ W̃ is the zero extension of zn ∈ W̃n.
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It suffices to show that

(4.14) 〈Sz, z〉 ≤ C max
i=1,··· ,N

{(
1 + log

Hi

hi

)2
}
〈Sw,w〉.

We now consider

〈Sz, z〉 =

N∑

i=1

〈Sizi, zi〉

≤ C

N∑

i=1

∑

j∈mi

Gi|H
i (πij(wi − wj)) |

2
1,Ωi

≤ C
N∑

i=1

∑

j∈mi

Gi‖πij(wi − wj)‖
2

H
1/2
00 (F ij)

.

Here Hi is the discrete harmonic extension into Xi. From the bound (4.13), we obtain

(4.15) Gi‖πij(wi − wj)‖
2

H
1/2
00 (F ij)

≤ C(TOL, L) max
l∈Nij

{(
1 + log

Hl

hl

)2
}
∑

l∈Nij

|wl|
2
Sl

.

Here Nij contains the indices of the subdomains that appear on the acceptable face

path {Ωi, Ωk1 , · · · , Ωkn , Ωj}. Assuming that the length of the acceptable face path is

bounded by some number L, and by summing up the term in (4.15) over the whole

faces F ij , we obtain (4.14) with a constant C(TOL, L) depending only on the TOL

and L, the maximum length of the acceptable face paths.

The lower bound in (3.4) and the upper bound in Lemma 4.12 lead to the following

condition number bound.

Theorem 4.13. Under the assumption that the mesh sizes satisfy (4.10) and that

every non-primal face satisfies the acceptable face path condition with a given TOL

and L, we obtain the condition number bound

κ(M−1FDP ) ≤ C(TOL, L) max
i=1,··· ,N

{(
1 + log

Hi

hi

)2
}

.

Here the constant C is independent of the mesh parameters and the coefficients Gi,

but depends on TOL and L, the maximum face path length.

5. An algorithm for selecting primal faces. We now introduce an algorithm

which selects a quite small number of primal faces for an arbitrary distribution of

{Gi}
N
i=1. First we select an initial set of primal faces and put it in the set P of primal

faces. We then determine non-primal faces based on the set P . We then visit the

remaining undetermined faces in a certain order and add them one by one to the set

P . Whenever we add an undetermined face to the set P , we determine the current

set of non-primal faces based on the updated primal set P . We repeat this process
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Fig. 1. Essentially primal face F = ∂Ωi ∩ ∂Ωj when TOL = 10, Hl
hl

= 4

until every face is determined. In order to be able to choose a small initial primal set

P , we introduce the concept of an essentially primal face.

Definition 5.1. (Essentially primal face) A face F = ∂Ωi∩∂Ωj is essentially

primal, if there is no acceptable face path for (Ωi, Ωj) when all faces except F are

chosen to be primal.

For example, the face F in Figure 1 is essentially primal for the given TOL,

coefficient distribution, and mesh size. The essentially primal faces are the faces that

have to be chosen as primal faces given the coefficient distribution.

We will now explain the algorithm in detail. For a given TOL and L, we determine

the essentially primal faces and add them to the set P of primal faces. Based on this

set P , we determine the non-primal faces. For the remaining undetermined faces, we

order them according to decreasing ratio of the coefficients between the two subdomain

Ωi and Ωj . If we have more than one face having the same coefficient ratio then we

order the faces according to the number of neighbors of the subdomain Ωi and Ωj

which intersect on the face. We then add an undetermined face to the set P and

determine the non-primal faces of this updated set P . We repeat this until every face

is determined. The ordering of the undetermined faces increases our chances that

there will exist acceptable face paths for other faces undetermined at this time.

Algorithm (TOL, L, {Gi}, {Hi}, {hi} given )

Step 1. Determine essentially primal faces F and add them to the primal face set P .

Step 2. Determine non-primal faces based on the set P .

Step 3. For the remaining undetermined faces F , order them decreasingly according

to the ratio of the coefficients. If there are more than two faces with the same ratio

then order them decreasingly according to the number of neighbors of the subdomains

which intersect the current face F .

Step 4. Do until every undetermined face F determined

• Add a current undetermined face F to the primal face set P

• Then determine non-primal faces based on the updated primal face set P

End
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N3 Total Min Const Random

23 12 7 7 8

43 144 63 68 89

63 540 215 246 322

83 1344 511 646 804

103 2700 999 1300 1598
Table 1

Number of primal faces from the algorithm: N3 (number of subdomains), Total (number of

faces over the subdomain partition), Min (number of primal faces with no limit on TOL and L),

Const (number of primal faces for the constant coefficient case with TOL = 10 and L = 6),

Random (number of primal faces for the discontinuous coefficient case with TOL = 10 and L = 6)

We have tested the algorithm for both constant and variable coefficient cases.

The domain Ω = [0, 1]3 is partitioned into N3 hexagonal subdomains. For the case of

constant coefficient, we take G(x) = 1, and for the case of discontinuous coefficient we

distribute the values 1, 10, 102 and 103 randomly over the subdomain partition. In

Table 5, we give the number of primal faces when increasing the number of subdomains

with TOL = 10, L = 6, and the same number of nodes (Hi/hi) for all subdomains.

Here Total means the total number of faces in the subdomain partition, Min denotes

the number of primal faces what we obtain from the algorithm with no limit on

TOL and L. The columns Const and Random show the number of primal faces

for the constant coefficient case and the discontinuous coefficient case, respectively.

Comparing these two columns, we see that this algorithm gives a quite small number

of primal faces for the case with the discontinuous coefficients.
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