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NEW YORK UNIVERSITY

Abstract
Courant Institute of Mathematical Sciences

Master of Computer Science

Classifying the Quality of Movement via Motion Capture and Machine Learning

by Ryan Saxe

With the recent surge of Machine Vision technology and available video data, com-
putational methods that utilize this data are becoming increasingly important. This
Thesis shows that, with the proper application of Skeletal Tracking, it is possible to
discern whether or not a physical task — a squat — is performed well. The Skeletal
Tracking software employed is provided by Optitrack’s Motion Capture client, Mo-
tive:Body. The data generated from Optitrack was used to extract features related to
the proper execution of a squat. This thesis uses a variety of machine learning tech-
niques to evalute the quality of physical performance. Support Vector Machines,
Random Forests, and Decision Tree algorithms were tested with ten-fold cross val-
idation, and compared to a baseline of Logistic Regression given the binary nature
of the problem. While Regression performed at 66% accuracy, all three other algo-
rithms performed substantially better, with Decision Trees performing best at 80%.
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Chapter 1

Introduction

1.1 Problem Definition

According to a large body of research (M Sluijs, Kok, and Zee, 1993, Essery et al.,
2017), it is common for a patient in Physical Therapy to disregard their assigned
exercises. This research suggests that the lack of proper feedback disincentivizes the
patient from performing their exercises. There is a need for a system that can provide
feedback on physical movement in order to encourage practice and improvement.
The goal of this thesis is to show that the anatomical data from Skeletal Tracking can
assess the quality of movement and therefore encourage patients to exercise.

1.2 Prior Work

Skeletal Tracking is an algorithmic approach to approximating the skeletal struc-
ture of a human, given data that represents their movement. Approaches to Skeletal
Tracking span a broad range due to the varying quality and complexity of the system
used to generate the required movement data. Implementations exist for simplistic
single-camera setups, multi-depth-camera setups such as the Microsoft Kinect and
Intel RealSense, as well as state-of-the-art motion capture systems1 with a vast quan-
tity of expensive cameras. This research used the latter, however the majority of the
literature related to this problem utilizes the Kinect as it’s a more accessible tool for
research2. The reason we chose to use the Optitrack motion capture software rather
than Microsoft’s Kinect or Intel’s RealSense is anatomical precision.Llorens et al.,
2015 demonstrates that Optitrack achieves substantially improved accuracy on the
Kinect with only two markers and two cameras and could be improved further with
a more extensive setup3. The Microsoft Kinect is limited to the combination of an
RGB camera and a depth camera. We believe that the Optitrack set up at New York
University, can provide more detail for this research.

Nagymate and Kiss, 2018 provides a systematic literature review on the Opti-
track, and shows a variety of research validating the impressive precision of the sys-
tem. Furthermore, Skeletal Tracking algorithms that use only data from the Kinect
tend to struggle with sitting positions4. While there is work5 on this, it is unclear

1Two such systems are Optitrack and Vicon
2Mousavi Hondori, 2014 offers a comprehensive literature review on Microsoft Kinect applications

related to Human Motion Recognition. The breadth of available literature dwarfs that of studies uti-
lizing the expensive motion capture systems.

3The Optitrack setup in the Future Reality Lab at New York University uses twelve cameras and
over forty markers.

4For a visual display of Skeletal Tracking struggling with movements such as a squat, watch this.
This video is not mine, and was simply found on Youtube for this exemplary purpose.

5Le, Nguyen, and Nguyen, 2013 outlining an algorithm that is capable of identifying a sitting posi-
tion from the data generated from Microsoft Kinect Skeletal Tracking.

https://www.youtube.com/watch?v=ame_H6B4oPA
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how useful this would be for analyzing a squat in real-time.
Providing feedback for rehabilitation purposes increases the probability of com-

pliance (M Sluijs, Kok, and Zee, 1993). Chang et al., 2016 devises a system using
the Kinect that provides customized feedback and tracks the rehabilitation process.
Su, 2013 uses Dynamic Time Warping alongside the Kinect in attempt to achieve a
home rehabilitation environment and achieved 80% accuracy when compared to the
feedback of a professional. Realtime feedback is crucial to optimize improved reha-
bilitation. This is explored in Zhao, 2016. Since the inception of the Kinect, home
rehabilitation systems to accompany processes like Physical Therapy has been a de-
sirable avenue of research. Mousavi Hondori, 2014 provides an extensive review on
the clinical impact of the Kinect, and Da Gama et al., 2015 provides a more focused
review on the Kinect in specific relation to motor rehabilitation.

Collections of movement data sets for Physical Therapy and rehabilitation re-
search purposes are increasingly important in order to explore classification of move-
ment using Skeletal Tracking and Machine Learning. Vakanski et al., 2018 and
Leightley et al., 2015 are two such initiatives to develop high quality skeletal data
for the purposes of Machine Learning research. Maudsley-Barton et al., 2017 is a
comparative study of Machine Learning and Deep Learning techniques that utilize
the Kinect for clinical motion analysis. Jun et al., 2013 used Machine Learning along-
side the Kinect in order to classify the quality of a deep squat. This study appears
successful, as they achieved 95% accuracy. They implemented Principal Compo-
nent Analysis alongside K-Nearest Neighbor classification as their Machine Learn-
ing infrastructure. The majority of the prior work in this field uses a less involved
surveillance system than Optitrack. These developments on the Kinect have lower
anatomical accuracy than the work in this thesis, and hence are limited on the cer-
tainty of feedback and results they can provide. Our aim is to use the state-of-the-art
Optitrack motion capture software as a stronger grounds for a Machine Learning
study on movement quality classification.

1.3 Outline of the Rest of the Thesis

This thesis describes a methodology for analyzing motion capture data in order to
provide feedback regarding the quality of a squat. Section 2 describes the data col-
lection method. Furthermore, section 2 outlines inconsistencies and problems within
the data in order to provide context for decisions made related to feature extraction
and algorithmic design in later sections. Section 3 describes the decision process of
selecting and extracting proper features in order to classify a squat as good or bad.
These decisions were made upon consultation with physical therapists as well as
personal trainers. Section 4 provides an analysis of Machine Learning results uti-
lizing the data collected and features extracted described in the prior sections. This
section suggests that collecting a more extensive data set could lead to a robust so-
lution to this problem. Section 5 outlines suggestions for future work. Finally, the
code relevant for this thesis is present in the appendix.
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Chapter 2

Data Collection and Methodologies

2.1 Optitrack

As described in the previous section, there are many ways to go about Skeletal Track-
ing. For this research, we chose to utilize the Skeletal Tracking software provided in
Optitrack’s Motive:Body. We considered a variety of other video set-ups such as the
Intel RealSense camera and Microsoft Kinect, and furthermore tested Skeletal Track-
ing software on the RealSense. While developing this algorithm on a simpler and
cheaper system would be ideal for providing feedback to physical therapy exercises,
it is a much more difficult problem as outlined in Section 1.2. Fortunately, Opti-
track’s Motion Capture equipment provides a more robust measurement of bone
placement1 due to the quality and quantity of cameras2. While this doesn’t solve all
the problems related to approximated skeletal structure, it helped a great deal.

2.1.1 Skeleton

Figure 2.1 displays the specific Optitrack skeleton used for this research. It is the
baseline skeleton with markers hinged at the toe, with a total of 41 markers. For
the purpose of this study, we did not believe a more extensive skeleton with specific
markers dedicated to fingers were necessary3.

It should be noted that the choice of skeleton within the client does not alter
the anatomical structure approximated from Skeletal Tracking. The organization
of the markers enable Motive to approximate where bones are from bone markers.
Figure 2.2 shows an excerpt of the data from Skeletal Tracking for bone location
approximation.

2.1.2 Output

With the cameras and skeleton set up, we could generate data as described on Opti-
track’s Data Export Page. Given the small sample of data, we elected to export every
possible feature, in order to give the widest array of possible features to extract. Fig-
ure 2.2 displays what this data looks like. Every marker from the Optitrack set up
has corresponding X,Y,Z coordinates, as well as respective rotation within the phys-
ical space. However, we did not use any of the rotation variables during this study.
The variables we used during feature extraction, described in detail in Section 3,
are Time and (X,Y,Z) coordinates. Furthermore, we consider only the approximated
location of the bones and not the positions of the bone markers.

1For more detail on the accuracy in regards to Joint Angles approximated via Kinect Skeletal Track-
ing, refer to Choppin, Lane, and Wheat, 2014

2The Optitrack setup for this thesis utilized twelve of their Prime 13 cameras
3For more information on skeletal options, please refer to the Optitrack Wiki.

https://optitrack.com/products/motive/body/indepth.html
https://v20.wiki.optitrack.com/index.php?title=Data_Export:_CSV
https://v20.wiki.optitrack.com/index.php?title=Data_Export:_CSV
https://optitrack.com/products/prime-13/
https://v20.wiki.optitrack.com/index.php?title=Skeleton_pane
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FIGURE 2.1: Optitrack Skeleton

FIGURE 2.2: Snapshot of CSV Output.



2.2. Data Labeling 5

FIGURE 2.3: Optitrack data when markers are covered.

2.2 Data Labeling

Two personal trainers, Dylan Ezzie and Trevor Schrier, were asked to label the videos
generated4. The personal trainers were told to label a task that was performed well
as 1, and a task that was performed poorly as -1. If they were unable to discern how
well a task was performed, they were to label that video 0. Furthermore, they were
instructed to do their best to be aware of the issue presented in section 2.3.1.

There are a total of 42 squats. Dylan labeled ten squats as 0, while Trevor only
labeled two squats as such. Dylan agreed with the 0 labels given by Trevor. After
discarding the data points that the experts either could not discern or on which they
disgreed, the dataset had 22 squats. These 22 squats are the data used in the compu-
tational parts of this study. It should be noted that this sample is incredibly small for
the computational methods this thesis employs5. However, the agreement between
experts implies the signal of these 22 data points is very strong. My advisor, Den-
nis Shasha, suggested that 22 clearly categorized data points might be sufficient to
derive a good model.

2.3 Problems and Difficulties

Several problems arose during data collection that influenced both the manner and
extent to which we approached the algorithm and features. Corrections will be dis-
cussed in more depth in section 5.
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2.3.1 Marker Detection

Figure 2.3 displays a subject performing a squat. The purple, blue, and green lines
represent the inference made by the device software to determine the skeletal struc-
ture connected to the markers. Notice that the markers on the hip and in front of the
chest are red rather than white. This occurs when the camera infrastructure cannot
detect those markers. The skeletal tracking software, at this time, attempts to cal-
ibrate and can make a mistake. This happened consistently enough that we could
not disregard the related data.

According to Ken Perlin, the Director of the Future Reality Lab — the lab at New
York University that has this technology — A potential solution to this flaw in our
data collection method is to add additional cameras at hip level. Should there be a
continuation on this work, this should be considered during the set up of Optitrack.

2.3.2 Quantity and Diversity

Unfortunately, it was not possible to generate data from a diverse population of sub-
jects. Access to the equipment was limited, and hence only one subject performed
the tasks in the presented data. While this is not ideal, it is not an issue towards
demonstrating that an algorithm can deduce the difference between a good and bad
squat. However, this does limit the extrapolations that can be made regarding the
analysis of features that determine decisions during the classification process. With a
higher quality and larger quantity of data, these computational methods can provide
clear insight and better results. Data collection should be the main goal in regards to
improvement for a continuation of this study.

4Both Dylan and Trevor labeled videos of squats and lunges, however we never got to developing a
similar algorithm on lunges, and hence these videos are out of the scope of this thesis. If you’re curious
about lunges and the labels, you can find this information in the Github repository.

5In order to achieve a robust version of the algorithm represented here, the data set must be im-
proved. This was not feasible within the scope of this thesis, and is addressed in section 5

https://github.com/ryancsaxe/Thesis/
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Feature Extraction

The data set generated for the purpose of this research is not large. Given that the
goal is classification, we must choose a small set of features in order to accommodate
the size of the data set. In order to properly create these features, professionals in
the field of Physical Therapy and Personal Training were consulted. This section will
describe a variety of features that can be extracted from Skeletal Tracking data that
is relevant to a wide array of movement. However, given that this thesis focuses on
the squat, the features illustrated are discussed in this context.

Joint angles are a common metric to measure from Skeletal Tracking data when
considering any physiological analysis as a variety of features can be extracted from
them (Le, Nguyen, and Nguyen, 2013). Let a, b, c correspond to the ankle, knee,
and hip accordingly. Then, the following yields the joint angle of the knee, where a
subject standing straight up would have a kneeangle of 180 degrees1:

ab =
a− b
‖a− b‖

cb =
c− b
‖c− b‖

kneeangle = acos(ab · cb)

For the performance of a squat, the knee angles are the only crucial joint angles,
however there are plenty of additional relevant joint angles. Measuring the angle of
the ankle can assist in detecting whether or not the subject performing the squat has
ankle dorsiflection2 or plantar flexion3.

The features in this section mainly utilize the knee joint angle, however Section
3.2 discusses the postural alignment of the hips and shoulders, which does not use
joint angles.

3.1 Climax

While every joint angle has a time series representation in this data, not every point
in time is equal. Analyses on squat performance and injury suggest that the climac-
tic point of a squat, when the subject is lowest to the ground, is the most important to
determine quality of performance and potential of injury (Almosnino, Kingston, and
Graham, 2013, Schoenfeld, 2010, McLaughlin, Lardner, and Dillman, 1978, Loren-
zetti et al., 2018).

1If standing straight, for some reason, should be represented with a zero-degree-angle, then replace
cb with bc

2Ankle dorsiflexion is defined as upward flexing of the ankle such that one’s toes raise.
3Ankle plantar flexion is defined as downward flexing of the ankle such that one’s toes point down-

ward, often leading to lifting the heals off the ground, which is poor form.
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FIGURE 3.1: Knee Angles Over Time.
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Figure 3.1 displays the time series representation of knee angles for a couple
different trials. The squats that were labeled bad appear to have more variation,
but not necessarily a drastically different knee angle. However, there is a lot more
consistency in the angle at the climax of good squats represented in the data. We still
utilized both left and right knee angle at climax as features, which can be seen in the
feature vector table (3.1).

3.2 Symmetry

Dynamic Time Warping is a similarity metric employed for comparing temporal
sequences4. Given that performing a physical task happens over time, Dynamic
Time Warping can be used to compare joint angles over time. This is done by finding
the warping path, which aligns both temporal sequences and minimizes the cost of
this alignment.

D(i, j) = min{D(i− 1, j), D(i, j− 1), D(i− 1, j− 1)}+ cost(xi, yj)

Where cost(xi, yj) is the cost of aligning those parts of their respective sequences.
Given this matrix, the DTW algorithm finds the cheapest path using dynamic pro-
gramming by starting at the end and selecting, through a recursive process, the
cheapest path that ends at either D(N − 1, M), D(N, M− 1), D(N − 1, M− 1). The
cost of this path is hence the distance between the temporal sequences in question.

We did not feel Dynamic Time Warping was necessary, as there was no need
to compare sequences across different trials. However, should this research move
further into more complicated features and methods, implementing Dynamic Time
Warping makes sense. This has even been used for approaching similar problems re-
garding rehabilitation and exercise (ÅwitoÅski, JosiÅski, and Wojciechowski, 2018,
Su, 2013). For now, the following simple symmetry score was used:

∑n
t=0 | Lt − Rt |

t
This equation represents the average difference between the left knee angle and

the right knee angle. If the result is zero, then the subject is performing a squat
with very good form, as it is a symmetrical movement McLaughlin, Lardner, and
Dillman, 19785. Notice that a large symmetry score corresponds to a squat of poor
form. This can be seen in table 3.1.

3.3 Alignment

Myer, 2014 illustrates a specific type of squat, the back squat, and the importance of
alignment of a variety of parts of the body, including the knees, in order to prevent
injury. Alignment is a concept extrapolated from symmetry. We consider only align-
ment of symmetrical anatomical parts, such as the left and the right hip. The goal of
an alignment metric is to determine if some aspects of the skeleton in question are
lacking proper posture (e.g. one hip sitting lower than the other). For this metric,
we consider hip alignment and shoulder alignment. An individual hip or shoulder

4It should be noted that Dynamic Time Warping (DTW) can also be used as a classification technique
as seen in (Switonski, Michalczuk, Josinski, Polanski, Wojciechowski, 2012)

5This specific resource is about squats with weights, however it was still useful for understanding
the movement.
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Label Left Knee at Climax Right Knee at Climax Left Knee Max Jerk Right Knee Max Jerk Knee Symmetry Score Hip Alignment Score Shoulder Alignment Score
-1 63.1724365773 54.5690971556 4.94266880482 4.76826632781 2.39729800573 1.33787030007 2.65686059678
-1 80.5207062211 80.2577435872 3.46854307899 1.08390081566 1.94470738041 1.86621027198 3.79804039085
-1 29.7726564376 26.5151656975 0.534682302243 1.26605585371 1.98141662674 5.66975746155 10.5902633667
-1 57.8779027306 57.58720772 3.55277903731 2.94574308868 1.24613827597 5.50944733103 9.74559207554
-1 104.130029577 106.716813911 3.29580178602 4.27624726711 2.06818134541 1.30171478891 2.32025880174
-1 70.8643332503 71.0484907227 3.57171615333 1.63536163239 1.17395372985 1.58967545337 3.25466851966
1 73.6264025999 74.4930466749 1.46559533921 1.63317495951 1.73580156678 11.0365237753 20.1625893294
1 76.148555193 76.272845687 1.56499435711 2.0933349038 1.86263143955 11.0871075725 19.9904500609
1 67.8342165877 65.7318906675 0.493008623096 0.696508546562 1.2927694281 11.7120402018 21.2529174805
1 74.2264406144 72.878749014 0.639243022977 1.03836377241 0.897157243042 11.4085315669 20.7984212693
1 65.5788306279 64.517000204 0.676594197103 0.751442875429 1.09451528007 1.59106793271 2.84873178566
1 71.038009781 66.6325658496 0.963293350358 2.47597857853 1.87076064599 1.7641031901 3.2723719279
1 71.6007710585 67.2440885663 0.651431169851 1.90653298811 2.73257418567 1.56548601612 2.18983211838
1 71.5333086949 67.3557096028 0.478146886897 1.4110919396 2.43559882895 1.74758019772 2.24384244134
1 86.7258431389 86.2729713331 0.375450777423 0.618851608117 1.03257416202 1.10629488678 1.08469553853
-1 86.3709519234 88.0439464185 0.98197008532 1.23438905076 1.65052267202 1.25413110877 1.7530001486
-1 93.6267620985 92.9909171745 0.621490183353 1.45819364252 0.900036540654 1.52339108785 1.59489008586
-1 70.790383766 61.6979981554 1.61342155745 2.63101488892 3.01193459789 2.50772018433 4.14155502319
-1 95.2433705231 93.8451520022 1.70336997121 2.97725113856 1.24696249882 1.21075241187 1.92966337703
-1 98.4106308769 81.9207095487 2.13926167577 3.80496402876 8.42393447736 1.37473449707 1.7249525706
-1 90.5469375592 88.2199507259 1.30860342515 2.30897879868 1.32200740433 1.14024824557 1.75849385499
-1 98.4708416617 100.482999866 0.465001068613 0.293514008889 4.38892425675 1.87926991781 3.32749226888

â

TABLE 3.1: The Feature Vectors of the data.

cannot move to the side without also moving up/down or forward/backward. Be-
cause of this, it is only necessary to consider placement along the sagittal plane6 for
an alignment metric. Legaye and Duval-BeaupÃšre, 2005 displays the relationship
of spinal alignment with the hip and pelvis along the sagittal plane, which suggests
analysis along this plane is potentially useful for our alignment metric.

We quantified this by disregarding the axis with the largest delta, and measuring
the sum of the difference of other axes over time, normalized to the time-length of
the trial. The reason for this is that the axis with the largest delta will be the axis
that separates the right and left hip (e.g. Z-axis for the left of 2.3, and X-axis for the
right of 2.3). This axis does not exist on the sagittal plane, and hence is disregarded.
For future research, it is possible to reduce the noise of this metric by computing a
rotation on the skeletal data to ensure that each subject is facing the same direction.

3.4 Jerk

Jerk is the derivative of the acceleration. Measuring jolting movements can be useful
for identifying unsafe execution of a physical task, or even identifying movement
disorders, as a symptom of many are non-fluid movements. We decided to consider
only the maximum value for jerk, rather than the full time series. The reason for this
is that the feature vector became too complex for our small sample size, and hence
a simpler feature representing Jerk was necessary. Figure 3.2 displays the jerk over
time of the knee joint angle for both good and bad squats. You can see that the poor
squats have a much larger range for their maximum jerk.

6The sagittal plane is the anatomical plane that divides the body into left and right sides.
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FIGURE 3.2: Jerk of Knee Angles Over Time.
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Chapter 4

Algorithm and Results

4.1 Algorithm Overview

This section describes the Machine Learning algorithms utilized to analyze the data
described in Section 2. As previously stated, the results should be taken as sugges-
tive only, because the quantity of data present is quite small. Among other issues,
the small size of the data removes the ability to employ hyper-parameter tuning for
these algorithms. So our experiments use the baseline hyperparameter values in the
Sci-kit Learn Python package.1.

4.1.1 Logistic Regression

Logistic Regression (Yu, Huang, and Lin, 20112) is a popular technique for binary
classification. let x be a data point and y ∈ {−1, 1} the corresponding label. Logistic
Regression uses the sigmoid function3 to model this conditional probability as such:

P(y|x) = 1
1− e−ywT x

Where w ∈ IRn is the weight vector corresponding to the features in your data.
This weight vector is computed by minimizing the negative log likelihood of the
conditional probability:

w = argminw − log
n

∏
i=1

1
1− e−yiwT xi

The problem in this thesis is a binary classification problem, but squat assessment
has granularity. Squat performance is not just good or bad as can be seen by the
literature on the kinematics of a squat (Schoenfeld, 2010). The architecture of Logistic
Regression is appealing. The model learns a simple logit function for separating the
data, and is hence capable of expressing confidence based on the distance of any
data point to this separating function. We will use the results of logistic regression
as a baseline for the other algorithms.

1For specifics in regards to the code, refer to Appendix A.
2This is the Logistic Regression reference of choice for the Scikit-Learn package, which is what we

used for computation.
3 f (x) = 1

1−e−x

https://scikit-learn.org/stable/
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4.1.2 Support Vector Machine (SVM)

A Support Vector Machine (Cortes and Vapnik, 1995) is a supervised learning al-
gorithm. The objective of this algorithm is to discover a hyperplane of lower di-
mensionality that can separate data-points by the largest margin in order to classify
them.

Let our data points be of the form (xi, yi) where xi is the feature vector, and yi
is the binary classification associated with xi. Assuming that the data in question is
linearly separable4, the following must be true for the calculated support vector w
where b is a bias involved for representation of the hyperplane.

(w · xi + b)yi ≥ 1∀i

However, the assumption of linear separability is too strong. To solve this prob-
lem the margins found can be softened by introducing a hinge-loss function. This
generates a hyperplane that minimizes misclassification in the training data.

minw,b ∑
j

max{0, 1− (w · xi + b)yi}

The last aspect of SVMs is called a kernel, and is a large contributor to why SVMs
are so robust. A kernel k is a similarity metric with the following restriction:

Let k : A× A→, then ∃ f : A→ B such that ∀x, y ∈ A k(x, y) =< f (x), f (y) >

We implemented this algorithm with an Radial Base Function (RBF) kernel5. Not
only are RBF kernels the most widely used default kernel for SVMs (Campbell, 2001),
but they are stationary — k(x, y) = k(x + c, y + c). This is ideal for the space of mo-
tion capture data because it is important that the same squat performed in a differ-
ent spot in the room is treated equally. Furthermore, we can deduce the confidence
in prediction, similar to Logistic Regression, by measuring the distance from the
learned hyperplane. We compare the confidence scores with that of Logistic Regres-
sion in Section 4.2.

4.1.3 Classification Tree

Classification and Regression Trees6 (Breiman et al., 1984) are popular machine learn-
ing models. Given that the data labels in our data set are discrete, we explore the use
of a classification tree rather than a regression tree. A classification tree attempts to
build a binary tree of feature thresholds learned by minimizing impurity. The two
impurity metrics considered in this thesis are gini (G) or entropy7 (E). Let pmk be the
be the proportion of data points with the class k in node m, then

G = ∑
k

pmk(1− pmk)

E = −∑
k

pmklog(pmk)

4Data is considered linearly separable if there exists some hyperplane that divides the data such
that the binary classifier is capable of perfect classification.

5For more detail on kernel methods, and the RBF kernel, please refer to Campbell, 2001, as the
content is out of the scope of this thesis.

6The equations in this section are taken from Sci-kit Learn’s CART page
7Minimizing entropy is also the equivalent of maximizing information gain.

https://scikit-learn.org/stable/modules/tree.html##tree-algorithms-id3-c4-5-c5-0-and-cart
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These are learned via searching the space, partitioning feature thresholds, and
recursively minimizing the summation of the impurity of both the left and right
side of the tree. Let R be a node of the tree. We want to select the feature partition
θ = (j, v) such that xj ≤ v→ LEFT and xj > v→ RIGHT minimizes the following:

R(θ) =
nle f t

NR
H(Rle f t(θ)) +

nright

NR
H(Rright(θ))

Where H is the impurity metric, NR are the number of data points considered in
node R. This is then performed recursively down the left and right side of the tree
until maximum depth is reached or NR = 1.

Random Forest

A Random Forest (Statistics and Breiman, 2001) is an ensemble method of the De-
cision Trees described above. Rather than train one tree for classification, train a
collection of trees by utilizing a subset of the data. Then, the classification result is
the majority agreement of terminal nodes from each classification tree in the Ran-
dom Forest ensemble. It is important to consider the results of an ensemble method
for this study because it reduces the problem of over-fitting, which is a concern for
small data sets. This doesn’t necessarily mean increased performance, but more so
that the results from a Random Forest are more trustworthy than that of a single
Decision Tree

We tested both Entropy and Gini Impurity as Impurity metrics. While both re-
sulted in near-identical trees when trained on the whole dataset, Gini Impurity per-
formed better by 6% when the results were analyzed via ten-fold cross validation.

4.2 Results

We implemented and ran each of the algorithms described above on the data set
with ten-fold cross validation. Given the sample size, we ran cross validation 100
times and averaged the results in order to achieve the best possible characterization
of quality. Table 4.1 displays the resulting accuracy from each Machine Learning al-
gorithm. Every algorithm performed better than Logistic Regression, which was the
baseline. The Decision Tree algorithm performed the best, and Figure 4.1 illustrates
the feature partitions in the tree trained on the entire data set8.

This tree does not utilize the knee symmetry metric nor the alignment metric. It is
possible that knee symmetry is so strongly correlated with the individual joint angles
that this feature was redundant. Alignment may not have provided a good metric
for splitting any node on the tree due to noise. Jerk provided the most information.
The initial split on the maximum jerk of the left knee demonstrates that almost 90%
of the poor-form squats had a jerk over 1.6. Furthermore, none of the good-form
squats had such a Jerk. The next applications of this research should focus on more
jarring movements for this classification problem. They are less noisy and there is a
strong correlation between this feature and the proper prediction.

8The accuracy results do not correspond to this tree. The tree in Figure 4.1 is the tree should we
train on our entire dataset. Accuracy was measured through running 10-fold cross validation using
subsets of the data in order to separate testing and training data.
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FIGURE 4.1: The resulting decision tree.
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Accuracy Results
Algorithm Accuracy
Logistic Regression 66.67%
SVM 78.33%
CART 79.42%
Random Forest 73.97%

TABLE 4.1: Algorithm Results

Outside of the Decision Tree results, we measured the confidence in prediction
from Logistic Regression and the Support Vector Machine. The average probabilis-
tic confidence in correct classification was 84% for Logistic Regression and 69% for
the SVM. The average confidence in incorrect classification was 69% for Logistic Re-
gression and 69% for the SVM. This suggests that the Logistic Regression model is
substantially better than the SVM model. The fact that the average confidence of the
SVM model is the same for both correctly and incorrectly classified data points is
concerning. A successful model should have less confidence surrounding the data
they mis-classify, which is strongly the case for Logistic Regression and not the case
for the SVM.
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Chapter 5

Conclusion

5.1 Discussion

This thesis demonstrated that it is possible to implement Machine Learning to clas-
sify quality of movement via motion capture data. The results are sufficiently en-
couraging to warrant further exploration. The analysis of algorithmic performance
combined with prediction confidence suggest that Decision Trees are the algorithm
that is most promising. Results from the Support Vector Machine showed less promise,
as the confidence in mis-classified points is concerning. Logistic Regression had the
worst performance overall, but when confidence is considered, it’s performance was
reasonable. Decision Trees not only performed best, but the breakdown of feature
partition of the tree suggests that this algorithm is capable of yielding sensible and
transparent predictions. This transparency is especially valuable for developing a
feedback system, which is crucial for improved rehabilitation and clinical purposes.

5.2 Future Work

Although several Machine Learning algorithms showed promise, in order to im-
prove the performance of these algorithms in future research, issues of data quantity
and quality must be addressed. It is difficult to trust Machine Learning results with-
out a vast amount of data, and this was not possible in the scope of this thesis. For
continued development on the Optitrack, the following should be true for the next
generated data set:

• Additional cameras set at hip level in order to maximize marker detection.

• A minimum of a couple hundred data points.

• A minimum of thirty subjects for diversity.

Unfortunately, generating a data set that fits those specs is not easy. Using this
system, there are limitations to the number of subjects that can take part. While it is
feasible, a more fruitful pursuit of future work is mapping this infrastructure over
to a more scalable system like the Microsoft Kinect or even normal video data. We
illustrated why we utilized Optitrack for this thesis in Section 1.2, however the im-
portance of data quantity is now so apparent that future applications of this study
should utilize a simpler surveillance system. Cao et al., 2016 demonstrates that it is
possible to perform real-time skeletal tracking on video-data. The skeleton extracted
from their method is not anatomically correct1. Should a comparable skeletal track-
ing algorithm have anatomical precision and work on two-dimensional video data,

1The Github repository displays a video of their algorithms results. It is clear that the skeletal model
does not have a spine, which is crucial if this is to be used for clinical purposes.

https://github.com/ZheC/Realtime_Multi-Person_Pose_Estimation
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it would be feasible to scrape videos from Instagram and Youtube of Physical Ther-
apy exercises and generate an extensive data set for clinical movement analysis. This
is a difficult problem, but is a worthwhile pursuit. It is the most scalable solution and
easiest for a patient to implement in their own home.
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Appendix A

Code

This appendix includes the relevant code for this thesis. If you would like to run the
code and experiment with the data and results, please visit this Github repository1.

A.1 Data

A.1.1 Variable Definition

The data described in the data section has a lot of additional information that was
not utilized in this research. The names of the approximated bone-location variables
were defined as follows:

1 LEFT_KNEE = " Ryan : LShin "
2 RIGHT_KNEE = " Ryan : RShin "
3 LEFT_HIP = " Ryan : LThigh "
4 RIGHT_HIP = " Ryan : RThigh "
5 PELVIS = " Ryan : Hip "
6 NECK = " Ryan : Neck "
7 AB = " Ryan : Ab"
8 CHEST = " Ryan : Chest "
9 HEAD = " Ryan : Head"

10 LEFT_SHOULDER = " Ryan :LUArm"
11 RIGHT_SHOULDER = " Ryan :RUArm"
12 LEFT_ELBOW = " Ryan : LFArm"
13 RIGHT_ELBOW = " Ryan : RFArm"
14 RIGHT_WRIST = " Ryan : RHand"
15 LEFT_WRIST = " Ryan : LHand"
16 RIGHT_ANKLE = " Ryan : RFoot "
17 LEFT_ANKLE = " Ryan : LFoot "
18 RIGHT_TOE = " Ryan : RToe "
19 LEFT_TOE = " Ryan : LToe "

A.1.2 Accessing the Data

In order to utilize the data, loading it and properly formatting a matrix is the first
step. The following code does that:

1 def crea te_data_matr ix ( f i lename ) :
2 # c r e a t e the data matrix f o r the o p t i t r a c k data f i l e
3 with open ( fi lename , " r " ) as f :
4 l i n e s = f . r e a d l i n e s ( )
5 i f len ( l i n e s ) == 0 :
6 p r i n t " F i l e Empty"
7 re turn None
8 meta = l i n e s [ 0 ] . s t r i p ( ) . s p l i t ( " , " )
9 columns = [ c o l . s t r i p ( ) . s p l i t ( " , " ) f o r c o l in l i n e s [ 2 : 7 ] ]

1The full link should you be reading in paper: https://github.com/ryancsaxe/Thesis

https://github.com/ryancsaxe/Thesis


22 Appendix A. Code

10 markers = columns [ 0 ] [ 2 : ]
11 l a b e l s = columns [ 1 ] [ 2 : ]
12 numbers = columns [ 2 ] [ 2 : ]
13 pos_bool = columns [ 3 ] [ 2 : ]
14 s e r i e s = columns [ 4 ] [ 2 : ]
15 tup l es = l i s t ( zip ( markers , l a b e l s , pos_bool , s e r i e s ) )
16 index = pd . MultiIndex . from_tuples ( tuples , names=[ " Marker " , " Label " , "

P o s i t i o n " , " Columns " ] )
17 matrix = np . asarray ( [ l i n e . s t r i p ( ) . s p l i t ( " , " ) f o r l i n e in l i n e s [ 7 : ] ] )
18 frame_nums = matrix . T [ 0 ]
19 dt = np . d i f f ( np . asarray ( matrix . T [ 1 ] , dtype=np . f l o a t 3 2 ) )
20 t = np . append ( [ 0 ] , np . cumsum( dt ) )
21 data = np . asarray ( [ row [ 2 : ] f o r row in matrix ] )
22 re turn frame_nums , dt , t , data , index

Once that matrix is created, the following function accesses the X,Y,Z coordinates
of a given bone (utilizing the variables described in the Variable Definition section).

1 def get_bone_ locat ion ( frame , label_name ) :
2 # get the l o c a t i o n in space of the bone in quest ion
3 bone = frame [ ’ Bone ’ ] [ label_name ] [ " P o s i t i o n " ]
4 bone_locat ion = np . asarray ( [ bone [ "X" ] , bone [ "Y" ] , bone [ "Z" ] ] , dtype=np .

f l o a t 3 2 )
5 re turn bone_locat ion

A.2 Feature Extraction

This section includes the code utilized to extract the features described in section 4
of this paper.

A.2.1 Joint Angles

The following takes three bone points and returns the angle related to them. If this
function is passed "Left Ankle", "Left Knee", and "Left Hip", the result will be the
joint angle corresponding to the Left Knee.

1 def angle ( a , b , c ) :
2 " " "
3 compute angle between 3 points in 3dim space
4

5 the reason we do a −> b and then c −> b i s because of the d i r e c t i o n s we
care about .

6 so standing s t r a i g h t up should be 180 degrees . I f we do a −> b and b −>
c , t h i s angle

7 becomes zero .
8 " " "
9 ab = ( a − b ) / np . l i n a l g . norm ( a − b )

10 cb = ( c − b ) / np . l i n a l g . norm ( c − b )
11 t h e t a = np . arccos ( np . c l i p ( np . dot ( ab , cb ) ,−1 ,1) )
12 re turn np . degrees ( t h e t a )

A.2.2 Jerk

1 def compute_jerk ( s e r i e s , dt ) :
2 #compute the j e r k of a t i m e s e r i e s
3 # dt i s the same dt returned from s e c t i o n A. 1 . 2
4 s e r i e s = np . asarray ( s e r i e s )
5 v e l o c i t y = np . d i f f ( s e r i e s )
6 a c c e l e r a t i o n = np . d i f f ( v e l o c i t y )
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7 j e r k = np . d i f f ( a c c e l e r a t i o n )
8 re turn j e r k

A.2.3 Climactic Angles

The climax of a squat from Skeletal Tracking data can be detected by looking at the
point where the pelvis is lowest on the Y-axis. We take in the data generated from
section A.1.2, compute the knee joint angles, and extract the angle when the pelvis
is lowest

1 f o r row in data :
2 frame = pd . S e r i e s ( row , index=index )
3 # get r i g h t s ide bone l o c a t i o n s
4 Rankle = u t i l s . ge t_bone_locat ion ( frame ,RIGHT_ANKLE)
5 Rknee = u t i l s . ge t_bone_ locat ion ( frame , RIGHT_KNEE)
6 Rhip = u t i l s . ge t_bone_ locat ion ( frame , RIGHT_HIP)
7 #compute r i g h t knee angle
8 Rknee_angle = u t i l s . angle ( Rankle , Rknee , Rhip )
9 # get l e f t s ide bone l o c a t i o n s

10 Lankle = u t i l s . ge t_bone_locat ion ( frame , LEFT_ANKLE)
11 Lknee = u t i l s . ge t_bone_locat ion ( frame , LEFT_KNEE)
12 Lhip = u t i l s . ge t_bone_locat ion ( frame , LEFT_HIP )
13 #compute l e f t knee angle
14 Lknee_angle = u t i l s . angle ( Lankle , Lknee , Lhip )
15 Lknee_angles . append ( Lknee_angle )
16 Rknee_angles . append ( Rknee_angle )
17 p e l v i s = u t i l s . ge t_bone_ locat ion ( frame , PELVIS )
18 hip_y_axis . append ( p e l v i s [ 1 ] )
19 lowest_hip_point = hip_y_axis . index ( min ( hip_y_axis ) )
20 Lknee_climax = Lknee_angles [ lowest_hip_point ]
21 Rknee_climax = Rknee_angles [ lowest_hip_point ]

A.2.4 Symmetry

We compute the symmetry of the knee joint angle as the average difference in left
knee and right knee over the course of the squat timeseries data.

1 knee_metric = np . mean ( [ abs ( x [ 0 ] − x [ 1 ] ) f o r x in zip ( Lknee_angles ,
Rknee_angles ) ] )

A.2.5 Alignment

1 def _alignment ( a , b ) :
2 # funct ion to check alignment of j o i n t s /bones
3 # the way t h i s works i s t h a t only one a x i s ( x , y or z ) should y i e l d

d i f f e r e n t r e s u l t s
4 # f o r example , i f my shoulders are al igned and I am f a c i n g the camera ,

the z and y a x i s should
5 # be considered , but the x a x i s should not .
6 # however , i f I am f a c i n g the side , the y a x i s and x a x i s w i l l have

value and the
7 # z a x i s w i l l not .
8 #with t h i s in mind , we look at which a x i s has the l a r g e s t d e l t a from

each j o i n t , and exclude
9 # t h a t from the computation because i t can be assumed t h a t d e l t a i s

supposed to happen
10 # then we take the sum of the d e l t a of the other two a x i s f o r the r e s u l t
11 #one of the other two axes should be zero , and p e r f e c t alignment would

have both
12 # as zero .
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13 d i f f e r e n c e = abs ( a − b )
14 max_index = np . argmax ( d i f f e r e n c e )
15 d i f f e r e n c e [ max_index ] = 0
16 re turn np . sum( d i f f e r e n c e )
17

18 f o r row in data :
19 frame = pd . S e r i e s ( row , index=index )
20 Lhip = u t i l s . ge t_bone_locat ion ( frame , LEFT_HIP )
21 Rhip = u t i l s . ge t_bone_ locat ion ( frame , RIGHT_HIP)
22 Lshoulder = u t i l s . ge t_bone_locat ion ( frame , LEFT_SHOULDER)
23 Rshoulder = u t i l s . ge t_bone_locat ion ( frame ,RIGHT_SHOULDER)
24 shoulder_a l ign . append ( u t i l s . _alignment ( Lshoulder , Rshoulder ) )
25 hip_a l ign . append ( u t i l s . _alignment ( Lhip , Rhip ) )
26 # r a t h e r than mean , we normalize these by the length of the t r i a l
27 # because we are i n t e r e s t e d in alignment over time , not j u s t the average
28 hip_al ignment_metric = np . sum( hip_a l ign ) / f l o a t ( t [−1])
29 shoulder_al ignment_metric = np . sum( shoulder_a l ign ) / f l o a t ( t [−1])

A.3 Algorithms

A.3.1 Machine Learning

1 from sklearn . t r e e import D e c i s i o n T r e e C l a s s i f i e r
2 from sklearn . model_se lec t ion import c r o s s _ v a l _ s c o r e
3 from sklearn . svm import SVC
4 from sklearn . ensemble import RandomForestClass i f ier
5 from sklearn . l inear_model import L o g i s t i c R e g r e s s i o n
6

7 svm = SVC(gamma= ’ auto ’ )
8 f o r e s t = RandomForestClass i f ier ( )
9 t r e e = D e c i s i o n T r e e C l a s s i f i e r ( )

10 LR = L o g i s t i c R e g r e s s i o n ( )
11 t r e e _ r e s = [ ]
12 svm_res = [ ]
13 f o r e s t _ r e s = [ ]
14 LR_res = [ ]
15 #run c r o s s v a l i d a t i o n mult ip le times to get bes t average r e s u l t s
16 # given the small sample s i z e and v a r i a t i o n .
17 i = 0
18 while i < 1 0 0 :
19 t r e e _ r e s . append ( c r o s s _ v a l _ s c o r e ( t ree , X , Y , cv =10) )
20 svm_res . append ( c r o s s _ v a l _ s c o r e (svm , X , Y , cv =10) )
21 f o r e s t _ r e s . append ( c r o s s _ v a l _ s c o r e ( f o r e s t , X , Y , cv =10) )
22 i += 1
23 # unl ike the other methods , c r o s s v a l i d a t i o n of L o g i s t i c Regression
24 # w i l l always y i e l d the same r e s u l t s . So no need to include in the loop
25 LR_res . append ( c r o s s _ v a l _ s c o r e (LR , X , Y , cv =10) )
26 # display average r e s u l t s
27 p r i n t "CART average accuracy :\ t \ t \ t " ,np . mean( t r e e _ r e s )
28 p r i n t "SVM average accuracy :\ t \ t \ t " ,np . mean( svm_res )
29 p r i n t "Random Fores t average accuracy :\ t \ t \ t " ,np . mean( f o r e s t _ r e s )
30 p r i n t " L o g i s t i c Regression average accuracy :\ t \ t \ t " ,np . mean( LR_res )
31 #^these were used f o r t a b l e 4 . 1 .

A.3.2 Regression Confidence

In order to assess the validity of Logistic Regression and SVMs, we measured the
confidence of the results. This is computed by looking at the average probabilistic
confidence in both correct and incorrect predictions.

1 def conf idence ( r e s u l t s , l a b e l s ) :
2 wrong_certainty = 0
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3 r i g h t _ c e r t a i n t y = 0
4 wrong_count = 0
5 r ight_count = 0
6 # the reason f o r t h i s outer loop i s t h a t
7 # because of sample s ize , we ran the algori thms
8 #many times in order to get a l e s s v a r i a n t accuracy
9 # so r e s u l t s i s a l i s t of p r e d i c t i o n s f o r each time we

10 # ran the algorithm we are evaluat ing the conf idence of
11 f o r r es in r e s u l t s :
12 f o r i , pred in enumerate ( r es ) :
13 a c t u a l = Y[ i ]
14 i f pred [ 0 ] > pred [ 1 ] :
15 val = −1
16 e l s e :
17 val = 1
18 i f a c t u a l == val :
19 r ight_count += 1
20 i f val == 1 :
21 r i g h t _ c e r t a i n t y += pred [ 1 ]
22 e l s e :
23 r i g h t _ c e r t a i n t y += pred [ 0 ]
24 e l s e :
25 wrong_count += 1
26 i f val == 1 :
27 wrong_certainty += pred [ 1 ]
28 e l s e :
29 wrong_certainty += pred [ 0 ]
30 wrong = wrong_certainty/ f l o a t ( wrong_count )
31 r i g h t = r i g h t _ c e r t a i n t y / f l o a t ( r ight_count )
32 re turn wrong , r i g h t
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