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Abstract

One of the most important goals of computer vision research is object recognition. Currently, most
object recognition algorithms assume reliable quality of image segmentation, which in practice is
often not the case. This report examines the combination of the Hough Transform with a variation
of Geometric Hashing as a technique for model-based object recognition in seriously degraded single
intensity images.

There is recently much focus on the performance analysis of geometric hashing. However, to our
knowledge, all of them are focusing on applying the paradigm to point features and show that the
technique is sensitive to noise. There is as yet no exploration of line features. In this report, we use
lines as the primitive features to compute the geometric invariants for fast indexing into the geometric
hash table containing the pre-processed model information. In addition, we analytically determine
the effect of perturbations of line parameters on the computed invariant for the case where models
are allowed to undergo affine transformation.

We have implemented the system with a series of experiments on polygonal objects, which are
modeled by lines. It shows that the technique is noise resistant and suitable in an environment
containing many occlusions.

1The author would like to thank Prof. Jack Schwartz and Isidore Rigoutsos for generous discussion.
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1 Introduction

Object recognition is a central task in computer vision. This humanlike visual capability would enable
machines to sense their environment in their field of view, to understand what is being sensed and to
take an appropriate action as desirable.

This task can be complicated by partial overlapping of the objects in the scene (e.g. piles of
industrial parts) or possible existence of occluding (e.g. flakes generated during the milling process)
or unfamiliar objects.

Research (see surveys [Binford 82]) has indicated that a model-based approach to object recognition
can be very effective in overcoming occlusion, complication and inadequate or erroneous low level
processing. Most commercial vision systems are model-based ones, in which recognition involves
matching the input image with a set of predefined models of objects. The goal in this approach is to
precompile a description of each of a known set of objects, then to use these object models to recognize
in an image each instance of an object and to specify its position and orientation relative to the viewer.
This allows the power of a model-based recognition system to be determined by the richness of the
models as well as the ability of the system to correlate the models with the sensed data.

Geomeiric Hashing[LamSchWol 88] is a model-based approach based on precompiling redundant
transformation-invariant information of models in a hash table off-line and using the invariants com-
puted from the scene for fast indexing into the hash table to hypothesize possible matches between
scene objects and models during recognition.

In a highly degraded image, extracting of the locations of point features is inherently error-prone
and the analysis of geometric hashing on point sets [GrimHutt 90] shows that it is very sensitive to
noise. We apply the Hough transform to extract line features, which appear in most industrial parts,
and work directly on lines as the primitive features to compute the geometric invariants.

In this report, we consider the problem of 2-D (or, flat 3-D) object recognition under affine trans-
formation. In particular, we are to work in the environment containing many occlusions. For affine
transformation, it is quite a successful approximation to perspective transformation under suitable
situation (see [LamSchWol 88]) for most industrial applications. For serious occlusion, this realm is as
yet to be explored. The state of the art of most model-based recognition system is restricted among
others to: (1) small model base (5 to 10 objects); (2) typical simple scene (high signal noise ratio);
(3) slight level of occlusion allowed; (4) no exploitation of parallelism; (5) segmentation is the limiting
factor.

This report concentrates on the recognition stage of the whole visual recognition process, while
assumes minimal requirement on the segmentation — only positional information of edgels is assumed
to be available, which can be obtained from any low level edge detection algorithm, say [BoieCox 87].

The method presented combines the techniques of the Hough transform, geometric hashing [LamWol 88]
and weighted voting by Baystan reasoning. It is divided into 3 stages: preprocessing, recognition and
disambiguation.

The preprocessing stage is executed off-line. It is applied to the model features, the
invariants (under affine transformation) of which are computed and stored in the
so-called geometric hash table.



The recognition stage attempts to find instances of models (which may be only par-
tially visible) in the scene by finding matches of minimal scene feature subsets and
minimal model feature subsets. This process is speeded up by advantage of the fast
indexing into the geometric hash table prepared in the preprocessing stage.

The disambiguation stage breaking ties of alleged model instances sharing the same
scene features. An alleged model with stronger evidence support will win the compe-
tition.

The domain of the problem involves objects which can be modeled by a collection of lines. Com-
pared with point features (which are used in [LamWol 88]), line features can generally be extracted
with greater accuracy since more image points are involved in such features. In particular, good re-
sults are obtained for parameter extraction using the Hough transform [Risse 89]. (In fact, we have
enhanced Risse’s method with a technique of perceptual grouping and obtained even better result.)

This report is organized as follows. In section 2, we give a closed-form formula for the invariant
encoded by an ordered quadruplet of lines, using their line parameters (6, r)s. Section 3 analyzes the
perturbation of the computed invariant from the perturbations of the lines giving rise to the invariant.
A Gaussian noise model is assumed (in fact, also shown by previous experiments done on the detection
of lines by the Hough transform). This analysis provides a theoretically justified measure of closeness
of two invariants, which lets us pick out the most promising candidate set of model features from a
pool of alleged sets. Section 4 describes the index selectivity improvement on the geometric hashing
methodology by weighted voting. Section 5 details the 3 stages of our algorithms. Section 6 describes
its implementation and provides experimental results. Finally, section 7 discusses the number of
random probes needed and the possibility of a parallel realization of the algorithm.

2 Line Encoding

Given an ordered triplet of 2-D lines (6;, ri)§:17273 in general position, any fourth line (6,7)" can be
encoded in terms of these 3 lines in an affine-invariant way.

One way of encoding is to find a transformation T, which maps (6&,7“05217273 to a canonical
T 1

coordinate system, say (0,0), (%,0)" and (%, ﬁ)t (orz =0,y =0and 2+ y = 1), then apply
T to (6, r)'[HeckBoll 91].

2.1 Creating the Canonical Coordinate System

Let a line be parameterized as cosfz + sinfy — r = 0 and let us represent the 3 basis lines by their
parameters a;, as and ag, s.t.
a; = (cosfy,sinfy, —ry)’,

az = (cos Oy, sinfy, —rs)",
az = (cos 03,sinfs, —r3)",

which are to be mapped by T to

e; = (cos0,sin 0,0)" = (1,0, 0),



iy T . T
e = (cos ,sin

T —1 1 1
e;:,:(cos%,sin%,—)t =

,0)" = (0,1,0),

-1,
3 =B
Since az + by 4+ ¢ = 0 and Aaz + Aby + Ac = 0, A € R, represent the same line, we have

AlT'al =€,

)\QT/aQ = €2,
)\3T’a3 = €3,

where A1, Ao and A3 are constants.
Solving the above system of linear equations, we obtain T’ =

—csc(fy — Oa) csc(f3 — 01)sinh D csce(fy — 03) csc(fs — 01) cos 1 D

csc(f; — 03) csc(fa — O3)sinf, D — csc(fy — 03) csc(bz — O3) cos 03D
csc(f — 03)(rosin By — r1 sin f,) csc(fy — O3)(r1 cos Bz — rycosby)

— oo
\-—/

where D = rysin(fy — 03) + rasin(fs — 01) + rgsin(f; — 0).

2.2 Computing The Invariant

Define a mapping F
F:R’—R?®

such that
F((0,7)") = (cos0,sin @, —r)*

Then, F~1 exists, if we restrict the domain of @ to be in [0, 7). In fact,
F1((a,b,0)") = (tan~ (b/a), —¢/ /aT T P2
Note that F~}(Av) = F~!(v), where A € R and v € R?.
The invariant of (6, r)" is given by T((0,7)") = F~' o T/ o F((6,7)") or
F~ (AT (cos §,sin 0, —r)") = F~1(T'(cos 0, sin 8, —r)").

i

Computing and expanding T'(cos 8, sin , —r)*, we get

csc(fy — 03) csc(fz — 03) sin(fa — 0)
(7’3 Sil’l(lgl — 92) + rs sin(€3 — 91) + r sin(€2 — 93))

csc(fy — 03) csc(fy — 03) sin(f; — 0)
(7’3 Sin(51 — 62) + 79 sin(03 — 61) + 1 sin(02 — 63))

rg csc(fy — 02)sin(0; — 0) — rq csc(by — O2)sin(f, — 0) — r



Applying F~! to the above vector, we obtain (Hl,rl)t with
0 = tan_l(csc(ﬁl — 03)sin(f; — 0)/ csc(2 — 03) sin(f2 — 0)) (1)
and
r = %(7’1 csc(fy — 03)sin(fy — 0) — racsc(fy — 02)sin(0; — 0) + ) (2)
where
T = csc(fy — O)(rzsin(f; — 02) + rasin(fsz — 1) + r1 sin(b2 — 03))
\/cscz(ﬁl —03) sinz(ﬂl —0) + csc?(0y — 03) sin2(02 —0)

3 The Effect of Noise

In an environment with serious noise and occlusion, line features are often detected by the Hough
transform. Detected line parameters (f,r)s usually deviate slightly from the true values. In the
imaging process, the positions of the endpoints of a segment are usually randomly perturbed. As long
as this segment is not too short, this induces only small perturbation on the line parameters of the
segment. It is reasonable for us to assume (and in fact, we have done extensive simulations covering a
range of line lengths, line orientations and positions under increasing noise levels) that detected line
parameters differ from the “true’ values by a small perturbation having a Gaussian distribution.

In the following, we derive the spread” of the invariant over the hash space from the "perturbation’”
of the lines giving rise to this invariant.

3.1 Noise Model

We make the following moderate assumption that the measured values of a set of line parameters
(0,7)s are

1. statistically independent,

2. distributed according to a Gaussian distribution centered at the true value of the parameter,
and

) ) o2 o
3. with a fixed covariance ¥ = o s -
Tor g,
More precisely, let (6, 7) be the “true” value of the parameter of a line in the image and (A©, AR)
be the stochastic variable denoting the perturbation of (6, 7). The joint probability density function
of A©® and AR is given by

p(AO,AR) = exp[—=(AO, AR)X"1(AO, AR)"]

1 1
27/]3] 2

centered around (0, r).



3.2 The Spread Function of the Invariant

The invariant (67’ , rl) is given by (1) and (2). Introducing Gaussian perturbation in the line parameters
(0,7), (6i,7i)i=1,2,3, (1) and (2) can be rewritten as follows:

0 +60 = tan(csc((0y — Os) + (86, — 663))sin((6, — 0) + (60, — 56))/
csc((02 — 03) + (602 — 605)) sin((02 — 0) + (605 — 66))) (3)
and
P 6 = %((7’1 + 6r1) ese((6 — 02) + (86, — 66)) sin((05 — 0) + (865 — 66))

—(7’2 + (57’2) CSC((al — 62) + (691 — 662)) sin((€1 — lg) + (691 — 66))

F(r + 61)) (4)
where

= cse((fy — 0y) + (661 — 605))

((7’3 + 67“3) sin((€1 — 92) + (661 — 6(92)) +

(7’2 + 6’1”2) sm((ﬂg — 61) + (693 — 661)) +
(7“1 + 67“1) Sil’l((HQ — 63) + (662 — 663)))
)
)

\/CSCQ((al — 03) + (80, — 603)) sin((01 — 0) + (801 — 50))+
csc2((By — 03) + (805 — 805)) sin®((05 — 6) + (605 — 66))

Expanding (3) and (4) in Maclaurin series and ignoring second and higher order perturbation
terms and then subtracting (1) and (2) from them, we have

; o0’ T
60 = 500+ ; a_az-wi
= 1160 + 13601 + c15602 + 17603 (5)
: or' or' 5. or' 5 or'
6 = —60+ —6 —60; —ér;
Y 20" T o H;a@ +;8rir
= 2160 4 c2207 4 ¢23601 + 24671 +
€25602 + 26072 + 27603 + c28673 (6)
where
c11 = D[Sil’l(@l — 02)]
c13 = D[—csc(by — 03)sin(f2 — 0) sin(l5 — 0)]
15 = Dlcsc(f2 — 03)sin(f; — ) sin(03 — 0]
cir = D[—csc(fy — 03) csc(fz — O3) sin(fy — 02) sin(f; — ) sin(f2 — 0)]



co1 = [Csin(fy — 02)(cos(0; — 0)sin(0y — 0) csc?(0, — 03) +
cos(fz — 0) sin(2 — 0) csc2(92 — 93))/32 —
(r1 cos(f2 — ) — rocos(fy — 0))]/AB
[ — [Sil’l(al — 62)]/143
ca3 = [C(cos(y — 02) + sin(fy — 02)(r2 cos(y — 03) — rzcos(01 — 02))/A +
sin(f; — ) csc?(0; — 03) sin(0; — 0)
(cot(fy — b3)sin(6y — 0) — cos(f; — 0))/32) —
(rocos(f — 8) + cot(fy — 02)(rysin(f2 — 0) — rasin(fy — 0)))]/AB
Coqg = [—C sin(91 - 92) sin(ﬂg - 93)/A + sin(ﬂg — 6)]/AB
cas = [C(—cos(01 — 02) —sin(01 — 02)(ry cos(02 — 03) — r3cos(fy — 02))/A +
sin(f; — 0) CSCZ(HZ — 03)sin(f2 — 0)
(cot(fy — b3) sin(fz — 0) — cos(f2 — 9))/32) +
(r1 cos(f2 — 8) + cot(fy — 02)(rysin(f2 — 0) — rasin(fy — 0)))]/AB
Cag = [C sin(91 - 92) Sil’l(61 - 93)/14 - sin(91 — 6)]/AB
car = [Csin(fy — 02)((r1 cos(bz — f3) — racos(y — 03))/A —
(cot(by — O3) csc2(€1 —03) Sin2(6’1 —-0)+
cot(fz — 03) csc2(92 —03) sin2(02 — 9))/32)]/AB

cos = [=Csin®(0; —0,)/A]/AB
A = s sin(@l — 32) + s sin(93 — 91) + 7 SiH(GQ — 93)
B = \/csc2(€1 — 03)sin?(0; — 04) + csc2(0y — 03) sin® (05 — 04)
C = ryesc(fy — 02)sin(fz — 0) — racsc(fy — 6)sin(fy — ) +r
D = csc(fy — 03)cse(fz — 03)/[csc? (61 — 03)sin?(0; — ) + csc?(0y — 03) sin?(05 — 0)]

Let (AO,AR) (AO;, AR;)i=1,2,3 and (A@I, ARI) be stochastic variables denoting respectively the
perturbations of (6,7), (0;,7;)i=1,2,3 and the computed invariant (67/ , 7‘1).
Substituting AO' and AR’ for §0' and ér in (5) and (6) respectively, we have

AO'

I

AR

€110 4 ¢13A01 + ¢15A02 + ¢17AO3
c11AO + c12AR+ ¢13A01 + c14AR; +
15009 4 ¢16A Ry + ¢17AO3 + c13AR3

Since (A®, AR) and (A©;, AR;)i=1 2,3 are Gaussian and independent, we may show that p(A©’, AR/)
also has a Gaussian distribution with p.d.f.

1
p(AO' AR = 6mp[—§(A®', ARNY'HAO AR (7

1
27/ 12|



where

2 2 2 2.y 2 2
(¢ + cig+ cis + 617)09 (c11€21 + c13¢23 + c15¢25 + 017627)09-1-
(c11€22 + c13¢24 + €15C26 + C17¢C28) 00y
Y= 2 9 2 2 2 \.2 (8)
(c11€21 + €13€23 + €15C25 + 017027)09-1- (¢35 + ¢35+ 55 + 027)09+
2 2 2 2.2
(c11€22 + €13€24 + C15C26 + C17C28)00r (39 + ¢34 + ¢36 + ¢35)07+

2(ea1¢22 + €23C24 + Casca6 + C27C28)00r

is the covariance matrix of (A®’, AR'). (For details, see Appendix 1.)

4 Geometric Hashing with Weighted Voting

Our approach builds upon the geometric hashing method. Briefly speaking, this method pre-computes
and stores redundant, transformation-invariant model information in a hash table. Then during recog-
nition, the same invariants are computed from scene features in the image and used as indexing keys
to retrieve the possible matches with the models from the hash table. If a model in the hash table
scores enough hits, one hypothesizes the existence of an instance of the model in the image.

Drawbacks [GrimHutt 90] of the method lie in its sensitivity to image noise and to quantization
noise introduced in constructing the hash table; also index selectivity problem and problems arising
from non-uniform distribution of invariants in the hash table (see Fig-1).

Hash space density can be equalized by rehashing. A drawback here is that invariants mutually
close to each other can be far apart after rehashing. This can be disadvantageous in the presence of
noise.

Therefore, instead of rehashing, we adopt an approach similar to [RigouHum 91] by analytically
determining the effect of noise on the computed invariants. This information is then used to obtain a
formula which gives the probability for a “(model, basis, line)” combination to appear in the scene,
given a scene invariant. This probability is to be used as the weighted vote a hash node, which
represents a certain (model, basis, line), would receive when hit. Obviously, hash nodes near the
"true’” value of the invariant will get more weighted vote than those which are far away.

According to Bayes’ theorem [Duda 73], given a scene invariant, inv,, the probability for inv, to
be induced by a certain (model, basis, line) is

p(invs |(model, basis, line))P((model, basis, line))

P((model, basis, line)|inv,) = p(inos) 9)

where

e P((model, basis, line)) is the a priori probability of a certain model being embedded in the scene
and a certain triplet of lines of that model being selected as a basis. We will assume that each
(model, basis, line) is equally likely.

e p(inv,) is the p.d.f. of observing inv;.

e p(invs|(model, basis, line)) is the conditional p.d.f. of observing invs given that (model, basis,
line) appears in the scene. Eq.s (7) and (8) provide us with this p.d.f.



In computing (9), P((model, basis, line)) can be dropped since we do not need to compute the very
probability but the relative probability. p(invs) can be obtained by table look-up and interpolation.
The table can be approximated by simulation: using random number generator randomly generate
5 points over the image; using the lines formed by the first 3 points as the basis to encode the line
formed by the 4-th and 5-th points; tallying 1 count in the entry the computed invariant hits; trying,
say, 1 million such quintuplets, then each entry is replaced by the value count/1000000.

Fig-1. A density histogram of the hash
table obtained by simulation. We see that
there s a very high concentration of in-
variants (0,r), with r values in [—1..1]
and a fast drop as one moves away from
this area.

5 The Algorithm and Its Complexity Analysis

Our algorithm operates in 3 stages, the function of which have been explained in section 1. In the
following, we sketch each stage, giving complexity analyses where available.

5.1 The Preprocessing Stage

Models are processed one by one. New models added to the model base can be processed and embedded
into the hash table independently.

For each model M and for every 3 lines (sides), say [1, Iz and l3 with parameters (61,71), (02, 72)
and (03, r3), of the model, we

1. By eq.s (1) and (2), compute the invariants, (¢', r’)s, of all the rest lines w.r.t. the above 3 lines
as the basis.

2. Use (¢',r'), which is invariant under affine transformation, to index the hash entry of the 2-D
geometric hash table, where we record a "node” (model,y, , basisy, sides, invy,, covin,y,,) consisting
of

e model,,, the model identifier;

e basisy, the basis identifier;

o [ine;, the identifier of the line being encoded;
® inv,,, the invariant of line; w.r.t basisy; and

® COVjny, , the covariance matrix associated with inv,,, which provides the information about
the spread of inv,, over the hash space and is given by eq. (8).

10



Note that all the permutations (up to 3!) of /1, l3 and Iz have to be explored as the basis to be
used to encode the other lines.

Also note that care has to be taken that all 3 lines used are feasible as a basis. If the triangle
formed by the 3 lines are too small or too large, the invariants encoded by them will be numerically
unstable and should be avoided.

The complexity of this stage is O(I*) per model, where [ is the number of lines extracted from a
model. Since this stage is executed off-line, its complexity is of little significance.

5.2

The Recognition Stage

First a collection of n lines cos; x + sinf; y = r;, i = 1,..,n are detected by the Hough transform.
(Note that usually more lines than necessary are detected to guarantee that no true lines are missing.)
A triplet of lines is then chosen randomly. If it is feasible as a basis, we do the following:

1.

Compute the invariants, (6', r')s, of all the rest lines w.r.t. the above triplet of lines as the basis

by eq.s (1) and (2).

. Each such computed invariant inv, is used to index the 2-D hash table entries. (The position

of each entry in fact represents a quantized coordinate (6, r) of the hash table.)

. An appropriate-sized area of neighboring entries are considered (theoretically, we might have to

consider all the entries because the “spread” of the invariant extends to infinity; yet, practically,
those too far away result in a large Mahalanobis distance and thus a negligible weighted vote.)

. If the Mahalanobis distance between an entry considered and the entry indexed by invs lies

above a threshold, ignore considering the entry; otherwise, retrieve the nodes in that entry, if
any.

. For every such node, (modely,,, basisy, lineg, invy,, covin,y,, ), we compute the weighted vote by

eq. (9) and credit it to (modely,, basisy). We also tag that line; has a possible match in the
scene (for later verification, if necessary.)

. The (modely,,, basisy; ) with highest votes is a candidate model feature set, with minimum error

rate of classification, appearing in the scene. Practically we may wish to consider more (model,,,
basisy)s whose votes are above a preset threshold.

For each such alleged model feature set, verify its existence in the scene by alignment:
(a) Compute the affine transformation T = (A,b) that transforms the model basis to match

scene triplet. (see Appendix 2 for the formula.)

(b) Superimpose the model onto the scene and verify the existence of those model lines (seg-
ments) which are tagged to have a possible match in step 5. (More precisely, verifying the
existence of a scene line segment is by checking if the edgel density of the line segment is
above some threshold.)

(¢) Compute a quality measure QM , defined as the ratio of the total length of all ezistent
segments over the total length of all segments of the transformed model.

11



8. if QM is below a preset threshold (e.g. 0.5), that means the verification fails. Otherwise, vote
QM for |det(A)|.

N randomly chosen triplets are probed as bases. N must be large enough for this statistical
approach to work (i.e. to detect all the objects in the scene simultaneously.)

After all the NV bases are tried, the global skewing factor, which is taken to be the |det(A)| with the
highest number of votes, is obtained. (We may show that all the 2-D objects lying on the same plane
have the same skewing factor, if viewed from the same tilted camera, assuming affine approximation
to perspective transformation.)

Those alleged model feature sets which voted for a wrong skewing factor are thrown away, while
those which voted for the global skewing factor are the models which were hypothesized and have
passed verification.

The complexity of this stage is O(nx ¢)+O(t) per probe, where n is the number of lines detected by
the Hough transform; c is the size of the area of neighboring entries considered and ¢ is the complexity
of verifying the model.

5.3 The Disambiguation Stage

The disambiguation stage follows the recognition stage to further refine the result.

We now have a list of candidate model instances produced by the recognition stage. It is possible
that a scene line (segment) is shared by many model instances, some of which are false alarms. We
might wish to classify the shared line (segment) to uniquely belong to the model instance with stronger
support.

One possible technique for disambiguation is relazation [ZukHumRos 77]. However, relazation is
a complicated process and the following simple-minded method proves to work well.

Recall that each model instance is associated with a quality measure, QM , computed in the recog-
nition stage and acting as a measurement of the strongness of evidence supporting its existence. This
definition of QM favors long segments of a model instance and is similar to that used in [Ayache 86].
The justification is that long sides are usually less numerous and therefore more discriminant.

A Z-buffer-Algorithm-like [Roger 85] methodology is exercised. Here the QM acts as its counterpart
of "depth” in the Z-buffer-Algorithm. Similarly, each candidate model instance is given a unique label
or id. Two similar data structures,; z-buffer and frame buffer, are maintained. This algorithm, after
initializing z-buffer and frame buffer, processes in arbitrary order each candidate model instance as
follows:

1. superimpose the candidate model instance onto the original image (by “original image”, we
mean the edgel image);

2. trace on the original image the visible segments of the model instance — for each edgel P(z,y)
traced,

(a) compare the “depth” z(z,y) (i.e. this model instance’s @M ) with the value stored in the
z-buffer, Zbuf fer(z,y);

(b) if z(z,y) > Zbuf fer(x,y), then write the id of this model instance to Framebuf fer(z,y)
and replace Zbuffer(xz,y) with z(z,y);

12



(¢) if z(x,y) = Zbuffer(z,y), put the id of this model instance into the clash list of the entry
Framebuffer(z,y);

(d) Otherwise, no action is taken.

After all candidate model instances have been processed, the algorithm re-processes each candidate
model instance as follows:

1. trace the visible segments of the model instance on the frame buffer — for Framebuf fer(z,y)
encountered, count only those with the same id of this model instance. In this way, the density
of edgels along the line-segment can be obtained. If the density is below a preset threshold, that
segment is deemed to be non-existent.

2. recompute the QM of this model instance. If it is less than a preset threshold (e.g. 0.5), remove
it from the list of candidate model instances.

This stage costs very little running time. If & model instances appearing in the scene are detected
in recognition stage, the complexity is O(k x t), where ¢ is the complexity of tracing line segments of
a model (boundary).

6 Implementation and Experiments

We have done a series of experiments on synthesized images containing polygonal objects, which are
modeled by line features, from the model base consisting of 15 models as shown in Fig-2. Fig-3, 4, 5,
and 6 are 4 examples among them. The perturbation of the lines detected by the Hough transform is
obtained from statistics of an extensive simulations on images of different levels of degradation.

Several practical problems arise in the system implementation. Our formulae involve a lot of
trigonometric evaluations. To speed up the process, a fine-grained look-up table of trigonometric
functions was pre-computed. Also, the boundary of the hash table has to be treated specially, since
we have to consider a neighborhood of a hash entry when it is retrieved. The f-axis of the 2-D hash
table should be viewed as round-wrapped with flip, since invariant (6, r) is mathematically equivalent
to (0 —m,—r). (e.g., (179°,2) is equivalent to (—1°,—2), thus neighboring to, say, (0°,—2)). Care
should also be taken to reject reflezion case. Reflexion transformation is a subgroup of affine transfor-
mation. However, we would like to exclude it because a 2-D object, say a triangle with vertex-1,2, 3 in
clockwise sequence, preserves this sequence, even its shape being seriously skewed when viewed from
a tilted camera. This problem is tackled by detecting the orientation of a basis (to be clockwise or
counterclockwise) by cross product. Thus no such false match between scene basis and model basis
will be hypothesized.

We also found from the experiments that when doing probing, if the probed triplet of lines happen
to correspond to a basis of a certain model (i.e., a correct match), then this “(model, basis)” pair
usually accumulates highest weighted vote among others. Even if sometimes it does not rank the
highest, its weighted vote is, from our observation, still no less than 1/3 of the highest. Moreover,
the high weighted vote of a false alarm (i.e. matching this scene basis to a wrong ”(model, basis)”) is
usually resulted from the accumulation of only 1 or 2 scene invariants which happen to be very close
to their corresponding model invariants in the hash table (thus getting high weighted vote.) Such
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false alarms are usually rejected by verification since too few lines (segments) of the models are visible
(thus resulting in a small quality measure QM.) We conclude that this weighted voting scheme is

quite effective.
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Fig-2.  The 15 models
used in our experiments.
From left to right, top
to bottom are model-0
to model-14. Number
of sides of the models
ranges from 5 to 13.



Fig-3(a) shows a composite overlapping scene of model-9, 11, 12, 13 and 14. Fig-3(b) is the
result of Hough transform. 50 lines were detected. The covariance matriz used for the deviation of
0008811 ggg; ) Fig-3(c) shows the model instances
hypothesized and passing verification after the recognition stage. 5000 probes were tried. The threshold
used for the ezistence of a segment was its pizel density over 0.6. Fig-3(d) shows the final result after
disambiguation. Note that the instance of model-9 at the upper right corner was not detected. (We
reject a hypothesized object instance if half of its boundary is invisible.)

the detected lines from true lines was &2 = (
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Fig-4(a) is basically the same scene as Fig-3(a) but with more (roughly twice) segment and random
dot noise. Fig-4(b) is the result of Hough transform, 55 lines were detected. The covariance matriz
0.00145 —0.01061 ) Fig-

—0.01061 4.506 ’
4(c) shows the model instances hypothesized and passing verification after the recognition stage. We
can see that more false alarms occurred than in Fig-3(c). 5000 probes were tried. The threshold used
for the existence of a segment was its pizel density over 0.6. Fig-4(d) shows the final result after
disambiguation. Note that the instance of model-9 at the upper right corner was not detected as in

Fig-3(d).

used for the deviation of the detected lines from true lines was 2 = <

16



. von R R Y- TN\

R V4 L AR IR e i AR B Y - 4
'k{h'.'““" R o I T .‘:.{h"‘% LS e e | NG
T A Aoy A et AW
1" s N S ] SRV A I
S T N ncn I e 7
. ,L-I?- | f.»_\-\_h“‘*—':_\_]. r.r_..'l | .r"r.L-l\?" I': ff_hj:‘_‘:;\_'l.rr ]
N N T N .
DU AN e v B AN A
Lo T a! \\m A W Pty \\“& v

| ! . - I 1 Y a1

.I\u |~\\5 ;.n‘u, ' I_\' | vk sl =

. , . -~
B " ro0 i " .~ T - 1" iy Y .,
Lo vl Lo - i
N | A ~ b h Fos . e A
- LP\\_I:._;L—‘—ﬂ o ."'FLT-J: - bp-\\_ll'._;l-—‘—’l T {1 "FLH-'J:
0 4 - \'r“}_‘_ I I'_L'__'_—'_n' . - BTy LT J I__l- ___"—IJI
Fig-5(a) Fig-5(b)
- = - T — - PE— = - T —
. R S ) . . R
. " \Z:I J T . . v KZ:. J [ -
. fr-:-d/ | S Yo . Rr_-\-?l""-h.._\_h\\\ { . T::r"'_:d. e [T ) .\;——T?Iqw\\
\r"“\\'l AL o 0. \r"“\\'l TraaTAL T .
I"|._ % : -\_‘ . L I"'. | |1I._ '_I.‘\. : \_‘ . L . |
5 . ~B i - ok : M L
;lr: - wp“““\_f- - E o A " e \ i -.-#_nlll

() L L )

h & " 1 A - oy h Tl - v - oy
[ Sy L7y o K S e

N tllp- | T . f:,_i’ S tllp- ‘I - . — v-‘,_|P
~H N e T T S H N e e
| R |
- & R . L - i L .

! ’ - R ! ’ - S e

Fig-5(a) shows a composite overlapping scene of model-0, 1, 3 and 5 (note: model-3 appears
twice), which were significantly skewed. Fig-5(b) is the result of Hough transform, 55 lines were
detected. The covariance matriz used for the deviation of the detected lines from true lines is X =
< 0.00071 0.001

0.001  3.765
the recognition stage. 5000 probes were tried. The threshold used for the existence of a segment was its
pizel density over 0.5. We may see that many false alarms occurred with this low threshold. Fig-5(d)
shows the final result after disambiguation.

). Fig-5(c) shows the model instances hypothesized and passing verification after
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Fig-6(a) is basically the same scene as Fig-5(a) but with more (roughly twice) segment and random

dot noise. Fig-6(b) is the result of Hough transform, 60 lines were detected. The covariance matriz
. , . . 0.00145 —0.01061 .

used for the deviation of the detected lines from true lines 1s ¥ = ( 001061 4506 ) Fig-6(c)
shows the model instances hypothesized and passing verification after the recognition stage. 5000 probes
were tried. The threshold used for the existence of a segment was its pizel density over 0.7. With this
high threshold, after recognition stage, only one false alarm occurred (at the right lower corner of the
picture.) Fig-6(d) shows the final result after disambiguation.
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7 Discussion

The method described above does not assume any grouping of features, which is expected to greatly
expedite the recognition stage (at least for scene basis selection). Lowe [Lowe 87] first explicitly
discussed the importance of grouping to recognition. However, if reliable segmentation can not be
available, intelligent grouping seems difficult.

As we pointed out in the recognition stage that a large number N of triplets have to be probed
to detect all the objects. The following is a probability analysis of this operation, giving the order of
magnitude of N where available.

Let there be n lines in the scene, n = nj + ng, where ny lines are spurious. Let also there be k
models in the scene. Assuming that the degree of occlusion of each model is the same. Thus averagely
each model appearing in the scene has %t lines.

The probability of choosing a scene triplet which happens to correspond to a basis of a specific
model is

p= ()BT EDS

If we are to detect all £ model objects at once, in best case we have to probe only k triplets from
the scene. This happens when each time a triplet is probed, it happens to correspond to a basis of
a certain model and next time another triplet is probed, it corresponds to a basis of another model.
However, the probability for this to happen is p*, which is obviously small.

The probability of detecting exactly i different models after ¢ trials (i.e. among the ¢ trials,
t =14 + 1" i > i triplets cover bases of each of the 7 models and ¢/ triplets correspond to no bases of

any model) is
i = ( f ) ipt, i=0, ..k

We may derive the lower bound of ¢ by restricting p; > €, 0 < e < 1. We have
He—1)- (=it 1) > ¢/p (10)

Thus, ' _
t'>¢/p'ort > /e/p

The probability of at least j different models are detected is

j-1
G=1-> p
i=0

Let us consider some practical case to get an idea of the order of the magnitude of N.
For the special case when k = 1, i.e., there is only 1 model object embedded in the scene, the
probability of choosing a model basis is

77,1—1 711—2
N

)

n'"n-—1

e when half of the lines in the scene are spurious, p = (n —4)/8(n — 1);
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e when one third of the lines in the scene are spurious, p = 4(2n — 3)(n — 3)/27(n — 1)(n — 2);
e when there is no spurious lines in the scene, p = 1.

In a simple scene with only one model object embedded with n; = 10,
e when n = 20 with 10 spurious lines, p = 0.105. We need roughly try 10 probes.

e when n = 15 with 5 spurious lines, p = 0.264. We need roughly try 4 probes.

From this observation, we know that as long as there is only 1 (or few) object(s) in the scene, it is easy
to probe a feasible basis. Thus, a correct model feature can be easily indexed, even when model base
contains a lot of models. (Note that number of models in the model base is independent of probing a
scene basis.)

For a typical scene when k& =5 (i.e. 5 models appearing in the scene) and n; = 50 (i.e. averagely
each model object has 10 lines appearing in the scene)

e when n = 100 with 50 spurious lines, we have p = 0.000742;
e when n = 75 with 25 spurious lines, we have p = 0.001778;
e when n = 50 without spurious lines, we have p = 0.00612;

Note that p is just the probability of choosing a triplet belonging to a specific model appearing in the
scene. If we want to detect all k¥ = 5 models in ¢ trials with probability > 0.9, ¢ will be bounded from
buttom by 1322, 350 and 162 respectively, accroding to eq. (10).

In practice, we have to try more probes than theoretically predicted, because: (1) some triplets,
though corresponding to some model bases, are bad (e.g., too small, too big or too much perturbed)
bases and do not result in stable transformation that transforms model to properly fit scene object
to pass verification; (2) some triplets, though corresponding to none of model bases, happen to result
in false alarms which even pass the verification due to high noise. (However, we point out here that
statistically, false alarms of case (2) disperse their votes for different skewing factors, while correct
matches will accumulate their votes for the global skewing factor.)

It is obvious that the recognition stage can be trivially parallelized by assigning each basis to a
processing element in a parallel computer, since each basis can be processed independently.

Parallel realization of image processing algorithms has become more and more popular with the
advance of hardware techniques and the decrease of cost [Rosenfeld 87].

A possible candidate of parallel computer is the Connection Machine, which is equipped with
16 K — 64K processors (for model C'M-2). When the number of processors simultaneously needed
exceeded the maximum number of physical processors in the machine, the machine can operate in a
virtual processor mode. In this mode, a single processor emulates the work of several virtual processors,
by serializing operations in time and partitioning the local memory associated with that processor.

8 Future Work

Since the initial experiments have been successful, we will create more models and add them to the
model base in the future (this requires more memory and disk space). Experiments on real imagery
is currently under way.
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The transformation between a model object and its scene instance is uniquely determined by
the correspondence of their bases (corresponding pair of triplets of lines). By transforming and
superimposing the model onto the scene, we often find that despite the basis lines perfectly fit each
other, other lines do not mutually fit quite well. A scene object can have more than one basis being
probed. Theoretically, the affine transformations derived from different basis correspondences should
be the same. However, they are often slightly different, because noisy computation of the scene triplet
of lines. Knowledge of additional matching lines may help us improving the accuracy of the computed
transformation. We will have to formulate criteria of minimizing matching errors between sets of lines.

Another interesting aspect of the research direction is to investigate the methodology’s applica-
bility to recognizing 3-D objects from 2-D images, assuming the affine approximation to perspective
transformation. We will have to deal with the problem of the reduced dimension of the image space
compared with the model space.

9 Appendix

9.1 Appendix 1

In the following, we derive the closed-form formula of the perturbation of the invariant from the
perturbations of the quadruplet of lines giving rise to this invariant.

Theorem: Let X, Xo,..., X,, have a multivariate Gaussian distribution with vector u of means
and positive definite covariance matrix X. Then the momeni-generating function of the multivariate
Gaussian p.d.f. is given by
¢7
exp[tiu+

], for all real vectors of t

Corollary: Let YT = (Y1, Y3)s.t. Y = CX, where X¥' = (X}, X;5,..., X,)and C = ( 211 212
21 €22

a real 2 x n matrix. Then the random variable Y is N(Cu, CECT).
< proof :> The moment-generating function of the distribution Y is given by

M(0) = B Y) = B8 OX) = B @O

Apply the above theorem, we have

cTe)'s(c’t
M) = exp[(CTt) u+ ()2#]
tf(Ccuch)t
= eaplt? (Cu) + %}
Thus the random variable Y is N(Cu, CEC?) Q.E.D.

Let (A©,AR) and (A©;, AR;)i=1,2,3 be Gaussian stochastic variables denoting the perturbations
of (8,r) and (6;,r;)i=1,2,3 respectively.
Assuming that they have a fixed covariance matriz

o3 ogr
E = 2
Ogr o,
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and also assuming that (A®, AR) and (A®;, AR;);=1 2 3 are independent, we have that p.d.f.
p(AO, AR, AO;, ARy, AOy, ARy, AO3, AR3) is Gaussian. In particular,

p(A@, AR, A@l, ARl, A@z, ARQ, A®3, AR3)
= p(A@, AR) p(A@l, ARl) p(A@g, ARQ) p(A@g,, AR?,)

1 1
= (2 m)4exp[—§((A®,AR)E‘l(AG,AR)T—|—(A@l,ARl)E‘l(Ael,ARl)T+
™

(AOy, AR)YX"HAO,, ARy)T 4 (AO3, AR3) Y1 AO3, AR3)T))

1 1 T -1
= — exp[—=t' Tt
((%)4 flz,l) Pl 2 ]
where
t7 = (A®,AR,AO;,AR;,AOy, ARy, AO3, AR3)
o7 g 0 0 0 0 0 0
ogr o2 0 0 0 0 0 0
0 0 o o 0 0 0 0
o 0 0 o¢ o2 0 0 0 0
0 0 0 0 o oo 0 0
0 0 0 0 o o> 0 0
0 0 0 0 0 0 o op
0 0 0 0 0 0 o o2

Let (A@I,ARI) be the stochastic variables denoting the perturbations of the computed invariant

(01,7“’). Suppose
A©’
( AR’ ) =Ct
where

c = €11 €12 €13 Ci14 Cis5 Cis C17 Ci138
C21 C22 C23 C24 Ca25 Cas Ca7 (28

From the above corollary, we have that (A©’, AR') also has a Gaussian distribution with p.d.f.

PAO,AR) = — - capl- L (A0 ARYS1(AQ, ARY]
27 /| 2" 2

where

¥ = cx'c’
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(¢t + 013 + C15 + 617)‘79
(012 + Cl4 + 016 + 618)0 +
2(e11¢12 + €13¢14 + C15¢16 + €17C18)T0r

2
(c11€21 + c13¢23 + c15¢25 + c17¢a7)05+

2
(c12€22 + c14¢24 + c16C26 + C18C28)07+

(c11¢21 + c13Ca3 + c15¢25 + €17 027)09—1-
(c12¢22 + €14C24 + c16C26 + ClSCQS)UT‘i‘
(c11¢22 + c13C24 + €15¢26 + C17C28+
c12€21 + €14¢23 + C16C25 + C18¢27)06r

2 2 2 2\ 2
(651 + 653 + Cgs + 037)‘73“'
(€3 + €34 + C36 + c5) 0+

2(ea1¢22 + c23¢24 + Ca5c26 + C27C28) 00,

(c11€22 + c13¢24 + c15¢26 + C17C28+
€12¢21 + €14C23 + C16C25 + €15C27)00r

is the covariance matrix of (A©®', AR').

9.2 Appendix 2

Given the correspondence between pairs of triplets of lines in general position, the affine transformation
T = (A,b), where A is a 2 X 2 non-singular skewing matrix and b is a 2 x 1 translation vector, can
be uniquely determined such that T maps the intersection points of the first triplet of lines to their
corresponding intersection points of the second triplet of lines.
Let the first triplet of lines be (6;,7;)7 and the second triplet of lines be (GZ,T’Z) ,1=1,2,3. We
have the closed-form formula for T = (A,b) as follows:
ari aiz )
—a22

1
A = —
det < —a21
_ 1
T det by
where
sin 62 r; sin ;) + 1)+
cos 0 csc(@ — 03)sin(fz — 03 r sm@ — r3 sin 0. 5) +
cos 05 csc(@ — 611 sin(fs — 04 r3 smH — rl sin 0. 3)
as; = cosbscsc sin(f#; — 05  cos 62 — 7'2 cos 61) +
sin(fy — 03 r2 cos 93 - r3 cos 92) +

)(ry
)y
)
)(ry
)
)
)
)y
)
)
)
)

(0, =0,
cos 6 csc(92 9;)
(03 — 6,

cos By csc(f3 — 60) sin(fs — 61 r3 cos 61 — 7'1 cos 63)
a1s = sinfs csc(6’l1 6’ sin(#y — 04 7'1 sin 02 — rz sin 6, 1)+
sin 04 csc(ﬂl2 9;} sin(#, — 05 7. sin 6 r3 sin 0. 5) +
sin 0y csc(@é 6’11 sin(f3 — 0, r3 sin 61 - 7“1 sin 6’3)
ass = sinfs csc(6’l1 6’12 sin(f; — 04 7'1 cos 02 - rlz cos 91) +
sin 64 csc(zg; 9; sin(fy — 03 7’2 cos 93 - r; cos 9;) +
sin 0y csc(@é 911 sin(f3 — 0, 7'3 cos 61 - rll cos 9;)



by = r3 csc(é?l1 - 9;) sin(f; — 02)( sin 6, — rysin 911) +
ry csc(é’l2 ;) sin(fy — 93)(7’ sin 67’ — 7’; sin 0,) + ) +
2 csc(ﬂé ,1) sin(f3 — 91)(7’3 sin 91 - 7'1 sin 93)
by = r3 csc(é?l1 - 9;) sin(f; — 92)(7' cos 92 7’2 cos 0 1)+
1 CSC(GIQ - 6;) sin(fy — 93)(7’2 cos 93 - r3 cos 62) +
9 csc(ﬂé 67,1) sin(f3 — 91)(r3 cos 6’1 - 7‘1 cos 63)
det = rysin(fy — 03) + reosin(fs — 01) + rzsin(f; — 02)

Given the correspondence of the basis lines of a model object and its scene instance, we can use the
above formula to transform the boundary points of the model object onto the scene for verification.
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