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Abstract

We consider the issue of shape approximation in kinematic mechanical systems; that is, sys-
tems of rigid solid objects whose behavior can be characterized entirely in terms of the constraints
that each object moves rigidly and that no two objects overlap, without considering masses or
forces. The general question we address is the following: Suppose we have calculated the behav-
ior of some kinematic system using ideal descriptions of the shapes of the objects involved. Does
it then follow that a real mechanism, in which the shape of the objects approximates this ideal
will have a similar behavior? In addressing this question, we present various possible defini-
tions of what it means (a) for one shape to approximate another and (b) for the behavior of one
mechanism to be similar to the behavior of another. We characterize the behavioral properties
of a kinematic system in terms of its configuration space; that is, the set of physically feasible
positions and orientations of the objects. We prove several existential theorems that guarantee
that a sufficiently precise approximation of shape preserves significant properties of configuration
space. In particular, we show that

o It is often possible to guarantee that the configuration space of system A is close to that of

system B in terms of metric criteria by requiring that the shapes of A closely approximate
those of B in terms of the dual-Hausdorff distance.

e It is often possible to guarantee further that the configuration space of A is topologically

similar to that of B by requiring that the surface normals are close at corresponding bound-
ary points of A and B.

In geometric computations for practical purposes, it is often desirable to use an approximation
to the true shape. First, approximating a complex shape by a simpler one may substantially reduce
computation costs (e.g. [Fleischer et al., 92]). Second, in many cases, the true shape cannot be
fully determined. For example, it may not be possible to measure the shape with sufficient accuracy,
or the shape may be an ideal to be manufactured using a process with some error tolerance, and
so on (e.g. [Joskowicz and Taylor, 94], [Requicha, 83]). (Note that in this second category, the
immediate question, “How can the approximation be computed from the exact shape?” does not
arise; the approximation is given.) In such cases, it is important to know whether answers to problems
computed using the approximations apply to the true situation.

In this paper, we consider the issue of shape approximation in the context of kinematic mechanical
systems; that 1s, systems of rigid solid objects whose behavior can be characterized entirely in terms
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of the constraints that each object moves rigidly and that no two objects overlap, without considering
masses or forces. As shown by Joskowicz and Sacks [1991], a large number of mechanical devices
of practical importance fall into this category. The general question we address is the following:
Suppose we have calculated the behavior of some kinematic system using ideal descriptions of the
shapes of the objects involved. Does it then follow that a real mechanism, in which the shape of the
objects approximates this ideal will have a similar behavior?

To address this question, we must define what it means (a) for one shape to approximate another
and (b) for the behavior of one mechanism to be similar to the behavior of another. As regards (a),
we will consider two general criteria of shape approximation. The first, in terms of the dual-Hausdorff
distance, considers shape A approximates B if every point in A is close to a point in B and vice
versa, and every point outside A is close to a point outside B and vice versa. The second criterion,
called “approximation in tangent”, adds the further requirement that the tangents at corresponding
points on the boundaries of A and B are close.

In addressing (b) above, we will characterize the behavioral properties of a kinematic system in
terms of its configuration space; that is, the set of physically feasible positions and orientations of
the objects. Thus, for the purposes of this paper, we will consider the behavior of two mechanical
systems to be “similar” if their respective configuration spaces are close. Again, we will consider
several different possible criteria of “closeness” between two configuration spaces; which, if any, of
these 1s appropriate in a given circumstance depends on the particular application and the question
being addressed.

Thus, we can reword the general question posed above: If the shapes of one system approximate
those of another system, is the configuration space of the first close to the configuration space of the
second, under the various definitions of “approximation” of shape and “closeness” of configuration
space? In this paper, we shall prove several existential theorems that guarantee that a sufficiently
precise approximation of shape preserves significant properties of configuration space. In particular,
we show that

e It is often possible to guarantee that the configuration space of system A is close to that of
system B in terms of metric criteria by requiring that the shapes of A closely approximate
those of B in terms of the dual-Hausdorff distance.

o It is often possible to guarantee further that the configuration space of A is topologically similar
to that of B by requiring that the shapes of A approximate those of B in tangent.

1 Regions and mappings

We write “d(p, q)” to denote the Euclidean distance between points p and q.

Definition 1.1: A regular region is a subset of R" that is non-empty, bounded, and equal to the
closure of its interior.

Definition 1.2: The distance between two regions d(A,B) is defined, as usual, as the minimal
distance between the two.

d(Aa B) = inprA,qEB d(P7 q)

Definition 1.3: Two regions overlap if their interiors have a non-empty intersection. The degree
of overlap of regions A and B, denoted “o(A,B)” is the radius of the largest sphere contained in
ANB.



Lemma 1.1: Regular regions A and B overlap iff o(A, B) > 0. If regular regions A and B overlap,
then d(A,B) = 0, but not conversely.

Proof: Immediate. L

Definition 1.4: We define three distance functions on regions. The Hausdorff distance from A to
B is defined as the maximum of either the maximal distance from a point p € A to B or the maximal
distance from a point q € B to A.

dg (R, S) = max(sup inf d(p, q), sup inf d(p, q))
qeS PER pERYES

The complement-Hausdorff distance from A to B, denoted “dg.(A,B)”, is the Hausdorff dis-

tance between the complements of A and B. The dual-Hausdorff distance from A to B, denoted

“dpq(A,B)”, is the maximum of the Hausdorff distance and the complement-Hausdorff distance.

Lemma 1.2. The Hausdorff distance, the complement-Hausdorff distance, and the dual-Hausdorff
distance, are all metrics over the space of regular regions.

Proof: Straightforward. 1

These three metrics define three different topologies on the space of regular regions. The dual-
Hausdorff distance is strictly finer than the other two; the Hausdorff and complement-Hausdorff are
incomparable. Therefore, if a function is continuous over the topology defined by the Hausdorff
distance or over the topology defined by the complement-Hausdorff distance, it is also continuous
over the topology defined by the dual-Hausdorff distance.

Lemma 1.3: For any regular regions R, R’ S, S/,
d(R,S) < d(R/,S) + dg(R',R) + du (S, S)

Proof: Straightforward. 1

Corollary 1.4: The distance function “d(A,B)” is a continuous function over the space of regular
regions using the Hausdorff metric.

Lemma 1.5: For any regular regions R, R’ S, S/,
o(R,8) < o(R/,S’) + max(dgy.(R/,R), du.(S', S))

Proof: Let O be a sphere of radius o(R,, S) contained in RN S. Any point in the complement of
R’ must lie within dg.(R’, R) of the complement of R. Hence any point in O — R’ must lie within
dme(R/,R) of the boundary of O. Similarly, any point in O — S’ must lie within dg.(S’, S) of the
boundary of O. Hence the sphere concentric with O of radius
o(R,S) — max(dy.(R',R), dp.(S’,S)) must contain no points in the complement of R’ N S’. So
o(R’,S’) must be at least o(R, S) — max(dg.(R',R), du.(S',S)). 1

Corollary 1.6: The overlap function “o(A,B)” is a continuous function over the space of regular
regions using the complement-Hausdorff metric.

Remark: The overlap function is not a continuous function of regions using the Hausdorff metric.
For example, in figure 1, both combs A and B are close to R in the Hausdorff metric, but o(A,B) =
0, while o(R, R) is large. Note that A and R are not close in the complement-Hausdorff metric. The
standard distance function between regions is not continuous over the complement-Hausdorff metric;
the example is analogous. The distance between two regions and the Hausdorff distance between
them are invariant under the operation of taking the closure of the argument, but not under the
operation of taking the interior. The overlap and the complement-Hausdorff distance are invariant
under the operation of taking the interior, but not under the operation of taking the closure.
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R=AUB
The Hausdorff distance from R to A is roughly half the width of a tooth.
The complement-Hausdorff distance from R to A is half the height of R.

Figure 1: Hausdorff and complement-Hausdorff distances

Definition 1.5: A placement is a pair (R, M) of a regular region R and a rigid mapping M. Intu-
itively, R is the region occupied by an object in some standard position, and M is the displacement
of the object from that standard. Thus, in placement (R, M) the object occupies position M (R).

Definition 1.6: Let P, = (R, M;) and P, = (R, M2) be placements over the same region R. The
placement distance between P; and Ps is defined as the maximal displacement of any point in R, in
going from M; to M.

1(Py, P2) = maxper d(Mi(r), Ma(r))

Lemma 1.7: For any fixed regular region R, the function 1((R, M), (R, M2)) has the following
properties:

A I((R, My), (R, M3)) is a metric on the space of placements over region R.

B. I({R, M;), (R, Ms3)) is invariant under change of coordinate system and under inversion. That
is, let T" be a linear mapping; and let MZ-_1 be the inverse of M;. Then

I(T(R), My), (T(R), Ms)) = 1((R, My o T), (R, M3 o T)).
(R, M), (R, M2)) = 1((R, M "), (R, M3 "))

Proof: Immediate. L

Though the metric 1({R,, M1), (R, M2)) depends on the region R, the topology generated on the
space of mappings is independent of R..

Lemma 1.8: For any placements (R4, Ma1), (Ra, Ma2), (Rp, Mp1), (Rp, Mps), we have

d(Ma1(Ra), Mp1(Rp)) <
d(Maz(Ra), Mp2(Rp))+ 1((Ra, Ma1), (Ra, Mas)) + 1((Rp, Mp1), (Rp, Mp2))
o(Ma1(Ra), Mp1(Rp)) <
o(Maz2(Ra), Mp2(Rp)) + 1((Ra, Ma1), (Ra, Ma2)) + 1((Rp, Mp1), (Rp, Mp2))

Proof: Straightforward. 1



Corollary 1.9: For fixed regular regions A, B, R the functions d(M; (A), M3(B)) and o(M7(A), M2(B))
are continuous functions of M; and My relative to the metric I((R, M1), (R, Ma2)).

Proof: Immediate from Lemma 1.8. 1

It is of some interest to define a metric over the space of all placements with the symmetry
properties described in lemma 1.7. This can be done in the following steps:

Lemma 1.10: For any two regular regions A, B and mappings M1, Ms,
1(<A’ M1>’ <A: M2>) < 1(<B’ M1>’ <B’ M2>) + QdH(A’ B)

Proof: Let a be any point in A and let b be the nearest point to a in B. Then
d(Mi (a), Ma(a)) < d(Mi (a), My (b)) + d(My (b), Ma(b)) + d(Ma(b), Ma(a)) <
dg(A,B) + 1((B, M1), (B, M3)) + du (A, B).

Taking the maximum over a € A gives the result. 1

Definition 1.7: The raw distance from placement Py = (Ry, M) to P» = (Ra, M) is defined as
the sum of twice the dual-Hausdorff distance from R; to Rs plus the placement distance between
mappings M; and My over domain Ry U R..

Praw ((R1, M1), (Ra, M2)) = 2dg4(R1, R2) + 1((R1 URs, M1)(Ry URs, My))

Lemma 1.11 Over the space of placements with compact domains, the function p,,, has the fol-
lowing properties:

A. Tt is non-negative, and equal to zero iff P, = P».

B. It is symmetric.

C. It is invariant under linear transformations and inversion.

D. p,gw ((R1, M1), (R1, M>)) > 2dgq(Rq1, Ra)

E. Praw ((R1, M1), (R1, M3)) > 1((Ry, M), (R, M2))

Proof: Immediate from the definition and lemma 1.7. 1
However, p,,,, does not obey the triangle inequality. This can be fixed as follows:

Definition 1.8: The placement distance from placement Py = (R, M4) to Pp = (Rp, Mp) is
defined as the minimum over all sequences of the form Py = Pa, Py, Ps... P, = Pp of the sum
praw(POapl) + praw(Pl’ PQ) +...+ praw(Pk—la Pk)

k
Pai, Pg) = inf P_1, P
p(Pa, Pg) . . z;me( i1, P;)
1=

Theorem 1.12: The function p(Py, P3) is a metric on the space of all placements with regular
domains. Moreover, it satisfies properties (C), (D), and (E) of lemma 1.11.

Proof: Symmetry and invariance under linear transformation and inversion follow immediately
from lemma 1.11 and the definition. The triangle inequality follows from the construction of definition
1.8; the triangle inequality always holds on the shortest path from A to B. Property (D) holds from
the fact that, for any sequence Py... Py,

k k
Epmw(Pi—h B > ZQde(Pi—la P;) > 2dpa(Po, Pr)
i=1 i=1



where the second inequality follows from the fact that the dual-Hausdorff distance obeys the triangle
inequality.

Property (E) is established as follows: Let Py = (Rg, Mg),... Py = (Rk, Mi) be any series of
placements from Py to Pg. For each placement P; in this series, we define the cost function Cost(P;)

= 1(<RZ, Mi), <Ri; Mk>) Now

COSt( Z+1) + praw(PZ’ PZ+1) =

1(Rip1, Mig1), (Rigp1, M) + 2dpa (R, Rig1) + 1 ((R; UR 1, M) (R, UR 41, Migq)) >
I(Rip1, Miga), (Rig1, Mi)) +2d g (Ri, Rig1) +1((Ri, M;)(Ri, Miy1)) > (by lemma 1.10)
IRy, Mip), (Ri, Mi)) + 1((Ri, Mi)(Rs, Mip1)) > (by lemma 1.7A)

(R M3, (Ri g1 My)) = Cost (P

Since Cost(Py)=0, it follows that Cost(Py) = 1(Py, Pi) < Ele Praw (Pi, Pi—1). Since this holds for
every series from P4 = Py to Pp = Py, it follows that p(Pa, Pg) > (P4, Pg). 1

Definition 1.8 is non-constructive, and I do not have any strong constructive feeling for the
function p(Py, P2), nor any idea how to compute it. T do not even know whether there is, necessarily,
a least cost sequence for definition 1.8, nor how long it can be. My hunch is that the minimal cost
can be achieved with a quite short sequence (possibly as low as & = 2 or £ = 3) but T have no proof.

2 Configuration space

We will indicate the ith component of a tuple V' as V[i], reserving subscripts to distinguish different
tuples.

Definition 2.1: A display is a k-tuple of regular regions. Intuitively, these are the shapes of k
objects. Hence, we will often refer to the indices 1...k as “objects”.

Definition 2.2: A display D' is a contraction of display D if, for i = 1...k, D'[{] C D[i]. D' is an
ezxpansion of D if D is a contraction of D’.

Definition 2.4: A configuration is a k-tuple of rigid mappings C'. Intuitively, these are the displace-
ments of each object from its standard position as given in a display. The configuration space on k
objects 1s the set of all such k-tuples.

Definition 2.5: A scenario is a pair of a display and a scenario, or, equivalently, a tuple of place-
ments. If (D, C') is a scenario, then, slightly abusing notation, we will write C D[i] for C[i](D[:]), the
region occupied by the ith object in the scenario.

We extend the metrics dg, dge, dgg to displays and the metric p to scenarios by taking the max
of the function over indices. That is, p(z, y) = max; u(z[é], y[7]), where y is one of the above functions
and x and y are displays or scenarios.

For any display D, we define the metric p” over configurations as p” (C1, Cs) = p({D, C1), (D, C3)).

The clearance of a scenario is the minimal distance between places of two different objects in the
scenario. The mazimal overlap of a scenario is the maximal overlap of two different objects in the
scenario.

clearance(D, C') = min;x; d(CD[] CD[j])
overlap(D, C') = max;z; o(CDl[i], CD[j])

Lemma 2.1: Let D and D’ be two displays. Then for any configuration C|,



clearance(D, C) < clearance(D',C) + 2dy (D, D').
overlap(D, C) < overlap(D',C) + dg.(D, D').

Proof: Immediate from lemmas 1.3 and 1.4. I

Definition 2.5: A scenario (D,C) is feasible if overlap(D,C) = 0. (D,C) is contact-free if
clearance(D,C) > 0. (D,C) is forbidden if overlap(D,C) > 0. For any display D, the set of
configurations C' such that (D, C) is feasible is denoted “free(D)”; the set of configurations C' such
that (D, C) is forbidden is denoted “forbidden(D)”; the set of configurations C' such that (D, C) is
contact-free is denoted “cfree(D)”; and the set of configurations C' such that (D, C') is not contact-free
is denoted “contact(D)”.

We now generalize the Hausdorff construction to define a distance function over subsets of any
metric space.

Definition 2.6: Let x4 be a metric over space 0. Let S and 7 be subsets of (. Then the function
ur (S, T) is defined as

p (S, T) = max(sup, s infeer pi(s, 1), supyer infaes p(s, t))

Thus, the domain of gz is 2€ x 29 and the range is the non-negative reals union infinity. It is easily
verified that pg is a metric over the space of closed subsets of O (in the extended sense of “metric”
that allows infinite values.)

In particular, applying the Hausdorff construction to the metric p” on configurations gives a
metric p& over the space of closed regions in configuration space.

Theorem 2.2: For any displays D, D', p5 (forbidden(D) forbidden(D')) < dg (D, D).

Proof: Let C be a configuration in forbidden(D). Then there exist objects I # J and points p, q
such that p €interior(D[I]), q €interior(D[I]), and C[I](p) = C[J](q). By definition of the Hausdorff
distance between the two displays, there must exists points p’ €interior(D’[]) and q’ Einterior(D'[J])
such that d(p,p’) < dg(D,D’) and d(q,q’) < du (D, D').

Let T[I] be the translation mapping point x to x+C[7](p)—C[7](p’) and let T[J] be the translation
mapping point x to x+ C[J](q) — C[J](q’). Let C’ be the configuration such that C'[I] = T[I]o C[I];
C'[J] = T[J] o C[J]; and C'[K] = C[K] for K # I,J. Then C'[I](p’) = C'[J](d'), so C" €
forbidden(D’). Also, clearly, p(C,C’) < max(d(p,p’), d(q,q’)) < dg(D, D).

Thus every configuration in forbidden(D) is within d gz (D, D') of some configuration in forbidden(D'),
and vice versa, by symmetry. The Hausdorff distance from forbidden(D) to forbidden(D') is therefore
at most dg (D, D). L

Thus, to calculate the forbidden space of a display to an accuracy ¢, it 1s at worst necessary to
use shape approximations of accuracy e. The forbidden space is a continuous function of the shapes
of the objects involved, and the maximum ratio of the change in space to the change in shape is 1.

The same applies to contact space.
Corollary 2.3: For any displays D, D', p&(contact(D),contact(D')) < dg (D, D).

Proof: Because the shapes in the display are required to be regular, the space contact(D) is
the closure of the space forbidden(D), and the Hausdorff distance between the closure of two sets is
equal to the Hausdorff distance between the sets. 1

Unfortunately, this result does not apply to the free space, which is usually more important than
the forbidden space. Free space is discontinuous under small changes in shape. The most we can say
is the following:



Starting from any display, a sufficiently small shrinkage in the object shapes, as measured
in the complement-Hausdorff distance, gives rise to a small expansion of free space. That
is, the free space of a display can be approximated arbitrarily accurately by using a suffi-
ciently precise (in the sense of complement-Hausdorff distance) inscribed approximation
of the shapes.

Starting from any display, a sufficiently small expansion in the object shapes, as measured
in the Hausdorff distance, gives rise to a small shrinkage of contact-free space. That is,
the contact-free space of a display can be approximated arbitrarily accurately by using
a sufficiently precise (in the sense of Hausdorff distance) circumscribed approximation of
shape.

The remainder of this section formalizes and proves these claims. First we need a few definitions and
lemmas:

Definition 2.3: A function f(D) from the space of displays to a topological space O is inward
(outward) continuous if the following holds: Let D be a display, and let U be a neighborhood of
f(D) in O. Then there exists a neighborhood V of D, such that, for every D' € V| if D' is a
contraction (expansion) of D, then f(D') € U. Intuitively, if f is inward continuous and you shrink
all the shapes in D by a small amount, then you remain close to f(D). If f is outward continuous
and you expand all the shapes in D by a small amount, then you remain close to f(D).

Lemma 2.4: The functions “free(D)” and “cfree(D)” are monotonically non-increasing. That is, if
D' is an expansion of D, then free(D') is a subset of free(D) and cfree(D’) is a subset of cfree(D).

Proof: Immediate. 1

Lemma 2.5: Let U be a compact metric space with metric u. Let f be a non-negative continuous
function over U. Then for any € > 0 there exists a § > 0 such that, for all X, if f(X) < § then there
exists a Y such that u(X,Y) < e and f(Y) = 0. That is, any X with a very small value of f lies
close to some Y where f = 0.

Proof: Let B={Z7 €U |3y f(Y)=0Apu(7,Y) < ¢} and let U’ = U — B. That is, B is all
points within € of some zero of f, and U’ is the complement of B in U. Clearly, B is open, so U’ is
compact. Therefore, f attains a minimum value § > 0 on U’. This § then satisfies the condition of
the lemma. 1

Lemma 2.6: Let D be a display, and let U be a compact region of configuration space. For any
€ > 0 there exists a d > 0 such that, for every display D', if dg.(D, D') < § then any configuration
in free(D’') N U is within € of some configuration in free(D).

Proof: For any display D and configuration C, let overlapD(C’) = overlap({D, C')). By lemma
2.1, if C" efree(D’) and dg.(D,D') < &, then overlap” (C') < §. Applying lemma 2.5, with f(z)
being the function overlap” and with p being the metric p”, we infer that we can choose d so
that, for any C' in free(D) N U, if overlapD(C") < § then there exists a configuration C' such that
p?(C,C") < ¢ and overlapD(C') =0, so C efree(D). 1

If T"and C' are two configurations, we will write “T"o C” to mean the configuration

(T[]0 C[1],. .., TTk] o C[k]).

Definition 2.7: Let f be a function over configuration space; let U be an open region in configuration
space; and let T" be a tuple of rigid mappings. We say that T preserves f over U if for every
configuration C' € U, f(T o C) = f(C).

Definition 2.8: Let D be a display in n-dimensional space. Let A = Zle (diameter(D[7]) + 3).
The basic configuration region of D is the set of all configurations C' such, for every i, CDJ[i] lies

inside the box [0, A]™.



Lemma 2.7: The basic configuration region of D is compact.

Proof: A rigid mapping on n-dimensional Euclidean space can be expressed in a standard way as
an (n+1)? matrix. Hence, a configuration on a k-object display D can be viewed as a k-(n+1)? vector
dimensional vector and the configuration space as a whole is a kn(n — 1)/2 dimensional manifold of
such vectors. It is easily verified (a) that the standard topology over the manifold is the same as the
topology defined by the metric p” (C, Cs); (b) that a set of configurations is bounded in the manifold
if and only if it is bounded relative to the metric p? (Cy, C3); (c) that the basic configuration region
is closed and bounded relative to the metric p?(Cy,C3). Hence, the basic configuration region is
closed and bounded in the manifold; hence it is compact. I

We now define two functions over configuration space. '’ (C') maps each configuration C' into the
basic configuration region, in a way that preserves the relative position of nearby objects. ©F(C) is
the tuple of rigid mappings such that ©F (C) o C = TP (C).

Definition 2.9: Let C be any configuration over display D. We say that C' has a gap in direction
i from A to B, A < B if

e There is an object I such that maximal coordinate of C'D[I] in the @ direction is equal to A;

e There is an object J such that minimal coordinate of C'D[J] in the u direction is equal to B;
and

e There is no object containing any point whose u coordinate is between A and B.

The size of this gap is B — A.

Definition 2.10: Let C be any configuration over display D. We define the configuration @7 (C)
using the following algorithm: In each coordinate direction %, we begin by translating the whole
configuration so that the lowermost point in the 4 direction in the scenario has coordinate 1. We
then look for gaps [A, B] of size greater than 3. We reduce any such gap to being of size exactly 3 by
translating all the objects above the gap by a distance B —(A+3), while leaving all the objects below
the gap where they are. We repeat until all such gaps are eliminated. We carry out this procedure
in the z, g, and Z directions. When all this is complete, the final configuration is FD(C’) and the
combined transformations give © (C). Table 1 displays this algorithm in pseudo-code. It is easily
seen that this procedure gives a unique result; in particular, that the result does not depend on the
order in which gaps are reduced or coordinate directions are considered.

Definition 2.11: The function “bclearD(C)” is defined as min(clearance(D, C),1).
Lemma 2.8: The functions I'?(C) and ©F (C) have the following properties:

a. TP(C)=0P(C)oC.
b. Both FD(C) and O (C) are continuous functions of C.

c. If two objects are within distance 3 in C' then their relative position is the same in TP (C) as
in C.

d. The distance between two objects is greater than or equal to 3 in C' if and only if it is greater
than or equal to 3 in ['?(C).

e. TP((C) is in the basic configuration region, a distance 1 from the boundaries of that region.

f. Let U be the open ball of radius 1 around C' in configuration space. Then the function
MC")(©P(C)) o C" maps U into the basic configuration region and it preserves the functions
overlap™ and bclear™ over U.



(1) begin T = the k-tuple of identity mappings;

(2) for @ in {#,y,%} do /* u loops over the coordinate directions */

(3) begin let L be the minimum coordinate over all objects
of the @ coordinate of TC' D[I];

(4) let W be the configuration all of whose elements are the translation
MP)(P + (1 - L)a);

(5) T:=WoT;

(6) loop let [A, B] be any gap in 7'(C) in the @ direction of size > 3;

(7) if there is no such gap, exitloop

(8) else let W be the configuration defined as follows:

(9) forI=1...K do

(10) if TC[I](D[I]) has % coordinates less than A

(11) then W{I] is the identity

(12) else W[I] is the mapping A(V)(V — (B — (A + 3))4);

(13) T:=WoT;

(14) endloop

(15) end

(16) eP((C) =T;TP(C)=ToC

(17) end.

Table 1: Computing O (C)

Proof:

a. Immediate by construction.

b. Within a space of configurations all of which have the same system of large gaps (gaps of
size greater than 3 in the same coordinates between the same objects), the continuity of ©F
is immediate. Moreover, in any such space, as the size of a particular gap approaches 3,
the transformation associated with closing the gap approaches the identity, which is its value
once the size of the gap becomes 3. Thus ©F is continuous. The continuity of T'P follows
immediately.

c. If two objects are within distance 3 in C', then there cannot be any large gaps between them.
Hence, all the intermediate transformations W move them together, thus preserving their rela-
tive position.

d. If the two objects are originally on opposite sides of some large gap, that gap will be reduced
to size 3, so they are still on opposite sides of a gap of size 3, and hence at least 3 apart. If
they were distance 3 apart but not on opposite sides of any gap in C', then the transformations
will move them together, their relative positions will be unchanged, and their distance will be
unchanged. The converse argument hold the same way.

e. The range from the minimal coordinate of any point in any object in the z direction in T'?(C)
to the maximal coordinate is at most the sum of the diameters of the objects plus 3 times K — 1,
where K is the number of objects. Proof: Order the objects by increasing order of their lowest
z coordinate. The lowest z coordinate of object .J is at most 3 greater than the maximal z
coordinate of some preceding object I < J, and hence at most 3 + diameter(D[I]) greater than
the minimal z coordinate of I. Moreover, the objects are placed so that the minimal coordinate
in each direction is 1. Therefore, all the objects in TP (C) lie in the box [1, A — 1]3. Thus,
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['P(C) lies in the basic configuration region, as does any configuration within distance 1 of

r2(C).

f. The fact that U is in the basic configuration region is immediate from (e¢). The fact that
overlap” and belear” are preserved is immediate from (c) and (d).

Lemma 2.9: Let D be a display. For any € > 0 there exists a § > 0 such that, for every display
D', ifdgc (D, D') < ¢ then any configuration in free(D') is within ¢ of some configuration in free(D).
(This is the same as lemma 2.6, but with the restriction to a compact region dropped.)

Proof: Let ) be the basic configuration region of D. TLet ¢ > 0. Let dg be chosen to satisfy
lemma 2.6 for the value min(e, 1), and let § < min(dg, 1, min ;dg.(D[i],d)). (The complement-
Hausdorff distance from a region D[i] to the empty set is well-defined and finite; it is equal to the
radius of the largest circle that can be inscribed in D[i].) Let display D’ be then chosen so that
dga(D,D') < ¢ and let C' €free(D’). Let E be the display such that E[i] = D'[{] N D[i]; then clearly
C' efree(E). Tt is immediate that dg.(E, D) < dp.(D’, D) < ¢. EJi] is non-empty, because of the
constraint that § < dg.(D[i],0).

Let U be the ball of radius 1 around C’. By lemma 2.8, any two objects in E that do not overlap
in C’ also do not overlap in ['?(C"), so T'P(C') &free(E). By lemma 2.6, there is a configuration
C) €free(D) such that p?(Cy,C’") < min(e, 1). Thus, C; € OP(C) o U. Let C = (0P (C"))~1 o Cy.
Then since C € U, ©P(C') preserves overlap” on C, and hence C Efree(D). 1

Theorem 2.10: The function “free(D)”, mapping a display to a region in configuration space, is
inward continuous, using the metric dg. on displays and the metric py on regions of configuration
space.

Proof: What this says, unwrapping the definitions, is that, if D’ is a contraction of D and is
close enough to D in the complement-Hausdorff metric then

a. Every configuration in free(D) is close to some configuration in free(D’). This is trivial, since
free(D) is a subset of free(D’) (lemma 2.4).

b. Every configuration in free(D’) is close to some configuration in free(D). This is lemma 2.9.

Lemma 2.11: Let U be a compact metric space with metric g and let f be a continuous, real-valued
function over U. Then, for any ¢ > 0, there exists a § > 0, such that every point X € U where
F(X) > 0 is within € of a point Y where f(Y) > 4.

Proof: Fix a value ¢ > 0. For any d > 0, define the set Qs = {V | Ix f(X) > I A pu(X,Y) < €}.
Thus, for any b < a, Qp D Q4. Let W be the closure of the set {X | f(X) > 0}; then clearly
Uss>0®s D W. Since W is compact, there must be a finite subcover of W, Qs1, Qs2...Qsx. Choosing
d to be the smallest of these d;, we infer that Qs D W, which is the desired result.

Lemma 2.12: Let D be a display, and let U be a compact region of configuration space. For any
€ > 0 there exists a § > 0 such that, for every display D', if dg (D, D') < § then any configuration in
cfree(D) N U is within ¢ of some configuration in cfree(D’).

Proof: Applying lemma 2.11, with f(z) being the function belear” and with 1 being the metric
p?, we infer that we can choose § so that, for any C in cfree(D) N U, since belear? () > 0,
there exists a configuration C’ such that p?(C,C’) < € and belear” (C') > §. By lemma 2.1, if

bclearD(C') > d and dg (D, D') < 6, then bclearDl(C”) > 0, so C' cfree(D'). 1
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Lemma 2.13: Let D be a display. For any € > 0 there exists a § > 0 such that, for every display D',
if dgr (D, D') < § then any configuration in cfree(D) is within € of some configuration in cfree(D’).
(This is the same as lemma 2.12, dropping the restriction to a compact region of configuration space.)

Proof: The proof is exactly analogous to the proof of lemma 2.9 (in fact, slightly simpler):
Start with any configuration C' €cfree(D). Use lemma 2.8 to find the mapping O (C) taking C
into the basic configuration region. Use lemma 2.12 to find a configuration to find a configuration
Cy Ecfree(D') within ¢ of TP (C). Then mapping back C' = (O (C)) 1o} gives the desired answer.
1

Theorem 2.14: The function “cfree(D)”, mapping a display to a region in configuration space, is
outward continuous, using the metric di on displays and the metric py on regions of configuration
space.

Proof: Unwrapping the definitions, this says that, if D’ is an expansion of D and is close enough
to D in the Hausdorff metric then

a. Every configuration in cfree(D) is close to some configuration in cfree(D’). This is lemma 2.13.

b. Every configuration in cfree(D’) is close to some configuration in cfree(D). This is trivial, since
cfree(D’) is a subset of cfree(D) (lemma 2.4).

If free(D) space is equal to the closure of cfree(D), which is true for almost every display D, we
can allow both expansion and contraction as long as the dual-Hausdorff distance is small.

Theorem 2.15: If free(D) is the closure of cfree(D), then both free(-) and cfree(-) are continuous in
a neighborhood of D using the metric dgr4 on displays and the metric py on regions of configuration
space.

Proof: Immediate from lemmas 2.9 and 2.13. 1

3 Paths

For most purpose, what is significant about a system of rigid objects is not so much the shape of
the space of free configurations as the nature of the set of paths through that space, and systems are
similar to the extent that the sets of free paths are similar. However, there is more than one possible
measure of closeness in terms of the paths through a given space. For example, we might say that
spaces S and T are close if

(1) The trace of every path through S is close, in terms of Hausdorff distance, to a path through
T, and vice versa.

(2) Any path through S can be tracked closely by a path through 7', and vice versa.

(3) Say that points s € S and t € T correspond closely if any path p starting at s can be tracked
closely by a path ¢ starting at ¢ and vice versa. Say that S and T are close if every point s € S
has a closely corresponding point ¢ € T" and vice versa.

Taking (0) to be the criterion that the Hausdorff distance from S to T is small, it is immediate
that (3) implies (2) implies (1) implies (0). Figures 2 -4 illustrate that none of the reverse implications
hold. In figure 2, the two free spaces are close in the Hausdorff distance, but paths in A that go from
bottom to top are not close in Hausdorff distance to any path in B. In figure 3, the trace of any path
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X X

In A, the configurations where the ball is on top and those where it is on the bottom are in a single
connected component of free space. In B, they are two separate connected components.

Figure 2: Free space vs. path traces

through A lies close to the trace of some path through B, and vice versa; but no detective in B can
tail a criminal in A for more than two revolutions. In figure 4, any path in A can be traced by a path
in B, but the “stuck” position in A has no corresponding configuration in B, since every position in
B leads to arbitrarily long paths which cannot be tracked from the stuck position.

In this section, we will address criteria (1) and (2). We will show that the analogue of theorem
2.14 holds for criterion (1) and that, if certain anomalous shapes are excluded, the analogues of
theorems 2.13 and 2.14 hold for both criteria (1) and (2). (The analogues of theorem 2.2 also hold
for criteria (1) and (2), but these are both trivial and unimportant, as no one cares about the space

of forbidden paths.)

Criterion (3) is more difficult; establishing it requires constraining the surface normal to the
objects. The analysis needed is quite different in character. This will be discussed in section 4.

Figure 5 illustrates an anomalous system of a type that creates difficulties for many of these
theorems. The system consists of two objects, a sphere of radius 1 and a frame. The frame nearly
meets the sphere at its bottom point and close to its top point. The lower frame surface just is a
horizontal circular disk of radius 1 about the z-axis in the plane z = —1. The upper frame surface
consists of the paraboloid z = 1 — (1 —r)?/50 for 0 < r < 1, where r is the distance from the z-axis,
with a spiral track carved out of it. The center of this track follows the curve r = 1 — 27%/27 where
6 € [0, 00) is the angle in the  — y plane around the z-axis. This curve is a spiral that goes through
infinitely many revolutions, converging on the circle of radius 1 as a limit cycle. At the center of
the track, the height of the surface is 1+ (1 — r)%2/1000 . A radial cross section of one notch in the
track, centered at angle 6y and radius ro = 1 — 200/27 follows the circular arc of radius 1 and apex
atr =rg,z=14 (1 - r0)2/1000, until meeting the parabolic cross section. These curves meet at
roughly the points r = 1 — .8(1 — rg) and r = 1 — 1.2(1 — rg), so consecutive tracks do not overlap.
Thus, the track is carved out so that the sphere fits with a little room to spare, but cannot slide
from one groove to the next. The remainder of the frame is placed so as to hold these two surfaces
in place, without interfering with the motion of the sphere.
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A is the closed square (in grey); B is the spiral (in black)
Any path in A is close to a path in B,
but paths in A that go around more than twice cannot be closely tracked in B.

Figure 3: Path traces vs. tracking paths

B B
A A
| 11

Figure 4: Path tracking vs. close correspondence of points
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Cross-section of frame and sphere in the z — z plane.
(Note: this diagram is inaccurate and not to scale; it is meant only to be suggestive.
Two notches of the track on either side are shown; in fact, there are infinitely many.)

The beginning of the spiral that forms the center of the track.
The spiral has infinitely many revolutions, converging to the outer circle.

Figure 5: Anomalous kinematic system



Therefore, this display permits a contact-free motion of the sphere around the track arbitrarily
often. It does not contain any paths that allow the sphere to escape the track. However, if the frame
is expanded by an arbitrary §, then all the grooves in the channel of depth less than § will be filled
in, and the sphere can only execute finitely many revolutions in the track. If the frame is contracted
by distance §, then, where the height of the paraboloid is greater than 1 — §, the sides of the track
no longer hold the sphere, which can then escape to the outside of the frame. Thus, the system is
not continuous inward even in the Hausdorff distance between paths; arbitrarily small shrinkage of
the frame allows the sphere to execute a path from the inside of the track to far away, a path that
is not close to any path in the original system. It is not continuous outward in the path-distance
between paths; an arbitrarily small swelling of the frame confines the sphere to N revolutions in the
track, and a path of N revolutions cannot closely track a path of N 4 1 revolutions. (Incidentally,
the construction here relies on a three-dimensional physical space. I do not know whether analogous
constructions can be found in a two-dimensional space, or whether stronger theorems apply there.)

However, small expansion of the frame does allow paths that are close to the original paths
in terms of the Hausdorff distance. This, it turns out, holds in general, over compact regions of
configuration space. (Theorem 3.3 below).

Definition 3.1: Let U be a metric space with metric g. A path in U is a continuous function from
the real interval [0,1] into U. The trace of a path is its image in U.

tr(¢) = { o(T) [T €[0,1] }

The distance measure between two paths ¢1 and ¢ in criterion (1) above is then just the Hausdorff
distance relative to y between the respective traces, pup(tr(¢1),tr(¢2)). The distance measure in cri-
terion (2), which we will denote p;(¢1, ¢2) is defined as the maximal distance between corresponding
points on the paths.

pi(P1, d2) = maxyepo 1] p(@1(t), #2(1))

Definition 3.2: Let ¢ be a path in configuration space and let D be a display. We define overlap? (¢)
as the maximal value of overlap” over ¢ and clearance®” (¢) as the minimal value of clearance® over
¢. Path ¢ is free over D if overlapD (¢) = 0; otherwise, it is forbidden. Path ¢ is contact-free over D
if clearanceD(ng) > 0; The function “path_free(D)” maps a display D into the set of free paths over
D; the function “path_cfree(D)” maps a display D into the set of contact-free paths over D.

Lemma 3.1: Let U be a compact space with metric u. Let ® be the space of all closed bounded
subsets of U. Then ® is compact under the Hausdorff distance ppr.

Proof: See [Munkres, 75, p. 279].

Lemma 3.2: Let U be a compact space with metric g and let f be a continuous function on U. For
any € > 0 there exists a § > 0 such that, for any path ¢ on which f is always greater than 0, there
exists a path ¢’ on which f is always greater than § such that dg (tr(¢),tr(¢’)) < e.

Proof: Suppose not. Then we can construct the following sequence of paths and quantities.

¢o is any path on which f is always greater than 0. dp is the minimal value of f on ¢g.

¢1 1s a path on which f is always greater than 0 such that no path within € of ¢; is always
greater than dg. 7 is the minimal value of f on ¢;.

¢; 1s a path on which f is always greater than 0 such that no path within € of ¢; is always
greater than §;_;. d; is the minimal value of f on ¢;.
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Then, by construction, the Hausdorff distance between ¢; and ¢; is always greater than ¢, for all
i # j. But this is impossible, since by lemma 3.1, these are elements in a compact space.

Theorem 3.3: Let D be a display and let € > 0. Let U be a compact region of configuration space.
Then there exists a § > 0 such that, for any display D', if dg (D, D') < § then any path ¢ through
U that is contact-free over D is within € of some path ¢’ through U that is contact-free over D’.

Proof: Applying lemmas 3.1 and 3.2 to the function clearanceD, infer that there is a § > 0 such
that, for every ¢ through U such that clearanceD(¢) > 0, there exists a path ¢’ through U within ¢
of ¢ such that clearance® (¢') > &. By lemma 2.1, ¢’ is contact-free in D’. 1

Somewhat surprisingly, theorem 3.3 does not generalize to the case of paths through unbounded
configuration space. Imagine taking the frame with the infinite spiral in figure 5, and moving it the
whole system through space in the z direction at unit speed, while spinning the ball along the track
at one revolution per unit time. Now, if the track is slightly filled in, so that the ball can only execute
finitely many revolution, the Hausdorff distance between the path on the finite track and path on
the infinite track will become 1 within half a revolution of the time that the ball reaches the end of
the finite track. The Hausdorff distance between traces, since it compares position at one time to
position at another, is not invariant under uniform change in velocity, a substantial defect in this
measure.

To generalize theorem 3.3 to unbounded space, or to establish that path_free is inward continuous,
we must rule out systems such as those of figure 5, which are undoubtedly not things you can pick
up in most hardware stores. One condition that suffices is to require that the configuration space be
ordinarily connected.

Definition 3.3: A region O in a metric space is ordinarily connected if the following holds: Let S
be a solid sphere, and let P = SN O. Then (i) P has finitely many connected components, and (ii)
any connected component of P is path-connected.

Theorems 3.7 and 3.8 will apply to configuration spaces that are ordinarily connected. It is known
[Mishra, 94] that every semi-algebraic set is ordinarily connected. Since a semi-algebraic display
gives rise to a semi-algebraic configuration space, it suffices for the application of the theorem that
the shapes in the display be all semi-algebraic. (I also conjecture that theorems 3.7 and 3.8 hold for
all two-dimensional displays of regular, connected objects, though not all such displays are ordinarily
connected.)

Lemma 3.4: Let O be ordinarily connected, and let C' be a connected component of O. Then there
is an open set U D C which is disjoint from any other connected component of O.

Proof: By definition of connectivity, given any two connected components C' and C’, there are
disjoint open regions V' O C and V' D C’. By the definition of ordinary connectivity, there are only
finitely many such C’. Therefore, the intersection of all these regions V is the desired open set. 1

Lemma 3.5: Let O be a compact space with metric g which is ordinarily connected. Then for any
€ > 0 there exists a ¢ > 0 such that for any p,q € O, if x(p,q) < & then there is a path ¢ from p to ¢
through O such that ¢ is always within € of p.

Proof: Suppose not. Then there exists an € such that for any N we may choose points py, gn for
which u(pn, qn) < 1/N but there is no path from py to gn which remains within ¢ of py. Consider
the sequence of pairs (p1,q1), (P2, q2), (P3,q3), . .. Since O is compact, there is a subsequence of the
points pg that converges to a limit point p € O. Clearly, p is the limit of the corresponding ¢x as
well.

Let S be the subset of O within distance ¢/2 of the point p. Let R be the connected component
of S containing p. By lemma 3.4, there is an open set U containing R and disjoint from S — R.
Since U is open, it must contain all the points py and gxn in the subsequence converging to p for
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all sufficiently large N. Therefore, these points must be in R. But R is path-connected, and it lies
in a sphere of radius ¢/2, so there must be a path from py to qn that stays within ¢ of py. This
complete the contradiction. 1

Lemma 3.6: Let O be a compact space with metric g which is ordinarily connected. Then for
any € > 0 there exists a § > 0 for which the following holds: Let @ be any space within Hausdorff
distance § of O: pup (0O, Q) < §. Let ¢ be any path through . Then there exists a path ¢ through
O such that the path distance p:(¢, ) < e.

Proof: By lemma 3.5, we can choose a value §; such that, if the distance between two points
q,7 € O is less than &y, then there is a path from ¢ to r that lies within ¢/3 of ¢. T claim that if J is
chosen less than min(e/3,41/3) then the theorem holds.

Let @ and ¢ be chosen as above. We can choose a finite sequence of points (pg,p1 ...px) on ¢
such that pg is the starting point of 1, pg 1s the ending point of 3, and the section of the path
between p; and p;11 is always within §/3 of p;. Since the Hausdorff distance from O to @ is less than
4, we may choose points g, q1 . . . qx in O such that each ¢; is within § of p;. Therefore, the distance
from ¢; to ¢ij41,

1(ai, qi1) < (i, pi) + p(pi, Pit1) + p(pit1, gig1) < 01
By definition of §1, therefore, there is a path from ¢; to ¢;41 that remains within ¢/3 of ¢;. Therefore,
any point on the path ¢ between p; to p;41 lies within € of the corresponding point between ¢; and
qi+1. We now string together the paths between ¢; and ¢;41, and the proof is complete. I

Let p,(¢, ¢') be the path distance between paths ¢ and ¢’. Applying the Hausdorff construction
over the space of paths, we can define a distance measure p,;; between one set of paths and another.
This, in turn, defines a topology over the space of sets of paths.

Theorem 3.7: Let D be the space of displays D such that free(D) is ordinarily connected. Topologize
D using the complement-Hausdorff metric dg. and topologize the space of sets of paths using the met-
ric p, g, the Hausdorff construction applied to the path-distance. Then the function “path_free(D)”,
mapping a display D to the set of paths free over D, is inward continuous over D.

Proof: What this states is, that for any D and ¢, d can be chosen such that, if D’ is a contraction
of D and dg.(D, D') < ¢ then (a) every path in path_free(D) is near a path in path_free(D’) and (b)
every path in path_free(D’) is near a path in path_free(D). Part (a) is trivial, since path_free(D’) is
a superset of path_free(D).

We establish part (b) in two steps. First, consider only the space of paths that remain in the
basic configuration region. Since this region is compact, (b) follows immediately from lemmas 3.6
and theorem 2.10. Thus, for any € > 0 and display D, there exists a § such that, if dg.(D, D') < d
and ¢’ is a path in path_free(D’) that stays in the basic configuration region, then there exists a path
¢ in path_free(D) such that p,(¢,¢') < e.

Second, we use lemma 2.8 to reduce configuration space as a whole to the basic configuration
region, as follows: Assume w.l.o.g. that ¢ < 1. Using the first step above, choose a suitable § for
¢ and D. Using lemma 2.8, construct a function T'”(C) from configuration space into the basic
configuration region over D and let ©P(C) be the transformation from C to T'?(C). Let D' be any
display such that dg.(D, D') < § and let ¢’ be any path in free_space(D'). Let ¢1(T) = [P (¢/(T)),
and let 6(T) = ©7(¢/(T)). By lemma 2.8, ¢; stays in the compact basic configuration region. Also
by lemma 2.8, since I'P preserves the function overlale, overlale(ngl) = overlale(QS) =0, so
é1 is in path_free(D’). By lemma 3.6, there is a path ¢5 in path_free(D) such that p,(¢a, ¢1) < €.
Now, let ¢(T) = (6(T))~(¢(T)). 1t follows immediately from lemma 2.8 that p(¢, ¢’) < € and that
¢ €path_free(D).1

Theorem 3.8: Let D be the space of displays D such that free(D) is ordinarily connected. Topologize
the space of displays using the Hausdorff metric dg and topologize the space of sets of paths using the
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metric p,zr. Then the function “path_cfree(D)”, mapping a display D to the set of paths contact-free
over D, 1s outward continuous over D.

Proof: The proof is essentially identical to that of theorem 3.7, using theorem 2.14 instead of
theorem 2.10.

As in theorem 2.15, in the case of displays whose free space is the closure of their contact-free
space, we can allow change in either direction:

Theorem 3.9: Let D be the space of displays D such that free(D) is ordinarily connected. Topologize
the space of displays using the dual-Hausdorff metric dg4 and topologize the space of sets of paths
using the metric p,. Let D be a display such that free(D) is the closure of cfree(D). Then the
functions path_free(-) and path_cfree(-) are continuous over a neighborhood of D € D.

Proof: Analogous to the proofs of theorems 3.7 and 3.8. 1

4 Lifting from contact and the approximation of tangents

As figure 4 illustrates, it is possible to change a system where all feasible configurations are connected
to one that contains configurations that are “stuck” using changes that can be arbitrarily small in both
the Hausdorff and complement-Hausdorff distance, and that can be either expansions or contractions.
The kinds of criteria that we have used in the previous sections thus do not suffice to prevent this
kind of change in the free space.

Fortunately, figure 4 also suggests where a solution might lie. The construction of the “hook and
eye” that so radically changes the behavior of the object requires only a small variation in terms
of the points occupied by the object, but requires a large change in the local surface normal. This
suggests that if the approximation is required to be close both in distance and in the direction of the
local surface normal, then it may be possible to infer that a small modification does not generate
new connected components in configuration space.

This is indeed possible, at least two dimensions. In this section, we will prove the following
result: Given a display consisting of two-dimensional objects such that in every configuration it is
possible to separate the objects by lifting or twisting one off the other, then, with certain exceptions,
if the objects are modified by a sufficiently small amount with with sufficiently small change in
boundary direction, then the connected components of the free space remain essentially unchanged.
Connected components do not appear, disappear, merge, or split. Figures 6 and 7 illustrates two of
the “exceptions” to this general rule; our theorem below imposes conditions that rule out all of these.

The definitions that we will need for this result are rather complex and the proof rather long,
so let me begin by giving a rough sketch of the structure of the proof. We wish to show that, in
situations like figure 4, if the changes to the shape and surface normal are kept small, then alterations
in the configuration space such as appear in figure 4 can be avoided. Specifically, what happens in
side IT of figure 4 is that there is a modification of the shapes in I and there are two configurations
both close to the configuration in T — one hooked and the other (not shown) unhooked — which
are not connected by any feasible path. This is related to the fact that though in scenario I object
B can move away from object A over a range of upward directions, in scenario II it cannot move
away from A cannot move upward. We say that the upward motion strongly separates B from A in
scenario I. The main steps of our proof are then as follows:

o If motion M strongly separates object B from object A, then B can be moved along M a finite
distance, and escapes contact with A immediately after the start of motion. (Lemma 4.17)

e Suppose that there is some motion M strongly separates B from A in scenario (D, C'). We now

19



B
A

The pincer is “stuck” in (B) if the sides of the notch are steeper
than the circle through one tooth centered at the other tooth.
With a sufficiently small rotation, this can be accomplished
with an arbitrarily small and shallow notch.

Figure 6: Change in connectedness under small change in tangent: 1
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In (A) the ball is free to move to the left.
However, a “trapped” position can be created by carving out a “notch” as in (B),
of arbitrarily small depth and change in angle.

Figure 7: Change in connectedness under small change in tangent: II
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slightly change the shape of D to Dy, enforcing the rule that the surface normal may change
only slightly, and we find two configurations C; and Cs that are close to C' and are feasible
over Dy. Then there is a path from C; to Cs that is feasible over Dy. (Lemma 4.22)

The final theorem states that uniform bounds for maximal change in shape can be found such that
the connected components of free configuration space remain essentially unchanged.

Down to business. For two points p # q, we write “dir(p, q)” to mean the the direction from p
to q: dir(p,q) = (a—p)/ | a—p |. For a unit vector & and angle 0, we will write & + 6 to mean the
unit vector v at positive angle § from u, slightly abusing notation. We will write 4% to mean the
unsigned angle between vectors @ and @ (= cos™!(4 - ¥/ | @ || 7 |)). We will write (4, %) to mean the
interval of all unit vectors @ strictly between @ and @ in the positive direction. Thus, for § € (0, 7),
(4 — 6,4+ 0) is the interval of all unit vectors @ such that Zwu < 6. Also, we write [u, ¥] for the
closed interval from 4 to & = (4, 9) U {1, 9}. We denote the boundary of region R as “Bd(R)”.

We will assume that the shapes of our objects are solid polycurves.

Definition 4.1: A polycurve is a simple closed curve C such that

e C is smooth at all but finitely many points; and

e For every point p € C, the tangent to C at q converges to a limit as q approaches p from each
direction.

A solid polycurve is an object-like region whose boundary is the union of finitely many disjoint
polycurves.

We now define what it means to approximate a shape both in distance and in the surface normal.

Definition 4.2: Let A and B be polycurves, let ¢ > 0 be a length and let ¢ > 0 be an angle. B
approrimates A n tangent, with parameters ¢, «, if there exists a homeomorphism I' from A to B
such that,

i. For any a € A, d(a,T'(a)) < ¢; and

ii. For any a € Bd(A), let é,f be the tangents to A at a in the positive and negative directions,
and let g, h be the tangents to B at T'(a) in the positive and negative directions. Then Zé§ <
and Zfh < a.

Lemma 4.1: If B approximates A in tangent («, 3) and C approximates B in tangent (y, ) then
C approximates A in tangent (x4 + a, 0+ 3).

Proof: Immediate from the definition by composing the two homeomorphisms.

Lemma 4.2: If region S approximates region R in tangent (J, «), then the dual-Hausdorff distance
from S to R is less than 24.

Proof: It is immediate that the Hausdorff distance from S to R. is less than §. To show the result
for the complement-Hausdorff distance, let T' be a homeomorphism between R and S that moves
every point by less than d. Let p be any point in the complement of S. If p is also outside R, then
the distance from p to R® is 0. If p € R, then, by definition, T'(p) € S and d(p, T'(p)) < é. Thus, the
line segment from p to I'(p) must intersect the boundary of S, so there is a point b on the boundary
of § within § of p. Hence, the distance from I'~!(b) to p is less than 2§. Since [ ~!(b) is a boundary
point of R, p is within 2 of a point in the complement of R. Thus every point in the complement
of S is within 2§ of a point in the complement of R. Switching the roles of I' and I'"! gives the same
result in the opposite direction. 1
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We begin by recalling a useful lemma on compact sets:

Lemma 4.3: Let U be a compact space. For u € U and z1...2x € R, let ®(u,z1...25) be a
property of u such that

a. HO<y <ax;fori=1...k and ®(u,z1...2zx) then ®(u,y1...yx).

b. For any u € U there exists a neighborhood V of u and values z; > 0...z; > 0 such that, for
allv eV, ®(v, 21 ...2x).

Then there exist 1 > 0...2; > 0 such that for all u € U, ®(u, z1...24).

Proof: Let U, = {u | ®(u,1/n...1/n)}. Then the collection of U,,n = 1...is a covering of U
by open sets. Since U is compact, this has a finite subcover. But, for n > m, U, D U,,. Thus the
last U, in the finite subcover contains all the rest and is so equal to U. Thus ®(u,1/n...1/n) for
allue U. 1

Definition 4.3: Let A and B be two non-overlapping regions, and let p be a point in ANB. Let U
be an open interval in the unit circle. U strongly separates B from A at p if, for every vector 4 € U,

1. for every neighborhood V of p there exist pointsa € ANV and b€ BNV, a# b, such that
4 1s the direction from a to b; and

2. there exists a neighborhood V of p in which there do not exist pointsa € ANV and b € BNV,
a # b, such that 4 is the direction from b to a.

A vector @ strongly separates B from A if some neighborhood U of 4 strongly separates B from A.
We denote the set of vectors that strongly separate B from A at p as “sep(B, A, p)”.

Lemma 4.4: For any regions B, A and point p € A N B, sep(B, A, p) is an open set in the unit
circle.

Proof: Immediate from the definition. L

It is straightforward to characterize the space of directions that strongly separate polycurves B
from A at any contact point p in terms of the tangents to A and B at p: (Figure 8) Let A and B
be two non-overlapping polycurves, and let p be a point in A N B. Let é be the unit vector tangent
to A at p in the positive (counter-clockwise) direction; let f be the unit vector tangent to A at p in
the negative direction; let § be the unit vector tangent to B at p in the positive direction; and let h
be the unit vector tangent to B at p in the negative direction. Thus é = —f if A i1s smooth at p. A

vector 4 sited at p points into A if 4 € (€, f) and points out of A if & € (f,€); and correspondingly
for B. Note that ¢é, f, g, h are in non-strict positive cyclic order.

Definition 4.4: (Figure 8). The function sepl(é, 1.4, iL) is defined as follows:

i. If the angle from € to h is less than or equal to 7, then sepl(é, 1,4, iL) = (g, —f)

ii. If the angle from § to f is less than or equal to 7, then sepl(é, f.4, il) (—é, 71)

lii. If the angles from e tof, from f to g, from g tOAiE and from h to é are all less than or equal
to m, then sepl(é, f, g, h) = (min(—é€, §), max(—f, h)), where min and max are in the sense of
the smaller positive rotation between the two.

(f.¢).

iv. If the angle from h to g is less than or equal to , then sepl(é, f,g, iz)

v. If the angle from f to € is less than or equal to m, then sepl(é, f,ﬁ, iL)
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Dashed lines indicate the range of directions separating B from A.

Figure 8: Separating directions
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It is easily verified that in figures where two or more of these vectors are angle = apart, so that
more than one rule applies, the different rules give the same results.

Lemma 4.5: For any polycurves A, B and point p € AN B, sep(B, A, p) = sepl(é, 1.4, iL) where
€, f, g, h are the tangents to A and B at p, as defined above.

Proof: Straightforward from the geometry. L.

Lemma 4.6:

A. sepl(é,f,g,ﬁ) = —sepl(g,ﬁ,é,f)

Proof: Immediate from definition 4.4. 1

Lemma 4.7: Let é, fA,AﬁA7 hand &, f, ¢, k', be two quadruples of vectors, both in positive order,
such that Ze'e < 0, Lf'f <0, Lg'g < 0, and Lh'h < §. Let 4 be a vector such that the interval
(6 —6,0+40) Csepl(é, f, g, h). Then u € sepl (&', f', §', h').

Proof: Immediate from lemma 4.6. 1

Definition 4.5: A motion is either (a) a unit vector #, representing translation in the @ direction;
or (b) a pair (0, S) of a point o and a sign S = =+1 representing counter-clockwise (if S = 1) or
clockwise (if S = —1) rotation about the point o.

Definition 4.6: The bounded distance from point p to motion M, denoted J(p,M) is equal
to min(d(p,0),1) if M = (0,S) and equal to 1 if M = ¥. If R is a region then d(R, M) =
infper d(p, M).

Definition 4.7: The flow from point p to motion M, denoted “flow(p, M)” is the direction of
motion of point p under motion M. It is defined as follows:

o If M = ¢ then flow(p, M) = .

e If M = {0,S5) and p = o, then flow(p, M) = 0.

e If M = {0,S5) and p # o, then flow(p, M) = dir(o,p) + S7/2
Lemma 4.8: For any point p, q and motion M, if neither flow(p, M) nor ﬂow(g7 M) is equal to 6,
let # be the angle between flow(p, M) and flow(q, M). Then sin(f) < d(p,q) / d(p, M).

Proof: Immediate. 1

Definition 4.8: Let A and B be two non-overlapping polycurves. Motion M strongly separates B
from A if, for every point p € AN B, flow(p, M) € sep(B, A, p). Note that, if M strongly separates
B from A then, d(ANB, M) > 0.

For the next several lemmas, we will assume that A and B are non-overlapping solid polycurves;
and that M is a motion strongly separating B from A. All of lemmas 4.9 - 4.16 below are stated
relative to an arbitrary fixed choice of A, B, and M.



Lemma 4.9: For any point p € B, there exist € > 0, > 0 such that, for any a € A, b € B if both
a and b are within ¢ of p, then the angle between flow(p, M) and dir(b, a) is at least «.

Proof: If p is not in A, then let ¢ < d(p, A). The condition is then satisfied vacuously, as there
is no such a. If p € A N B, then the condition is immediate from definitions 4.3 and 4.7.

Lemma 4.10: There exist € > 0, @ > 0 such that, for any points p,b € B and a € A if both a and
b are within € of p, then the angle between flow(p, M) and dir(b, a) is at least . (This is the same
as lemma 4.9, except here o and € are quantified with larger scope than p.)

Proof: We apply lemma 4.3, taking the domain U to be B and the property ®(p,¢, a) to be
the relation, “For any point b € B and a € A, if both a and b are within ¢ of p, then the angle
between flow(p, M) and dir(b, a) is at least «.” Property (a) of lemma 4.3 is immediate. Property
(b) requires establishing that, for any point p € B there exist § > 0,4 > 0,6 > 0, such that, ifu € B
and d(u,p) < J then ®(u, y, ). We do this as follows: For any point p € B, use lemma 4.9 to find
¢ > 0,a > 0 such that ®(p, ¢, ). Let § = a/2 and let § = p = min(e/2, d(p, M) sin(f)). Now choose
u within § of p and a € A, b € B such that both a and b are within g of u. Now since a and b are
within € of p, dir(b,a) be at least o from flow(p, M). By lemma 4.8, flow(u, M) is within a/2 of
flow(p, M), so the angle between dir(b, a) and flow(u, M) must be at least a/2. Therefore we can
apply lemma 4.3, and conclude that o and ¢ can be chosen uniformly over all p € B. 1

Lemma 4.11: Let p €Bd(A), let é be the tangent to A at p in the counterclockwise direction, and
let f be the tangent to A at p in the clockwise direction. Then for any € > 0 there exists a § > 0
such that for any boundary point q within ¢ of p, if q is counterclockwise from p then the positive
tangent to A at p is within € of é and the negative tangent to A at p is within € of —¢; and if q is
clockwise from p then the positive tangent to A at p is within € of —f and the negative tangent to
A at p 1s within ¢ of f

Proof: Immediate from definition 4.1 of a polycurve. 1

Definition 4.9: Let C,D be two solid polycurves. Let p €Bd(C) and q €Bd(D). Let é and f be
the tangents to C at p in the positive and negative directions; and let § and h be the tangents to
D at q in the positive and negative directions. Let € > 0. We say that “the tangents to D at q are
within € of the tangents to C at p,” if one of the following holds:

1. ¢ 1s within ¢ of é and h is within € of f; or
1. ¢ is within ¢ of é and h is within € of —¢; or
iii. § is within € of —f and h is within € of f.

(Note this is not a symmetric relation between C,p and D, q.)

Lemma 4.12: Let A be a solid polycurve and let p €Bd(A). Then for any e > 0 there exists a
d > 0 such that, if ¢ €Bd(A) and d(p, q) < ¢ then the tangents to A at q are within € of the tangents
to A at p.

Proof: This is just a restatement of lemma 4.11, adding the case that q = p. 1

Definition 4.10: The angle from blockage of unit vectors é f g, h 4 1s the minimum ¢ for which
there exist ¢, f', ', ', @' such that Zée' < e, Lff’<€ £3g <e, Ahh <e Law < e é, f,§ b are
in (non- Strlct) positive cyclic order; and @’ Qsepl( L h’).

That is, the angle from blockage is the minimal change in all these vectors so that the tangent
vectors can correspond to those of two non-overlapping objects in contact, and so that u does not

strongly separate the two objects.
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Definition 4.11: Let p €éBd(A) and q €Bd(B). Let é, f, 4, h be the positive and negative tangents
to A at p and to B at q. Let @& be a vector. The function “freec_ang(A,p, B, q,@)” is the angle from
blockage of €, f, g, h, @.

Lemma 4.13: Let p € ANB and let @ €sep(B, A, p). Then there exist § > 0 and # > 0 such that,
for all ¢ €Bd(A) and r €Bd(B), if d(p,q) < ¢ and d(p,r) < §, then free_ang(A,q,B,r, @) > 6.

Proof: Let ¢, f,ﬁ, h be the positive and negative tangents to A and B at p. If € is between
g and —g, let vo = m — Zég else 7o = w. If f is between —h and h, let vy = m — Zfh else
vs = m. If g is between € and —¢, let v, = m — Zgé else v, = w. If h is between —f and f, let
vp = m— Lhf else 4, = 7. Using lemma 4.4, choose 7, so that (= vy, u+7,) €sep(B, A, p). Now,
let 8 = (1/3) min(Ye,vf, Yg, Yh, Yu)-

Using lemma 4.12, find g > 0 such that for all q €Bd(A) within x of p, the tangents to A at q
are within 6 of the tangents to A at p, and such that for all r €Bd(B) within g of p, the tangents
to B at r are within ¢ of the tangents to B at p. Let § = min(y, d(p, M)sin(f)). Now, choose
q € A, r € B such that q and r are both within § of p. Let é;, fl,ﬁl, h1 be the positive and negative
tangents to A at q and to B at r. It is easily verified that, if é;, fl,ﬁl, hy are not in positive order
then they are at least # from being in positive order, while if they are in positive order, then 4 is at

least, ¢ from the boundaries of sepl(é, f, g, h).

Lemma 4.14: There exist § > 0 and # > 0 such that, for all p € ANB, q €Bd(A), r €Bd(B), if
u =flow(p, M), d(p,q) < 4, and d(p,r) < 4, then free_ang(A, q,B,r,4) > 6.

Proof: We apply lemma 4.3, taking the domain U to be A N B and the property ®(p,d, ) to
be the property, “For any q €Bd(A), r €Bd(B), if ¢ =flow(p, M), d(p,q) < J, and d(p,r) < 4,
then free_ang(A,q,B,r,4) > 6.” Property (a) of lemma 4.3 is immediate. Property (b) requires
establishing that, for any point p € ANB there exist a p > 0,8 > 0, a > 0, such that, for x € ANB,
if d(x,p) < p, then ®(x, 3, ). We proceed as follows: For any such p, find § and # satisfying lemma
4.13. Let a = 6/2 and let 3 = §/2 and let g = min(d/2,d(p, M)sin(a)). Let x be any point in
A NB within p of p and let q,r be points in A and B within § of x. Then certainly d(p,r) < d, so
free_ang(A, q, B, r,flow(p,M)) > 6. Moreover, flow(x,M) is within « of flow(p,M), Tt then follows
immediately, from definitions 4.10 and 4.11, that free_ang(A, q, B, r flow(x,M)) > 0 —a =a. 1

Lemma 4.15: For any ¢ > 0 there exists a ¥ > 0 such that if a € A, b € B and d(a,b) < v then
there exists a point p € A N B such that d(p,a) < € and d(p,b) < e.

Proof: Immediate from lemma 2.5, with the compact domain U being the cross product A x B,

the function f((a, b)) = d(a,b), and the metric u({a, b), (c,d)) = max(d(a, c), d(b,d)).

Lemma 4.16: There exist § > 0,9 > 0 such that, if XY are non-overlapping polycurves that
respectively approximate A B in tangent (3,), then M strongly separates Y from X.

Proof: Find § and 6 to satisfy lemma4.14. Let ¢ < 6, and let D = (1/2)d(ANB, M) sin(v)). Let
¢ = min(d/2, D). Find a value of 7 to satisfy lemma 4.15 for this value of ¢, and let # = min(y/2, D).

Now let X, Y be polycurves that respectively approximate A, B in tangent (3, ), with approx-
imating homeomorphisms T' and A. Let p € XNY; let a = I'~!(p); and let b = A~1(p). Then
d(a,b) < 24, so there exists a point ¢ € A N B such that d(q,a) < ¢, d(q,b) < e. Therefore,
free_ang(A,a, B,b,flow(q,M)) > 6. Now, the tangents to A at a are within ¢ of the tangents to
X at p and the tangents to B are within ¢ of the tangents to Y at p. Also, since d(p,q) < 2D,
flow(p, M) is within v of flow(q, M). Therefore, frec_ang(X,p, Y, p,flow(p, M)) > 6 — . Since
X and Y do not overlap, the tangents to X and Y at p are necessarily in proper cyclic order, so
flow(p, M) € sep(Y,X,p). 1

We now discharge the assumptions on A;B and M, and return to the language of displays,
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configurations, and paths.

Definition 4.12: Let C be a configuration over the two objects A and B; let M be a motion; and
let A > 0. Then “arc(C, M, A)” is the path ¢ that starts in C', leaves A fixed and moves B along M
until the distance moved is equal to A. Formally,

i. $(0)=C.
ii. For all T € [0, 1], ¢(T)[A] = C[A].

iii. For all T € (0, 1) and for all p, there exists & > 0 such that
d/dT(¢(T)[B](p)) = k-flow(¢(T)[B](p), M),

iv. Let B = CD[B]. Then p”(¢(0), (1)) = A.
v. For T € (0,1), pP(¢(0), ¢(T)) < A. (
ending up at ¢(1).)

This, to prevent ¢ from traversing a full rotation before

Definition 4.13: We say that path ¢ escapes contact over D if, for all T € (0,1] (D, ¢(T)) is
contact-free.

Lemma 4.17: Let (D, C) be a feasible scenario over objects A and B, where C'D[A] and C'D[B] are
solid polycurves. Let M be a motion that strongly separates C'D[B] from C'D[A]. Then there exists
a A > 0 such that arc(C, M, A) escapes contact.

Proof: Find ¢, a to satisfy lemma 4.10 for A = C'D[A], B = CD[B]. If M is a translation, then
choose A = ¢. Otherwise, if M = (0,5), let R be the maximal value of d(o,p) for p € B, and let
A = min(e, Rsin(a)). Let ¢ = arc(C, M, A). Then for any p € B, let b = C~1(p) € D[B]; and let
W (T) be the curve ¢(T)[B](b). We wish to show that W (T") does not intersect A for any T € (0, 1].
If M is a rotation with center p, then p € A, and W(T') = p for all T', so the result is immediate.
If not, for any 7" € (0,1], d(W(T),p) < A. Let W(T) be the tangent to W at time 7'; then, for all
T, W(T) =flow(W(T), M) which is within « of flow(p, M). Then, for any T € (0, 1], dir(p, W(T))
is within « of flow(p, M). By lemma 4.10, therefore, W(T') is not in A. I

Lemma 4.17 establishes that, if M strongly separates C'D[B] from C' D[A], as defined in definition
4.8, then there actually is a path along M that separates B from A.

Lemma 4.18: Let D be a display and let C' and C’ be configurations over objects A and B.
Let A be the minimum of the diameters of D[A] and D[B], and let A = p?(C,C’). If 2X < A,
then C’D approximates C'D in tangent with parameters (), 2sin™*(A/A)). Moreover C'C~1! is the
approximating homeomorphism.

Proof: Let p and q be two points either both in D[A] or both in D[B] such that d(p,q) = A.
If there is a rotation of angle ¢ between C' and C’ then one of p and q must be at least A/2 from
the center of rotation, and therefore must move a distance at least Asin(y/2). Since neither p nor
q moves more than A, ¥ must be no more than 2 sin_l(A/A). The result is then immediate. 1

Corollary 4.19: Let (D,C) be a scenario over objects A,B. For any ¢ > 0,9 > 0, there exist
p>0,0>0,\> 0 such that, for any scenario (D', C"), if p?(C,C’) < A and D’ approximates D in
tangent (u, ), then C'D’ approximates C'D in tangent (e, ).

Proof: Let A be the minimum of the diameters of D[A], D[B]; let 8 = ¥/2; let p = X =
min(e/2, Asin(f/2)); and apply lemmas 4.2 and 4.18. L.

Lemma 4.20: Let (D,C) be a feasible scenario over objects AB, and let M be a motion that
strongly separates C' D[B] from C'D[A]. Then there exist ¢ > 0,5 > 0,6 > 0 satisfying the following;:
Let Dg be a display that approximates D in tangent (v, #) and let C; and C3 be feasible configurations
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Forbidden space

Forbidden space

Figure 9: Illustration for lemma 4.20

over Dg such that C1[A] = C2[A]=C[A], pP(C,C4) < € and pP(C,Cs) < e. Then there is a path
connecting C7 and C's that is feasible over Dy.

Proof: (Figure 9) Find 2 and ¢ to satisfy lemma 4.16 for A = C'D[A], B = C'D[B]. Using
corollary 4.19, find €, 70,00 such that, if D' approximates D (vq,60) and p?(C,C’) < ¢g then
C'D' approximates CD (f,1). Using lemma 4.17, there exists A > 0 such that, for all 7" € (0, 1],
arc(C, M, A)(T) €cfree(D). Let ¢ =arc(C, M, min(eg/2,A)) and let o = (1/2)clearance({D, ¢(1)}))
Using corollary 4.19 again, find €1,7, 6 such that, if D’ approximates D (v,6) and p?(C,C’) < ¢
then C'D’ approximates C'D (min(3, ), ). Finally, let ¢ = min(ey, €9/2).

Now, let Dy be a display that approximates DD in tangent (v,6) and let C; and C3 be feasible
configurations over Dy within € of C such that C1[A] = C3[A]=C[A], Let ¢1, ¢2 be paths parallel to
¢ starting at C1,Cy; that is, ¢;(T) = ¢(T)C~'C; for i = 1,2. Let ¢ be the uniform translation
or rotation taking ¢1(1) into ¢2(1) through an angle less than 7. We now claim that the path
b0 = (b1, dar, 65 ") is feasible.

We first note that, by construction C;Dgy approximates C'D in tangent (o, ) and therefore
di(C1Dy,CD) < a. Let p be any point in Dg[B]. Let T[B] be the approximating homeomorphism
on B and let q = I'[B]7!(p). Then d(Ci(p),C(q)) < @ and d(C2(p),C(q)) < a. Since ¢, ¢1, ¢2
all move in parallel along the motion M, it follows that, for every T € [0, 1], d(¢1(T)(p), ¢(T)(a))
= d(61(0)(p), 6(0)(a)) = d(C1(0)(p), C(a)) < s and by the same token (65 (T)(p), 4(T)(a)) < .
Let A = CD[A] and Ay = C'Dy[A]. Since the position of object A is constant, Ag is the place of A
along the entire path ¢¢. Since dp (A, Ay) < «, and since clearance(D, ¢(1)) > 2« it follows that
d(¢(1)(a),Ag) > «, and so ¢1(1)(p) & Ag. Thus ¢1(1) is feasible, and, by the same token, so is
6(1).

Moreover, the trace of point p along path ¢ps is either a circle of arc at most 7 or a line segment.
Hence the maximal value over Cyy on ¢pr of d(Car(p), ¢(1)(q)) is attained either at Cpr = ¢1(1) or
at Cyr = ¢2(1) and so is always less than . Hence Car(p) is never in Ay, so the path ¢, is feasible
over Dy.

To show that ¢ is feasible over Dy, we use proof by contradiction. Suppose ¢; is not feasible.
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Let T' be the maximal value such that, for all 7" € [0,T], ¢1(7T") is feasible. Since free(Dy) is closed
and since ¢1(0) is feasible, ¢1(T) is feasible. Now p?(C,¢1(T)) < pP(C,C1) + pP(C1,61(T)) <
€+ €0/2 < €g. Hence ¢1(T)(Dy) approximates C'D in tangent (8,v). Let X = ¢1(T)Dg[A] and
Y = ¢1(T)Dg[B]. By lemma 4.16, M strongly separates Y from X. By lemma 4.10, there isa T > 0
such that arc(¢1(T), M, T) escapes contact over Dy. But this path is just a continuation of the path
¢1 past time T', which is a contradiction.

The proof for ¢5 is the same as for ¢1. L.

Definition 4.14: A display D over two objects A and B is always strongly separable if D[A] and
D[B] are both solid polycurves, and, for every any feasible configuration C' over D, there exists a
motion M that strongly separates C'D[B] from C D[A].

Lemma 4.21: Let D be a display over two objects A and B that is always strongly separable. Then
there exist € > 0,y > 0,6 > 0 satisfying the following: Let Dy be a display that approximates D in
tangent (7, 0); let C be a feasible configuration over D; and let C; and C be feasible configurations
over Dg such that C1[A] = C2[A] = C[A], pP(C,C1) < € and p?(C,C3) < €. Then there is a path
connecting C7 and C's that is feasible over Dg.

Proof: Let A = diameter(D[A]) 4+ diameter(D[B]), and let us constrain € and v to be less than
A. We can then w.l.o.g. restrict attention to the compact space U of configurations in which the
configuration of object A is the same as in C' and and the distance from A to B is less than or equal

to 2A.

We apply lemma 4.3 yet again, U being this compact space of configurations, and ®(C, ¢, ~, )
being the property “For any display Dy that approximates D in tangent (v,6); and configurations
Cy and C5 that are feasible over Dy, if C1[A] = C3[A]=C[A], p?(C, C1) < ¢ and pP (C, Cs) < ¢, then
there is a path connecting Cy and C's that is feasible over Dy.” We must show that, if C' € U, there
exists a d > 0, @ > 0, # > 0, ¥ > 0 such that, for all ¢’ within ¢ of C, ®(C’,a, §,%). By lemma
4.20, for any C there exists €,4, f such that ®(C,¢,~,8). The result is then immediate if we choose
a=0=¢/2;3=v,and Y = 6. 1

We now have to generalize this to the case where object A is not fixed in C', C; and C5. Intuitively,
this is clear enough, since we can just view everything from A’s reference frame. However, the point
is subtle enough that it’s worth working through explicitly.

Lemma 4.22: Let D be a display over two objects A and B that is always strongly separable. Then
there exist € > 0,y > 0,6 > 0 satisfying the following: Let Dy be a display that approximates D in
tangent (7, 0); let C be a feasible configuration over D; and let C; and C be feasible configurations
over Dg such that p?(C,Cy) < ¢ and p?(C,Cy) < e. Then there is a path connecting C; and Cs
that is feasible over Dg. (This is the same as lemma 4.21, but dropping the condition C1[A] = C3[A]
= C[A])

Proof: Let A = 2 (diameter(D[A]) + diameter(D[B])). As in the proof of lemma 4.21, we can
confine attention to configurations C' in which the diameter of C'D[A] U C'D[B] is at most A, the
lemma being trivial if it is more than A. Let E=A/diameter(D[A]). Find €q, v, fo to satisfy lemma
4.21. Let €1 = ¢o/4F. Using lemma 4.18 find ¢, v, 6 such that, for any Cy, Dy if Dy approximates D
in tangent (v, 8) and Cj is within € of C then CyDg approximates C'D in tangent (min(yo, €1/2), fg).

Now let Dy be a display approximating D (v, f) and let C; and C3 be feasible configurations over
Dg within e of C. Let Ay = C~'C} (again, composition is performed placewise, so C~1C} denotes the
pair of transformations (C'~1[A]C[A], C~1[B]C1[B]).) Let Dy = A1Dq. Then C'D; = CyDq. Since
(Dg, Cy) is feasible, so is (Dy, C'). Also by construction, Dy approximates D (min(%yg, €1/2),0q), the
approximating homeomorphism being A;. Thus, A; in effect eliminates the shift of configuration
from C' to Cy by shifting the shapes from Dy to D;.
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Let C3 = C’zAl_l; thus C3Dy = C3Dy. Thus, C3 is the replacement needed for C5 since we
have shifted our shapes from Dy to Dy. Again since (Dg, Cs) is feasible, so is (D1, C3). Now, for
any point p € D[A], d(Cs[4](p), Cs[A](p)) = d(Co[ A\ [A](p), Co[Al(p)) = (since Co[A] is a rigid
transformation that preserves distances) d(p, A1[A](p)) < €1/2. Likewise, for any point q € D[B],
d(C3[B](a), C3[B](q)) < €1/2. Hence p? (C3,C3) < €1/2 and pP (C3,C) < €1 < €p/2.

There may also be a net motion of A between C7 and C5, which will appear as a congruent motion
between C' and C5. We therefore split the change from C' to C'5 into two parts: the relative motion of
B with respect to A, which will take us from C to a new configuration C4, and the uniform rotation
of both object together taking us from C4 to Cs. To do this, let Ay be the single transformation
C[A]C5'[A], and let Cy = (A, A2)Cs = (C[A], A2C3[B]). Since Cy differs from Cs only by the same
rigid mapping Az on both objects, Cj is likewise feasible. Also, the maximum distance moved by any
point in A from Cjy to C3 is pA(Cs, C4), and the ratio of the maximum distance moved by any point
in B from C4 to C5 divided by the maximum distance moved by any point in A from C4 to Cj is at
most 2E. Hence p? (Cs, C4) < 2EpA(C3,Ca) = 2EpA(C3,C) < 2Fe; = ¢0/2. So pP(C4, C) < <.

Thus the conditions of lemma 4.21 are satisfied for the pair C',C4 over the display D, so there
is a path ¢4 through free(D;) connecting C to Cy. Let ¢3 be the path consisting of ¢4 followed by
the continuous rigid movement of the whole scenario from C4 to C'5. Then ¢3 connects C with Cj
and is feasible over Dj. Finally, let ¢ = ¢3A7*. Then for any T, ¢(T)(Do) = ¢3(T)(D1). Hence ¢

is feasible over Dy and connects C; with Cs. |

Definition 4.15: Let D and D’ be two displays. The connected components of free(D) and free(D’)
correspond if every connected component of free(D) intersects exactly one connected component of
free(D') and vice versa.

Theorem 4.23: Let D be a display over two objects A and B that is always strongly separable, such
that free(D) is ordinarily connected. Then there exist @ > 0 and v > 0 such that, if D’ is a display
that approximates D in tangent («, ), then the connected components of free(D’) correspond to
those of free(D).

Proof: Find €,7,¢ to satisfy lemma 4.22. Let A be the minimal distance between any two
path-connected components of free(D); since free(D) is ordinarily connected, A > 0. Let § =
(1/2) min(e, A)

It is immediate from lemma 4.17 that free(D) is equal to the closure of cfree(D). There-
fore, by theorem 2.15 there exists a Ay > 0 such that, if dgq(D, D) < Ay for display D', then
pH (free(D) free(D')) < §. Let Ay be the minimum, over all path-connected components P of free(D),
of the maximum of clearance(D, C) for C € P. Let & = min(A1/2, A2/2,6).

Now let D' be any display that approximates D in tangent (a, ). Note that dgq(D, D') < 2a.
We observe the following:

1. For any configuration C, clearance(D’, C') > clearance(D,C) — Ag. Therefore, in every path-
connected component of free(D) there is a configuration C' Efree(D’).

2. Any configuration C’ €free(D’) is within § of some configuration C' in free(D), and therefore
within § of the path-connected component of free(D) containing C'.

3. Since ¢ isless than the distance between any two distinct path-connected components of free( D),
no configuration C’ €free( ) is within ¢ of two different path-connected components of free(D).
Therefore, if C] and C) are not within ¢ of the same path-connected component of free(D),
then there cannot be a path from Cf to C) through free(D').

4. Let C% and C} be any two configurations in free(D’) that are within J of a single path-
connected component P of free(D). Let Cg, Cg be configurations in P that are within ¢ of
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%, Cp respectively. Let ¢ be the path connecting C's to Cr. Find a sequence of times
To = 0,Ty...T, = 1 such that, for i = 1...n, p?(¢(T;_1),¢(T;)) < 6. Choose a sequence
C! such that C) = C%, C!, = Cy, and for i = 1...n— 1, p?(C!, ¢(T;)) < §. Then for each
P51 m, P (CL g, 6(T3)) < DP(Clor, 8(Ti1)) + 0P (8(Tir), 6(T3)) < 26 < . Therefore, by
lemma 4.22, there exists a path from C/_; to C! through free(D’). Stringing these together
gives a path from C% to Cf through free(D’).

Thus, for any path-connected component P of free(D), the set P’ of all configurations within ¢
of P is a path-connected component of free(D’) and intersects P. Moreover, every configuration in
free(D’) is an element of one such P’. Thus, our theorem is complete. L.

The same argument allows us to achieve criterion (3) mentioned at the start of section 3:

Definition 4.16: For any metric spaces S and T', we say that points s € S and ¢t € T' correspond
within € if any path p starting at s can be tracked within € by a path ¢ starting at ¢ and vice versa.
Say that S and T are close within € if, for every point s € S there is a point ¢ € T' corresponding
within € and vice versa.

Theorem 4.24: Let D be a display over two objects A and B that is always strongly separable,
and such that free(D) is ordinarily connected. Then for any ¢ > 0 there exist @ > 0 and ¥ > 0 such
that, if D’ is a display that approximates D in tangent (a, 1), then free(D’) and free(D) are close
within e.

Proof: Same construction as the proof of theorem 4.23. Change the construction in lemma 4.20

to use a path ¢ =arc(C, M, min(A, A/2,¢)). 1

It is possible to extend theorem 4.23 to systems of several objects along the following lines: Let
¢ be a continuously differentiable path through configuration space. For point p, define the relative
motion of p in object J relative to object I under path ¢ as the velocity of p under the motion of
J relative to its velocity under the motion of I: (d/dt¢(T)[J](p)) — (d/dt¢(T)[I](p)) A motion ¢
is strongly separating in scenario (D,C) where C' = ¢(0) if, for every pair of objects T # J, and
for every point p € CD[I] N C'D[J], the motion of p in J relative to I is non-zero and its direction
strongly separates C'D[J] from C' D[I] at p. Display D is always strongly separable if the objects in D
are all solid polycurves and for every C' €free(D) there exists a motion ¢ that is strongly separating
in scenario (D, C).

Theorem 4.25: Let D be a display over n objects that 1s always strongly separable, and such that
free(D) is ordinarily connected. Then there exist & > 0 and ¥ > 0 such that, if D’ is a display that
approximates D in tangent (e, ), then the connected components of free(D’) correspond to those of

free(D).

Proof: The proof is exactly analogous to that of theorem 4.23. We have replaced circular motion
by general continuous differentiable motion (even if we required each object to move in a circle,
their relative motion would be a cycloid). However, the flow field of any differentiable motion at any
instant is equal to the flow field of a uniform motion, and, by continuity, stays close to that uniform
motion over some time. This is sufficient to carry out the above proof. I

It seems plausible to conjecture that the analogous theorem holds in #* for k > 2 as well, and,
indeed the same proof applies directly in the case of smooth shapes. However, I have not been able
to prove the analogue of lemma 4.14 for a suitable class of piecewise smooth shapes in dimensions
higher than 2. Tt is also plausible to conjecture that, if D’ approximates D sufficiently well in tangent,
then free(D’) is homeomorphic to free(D) and, further, that free(D’) can be made to approximate
free(D) arbitrarily well in tangent. This last result is likely to be necessary, or at least useful, in
proving that small changes to a mechanism do not change its qualitative behavior, since corners in
configuration space correspond to jammed positions of a mechanism, and it is therefore desirable to
give conditions under which no such corners can emerge. However, I have not proven either of these
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results.

Two further limitations of the above result should be noted. First, since the proof is non-
constructive (and very conservative), it gives very little help in answering the practical questions,
“Given a situation, how accurate an approximation is needed to get reliable results?” or “Given an
approximation of known accuracy, do the results apply to the actual situation?” An algorithm that
addresses these problems is given in [Joskowicz, Sacks, and Srinivasan, 95]. Second, theorems 4.23
- 4.25 apply only to motions that lift one object off of the other. By contrast, in physical reasoning
about kinematic systems, the most important motions are those that maintain contact, and the most
important approximations are the “gap-filling” approximations ([Joskowicz, 89], [Davis, in prep]) in
which a system with a narrow contact-free configuration space is approximated by one in which there
is no contact-free space. Such motions and approximations are not addressed by the above theorems
at all.
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