MULTILEVEL SCHWARZ METHODS
WITH PARTIAL REFINEMENT
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Abstract. We consider multilevel additive Schwarz methods with partial refinement. These algo-
rithms are generalizations of the multilevel additive Schwarz methods developed by Dryja and Widlund
and many others. We will give two different proofs by using quasi-interpolants under two different as-
sumptions on selected refinement subregions to show that this class of methods has an optimal condition
number. The first proof is based purely on the localization property of quasi-interpolants. However,
the second proof use some results on iterative refinement methods. As a by-product, the multiplicative
versions which corresponds to the FAC algorithms with inexact solvers consisting of one Gauss-Seidel
or damped Jacobi iteration have optimal rates of convergence. Finally, some numerical results are
presented for these methods.
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1. Introduction. In this paper, we consider some solution methods of the large
linear systems of algebraic equations which arise when working with elliptic finite
element approximations on composite meshes. We consider the following linear, self-
adjoint, elliptic problems discretized by finite element methods on a bounded Lipschitz
polyhedral region € in R".

— i %%;’(@% =f in €,
(1) u = ug on I'p C 092,
22 az’j(I)%m =g on I'y = 0O\I'p.

Here the matrix {a;;(z)} is positive definite with a positive uniform lower bound c
for almost all  in Q. Each a;;(x) is a bounded measurable function in Q and 7@ is
the unit outward normal to 9€2. We assume that the measure of I'p is strictly greater
than zero. This insures a unique solution to problem (1).

We will assume, without loss of generality, that vy = 0. If not, we can always
substract an arbitrary function w that equals ug on I'p from u. Let

V = H})(Q) ={u € HI(Q)|’7’U =0 onIp}.

Here 7 is the trace operator. The standard continuous and discrete weak formulations
for the above elliptic problem (1) then consist of

(2) a(u,v) = f(v), YveV,
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and
(3) a(up,vy) = f(vn), Yo, € VI,

respectively. Here

a(u,v) = /QZCL”(w)a—La—r]dx and  f(v) :/vad;l: —I—/FN guds.

27]

The space V" will be defined in the next few paragraphs. It is easy to see that the
norm (a(u, u))!/? is equivalent to the seminorm |u|m(q) in H'(Q).

To simplify the presentation, we use continuous, Lagrange finite element of type
1 and only consider homogeneous Dirichlet boundary value problems. Then we will
remark how to proceed our analysis to more general mixed type boundary condition
and more general Lagrange elements.

The space V" is defined on a composite triangulation, which is possibly the result
of a large number of successive refinements. The triangulation of 2 is given in the
following way.

We first introduce a relatively coarse triangulation of €2, also denoted by €2y, and
denote the corresponding space of finite element functions by V. We can think of
this space as having a relatively uniform mesh size hy. Let 5 be a subregion where we
wish to increase the resolution. We do so by subdividing the elements and introducing
an additional finite element space V"2. We assure that the resulting composite space
V™M 4+ Vk is conforming by having the functions of V"2 vanish on 9;. We repeat
this process by selecting a subregion {23 of {2 and introducing a further refinement
of the mesh and finite element space, etc.. We denote the resulting nested subregions
and subspaces by €Q; and V% respectively. Throughout, we have ; C Q,_; and
Vh-rn HY Q) c Vi C HY (%), 1 = 2,-- -, k. The composite finite element space on
the repeatedly refined mesh, is

Vi=Vm 4V 4. Vi

We assume that all the elements are shape regular in the sense that there is
a uniform bound on hx/px. Here hix and pg are the diameter and the radius of
the largest inscribed sphere of any element K, respectively. Our theoretical bounds,
developed in this chapter, also depend on the shapes of the subregions €2;.

The finite element problem is defined by equation (3) and the corresponding
stiffness matrix can conveniently be computed by using a process of subassembly.
Introducing subscripts to indicate the domain of integration, we write

a(u,v) = ag,\q,(u,v) + ag,\q,(u,v) + - - - + ag, (u,v).

The stiffness matrices corresponding to the regions 2;\ ;41,7 < k—1, and Qy, are
computed by working with basis functions related to the mesh size h;. The quadratic
form corresponding to the composite stiffness matrix is the sum of the quadratic forms
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corresponding to €2; \ ;11,7 < k — 1, and Q. When we refine a finite element model
locally, the modified stiffness matrix is obtained by replacing the quadratic form
associated with the subregion in question by the one corresponding to the refined
model on the same subregion. It is therefore relatively easy to design a method which
systematically generates the stiffness matrices for all the standard problems necessary
while, at the same time, the stiffness matrix of the composite model is computed.

We use the framework of multilevel additive Schwarz methods, which is described
in Dryja and Widlund [7], and Zhang [18] to develop a new kind of algorithm for
composite finite element problems. If we compare this kind of algorithm with the
AFAC methods in [4], we can see that they are both additive Schwarz methods. In the
new algorithms, we decompose the problems corresponding to the refined subregions
with uniform mesh size, used in AFAC, into many much smaller problems which are
much easier to solve. However, this is at the expense of slower convergence of the
algorithms.

We will apply quasi-interpolants and some theoretical results from FAC and AFAC
methods to prove that the iteration operators of these methods have a uniform lower
bound under quite general assumptions. We remark that our proof can be applied to
the case of refinement everywhere and is different from Zhang’s which was obtained
by considering a decomposition based on the Galerkin projection on a larger convex
domain. Bornemann and Yserentant [1] have also obtained another proof based on
the use of K-functionals.

We can also consider some multiplicative versions of above methods. These vari-
ants corresponding to the FAC algorithms with inexact solvers consisting of one Gauss-
Seidel or damped Jacobi iteration. We can use the similar arguments of Zhang to show
that these variants have an optimal rate of convergence.

In Section 2, we describe general multilevel additive Schwarz methods and men-
tion some theoretical results about them

In Section 3, we describe general multilevel additive Schwarz methods with partial
refinement and give the first proof of optimality purely based on quasi-interpolants
under some restricted conditions.

In Section 4, we develop the second optimality proof based on some assumptions
coming from iterative refinement methods and describe some multiplicative variants..

In Section 5, we present some numerical experiments to verify our theoretical
results.

2. General Multilevel Additive Schwarz Methods.

2.1. Basic Two-Level Methods. In 1987, Dryja and Widlund developed the
framework of additive Schwarz methods which makes it possible to solve all the sub-
problems in parallel. Following Dryja and Widlund [5], [6], let us define two levels of
triangulations. We start with a coarse triangulation 7# = {Q;}¥ . Each (; is then
further divided into smaller elements to obtain a fine triangulation 7". We assume
that the Q; in the triangulation 7 have a quasi-uniform mesh size H and that the

elements in the triangulation 7" a quasi-uniform mesh size h.
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To get an overlapping decomposition of {2, we extend each {1; to a larger region Q.
such that ¢cH < dist{0%;,09Q;} < CH, and the 01; align with boundaries of elements
in 7" . We cut off the part of each €; that is outside of (.

[P

1

1

1

1
»s

Fic. 1. Two levels of triangulation

It is easy to see that {;} forms a finite covering of domain Q. We see that we can
color {€;}, using at most N, colors in such a way that the subdomains of the same
color are disjoint. Here N, is a constant which depends only on the shape regularity of
TH. Due to the generous overlap of {{;}, we have a partition of unity {6;} satisfying

N
292 =1 with 6; € WI’OO(QZ'),O <g;, < 1, and |92'|],V1,oo < C/H
=1

Let V" and VH be the Lagrange finite elements of type 1 associated with the
triangulations 7" and 7# | respectively. Let Vo = V7 and V; = V*(Q;) = VFNHI ().
We obtain a decomposition of the finite element space V"

N
viE=3%"V.
=0
Let Py, : V* — V;, be the Galerkin projection defined by
a( Pyu,v) = a(u,v), Yv e V.

The matrix form of Py, after a permutation, is

K™ 0\ . K 0\ .
PVi_(O 0)]\—(0 O)IX,

where K is the stiffness matrix associated with the domain €2 and K; is the stiffness
matrix associated with the Dirichlet problem on the subdomain §2;. The additive
4



Schwarz operator, P is given by

N
P=Y Py
=0

The additive Schwarz algorithm for equation (3) is to solve an auxilary linear system
which is equivalent to (3).

ALGORITHM 1. Apply conjugate gradient method to the symmetric, positive defi-
nite system

(4) Puh = Gh,

with respect to the inner product a(-,-) for an appropriate g such that the solution uy
is the same as that of (3).

We remark that we can compute ¢ = Pup = >, ¢; = >_; Py,up without knowing
the solution of (3) by solving

a(gi,v) = a(u,v) = f(v), Yv e V.

In this algorithm, we only need to compute Puvy, for a given v, € V" in each
iteration, so the explicit representation of P is not needed. For the rate of convergence,
we refer to the following theorem.

THEOREM 1 (DRYJA AND WIDLUND). For the operator P defined above, there
exists a constant Cy such that

Coa(u,u) < a(Pu,u) < (N.+ 1a(u,u), Yue V"

Thus k(P) < (N.+1)/Co, and the rate of convergence of Algorithm 4.2.1 is indepen-
dent of h and H.

The proof can be found in Dryja and Widlund [6]. We remark that if we do not
use the coarse space, the condition number of the operator will grow like H~2. This
fact was pointed out and proved by Widlund in [15].

2.2. General Multilevel Additive Schwarz Methods. In basic two-level
methods, we need to solve a coarse problem of size O(1/H?) and some local problems
of size (H/h)?. If h is small, we cannot both have 1/H and H/h small. Thus at least
one of the subproblems is large. The computation can be made cheaper by recursively
using the additive Schwarz method to solve the coarser problems.

We now give a description of general multilevel additive Schwarz methods which
is developed in Dryja and Widlund [7]. We define a sequence of nested triangulations
{TE,}. We start with a coarse triangulation 7' = {r}}, with quasi-uniform mesh
size hy, where 7} represent an individual triangle. The successively finer triangulations
T'={r!}(1=2,---, L) are defined by dividing each triangle in the triangulation 7'~*
into several triangles, i.e.

T = {71} 1‘eﬁrglent T2 = (1} reﬁrgnent o reﬁrgnent T = {(+} Ny,
)



We assume that the triangulations 7' have quasi-uniform mesh size h;_; for each I.
Let VM, 1 =1,---,k, be the space of continuous piecewise linear element associ-
ated with the triangulation 7. The finite element solution, u; € V* = V" satisfies

(5) alun, ¢r) = f(dr), Von € V' =V,

We assume that there are £ — 1 sets of overlapping subdomains {Qﬁ-}f\ﬁl,l =
2,3,--+, k. On each level, we have an overlapping decomposition

We assume that the sets {Q!} satisfy the following assumption.
ASSUMPTION 1. The decomposition §) = Uf\glflﬁ satisfies

° 8(25 aligns with the boundaries of level | triangles, 1.e. Qﬁ 18 the union of level
[ triangles. Diameter(flé) = O(hi-1).

o On each level, the subdomains {Qﬁ}fﬁl form a finite covering of 2, with a
covering constant N., t.e. we can color {Qﬁ 521, using at most N, colors in
such a way that subdomains of the same color are disjoint.

o On each level, associated with {QN,, there exists a partition of unity {6'}
satisfying

S0 =1, with 6. € Hy(Q) N CYQL),0 <6 <1 and |V} < C/hi_.

o hy/hiy1 is uniformly bounded.

One way of constructing subdomains {Qﬁ}fﬁhl = 2,---,k, with the above prop-
erties is described in Dryja and Widlund [5], [6]. Each triangle /=i = 1,---,N;,I =
2,--+, k, is extended to a larger region %2_1—1 so that ch;_; < dist(aﬁl_l, 872»1_1) < Chy_q,
aligning 07/~ with the boundaries of level [ triangles. We cut off the part of 7/~! that
is outside Q. We use 7/7! as the subdomains Q!. Another way of constructing {Q!} is
given in the next section.

Let Ny = 1,V = VM and V" = Vi n HY QL) for i = 1, Nyl = 2, k.
The finite element space V" = V** is represented by

kN

k
S S 0l
=1

=1 :=1
Let P! : VP — Vihl, be the projection defined by
a(Pilua ¢) = a(u, ¢)7 V¢ € ‘/;'hl'

The k-level additive Schwarz operator P is defined by

kN

(6) P:ZZPZ-

=1 :=1

Instead of solving the original finite element equation (5), we use the following algo-
rithm.



ALGORITHM 2. Let P be the operator defined by (6). Apply the conjugate gradient
method to the following symmetric and positive definite system

Puy = gy,

with respect to the inner product a(-,-) for an appropriate g such that the solution uy
is the same as that of (5).

The following theorem, which is given in Zhang [18], proves that this multilevel
additive Schwarz method has an optimal rate of convergence.

THEOREM 2. For P defined above, the following inequalities hold

Cra(up,up) < a(Pup,up) < Cra(up, up) Yuy, € V.

Thus (P) < C,CT'. Here the constants Cy and Cy are independent of the mesh sizes
{h} and k.

3. Description of Multilevel Additive Schwarz Methods with Partial
Refinement and the First Proof of Optimality. We can modify the general
multilevel additive Schwarz methods such that they can handle the finite element
problems (3) with composite mesh sizes.

We now give a description of multilevel additive Schwarz methods with partial
refinement. Like the procedure in last section, we define a sequence of nested tri-
angulations {7;%,}. We start with a coarse triangulation 7' = {r!}!, with quasi-
uniform mesh size hy, where 7! represent an individual triangle. The successively
finer triangulations 7' = {r/}(Il = 2,---,k) are defined by dividing each triangle in
the triangulation 7'~! into several triangles, i.e.

1 1 N, refinement - 11N, refinement refinement 4 k1N
T ={r " = T°={r )1’ = = T" ={r"}".

We assume that the triangulations 7' have quasi-uniform mesh sizes h;_; for each I.

Let us define € = Q. Then for each 2 < [ < k, we choose §2;, which is a
subregion of €;_1, such that 9€Q; aligns with boundaries of level [ — 1 triangles. Let
Vi 1 =1,---,k, be the subspace of continuous piecewise linear element associated
with the triangulation 7' of HL(Q). We also set V7 to be V* N HL(;). The finite
element problem is to find uy € Vh=Vh ... 4V satisfying

(7) a(un, ¢r) = f(dr), VeneVF=VM 4. .4V
We assume that there are k — 1 sets of overlapping subdomain {Q}N .1 =
2,3,---, k. On each level, we have an overlapping decomposition
Q= Ul QL

We also assume that there are another k£ —1 sets of overlapping subdomains {Qi}fﬁ]—l\}%_ﬁ

such that we have
Q = UG

We can now make the following assumptions similar to Assumption 1.
ASSUMPTION 2. Let us assume that



o The mesh sizes by are bounded from above and below by const.q' uniformly
for alll. Here q 18 a positive constant less than 1.

o (01 NI\ IUL=0 for 1 =2,3,-- k.

° 8@5 aligns with boundaries of level [ triangles, 1.e. Qi 18 the union of level |
triangles. Diameter(@l) O(hi-1).

o On each level, the subdomains {QZ}NH'MZ form a finite covering of ), with a

Ni+M,
VoEM sing at most N, colors

covering constant N., i.e. we can color {Ql
in such a way that subdomains of the same color are disjoint.
o On cach level, associated with {QL}N, there exists o partition of unity {6'}

satisfying

S0 =1, with 6. € Hy(Q) N C%QL),0 <6 <1 and |V} < C/hi_.

One way of constructing subdomains {Qf\ifMl} [=2,--- k, with the above prop-
erties is mentioned in last section. Let Ny = 1, Vi = Vhl and Vhl Vi HYOQY
fore=1,--- N+ M;, I =2,--- k. The finite element space V" is represented by

kN

DT WD

=1 =11:=1

Let us define P! as the orthogonal projection from V* onto Vihl with respect to a(-, )
which is the same as those in last section. The k-level additive Schwarz operator P

is defined by

kN

(8) P=YY P.
I=1 i=1
Then we have the following algorithm.
ALGORITHM 3 (MAS WITH PARTIAL REFINEMENT). Let P be the operator de-
fined by (8). Apply the conjugate gradient method to the following symmetric and
positive definite system

Puh = gh,

with respect to the inner product a(-,-) for appropriate g, such that the solution wuy s
the same as that of (7).

Our main purpose of this section is to prove the following theorem.

THEOREM 3. For P defined by (8), the following inequalities hold

Cra(up,up) < a(Pup,up) < Cra(up, up) Yuy, € V.

Thus k(P) < Cngl. Here the constants Cy and Cy are independent of the mesh sizes
{h} and k.

In order to prove the above theorem, we need to introduce the concept of quasi-
interpolants.



DEFINITION 1. Guven a triangulation T of Q, we associate with T a finite element
subspace V(T) of L*(2) which consists of piecewise polynomaials of degree less than or
equal to m. A linear mapping

Q: I4Q) = V(T)
18 called a quasi-interpolant of order m if it satisfies the properties
Qu=u YueV(T),
and for a constant C' depending only on the shape reqularity such that
1QullLey < C - lullpey, YK €T,  Vue L¥(Q).

Here K denotes the union of the neighbouring elements of K.

The following example is given in Oswald [12].

Example. We construct a quasi-interpolant for linear elements in two dimension.
The procedure can be generalized to the cases of more general Lagrange elements and
higher-dimensional spaces. Consider an arbitrary nodal point P;(=vertex) of 7 and its
adjacent triangles and define on the region a piecewise linear and continuous function
with value 3 at P; and —1 at the other vertices of this region. Extend this function
by zero to {2 and scale it by the factor 3/|A4;|, where A; denotes the support of this
function. Denote the nodal basis function corresponding to P; by ¢; and this L™
function by ¢;. Now we may take

Qu = Z/Q(% b7 )12 () - i

If we look at the quadrature rule for triangles which uses the side midpoints as inte-
gration points and is exact for polynomials of degree 2, it is easy to see that () satisfies
the first condition in Definition 1. There remains to verify the second condition. For
any element K with area |K|, we have |A;| > |K]|, for each of its three vertices P;,
and

|(w, 62| < Nlullzoeany - 165 2 an < C - TATY2 - | o iy

for the corresponding coefficients. Therefore
|QullL2re) < IK|V? - max | (u, 67) 2 (@) < C - [[ull 2y

Finally we remark that the value of Qu at an arbitrary vertex P only depends upon
the values of u in the elements which have P as a vertex.

Let Q; be a quasi-interpolant of order 1 from L?*(Q) onto the space Vi, for
[=1,2,--- k. The proof of the following lemma is similar to one that appears in Xu
[17] after replacing the L? projection by quasi-interpolants. However, in our proof, we
do not need to use the fact that the quasi-interpolants are bounded linear mappings

in the space Hy ().



In order to prove the main lemmas in this section, we need the following four
lemmas. The proof of the first lemma can be carried out using a standard duality
argument; cf. [4]. The proof of the second lemma is based on using smooth functions
to approximate elements in H'(€) and applying the fundamental theorem of calculus
to the region. Proof of Lemma 3 may be found in [10] and [11]. Proofs of Lemma 4
may be found in [9] and [16].

LEMMA 1. Let P, be the orthogonal projection onto the space V™ with respect
to a(-,-) and suppose that the coefficients {a;;(x)} of elliptic problem (1) are smooth
enough. Then there exists a s € (1/2,1] and a constant C such that

I = P)ulli—@) < CRI(I = P)ullus), Vu € Hy(R).

LEMMA 2. Let Q be a domain in R?, which has the following special form.:
{(z1,29)|a < x1 < byg(xy) < 22 < f(x1)}. Here f(z) and g(x) are piecewise C*,
continuous functions on [a,b] such that g(z) < f(z) on (a,b). Then for allu € H*(Q)
vanishing on {(x1,x2)|a < x1 < b,xy = g(x1)}, we have

|lullr20) < arglggb|f(lf) —g(2)| - [ulm (o)

We can also get similar inequalities in R™ for n > 2.
LEMMA 3 (POINCARE’S INEQUALITY ). Let

Then there exists a constant C(S2), which depends only on the Lipschitz constant of
09, such that for all u € H'(Q) we have

v —{u}allz2 (@) < C()Halulgi(q)

Here Hq 18 the diameter of 2.

LEMMA 4. Let V be a finite-dimensional Hilbert space with the inner product
a(-,-) and let V; be subspaces of V' so that V.= Vi + --- 4+ V. We define P; as
the orthogonal projection onto V; and P = P, + --- + Py. If a decomposition of u,
u =7y ,u; where u; € V;, can be found such that

Za(ui,ui) < Cia(u,u), Yue Vh,
then
Amin(P) > C71.

Conversely if for all representations of u, v =3, u;, we have

a(u,u) < C2 Y alug,u;), Yue V"

K3
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then

Amax(-P) S CQ-

After formulating these lemmas, we can start to prove the following two lemmas
which we also need.

LEMMA 5. There exists a constant C', which depends only on the shape reqularity,
such that

1
Zn@ Qullia g7 < Clulin Vo€ HY(Q)

Proof. Let us set

and
= (]5Z — ]52-_1)u.
Here P, is the orthogonal projection onto V" with respect to a(-,-). We observe that
1Quuill 2@y < Clluillz2oy
by the shape regularity assumption and that
1Quuil r20y = [ Qu(ui — Querud) ||z () < Cllui — Quovuill 2y < Chil|us]|me)

Here () is the L? projection onto the space V™. By using an interpolation theorem
of Hilbert scales; cf. [4] and [8], we have

Gl < ORI oy, Vs € (0,1)
We choose s as in Lemma 1. Then
1Quuillz2(e) < Chi™|[uill sy < Chi™*h|uill i a)

With ¢ A j = min(z, 5 ), we have

k k k IN]
N 1 1
Z 1Quu||72 (0 - 77 33 (Quui, Quuy)rea = Z S (Quui, Quuy)roq) - ) 73
l =1 1,5=l 1,7=1{=1 l

k iAg 1 k  iAg 1 1 5
E | =gy sl - Z E —h ReR3 il oy llwll e
iN]
=C Z hfh§||uz'||H1(Q)||uj||H1(Q)lzh T<C Z hing i RG will @ sl o)
7,7=1 1 7,7=1

k
<C Y Ml lluslla < CZ [uillf o) < €1+ C'(d))|ulf g

1,5=1
11



The last step follows from Friedrichs’ inequality. C'(d) is a constant which only
depends upon the diameter d of the domain €. By using a simple dilation argument,
we can completely remove the dependence of this constant upon the diameter of €2
and complete the proof. O

Proofs of the boundness of the L* projection in Hj(Q) are given in Scott and
Zhang [13], and in Bramble and Xu [3]. However, the proof in [3] does not seem
to apply to the elements which have nonempty intersection with 92. We have the
following similar result for quasi-interpolants.

LEMMA 6. There exists a constant C', which depends only on the shape regularity,
such that

|Quutl ey < Clulpgy, Vu € Hy(Q).
Proof. Let us first consider the elements K satisfying K N 9Q = (). Then we have

|@1’U|H1(K) = |@zu - C|H1(K) = |@z(u - C)|H1(K)
< Ch | Qu(u = )llzery < ChiHlu — el )

for any constant ¢. Here K is the union of the neighbouring elements of K.
Take ¢ to achieve the infinum. By Lemma 2, we have

|Qruf iy < Chit- ifclf [l — C||L2(F) <Chyt- C'hl|u|H1(F) = C|U|H1(F)-
Let ¢ denote the union of such elements K. By shape regularity, we obtain

|@z‘u|H1(Qo) < Clulgya)

for some constant C'. Now it is sufficient to prove that

|Quulmanas) < Clulma)-

It is obvious that we can write Q \ Qy = UL, Qq; as a nonoverlapping union. Let
Q;)Z» = U]{EQOZ.F where K is the union of the neighbouring elements of K. It is obvious
that each region €, and each function u € H} () satisfy the conditions of Lemma 3
and that the constant of this lemma is O(h;). Then we have

|Quul (o) < Chi|Quu| 220,
< ChZ_IHUHL?(Qgi) <Cht- hl|u|H1(Qgi) - C|‘“|H1(Qéi)'

By combining the above results, the proof of the lemma follows easily. O
In order to prove the main theorem of this section, we need the following two
lemmas. In these lemmas, I; denotes the usual nodal interpolants from V" onto V.
The proof of the first lemma can be found in [2] and that of the second lemma can
be established by replacing the L* norm with a discrete equivalent norm in the finite
element space V.
12



LEMMA 7. Assume that ¢ < j. Then there exists a constant C, which depends
only on the shape regqularity, such that

| Liujlip o) < Clog(hi/hy) - lujlingg), — Vuj € VP
in two-dimensional space and
| Liuilinge < Clhif k)"~ - lujlingy,  Vu; € VP

in higher dimensional space.
LEMMA 8. Assume that ¢ < j. Then there exists a constant C, which depends
only on the shape reqularity, such that

1 iullFz) < Clhi/hi)" - ujlliz@), — Vu; € V.

Proof of Theorem 3. Let us first prove that the operator P has an uniform upper
bound. We define P by

We observe that P has a uniform upper bound by Theorem 2 and P < P. Therefore
P has a uniform upper bound.

To establish the uniform lower bound, we will apply the first part of Lemma 4.
We note that it is sufficient to find a good decomposition of u € V* such that the
constant is uniformly bounded from above. Let us first decompose u as

k k
U = @1u + Z(Qz - @1—1)u = E‘Uz-

1=2 =1
Although (Q;— Qi_1 )u is not in the space V™, since the value of the function Q,_ju(z)
at the node z of V-1 on 9§, are not equal to u(x) in general, this function nevertheless
have their support in ©;_; by the assumption (9€; N 9Q;_;) \ I = 0 and belongs to
Vhi-1 in O\Q,. If we set u; = v, — 1:;_1'01 + 1:1’014—1 for l =2,---,k and uy = vy + 1:1'02,
then u; € V" for all [ and v = Y-, w;. By Lemma 5 and Lemma 6, we have

k
1
|'Ul|?LIl(Q) + Z ||vl||%2(ﬂ) ) h_12 < C|u|fqu(9)'
(=2

If we apply Lemmas 7 and 8 to the above equation, we will find that

k
1
(9) lurline) + 2 lulliz) - n? < Clulipg)-

=2
We need to further decompose u!, for [ > 2, as
N, B
u' =" ul, with ul = L(6u') € Vi,

=1
13



Here {6} is a partition of unity as in Assumption 2. It can be shown that

|u |Il(91 l)|H1 ~l)
< CG oo ol I ) + 16iT e @l 172 0)

l
< C(|“ Hl(()g) (1/hl—1)||ul||/;2 )

HY(QY

Summing over ¢ and using the finite covering property of {Qi}, we obtain

1

2l = 2o ity < €2y + 5 - Il
7 % -1

1 1
< C(Ju'|fq) + ﬁ||ul||%2(n)) < Cﬁ||ul||%2(m
{ l

Summing over [, for 1 <[ < k, and using inequality (9), we get

k
222 uilingg < O ling) + Z hzllullle )) < Cluling
=1 =
The lower bound of P now follows. O
We end this section by mentioning a special decomposition of the domain €2 in
Zhang [18]. Tt is called the multilevel diagonal scaling. Let ¢! be a nodal basis function

of V", and associate with each ¢! the subdomain Qi = supp{¢t}. We may choose
Vil = span{¢!} = VM N HY(Q!) and obtain the decomposition

kN

th — szihz

[=11:=1

and the Galerkin projection P! corresponding to Vihl. Let P' = Yk, 25\21 Pl Tt is
easy to see that the above construction satisfies Assumption 2. Therefore we have
another variant of Algorithm 3 whose optimality follows from Theorem 3.

ALGORITHM 4 (MDS WITH PARTIAL REFINEMENT). Let P’ be the operator
defined above. Apply the conjugate gradient method to the following symmetric and
positive definite system

P’uh = Gk,

with respect to the inner product a(-,-) for an appropriate g such that the solution uy
is the same as that of (7).

Let K; be the stiffness matrix associated with V" let K}, be the stiffness matrix
associated with V" and let D; = diag(K;). Let Z; : V" — V" 1 <1 < k, be the
standard inclusion operator, and let Z! : V" — V" be an operator related to Z; in the
following way:

(Iltuh,’l)l)l = (’uh7Il’Ul)L2(Q) V’Ul € Vhl.
14



Here (-,-); is the discrete inner product in V", which is equivalent to L?(2), defined
by

(ul,'vl)l = hy Z ul(aj)vl(;l:) Vu! vt e V.
zEM

Here N is the set of nodes of the degrees of freedom in V", Algorithm 4 can then be
written as: Find the solution of Kz = b by solving the preconditioned system

By 'Kz = B;'b,
where
Byt =h} LE'I{ + -+ hi_y - T DL T, + by - D

We remark that if we replace the matrices D; by identity matrices, we obtain the
BPX algorithm with partial refinement.

4. The Second Proof of Optimality and Some Multiplicative Variants.
In this section, we will construct another proof of our main theorem by using the
approach of iterative refinement methods. For convenience, we use the same notations
as in last section. The typical assumption for iterative refinement methods is related
to the extension theorem for finite element functions with respect to the a(-, ).

ASSUMPTION 3. For each j, there exists a bounded Lipschitz polyhedral region Qj
such that Q; C (NZ]', (QJ \Q)NQ =10, (9(2]' NOQ;41 = 0 and the Lipschitz constants of
Q; \ Qy1 are uniformly bounded.

The above assumption can usually be weakened to Assumption 4

ASSUMPTION 4. For each j, esther Q; = Q11 or there exists a bounded Lipschitz
polyhedral region Qj such that Q; C Qj, (Q] \Q)NQ =10, an N1 =0 and the
Lipschitz constants of Qj \ Q41 are uniformly bounded.

Let us define sz" i < 7, as the orthogonal projections onto the spaces Vi, N H}(£2;)
with respect to the inner product a(-,-). Now we can recall a result from Cheng [4].

LEMMA 9. Under Assumption 4, there is an absolute constant C' which depends
on the Lipschitz constant in Assumption 4 and shape reqularity such that for any
u € V" we can decompose u into u = Y.*_, u;, where u; € Range(P! — P71, and

k
> a(ui, ui) < Calu, u).
=1
We remark that the proof of this Lemma can be done by first considering the case
under Assumption 3 and then doing a further decomposition of u under Assumption
4.
Now let us make the remaining assumption used in the main theorem in this
section and then state the main theorem.
ASSUMPTION 5. Let us assume that
o These mesh sizes h; are bounded from above and below by const.q' uniformly

for all l. Here q 18 a positive constant less than 1.
15



° aflﬁ aligns with boundaries of level I triangles, 1.e. Qﬁ 18 the union of level |
triangles. Diameter(Q!) = O(hi_1).
o On each level, the subdomains {QZ}NH'MZ form a finite covering of ), with a

}NZ+MZ

covering constant N., i.e. we can color {Ql , using at most N. colors

in such @ way that subdomains of the same color are disjoint.
o On each level, associated with {QLNL, there emists o partition of unity {6'}
satisfying

S0 =1, with 6. € Hy(Q) N C%Q),0 <68 <1 and |V < C/hi_.

THEOREM 4. Under Assumptions 4 and 5, there exist absolute constants Cy and
Cy such that

Cra(up,up) < a(Pup,up) < Cra(up, up) Yuy, € V.

Here P is defined by (8). Thus k(P) < Cy,Cy'. Here the constants Cy and Cy are
independent of the mesh sizes {h;} and k.

The main idea of proving Theorem 4 is that constructing a good decomposition of
u € V" satisfies the condition of Lemma 4. Let us define the operators R; : V* — V'
by

o fu(e) e e O\
Riu(z) = { Ql(@) if v € Qpq

forl=1,2,---,k—1and Ryu = u. It is obvious that R,,R, = R, for 1 <n <m < k.

It is also clear that there exists an absolute constant C such that
| Riul[r2(0) < Cllullz2(q)

There are some other important properties of R; which we need. They will be
stated below.

LEMMA 10. There 1s an absolute constant C such that

||u - 1M||L2 < Ch | |H1

Proof. Let us denote the union of the element K of level [ in €;4; which satisfies
KN (Q\Q41) # 0 by Qg;. Then

lu = Ruul| 20y < llu — Qi) + |Quu — Riu||r2a)
< Chilulpie) + |lv — Quull2@p) + w2 o)

Here w € V™ in Q41 and

w(z) = (u — Qlu)(;v) if x € 0944
’ 0 if x is a node in Q4.
16



By considering a discrete norm of w as in Lemma 8, it is easy to see that
][220y < Cllu — Quuf|2@\auyy)-
Therefore
||u - R[‘M||L2(Q) S Ch1|u|H1(Q) + C||u - @lu”L2(Q) S Ch[|u|HJ(Q).D

In order to proceed with the proof of the next lemma, we need to introduce the
operators H; : V* — V™ by

Hu(z) e VM 4. 4 VM,
Hu(e) = u(e), o€ N\ Dy,
a(H;u, 'wh) =0, Yw, € Vhl N H&(QH—I)-

It is natural to call Hju the h;-harmonic extension of u to £2;11. Let us recall a result
from Cheng [4]; cf. Widlund [14]. There exists an absolute constant C' such that

(10) a(Hyu, Hu) < Ca(u,u), Yu€ V"

By using this inequality, we can prove that R is a bounded operator from V" into
V" in the Hl-norm.
LEMMA 11. There exists an absolute constant C' such that

|R1'U|H1(Q) < C|u|H1(Q), Yu € Vh.

Proof. We observe that

|Rlu|%11(n) = |u|121[1(Q\Ql+1) + |Rlu|f2ql(91+l)
< |ulipg) + C(|Riu — Hlu|12t11(91+1) + |Hlu|12111(91+1))
= |ultpgy + C(|Qu(u — Hiu)ln g, ,) + [Hiultpng,, )

and that v — Hyu = 0 on 0€;41. Therefore we can apply Lemma 6 to conclude that

|Riuling < lultngy + C(lu — Hiuling,,,) + 1 Hiultq,, ) < Cluliq)-

Q41

The last step follows from equation (10). O
We next prove an analog of Lemma 5 for the operators R;.
LEMMA 12. There exists an absolute constant C, which depends only on these
Lipschitz constants that appear in Assumption 4 and the shape regularity, such that
k 1
Y (R = Ria)u|Zq) - 12 < Clulipg —VYueV™

(=2

17



Proof. Let us first decompose u into u = Y%, u;, where u; € Range(Pi — P!™)
is the same as in Lemma 9. We observe that

I(B: = Rioy)uill2(a) < Clluillz2o)
by the shape regularity assumption, and that
I(Br = Rioy)uil| 2 o) = [|Bi(wi — Riaws)lz2@) < Cllui — Ricawillr2@) < Challuill oy

by using Lemma 10. By using an interpolation theorem of Hilbert scales; cf. [4] and
[8], we have

||(R1 R,_ 1)u2||L2 < Chl 5 ||'UZ'||H1—S(Q) Vs € (0, 1).
We choose s as in Lemma 1. Then
IRy — Ryl izqay < CHElusllin--@y < CHI= B udl o

With ¢ A j = min(z, j) and the observation that (R, — Rj_1)u; = 0 for ¢ < [, we have

1
ZH R — Ri1) ||%2(Q) Z Z (Ri — Ri—q)ui, (R — Ri—1)uj)e(q) - 72
= 12] { {
iA] 1
Z Y (R — Rizy)ui, (R — Riy)uj)(a) - o]
2,j=11=1 {

k  ing 1 Y] 1 2(1—3)
Z “Nwill s sl m-s@ < € E >3 hg hihS il ol o)

i=11= 1,7=11=1
iN]
=C Z hihg il oyl | e Q)Zh m<c Z hing B Bl lwa | oy s |
2,j=1 1,j=1

k
<C 3 ¢ Muillm@llulme < CZ [uill o) < C(1+ C(d))]ulh g

1,5=1

by using Lemma 9 and Friedrichs’ inequality. Here C'(d) is a constant which only
depends upon the diameter d of the domain €. By using a simple dilation argument,
we can completely remove the dependence of this constant upon the diameter of €2
and complete the proof. O

We now return to the proof of Theorem 4 by using the previous lemmas.

Proof of Theorem 4. The proof that P has an uniform upper bound is the same
as in Theorem 3. To establish the uniform lower bound, we again apply the first part
of Lemma 4. Let us first decompose u as

k k
u= Riu+ Z(Rz —Riq)u= Zu;.
(=2 =
18



It is easy to see that u; € V. We need to further decompose u', for [ > 2, as

Ny -
ul =3 g, with vy = I(6u') € V.

=1

Here {6!} is a partition of unity as in Assumption 5. The remaining part of the proof
is essentially the same as in Theorem 3 using Lemmas 11 and 12 rather than Lemmas
5 and 6. O

Then we discuss some multiplicative variants of the MDS algorithm with partial
refinement. In particular, we can estimate the energy norm of the following operators

kN
Eqg = IIII(I“fﬁﬁ
1=1:=1
L k Ny
B, =[1-1) =TI -85 P,
(=1 =1 1=1

where 8 is a damping factor such that ||7}||, < w < 2. The operators Eg and Ej;
correspond to the FAC algorithms with inexact solvers consisting of one Gauss-Seidel
and damped Jacobi iteration, respectively, except for the coarsest space V. We can
use the techniques in Zhang [18] and the fact that the multilevel additive Schwarz
operator P has a uniform lower bound to prove the following theorem.

THEOREM 5. There exist absolute constants ng and ny, which depend only on the
Lipschitz constants appearing in Assumption 4 and the shape reqularity, such that

|Eclla <ne <1 and |[Ej|l. <ns<1.

In order to prove Theorem 5, we need the following lemma, which is given in
Zhang [18].

LEMMA 13. LetT;, e = 1,---, N, be symmetric, semi-positive definite operators
with respect to the a(-,-) and let |Ti||. <w < 2. Let T = SN . Tiand E = (I-T)(I-
Ty)---(I —Tn). Then

A111in(iz-‘)
Elo<,1-02—-w)——-
Il J TR
Here Op = {0}, where i =1 and 65, i £ j, are given by

a(Tiu, Tyv)
a(Tiu, u)*a(Tjv, v)'/*

i .
07 = supy,

Proof of Theorem 5. We first estimate F. In this case, T; = P! for each subspace
Vihl. Let us denote by T the operator corresponding to the case of refinement every-
where. In [18], Zhang established that [|©4||3 is uniformly bounded. We note that
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each space corresponding to 7} is a space corresponding to a Tj for some j. Therefore
|©7||3 is uniformly bounded. By Lemma 13 and Theorem 4, the first part follows
easily.

As for the case of E;, we take T} = 33 ; P! and use an argument similar to the
above one used. O

In the next section, we will report on some numerical experiments to evaluate the
ne and ny for some model problems

Finally we discuss the extension to the cases of general mixed type boundary
condition and more general Lagrange elements. For general Lagrange elements in
higher-dimensional space, it is possible to construct high order quasi-interpolants by
looking at quadrature rules preserving high order polynomials which are similar to
the example given in Section 3. For general boundary condition, it is sufficient to
prove counterparts of Lemmas 1, 6, and 9. The modification of Lemmas 1 and 9
have been discussed for the work of iterative refinement methods in [4]. However, we
can construct the counterpart of Lemma 6 by separately considering two cases of the
elements K satisfying K N 9Qp = ) and those who do not.

5. Numerical Results. In this section, we report on some numerical experi-
ments which verify our theoretical results. We take the differential operator to be the
Laplacian and the subdomains are triangulated using right triangles of equal size. In
these experiments, we choose arbitrary right hand sides and the iterations are stopped
when the residual size with respect to the energy norm has been reduced by a factor
107°. In all experiments, we choose k1 = h;/2 and the ratio of the diameters of €,
and Q; to be 1/2for [ =1,2,--- k —1 as shown in Fig. 2 and Fig 3. We will call the
problem of Fig. 2 Model Problem 1 and that of Fig. 3 Model Problem 2.

Tables 1 and 2 show results for the MAS method with partial refinement. To
each node z; in N;_q, for [ > 2, we associate a subdomain Qi which is a rectangle
with center at z; and side length 2h;_y. It is easy to see that this construction of {Q}}
satisfies our previous assumption.

In Tables 3 and 4, we consider the MDS method with partial refinement. We see
that the condition numbers of Table 3 and 4 are usually larger than those of Table 1
and 2 because the overlap between the subdomains in MDS is smaller than those in

MAS and that more subspaces are used in MDS than in MAS.

In Tables 5 and 6, we consider the symmetrized FAC algorithms with the inexact
solvers of one Gauss-Seidel iteration for model problem 1 and 2. We can see that the
spectral radius n¢ is about 0.30 which is comparable to the FAC algorithm with exact
solver whose spectral radius is about 0.18.

In Tables 7 and 8, we consider the symmetrized FAC algorithm with one damped
Jacobi iteration as an inexact solver and with 5 = 0.5. In Tables 9 and 10, we consider
the same methods as in Table 7 and 8, but choose g = 0.8.

In Table 11, we try to determine the optimal 3 for damped Jacobi iteration such
that we can get the best rate of convergence. We choose hy = 1/8 and k = 2 for
model problem 1 and compare  between 0.10 and 0.95. From this table, we see that
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1,1 0,1
(LD (0.1
2,
ﬁ(o,o) (DO DD
(_17_1) (07_1)
Fiag. 2. Model Problem 1
1,1 0,1
(LD (0.1
s QDO DD
?k (0,0) (1,0)
(T (1,-1)

Fia. 3. Model Problem 2
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I = 1/8
k 2 3 4 5) 6 7 8 9 10
min. ev. | 0.6660 | 0.6615 | 0.6589 | 0.6576 | 0.6570 | 0.6567 | 0.6564 | 0.6562 | 0.6561
max. ev. 4.462 | 6.329 | 6.623 | 6.717 | 6.843 | 6.983 | 7.100 | 7.194 | 7.270
cond. no. 6.700 9.568 10.05 10.21 10.42 10.63 10.82 10.96 11.08
no. of iter. 16 20 21 22 22 22 22 22 22
Iy =1/16
k 2 3 4 ) 6 7 8 9 10
min. ev. | 0.6675 | 0.6645 | 0.6639 | 0.6635 | 0.6633 | 0.6632 | 0.6632 | 0.6631 | 0.6630
max. ev. 4.529 | 6.756 | 8.400 | 8.635 | 8.683 | 8.758 | 8.836 | 8.903 | 8.958
cond. no. 6.785 10.17 12.65 13.01 13.09 13.21 13.32 13.43 13.51
no. of iter. 16 21 23 24 24 24 24 25 25
TABLE 1
MAS with partial refinement for Model problem 1
I = 1/8
k 2 3 4 ) 6 7 8 9 10
min. ev. | 0.6685 | 0.6618 | 0.6589 | 0.6577 | 0.6571 | 0.6567 | 0.6564 | 0.6562 | 0.6560
max. ev. 4481 | 6.335 | 7.301 | 7.757 | 7.943 | 8.032 | 8.080 | 8.109 | 8.128
cond. no. 6.703 9.572 11.08 11.79 12.09 12.23 12.31 12.36 12.39
no. of iter. 16 20 21 21 22 22 23 23 23
hy = 1/16
k 2 3 4 ) 6 7 8 9 10
min. ev. | 0.6703 | 0.6650 | 0.6642 | 0.6637 | 0.6635 | 0.6634 | 0.6633 | 0.6633 | 0.6633
max. ev. 4.525 | 6.818 | 8.412 | 9.128 | 9.459 | 9.599 | 9.667 | 9.725 | 9.754
cond. no. 6.751 10.25 12.66 13.75 14.26 14.47 14.57 14.66 14.71
no. of iter. 16 21 23 24 25 25 25 25 25
TABLE 2

MAS with partial refinement for Model problem 2

22



MDS with partial refinement for Model problem 2

23

I =1/8
k 2 3 4 5) 6 7 8 9 10
min. ev. 0.7830 | 0.7836 | 0.7833 | 0.7835 | 0.7848 | 0.7834 | 0.7842 | 0.7844 | 0.7849
max. ev. 7.815 | 11.26 | 12.63 | 13.10 | 13.50 | 13.91 14.24 | 14.50 | 14.70
cond. no. | 9.981 14.37 | 16.12 | 16.72 | 17.20 | 17.76 | 18.16 | 18.49 | 18.73
no. of iter. 21 25 27 28 28 29 29 29 29
hi=1/16
k 2 3 4 ) 6 7 8 9 10
min. ev. 0.7880 | 0.7890 | 0.7891 | 0.7894 | 0.7914 | 0.7924 | 0.7933 | 0.7937 | 0.7940
max. ev. 9.903 | 11.78 | 13.84 | 14.92 | 15.26 | 15.55 | 15.87 | 16.13 | 16.35
cond. no. 10.03 | 14.93 | 17.54 | 18.90 | 19.28 | 19.62 | 20.01 | 20.32 | 20.59
no. of iter. 21 26 28 29 29 29 29 29 29
TABLE 3
MDS with partial refinement for Model problem 1
T =1/8
k 2 3 4 ) 6 7 8 9 10
min. ev. 0.7852 | 0.7846 | 0.7847 | 0.7851 | 0.7872 | 0.7885 | 0.7872 | 0.7880 | 0.7883
max. ev. 7.855 | 11.40 | 12.95 | 13.72 | 14.01 14.16 | 14.24 | 14.30 | 14.43
cond. no. 10.00 | 14.53 | 16.50 | 17.48 | 17.80 | 17.96 | 18.09 | 18.15 | 18.30
no. of iter. 21 25 27 28 28 28 29 29 29
hi=1/16
k 2 3 4 ) 6 7 8 9 10
min. ev. 0.7884 | 0.7889 | 0.7898 | 0.7908 | 0.7923 | 0.7940 | 0.7949 | 0.7955 | 0.7959
max. ev. 7.949 | 11.84 | 13.96 | 15.20 | 15.82 | 16.05 | 16.17 | 16.24 | 16.30
cond. no. 10.08 | 15.01 17.68 | 19.22 | 19.97 | 20.21 | 20.34 | 20.41 | 20.48
no. of iter. 21 26 28 29 29 29 29 29 29
TABLE 4




hl = 1/8

k 2 3 4 5) 6 7 8 9 10
min. ev. 0.7134 | 0.7059 | 0.7033 | 0.7011 | 0.6993 | 0.6981 | 0.6973 | 0.6966 | 0.6962
max. ev. | 0.9998 | 0.9997 | 0.9996 | 0.9996 | 0.9995 | 0.9995 | 0.9995 | 0.9994 | 0.9994
cond. no. 1.401 1.416 | 1.421 1.426 | 1.429 | 1.432 | 1.433 | 1.435 | 1.436
no. of iter. 6 6 6 6 6 6 6 6 6

hi=1/16

k 2 3 4 ) 6 7 8 9 10
min. ev. 0.7149 | 0.7089 | 0.7080 | 0.7080 | 0.7077 | 0.7074 | 0.7072 | 0.7071 | 0.7071
max. ev. | 0.9997 | 0.9997 | 0.9996 | 0.9996 | 0.9996 | 0.9996 | 0.9996 | 0.9995 | 0.995
cond. no. 1.398 | 1.410 | 1.412 | 1.412 | 1.412 | 1.413 | 1.414 | 1.414 | 1.414

no. of iter. 6 6 6 6 6 6 6 6 6
TABLE 5
FAC with one Gauss-Seidel iteration for Model problem 1
T =1/8

k 2 3 4 ) 6 7 8 9 10
min. ev. 0.7287 | 0.6961 | 0.6947 | 0.6922 | 0.6803 | 0.6782 | 0.6760 | 0.6738 | 0.6716
max. ev. | 0.9997 | 0.9994 | 0.9993 | 0.9992 | 0.9994 | 0.9993 | 0.9993 | 0.9993 | 0.9992
cond. no. 1.372 | 1.436 | 1.438 | 1.443 | 1.469 | 1.474 | 1.478 | 1.483 | 1.488

no. of iter. 6 6 6 6 7 7 7 7 7
hi=1/16

k 2 3 4 ) 6 7 8 9 10
min. ev. 0.7297 | 0.7089 | 0.7066 | 0.7010 | 0.6953 | 0.6901 | 0.6814 | 0.6779 | 0.6751
max. ev. | 0.9998 | 0.9997 | 0.9996 | 0.9996 | 0.9995 | 0.9995 | 0.9996 | 0.9996 | 0.9996
cond. no. 1.370 | 1.410 | 1.415 | 1.426 | 1.438 | 1.448 | 1.467 | 1.474 | 1.481

no. of iter. 6 6 6 6 6 6 7 7 7
TABLE 6

FAC with one Gauss-Seidel iteration for Model problem 2
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hl = 1/8

k 2 3 4 5) 6 7 8 9 10
min. ev. 0.4426 | 0.4339 | 0.4241 | 0.4198 | 0.4178 | 0.4167 | 0.4159 | 0.4155 | 0.4151
max. ev. | 0.9758 | 0.9869 | 0.9930 | 0.9932 | 0.9934 | 0.9935 | 0.9936 | 0.9937 | 0.9937
cond. no. 2.205 2.275 2.341 2.366 2.378 2.384 2.389 2.392 2.394
no. of iter. 9 9 10 10 10 10 10 10 10

Iy =1/16

k 2 3 4 5) 6 7 8 9 10
min. ev. 0.4426 | 0.4370 | 0.4330 | 0.4286 | 0.4219 | 0.4194 | 0.4180 | 0.4172 | 0.4166
max. ev. | 0.9739 | 0.9842 | 0.9874 | 0.9887 | 0.9916 | 0.9919 | 0.9922 | 0.9923 | 0.9923
cond. no. 2.201 2.252 2.280 2.307 2.350 2.365 2.374 2.379 2.382

no. of iter. 9 9 9 9 10 10 10 10 10
TABLE 7
FAC with one damped Jacobi iteration of B = 0.5 for Model problem 1
I = 1/8

k 2 3 4 5) 6 7 8 9 10
min. ev. | 0.4368 | 0.4060 | 0.3904 | 0.3789 | 0.3697 | 0.3623 | 0.3563 | 0.3514 | 0.3473
max. ev. | 0.9891 | 0.9939 | 0.9966 | 0.9972 | 0.9976 | 0.9980 | 0.9982 | 0.9983 | 0.9987
cond. no. 2.264 2.448 2.553 2.632 2.698 2.755 2.802 2.841 2.875

no. of iter. 9 10 10 10 10 10 10 10 11
hy = 1/16

k 2 3 4 5) 6 7 8 9 10
min. ev. | 0.4386 | 0.4061 | 0.3890 | 0.3774 | 0.3682 | 0.3609 | 0.3559 | 0.3504 | 0.3472
max. ev. | 0.9886 | 0.9934 | 0.9970 | 0.9976 | 0.9980 | 0.9984 | 0.9988 | 0.9991 | 0.9993
cond. no. 2.254 2.446 2.563 2.644 2.710 2.767 2.806 2.851 2.878

no. of iter. 9 10 10 10 10 10 10 10 11
TABLE 8

FAC with one damped Jacobi iteration of f = 0.5 for Model problem 2




hl - 1/8
=

k 2 3 4 5
min. ev. | 0.6463 | 0.6200 | 0.6012 | 0.5930

6 7 8 9 10
0.5896 | 0.5879 | 0.5868 | 0.5831 | 0.5856
0.9903 | 0.9929 | 0.9906

max. ev. | 0.9852 | 0.9901 | 0.9900 | 0.9899 | 0.9900 | 0.9901
cond. no. | 1.524 | 1.597 | 1.647 | 1.669 | 1.679 | 1.684 | 1.688 | 1.703 | 1.692
no. of iter. 7 7 7 7 7 7 7 8 7
hi=1/16
k 2 3 4 5 6 7 8 9 10
0.6088 | 0.6005 | 0.5958 | 0.5901 | 0.5874 | 0.5857

min. ev. 0.6459 | 0.6286 | 0.6175

0.9912 | 0.9912 | 0.9912 | 0.9912

max. ev. | 0.9832 | 0.9896 | 0.9915 | 0.9914 | 0.9913

cond. no. | 1.522 | 1.574 | 1.606 | 1.629 | 1.651 | 1.664 | 1.680 | 1.687 | 1.692

no. of iter. 7 7 7 7 7 7 7 7 7
TABLE 9

FAC with one damped Jacobi iteration of B = 0.8 for Model problem 1

hl - 1/8
k 2 3 4 o 6 7 8 9 10
0.5846 | 0.5605 | 0.5467 | 0.5359 | 0.5272 | 0.5202 | 0.5145 | 0.5099

min. ev. 0.6364

0.9968 | 0.9969 | 0.9970 | 0.9970 | 0.9970

max. ev. | 0.9892 | 0.9940 | 0.9963 | 0.9966
cond. no. | 1.554 | 1.700 | 1.777 | 1.823 | 1.860 | 1.891 | 1.917 | 1.938 | 1.956
no. of iter. 7 7 8 8 8 8 8 8 8
hi=1/16
k 2 3 4 5 6 7 8 9 10
0.5598 | 0.5464 | 0.5356 | 0.5270 | 0.5199 | 0.5140 | 0.5097

min. ev. 0.6382 | 0.5809

0.9960 | 0.9961 | 0.9961 | 0.9961 | 0.9961

max. ev. | 0.9865 | 0.9937 | 0.9952 | 0.9957
cond. no. 1.546 | 1.710 | 1.778 | 1.822 | 1.859 | 1.890 | 1.916 | 1.938 | 1.954
no. of iter. 7 8 8 8 8 8 8 8 8

TaBLE 10
FAC with one damped Jacobi iteration of f = 0.8 for Model problem 2
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%] 0.10 0.15 0.20 0.25 0.30 0.35 0.40 0.45 0.50

nJ 0.9017 | 0.8543 | 0.8081 | 0.7630 | 0.7194 | 0.6768 | 0.6358 | 0.5956 | 0.5574

cond. no. | 3.552 3.404 3.252 3.053 2.889 2.699 2.540 2.360 2.205

17 0.55 0.60 0.65 0.70 0.75 0.80 0.85 0.90 0.95

nJ 0.5207 | 0.4841 | 0.4500 | 0.4156 | 0.3840 | 0.3537 | 0.3920 | 0.5496 | 0.7294

cond. no. | 2.058 1.915 1.803 1.670 1.588 1.524 1.626 2.202 3.688
TABLE 11

FAC with one damped Jacobi iteration with respect to different values 3

the optimal 3 is about 0.80. However, with this optimal value 3, it is still not better
than using the Gauss-Seidel iteration.
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