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Abstract

I present a new focal-plane analog VLSI sensor that estimates optical flow in two
visual dimensions. The chip significantly improves previous approaches both with re-
spect to the applied model of optical flow estimation as well as the actual hardware
implementation. Its distributed computational architecture consists of an array of
locally connected motion units that collectively solve for the unique optimal optical
flow estimate. The novel gradient-based motion model assumes visual motion to be
translational, smooth and biased. The model guarantees that the estimation prob-
lem is computationally well-posed regardless of the visual input. Model parameters
can be globally adjusted, leading to a rich output behavior. Varying the smoothness
strength, for example, can provide a continuous spectrum of motion estimates, rang-
ing from normal to global optical flow. Unlike approaches that rely on the explicit
matching of brightness edges in space or time, the applied gradient-based model as-
sures spatiotemporal continuity on visual information. The non-linear coupling of the
individual motion units improves the resulting optical flow estimate because it re-
duces spatial smoothing across large velocity differences. Extended measurements of
a 30x30 array prototype sensor under real-world conditions demonstrate the validity
of the model and the robustness and functionality of the implementation.

index: visual motion perception, 2-D optical flow, constraint optimization, gradient
descent, aVLSI, analog network, collective computation, neuromorphic, feedback, non-
linear smoothing, non-linear bias

1 Motivation

The ability to estimate motion using visual information is important for any natural and

artificial agent behaving in a dynamical visual environment. Knowing the relative motions

between different objects as well as between objects and the agent is crucial for a cognitive

perception of the environment and thus a requisite for intelligent behavior. However, the

demand for real-time processing and the limited resources available on freely behaving

agents impose severe constraints that require an efficient computational systems in terms

of processing speed, energy consumption and its physical dimensions. These requirements

strongly favor analog VLSI (aVLSI) implementations of highly parallel and distributed

computational architectures. In particular, such implementations become appealing when

image sensing and motion computation can be combined within a single sensor. Ideally,

such a sensor consists of a topographically uniform array of identical processing units,

each providing a local estimate of visual motion at its particular image location. In such
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Figure 1: The aperture problem. (a) Translational image motion induces locally ambiguous

visual motion percepts. (b) Vector averaging of the normal flow field (dashed arrow) does

not lead to the correct global motion. Instead, only the intersection of the constraint lines

provides the correct common object motion (bold solid arrow).

architecture, processing power scales with array size, thus keeping the processing speed

independent of spatial image resolution. Local visual motion is usually represented by a

vector field, referred to as optical flow. Analog VLSI circuits require significantly less power

and silicon area than digital circuits for computational tasks of comparable complexity [1].

Furthermore, time-continuous analog processing matches the the continuous nature of visual

motion information. Temporal aliasing artifacts do not occur while they, in contrast, can

be a significant problem in clocked, sequential circuit implementations, in particular when

limited to low frame-rates [2].

Visual information is – in general – ambiguous and does not allow a unique local in-

terpretation of visual motion, a major reason being the aperture problem [3]. A priori

assumptions are necessary in order to resolve the ambiguities. Such assumptions instan-

tiate the motion model of the expected visual motion. Thus, the computational task and

the resulting quality of the optical flow estimate can vary substantially depending on the

complexity of the chosen model. Figure 1a illustrates the aperture problem for a simple mo-

tion scene under noise-free conditions. Observations through apertures showing zero-order

(aperture A) or first-order spatiotemporal brightness patterns (apertures B and C) do not

allow an unambiguous local estimate of the visual motion. The presence of a higher-order

brightness pattern as e.g. the corner of the triangle in aperture D, would allow to uniquely

determine the local visual motion without further assumptions, however requiring complex

spatiotemporal filters to account for all possible patterns. Alternatively, instead of resolv-

ing complex patterns locally, visual information could be spatially integrated, combining

the perception through multiple, sufficiently small apertures such that the spatiotemporal
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pattern within each aperture can be well approximated to be maximally of first order. Com-

bining the constraints imposed by the first-order patterns then ideally leads to the unique

and correct estimate of object motion. It is important to realize, that the vector average of

the normal flow, that is the optical flow being perpendicular to the first-order pattern ori-

entation in each aperture, usually does not coincide with this collective constraint-solving

estimate (see Figure 1b). The problem remains to decide how the constraints imposed

by the observations at the different apertures are weighted, i.e. which apertures observe

a common visual motion source and should be combined. Dynamical grouping processes

have been suggested that assign varying ensembles of apertures to different image objects

at any time, leading to an individual estimate of visual motion for each ensemble (object)

[4, 5, 6, 7, 8]. Although the aVLSI implementation of an optical flow sensor with dynam-

ical grouping process has been reported recently [9], such dynamic processes will not be

discussed further in this paper. Just note, that spatial integration is a necessary requisite

to solve for the correct object motion.

2 Review of aVLSI visual motion sensors

Most of the known aVLSI motion sensors estimate visual motion only along a given single

spatial orientation which significantly simplifies the computational problem. They can be

classified in methods performing explicit matching in time-domain e.g. [10, 11, 12, 13, 14],

gradient based methods e.g. [15, 16] and implicity matching or correlation based methods,

that follow insect vision e.g [17, 18, 19, 20, 21, 22].

Only a few 2-D visual motion sensors have been reported. In the following, theses

approaches are briefly reviewed according to their applied motion models. A first class es-

timates the direction of normal flow. Higgins and colleagues [23] presented two focal-plane

implementations that provide a quantized signal of the direction (8 directions) of normal

flow. The two architectures are functional very similar: the occurrence of a brightness edge

at a single image location is detected and compared with its re-appearance at neighboring

locations. Deutschmann and Koch [24] proposed an approach to estimate the direction of

normal flow by multiplying the spatial and temporal derivatives of the brightness distribu-

tion in the image. The limited linear range of the applied multiplier circuits impairs the

correct directional estimate, leading to an increasing emphasis on diagonal visual motions

for increasing stimulus contrasts. The output signal is monotonic in visual speed for a given

stimulus contrast but substantially varies contrast.

Another class of implementation allows to estimate direction and speed of normal flow.

Jiang and Wu [25] reported a correlation based approach to estimate normal flow. Motion is
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reported if the time-of-travel of the extracted edges between neighbor motion units matches

a pre-set delay time. Since the tuning is very narrow, the sensor is fairly limited and can-

not report arbitrary visual velocities without being continuously re-tuned. More practical

sensors were reported by Kramer et.al. [26], applying explicit matching in the time-domain.

Two circuits are presented where the time-of-travel of an brightness edge in the image is

measured either by eliciting a monotonic decaying function with arrival of an edge and sam-

pling the functions value at the time the edge passes a neighboring pixel, or, by measuring

the amount of overlap of two fixed-size pulses of neighboring pixels that each are triggered

by the arrival of a brightness edge. A similar approach but different implementation was

proposed by Etienne-Cummings et.al [27]. Where as in [26] temporal intensity changes

are assumed to represent brightness edges, here, brightness edges are first extracted in the

spatial domain before matching was performed in the time-domain. This has the advantage

that also very slow speeds can accurately be detected.

None of the above approaches, however, perform spatial integration beyond averaging

in order to solve the aperture problem. Tanner and Mead [28] reported a sensor with

an array size of 8x8 pixels that provides two output voltages each representing the two

components of the global motion vector. But, measured motion data was never explicitly

shown and the sensor was reported to be fragile, even under well-controlled laboratory

conditions. Nevertheless, it was the first hardware example of a collective computational

approach to visual motion estimation. Subsequent attempts [29] failed to result in a more

robust implementation. Only in a previous paper [30], we presented a first improvement

that also allowed estimation of smooth optical flow besides a global motion estimate. The

prototype implementation with a 7x7 array was functional although it was rather limited

by its small linear output range. Another recent attempts [31] incorporated segmentation

properties into our previous approach but were not able to demonstrate robust behavior

under real-world conditions.

The 2-D optical flow sensor reported here represents a significant improvement and

further development of all previous approaches, both in terms of the applied motion model

as well as its aVLSI implementation. It is the first robust and fully functional sensor of

its kind. My recently documented motion segmentation chip [9] shares an identical circuit

design for its motion units.

3 Optical Flow Model

For analytical reasons, we define the input of the proposed model to be the spatiotemporal

gradients Ex = ∂
∂x

E(x, y, t), Ey = ∂
∂y

E(x, y, t), and Et = ∂
∂t

E(x, y, t) of the brightness distri-
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bution E(x, y, t) in the image. We will later discuss the extraction of these spatiotemporal

gradients in the actual focal-plane implementation. The model’s output is the optical flow

field v(x, y, t) = (u(x, y, t), v(x, y, t)) that represents the instantaneous estimate of visual

motion. To increase readability, space and time dependence will not be explicitly expressed

in subsequent annotations although it is implicitly always present.

The applied motion model assumes that the brightness constancy constraint [32]

holds and that the optical flow varies smoothly in space. Following Horn and Schunck [33],

these two constraints can be formulated as optimization problem for which the desired

optical flow estimate is the optimal solution (see also [34]). However, it can easily be

verified that using only these two constraints results in an ill-posed estimation problem for

particular visual input patterns. Namely, when only zero and first order brightness patterns

of equal orientation are present throughout the whole image. It is highly desirable for a

physical system such as e.g. an aVLSI sensor that the computational function implemented

is always well-posed. Otherwise, the system’s behavior is unpredictable, driven by noise and

non-idealities of the implementation. Therefore, the so-called bias constraint is added,

expressed as the cost function

B(v) = (u − uref)
2 + (v − vref)

2, (1)

which weakly biases the optical flow estimate to some predefined reference motion (uref , vref).

The reference motion can be understood as the a priori expected motion in case the visual

information content is unreliable or missing. In contrast to similar suggested formula-

tions [35, 36, 37], the reference motion is not necessarily assumed to be zero. Much more,

it could be adaptive to account for the statistics of its visual environment; the reference

motion could e.g. represent the statistical mean of the experienced visual motion. However,

such adaptation mechanisms will not be further discussed in this article.

Combining the model of Horn and Schunck with the additional bias constraint (1), we

now formulate the following constraint optimization problem over all nodes i, j in a discrete,

orthogonal n × m image space: Given the input Exij
, Eyij

and Etij and a reference motion

vref = (uref , vref), find the optical flow field vij such that the cost function

H(vij; ρ, σ) =
n∑

i=1

m∑
j=1

[
(Exij

uij + Eyij
vij + Etij )

2 +

ρ((∆uij)
2 + (∆vij)

2) + σ((uij − uref)
2 + (vij − vref)

2)
]

(2)

is minimal 1. The positive parameters σ > 0 and ρ ≥ 0 determine the relative influence of

each constraint.

1(∆xij)2 =
(xi−1,j−xi+1,j

2h

)2 +
(xi,j+1−xi,j−1

2h

)2, where h is the grid constant
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Figure 2: A single unit of the optical flow network.

4 Optical Flow Network

The optimization problem (2) is convex for any given input. Thus, a linear dynamical

system that performs gradient descent on the cost function (2) is guaranteed to provide

the optimal estimate once it reaches steady-state. Partial differentiation of (2) results in a

system of 2n × m linear partial differential equations

u̇ij = − 1

C

[
Exij

(Exij
uij+Eyij

vij+Etij )−ρ(ui+1,j+ui−1,j+ui,j+1+ui,j−1−4uij)+σ(uij−uref)
]
,

v̇ij = − 1

C

[
Eyij

(Exij
uij +Eyij

vij +Etij )−ρ(vi+1,j +vi−1,j +vi,j+1+vi,j−1−4vij)+σ(vij−vref)
]

(3)

with C being a positive constant.

These first-order partial differential equations exactly describe the dynamics of two ac-

tively coupled resistive networks. Figure 2 illustrates a single unit of such coupled networks.

Identifying the local estimate of optical flow with the voltages Uij , Vij
2, the terms in straight

brackets (3) represent the sum of currents that charges up or down the capacitances C until

equilibrium is reached. Each constraint of the cost function (2) has a physical counterpart:

smoothness is enforced by the resistive networks with lateral conductances ρ. The bias

2with respect to some null potential U0 and V0 respectively.
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constraint is implemented as the leak conductance σ to the reference motion represented by

the potentials Vref and Uref .

Only the implementation of the brightness constancy constraint needs some active cir-

cuitry represented by the “constraint-boxes”[38] A and B that inject or sink the currents

Fui,j
∝ −Exij

(Exij
uij + Eyij

vij + Etij ) and Fvi,j
∝ −Eyij

(Exij
uij + Eyij

vij + Etij ), (4)

respectively. These correction currents represent the violation of the constraint and are

computed in a cross-coupled feedback loops. We exploit the natural dynamics of a physical

system to solve a visual perception problem [39]: The solution of the optimization problem

is represented by the steady-state of the analog electronic network. The system is assumed

to be in steady-state at any time. This approximately holds if the time-constant of the

network is negligible compared to the dynamics of the input. The appropriate control of

the node capacitance C and the current levels in the implementation can ensure a close-

to-optimal solution for reasonably slow input dynamics. Note, that the dynamics of the

network strongly depend on the spatiotemporal energy of the visual input.

The characteristics of the model and therefore the computational behavior of the optical

flow network are determined by the relative weight of the three constraints, determined

by the lateral and vertical network conductances ρ and σ, respectively. According to the

strength of these conductances, the network accounts for different models of visual motion

estimation such as normal flow, smooth optical flow or global flow. The presented optical

flow sensor allows to globally adjust ρ and σ which is certainly one of its advantages.

5 Circuit Architecture and Implementation

The complete circuit schematics of a single motion unit of the optical flow sensor is shown in

Figure 3. Since the input (spatiotemporal intensity gradients) and the output (the compo-

nents of the local optical flow vector) can take on positive and negative values, a differential

encoding of the variables is applied consistently throughout the circuit: The variables are

encoded as the difference of two voltages (or currents). However, referencing the voltages

U+ and V+ to a fixed null potential V0 substantially reduces the implementation complexity

by requiring only two single line resistive networks. Note, that the reference motion for the

bias constraint is chosen to be zero, thus Uref , Vref = V0.
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5.1 Extraction of the brightness gradients

The circuit schematics contains all building blocks of a single unit. At a first processing

stage, the spatiotemporal brightness gradients have to be estimated. Each pixel includes a

logarithmic, adaptive photoreceptor [40] with adjustable adaptation rate [41].

The temporal gradient is extracted by a hysteretic differentiator circuit [42] providing

the currents Et−, Et+ that represent the rectified temporal derivative. The adjustable source

potentials HDtweak+,HDtweak- allow to control the output current gain of the differentiator.

The spatial derivatives Ex and Ey are estimated as first-order approximation of the

brightness gradients, thus the central difference value of the photoreceptor output of nearest

neighbors (Phx+−Phx−) and (Phy+−Phy−) respectively (see schematics in Figure 3). While

continuous-time temporal differentiation avoids any temporal sampling artifacts, discrete

spatial sampling of the image brightness significantly affects the visual motion estimate.

Let us consider a simplified, one-dimensional arrangement as depicted in Figure 4a,

where a sine-wave grating moving with a fixed velocity v is presented. We describe the

brightness distribution in the focal-plane as E(x, t) = sin(kx − ωt) with x, t ∈ R, where

ω = kv and k is the spatial frequency of the projected stimulus. First order approxi-

mation of the spatial gradient at location xi thereby reduces to the difference operator

∆xi = (xi+1 − xi−1) /2d, where d is the sampling distance (pixel size). Assuming a non-zero

sampling size D (photodiode), the discrete spatial gradient becomes

Ex(xi, t) =
1

2d

(
1

D

∫ xi+d+D/2

xi+d−D/2

sin(k(ξ − vt)) dξ − 1

D

∫ xi−d+D/2

xi−d−D/2

sin(k(ξ − vt)) dξ

)
=

2

kDd
sin(kd) sin(kD/2) cos(k(xi − vt)). (5)

Similarly, the temporal gradient at location xi is found to be

Et(xi, t) =
∂

∂t

1

D

∫ xi+D/2

xi−D/2

sin(k(ξ − vt)) dξ = −2v

D
(cos(k(xi − vt)) · sin(kD/2)). (6)

According to (3), the response of a single unit in equilibrium with no lateral coupling

(ρ = 0) is expected to approximate normal flow and reduces for one visual dimension to

Vout(xi, t) = −Et(xi, t)Ex(xi, t) + Vrefσ

σ + Ex(xi, t)2
(7)

Substitution of (6) and (5) into (7) and assuming Vref = 0, we find

Vout(xi, t) = v
kd

sin(kd)
· cos(kxi − ωt)2

γ + cos(kxi − ωt)2
with γ = σ

k2d2D2

4 sin2(kd) sin2(kD/2)
. (8)
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Figure 4: Spatial sampling and its effect on the motion response. (a) Spatial sampling

of sinusoidal brightness patterns of different spatial frequencies k (given in units of the

Nyquist frequency [π/d]) in one visual dimension. (b) The expected response of the optical

flow sensor according to (7) as a function of the spatial frequency k of a sinewave stimulus

moving with velocity v. The dashed curve is the time-averaged response (σ = 0.05, δ = 1/3).

We now can predict the motion response of a single isolated unit as a function of spatial

frequency of the stimulus for different weights of the bias constraint σ as well as different

fill-factors δ = D/d. Figure 4b shows the predicted peak output response for different

parameter values as a function of the spatial stimulus frequency k, given in units of the

Nyquist frequency [π/d]. Note that the response strongly depends on k. Only for low

spatial frequencies, the motion output well approximates the correct velocity. For very low

frequencies, the local stimulus contrast diminishes and the non-zero σ biases the output

response toward the reference motion V0 = 0. As the spatial frequency approaches the

Nyquist frequency, the response increases to unrealistically high values and changes sign

at k ∈ Z+[π/d]. Increasing the fill factor reduces the effect, although only marginally for

reasonable values of δ and small σ. Clearly, if the bias constraint is not imposed, thus σ = 0,

Equation (8) reduces to

Vout = v
kd

sin(kd)
(9)

The computation is ill-posed at spatial frequencies k ∈ Z+ and the motion response ap-

proaches ±∞ close to their vicinity. Two things are remarkable: Firstly, D drops out in
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the equation which means that the spatial low-pass filtering of the photodiode only affects

the motion estimate if the bias constraint is imposed. Secondly, the output (9) does not

depend on space nor time. For σ > 0, however, γ is always non-zero and the motion

response becomes phase-dependent due to the remaining frequency terms in (8). As a

consequence, the time-averaged motion response over the duration of a complete stimulus

cycle is always less than the peak response as shown in Figure 4b. Phase-dependence is a

direct consequence of the bias constraint. However, spatial integration of visual information

due to collective computation in the optical flow network allows to partially overcome the

phase-dependent response of a single unit.

Note, that the first-order difference approximation of the spatial brightness gradients in

two visual dimensions is not rotationally invariant. Unfortunately, more elaborate gradient

approximations [43] are not feasible for a compact focal-plane implementation.

5.2 Wide-linear range multiplier

The design of the multiplier circuit needed to compute Exu and Eyv respectively, is cru-

cial for a successful aVLSI implementation of the optical flow network. Being part of the

recurrent feedback loops that generate the error-correction signals Fu and Fv, the demands

on the multiplier circuit are high. It has to operate in four quadrants, providing a wide

linear output-range with respect to each multiplicand. Offsets should be minimal because

they directly impose offsets in the optical flow estimate. Furthermore, the design needs to

be compact in order to allow a small pixel size. The original Gilbert multiplier [44] meets

these requirements fairly well, with the exception of its small linear range when operated

in sub-threshold. In above-threshold operation, however, its linear range is significantly

increased due to a transconductance change of the individual differential pairs [45].

The multiplier circuit proposed here, shown in detail in Figure 5a, embeds a Gilbert

multiplier in an additional outer differential pair. The idea is to operate the Gilbert mul-

tiplier above-threshold to increase the linear range but in addition, to rescale the output

currents to sub-threshold level such that the current levels in the feedback loop match. The

scaling is approximately linear, thus

Iout = Iout+ − Iout− ≈ Ib2

Ib1

Icore
out , (10)

if κn ≈ 1, where 1/n is the ideality factor3 of the diodes and κ is the slope factor of

the nFETs in the embedding differential pair. Using the base-emitter junction of bipolar

transistor with base and collector connected to a common reference potential ensures an

3Shockley equation: Idiode = I0(exp( 1
nVd

q
kT ) − 1).
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Figure 5: Wide linear-range multiplier. (a) Circuit schematics. (b) The measured emitter

currents for a native npn-bipolar transistor and the vertical pnp-bipolar of a pFET. (c)

Measured output currents of the wide linear-range multiplier as a function of the applied

input voltage at the lower differential pair ∆VA = V2−V1. Each curve represents the output

current for a fixed differential voltage ∆VB = V4 − V3 =[0, 0.05, 0.1, 0.15, 0.2, 0.3, 0.4, 0.5,

0.75 V]. (d) Same as c but now sweeping the upper differential pair input ∆VB.

ideal (n = 1) behavior [46] which has been verified by the measurements shown in Figure 5b.

Also, the voltage drop across the diodes is such that the gate voltage of the outer nFETs

are typically within one volt below Vdd, meaning that their gate-bulk potentials are large.

At such levels, κ asymptotically approaches unity because the capacitance of the depletion

layer becomes negligibly small compared to the gate-oxide capacitance. Thus, κn ≈ 1 and
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we can safely assume a linear scaling of the multiplier output current.

Base-emitter junctions can be exploited either using native bipolar transistors in a gen-

uine BiCMOS process or the vertical bipolar transistors in standard CMOS technology. In

practice, however, it is necessary to use a native BiCMOS process in order to implement

the multiplier circuit correctly: Figure 5b displays the measured base-emitter voltages VBE

as a function of the applied emitter current IE for both, a vertical pnp-bipolar transistor in

a typical p-substrate CMOS process and a native npn-bipolar transistor in a genuine BiC-

MOS process. At current levels above 1 µA, however, the vertical bipolar starts to deviate

significantly from the desired exponential characteristics due to high-level injection caused

by the relative light doping of the base (well) [46]. This occurs already at a current level

that is significantly below the range where the multiplier core is preferably operated at.

The exponential regime of the native bipolar, however, extends up to 0.1 mA. Although a

CMOS implementation of the diodes is desirable to avoid the more complex and expensive

BiCMOS process, it would severely impair the linear scaling (10).

Figure 5c and d show the measured output of the multiplier for sweeping either of the

two input voltages. For the applied bias voltages, the linear range is approximately ±0.5

V and slightly smaller for the upper differential input. Note, that the measurements were

obtained from a test circuit with identical layout to the one within each pixel. Offsets

are small. The circuit is compact and allows to control the linear range and the output-

current level independently by the two bias voltages Vb1 and Vb2. The disadvantages are

the increased power consumption caused by the above-threshold operation and the need for

BiCMOS technology.

5.3 Output conductance of the feedback-loop

Consider the current equilibrium at one of the capacitive nodes in Figure 2. In steady state,

we assume all currents onto this node to represent the deviation to the different constraints

according to (3). To be completely true, this would require the feedback current to be

generated by ideal current sources A and B. However, the small but present output con-

ductance of the feedback node causes some extra current that shifts the current equilibrium.

This output conductance can be understood as imposing a second bias constraint on the

estimation problem. It biases the capacitive node to a reference voltage that is intrinsic

and depends on various parameters like the strength of the feedback current or the Early

voltages of the transistors. In general, this reference voltage is not identical with V0. Thus,

the superposition of the two bias currents has an asymmetric influence on the final motion

estimate. Since the total correction currents are typically weak, the effect is significant.

The aim, therefore, is to reduce the output conductances of the feedback loop as much
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as possible. The applied cascode current mirror circuit reveals a substantial decrease in

output conductance compared with a simple current mirror used in previous related imple-

mentations [28, 29, 30]. Neglecting any junction leakages in drain and source, we find the

total output conductance at the individual capacitive nodes to be

go = goN + goP =
F+ · UT

VE,N1 VE,N2
+

F− · UT

VE,P1 VE,P2
, (11)

where F+ − F− is the total feedback current, UT the thermal voltage and VE,X the Early

voltages of the different transistors in the cascode current mirror (see box in Figure 3).

5.4 Effect of Non-Linearities

Gradient descent on the cost function (2) defines a system of coupled, but linear partial

differential equations. However, a linear translation into silicon is hardly possible. In the

following, some important non-linearities of the implementation and their effect on the

optical flow estimate are discussed.

5.4.1 Saturation in the feedback-loop

The first important non-linearity is caused by the saturation of the multiplier circuit in the

feedback loop. As shown in Figure 5, the output current saturates for larger input voltages.

What does this mean in terms of the expected motion output of a single motion unit?

For the sake of illustration, we once more assume a one-dimensional array of the optical

flow network. Furthermore, we disable all lateral connections and neglect the bias constraint

(ρ = 0, σ = 0). Then, for given non-zero brightness gradients, the circuit ideally satisfies

the brightness constancy constraint

Exu + Et = 0 . (12)

Now, assume that the multiplication Exu is replaced by f(u)|Ex with Ex constant, where f

describes the saturating output characteristics of the proposed multiplier circuit. For reasons

of simplicity we assume the output of the multiplier core Icore
out to follow a simple sigmoidal

function tanh(u) which is only qualitatively correct [45]. We can rewrite the multiplier

output (10) as f(u)|Ex = cEx Ib2/Ib1 tanh(u), where the constant cEx is proportional to a

given Ex. Since f(u) is one to one, we can solve (12) for the motion response and find

u = f−1(−Et) = −artanh(
Ib1

Ib2

Etc
−1
Ex

) . (13)

Figure 6 illustrates the expected motion response according to different values of the bias

current Ib2. We see that the motion output over-estimates the stimulus velocity the more
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Figure 6: Expected motion response due to saturation of the multiplier circuit. The figure

qualitatively shows the expected speed tuning curves according to (13). The different curves

correspond to different values of the bias current Ib2.

the multiplier circuit saturates and finally would end up at the voltage rails. The more the

output of the multiplier circuit is below the true multiplication result, the more the feedback

loop over-estimates u in order to make the equilibrium (12) hold. Considering the correct

characteristics of the real multiplier circuit, the response will differ from Figure 6 insofar as

the linear range is increased and the saturation transition is sharper and more pronounced.

Nevertheless, Figure 6 illustrates the qualitative response behavior nicely. Increasing Ib2

decreases the slope of the motion response. Thus, the bias current of the outer differential

pair acts as gain control that allows to match the limited linear output range to the

expected maximal motion range.

5.4.2 Non-linear bias conductance σ

The quadratic measure of the bias constraint in the cost function (2) results in a constant

conductance σ and therefore an ohmic bias current. Sufficiently low and compact ohmic

conductances, however, are difficult to implement in CMOS technology. Instead, the bias

constraint is imposed by the transconductance gm of a simple amplifier circuit (see Figure 3).

Its characteristics are ideally given as

I(∆V ) = Ib tanh(
κ

2UT

∆V ), (14)
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with Ib being the bias current controlled by the voltage BiasOP, UT the thermal voltage

and κ the common slope factor. Figure 7a illustrates the output of a saturating resistor

according to (14); the transconductance gm = Ibκ
2UT

characterizes the small ohmic regime and

the bias current Ib determines the saturation current level of the circuit.
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Figure 7: Ohmic versus saturating resistances. (a) The characteristic curves for an ohmic

(dashed line) and a saturating resistance. (b) The electrical co-contents (integrals).

Changing the resistance from a linear to a saturating behavior changes the bias con-

straint (1) from a quadratic toward an absolute-value function (Figure 7b), precisely given

as the electrical co-content. From a computational point of view, this implies that the

optical flow estimate is no longer penalized proportionally to the size of its components.

Rather, beyond the small ohmic regime, a constant bias current is applied. Therefore, the

bias constraint has a subtractive rather than a divisive effect on the optical flow estimate.

As discussed earlier, it seems reasonable to strengthen the bias constraint locally according

to the degree of ambiguity. Only, the degree of ambiguity is not at all reflected by the ampli-

tude of the motion estimate which is the only information available for the bias conductance.

Thus, it is most sensible to penalized the motion estimate independently of its size, which

actually means to apply a constant bias current. As we will see later, the non-linear bias

conductance significantly improves the output behavior of the optical flow sensor for low

contrast and low spatial frequency stimuli compared to a quadratic formulation of the bias

constraint as proposed by [37, 35]. Global asymptotic stability of the optical flow network

is ensured since the cost function remains convex [45].
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5.4.3 Non-linear smoothing of the optical flow

The smoothness constraint is enforced by HRes circuits [42] that have an equivalent charac-

teristics as the transconductance amplifier (14) shown in Figure 7. The saturation current

level is controlled by the bias voltage BiasHR. As a consequence, the squared differences

of the optical flow components in the cost function (2) have to be replaced by the total

dissipated power, thus e.g.

(∆xij)
2 ⇒

∆xx
ij∫

0

I(V ) dV +

∆xy
ij∫

0

I(V ) dV = log(cosh(∆xx
ij)) + log(cosh(∆xy

ij)). (15)

As the bias constraint, the smoothnes constraint turns from a quadratic (for small volt-

age differences) to an absolute-value cost function. Saturating resistors privilege smoothing

across small voltage differences, thus between image locations that show only little differ-

ences in the components of their optical flow vectors. If the difference becomes too big, the

smoothing conductance is continuously reduced in proportion to the local gradient of the

optical flow components. Consequently, smoothing is reduced at boundaries of different mo-

tion sources where the optical flow is likely to differ. This improves the optical flow estimate

compared to applying a linear smoothing conductance. Because the non-linear smoothing

is independent in each component of the optical flow estimate, the smoothing is not rota-

tionally invariant but rather slightly increased for visual motion along the diagonal of the

intrinsic coordinate frame. In contrast to line-processes, e.g. resistive fuses circuits [47], the

above non-linear smoothing conductances preserve the convexity of the cost function (2),

thus ensures global asymptotical stability.

6 Sensor Measurements

In the following, we will present and discuss measurements gathered of two implementations

of the proposed sensor, both sharing an identical pixel design and only differing in their array

size. Characterization of the sensors are exclusively based on measurements form the smaller

array while the flow fields shown in the end are recorded from the larger array. Specifications

are as indicated in Table 1.

For all measurements, the stimuli were directly projected onto the sensor via an optical

lens system. They were either generated electronically and displayed on a computer screen,

or were physical moving objects. The measured on-chip irradiance during all experiments

was within one order of magnitude with a minimal value of 9 mW/m2 for low contrast

computer screen displays. At such low values, the rise time of the photoreceptor circuit is
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Technology AMS 0.8µm BiCMOS, 2M, 2P

Supply voltage 5 V

Die size(s) 2.55x2.55 mm2 / 4.72x4.5 mm2

Array size(s) (motion units) 10x10 / 30x30

Pixel size 124x124 µm2

Active elements 119

Power dissipation 52 µW

Outputs (scanned) optical flow, photoreceptor

Table 1: Sensor specifications.

in the order of a few milliseconds [48]. This is sufficiently fast with respect to the applied

stimulus speed in those particular measurements. Unless indicated differently, the bias

voltages were all sub-threshold. The shown motion output signals are always referenced to

the null-potential V0.

6.1 Response characteristics

Moving sinewave and squarewave gratings were applied to characterize the motion response

for varying speed, contrast and spatial frequency of the gratings. Furthermore, the orienta-

tion tuning of the optical flow sensor and its ability to report the intersection-of-constraints

estimate of visual motion are tested. The presented data in this section constitute the global

motion signal, thus the unique, collectively computed solution provided by all units of the

optical flow sensor. Unless indicated differently, each data point shown in the following

figures represents the mean value of 20 single measurements, each being the output voltage

time-averaged over one stimulus cycle

6.1.1 Speed tuning

Figure 8a shows the speed-tuning of the optical flow sensor to a moving sinewave and a

squarewave grating. Negative speed values indicate motion in the opposite direction. The

output is almost identical for both visual stimuli. It clearly shows the qualitatively predicted

behavior due to the saturation of the multipliers in the feedback loop (compare to Figure 6).

The tuning is linear in a range of approximately ±0.5 V as indicated by the dash-dotted

lines for above-threshold operation of the multiplier core (BiasVVI1 = 1.1 V). Beyond the

linear range, the output quickly increases/decreases and finally hits the voltage rails on

either side. In contrast to our previous qualitative analysis (13), the measured responses
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reveal a pronounced linear-range and a sharper transition to the super-linear behavior.
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Figure 8: Speed tuning of the optical flow sensor. (a) Measured time-averaged speed tuning

of the optical flow sensor to a moving sinewave and squarewave grating (spatial frequency

0.08 cycles/pixel, contrast 80%). (b) Speed tuning for a moving sinewave grating for

different values of the multiplier bias voltage (BiasVVI2 = [0.5, 0.53, 0.56, 0.59, 0.62 V]). (c)

Output in the low gain limit (BiasVVI2 = 0.67 V). (d) Same as b but squarewave gratings.

Values in inlets indicate the measure linear response gains.

Figures 8b,d illustrate how the biasing of the feedback multiplier affects the sensitivity

of the optical flow sensor: Increasing the voltage BiasVVI2 leads to a smaller output gain

and thus maps the linear output-range to a larger maximal speed range. The solid lines
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Figure 9: Contrast dependence of the motion output. (a) The motion output is measured

as a function of stimulus contrast for sinewave and squarewave gratings. (b) Increasing

the bias voltage BiasOP = [0.15, 0.23, 0.26, 0.29, 0.32, 0.35, 0.45 V] leads to an increased

contrast dependence of the motion output, here measured for sinewave grating stimuli.

represent the linear fits to the individual measurements. The linear gain scales by a factor of

one half for a fixed increase in bias voltage BiasVVI2 by 30 mV (see measured gain values in

inlets), and thus is inversely proportional to the bias current (10). Comparing the measured

responses to sinewave (Figure 8b) and squarewave gratings (Figure 8d) did not reveal any

significant differences (see slope values in inlets). Setting BiasVVI2 high (0.67 volts) allows to

measure speeds up to 5000 pixels/sec. However, the response becomes slightly asymmetrical

as shown in Figure 8c.

6.1.2 Contrast dependence

The output of the optical flow sensor depends continuously on stimulus contrast. Figure 9a

shows the output voltage as a function of stimulus contrast 4 for moving sinewave and

squarewave grating stimuli with identical spatial frequency (0.08 cycles/pixel)and constant

speed (30 pixels/sec). The lower the contrast, the more dominant is the influence of the

bias constraint, forcing the responses toward the reference voltage V0.

Below a critical contrast value of about 0.3, the output signal continuously decreases

towards the zero reference motion V0 with decreasing contrast. The squarewave stimulus

shows a slightly sustained resistance against the drop-off. A least-square fit is applied ac-

cording to (7) for the response to the sinewave stimulus. Although it describes the overall

response well, the fit gets considerably incorrect around the critical contrast value. The mea-

4contrast measure: (E2 − E1)/(E1 + E2)
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sured output curves rise faster and exhibit a more extended plateau towards lower contrast

than the fit. This improved output behavior originates from the non-linear implementation

of the bias conductance: The effective conductance decreases with increasing motion out-

put signal while (7) assumes a constant σ that leads to a stronger bias at high contrast.

Figure 9b shows the influence of the total bias strength on the contrast tuning using the

same sinewave grating stimuli as before. Increasing values of the voltage BiasOP lead to

a contrast dependent output over the complete contrast range. For high values of BiasOP

the bias conductance dominates the denominator in (7) and the motion estimate becomes

quadratically dependent on contrast: It reduces to the multiplication of the spatial and

temporal brightness gradients, hence v ≈ ExEt. In fact, such simple spatiotemporal gra-

dient multiplication makes the costly feedback architecture of the circuit obsolete and can

be implemented in a compact feed-forward way [15, 16] as mentioned before. The expected

quadratic dependence can be observed in Figure 9b only for very low contrast, because the

Gilbert multipliers computing the product of the spatial and temporal gradient saturate for

higher contrast levels.

6.1.3 Spatial frequency tuning

The third stimulus parameter tested was spatial frequency. Moving sinewave and square-

wave gratings (80% contrast, 30 pixels/sec) of various spatial frequencies were applied.

Figure 10a shows the motion output of the optical flow sensor to sinewave and squarewave

gratings as a function of spatial frequency.

The waveform difference does not have a significant effect on the output. A least-square

fit according to (7) was performed on the response to the sinewave grating for frequencies

k < 0.75. For spatial frequencies k < 0.06, the locally measured spatial gradients on the

chip surface are very low and thus the bias constraint dominates and enforces the reference

motion. Again, we recognize a significant deviation from the fit caused by the non-ohmic

bias conductance. It extends the range for correct motion estimation for low frequencies

0.06 < k < 0.2. As spatial frequencies become high (k > 1), the response curves rapidly

drop below zero and remain small negative. The deviation from the predicted response,

where large negative values occur as the spatial period drops below the double inter-pixel

distance d, resulted from the non-optimal test setup that did not allow to project high

spatial frequency stimuli with sufficiently high local contrast onto the focal plane.

The strength of the bias voltage BiasOP affects the amplitude of the motion output as well

as the spatial frequency for which the motion response is maximal as shown in Figure 10b.

Recall, that increasing BiasOP decreases the motion output the more, the smaller the local

spatial gradient is. Because Ex is largest at k = 0.5 (see Figure 4a) the spatial frequency
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Figure 10: Spatial frequency tuning (a) The spatial frequency response was measured for a

sinewave and squarewave grating moving with constant speeds. Spatial frequency k is given

in units of the Nyquist frequency [π/d]. For frequencies k < 1, the response follows closely

the expected response (fit according to 8). The non-linear bias conductance extends the

range for accurate estimation for low spatial frequencies (gray area). (b) Increasing the

bias voltage BiasOP = [0.1, 0.15, 0.2, 0.25, 0.30, 0.35, 0.40 V] reduces the overall response

and shifts the peak response.

for which the motion output is maximal shifts towards this value with increasing values of

BiasOP.

6.1.4 Spatial integration

The ability to accurately estimate two-dimensional visual motion is a key property of the

presented optical flow sensor. Figure 11a shows the orientation tuning of the optical flow

sensor when presented with an orthogonal plaid stimulus. The output fits well the theoret-

ically expected sine and cosine functions.

The optical flow sensor approximately solves the aperture problem for a single moving

object on a non-structured background. To demonstrate this, we biased the sensor to com-

pute global motion (BiasHR = 0.8 V). Then, a high contrast visual stimulus was presented

that consisted of a dark triangle on a light background, moving in either of the four cardi-

nal directions. The triangular object shape requires the intersection-of-constraints solution

in order to achieve the correct estimate of object motion. Figure 11b shows the applied

stimulus and the global motion estimates of the sensor for a constant positive or negative
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Figure 11: Solving the Aperture problem. (a) The optical flow sensor exhibits the expected

cosine- and sinewave tuning curves for the orthogonal motion components U and V . The

sinusoidal plaid stimulus (spatial frequency 0.8 cycles/pixel, contrast 80%) was moving at

a velocity of 30 pixels/sec. (b) The time-averaged output of the optical flow sensor is

shown for a triangular object moving in orthogonal directions. The optical flow sensor

approximately solves the aperture problem. Data points along each trajectory correspond

to particular bias voltages BiasOP = [0, 0.1, 0.15, 0.2, 0.25, 0.3, 0.33, 0.36, 0.39, 0.42, 0.45,

0.48, 0.51, 0.75 V].

object motion in the two orthogonal directions. Each data point represents the estimate

for a particular value of the bias conductance. For BiasOP < 0.25 V, the optical flow sen-

sor almost perfectly reports the true object motion in either of the four tested directions

although with a small asymmetry in the speed estimate. The non-perfect integration with

a directional deviation of less than 10 degrees is the result of the remaining intrinsic output

conductance. Note, that a vector average estimate would lead to a deviation in direction of

22.5 degrees for this particular stimulus. As BiasOP increases, the reported speed decreases

rapidly while the direction of the global motion estimate resembles more a vector average

estimate (see arrows in Figure 11b).

6.1.5 Array offsets

To conclude the characterization of the optical flow sensor, the output variations between the

individual units of the optical flow network were investigated. A moving, diagonally oriented

sinewave grating was applied such that the u-component and the negative v-component

of its apparent motion were equally large. Each unit was recorded in isolation with the

smoothness constraint being completely disabled (BiasHR = 0 V). The stimulus speed and
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Figure 12: Flow field offsets. (a) The measured time-averaged optical flow for uniform

visual motion. (b) Histograms for both components of the optical flow vectors with mean

values of U = 0.25 V and V = −0.24 V and standard deviations of Ustd = 0.09 V and

Vstd = 0.04 V respectively.

the bias settings were chosen such that the output values are clearly within the linear range

of the optical flow units to prevent any distortion of the output distribution due to the

expansive non-linearity of the multiplier circuits.

Figure 12a shows the resulting time-averaged (20 stimulus cycles) optical flow field. It

reveals some moderate offsets between the optical flow vectors of the different units in the

array. However, these units seem to be located preferably at the array boundaries where

device mismatch is usually pronounced due to asymmetries in the layouts. Because motion

is computed component-wise, deviations due to mismatch are causing errors in speed as well

as orientation of the optical flow estimate. Figure 12b shows the histogram of the output

voltages of all motion units. Very similar results were found for other chips of the same

fabrication batch. The outputs consistently approximate normal distributions as long as

the motion signals are within the linear range of the circuit which is in agreement with

randomly induced mismatch due to the fabrication process.

The above offset values are for completely isolated motion units. Already weak cou-

pling among the units noticeably increases the homogeneity of the individual responses and

therefore reduces the offsets.

6.2 Flow field estimation

In the following, sampled optical flow fields of the 30x30 array implementation are presented.

On-chip scanning circuitry allows to simultaneously read-out the optical flow estimate (volt-
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ages U+, V+) as well as the photoreceptor voltage at each pixel. Scanning was performed at

67 frames/sec (100kHz clock frequency) but can be as high as 1000 frames/sec before the

cut-off frequency of the follower based scanning circuitry starts to significantly impair the

signals. The following results represent the sampled output of the optical flow sensor pre-

sented with real-world stimuli under typical indoor lightning conditions. Each flow vector

is defined by the local voltage signals U+, V+ referenced a null potential V0.

a b

c d

Figure 13: Varying smoothness of the optical flow estimate. (a) The photoreceptor image.

(b-d) Optical flow samples for increasing effect of the smoothness constraint (BiasHR=[0.25,

0.38 and 0.8 V]).

Figure 13 demonstrates how a different biasing of the HRes circuits controls smooth-

ness. The same ’triangle’ stimulus as in Figure 11b was presented, moving from right to

left with constant speed. Optical flow was recorded for three different smoothness strengths

and snapshots are shown when the object passed the center of the visual field. Figure 13a

represents the photoreceptor output voltages while (b-d) display the flow fields according to

increasing values of BiasHR. For low values, spatial interaction amongst motion units is lim-

ited and an approximate normal flow estimate results with flow vectors preferably oriented

perpendicular to the brightness edges. As the voltage increases, the optical flow estimate
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becomes smoother and finally represents an almost global estimate that well approximates

the correct two-dimensional object motion.

Finally, Figure 14 shows a sampled sequence of the optical flow sensor’s output for a

’natural’ real-world scene. The sensor is observing two tape rolls passing each other on a

office table from opposite direction. Again, each frame is a snap-shot and consists of a gray-

scale image encoding the photoreceptor output voltages overlaid with the estimated optical

flow field. The optical flow estimate well matches the qualitative expectations according

a b c

d e f

g h i

Figure 14: Sampled output of the 2-D optical flow sensor watching a real-world scene.

to our previous analysis. Rotation of the rolls cannot be perceived because the spatial
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brightness structure on their surface is not sufficient. The flow fields are mildly smooth

leading to motion being perceived e.g. in the center-hole of each roll. Note, that the chosen

value of the smoothing conductance (BiasHRes = 0.41 V) does not prevent everywhere the

optical flow estimate from being affected by the aperture problem: at the outer borders of

the rolls, the flow vectors tend to reflect normal flow. However, for regions for which the

smoothing kernel combines image areas of differently orientated spatial gradients (e.g. the

center region of the rolls), the aperture problem does not hold and the sensor provides the

perceptually correct estimate of visual motion.

The tape rolls sequence demonstrates another interesting behavior of the sensor; the op-

tical flow field seems partially sustained and trailing the trajectory of the rolls (see e.g. the

optical flow field on the left-hand side in Figure 14c), indicating a long decay time-constant

of the optical flow signal. As we have previously seen, the total conductance (11) at the

feedback node of each motion units is not constant and is given mainly by the transcon-

ductance of the feedback loop and the bias conductance5. In the tape rolls sequence, the

background and the table is unstructured revealing almost no spatial brightness gradients.

Thus, the transconductance of the feedback loop is dropping low, once the high contrast

tape rolls boundary has passed, making the time-constant long because it is now solely de-

termined by the bias conductance ρ – which is ideally small. As counter-example, consider

the situation after the occlusion of the two tape rolls: there is almost no trailing expansion

of the flow field right after occlusion (Figure 14f) when the high-contrast back edge of the

second roll immediately induces new motion information6 (high correction currents → high

transconduction). In subsequent frames (Figures 14g-i) the trailing flow field is continuously

growing again.

As expected from its implied smooth motion model, the optical flow sensor cannot resolve

occlusions where multiple motion sources are present in the same spatial location. In this

particular sequence with opposite translational motion sources, the motion estimate cancels

at occlusions (see Figure 14d and e).

7 Discussion

The here presented optical flow sensor is an example of an aVLSI implementation of dis-

tributed and parallel processing sensory system [49] working in continuous-time. The

nearest-neighbor connected array of motion units applies recurrent feedback in order to

5neglecting the smoothness conductance
6note, that a static background can provide motion information (zero motion) as long as it has spatial

structure.
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correct the common estimate of visual motion according to the local visual information

with respect to its built-in internal motion model. Such error coding and adaptation strat-

egy is also believed to be pursued by biological neural systems [50]. From a mathematical

perspective, the optical flow sensor solves a constraint optimization problem; it has to find

the optical flow estimate that best matches the visual information with respect to the im-

plicit model. To my knowledge, the sensor is the first functional aVLSI implementation

following such strategy. It proves that there is no conceptual reason why such an approach

cannot be successfully implemented in aVLSI known for its inherent susceptibility to device

mismatch and noise.

The optical flow sensor embeds a motion model that has advantages compared to previ-

ously reported computational models of visual motion estimation. The bias constraint leads

to a robust system and a computationally rich behavior and has been shown to account for

many of the known illusionary percepts of human visual motion [37]. However, the novel

non-quadratic form of the bias constraint caused by the intrinsic non-linear implementa-

tion of the bias conductance improves the performance compared to comparable, quadratic

formulations [35, 36, 37]; the visual motion estimate is less biased for high contrast stimuli

without sacrificing robustness (see e.g. Figure 10a).

Another novel feature of the model is its dynamical properties. The non-zero time-

constant of the optical flow sensor leads to the integration of visual motion information over

time. Since the time-constant depends on the spatio-temporal energy and thus on the con-

fidence in the visual information present, the actual temporal integration window becomes

large for weak and short for reliable visual input (see Figure 14): At any time the model

assumes the optical flow to change smoothly over time with an integration window adapted

to the confidence and thus the signal/noise ratio of the visual input. Recent recordings

of the dynamical properties of primate’s visual motion system reveal some similarity with

biological systems: Pack and Born[51] reported that pattern selective cells in the visual

motion area MT of the macaque monkey are preferably tuned to component motion in their

initial response phase and only establish their preference for pattern motion after some la-

tency. This is consistent with the gradient-descent dynamics of the optical flow sensor.

It also reports initially an estimate that is biased toward the normal flow and continuously

approaches the correct pattern motion estimate (results not shown). However, such similar-

ities shall not be over-emphasized. Rather, the similarities to these highly evolved biological

visual motion systems support the soundness of the presented approach. The optical flow

sensor is at most a functional model for biological visual motion processing.

A few reported examples already demonstrate the potential of the sensor for smart

visual interfaces [52] or robotics applications [53], in particular when tuned to provide
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a global optical flow estimate. The resulting low dimensionality of a global optical flow

estimate eliminates the need for high transmission bandwidth and complex interfaces to

further processing stages, allowing the construction of simple yet powerful systems. Other

applications for surveillance and navigation tasks are certainly imaginable.

The network architecture and thus the motion model applied can be further evolved by

including mechanisms that locally control the conductances σij(t) and ρij(t). This could

allow a much richer, more object related computational behavior of the system [45]. Some

focal-plane implementations of such network architectures have been reported where the

local smoothness conductances σij(t) are adapted to limit motion integration to locations

restricted to individual motion sources [9]. Further research has to be conducted, however,

in particular with respect to the necessary separation of more complex systems onto multiple

chips. The local control of the bias conductance ρij(t) would also allow interesting atten-

tionally guided visual motion processing. Motion units not belonging to the attentional

focus could be suppressed by increasing ρij , thus literally shunting the unit. We know that

such attentional inhibition is involved in the processing of visual motion in area MT [54],

for example. Although in detail not biological plausible, such extended aVLSI systems of

the optical flow sensor would allow to study in a more systematic way the bottom-up and

top-down interplay in a real-time perceptional system.
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Switzerland, March 2002, http://www.cns.nyu.edu/∼alan/publications/publications.htm.

[46] P. Gray and R. Meyer, Analysis and Design of Analog Integrated Circuits, 3rd ed., 93, Ed.
New York: Wiley and sons, 1993.

[47] J. Harris, C. Koch, and J. Luo, “A two-dimensional analog VLSI circuit for detecting discon-
tinuities in early vision,” Science, vol. 248, pp. 1209–1211, June 1990.

[48] T. Delbruck, “Investigations of analog VLSI visual transduction and motion processing,”
Ph.D. dissertation, Department of Computational and Neural Systems, California Institute
of Technology, Pasadena, CA, 1993.

[49] D. Rumelhart, G. Hinton, and J. McClelland, Parallel distributed processing: Explorations in
the microstructure of cognition, D. Rumelhart, J. McClelland, and the PDP Research Group,
Eds. MIT Press, 1986, vol. 1.

32



[50] R. Rao and D. Ballard, “The visual cortex as a hierachical predictor,” Dept. of Computer
Science, University of Rochester, Tech. Rep. 96.4, 1996.

[51] C. Pack and R. Born, “Temporal dynamics of a neural solution to the aperture problem in
visual area MT of macaque brain,” Nature, vol. 409, pp. 1040–1042, February 2001.

[52] J. Heinzle and A. Stocker, “Classifying patterns of visual motion - a neuromorphic approach,”
in Advances in Neural Information Processing Systems 15, S. T. S. Becker and K. Obermayer,
Eds. Cambridge, MA: MIT Press, 2003, pp. 1123–1130.

[53] V. Becanovic, G. Indiveri, H.-U. Kobialka, Plöger, and A. A. Stocker, Mechatronics and
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