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Abstract

Raviart-Thomas finite elements are very useful for problems posed in H(div)

since they are H(div)-conforming. We introduce two domain decomposition meth-

ods for solving vector field problems posed in H(div) discretized by Raviart-

Thomas finite elements.

A two-level overlapping Schwarz method is developed. The coarse part of the

preconditioner is based on energy-minimizing extensions and the local parts consist

of traditional solvers on overlapping subdomains. We prove that our method is

scalable and that the condition number grows linearly with the logarithm of the

number of degrees of freedom in the individual subdomains and linearly with the

relative overlap between the overlapping subdomains. The condition number of

the method is also independent of the values and jumps of the coefficients across

the interface between subdomains. We provide numerical results to support our

theory.

We also consider a balancing domain decomposition by constraints (BDDC)

method. The BDDC preconditioner consists of a coarse part involving primal

constraints across the interface between subdomains and local parts related to the

Schur complements corresponding to the local subdomain problems. We provide

bounds of the condition number of the preconditioned linear system and suggest

that the condition number has a polylogarithmic bound in terms of the number of

degrees of freedom in the individual subdomains from our numerical experiments

for arbitrary jumps of the coefficients across the subdomain interfaces.
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Chapter 1

Introduction

1.1 An Overview

In order to obtain the approximate solution of a certain partial differential

equation (PDE) numerically, we can use finite elements, finite differences, or other

schemes. After discretization, we often face a large, ill-conditioned, linear system

of algebraic equations. It is often hard to solve such a linear system by using

traditional direct methods due to the limitation of computing resources. Even

though we can apply iterative methods such as Krylov type methods, we will

need many iterations because of the large condition number. To avoid this, we

will introduce preconditioners which make the condition number and the iteration

count of the preconditioned linear system much smaller than that of the original

linear system.

The main role of domain decomposition methods is providing good precondi-

tioners. They typically involve solving one global coarse problem and many small

local subproblems. Both the coarse global problem and the local subproblems are
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small compared to the original problem so that each problem may be handled

by exact solvers. We divide the original domain into often many subdomains,

to obtain local subproblems related to each subdomain, and use a coarse grid

for the coarse problem. We can also solve the local subproblems independently

and domain decomposition algorithms can therefore be implemented effectively on

parallel machines.

There are two major families of domain decomposition methods: overlapping

Schwarz methods with overlapping subdomains and iterative substructuring meth-

ods with nonoverlapping subdomains. In overlapping Schwarz methods, we can

begin with a set of nonoverlapping subdomains. We then enlarge each subdomain

by adding layers of elements. The local subproblems are defined on the extended

subdomains and the global problem is associated with the coarse meshes defined

by the subdomains.

The original overlapping Schwarz algorithms were originally developed for scalar

elliptic problems; see [61,67] and references therein. Later these methods have been

widely extended to various problems.

In iterative substructuring methods, we first reduce the original linear system

to a Schur complement system by implicitly eliminating the interior unknowns

of each subdomains. We then consider appropriate preconditioners for the Schur

complement system. Two main classes of iterative substructuring methods are

the balancing Neumann Neumann (BNN) type and the finite element tearing and

interconnecting (FETI) type algorithms; see [26–28,37, 42].

There are many variants of the iterative substructuring methods. Among them,

balancing domain decomposition by constraints (BDDC) and dual-primal finite el-

ement tearing and interconnecting (FETI-DP) are currently the most important.

2



In this dissertation, we will mainly focus on BDDC methods. The BDDC methods,

introduced by Dohrmann in [18], are modified BNN methods with a global com-

ponent obtained by using primal continuity constraints. For a pioneering analysis,

see [43, 44].

In this dissertation, we will consider two-level overlapping Schwarz methods

and BDDC methods for solving vector field problems. Overlapping Schwarz meth-

ods for vector field problems with constant coefficients were previously introduced

in [34, 64]. Later nonoverlapping domain decomposition methods were considered

in [71] and BNN, FETI, and FETI-DP methods were developed in [63,65,66]. Other

methods, such as multigrid methods, have also been considered; see [3, 32, 70].

While many iterative substructuring methods have been studied for discontinu-

ous coefficients cases, there has been little supporting theory for the overlapping

Schwarz methods until recently. For the purpose of handling the discontinuity of

the coefficients, we borrow the advanced coarse space techniques of [19, 20] devel-

oped for almost incompressible elasticity. We also consider the BDDC methods

with various primal constraints.

1.2 Krylov Subspace Methods

The discretization of elliptic PDEs usually yields symmetric, sparse, and posi-

tive definite linear systems. As we noted earlier, direct methods often require too

much work and a huge memory, if the number of degrees of freedom is very large,

especially for 3D problems. Hence, we use iterative methods for solving such lin-

ear systems. Jacobi, Gauss-Seidel, and successive over-relaxation (SOR) methods

were introduced early as iterative methods. Later, techniques based on projection

3



processes were developed. Among them, Krylov subspace methods are the most

important and popular currently. We will consider the Krylov methods in this

section.

1.2.1 Overview of Krylov Subspace Methods

We consider the following linear system:

Au = f. (1.1)

The Krylov methods are based on a projection into a lower-dimensional Krylov

subspace which is given by

Km(A, r0) = span{r0, Ar0, A
2r0, · · · , Am−1r0}, (1.2)

where r0 = f − Au0 and u0 is an initial guess. In other words, the approximate

solution obtained from a Krylov subspace method has the following form:

xm = x0 + pm−1(A)r0, (1.3)

where pm−1 is a polynomial of degree m − 1. There are various types of Krylov

subspace methods, e.g., conjugate gradient methods, Lanczos methods, and gen-

eralized minimal residuals. The methods chosen depends on the type of problems.

We will mainly consider the preconditioned conjugate gradient methods for solving

symmetric, positive definite linear systems in this dissertation.
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1.2.2 The Conjugate Gradient Method

We consider the case where A is sparse, symmetric, and positive definite. The

conjugate gradient algorithm for solving (1.1) is given in Figure 1.1.

Initialize: r0 := f − Au0, p0 := r0

Iterate k = 0, 1, · · · until convergence

αk := rT
k rk/p

T
k Apk

uk+1 := uk + αkpk

rk+1 := rk − αkApk

βk := rT
k+1rk+1/r

T
k rk

pk+1 := rk+1 + βkpk

Figure 1.1: Conjugate Gradient Algorithm

We define the A-norm and the error vector for the analysis of the convergence rate

of the conjugate gradient algorithms. The A-norm is defined as follows:

‖u‖2
A := uTAu

and the error vector en is given by en := un − u∗, where un is from the algorithm

in Figure 1.1 and u∗ is the solution of (1.1). We then have the following error

estimate.

Lemma 1.2.1. Let A be a symmetric positive matrix. Then, the A-norm of the

errors for the conjugate gradient methods satisfy the following bound:

‖en‖A

‖e0‖A

6 2

(√
κ(A) − 1√
κ(A) + 1

)n

, (1.4)

5



where κ(A) is the condition number of A in the 2-norm.

By Lemma 1.2.1, if the condition number of A is very large, the convergence

rate may be unsatisfactory. Hence, we introduce a preconditioner P , a symmetric

positive definite, and the following modified linear systems:

P−1Au = P−1f (1.5)

or

P−1/2AP−1/2v = P−1/2f, v = P 1/2u. (1.6)

The preconditioned conjugate gradient algorithm is given in Figure 1.2 for

solving (1.5) or (1.6) instead of (1.1). For the preconditioned conjugate gradient

Initialize: r0 := f − Au0, z0 := P−1r0, p0 := z0

Iterate k = 0, 1, · · · until convergence

αk := rT
k zk/p

T
k Apk

uk+1 := uk + αkpk

rk+1 := rk − αkApk

zk+1 := P−1rk+1

βk := zT
k+1rk+1/z

T
k rk

pk+1 := zk+1 + βkpk

Figure 1.2: Preconditioned Conjugate Gradient Algorithm

algorithm, we have the following estimate.

6



Lemma 1.2.2. Let A and P be a symmetric positive matrix. Then, the A-norm

of the errors for the conjugate gradient methods satisfy the following bound:

‖en‖A

‖e0‖A
6 2

(√
κ(P−1A) − 1√
κ(P−1A) + 1

)n

, (1.7)

where κ(P−1A) is the condition number of P−1A in the 2-norm.

If we find a preconditioner which makes the condition number of P−1A much

smaller than that of A, we will have a better convergence rate according to

Lemma 1.2.2. There are then extra costs associated with a matrix-vector product

with P−1 and we have to make sure that the computational cost for this matrix-

vector multiplication should be cheap enough to save computing time.

It is usually very hard to obtain exact spectral information on a matrix. How-

ever, if we use a tridiagonal matrix related to the coefficients of the conjugate

gradient algorithm, we can obtain approximate eigenvalues. This information can

be used to estimate the condition number. We can construct the tridiagonal matrix

as follows:

J (m) =




1
α0

√
β0

α0
√

β0

α0

1
α1

+ β0

α0

√
β1

α1
√

β1

α1

. . .
. . .

. . .
. . .

√
βm−2

αm−2√
βm−2

αm−2

1
αm−1

+ βm−2

αm−2
.




. (1.8)

By considering the spectral information of J (m), we can estimate the eigenvalues of

A. We note that extreme eigenvalues of J (m) converge rapidly after a few iterations.

For more detail, see [57, Chapter 6.7].
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1.3 Mixed Finite Element Methods

We consider mixed finite element methods in this section. Let V and Π be two

Hilbert spaces and a(·, ·) : V × V → R and b(·, ·) : V × Π → R be two continuous

bilinear forms:

a(u, v) 6 C‖u‖V ‖v‖V , ∀u, v ∈ V

b(v, p) 6 C‖v‖V ‖p‖Π, ∀v ∈ V, p ∈ Π.

We consider the following variational problem to find v ∈ V and p ∈ Π:

a(u, v) + b(v, p) = F (v), ∀v ∈ V (1.9)

b(u, q) = G(q), ∀q ∈ Π,

where F ∈ V ′ and G ∈ Π′.

Before we consider the existence and uniqueness of (1.9), we introduce a co-

ercitity and an inf-sup condition.

Definition 1.3.1. If there exists a positive constant α such that for all v ∈ V ,

α‖v‖2
V 6 a(v, v), we call a(·, ·) coercive.

Definition 1.3.2. b(·, ·) has an inf-sup condition if b(·, ·) satisfies the following

condition: there exists a positive constant β such that

β‖p‖Π 6 sup
w∈V

b(w, p)

‖w‖V
, ∀p ∈ Π.

We note that the inf-sup condition is also called the Ladyzhenskaya-Babuška-

Brezzi condition.

8



We consider a closed subspace of V :

Z := {v ∈ V | b(v, q) = 0, ∀q ∈ Π}. (1.10)

The following theorem determines the well-posedness of problem (1.9).

Theorem 1.3.1. If a(·, ·) is coercive for all v ∈ Z and b(·, ·) satisfies the inf-sup

condition, then there exists a unique solution pair to (1.9).

Proof. See [7, Theorem 4.3].

In some cases, we need the following additional bilinear form:

c(·, ·) : Π × Π → R, c(p, p) > 0, ∀p ∈ Π

to consider a saddle point problem. The problem has the following form:

a(u, v) + b(v, p) = F (v), ∀v ∈ V

b(u, q) − c(p, q) = G(q), ∀q ∈ Π.

For more details, see [7, Chapter III.4], [12, Chapter 12], and [14].

1.4 Organization of the Dissertation

The remaining parts of this dissertation are organized as follows. In Chapter 2,

we introduce various function spaces, finite element spaces, and their properties.

We present our model problem in Chapter 3. We next review domain decompo-

sition algorithms and theories in Chapter 4. We finally provide an overlapping

9



Schwarz method and a BDDC method for solving vector field problems in Chap-

ter 5 and Chapter 6, respectively.
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Chapter 2

Function and Finite Element

Spaces

2.1 Continuous Spaces

2.1.1 Sobolev Spaces

We will use Sobolev spaces and corresponding norms and seminorms for bounded

open Lipschitz domains Ω. Let us consider the L2-space first. It is the space of

square integrable functions and its norm is given by

‖u‖2
0;Ω :=

∫

Ω

|u|2 dx.

We next consider the following scaled H1-norm:

‖u‖2
1;Ω := |u|21;Ω +

1

H2
‖u‖2

0;Ω,

11



where H is the diameter of Ω and the seminorm | · |1;Ω is defined by

|u|21;Ω :=

∫

Ω

|∇u|2 dx.

H1(Ω) ⊂ L2(Ω) is the space of functions with finite scaled H1-norms.

We next introduce H
1
2 (∂Ω), the trace space of H1(Ω). The scaled norm of

H
1
2 (∂Ω) is given by

‖u‖2
1
2
;∂Ω

:= |u|21
2
;∂Ω

+
1

H
‖u‖2

0;∂Ω,

where the seminorm is defined by

|u|21
2
;∂Ω

:=

∫

∂Ω

∫

∂Ω

|u(x) − u(y)|2
|x − y|d dxdy

and d is the dimension of Ω. Moreover, the dual space of H
1
2 (∂Ω) is denoted by

H− 1
2 (∂Ω).

We have the following two lemmas related to trace spaces.

Lemma 2.1.1. (Trace theorem) Let Ω be a Lipschitz domain. Then, there is a

bounded linear operator γ0, which maps a smooth function into its restriction on the

boundary, that can be extended continuously to an operator γ0 : H1(Ω) → H
1
2 (∂Ω).

Lemma 2.1.2. (Extension theorem) Let Ω be a Lipschitz domain. There exists a

continuous lifting operator R0 : H
1
2 (∂Ω) → H1(Ω), such that for all u ∈ H

1
2 (∂Ω),

γ0(R0u) = u.

We next introduce Poincaré’s and Friedrichs’ inequalities, which are very useful

tools for the analysis of domain decomposition methods.

Lemma 2.1.3. (Poincaré’s inequality) Let Ω ⊂ R
d be a bounded Lipschitz region

with diameter HΩ and u ∈ H1(Ω). Then, there exist constants C1 and C2 such

12



that

‖u‖2
0;Ω 6 C1H

2
Ω|u|21;Ω + C2

1

Hd
Ω

(∫

Ω

u dx

)2

,

where the constants depend only on the shape of Ω.

Lemma 2.1.4. (Friedrichs’ inequality) Let Ω ⊂ R
d be a bounded Lipschitz region

with diameter HΩ and Γ ⊆ ∂Ω have nonvanishing (d − 1)-dimensional measure.

Then, there exist constants C1 and C2, depending only on the shape of Ω and Γ,

such that

‖u‖2
0;Ω 6 C1H

2
Ω|u|21;Ω + C2HΩ‖u‖2

0;Γ,

for all u ∈ H1(Ω). Moreover, if u vanishes on Γ,

‖u‖2
0;Ω 6 C1H

2
Ω|u|21;Ω

and thus the H1-norm and H1-seminorm are then equivalent.

2.1.2 H(div) and H(curl) Space

2.1.2.1 The space H(div)

For a given vector function u ∈ R
2 or R3, we define the divergence operator as

div u :=
d∑

i=1

∂ui

∂xi

,

where d is 2 or 3 and where ui is the i-th component of u. The space H(div; Ω) is

defined by

H(div; Ω) := {u ∈ (L2(Ω))d | div u ∈ L2(Ω)}
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with the following scaled graph norm:

‖u‖2
div;Ω := ‖u‖2

0;Ω + H2‖div u‖2
0;Ω,

where d is the dimension of Ω and H is the diameter of Ω. We note that the

scaling is different from that of ‖u‖2
1;Ω. It is known that the normal component

of u ∈ H(div; Ω) is in H− 1
2 (∂Ω); see [14, 50]. The norm for the space H− 1

2 (∂Ω) is

given by

‖u · n‖− 1
2
;∂Ω := sup

φ∈H
1
2 (∂Ω),φ 6=0

< u · n, φ >

‖φ‖ 1
2
;∂Ω

.

The angle brackets stand for the duality product of H− 1
2 (∂Ω) and H

1
2 (∂Ω). We

denote by H0(div; Ω) the subspace of H(div; Ω) with a vanishing normal component

on ∂Ω.

Lemma 2.1.5. There exists a constant C, which is independent of the diameter

of Ω, such that, for all u ∈ H(div; Ω),

‖u · n‖2
− 1

2
;∂Ω

6 C(‖u‖2
0;Ω + H2‖divu‖2

0;Ω),

where H is the diameter of Ω.

Proof. This follows directly from Green’s identity on a domain with a diameter

one and by applying a dilation; see [71, Lemma 2.1].
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2.1.2.2 The space H(curl)

The curl operator for a given vector function u ∈ R
3 is defined by

curl u :=




∂u3

∂x2

− ∂u2

∂x3
∂u1

∂x3
− ∂u3

∂x1
∂u2

∂x1
− ∂u1

∂x2




.

We note that the curl operator for 2D is just a simple rotation of the divergence

operator. For 2D cases, we therefore can use the results for H(div; Ω) to obtain

results for H(curl; Ω).

H(curl; Ω) is defined by

H(curl; Ω) := {u ∈ (L2(Ω))3 | curl u ∈ (L2(Ω))3}

with the following scaled graph norm:

‖u‖2
curl;Ω := ‖u‖2

0;Ω + H2‖curl u‖2
0;Ω,

where H is the diameter of Ω.

We can now define the tangential component of u on the boundary as follows:

ut := u− (u · n)n = (n × u) × n.

We note that this tangential component is in H− 1
2 (∂Ω)3; see [50]. Let H0(curl; Ω)

denote the subspace of H(curl; Ω) with a vanishing tangential component.
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2.1.3 Helmholtz Decompositions

We introduce the following Helmholtz decompositions.

Lemma 2.1.6. (Helmholtz decompositions) Let Ω be convex and let H0(curl ; Ω)

be the subset of H(curl ; Ω) with a vanishing tangential component on ∂Ω and

H0(div ; Ω) the subset of H(div ; Ω) with a vanishing normal component on ∂Ω.

Then, H0(curl ; Ω), H0(div ; Ω), H(curl ; Ω), and H(div ; Ω) have the following

generalized orthogonal Helmholtz decompositions:

H0(curl ; Ω) = gradH1
0 (Ω) ⊕ H⊥

0 (curl ; Ω),

H(curl ; Ω) = gradH1(Ω) ⊕ H⊥(curl ; Ω)

and

H0(div ; Ω) = curlH0(curl ; Ω) ⊕ H⊥
0 (div ; Ω)

= curlH⊥
0 (curl ; Ω) ⊕ H⊥

0 (div ; Ω),

H(div ; Ω) = curlH(curl ; Ω) ⊕ H⊥(div ; Ω)

= curlH⊥(curl ; Ω) ⊕ H⊥(div ; Ω),

where

H⊥
0 (curl ; Ω) := H0(curl ; Ω) ∩ H(div 0 ; Ω),

H⊥(curl ; Ω) := H(curl ; Ω) ∩ H0(div 0 ; Ω)
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and

H⊥
0 (div ; Ω) := H0(div ; Ω) ∩ H(curl 0 ; Ω),

H⊥(div ; Ω) := H(div ; Ω) ∩ H0(curl 0 ; Ω).

Here, H(curl 0 ; Ω), H(div 0 ; Ω), H0(curl 0 ; Ω), and H0(div 0 ; Ω) are defined as

follows:

H(curl 0 ; Ω) := {u ∈ H(curl ; Ω), curl u = 0},

H0(curl 0 ; Ω) := {u ∈ H0(curl ; Ω), curl u = 0}

and

H(div 0 ; Ω) := {u ∈ H(div ; Ω), div u = 0},

H0(div 0 ; Ω) := {u ∈ H0(div ; Ω), div u = 0}.

Proof. See [17, Proposition 1, p.215].

Remark 2.1.1. There is another stable decomposition which holds for more gen-

eral region; see [35, Lemma 3.10] for details.

We summarize the properties of the decomposition.

Lemma 2.1.7. For u ∈ H⊥(curl ; Ω) and v ∈ H⊥(div ; Ω), we have the following

estimates:

‖u‖0;Ω 6 CH‖curl u‖0;Ω, ∀u ∈ H⊥(curl ; Ω)
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and

‖v‖0;Ω 6 CH‖div v‖0;Ω, ∀v ∈ H⊥(div ; Ω),

where H is the diameter of Ω.

Proof. See [1, Prop. 4.6].

Lemma 2.1.8. If Ω is convex, the spaces H⊥(curl ; Ω) and H⊥(div ; Ω) are con-

tinuously embedded in (H1(Ω))d, where d is the dimension of Ω.

Proof. See [1, Theorem 2.17] and [34, Lemma 4.1].

2.2 Finite Element Spaces

2.2.1 Raviart-Thomas and Nédélec Elements

Let Th be a given triangulation and K be the elements of Th. We assume that

Th is shape-regular.

We first consider the Raviart-Thomas elements. The lowest order Raviart-

Thomas element space is defined by

Xh := {u | u|K ∈ RT (K), K ∈ Th and u ∈ H(div; Ω)},

where RT (K) is given by

RT (K) := a + bx,

for triangular or tetrahedral elements and by

RT (K) := a + b · x,
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for quadrilateral or hexahedral elements, where a and b are vectors in R
2 or R

3

and b is a scalar.

The degrees of freedom are defined by the average values of the normal compo-

nents over the edges and the faces of Th for two and three dimensions, respectively,

i.e., by

λ(u) :=
1

|F |

∫

F

u · n ds, F ⊂ ∂K.

The l2−norm of the vector of these coefficients can be related to the L2−norm of

u. We have the following lemma.

Lemma 2.2.1. Let K ∈ Th. Then, for all u ∈ Xh, there exist constants depending

only on the aspect ratio of K, such that

c
∑

f⊂∂K

hd
fλ(u)2

6 ‖u‖2
0;K 6 C

∑

f⊂∂K

hd
fλ(u)2, (2.1)

where hf is the diameter of f and d is the dimension of the region.

Proof. The proof of this lemma is just a simple modification of [56, Proposition

6.3.1].

The basis functions of the lowest order Raviart-Thomas element space are sup-

ported in two elements of Th and their normal component equals 1 on a specified

edge (2D) or face (3D) and 0 on the other edges (2D) or faces (3D).

We also define X0;h which is the subspace of Xh with a vanishing normal com-

ponent on the boundary of the domain Ω, i.e.,

X0;h(Ω) := Xh(Ω) ∩ H0(div; Ω).

We need to define trace spaces. Let Fh(∂Ω) be the space of functions which are
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constant on each edge (2D) or face (3D) of the edges or faces of the elements of

Th which are contained in ∂Ω. We also define F0;h(∂Ω) as the subspace of Fh(∂Ω)

with mean value zero over ∂Ω.

We next introduce the Nédélec elements. The lowest order Nédélec element

space is defined by

Nh := {u | u|K ∈ ND(K), K ∈ Th and u ∈ H(curl; Ω)},

where

ND(K) := a + x × b,

for triangular or tetrahedral elements, by

ND(K) := Q0,1 × Q1,0,

with Qk1,k2, the space of polynomial of degree ki in the i-th variable, for quadri-

lateral elements, and by

ND(K) := Q0,1,1 × Q1,0,1 × Q1,1,0,

with Qk1,k2,k3, the space of polynomial of degree ki in the i-th variable, for hexa-

hedral elements.

The degrees of freedom are defined by the average value of the tangential com-

ponent over the edges e

λe(u) =
1

|e|

∫

e

u · te ds, e ⊂ ∂K,
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for each K ∈ Th. We have the following lemma similar to Lemma 2.2.1.

Lemma 2.2.2. Let K ∈ Th. Then, for all u ∈ Nh, there exist constants depending

only on the aspect ratio of K, such that

c
∑

e⊂∂K

hd
eλe(u)2

6 ‖u‖2
0;K 6 C

∑

e⊂∂K

hd
eλe(u)2, (2.2)

where he is the length of e and d is the dimension of the region.

Proof. See Lemma 2.2.1 and [56, Proposition 6.3.1]

The basis functions, associated with individual edges, of the lowest order Nédélec

element space are supported in the union of the elements of Th that have the edge

in common and their tangential components are 1 on the specified edge and 0 on

all other edges.

We also define N0;h, which is the subspace of Nh with a vanishing tangential

component on the boundary of the domain Ω, i.e.,

N0;h(Ω) := Nh(Ω) ∩ H0(curl; Ω).

2.2.2 Commuting Property

Let Sh be the continuous P1 space and S0;h be the subspace of Sh with zero

boundary values. We also denote by Qh the P0 space of constant functions on each

element. Figure 2.1 and Figure 2.2 show the symbolic notation for local degrees of

freedom of each element for 2D and 3D, respectively. We note that Lagrange P1 el-

ements, Raviart-Thomas elements, and Nédélec elements are conforming elements

in H1, H(div), and H(curl), respectively.
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Figure 2.1: P1, Raviart-Thomas, and Nédélec element (2D).

Figure 2.2: P1, Raviart-Thomas, and Nédélec element (3D).

We next define three interpolation operators Ih, ΠND
h , ΠRT

h , and Πh onto Sh,

Nh, Xh, and Qh, respectively. We then have the following commuting diagram.

H1 grad−−−→ H(curl)
curl−−−→ H(div)

div−−−→ L2

yIh

yΠND
h

yΠRT
h

yΠh

Sh
grad−−−→ Nh

curl−−−→ Xh
div−−−→ Qh

(2.3)

2.2.3 Discrete Helmholtz Decompositions

We have the following decompositions for finite element space.

Lemma 2.2.3. (Discrete Helmholtz decompositions) If Ω is convex, then we have

decompositions for the finite element spaces similar to those in the continuous

cases. Thus,

N0;h(Ω) = gradS0;h(Ω) ⊕ N⊥
0;h(Ω),

Nh(Ω) = gradSh(Ω) ⊕ N⊥
h (Ω)
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and

X0;h(Ω) = curlN0;h(Ω) ⊕ X⊥
0;h(Ω)

= curlN⊥
0;h(Ω) ⊕ X⊥

0;h(Ω),

Xh(Ω) = curlNh(Ω) ⊕ X⊥
h (Ω)

= curlN⊥
h (Ω) ⊕ X⊥

h (Ω),

where X⊥
0;h(Ω), N⊥

0;h(Ω), X⊥
h (Ω), and N⊥

h (Ω) are orthogonal complements of the

kernel of the curl or div operator.

Proof. See [32, Theorem 2.36].

Remark 2.2.1. There is a discrete version of the alternative decomposition of

Remark 2.1.1 as well; see [35, Lemma 5.1]. This discrete decomposition has one

additional term compared to the discrete Helmholtz decomposition. This third term

is related to the error of a Scott-Zhang interpolation given in [60].

We have the following lemma, similar to Lemma 2.1.7, for the discrete Helmholtz

decomposition.

Lemma 2.2.4. For u ∈ N⊥
h (Ω) and v ∈ X⊥

h (Ω), we have the following estimates:

‖u‖0;Ω 6 CH‖curl u‖0;Ω, ∀u ∈ N⊥
h (Ω)

and

‖v‖0;Ω 6 CH‖div v‖0;Ω, ∀v ∈ X⊥
h (Ω),

where H is the diameter of Ω.
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Chapter 3

A Model Problem

3.1 Introduction

Because of the physical relevance of H(div) and H(curl), there are many appli-

cations posed in these spaces. For example, the space H(curl) is suitable for elec-

tromagnetism and some formulations of Navier-Stokes equations; see [29, 30, 32].

For H(div), the space usually occurs in mixed formulations of second order el-

liptic equations; see [47, 48, 68]. Moreover, for the incompressible Navier-Stokes

equations, we need solutions of problems posed in H(div) for the sequential reg-

ularization method; see [41]. We will consider a standard H(div) problem in this

dissertation.
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3.2 A Model Problem

We consider the following boundary value problem:

Lu := −grad (α divu) + β u = f in Ω, (3.1)

u · n = 0 on ∂Ω.

Here Ω is a bounded polygon in R
2 or a polyhedron in R

3 and n is the outward

normal vector of its boundary. We assume that f is in (L2(Ω))2 or (L2(Ω))3 and

that α and β are positive L∞(Ω) functions.

Let us also consider the following elliptic equation:

−div
(
β−1∇w

)
+ α−1w = g in Ω, (3.2)

β−1∇w · n = 0 on ∂Ω.

If we set f = ∇(αg), then a mixed formulation of problem (3.2) is equivalent to

the original vector field problem (3.1). We note that u = β−1∇w. Therefore, if we

solve the vector field problem (3.1), we can obtain the gradient of the solution of

(3.2).

In order to see this, we introduce an intermediate variable q := β−1∇w as an

additional unknown. We then have the following mixed variational problem:

∫

Ω

β q · p dx +

∫

Ω

w div p dx = 0, p ∈ H0(div ; Ω),
∫

Ω

div q v dx −
∫

Ω

α−1wv dx = −
∫

Ω

gv dx, v ∈ L2(Ω).

This gives us q = u. We can show that this problem is well-posed; see [14, Section
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II.1.2] and Section 1.3.

Another application is given by a least-squares formulation. Consider the fol-

lowing least-squares functional:

G(u, w; g) := ‖β−1∇w − u‖2
0;Ω + ‖ − div u + α−1w − g‖2

0;Ω. (3.3)

The problem (3.1) arises from (3.3). We can solve (3.2) directly and obtain ∇w

by simply taking the gradient of w. However, we will lose accuracy. In order to

preserve the accuracy, we can use a mixed or least-squares formulation. For more

detail, see [15, 71].

3.3 Variational and Discretized Formulas

We will consider a variational formulation of the original problem:

a(u,v) :=

∫

Ω

α div u divv dx + β u · v dx =

∫

Ω

f · v dx, v ∈ H0(div; Ω). (3.4)

Restricting the bilinear form a(u,v) to the finite element space of the lowest order

Raviart-Thomas elements, we obtain the stiffness matrix A.

We decompose the domain Ω into N nonoverlapping subdomains Ωi of diameter

Hi and then consider triangulations of all the subdomains. Thus, we introduce two

triangulations TH and Th. TH is a shape-regular coarse triangulation and Th is a

refinement of TH which provides a shape-regular and quasi-uniform triangulation

of the individual coarse mesh elements. We assume that each subdomain Ωi is

a union of coarse elements of TH and that the number of such elements forming

each subdomain is uniformly bounded. Moreover, we denote by hi the minimum
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diameter of the triangulation of Ωi.

We next consider extended subregions Ω′
i obtained from Ωi by adding layers

of elements. Thus, ∂Ω′
i does not cut through any elements. We also define the

interface Γ:

Γ =

(
N⋃

i=0

∂Ωi

)
\∂Ω.

Moreover, let Γh be the set of interface nodes.

From now on, we will assume that the coefficients α and β are constant in each

subdomain and that they thus only can have jumps across the interface Γ. We can

then write the problem (3.4) in the following way:

a(u,v) :=

N∑

i=1

αi

∫

Ωi

divu div v dx + βi

∫

Ωi

u · v dx, u,v ∈ H0(div; Ω).

We can also define local energy bilinear forms:

ai(u,u) := αi

∫

Ωi

divu div u dx + βi

∫

Ωi

u · u dx (3.5)

and

ãi(u,u) :=

∫

Ω′

i

α divu divu dx +

∫

Ω′

i

β u · u dx

= αi

∫

Ωi

divu divu dx + βi

∫

Ωi

u · u dx

+
∑

i6=j,Ω′

i∩Ωj 6=φ

αj

∫

Ω′

i∩Ωj

divu div u dx + βj

∫

Ω′

i∩Ωj

u · u dx. (3.6)

We note that for overlapping Schwarz methods, we can obtain the local sub-

problems from the global stiffness matrix A. However, it is sometimes impossible to

obtain the corresponding subproblems and suitable boundary conditions directly
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from A for other type of domain decomposition algorithm such as those of the

Neumann-Neumann and FETI families. We need a special care to consider those

type of methods.
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Chapter 4

Domain Decomposition Methods

4.1 Introduction

The very first domain decomposition method was considered by Schwarz in

1870. The method was designed to solve elliptic boundary value problems on the

union of two subdomains. Even though it is not a numerical scheme, the classical

alternating Schwarz method gives us good insight.

One-level additive Schwarz methods were originally introduced in [49, 51]. For

elliptic PDEs, the solution on the entire domain depends on the right hand side

and the boundary values. The information of the right hand side at a point can

be transmitted to all points in the domain only by passing through neighboring

subdomains. Hence, the number of subdomains will effect the efficiency of any

one-level methods. For more detail, see [61, 67].

In the domain decomposition theory, methods with more than one level can

often provide good scalability, i.e., have a convergence rate which depends only

on the size of the subdomain problems and not on any other parameters, e.g., the
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number of subdomains; scalability can be obtained by introducing a coarse global

problem. For more detail for two-level methods, see [22, 24,25].

The other type of domain decomposition methods, iterative substructuring

methods, have also been considered. The traditional substructuring methods con-

struct the Schur complement system and solve it by a direct method. Iterative sub-

structuring methods, also known as nonoverlapping methods, are iterative methods

for solving the Schur complement system. These methods were first developed by

Bramble, Pasciak, and Schatz; see [8–11]. In [23], Dryja, Smith, and Widlund an-

alyzed iterative substructuring methods by using an abstract Schwarz framework

and many variants of iterative substructuring methods were developed. Among

them, Neumann-Neumann type and FETI type are the most popular and have

been widely used for many problems. Neumann-Neumann type algorithms were

first introduced in [31] and extended to BNN methods with an additional level;

see [26,37]. One-level FETI methods, which in fact implicitly include a coarse com-

ponent, were introduced in [28] and analyzed in [45]. Later, FETI-DP methods

were introduced by Farhat, Lesoinne, Le Tallec, Pierson, and Rixen with coarse-

level primal constraints; see [27]. A theoretical result was first provided by Mandel

and Tezaur in [46]. As we mentioned earlier, the BDDC methods were introduced

by Dohrmann and analyzed by Dohrmann and Mandel; see [18, 43].

In this chapter, we introduce two-level overlapping Schwarz methods and BDDC

methods. We also consider the abstract Schwarz analysis, which is very helpful in

developing the domain decomposition theory.
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4.2 Overlapping Schwarz Methods

We consider a two-level overlapping Schwarz algorithm to solve the linear sys-

tem Au = f . The additive overlapping Schwarz preconditioner usually has the

following form:

P−1 = RT
0 A−1

0 R0 +

N∑

i=1

RT
i A−1

i Ri, (4.1)

where A0 is the matrix of the global coarse problem, the Ai’s are obtained from local

subproblems related to the subdomains, and R0 and Ri’s are restriction operators

to the coarse and local spaces, respectively; see [61, 67] for more details.

We introduce certain assumptions for our overlapping Schwarz method.

Assumption 4.2.1. For i = 1, · · · , N , there exists δi > 0, such that, if x belongs

to Ω′
i, then

dist(x, ∂Ω′
j\∂Ω) > δi,

for a suitable j = j(x), possibly equal to i, with x ∈ Ω′
j.

Assumption 4.2.2. (Finite Covering) The partition {Ω′
i} can be colored using a

finite number of N c colors, in such a way that subregions with the same color are

disjoint.

4.3 Abstract Schwarz Analysis

We introduce the abstract Schwarz framework in this section. It is frequently

used for analyzing domain decomposition methods.

Let V be a finite dimensional space. We consider the following symmetric,
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positive definite bilinear form:

a(·, ·) : V × V → R (4.2)

and the following variational problem:

Find u ∈ V such that

a(u,v) = f(v), ∀v ∈ V, (4.3)

where f is a bounded linear functional on V . We next consider auxiliary spaces

V0, V1, · · · , VN and extension operators

RT
i : Vi → V, i = 0, · · · , N. (4.4)

We can then consider the following decomposition:

V = RT
0 V0 +

N∑

i=0

RT
i Vi. (4.5)

The space V0 is associated with a coarse problem and each Vi is related to an

extended overlapping subdomain Ω′
i. We note that the decomposition (4.5) is not

necessarily a direct sum of the spaces. We define the Schwarz operators Pi by

Pi := RT
i A−1

i RiA, i = 0, · · · , N (4.6)

and the additive Schwarz operator by

Pad :=

N∑

i=0

Pi = P−1A. (4.7)
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We then have the following lemmas for the additive Schwarz operator.

Lemma 4.3.1. If for all u ∈ V a representation, u =
∑N

i=0 ui, can be found, such

that
N∑

i=0

a(ui,ui) 6 C2
0a(u,u), (4.8)

then

a(Padu,u) > C−2
0 a(u,u), (4.9)

for all u ∈ V

Lemma 4.3.2. The largest eigenvalue of the additive operator Pad is bounded from

above by (Nc + 1), where Nc is defined in Assumption 4.2.2.

By Lemma 4.3.1 and 4.3.2, the condition number of the additive Schwarz op-

erator is bounded by C2
0 (Nc + 1). For more detail, see [67, Chapter 2].

4.4 Some Useful Operators

Let W (i) be the space of the lowest order Raviart-Thomas finite elements on

Ωi with a zero normal component on ∂Ω ∩ ∂Ωi. We decompose W (i) into two

parts, the interior part and the interface part and denote the corresponding spaces

by W
(i)
I and W

(i)
Γ , respectively. Moreover, the interface part W

(i)
Γ is decomposed

into a primal space W
(i)
Π and a dual space W

(i)
∆ . Hence, we obtain the following

decomposition:

W (i) = W
(i)
I ⊕ W

(i)
Γ = W

(i)
I ⊕ W

(i)
∆ ⊕ W

(i)
Π .
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Furthermore, we use the following product spaces:

W :=
N∏

i=1

W (i), WI :=
N∏

i=1

W
(i)
I ,

WΓ :=
N∏

i=1

W
(i)
Γ , W∆ :=

N∏

i=1

W
(i)
∆ ,

and

WΠ :=
N∏

i=1

W
(i)
Π .

We then have

W = WI ⊕ WΓ = WI ⊕ W∆ ⊕ WΠ.

In general, the functions in WΓ have discontinuous normal components across the

interface while those of the finite element solutions are continuous. We denote the

space with continuous normal components by ŴΓ. We next consider a space W̃Γ

as well. The functions in W̃Γ satisfy the primal constraints. By using the above

definitions, we can decompose ŴΓ and W̃Γ into Ŵ∆ ⊕ ŴΠ and W∆ ⊕ ŴΠ, respec-

tively, where Ŵ∆ is the continuous dual variable space and ŴΠ is the continuous

primal variable space. We obtain the local stiffness matrix A(i) by restricting to

the finite element space W (i):

A(i)




u
(i)
I

u
(i)
∆

u
(i)
Π




=




A
(i)
II A

(i)
I∆ A

(i)
IΠ

A
(i)
∆I A

(i)
∆∆ A

(i)
∆Π

A
(i)
ΠI A

(i)
Π∆ A

(i)
ΠΠ







u
(i)
I

u
(i)
∆

u
(i)
Π




=




f
(i)
I

f
(i)
∆

f
(i)
Π




. (4.10)
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We obtain the global problem by assembling the local subdomain problems:

A




uI

u∆

uΠ




=




AII AI∆ AIΠ

A∆I A∆∆ A∆Π

AΠI AΠ∆ AΠΠ







uI

u∆

uΠ




=




fI

f∆

fΠ




,

where uI ∈ WI , u∆ ∈ Ŵ∆ , and uΠ ∈ ŴΠ.

We now define several operators which perform restrictions, extensions, scal-

ings, and averages between different spaces. We first consider the restriction op-

erators. R
(i)
Γ maps the space ŴΓ to the subdomain subspace W

(i)
Γ . Similarly, we

can define R
(i)

Γ : W̃Γ → W
(i)
Γ . Moreover, R

(i)
∆ : W∆ → W

(i)
∆ and R

(i)
Π : ŴΠ → W

(i)
Π

map global interface vectors on Γ to their components on Γi := ∂Ωi ∩ Γ. RΓ∆

and RΓΠ are the restriction operators from the intermediate space W̃Γ to W∆ and

ŴΠ, respectively. RΓ and RΓ are the direct sums of the R
(i)
Γ and R

(i)

Γ , respectively.

Furthermore, R̃Γ : ŴΓ → W̃Γ is the direct sum of RΓΠ and R
(i)
∆ RΓ∆

We now define the scaling operators. A scaling factor δ†i (x) is defined by

δ†i (x) :=
χγ

i (x)∑
j∈Nx

χγ
j (x)

, x ∈ Γh ∩ ∂Ωi,h, (4.11)

for some γ ∈ [
1

2
,∞), where Nx is the set of indices j of the subdomains such that

x ∈ ∂Ωj,h and χj(x) is a function of the coefficients α(x) and β(x) of (3.4) at

x ∈ Ωj . We can easily check that
∑

δ†i ≡ 1.

We note that there is only one non-zero element in each row of R
(i)
Γ and R

(i)
∆

associated with a coarse edge or face. We then define the scaling operators R
(i)
D,Γ

and R
(i)
D,∆ by multiplying each row of R

(i)
Γ and R

(i)
∆ by the scaling factor δ†i (x). We

define similarly RD,Γ, RD,∆, and R̃D,Γ. RD,Γ and RD,∆ that are the direct sums
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of R
(i)
D,Γ and R

(i)
D,∆, respectively. R̃D,Γ is the direct sum of RΓΠ and RD,ΓRΓ∆. We

note that

RT
ΓRD,Γ = RT

D,ΓRΓ = I (4.12)

and

R̃T
Γ R̃D,Γ = R̃T

D,ΓR̃Γ = I. (4.13)

We consider the matrix B∆, which is defined in terms of subdomain operators

B
(i)
∆ :

B∆ =
[
B

(1)
∆ , B

(2)
∆ , · · · , B

(N)
∆

]
. (4.14)

Each B
(i)
∆ is constructed from {−1, 0, 1} and B∆ expresses the following continuity

constraints across the interface:

B∆u∆ =

N∑

i=1

B
(i)
∆ u

(i)
∆ = 0. (4.15)

We define B
(i)
D,∆ in the following way: each row of B∆ with a non-zero entry

corresponds to a point on Γi∩Γj . We obtain B
(i)
D,∆ by multiplying such a row of B∆

by the scaling factor δ†j (x) in (4.11). Furthermore, BΓ is defined by BΓ := B∆RΓ∆

and let BD,∆RΓ∆ be denoted by BD,Γ.

Finally, we introduce an average operator ED : W̃Γ → ŴΓ defined by

ED := R̃ΓR̃T
D,Γ. (4.16)

This operator provides a weighted average across the interface Γ. Moreover, we
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define a jump operator as follows:

PD := BT
D,ΓBΓ. (4.17)

We have the following properties of the average and jump operators.

Lemma 4.4.1. We have the following identities:

ED + PD = I, E2
D = ED, P 2

D = PD, and EDPD = PDED = 0.

Proof. See [40, Lemma 1].

Lemma 4.4.2. For all uΓ ∈ ŴΓ,

EDuΓ = uΓ. (4.18)

4.5 Schur Complements and Discrete Harmonic

Extensions

4.5.1 Reduced Interface Problem

We consider the following local stiffness matrix:

A(i) =




A
(i)
II A

(i)
IΓ

A
(i)
ΓI A

(i)
ΓΓ


 , i = 1, · · · , N. (4.19)

37



We first eliminate all interior unknowns locally by using direct solvers. After this

step, we obtain the local Schur complement:

S(i) = A
(i)
ΓΓ − A

(i)
ΓIA

(i)−1
II A

(i)
IΓ. (4.20)

Moreover, the global Schur complement S is given by the direct sum of S(i), i.e.,

S :=




S(1)

S(2)

. . .

S(N)




. (4.21)

By using the local Schur complements, we can build a reduced global interface

problem given by

ŜΓuΓ = gΓ, (4.22)

where

ŜΓ =
N∑

i=1

R
(i)T
Γ S(i)R

(i)
Γ

and

gΓ =
N∑

i=1

R
(i)T
Γ








f∆

fΠ


−




A
(i)
∆I

A
(i)
ΠI


A

(i)−1
II f

(i)
I





.

We note that once u
(i)
Γ is available, we can compute the interior values u

(i)
I by

solving the following local equation:

A
(i)
II u

(i)
I = f

(i)
I − A

(i)
IΓu

(i)
Γ .
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We will consider a preconditioner to solve the interface problem (4.22).

4.5.2 Discrete Harmonic Extensions

The space of discrete harmonic extensions, which are directly related to the

Schur complements, is an essential subspace for domain decomposition methods,

especially for iterative substructuring methods. Let us consider the following local

linear system:

A
(i)
II u

(i)
I + A

(i)
IΓu

(i)
Γ = 0. (4.23)

If u
(i)
Γ is given, u

(i)
I is completely determined by u

(i)
Γ . We call u(i) the discrete

harmonic function on Ωi with the given interface value u
(i)
Γ and write u(i) as u(i) :=

Hi(u
(i)
Γ ). We also denote the piecewise discrete harmonic extension of uΓ by H(uΓ).

We have the following minimal property of discrete harmonic functions.

Lemma 4.5.1. Let u
(i)
Γ be the restriction of a finite element function to ∂Ωi ∩ Γ.

Then, the discrete harmonic extension u(i) = Hi(u
(i)
Γ ) of u

(i)
Γ into Ωi satisfies

u(i)T A(i)u(i) = min
v(i)|∂Ωi∩Γ=u

(i)
Γ

v(i)T A(i)v(i) (4.24)

and

u
(i)
Γ

T
S(i)u

(i)
Γ = u(i)T A(i)u(i). (4.25)

Similarly, if uΓ is the restriction of a finite element function to Γ, the piecewise

discrete harmonic extension u = H(uΓ) of uΓ into the interior of the subdomains

satisfies

uTAu = min
v|Γ=uΓ

vT Av (4.26)
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and

uT
ΓSuΓ = uTAu. (4.27)

We note that we can work with the discrete harmonic extensions instead of

functions defined on the interface Γ.

4.6 BDDC Methods

4.6.1 The Algorithm

We follow the description of the algorithm as introduced in [40, Section 4]. We

first present a change of variables to express the primal constraints. After this

process, we will have common edge or face averages across the interface, i.e., these

averages will serve as primal variables.

Consider the unknowns corresponding to the degrees of freedom on an edge or

a face Fij and denote them by u1
Fij

, u2
Fij

, · · · , um
Fij

, · · · , ul
Fij

. We note that u(i) is

written in the following form:

u(i) =
[
u

(i)
I

T
, u

(i)

Γ

T
, u1

Fij
, u2

Fij
, · · · , um

Fij
, · · · , ul

Fij

]T
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with Γ = (Γ ∩ ∂Ωi) \Fij . We then consider the local linear systems:

A(i)u(i) =




A
(i)
II A

(i)

IΓ
A

(i)
I1 · · · A

(i)
Im · · · A

(i)
Il

A
(i)

ΓI
A

(i)

ΓΓ
A

(i)

Γ1
· · · A

(i)

Γm
· · · A

(i)

Γl

A
(i)
1I A

(i)

1Γ
A

(i)
11 · · · A

(i)
1m · · · A

(i)
1l

...
...

...
. . .

...
. . .

...

A
(i)
mI A

(i)

mΓ
A

(i)
m1 · · · A

(i)
mm · · · A

(i)
ml

...
...

...
. . .

...
. . .

...

A
(i)
lI A

(i)

lΓ
A

(i)
l1 · · · A

(i)
lm · · · A

(i)
ll







u
(i)
I

u
(i)

Γ

u1
Fij

...

um
Fij

...

ul
Fij




=




f
(i)
I

f
(i)

Γ

f 1
Fij

...

fm
Fij

...

f l
Fij




.

We define T
(i)
Fij

by:

T
(i)
Fij

:=




1 1

. . .
...

−1 · · · 1 · · · −1

...
. . .

1 1




.

We now perform a change of variables:
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u1
Fij

...

um
Fij

...

ul
Fij




= T
(i)
Fij




û1
Fij

...

ûm
Fij

...

ûl
Fij




=




1 1

. . .
...

−1 · · · 1 · · · −1

...
. . .

1 1







û1
Fij

...

ûm
Fij

...

ûl
Fij




=




1

...

1

...

1




ûm
Fij

+




û1
Fij

...

−û1
Fij

− · · · − ûm−1
Fij

− ûm+1
Fij

− · · · − ûl
Fij

...

ûl
Fij




.

The transformed stiffness matrix is given by

T (i)T




A
(i)
II A

(i)
IΓ

A
(i)
ΓI A

(i)
ΓΓ


T (i), (4.28)

where T (i) is a block diagonal matrix of the following form:

T (i) =




I

T
(i)
Γ


 .

We note that T
(i)
Γ is a direct sum of matrices and each block matrix consists of the

matrix T
(i)
Fij

associated with the edge or face Fij .

We also note that this change of variables is a local procedure which can be

performed edge by edge or face by face. From now on, we assume that the variables
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have been changed. We consider the partially assembled stiffness matrix Ã given

by

Ã =




A
(1)
II A

(1)
I∆ A

(1)
IΠR

(1)
Π

A
(1)
∆I A

(1)
∆∆ A

(1)
∆ΠR

(1)
Π

. . .
...

A
(N)
II A

(N)
I∆ A

(N)
IΠ R

(N)
Π

A
(N)
∆I A

(N)
∆∆ A

(1)
∆ΠR

(1)
Π

R
(1)T
Π A

(1)
ΠI R

(1)T
Π A

(1)
Π∆ · · · R

(N)T
Π A

(N)
ΠI R

(N)T
Π A

(N)
Π∆

∑N
i=1 R

(i)T
Π A

(i)
ΠΠR

(i)
Π




.

We can now define a different Schur complement S̃Γ. By eliminating the interior

residuals, we obtain the following linear system which defines S̃Γ:

Ã




u
(1)
I

u
(1)
∆

...

u
(N)
I

u
(N)
∆

uΠ




=




0

R
(1)
∆ RΓ∆S̃ΓuΓ

...

0

R
(N)
∆ RΓ∆S̃ΓuΓ

RΓΠS̃ΓuΓ




.

We note that S̃Γ is a partially assembled Schur complement. Hence, we need

to further assemble it to obtain the fully assembled Schur complement ŜΓ. By

using restriction and extension operators, we find that ŜΓ = R̃T
Γ S̃ΓR̃Γ. We can

then rewrite the interface problem (4.22) as follows:

R̃T
Γ S̃ΓR̃ΓuΓ = gΓ.
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The BDDC preconditioner has the following form:

M−1 = R̃T
D,ΓS̃−1

Γ R̃D,Γ,

where

S̃−1
Γ := RT

Γ∆




N∑

i=1

[
0 R

(i)T
∆

]



A
(i)
II A

(i)
I∆

A
(i)
∆I A

(i)
∆∆




−1 


0

R
(i)
∆





RΓ∆ + ΦS−1

ΠΠΦT

(4.29)

with

Φ := RT
ΓΠ − RT

Γ∆

N∑

i=1

[
0 R

(i)T
∆

]



A
(i)
II A

(i)
I∆

A
(i)
∆I A

(i)
∆∆




−1 


A
(i)T
ΠI

A
(i)T
Π∆


R

(i)
Π

and

SΠΠ :=

N∑

i=1

R
(i)T
Π


A

(i)
ΠΠ −

[
A

(i)
ΠI A

(i)
Π∆

]



A
(i)
II A

(i)
I∆

A
(i)
∆I A

(i)
∆∆




−1 


A
(i)T
ΠI

A
(i)T
Π∆





R

(i)
Π .

The first term of (4.29) is related to the local problems and the second to the

coarse-level problem related to the primal constraints Π. We obtain the following

preconditioned linear system:

M−1ŜΓuΓ = R̃T
D,ΓS̃

−1
Γ R̃D,ΓR̃T

Γ S̃ΓR̃ΓuΓ = R̃T
D,ΓS̃−1

Γ R̃D,ΓgΓ = M−1gΓ (4.30)

We use the preconditioned conjugate gradient method to solve the linear system

(4.30).
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4.6.2 Convergence Analysis

We now derive an upper and a lower bound of the eigenvalues of the precondi-

tioned linear system (4.30)

Lemma 4.6.1. Let M−1 = R̃T
D,ΓS̃−1

Γ R̃D,Γ. Then, ∀uΓ ∈ ŴΓ, we have the following

estimate:

uT
ΓMuΓ 6 uT

Γ ŜΓuΓ

Proof. We will follow [44, Theorem 25]; see also [39, Theorem 1] and [69, Theorem

6.1]. Let wΓ := MuΓ = (R̃T
D,ΓS̃−1

Γ R̃D,Γ)−1uΓ. We note that wΓ ∈ ŴΓ. We use the

property (4.13) and a generalized Cauchy-Schwarz inequality to obtain

uT
ΓMuΓ = uT

Γ(R̃T
D,ΓS̃−1

Γ R̃D,Γ)−1uΓ = uT
ΓwΓ (4.31)

= uT
ΓR̃T

Γ S̃ΓS̃−1
Γ R̃D,ΓwΓ =

〈
R̃ΓuΓ, S̃−1

Γ R̃D,ΓwΓ

〉
eSΓ

(4.32)

6

〈
R̃ΓuΓ, R̃ΓuΓ

〉 1
2

eSΓ

〈
S̃−1

Γ R̃D,ΓwΓ, S̃−1
Γ R̃D,ΓwΓ

〉1
2

eSΓ

(4.33)

=
(
uT

ΓR̃T
Γ S̃ΓR̃ΓuΓ

) 1
2
(
wT

Γ R̃T
D,ΓS̃−1

Γ S̃ΓS̃−1
Γ R̃D,ΓwΓ

) 1
2

=
(
uT

Γ ŜΓuΓ

) 1
2
(
uT

ΓMuΓ

) 1
2

.

Hence, we obtain

uT
ΓMuΓ 6 uT

Γ ŜΓuΓ.

We now obtain an upper bound of the eigenvalues of the generalized eigenvalue

problem ŜuΓ = λMuΓ.

Lemma 4.6.2. Let M−1 = R̃T
D,ΓS̃−1

Γ R̃D,Γ. We also assume that ‖EDuΓ‖2
eSΓ

6
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ω2‖uΓ‖2
eSΓ

, for all uΓ ∈ ŴΓ. Then, we have the following estimate:

uT
Γ ŜΓuΓ 6 ω2uT

ΓMuΓ.

Proof. We will also follow the idea in [44, Theorem 25]; see also [39, Theorem 1]

and [69, Theorem 6.1]. Let wΓ := MuΓ = (R̃T
D,ΓS̃−1

Γ R̃D,Γ)−1uΓ. We note that

wΓ ∈ ŴΓ. By the property (4.13) and a generalized Cauchy-Schwarz inequality,

we have

uT
Γ ŜΓuΓ = uT

ΓR̃T
Γ S̃ΓR̃ΓuΓ = uT

ΓR̃T
Γ S̃ΓR̃ΓR̃T

D,ΓS̃−1
Γ R̃D,ΓwΓ

=
〈
R̃ΓuΓ, EDS̃−1

Γ R̃D,ΓwΓ

〉
eSΓ

6

〈
R̃ΓuΓ, R̃ΓuΓ

〉 1
2

eSΓ

〈
EDS̃−1

Γ R̃D,ΓwΓ, EDS̃−1
Γ R̃D,ΓwΓ

〉 1
2

eSΓ

6 C
〈
R̃ΓuΓ, R̃ΓuΓ

〉 1
2

eSΓ

ω
〈
S̃−1

Γ R̃D,ΓwΓ, S̃−1
Γ R̃D,ΓwΓ

〉 1
2

eSΓ

= ω
(
uT

ΓR̃T
Γ S̃ΓR̃ΓuΓ

) 1
2
(
wT

Γ R̃T
D,ΓS̃−1

Γ S̃ΓS̃−1
Γ R̃D,ΓwΓ

) 1
2

= ω
(
uT

Γ ŜΓuΓ

) 1
2
(
uT

ΓMuΓ

) 1
2

Therefore, we obtain

uT
Γ ŜΓuΓ 6 ω2uT

ΓMuΓ.
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Chapter 5

An Overlapping Schwarz

Algorithm for Raviart-Thomas

Vector Fields

5.1 Introduction

The purpose of this chapter is to develop an overlapping Schwarz method for

the model problem (3.1) discretized by the Raviart-Thomas elements. As we men-

tioned earlier in this thesis, many iterative substructuring methods have been

suggested for discontinuous coefficient cases. However, there has been little sup-

porting theory for the overlapping Schwarz methods in case of coefficients which

have jumps. In order to deal with this difficulty, we use the coarse space techniques

of [19,20] developed for almost incompressible elasticity. Similar alternative coarse

space methods have also been developed for Reissner-Mindlin plates problems;

see [38].
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The rest of this chapter is organized as follows. We describe the algorithm in

Section 5.2. In Section 5.3, we introduce some useful technical tools and present

our main result. Finally, Section 5.4 contains supporting numerical experiments.

5.2 Overlapping Schwarz Algorithm

5.2.1 The Traditional Coarse Component

We focus on the restriction operator R0 onto the coarse space. The restriction

operator is obtained by the interpolation from the subspaces defining the coarse

component to the global space. More precisely, R0 are exactly the coefficients

obtained by interpolating the traditional coarse basis functions onto the fine mesh.

5.2.2 An Alternative Coarse Component

Instead of the conventional coarse basis, we will use energy-minimal, discrete

harmonic extensions to define the new coarse basis functions. The coarse part of

the preconditioner is of the form RT
0 A−1

0 R0 and we need to redefine R0 and A0.

For each face (or edge) Fij, a subset of the interface Γ, we can define a submatrix

of the stiffness matrix A. It corresponds to the two subdomains which have Fij in

common: 


A
(i)
II 0 A

(i)
IFij

0 A
(j)
II A

(j)
IFij

A
(i)
FijI A

(j)
FijI AFijFij




.

Let ũij := [u
(i)T
I u

(j)T
I uT

Fij
]T , where ũij is the discrete harmonic extension, i.e.,

A
(i)
II u

(i)
I + A

(i)
IFij

uFij
= 0 and A

(j)
II u

(j)
I + A

(j)
IFij

uFij
= 0; cf. [67, Chapter 4.4]. We
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can write ũij as ũij = [(EiuFij
)T (EjuFij

)T uT
Fij

]T where Ei := −A
(i)
II

−1
A

(i)
IFij

and

Ej := −A
(j)
II

−1
A

(j)
IFij

. Also, let uij be the extension of ũij to a global space obtained

by an extension by zero. We note that the vector uij is completely determined by

uFij
.

We choose uT
Fij

= [1, 1, · · · , 1] to define the vector uij corresponding to a coarse

basis function for the face (or edge) Fij. We can now define A0 and R0, after

introducing a suitable global indexing, by

(A0)mn := uT
ijAukl,

where Fij and Fkl are the m-th and n-th face of Γ, respectively. Furthermore, let

R0 :=




...

− uT
ij −
...




.

5.2.3 Local Components

For the local components, each Ri is a rectangular matrix with elements equal

to 0 or 1. Each Ri just provides the indices relevant to an individual extended

subdomain Ω′
i. This means that each Ri extracts the degrees of freedom of Ω′

i, the

extended subregion obtained from Ωi by adding layers of elements. We can then

define a submatrix of the original stiffness matrix A by the following formula:

Ai = RiART
i .
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Thus, Ai is just the principal minor of the original stiffness matrix A defined by

Ri. By using these matrices, we can build the local part
∑N

i=1 RT
i A−1

i Ri of the

preconditioner.

5.2.4 The Additive Schwarz Operator

We now construct our preconditioner. Let Pi = RT
i A−1

i RiA. The precondi-

tioned linear operator has the following form:

Pad =
N∑

i=0

Pi =
N∑

i=0

RT
i A−1

i RiA.

When we apply the operator Pad to a vector, the action of A−1
0 and A−1

i can be

performed by solving a global coarse problem and a local subproblem, respectively.

By using a suitable indexing, we can perform most work of the preconditioned

conjugate gradient method locally and in parallel except for the work of the coarse

part and the communication between subdomains; see [61], [67, Chapter 3].

5.2.5 Remarks on the Implementation

We rewrite the preconditioned conjugate gradient method algorithm in Fig-

ure 5.1. We use (4.1) as a preconditioner. We note that all the local subproblem

can be solved in parallel.

We remark that Ri does not appear in practical implementation. We can perform

the computation Ri times a vector by using suitable indexing.
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Initialize:

r0 := f − Au0

z0 :=
(
RT

0 A−1
0 R0 +

∑N
i=1 RT

i A−1
i Ri

)
r0

p0 := z0

Iterate k = 0, 1, · · · until convergence

αk := rT
k zk/p

T
k Apk

xk+1 := xk + αkpk

rk+1 := rk − αkApk

zk+1 :=
(
RT

0 A−1
0 R0 +

∑N
i=1 RT

i A−1
i Ri

)
rk+1

βk := zT
k+1rk+1/z

T
k rk

pk+1 := zk+1 + βkpk

Figure 5.1: Implementation of the two-level overlapping Schwarz method as a
preconditioned conjugate gradient method.

5.3 Technical Tools and the Main Result

5.3.1 Technical Tools

We will now consider the 3D case only; the arguments are quite similar for 2D.

The condition µ ∈ F0;h(∂Ωi), which means that
∫

∂Ωi
µds = 0, is very important;

cf. [19, 47, 68]. This means that it is important to find a suitable v which makes

the flux of u − v zero across ∂Ωi. To make this possible let us consider the coarse

interpolation operator ΠRT
H onto the Raviart-Thomas space of the coarse mesh.

For a given F , a coarse face contained in the interface Γ, we define the degree of

freedom by

λF (ΠRT
H u) :=

1

|F |

∫

F

u · nds.
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Trivially, ∫

F

(u− ΠRT
H u) · n ds = 0.

We will need some estimates for ΠRT
H .

Lemma 5.3.1. (Stability estimate for the coarse interpolation) For all u ∈ Xh,

we have the following estimates:

‖div (ΠRT
H u)‖2

0;Ωi
6 ‖div u‖2

0;Ωi
(5.1)

and

‖ΠRT
H u‖2

0;Ωi
6 C((1 + log

Hi

hi

)‖u‖2
0;Ωi

+ H2
i ‖div u‖2

0;Ωi
). (5.2)

The constant C depends only on the aspect ratios of the elements of TH and the

elements of Th.

Proof. The first estimate (5.1) follows by the commuting property (2.3):

div (ΠRT
H u) = ΠH(div u),

where ΠH is the L2-projection onto the space of piecewise constant on the coarse

mesh; see Section 2.2.2 and [7, p.150 5.3].

For the second estimate (5.2), we use Green’s identity and the face basis func-

tion; see [23], [67, Lemma 4.25]. We also use the fact that the L2-norms of functions

in the Raviart-Thomas finite element space can be bounded from above and below

by a weighted l2-norm of their degrees of freedom; see Lemma 2.2.1. For details,

see [70, Lemma 2.4] and [71, Lemma 4.1].

Lemma 5.3.2. Let u ∈ Nh, v ∈ Xh, and θi be a continuous, piecewise linear
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scalar function supported in Ωi. Then,

‖ΠND
h (θiu)‖2

0;Ωi
6 C‖θiu‖2

0;Ωi
,

‖curl (ΠND
h (θiu))‖2

0;Ωi
6 C‖curl (θiu)‖2

0;Ωi
,

‖ΠRT
h (θiv)‖2

0;Ωi
6 C‖θiv‖2

0;Ωi
,

and

‖div (ΠRT
h (θiv))‖2

0;Ωi
6 C‖div (θiv)‖2

0;Ωi
,

where ΠND
h and ΠRT

h are the interpolation operators onto the lowest order Nédélec

finite element space and the lowest order Raviart-Thomas finite element space,

respectively.

Proof. We use error estimates of the operators ΠND
h and ΠRT

h and inverse inequal-

ities; see [7, Lemma 5.5]. For more details, see [64, Lemma 4.3] and [67, Lemma

10.8 and Lemma 10.13].

Definition 5.3.1. (Projection Operators) Let Θ⊥
curl and Θ⊥

div be the orthogonal pro-

jections from H(curl ; Ω) onto H⊥(curl ; Ω) and from H(div ; Ω) onto H⊥(div ; Ω),

respectively. We next define a projection P ND
h from H(curl ; Ω) onto V +

ND and P RT
h

from H(div ; Ω) onto V +
RT , with V +

ND = Θ⊥
curl(N

⊥
h ) and V +

RT = Θ⊥
div(X

⊥
h ).

Remark 5.3.1. We can easily check that curl (P ND
h u⊥) = curl (Θ⊥

curlu
⊥) =

curl u⊥ and div (P RT
h v⊥) = div (Θ⊥

divv
⊥) = divv⊥ whenever u⊥ ∈ N⊥

h and

v⊥ ∈ X⊥
h .

Lemma 5.3.3. Let Ωi be convex. Then, we have the following error estimates:

‖u⊥
h − P ND

h u⊥
h ‖0;Ωi

6 Chi‖curl u⊥
h ‖0;Ωi

, ∀u⊥
h ∈ N⊥

h (Ωi)
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and

‖v⊥
h − P RT

h v⊥
h ‖0;Ωi

6 Chi‖div v⊥
h ‖0;Ωi

, ∀v⊥
h ∈ X⊥

h (Ωi),

with C independent of hi, u⊥
h , and v⊥

h .

Proof. We can use almost the same idea as in [64, Lemma 3.3] and [34, Lemma

4.2, 4.3 and 4.4].

We recall that all subdomains are convex.

Lemma 5.3.4. Let Ωi,δi
⊂ Ωi be the set of all points which are within a distance

δi of the boundary of Ωi. Then, there exists a constant C such that ∀u⊥ ∈ N⊥
h and

∀v⊥ ∈ X⊥
h ,

1

δ2
i

‖u⊥‖2
0;Ωi∩Ωi,δi

6 C(1 +
Hi

δi
)‖curl u⊥‖2

0;Ωi

and

1

δ2
i

‖v⊥‖2
0;Ωi∩Ωi,δi

6 C(1 +
Hi

δi
)‖div v⊥‖2

0;Ωi
.

Similarly, for a subdomain Ωj which has a face in common with Ωi, we have

1

δ2
i

‖u⊥‖2
0;Ω′

i∩Ωj
6 C(1 +

Hi

δi

)‖curl u⊥‖2
0;Ωj

and

1

δ2
i

‖v⊥‖2
0;Ω′

i∩Ωj
6 C(1 +

Hi

δi
)‖div v⊥‖2

0;Ωj
.

Moreover, for ∀m ∈ Ijl, where Ijl is the set of indices of the subdomains which

have an edge Ejl common with Ωi and Ψjl :=
⋂

m∈Ijl
Ω′

m , we have

1

δ2
i

‖u⊥‖2
0;Ψjl∩Ωm

6 C(1 +
Hi

δi

)‖curl u⊥‖2
0;Ωm

,
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and

1

δ2
i

‖v⊥‖2
0;Ψjl∩Ωm

6 C(1 +
Hi

δi
)‖div v⊥‖2

0;Ωm
.

Proof. By the triangle inequality,

‖u⊥‖2
0;Ωi∩Ωi,δi

6 2(‖u⊥ − P ND
h u⊥‖2

0;Ωi∩Ωi,δi
+ ‖P ND

h u⊥‖2
0;Ωi∩Ωi,δi

). (5.3)

Consider the first term. By Lemma 5.3.3,

1

δ2
i

‖u⊥ − P ND
h u⊥‖2

0;Ωi∩Ωi,δi
6

1

δ2
i

‖u⊥ − P ND
h u⊥‖2

0;Ωi
6

h2
i

δ2
i

‖curl u⊥‖2
0;Ωi

.

By the fact that
hi

δi

is bounded by 1, the first term of (5.3) is bounded by

‖curl u⊥‖2
0;Ωi

. For the second term, we will use an argument similar to that

of [67, Lemma 3.10]. By a Friedrichs inequality, Lemma 2.1.8, and Remark 5.3.1,

we have

1

δ2
i

‖P ND
h u⊥‖2

0;Ωi∩Ωi,δi
6 C(|P ND

h u⊥|21;Ωi∩Ωi,δi
+

1

δi

‖P ND
h u⊥‖2

0;∂Ωi
)

6 C(|P ND
h u⊥|21;Ωi

+
1

δi
‖P ND

h u⊥‖2
0;∂Ωi

)

6 C(‖curlP ND
h u⊥‖2

0;Ωi
+

1

δi
‖P ND

h u⊥‖2
0;∂Ωi

)

= C(‖curl u⊥‖2
0;Ωi

+
1

δi
‖P ND

h u⊥‖2
0;∂Ωi

).

By a trace estimate and by combining [67, Lemma A.6], the embedding L2(∂Ωi) ⊂
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H
1
2 (∂Ωi) with scaling, Lemma 2.1.7, Lemma 2.1.8, and Remark 5.3.1, we find that

1

δi
‖P ND

h u⊥‖2
0;∂Ωi

6 C(
Hi

δi
|P ND

h u⊥|21;Ωi
+

1

δiHi
‖P ND

h u⊥‖2
0;Ωi

)

6 C(
Hi

δi
‖curlP ND

h u⊥‖2
0;Ωi

+
1

δiHi
‖P ND

h u⊥‖2
0;Ωi

)

6 C(
Hi

δi
‖curlP ND

h u⊥‖2
0;Ωi

+
1

δiHi
H2

i ‖curlP ND
h u⊥‖2

0;Ωi
)

6 C
Hi

δi
‖curlP ND

h u⊥‖2
0;Ωi

= C
Hi

δi
‖curl u⊥‖2

0;Ωi
.

Therefore,

1

δ2
i

‖u⊥‖2
0;Ωi∩Ωi,δi

6 C(1 +
Hi

δi
)‖curl u⊥‖2

0;Ωi
.

We can use exactly the same idea for all the other estimates.

5.3.2 Stability Estimates

We consider the coarse part first.

Lemma 5.3.5. (Coarse Space Estimate) Let u0 be the discrete harmonic extension

of the given interface values of ΠRT
H u. Then,

a(u0,u0) 6 C

(
max
16i6N

(1 + log
Hi

hi

)

)
a(u,u), (5.4)

where C is independent of αi, βi, Hi, hi, and the jumps of the coefficients.

Proof. First, let us assume that H2
i βi 6 αi. Let uH := ΠRT

H u. We note that u0 is

the discrete harmonic extension with the same interface value as uH on ∂Ωi. By

the minimal-energy property of the discrete harmonic extension and Lemma 5.3.1,

56



we find that

ai(u0,u0) 6 ai(uH ,uH)

6 C(1 + log
Hi

hi
)(βi‖u‖2

0;Ωi
+ (αi + H2

i βi)‖div u‖2
0;Ωi

)

6 C(1 + log
Hi

hi
)(αi‖div u‖2

0;Ωi
+ βi‖u‖2

0;Ωi
).

Hence, we obtain

ai(u0,u0) 6 C(1 + log
Hi

hi

)ai(u,u). (5.5)

We now assume that H2
i βi > αi. We use a method similar to that of [55, Lemma

4.1]. We introduce piecewise linear scalar cut-off functions χ1 and χ2. The two

functions satisfy the following conditions: χ1 is equal to 1 on all interior small

faces of Fij and χ1|∂Ωi\Fij
= 0. The extension of χ1 takes values between 0 and

1; c.f. [67, Section 4.6.3] and [21, Section 4]. χ2 has the value 1 on ∂Ωi. Also,

χk|Ωi\Ωi,dk
= 0 for some hi 6 dk 6 Hi. Moreover, ‖∇χk‖∞ 6

C

dk
for k = 1 and 2.

Then, the following estimates hold; cf. [19, Section 4 and 5], [20, Section 4], and [67,

Lemma 4.25]:

‖χ1‖2
0;Ωi

6 CH2
i d1,

|χ1|21;Ωi
6 C(1 + log

Hi

hi
)
H2

i

d1
.

Let φij be the coarse basis function corresponding to the face Fij . This means that

the normal component of φij is 1 on Fij and 0 on the other faces of Ωi ∪ Ωj and

the interior values of φij are obtained by the discrete harmonic extension. We also

consider the standard basis function φ̃ij obtained from the coarse mesh. We note

that φij and φ̃ij have the same normal component on each coarse face. We can

easily show that ‖φ̃ij‖2
0;Ωi

6 CH3
i and ‖div φ̃ij‖2

0;Ωi
6 CHi. The function u0 can
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be expressed as follows:

u0 =
∑

Fij⊂Γ

λFij
φij .

Hence, it is enough to consider these terms one by one. We provide bounds of the

coefficient and the energy of the basis functions separately.

We first consider the coefficients. We modify the proof of [70, Lemma 2.4].

Let fk be the small faces which contain edges of ∂Fij . We note that on fk, χ1

has values between 0 and 1. Also we know that the number of such faces, nF , is

bounded by C(H/h); for details, see [70, Lemma 2.4]. We find that

|Fij |λFij
(u) =

∫

Fij

u · n ds =

∫

Fij

χ1u · n ds +

nF∑

k=1

ck|fk|(u · nfk
)

=

∫

Ωi

χ1div u + ∇χ1 · u dx +

nF∑

k=1

ck|fk|(u · nfk
),

where |ck| < 1. We note that (
∑nF

k=1 ck|fk|(u · nfk
))2 is bounded by CHi‖u‖2

0;Ωi
;

see [70, (2.16)]. Hence,

|λFij
(u)|2 6 C

1

H4
i

((

∫

Ωi

χ1div u dx)2 + (

∫

Ωi

∇χ1 · u dx)2 + Hi‖u‖2
0;Ωi

)

6 C
1

H4
i

(‖χ1‖2
0;Ωi

‖div u‖2
0;Ωi

+ ‖∇χ1‖2
0;Ωi

‖u‖2
0;Ωi

+ Hi‖u‖2
0;Ωi

)

6 C
1

H4
i

(H2
i d1‖div u‖2

0;Ωi
+ (1 + log

Hi

hi
)
H2

i

d1
‖u‖2

0;Ωi
+ Hi‖u‖2

0;Ωi
) (5.6)

6 C
1

H4
i

(H2
i d1‖div u‖2

0;Ωi
+ (1 + log

Hi

hi
)
H2

i

d1
‖u‖2

0;Ωi
) (5.7)

6 C
1

H2
i

(d1‖div u‖2
0;Ωi

+ (1 + log
Hi

hi
)

1

d1
‖u‖2

0;Ωi
)

6 C(1 + log
Hi

hi

)
1

H2
i

(d1‖div u‖2
0;Ωi

+
1

d1

‖u‖2
0;Ωi

). (5.8)
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We note that due to the fact that
H2

i

d1

> Hi, the last term of (5.6) can be absorbed

into the L2-term of (5.7). By the fact that φij and φ̃ij have the same normal

component on each face of ∂Ωi and φij is the energy minimal extension of φ̃ij, we

obtain

αi‖div φij‖2
0;Ωi

+ βi‖φij‖2
0;Ωi

6 αi‖div (ΠRT
h (χ2φ̃ij))‖2

0;Ωi
+ βi‖ΠRT

h (χ2φ̃ij)‖2
0;Ωi

.

By Lemma 5.3.2 and estimates for the basis functions, we have

‖div (ΠRT
h (χ2φ̃ij))‖2

0;Ωi
6 C‖div (χ2φ̃ij)‖2

0;Ωi

6 C‖χ2‖2
∞‖div φ̃ij‖2

0;Ωi,d2
+ C‖∇χ2‖2

∞‖φ̃ij‖2
0;Ωi,d2

6 C(d2 +
1

d2
2

H2
i d2) 6 C(d2 +

H2
i

d2
) (5.9)

and

‖ΠRT
h (χ2φ̃ij)‖2

0;Ωi
6 C‖(χ2φ̃ij)‖2

0;Ωi

6 C‖χ2‖2
∞‖φ̃ij‖2

0;Ωi,d2
6 CH2

i d2. (5.10)
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By (5.8), (5.9), and (5.10), we find that

αi‖λFij
(u)
(
div (ΠRT

h (χ2φ̃ij))
)
‖2

0;Ωi
+ βi‖λFij

(u)
(
ΠRT

h (χ2φ̃ij)
)
‖2

0;Ωi

6 C(αi|λFij
(u)|2(d2 +

H2
i

d2
) + βi|λFij

(u)|2H2
i d2)

6 C(1 + log
Hi

hi
)((αi(

d1

d2
+

d1d2

H2
i

) + βid1d2)‖div u‖2
0;Ωi

+(αi(
1

d1d2
+

d2

d1H2
i

) + βi
d2

d1
)‖u‖2

0;Ωi
). (5.11)

Let d1 =
√

αi

βi
and d2 = Hi

√
1

1+
βiH2

i
αi

. We note that hi 6 d1, d2 6 Hi.

We then obtain

ai(u0,u0)

6
∑

αi‖λFij
(u) (div φij) ‖2

0;Ωi
+ βi‖λFij

(u) (φij) ‖2
0;Ωi

6
∑

αi‖λFij
(u)
(
div (ΠRT

h (χ2φ̃ij))
)
‖2

0;Ωi
+ βi‖λFij

(u)
(
ΠRT

h (χ2φ̃ij)
)
‖2

0;Ωi

6 C(1 + log
Hi

hi
)

√
1 +

αi

βiH2
i

ai(u,u).

Since H2
i βi > αi,

√
1 + αi

βiH2
i

is bounded by a constant. Hence,

ai(u0,u0) 6 C(1 + log
Hi

hi
)ai(u,u). (5.12)

In all cases, we obtain the same result (5.5) and (5.12). We can conclude that (5.4)

holds by summing over all subdomains.

Remark 5.3.2. In [70, Chapter 2.2], the constant depends on max
i

(1 +
βiH

2
i

αi
).

As we see from the numerical experiments in [70,71] and this paper, the results do

not depend on αi’s and βi’s at all. We have therefore improved the previous results
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in [70,71] by removing this dependence of the coefficients.

We now consider the local components. Let v = u−u0. We know that v ∈ Xh.

By Lemma 2.2.3, we can find w⊥ ∈ N⊥
h and v⊥ ∈ X⊥

h such that v = curlw⊥+v⊥.

Let θi be a piecewise linear function associated with the subdomain Ωi. Each

θi is constructed in a similar way as in [67, Lemma 3.4]. We construct θ̃i(x) which

satisfies the following conditions:

θ̃i(x) =





1, dist (x, ∂Ωi) > δi,

0, x ∈ ∂Ωi,

and if dist (x, ∂Ωi) 6 δi, ‖∇θ̃i(x)‖ 6
C

δi

.

We set

θi = Ih(θ̃i).

Lemma 5.3.6. Let vi = ΠRT
h (θiv

⊥) and wi = ΠND
h (θiw

⊥). Then,

N∑

i=1

ãi(vi,vi) 6 C

(
max
16i6N

(1 +
Hi

δi

)

)
a(v⊥,v⊥) (5.13)

and

N∑

i=1

ãi(curlwi, curlwi) 6 C

(
max
16i6N

(1 +
Hi

δi
)

)
a(curlw⊥, curlw⊥), (5.14)

with C independent of αi, βi, Hi, hi, δi, and the jumps of the coefficients.
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Proof. We note that θi is supported in Ωi. By Lemma 5.3.2,

ãi(vi,vi) = ai(vi,vi) = αi‖div vi‖2
0;Ωi

+ βi‖vi‖2
0;Ωi

= αi‖div (ΠRT
h (θiv

⊥))‖2
0;Ωi

+ βi‖ΠRT
h (θiv

⊥)‖2
0;Ωi

6 C(αi‖div (θiv
⊥)‖2

0;Ωi
+ βi‖θiv

⊥‖2
0;Ωi

).

Consider the L2-term:

‖θiv
⊥‖2

0;Ωi
6 ‖θi‖2

∞‖v⊥‖2
0;Ωi

6 ‖v⊥‖2
0;Ωi

.

We now consider the divergence term. By Lemma 5.3.4,

‖div (θiv
⊥)‖2

0;Ωi
6 C(‖∇θi · v⊥‖2

0;Ωi
+ ‖θidiv v⊥‖2

0;Ωi
)

6 C(‖∇θi‖2
∞‖v⊥‖2

0;Ωi
+ ‖θi‖2

∞‖div v⊥‖2
0;Ωi

)

6 C(
1

δ2
i

‖v⊥‖2
0;Ωi

+ ‖div v⊥‖2
0;Ωi

) (5.15)

6 C(1 +
Hi

δi

)‖div v⊥‖2
0;Ωi

. (5.16)

Therefore,

ãi(vi,vi) 6 C(1 +
Hi

δi
)ai(v

⊥,v⊥).

We now consider (5.14). We note that ãi(curlwi, curlwi) = ai(curlwi, curlwi).
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By Lemma 5.3.2,

ai(curlwi, curlwi) = βi‖curlwi‖2
0;Ωi

= βi‖curl (ΠND
h (θiw

⊥))‖2
0;Ωi

6 Cβi‖curl (θiw
⊥)‖2

0;Ωi

6 Cβi(‖∇θi × w⊥‖2
0;Ωi

+ ‖θicurlw⊥‖2
0;Ωi

)

6 Cβi(‖∇θi‖2
∞‖w⊥‖2

0;Ωi
+ ‖θi‖2

∞‖curlw⊥‖2
0;Ωi

)

6 Cβi(
1

δ2
i

‖w⊥‖2
0;Ωi

+ ‖curlw⊥‖2
0;Ωi

).

By Lemma 5.3.4, the following inequality holds:

ãi(curlwi, curlwi) 6 Cβi(1 +
Hi

δi
)‖curlw⊥‖2

0;Ωi

= C(1 +
Hi

δi
)ai(curlw⊥, curlw⊥).

We obtain (5.14) by summing over the subdomains.

We next build another cut-off function θFij
, which is supported in the set

Ξij := (Ω′
i ∩ Ωj) ∪ (Ωi ∩ Ω′

j) ∪ (Fij);

cf. [19, Section 4 and 5]. θFij
satisfies the following conditions:

0 6 θFij
6 1,

θFij
|∂Ξij

= 0,
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and

‖∇θFij
‖∞ 6

C

δi
;

see [67, Lemma 3.4] for details.

Lemma 5.3.7. Let vij = ΠRT
h (1

2
θFij

v⊥) and wij = ΠND
h (1

2
θFij

w⊥). Then, we have

N∑

i=1

∑

Fij⊂∂Ωi

ãi(vij ,vij) 6 C

(
max
16i6N

(1 +
Hi

δi

)

)
a(v⊥,v⊥) (5.17)

N∑

i=1

∑

Fij⊂∂Ωi

ãi(curlwij, curlwij)

6 C

(
max
16i6N

(1 +
Hi

δi
)

)
a(curlw⊥, curlw⊥), (5.18)

with C independent of αi, βi, Hi, hi, δi, and the jumps of the coefficients.

Proof. Because θFij
is supported in Ξij , we have

ãi(vij ,vij) =

∫

Ξij

αdiv vijdiv vij dx +

∫

Ξij

βvij · vij dx

=

∫

Ωi∩Ω′

j

αidiv vijdiv vij dx +

∫

Ωi∩Ω′

j

βivij · vij dx

+

∫

Ω′

i∩Ωj

αjdiv vijdiv vij dx +

∫

Ω′

i∩Ωj

βjvij · vij dx.

By Lemma 5.3.2,

αj‖div vij‖2
0;Ω′

i∩Ωj
6 Cαj‖div (θFij

v⊥)‖2
0;Ω′

i∩Ωj
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and

βj‖vij‖2
0;Ω′

i∩Ωj
6 Cβj‖θFij

v⊥‖2
0;Ω′

i∩Ωj
.

Moreover,

‖div (θFij
v⊥)‖2

0;Ω′

i∩Ωj
6 C(‖∇θFij

· v⊥‖2
0;Ω′

i∩Ωj
+ ‖θFij

div v⊥‖2
0;Ω′

i∩Ωj
)

6 C(‖∇θFij
‖2
∞‖v⊥‖2

0;Ω′

i∩Ωj
+ ‖θFij

‖2
∞‖div v⊥‖2

0;Ω′

i∩Ωj
)

6 C(
1

δ2
i

‖v⊥‖2
0;Ω′

i∩Ωj
+ ‖div v⊥‖2

0;Ω′

i∩Ωj
) (5.19)

6 C(1 +
Hi

δi

)‖div v⊥‖2
0;Ωj

(5.20)

and

‖θFij
v⊥‖2

0;Ω′

i∩Ωj
6 ‖v⊥‖2

0;Ω′

i∩Ωj
6 ‖v⊥‖2

0;Ωj
.

We obtain (5.20) from (5.19) by using Lemma 5.3.4. Hence,

αj‖div vij‖2
0;Ω′

i∩Ωj
6 Cαj(1 +

Hi

δi

)‖div v⊥‖2
0;Ωj

and

βj‖vij‖2
0;Ω′

i∩Ωj
6 Cβj‖v⊥‖2

0;Ωj
.

Similarly,

αi‖div vij‖2
0;Ωi∩Ω′

j
6 Cαi(1 +

Hi

δi

)‖div v⊥‖2
0;Ωi

and

βi‖vij‖2
0;Ωi∩Ω′

j
6 Cβi‖v⊥‖2

0;Ωi
.

Therefore, we can obtain (5.17) by a coloring argument and summing over all the

partitions Ξij .
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We now consider (5.18):

ãi(curlwij , curlwij) =

∫

Ξij

βcurlwijcurlwij dx

= βi‖curlwij‖2
0;Ωi∩Ω′

j
+ βj‖curlwij‖2

0;Ω′

i∩Ωj
.

By Lemma 5.3.2,

βi‖curlwij‖2
0;Ωi∩Ω′

j
6 Cβi‖curl (θFij

w⊥)‖2
0;Ωi∩Ω′

j

and

βj‖curlwij‖2
0;Ω′

i∩Ωj
6 Cβj‖curl (θFij

w⊥)‖2
0;Ω′

i∩Ωj
.

Therefore,

βj‖curl (θFij
w⊥)‖2

0;Ω′

i∩Ωj
6 Cβj(‖∇θFij

× w⊥‖2
0;Ω′

i∩Ωj
+ ‖θFij

curlw⊥‖2
0;Ω′

i∩Ωj
)

6 Cβj(‖∇θFij
‖2
∞‖w⊥‖2

0;Ω′

i∩Ωj
+ ‖θFij

‖2
∞‖curlw⊥‖2

0;Ω′

i∩Ωj
)

6 Cβj(
1

δ2
i

‖w⊥‖2
0;Ω′

i∩Ωj
+ ‖curlw⊥‖2

0;Ω′

i∩Ωj
).

By Lemma 5.3.4,

βj‖curl (θFij
w⊥)‖2

0;Ω′

i∩Ωj
6 Cβj(1 +

Hi

δi
)‖curlw⊥‖2

0;Ωj
.

Similarly,

βi‖curl (θFij
w⊥)‖2

0;Ωi∩Ω′

j
6 Cβi(1 +

Hi

δi

)‖curlw⊥‖2
0;Ωi

.
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Therefore,

ãi(curlwij , curlwij)

6 Cβi(1 +
Hi

δi
)‖curlw⊥‖2

0;Ωi
+ Cβj(1 +

Hi

δi
)‖curlw⊥‖2

0;Ωj
.

Finally, (5.18) holds by a coloring argument and summing over all the partitions

Ξij .

We finally construct the remaining parts of the partition of unity. For each

edge Ejl ⊂ ∂Ωi, which equals F ij ∩ F il, consider a cut-off function θEjl
which is

supported in the set

Ψjl =:
⋂

m∈Ijl

Ω′
m,

where Ijl is the set of indices of the subdomains which have the edge Ejl in common

with Ωi; cf. [19, Section 4 and 5]. θEjl
satisfies following conditions:

0 6 θEjl
6 1,

‖∇θEjl
‖∞ 6

C

δi

,

and
N∑

i=1

(θi +
∑

Fij⊂∂Ωi

θFij
+

∑

Ejl⊂∂Ωi

θEjl
) = 1.

Lemma 5.3.8. Let vEjl
= ΠRT

h ( 1
|Ijl|θEjl

v⊥) and wEjl
= ΠND

h ( 1
|Ijl|θEjl

w⊥). Then,

N∑

i=1

∑

Ejl⊂∂Ωi

ãi(vEjl
,vEjl

) 6 C

(
max
16i6N

(1 +
Hi

δi
)

)
a(v⊥,v⊥) (5.21)
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and

N∑

i=1

∑

Ejl⊂∂Ωi

ãi(curlwEjl
, curlwEjl

)

6 C

(
max
16i6N

(1 +
Hi

δi

)

)
a(curlw⊥, curlw⊥), (5.22)

with C independent of αi, βi, Hi, hi, δi, and the jumps of the coefficients.

Proof. Because θEjl
is supported in Ψjl, we find that

ãi(vEjl
,vEjl

) =
∑

m∈Ijl

(αm‖div vEjl
‖2

0;Ψjl∩Ωm
+ βm‖vEjl

‖2
0;Ψjl∩Ωm

).

We can apply the same idea to each subset Ψjl ∩ Ωm. It suffices to consider just

one subset.

By Lemma 5.3.2,

‖div vEjl
‖2

0;Ψjl∩Ωm
6 C‖div (θEjl

v⊥)‖2
0;Ψjl∩Ωm

and

‖vEjl
‖2

0;Ψjl∩Ωm
6 C‖θEjl

v⊥‖2
0;Ψjl∩Ωm

6 C‖v⊥‖2
0;Ψjl∩Ωm

.

Therefore,

C‖div (θEjl
v⊥)‖2

0;Ψjl∩Ωm

6 C(‖∇θEjl
‖2
∞‖v⊥‖2

0;Ψjl∩Ωm
+ ‖θEjl

‖2
∞‖div v⊥‖2

0;Ψjl∩Ωm
)

6 C(
1

δ2
i

‖v⊥‖2
0;Ψjl∩Ωm

+ ‖div v⊥‖2
0;Ψjl∩Ωm

).
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By Lemma 5.3.4,

C‖div (θEjl
v⊥)‖2

0;Ψjl∩Ωm
6 C(1 +

Hi

δi
)‖div v⊥‖2

0;Ωm
.

By a coloring argument and summing over all the partitions, we obtain

N∑

i=1

∑

Ejl⊂∂Ωi

ãi(vEjl
,vEjl

) 6 C

(
max
16i6N

(1 +
Hi

δi

)

)
a(v⊥,v⊥).

Consider the second estimate (5.22):

ãi(curlwEjl
, curlwEjl

) =
∑

m∈Ijl

βm‖curlwEjl
‖2

0;Ψjl∩Ωm
.

By Lemma 5.3.2,

‖curlwEjl
‖2

0;Ψjl∩Ωm

6 ‖curl (θEjl
w⊥)‖2

0;Ψjl∩Ωm

6 C(‖∇θEjl
‖2
∞‖w⊥‖2

0;Ψjl∩Ωm
+ ‖θEjl

‖2
∞‖curlw⊥‖2

0;Ψjl∩Ωm
)

6 C(
1

δ2
i

‖w⊥‖2
0;Ψjl∩Ωm

+ ‖curlw⊥‖2
0;Ψjl∩Ωm

).

By Lemma 5.3.4,

‖curl (θEjl
w⊥)‖2

0;Ψjl∩Ωm
6 C(1 +

Hi

δi

)‖curlw⊥‖2
0;Ωm

.
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Therefore, we obtain

N∑

i=1

∑

Ejl⊂∂Ωi

ãi(curlwEjl
, curlwEjl

) 6 C

(
max
16i6N

(1 +
Hi

δi
)

)
a(curlw⊥, curlw⊥),

by summing over all the partitions.

5.3.3 Main Result

We recall (4.1), (4.6), and (4.7). Let Pi = RT
i A−1

i RiA and Pad =

N∑

i=0

Pi.

Theorem 5.3.9. (Condition number estimate) The condition number of the pre-

conditioned system satisfies

κ(Pad) 6 C

(
max
16i6N

(1 + log
Hi

hi

)

)(
max
16i6N

(1 +
Hi

δi

)

)
,

where C is a constant which does not depend on the number of subdomains, Hi,

hi, and δi. C is also independent of the coefficients αi, βi, and the jumps of the

coefficients between subdomains.

Proof. We obtain this main result by using Lemmas 5.3.5, 5.3.6, 5.3.7, 5.3.8 and

the triangle inequality.

Remark 5.3.3. In the previous result in [34], there was a second factor of (1+ H
δ
).

We have improved the result by reducing the power of the H
δ

term. Moreover, we

deal with coefficients which have jumps.
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5.4 Numerical Experiments

5.4.1 The 2D Case

We apply the overlapping Schwarz method with the energy-minimizing coarse

space to our model problem. We use Ω = [0, 1]2 and the lowest order Raviart-

Thomas elements. We decompose the domain into N2 identical square subdomains.

In each subdomain, we assume that the coefficients α and β are constant. We

consider cases where the coefficients have jumps across the interface between the

subdomains, in particular, the checkerboard distribution pattern of Fig. 5.2. We

use a fixed β for the whole domain and different values of α for the black and white

regions. We have α = 1 for the black regions and another specified value for the

white regions.

Figure 5.2: Checkerboard distribution of the coefficients

Each subdomain Ωi has side length H and each mesh triangle has h as a mini-

mum side length. We also introduce extended subdomains whose boundaries do not

cut any mesh elements; recall Assumption 4.2.1. We use the preconditioned conju-

gate gradient method to solve the linear system of the finite element discretization.
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In order to estimate the condition numbers, we use the method outlined in [53].

We stop the iteration when the residual l2−norm has been reduced by a factor of

10−8.

We perform two different kinds of experiments. We first fix the overlap H
δ

and

vary H
h
. We next fix the size of H

h
and use various size of H

δ
. Table 5.1 and Table 5.2

show the first results and Table 5.3 and Table 5.4 show the second results.

In the first set of experiments, we see that the condition numbers and iteration

counts do not depend on the size of H
h
. In the second set, we can conclude that the

condition numbers grow linearly with H
δ
. For both cases, the condition numbers

and iteration counts are also quite independent of the jumps of coefficients between

the subdomains. Fig. 5.4 shows that the estimated condition number depends lin-

early on H
δ

and Fig. 5.3 shows that the estimated condition number is independent

of H
h
. Even though these results are independent of H

h
, our numerical results are

consistent with our main result.

Table 5.1: Condition numbers and iteration counts. αi = 1 or specified values as
indicated in a checkerboard pattern, βi ≡ 1 and H

δ
= 8 (2D case)

αi = 0.01 αi = 0.1 αi = 1 αi = 10 αi = 100
H
h

cond iters cond iters cond iters cond iters cond iters

8 7.35 19 10.98 23 13.96 22 14.76 23 14.84 23
16 7.32 19 10.95 23 13.91 22 14.70 23 14.79 23
32 7.31 19 10.95 23 13.85 22 14.69 23 14.77 23
64 7.31 19 10.95 23 12.87 22 14.69 24 14.77 23

5.4.2 The 3D Case

For the 3D case, we use Ω = [0, 1]3 and hexahedral instead of tetrahedral

elements. In a way similar to the 2D case, we decompose the domain into N3
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Figure 5.3: Estimated condition number, versus H
h
; αi = 1 and αi = 100 in a

checkerboard pattern, βi ≡ 1 and H
δ

= 4 (2D case)
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Figure 5.4: Estimated condition number and linear least square fitting, versus H
δ
;

αi = 1 and αi = 100 in a checkerboard pattern, βi ≡ 1 and H
h

= 32 (2D case)
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Table 5.2: Condition numbers and iteration counts. αi = 1 or specified values as
indicated in a checkerboard pattern, βi ≡ 1 and H

δ
= 4 (2D case)

αi = 0.01 αi = 0.1 αi = 1 αi = 10 αi = 100
H
h

cond iters cond iters cond iters cond iters cond iters

4 5.44 17 7.46 20 9.17 19 9.50 21 9.53 20
8 5.38 17 7.41 20 9.07 19 9.38 21 9.42 20
16 5.36 17 7.39 20 9.01 19 9.36 21 9.39 20
32 5.35 17 7.38 20 8.45 19 9.35 21 9.38 20
64 5.35 17 7.38 20 6.34 17 9.35 21 9.38 20

Table 5.3: Condition numbers and iteration counts. αi = 1 or specified values as
indicated in a checkerboard pattern, βi ≡ 1 and H

h
= 16 (2D case)

αi = 0.01 αi = 0.1 αi = 1 αi = 10 αi = 100
H
δ

cond iters cond iters cond iters cond iters cond iters

2 5.09 15 5.49 17 5.18 17 6.37 17 5.66 15
4 5.36 17 7.39 20 9.01 19 9.36 21 9.39 20
8 7.32 19 10.95 23 13.91 22 14.70 23 14.79 23
16 11.62 23 18.04 28 23.25 26 25.14 29 25.36 27

Table 5.4: Condition numbers and iteration counts. αi = 1 or specified values as
indicated in a checkerboard pattern, βi ≡ 1 and H

h
= 32 (2D case)

αi = 0.01 αi = 0.1 αi = 1 αi = 10 αi = 100
H
δ

cond iters cond iters cond iters cond iters cond iters

2 5.05 15 5.48 17 5.18 16 6.32 17 5.55 15
4 5.36 17 7.39 20 8.45 19 9.35 21 9.38 20
8 7.31 19 10.95 23 13.85 22 14.69 23 14.77 23
16 11.61 23 18.03 28 23.22 27 25.11 29 25.33 27
32 19.97 29 31.30 36 38.91 34 44.50 38 45.24 33
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fixed H
h
, Table 5.6 and Table 5.8 show the results.

We find that the 3D case is very similar to the 2D case. This means that the

condition numbers and iteration counts are independent of H
h

and the condition

numbers depend linearly on the value of H
δ
. Moreover, they appear to be indepen-

dent of the jumps of coefficients between subdomains. We see that the estimated

condition numbers depend linearly on H
δ

in Fig. 5.6 and Fig. 5.8. We also see that

the estimated condition numbers do not depend on H
h

in Fig. 5.5 and Fig. 5.7. Our

numerical results for the 3D case are consistent with our main result as well.

Table 5.5: Condition numbers and iteration counts. αi = 1 or specified values as
indicated in a checkerboard pattern, βi ≡ 1 and H

δ
= 3 (3D case)

αi = 0.01 αi = 0.1 αi = 1 αi = 10 αi = 100
H
h

cond iters cond iters cond iters cond iters cond iters

3 8.37 19 8.70 19 9.47 20 9.68 20 9.71 20
6 8.44 19 8.70 20 9.51 20 9.73 21 9.76 23
12 8.46 20 8.67 21 9.52 21 9.74 22 9.73 23

Table 5.6: Condition numbers and iteration counts. αi = 1 or specified values as
indicated in a checkerboard pattern, βi ≡ 1 and H

h
= 12 (3D case)

αi = 0.01 αi = 0.1 αi = 1 αi = 10 αi = 100
H
δ

cond iters cond iters cond iters cond iters cond iters

3 8.46 20 8.67 21 9.52 21 9.74 22 9.73 23
6 9.69 21 12.21 23 15.91 23 16.66 26 16.75 26
12 13.61 23 19.05 27 27.33 28 29.30 28 29.53 28

Table 5.7: Condition numbers and iteration counts. βi = 1 or specified values as
indicated in a checkerboard pattern, αi ≡ 1 and H

δ
= 3 (3D case)

βi = 0.01 βi = 0.1 βi = 1 βi = 10 βi = 100
H
h

cond iters cond iters cond iters cond iters cond iters

3 8.47 21 9.02 20 9.47 20 8.85 20 8.38 20
6 8.38 21 9.06 21 9.51 20 8.84 21 8.39 20
12 8.34 21 9.08 21 9.52 21 8.81 21 8.39 20
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Figure 5.5: Estimated condition number, versus H
h
; αi = 1 and αi = 100 in a

checkerboard pattern, βi ≡ 1 and H
δ

= 3 (3D case)
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Figure 5.6: Estimated condition number and linear least square fitting, versus H
δ
;

αi = 1 and αi = 100 in a checkerboard pattern, βi ≡ 1 and H
h

= 12 (3D case)
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Figure 5.7: Estimated condition number, versus H
h
; βi = 1 and βi = 10 in a

checkerboard pattern, αi ≡ 1 and H
δ

= 3 (3D case)
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Figure 5.8: Estimated condition number and linear least square fitting, versus H
δ
;

βi = 1 and βi = 10 in a checkerboard pattern, αi ≡ 1 and H
h

= 12 (3D case)
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Table 5.8: Condition numbers and iteration counts. βi = 1 or specified values as
indicated in a checkerboard pattern, αi ≡ 1 and H

h
= 12 (3D case)

βi = 0.01 βi = 0.1 βi = 1 βi = 10 βi = 100
H
δ

cond iters cond iters cond iters cond iters cond iters

3 8.34 21 9.08 21 9.52 21 8.81 21 8.39 20
6 10.14 23 15.17 23 15.91 23 14.21 22 9.65 21
12 15.31 23 27.22 27 27.33 28 24.95 26 14.14 23
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5.4.3 Parallel Experiments

5.4.3.1 Portable Extensible Toolkit for Scientific Computation

We have developed parallel C codes for our algorithm using the Portable Ex-

tensible Toolkit for Scientific Computation (PETSc) library.

PETSc is being developed at the Mathematics and Computer Science Division

(MCS) at Argonne National Laboratory (ANL); see [4–6]. It is a useful toolkit

for writing large-scale codes on parallel (and serial) machines. PETSc provides a

set of data structures and routines. The data structures involve both sequential

and parallel index sets, vectors, and matrices and the set of routines contain linear

and non-linear solver. Hence, it provides an easier way of implementing numerical

methods defined by users. Furthermore, it supports numerous runtime options and

debugging tools.

PETSc uses the Message Passing Interface (MPI) standard and is layered on top

of MPI. It has intermediate tools to send or receive datatypes between processors.

Hence, users do not need to know much MPI when using the system. Moreover,

PETSc is transparent to the users. This means that same code works well on serial

and parallel machines. It also supports interfaces for external software packages.

Domain decomposition methods are natural methods for effective parallel al-

gorithms for distributed memory computers. Therefore, PETSc is a good choice

to implement domain decomposition methods. Actually, it was originally designed

by Barry Smith to provide a library for domain decomposition algorithms.
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5.4.3.2 Parallel Experiments

We use 4 × 4 subdomains for the 2D problem. We stop the iteration after a

reduction of 10−8 of the l2−norm of the initial residual. We report the total times

of all computation, including the assembling of the stiffness matrix, the local and

coarse factorizations, and preconditioned conjugate gradient iterations, in seconds

with various number of processors and degrees of freedom. Table 5.9 and Table 5.10

show the results. We use one layer of overlap for the first experiments and fixed

H
δ

for the second experiments.

We note that these codes were tested on Crunchy machine at the Courant

Institute.

Table 5.9: The total times of computation with different number of processors and
degrees of freedom. (4 × 4 subdomains, one layer of overlap)

number of degrees of freedom
# of proc 3136 12146 49408 197120 787456

1 0.383 0.617 1.736 8.225 53.814
2 0.245 0.391 1.080 4.829 29.914
4 0.118 0.205 0.636 2.882 16.924
8 0.100 0.165 0.505 2.244 13.539
16 0.116 0.181 0.502 1.953 11.041

Table 5.10: The total times of computation with different number of processors
and degrees of freedom. (4 × 4 subdomains, H/δ = 8)

number of degrees of freedom
# of proc 3136 12146 49408 197120 787456

1 0.383 0.581 1.704 8.563 58.612
2 0.245 0.369 1.019 4.848 31.916
4 0.118 0.195 0.597 2.789 17.178
8 0.100 0.151 0.459 1.984 12.580
16 0.116 0.165 0.427 1.678 9.576
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Chapter 6

A BDDC Algorithm for

Raviart-Thomas Vector Fields

6.1 Introduction

Two main families of iterative substructuring methods are the BNN type and

the FETI type algorithms; see Section 4.6 and [26–28,37,42]. The BDDC methods,

introduced by Dohrmann in [18], are modified BNN methods with a global com-

ponent obtained by using primal continuity constraints. For a pioneering analysis,

see also [43, 44]. The connection between the BNN and BDDC is quite similar to

that of one level FETI and FETI-DP. An advantage of BDDC methods over the

older BNN algorithms is that all matrices of BDDC methods are nonsingular.

In this chapter, we will consider BDDC algorithms for vector field problems

formulated in H(div). Nonoverlapping domain decomposition methods for vector

field problems were first considered in [71]. We will use some auxiliary results from

that paper to analyze our methods. Later BNN, FETI, and FETI-DP methods
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for these kinds of problems were developed in [63, 65, 66]. Other methods such as

multigrid methods and overlapping Schwarz methods have also been introduced for

vector field problems; see [2,3,32,34,35,52,64]. BDDC methods for other problems

such as incompressible Stokes, almost incompressible elasticity, and flow in porous

media have been proposed in [39, 54, 68, 69]. While many BDDC algorithms have

been studied for one variable coefficient, we are faced with two sets of coefficients.

We will try various weighted averages to deal with this difficulty.

Due to the fact that preconditioned linear systems from the BDDC and FETI-

DP algorithms have the same spectrum except for possible eigenvalues at 0 and 1,

we can also apply our result to FETI-DP methods with the same primal constraints;

see [13, 40, 44].

The rest of this chapter is organized as follows. We describe the algorithm in

Section 6.2. In Section 6.3, we introduce some useful technical tools and present

our main result. Finally, Section 6.4 contains supporting numerical experiments.

6.2 The BDDC Method

6.2.1 Notations

We recall the notations in Section 4.4. W (i) is the space of lowest order Raviart-

Thomas finite elements on Ωi with a zero normal component on ∂Ω ∩ ∂Ωi. Each

W (i) is decomposed into two parts: the interior part W
(i)
I and the interface part

W
(i)
Γ . Furthermore, we can decompose the interface part W

(i)
Γ into a primal space

and a dual space: W
(i)
Π and W

(i)
∆ , respectively.

We consider WΓ :=
∏N

i=1 W
(i)
Γ . We note that generally the functions in WΓ have

discontinuous normal components across the interface. We denote the space with
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continuous normal components by ŴΓ. We next consider an intermediate space

W̃Γ. The space W̃Γ consists of functions which satisfy the primal constraints.

We also introduce some spaces related to W
(i)
Γ . We define W

(i)
0,Γ as the subspace

of W
(i)
Γ with mean value zero over Γi, where Γi := Γ∩∂Ωi. Finally, let W

(i)
H,Γ denote

the space of constant functions on each subdomain edge or face.

6.2.2 The Algorithm

We just recall the algorithm in Section 4.6.1. We first consider the interface

problem (4.22):

ŜΓuΓ = gΓ, (6.1)

where

ŜΓ =
N∑

i=1

R
(i)T
Γ S(i)R

(i)
Γ

and

gΓ =
N∑

i=1

R
(i)T
Γ








f∆

fΠ


−




A
(i)
∆I

A
(i)
ΠI


A

(i)−1
II f

(i)
I





.

We next consider the BDDC preconditioner:

M−1 = R̃T
D,ΓS̃−1

Γ R̃D,Γ,

where

S̃−1
Γ := RT

Γ∆




N∑

i=1

[
0 R

(i)T
∆

]



A
(i)
II A

(i)
I∆

A
(i)
∆I A

(i)
∆∆




−1 


0

R
(i)
∆





RΓ∆ + ΦS−1

ΠΠΦT
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with

Φ := RT
ΓΠ − RT

Γ∆

N∑

i=1

[
0 R

(i)T
∆

]



A
(i)
II A

(i)
I∆

A
(i)
∆I A

(i)
∆∆




−1 


A
(i)T
ΠI

A
(i)T
Π∆


R

(i)
Π

and

SΠΠ :=

N∑

i=1

R
(i)T
Π


A

(i)
ΠΠ −

[
A

(i)
ΠI A

(i)
Π∆

]



A
(i)
II A

(i)
I∆

A
(i)
∆I A

(i)
∆∆




−1 


A
(i)T
ΠI

A
(i)T
Π∆





R

(i)
Π .

6.2.3 Remarks on the Implementation

We use the preconditioned conjugate gradient method for the following precon-

ditioned global interface problem:

M−1ŜΓuΓ = M−1gΓ.

The preconditioned conjugate gradient method algorithm is given in Figure 6.1.

We remark that we do not need R
(i)
Γ , R

(i)
Π , R̃D,Γ, RΓΠ and RΓ∆ explicitly. By ap-

propriate indexing, we can perform these procedures without constructing the

restriction operators. We also note that we can compute S(i) times a vector by

solving a local Dirichlet problem and some sparse matrix-vector products. This

local work can be done efficiently in parallel.
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Initialize:

r0 := gΓ −
(∑N

i=1 R
(i)T
Γ S(i)R

(i)
Γ

)
uΓ,0

z0 :=
(
R̃T

D,ΓS̃−1
Γ R̃D,Γ

)
r0

p0 := z0

Iterate k = 0, 1, · · · until convergence

qk :=
(∑N

i=1 R
(i)T
Γ S(i)R

(i)
Γ

)
pk

αk := rT
k zk/p

T
k qk

uΓ,k+1 := uΓ,k + αkpk

rk+1 := rk − αkqk

zk+1 :=
(
R̃T

D,ΓS̃−1
Γ R̃D,Γ

)
rk+1

βk := zT
k+1rk+1/z

T
k rk

pk+1 := zk+1 + βkpk

Figure 6.1: Implementation of the BDDC method as a preconditioned conjugate
gradient method.

6.3 Technical Tools and the Main Result

6.3.1 Technical Tools

We will borrow some useful technical tools from [71].

Lemma 6.3.1. (Divergence free extension) There exists an extension operator

H̃i : W
(i)
0,Γ → W (i), which satisfies

(H̃iµ) · n = µ, divH̃iµ = 0,
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for all µ ∈ W
(i)
0,Γ, and which satisfies the following estimate:

‖H̃iµ‖0;Ωi
6 C‖µ‖− 1

2
;∂Ωi

.

Proof. See [71, Lemma 4.3] and [70, Lemma 2.6].

Lemma 6.3.2. (Discrete harmonic extension) There exists a discrete harmonic

extension operator Hi : W
(i)
0,Γ → W (i), which satisfies

(Hiµ) · n = µ,

for all µ ∈ W
(i)
0,Γ, and which satisfies

αi‖divHiµ‖2
0;Ωi

+ βi‖Hiµ‖2
0;Ωi

6 Cβi‖µ‖2
− 1

2
;∂Ωi

.

Proof. Hi is the minimal-energy extension for a given subdomain. Therefore, we

obtain the following estimate:

αi‖divHiµ‖2
0;Ωi

+ βi‖Hiµ‖2
0;Ωi

6 αi‖div H̃iµ‖2
0;Ωi

+ βi‖H̃iµ‖2
0;Ωi

.

But divH̃iµ = 0 and by Lemma 6.3.1,

αi‖divHiµ‖2
0;Ωi

+ βi‖Hiµ‖2
0;Ωi

6 Cβi‖µ‖2
− 1

2
;∂Ωi

.

We next introduce partition of unity functions associated with faces of each

subdomain Ωi as defined in [67, Chapter 10.2.1]. Let ζF be the characteristic
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function of F given by:

ζF(x) =





1, x ∈ F

0, x ∈ ∂Ωi\F .

We then have

∑

F⊂∂Ωi

ζF ≡ 1, a.e. on ∂Ωi\Ω.

We have the following estimates for the face components:

Lemma 6.3.3. Consider W
(i)
0,F , the subspace of W

(i)
0,Γ with a vanishing normal com-

ponent on ∂Ωi\F , i.e.,
∫

F
µds = 0 if µ ∈ W

(i)
0,F . Let µF ∈ W

(i)
0,F , F ⊂ ∂Ωi and

µ :=
∑

F⊂∂Ωi

µF . Then, for all µH ∈ W
(i)
H,Γ,

‖µF‖2
− 1

2
;∂Ωi

6 C(1 + log
Hi

hi
)((1 + log

Hi

hi
)‖µ + µH‖2

− 1
2
;∂Ωi

+ ‖µ‖2
− 1

2
;∂Ωi

),

where C is independent not only of µH but also of h.

Proof. See [71, Lemma 4.4] and [70, Lemma 2.7].

Lemma 6.3.4. Let Ωi and Ωj be two adjacent subdomains with a common face F .

Let µ be a function in H− 1
2 (∂Ωi), which vanishes outside of F . Then, there exists

a constant C, such that

‖µ‖− 1
2
;∂Ωi

6 C‖µ‖− 1
2
;∂Ωj

.

Proof. See [62, Lemma 5.5.2].

Lemma 6.3.5. (Stable interpolation) Let ∂Ωi be Lipschitz. Then, there exist two

operators ΠS
h : H(div ; Ωi) → W (i) and P S

h : L2(Ωi) → P0(Ωi) which satisfy the
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following commutative property and invariance property:

div
(
ΠS

hu
)

= P S
h (div u) , (6.2)

ΠS
hu = u, ∀u ∈ W (i), (6.3)

and

P S
h v = v, ∀v ∈ P0(Ωi). (6.4)

Moreover, the two operators are L2−stable, i.e.,

‖ΠS
hu‖0;Ωi

6 C‖u‖0;Ωi
(6.5)

and

‖P S
h v‖0;Ωi

6 C‖v‖0;Ωi
. (6.6)

Proof. See [16].

Remark 6.3.1. The operators in [16] are designed for essential boundary con-

ditions. For natural boundary conditions, see [58] and [59]. The references also

introduce interpolations for H1 and H(curl).

We introduce the following extension lemma from [33].

Lemma 6.3.6. Let Ω be a bounded Lipschitz domain. Then, there exists an ex-

tension operator

E : H(div ; Ω) → H(div ;R3) (6.7)

satisfying Eu = u a.e. in Ω and the following continuity conditions:

‖div (Eu) ‖0;R3 6 C‖div u‖0;Ω, (6.8)
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and

‖Eu‖0;R3 6 C‖u‖0;Ω. (6.9)

Proof. This is just a special case of [33, Theorem 3.6].

We now consider an extension lemma for Raviart-Thomas elements.

Lemma 6.3.7. (Extension lemma) Let Ωi and Ωj be two adjacent subdomains with

a common face Fij. We consider two subspaces V (i) and V (j), subspaces of W (i)

and W (j), respectively:

V (i) :=
{
uh ∈ W (i) |uh · n = 0 on ∂Ωi\Fij

}

and

V (j) :=
{
uh ∈ W (j) |uh · n = 0 on ∂Ωj\Fij

}
.

Then, there exists an extension operator Eji : V (j) → V (i) such that for all uh ∈

V (j),

(Ejiuh) |Ωj
= uh,

‖div (Ejiuh) ‖0;Ωi
6 C‖div uh‖0;Ωj

, (6.10)

and

‖Ejiuh‖0;Ωi
6 C‖uh‖0;Ωj

. (6.11)

Proof. We use an idea similar to that of [36, Lemma 4.5]. Let CΩi be the comple-

ment of Ωi. By Lemma 6.3.6, there exists an extension operator ECΩi
: H(div ; CΩi) →

H(div ;R3) such that

‖div (ECΩi
u) ‖0;R3 6 C‖div u‖0;CΩi

(6.12)
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and

‖ECΩi
u‖0;R3 6 C‖u‖0;CΩi

(6.13)

with

(ECΩi
u) |CΩi

= u (6.14)

for all u ∈ H(div ; CΩi).

For uh ∈ V (j), let ũ be an extension of uh by zero outside of Ωi ∪Fij ∪Ωj . We

note that ‖ũ‖0;CΩi
= ‖uh‖0;Ωj

and ‖div ũ‖0;CΩi
= ‖div uh‖0;Ωj

. We now consider

an extension operator Eji defined by

Eji :=





ΠS
h (ECΩi

ũ) in Ωi ∪ Fij ∪ Ωj ,

0 otherwise.

By (6.2), (6.6), and (6.12), we have

‖div (Ejiuh) ‖0;Ωi
= ‖div

(
ΠS

h (ECΩi
ũ)
)
‖0;Ωi

= ‖P S
h (div (ECΩi

ũ)) ‖0;Ωi

6 C‖div (ECΩi
ũ) ‖0;Ωi

6 C‖div (ECΩi
ũ) ‖0;R3

6 C‖div ũ‖0;CΩi
= C‖div uh‖0;Ωj

.

Moreover, by (6.5) and (6.13), we obtain

‖Ejiuh‖0;Ωi
= ‖ΠS

h (ECΩi
ũ) ‖0;Ωi

6 C‖ECΩi
ũ‖0;Ωi

6 C‖ECΩi
ũ‖0;R3 6 C‖ũ‖0;CΩi

= C‖uh‖0;Ωj
.

Trivially, for all uh ∈ V (j),
(
Ek

jiuh

)
|Ωj

= uh.
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6.3.2 Stability Estimates

Let ‖uΓ‖2
eSΓ

:= uT
Γ S̃ΓuΓ. The averaging operator ED, defined in (4.16), satisfies

the following estimate:

Lemma 6.3.8. For all uΓ ∈ W̃Γ, there is a constant C, such that

‖EDuΓ‖2
eSΓ

6 Cη max
16i6N

(1 + log
Hi

hi
)2‖uΓ‖2

eSΓ
, (6.15)

where η = max
16i6N

max

{
βiH

2
i

αi
, 1

}
.

Proof. Let ui := R
(i)

Γ uΓ. We also consider u0
Γ :=

∑N
i=1 R

(i)

Γ

T ((
ΠRT

H (Hiui)
)
· n
)

and

vΓ := uΓ − u0
Γ. We note that vi := R

(i)

Γ vΓ ∈ W
(i)
0,Γ. We have

‖EDvΓ‖2
eSΓ

= ‖RΓ (EDvΓ) ‖2
SΓ

=
N∑

i=1

‖R(i)

Γ (EDvΓ) ‖2

S
(i)
Γ

.

We set wi := R
(i)

Γ (EDvΓ) = δ†i vi + δ†jvj on Fij .

We set χi = βi and χj = βj in (4.11).

We note that the following inequality holds for γ ∈ [1
2
,∞):

βiδ
†
j

2
6 min{βi, βj}. (6.16)

By Lemma 6.3.2, we have

‖wi‖2

S
(i)
Γ

6 Cβi‖wi‖2
− 1

2
;∂Ωi

6 Cβi

∑

Fij⊂∂Ωi

‖ζFij
wi‖2

− 1
2
;∂Ωi

. (6.17)
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Moreover, by Lemma 6.3.4 and (6.16), we obtain

βi‖ζFij
wi‖2

− 1
2
;∂Ωi

6 2βi

(
δ†i

2‖ζFij
vi‖2

− 1
2
;∂Ωi

+ δ†j
2‖ζFij

vj‖2
− 1

2
;∂Ωi

)

6 Cβi

(
δ†i

2‖ζFij
vi‖2

− 1
2
;∂Ωi

+ δ†j
2‖ζFij

vj‖2
− 1

2
;∂Ωj

)

6 C
(
βi‖ζFij

vi‖2
− 1

2
;∂Ωi

+ βj‖ζFij
vj‖2

− 1
2
;∂Ωj

)
. (6.18)

Let µH :=
(
R

(i)

Γ u0
Γ

)
· n. Then, for any Fij ⊂ ∂Ωi,

∫

Fij

(ui − µH) ds = 0.

Hence, we obtain the following estimate by using Lemma 6.3.3:

βi‖ζFij
vi‖2

− 1
2
;∂Ωi

6 βi‖ζFij
(ui − µH) ‖2

− 1
2
;∂Ωi

6 Cβi

(
1 + log

Hi

hi

)((
1 + log

Hi

hi

)
‖ui‖2

− 1
2
;∂Ωi

+ ‖ui − µH‖2
− 1

2
;∂Ωi

)

6 Cβi

((
1 + log

Hi

hi

)2

‖ui‖2
− 1

2
;∂Ωi

+

(
1 + log

Hi

hi

)
‖µH‖2

− 1
2
;∂Ωi

)
. (6.19)

Moreover, by Lemma 2.1.5, we have

βi‖ui‖2
− 1

2
;∂Ωi

6 C
(
βiH

2
i ‖div (Hiui) ‖2

0;Ωi
+ βi‖Hiui‖2

0;Ωi

)

6 Cη
(
αi‖div (Hiui) ‖2

0;Ωi
+ βi‖Hiui‖2

0;Ωi

)

= Cη‖ui‖2

S
(i)
Γ

. (6.20)
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By Lemma 2.1.5 and Lemma 5.3.1, we obtain

βi‖µH‖2
− 1

2
;∂Ωi

6 Cβi

(
H2

i ‖div
(
ΠRT

H (Hiui)
)
‖2

0;Ωi
+ ‖ΠRT

H (Hiui) ‖2
0;Ωi

)

6 CβiH
2
i ‖div (Hiui) ‖2

0;Ωi

+ C

(
1 + log

Hi

hi

)(
βi‖Hiui‖2

0;Ωi
+ βiH

2
i ‖div (Hiui) ‖2

0;Ωi

)

6 C

(
1 + log

Hi

hi

)(
βi‖Hiui‖2

0;Ωi
+ βiH

2
i ‖div (Hiui) ‖2

0;Ωi

)

6 Cη

(
1 + log

Hi

hi

)(
βi‖Hiui‖2

0;Ωi
+ αi‖div (Hiui) ‖2

0;Ωi

)

= Cη

(
1 + log

Hi

hi

)
‖ui‖2

S
(i)
Γ

. (6.21)

In a similar way, we can obtain a bound for βj‖ζFij
vj‖2

− 1
2
;∂Ωj

. Therefore, we finally

obtain the following estimate by using (6.17), (6.18), (6.19), (6.20), and (6.21):

‖wi‖2

S
(i)
Γ

6 Cη

(
1 + log

Hi

hi

)2

‖ui‖2

S
(i)
Γ

+ Cη

(
1 + log

Hj

hj

)2

‖uj‖2

S
(j)
Γ

. (6.22)

Theorem 6.3.9. (Condition number estimate) The condition number of the pre-

conditioned linear system M−1ŜΓuΓ = M−1gΓ satisfies

κ(M−1ŜΓ) 6 Cη max
16i6N

(1 + log
Hi

hi
)2,

where η = max
16i6N

max

{
βiH

2
i

αi
, 1

}
.

Proof. We can obtain this main result by using Lemmas 6.3.8, 4.6.1, and 4.6.2.

We do not see the unfavorable factor η in the numerical experiments in Sec-

tion 6.4. These results suggest the following two conjectures.
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Conjecture 6.3.10. For all uΓ ∈ W̃Γ, there is a constant C, such that

‖EDuΓ‖2
eSΓ

6 C max
16i6N

(1 + log
Hi

hi
)2‖uΓ‖2

eSΓ
. (6.23)

Conjecture 6.3.11. (Condition number estimate) The condition number of the

preconditioned linear system M−1ŜΓuΓ = M−1gΓ satisfies

κ(M−1ŜΓ) 6 C max
16i6N

(1 + log
Hi

hi

)2. (6.24)

6.4 Numerical Results

6.4.1 The 2D One Variable Coefficient Case

We have applied the BDDC algorithm to our model problem (3.1). For algo-

rithmic details, we follow the method introduced in [40] and Section 4.6.1. We use

common edge averages across the interface as primal constraints. We set Ω = [0, 1]2

and decompose the unit square into N2 square subdomains. Each subdomain has

a side length H = 1
N

. Moreover, we assume that the coefficients α and β have

jumps across the interface between the subdomains with the checkerboard pat-

tern of Fig. 6.2. We discretize the model problem (3.1) by using the lowest order

Raviart-Thomas finite elements for triangles and use the preconditioned conjugate

gradient method to solve the discretized problem. The iteration is stopped when

the l2−norm of the residual has been reduced by a factor of 10−8.

We have two kinds of experimental sets. We first fix the value of β and vary α

and use χi(x) = αi for the scaling factor in (4.11). Second, we fix the value of α

and use various value of β and use χi(x) = βi for the scaling factor in (4.11). Table
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Figure 6.2: Checkerboard distribution of the coefficients (2D case)

6.1 and Table 6.2 show the results. In the graphs Fig 6.3 and Fig 6.4, we see that

the condition numbers grow quadratically with the logarithm of H
h
. Moreover, the

condition number is insensitive to the jumps of coefficients.

Table 6.1: Condition numbers and iteration counts. αi = 1 or the specified value
as indicated, in a checkerboard pattern and βi ≡ 1 (2D case)

αi = 0.01 αi = 0.1 αi = 1 αi = 10 αi = 100
H
h

cond iters cond iters cond iters cond iters cond iters

4 3.22 9 2.71 8 1.62 6 2.76 9 3.85 10
8 4.80 10 3.98 9 2.21 7 4.06 10 5.71 12
16 6.82 10 5.54 9 2.95 8 5.64 11 7.98 13
32 9.26 13 7.40 11 3.83 9 7.52 13 10.67 14
64 12.14 14 9.55 12 4.85 9 9.69 15 13.78 17
128 15.44 15 11.97 12 6.01 11 12.13 17 17.31 19

6.4.2 The 3D One Variable Coefficient Case

For the 3D case, we use the unit cube [0, 1]3 for Ω. In a way similar to the 2D

case, we decompose the domain into N3 subdomains with the side length H = 1
N

.

We use the lowest order hexahedral Raviart-Thomas elements for this case and a
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Figure 6.3: Estimated condition number and least-squares fit to a degree 2 polyno-
mial in log H

h
, versus H

h
; αi = 1 and αi = 10 in a checkerboard pattern and βi ≡ 1

(2D case)
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Table 6.2: Condition numbers and iteration counts. βi = 1 or the specified value
as indicated, in a checkerboard pattern and αi ≡ 1 (2D case)

βi = 0.01 βi = 0.1 βi = 1 βi = 10 βi = 100
H
h

cond iters cond iters cond iters cond iters cond iters

4 3.60 10 2.62 9 1.62 6 2.57 8 3.05 9
8 5.24 11 3.78 10 2.21 7 3.71 9 4.44 9
16 7.23 13 5.19 11 2.95 8 5.11 9 6.21 10
32 9.57 14 6.86 13 3.83 9 6.76 11 8.34 12
64 12.27 16 8.79 15 4.85 9 8.66 12 10.84 14
128 15.32 18 10.88 16 6.01 11 10.82 12 13.70 13
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Figure 6.4: Estimated condition number and least-squares fit to a degree 2 polyno-
mial in log H

h
, versus H

h
; βi = 1 and βi = 10 in a checkerboard pattern and αi ≡ 1

(2D case)

similar checkerboard distribution of the coefficients as in the 2D case; see Fig. 6.5.

We use the stopping criteria of reducing the residual l2−norm by a factor of 10−6
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for the preconditioned conjugate gradient method. We use common face averages

across the interface as primal constraints. Other general settings are very similar

to those of the 2D case.

We find that the results for the 3D case are quite similar to those of the 2D

case; see Table 6.3, Table 6.4, Fig 6.6, and Fig 6.7. The condition numbers depend

quadratically on the value of log H
h

and are independent of the jumps of coefficients

across the interface.

Figure 6.5: Checkerboard distribution of the coefficients (3D case)

Table 6.3: Condition numbers and iteration counts. αi = 1 or the specified value
as indicated, in a checkerboard pattern and βi ≡ 1 (3D case)

αi = 0.01 αi = 0.1 αi = 1 αi = 10 αi = 100
H
h

cond iters cond iters cond iters cond iters cond iters

2 3.66 10 2.98 9 1.83 6 3.03 9 4.28 11
4 5.37 13 4.46 12 2.69 9 4.57 12 6.46 15
8 7.88 17 6.57 15 3.75 10 6.74 16 9.41 19
16 11.26 20 9.13 18 5.01 13 9.29 18 13.12 22
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Figure 6.6: Estimated condition number and least-squares fit to a degree 2 polyno-
mial in log H

h
, versus H

h
; αi = 1 and αi = 10 in a checkerboard pattern and βi ≡ 1

(3D case)
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Table 6.4: Condition numbers and iteration counts. βi = 1 or the specified value
as indicated, in a checkerboard pattern and αi ≡ 1 (3D case)

βi = 0.01 βi = 0.1 βi = 1 βi = 10 βi = 100
H
h

cond iters cond iters cond iters cond iters cond iters

2 4.13 11 2.93 9 1.83 6 2.88 9 3.58 10
4 6.21 15 4.45 12 2.69 9 4.37 12 5.21 14
8 9.15 19 6.56 16 3.75 10 6.44 15 7.80 17
16 12.93 21 9.14 18 5.01 13 9.00 18 11.20 20
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Figure 6.7: Estimated condition number and least-squares fit to a degree 2 polyno-
mial in log H

h
, versus H

h
; βi = 1 and βi = 10 in a checkerboard pattern and αi ≡ 1

(3D case)

6.4.3 A Random Coefficient Case

In this experiment, we use a different distribution of the coefficients than in Sec-

tion 6.4.1 and Section 6.4.2. In each set of experiments, we first fix 4 constants, aB,
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aW , bB, and bW . We next choose N2/2 random numbers, r1, r2, · · · , rN2/2, in [0, 1]

with a uniform distribution. We consider N2/2 numbers 10aB·r1 , 10aB·r2, · · · 10aB ·rN2/2 .

We then assign these numbers for the α values of the black subdomains. By the

same process, we can distribute the coefficients for the other subdomains.

Table 6.5: Experimental sets

upper bounds of coefficients
set 1 aB = 1, aW = 1, bB = 1, bW = 1
set 2 aB = 2, aW = −2, bB = 1, bW = 1
set 3 aB = 1, aW = 1, bB = 2, bW = −2
set 4 aB = 2, aW = −2, bB = 2, bW = −2
set 5 aB = 2, aW = −2, bB = −2, bW = 2

We perform 5 different sets of experiments. For the first set, we have gentle

jumps across the interface Γ for both α and β. We next use large discontinuities for

α and mild discontinuities for β and we then reverse the situation for set 3. We use

large jumps of the coefficients across the interface for both α and β for the fourth

and fifth sets. We provide balanced coefficients, which means that αi

βi
are in certain

range, for set 4 while we have both mass-dominant cases and divergence-dominant

cases for set 5. For details, see Table 6.5. In each set, we try two different weight

functions for the scaling factor in (4.11); we first use χi = αi and then χi = βi.

Other general settings are quite similar to those of Section 6.4.1 and Section 6.4.2.

Table 6.6 and Table 6.7 show the results of our experiments for 2D. The results

for 3D are given in Table 6.8 and Table 6.9. As we see from the tables, the

algorithms work quite well if we choose the weight function χi = βi in all sets

of experiments. However, in the opposite case, where χi = αi, the method is

extremely vulnerable to jumps of β across the interface.
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Table 6.6: Condition numbers and iteration counts with χi = αi. Coefficients as
indicated in a checkerboard pattern. (2D case)

set 1 set 2 set 3 set 4 set 5
H
h

cond iters cond iters cond iters cond iters cond iters

8 5.46 15 5.34 15 3.67e3 219 6.71 16 2.52e3 184
16 7.19 16 7.29 16 4.71e3 267 8.75 17 3.31e3 225
32 9.26 18 9.61 18 6.30e3 296 11.15 19 4.31e3 263
64 11.67 20 12.31 19 8.13e3 322 13.92 20 5.49e3 294

Table 6.7: Condition numbers and iteration counts with χi = βi. Coefficients as
indicated in a checkerboard pattern. (2D case)

set 1 set 2 set 3 set 4 set 5
H
h

cond iters cond iters cond iters cond iters cond iters

8 2.55 10 2.67 11 5.45 15 4.39 14 4.04 14
16 3.44 12 3.59 13 7.41 17 6.01 16 5.61 16
32 4.49 13 4.68 14 9.72 19 7.82 17 7.59 18
64 5.70 14 5.94 15 12.47 21 9.84 19 9.94 20

Table 6.8: Condition numbers and iteration counts with χi = αi. Coefficients as
indicated in a checkerboard pattern. (3D case)

set 1 set 2 set 3 set 4 set 5
H
h

cond iters cond iters cond iters cond iters cond iters

2 5.92 14 16.30 22 4.06e3 282 1.26e2 64 6.96e3 318
4 9.60 18 26.20 29 6.12e3 404 2.00e2 84 8.78e3 451
8 14.40 22 40.42 36 9.01e3 489 2.98e2 102 1.28e4 573

Table 6.9: Condition numbers and iteration counts with χi = βi. Coefficients as
indicated in a checkerboard pattern. (3D case)

set 1 set 2 set 3 set 4 set 5
H
h

cond iters cond iters cond iters cond iters cond iters

2 2.24 8 2.11 8 4.31 13 4.36 13 3.92 12
4 3.35 10 3.17 10 6.58 16 6.71 17 6.09 15
8 4.83 13 4.61 13 9.79 20 10.16 20 9.15 19
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[58] J. Schöberl, Commuting quasi-interpolation operators for mixed finite ele-

ments, Tech. Report ISC-01-10-MATH, Texas A & M University, 2001. Insti-

tute for Scientific Computation.

[59] , A posteriori error estimates for Maxwell equations, Math. Comp., 77

(2008), pp. 633–649.

[60] L. R. Scott and S. Zhang, Finite element interpolation of nonsmooth

functions satisfying boundary conditions, Math. Comp., 54 (1990), pp. 483–

493.

113



[61] B. F. Smith, P. E. Bjørstad, and W. D. Gropp, Domain decomposition,

Cambridge University Press, Cambridge, 1996. Parallel multilevel methods

for elliptic partial differential equations.

[62] A. Toselli, Domain decomposition methods for vector value field problems,

PhD thesis, Courant Institue of Mathematical Sciences, May. 1999.

[63] , Neumann-Neumann methods for vector field problems, Electron. Trans.

Numer. Anal., 11 (2000), pp. 1–24.

[64] , Overlapping Schwarz methods for Maxwell’s equations in three dimen-

sions, Numer. Math., 86 (2000), pp. 733–752.

[65] , Dual-primal FETI algorithms for edge finite-element approximations in

3D, IMA J. Numer. Anal., 26 (2006), pp. 96–130.

[66] A. Toselli and A. Klawonn, A FETI domain decomposition method

for edge element approximations in two dimensions with discontinuous co-

efficients, SIAM J. Numer. Anal., 39 (2001), pp. 932–956 (electronic).

[67] A. Toselli and O. Widlund, Domain decomposition methods—algorithms

and theory, vol. 34 of Springer Series in Computational Mathematics,

Springer-Verlag, Berlin, 2005.

[68] X. Tu, A BDDC algorithm for a mixed formulation of flow in porous media,

Electron. Trans. Numer. Anal., 20 (2005), pp. 164–179 (electronic).

[69] , A BDDC algorithm for flow in porous media with a hybrid finite element

discretization, Electron. Trans. Numer. Anal., 26 (2007), pp. 146–160.

114



[70] B. I. Wohlmuth, Discretization methods and iterative solvers based on do-

main decomposition, vol. 17 of Lecture Notes in Computational Science and

Engineering, Springer-Verlag, Berlin, 2001.

[71] B. I. Wohlmuth, A. Toselli, and O. B. Widlund, An iterative sub-

structuring method for Raviart-Thomas vector fields in three dimensions,

SIAM J. Numer. Anal., 37 (2000), pp. 1657–1676 (electronic).

115


