On a Conjecture of Micha Perles

Nagabhushana Prabhu\(^1\)
Courant Institute of Mathematical Sciences
251 Mercer Street
New York, NY 10012

March 17, 1994

\(^1\)Supported in part by NSA grant MDA 904-89-H-2030, ONR grant N00014-85-K-0046 and by NSF grants CCR-8901484, CCR-8902221 and CCR-8906949.
Abstract

We prove a conjecture of Micha Perles concerning simple polytopes, for a subclass that properly contains the duals of stacked and crosspolytopes. As a consequence of a special property of this subclass it also follows that, the entire combinatorial structure of a polytope in the subclass can be recovered from its graph, by applying our results recursively.
1 Introduction

Let P be a simple d-polytope and $G(P)$ the graph (1-skeleton) of P. Perles conjectured that every $(d - 1)$-regular, induced, connected and non-separating subgraph of $G(P)$ determines a facet of P [2]. In this paper we prove the conjecture for a proper subclass of simple polytopes.

The motivation for our results comes from two subclasses of simplicial polytopes, namely the \textit{stacked polytopes} and the \textit{crosspolytopes}. Polytopes obtained from a simplex by successive addition of pyramids over facets are called \textit{stacked polytopes}. Stacked polytopes form an important subclass of simplicial polytopes in that, only they attain equality in the lower bound theorem [3]. Secondly, if $\{e_1, \ldots, e_d\}$ is a set of linearly independent vectors in \mathbb{R}^d then $X = \text{conv}\{\pm e_1, \ldots, \pm e_d\}$ is called a \textit{d-crosspolytope}. d-crosspolytopes can be formed by successively building bipyramids $d - 1$ times starting with a 1-simplex.

Consider the dual analogues of the operations of stacking and forming bipyramids. It can be shown [3] that, if P is a simplicial polytope and P^* a simple polytope dual to P, then a polytope obtained by forming a pyramid over a facet of P is dual to a polytope obtained by truncating the corresponding vertex of P^*. Also, [4] any bipyramid with basis P is dual to any prism with basis P^*.

Against this background, we show that if P is any polytope for which Perles’ conjecture is true, then the conjecture is also true for a polytope obtained by truncating a vertex of P and also for any prism with basis P. Since Perles’ conjecture is trivially true for a simplex, one concludes that it is true for any polytope obtained from a simplex by building prisms and truncating vertices finitely many times, in any arbitrary order. The class \mathcal{C} of polytopes so generated, properly contains duals of crosspolytopes and duals of stacked polytopes. We also show that \mathcal{C} is a proper subclass of simple polytopes. Moreover the class \mathcal{C} has the interesting property that every face of a polytope in \mathcal{C} also belongs to \mathcal{C}. This allows one to recover the entire combinatorial structure of a polytope in \mathcal{C} from its graph, by applying our results.
recursively.

2 Notation

Please refer to [3] for a discussion on polytopes and for related terminology. Here we merely indicate the convention that we will follow in the sequel.

If \(P \) is a polytope then its vertex set will be denoted \(V(P) \) and its graph \(G(P) \). The vertex set and the edge set of a graph \(\Gamma \) will be denoted \(V(\Gamma) \) and \(E(\Gamma) \) respectively. Given a \(d \)-polytope \(P \), let \(\bar{P} = P + z \) be a translate of \(P \) where \(z \) is a non-zero vector in \(\mathbb{R}^{d+1} \). Then the convex hull of \(P \) and \(\bar{P} \) is called a prism with basis \(P \) denoted \(Pr(P) \). A hyperplane \(H \) in \(\mathbb{R}^d \) is said to truncate a vertex \(x \) of \(P \), if \(x \) and \(V(P) \setminus \{x\} \) lie in different open half-spaces of \(H \). We denote by \(Tr(P) \) the intersection of \(P \) with the closed half-space containing \(V(P) \setminus \{x\} \). For our purposes, it does not matter which vertex of \(P \) is truncated to obtain \(Tr(P) \). \(Tr(P) \) represents a (not necessarily unique) polytope obtained by truncating some vertex of \(P \).

Define a subclass \(C \) of simple polytopes as follows: A polytope \(P \) belongs to \(C \) iff there is a sequence of polytopes

\[
P_0, P_1, \ldots, P_n = P
\]

where \(P_0 \) is a \(k \)-simplex \((k \geq 1) \) and for \(1 \leq i \leq n \) either \(P_i = Tr(P_{i-1}) \) or \(P_i = Pr(P_{i-1}) \).

From the definition of the subclass \(C \) it follows that it contains the duals of stacked and crosspolytopes.

3 Perles’ Conjecture for the Subclass \(C \)

Theorem 1 If Perles’ conjecture is true for a simple \(d \)-polytope \(P \) then it is also true for any prism \(Pr(P) \) with basis \(P \).
Proof: Let $Pr(P)$ be the convex hull of P and its translate $\bar{P} = P + z$. Then every vertex $v \in V(P)$ is adjacent to the vertex $\tilde{v} = v + z$ of \bar{P}. If $X \subseteq V(P)$ then \tilde{X} will denote the corresponding subset of $V(\bar{P})$. If Λ is any induced subgraph of P then $\tilde{\Lambda}$ will denote the subgraph of $G(\bar{P})$ induced by the corresponding vertices of \bar{P}.

Let Γ be a d-regular, induced, connected and non-separating subgraph of $Pr(P)$. We show that Γ must determine a facet of $Pr(P)$.

If Γ is a subgraph of $G(P)$ (resp. $G(\bar{P})$), since both Γ and $G(P)$ (resp. $G(\bar{P})$) are d-regular graphs, $\Gamma = G(P)$ (resp. $\Gamma = G(\bar{P})$). Hence Γ determines a facet of $Pr(P)$. So we may assume that $V(\Gamma) \cap V(P) \neq \emptyset$ and $V(\Gamma) \cap V(\bar{P}) \neq \emptyset$.

Let Γ_P and $\Gamma_{\bar{P}}$ be the restrictions of Γ to P and \bar{P} respectively. Consider any vertex v of Γ_P. v is adjacent to only one vertex in \bar{P}. Also, Γ is d-regular. Hence v has at least $d - 1$ neighbors in Γ_P. We consider two cases.

Case 1: Each vertex in Γ_P has exactly $d - 1$ neighbors in Γ_P.

Observe that by symmetry each vertex of $\Gamma_{\bar{P}}$ is also $(d - 1)$-valent in Γ_P and that the two subgraphs Γ_P and $\Gamma_{\bar{P}}$ are copies of each other. We also observe that:

1. Γ_P is $(d - 1)$-regular.

2. If Γ_P has more than one connected component, pick one and call it C. Then the subgraph Γ_C of Γ induced by $V(C) \cup V(\bar{C})$ is d-regular and hence not connected to $\Gamma \setminus \Gamma_C$ contrary to the assumption that Γ is connected. Hence Γ_P must be connected.

3. Suppose $x, y \in V(P)$ are separated by Γ_P. Let $C(x)$ and $C(y)$ be the connected components of $G(P) \setminus \Gamma_P$ containing x and y respectively. It is easy to see that $\tilde{C}(x)$ and $\tilde{C}(y)$ are separated by $\Gamma_{\bar{P}}$ in $G(\bar{P})$. Then Γ would separate $C(x)$ and $C(y)$, contrary to our assumption. Hence Γ_P cannot separate $G(P)$.

Since Perles’ conjecture is true for P, using 1, 2 and 3 we conclude that Γ_P determines a facet F of P. Since $\Gamma_{\bar{P}}$ is the image of Γ_P it also determines the facet \tilde{F} of \bar{P}. So Γ determines a facet of $Pr(P)$.

3
Case 2: At least one vertex in Γ_P has d neighbors in Γ_P.

Let X be the set of all the d-valent vertices in Γ_P, i.e.,

$$X = \{ w \mid w \in V(\Gamma_P) \text{ and } w \text{ has } d \text{ neighbors in } \Gamma_P \}$$

Let Y be the set of all vertices in Γ_P that are adjacent to at least one vertex in X, i.e.,

$$Y = \{ w \mid w \notin X; \exists x \in X, (w, x) \in E(\Gamma_P) \}$$

Since vertices in Y are $(d - 1)$-valent in Γ_P, $\tilde{Y} \subseteq V(\Gamma_{\tilde{P}})$. In $G(\tilde{P})$, all edges coming out of \tilde{X} terminate in \tilde{Y}. In other words, any edge path in $G(Pr(\tilde{P}))$ between a vertex $x \in \tilde{X}$ and a vertex $v \notin \tilde{X}$ must contain a vertex in \tilde{Y}. We know that there is a vertex $v \in (G(\tilde{P}) \setminus \Gamma)$ because $G(\tilde{P})$ being d-regular cannot be a proper subgraph of Γ which is also d-regular (recall that we assumed $\Gamma \cap V(\tilde{P}) \neq \emptyset$.) So $\tilde{Y} \subseteq V(\Gamma)$ separates v and \tilde{X} contrary to the assumption that Γ does not separate $G(Pr(\tilde{P}))$. Hence Case 2 is impossible.

The above argument, shows that $Pr(\tilde{P})$ satisfies Perles’ conjecture if \tilde{P} does. ♦

Theorem 2 If Perles’ conjecture is true for a simple d-polytope P, then it is also true for the d-polytope $Tr(P)$ obtained by truncating a vertex of P.

Proof: Assume that vertex $v \in V(P)$ was truncated to obtain $Tr(P)$. Suppose $(v, w_1), \ldots, (v, w_d)$ are the d edges incident on v in P. Then z_1, \ldots, z_d are the new vertices in $Tr(P)$ where z_i is the intersection of (v, w_i) and the truncating hyperplane H. Also, the new facet of $Tr(P)$ (namely $H \cap Tr(P)$) is a $(d - 1)$-simplex determined by the vertex set $Z = \{ z_1, \ldots, z_d \}$.

Let Γ be a $(d - 1)$-regular, connected, induced and non-separating subgraph of $G(Tr(P))$.

If $Z \cap V(\Gamma) = \emptyset$, there is nothing to prove. Also, if $Z \subseteq V(\Gamma)$ then since Z induces a $(d - 1)$-regular subgraph $Z = V(\Gamma)$ and hence Γ determines a facet of
$Tr(P)$. So the only case left to consider is where Γ contains a proper nonempty subset of Z. Since Γ is $(d - 1)$-regular, if it contains a vertex of Z, it must contain at least $d - 2$ of its neighbors in Z. Therefore at most one vertex of Z can be left out and without loss of generality we assume $z_d \notin V(\Gamma)$. Hence, $w_i \in V(\Gamma)$ for $1 \leq i \leq d - 1$.

Consider the subgraph Γ' of $G(P)$ induced by the vertex set $(V(\Gamma) \setminus Z) \cup \{v\}$. Γ' is a $(d - 1)$-regular, connected, induced subgraph. z_d has only one neighbour in $V(Tr(P)) \setminus V(\Gamma)$. Therefore $V(\Gamma) \cup \{z_d\}$ does not separate $G(Tr(P))$ which means Γ' does not separate $G(P)$. So Γ' determines a facet F of P and w_1, \ldots, w_{d-1} are the neighbors of v in F. Let H be the supporting hyperplane for F in P. $H \cap Tr(P)$ is a facet of $Tr(P)$ and the graph of this facet is Γ; that completes the proof. ♦

As an immediate consequence of theorems 1 and 2 we have,

Corollary 1 Perles’ conjecture is true for every polytope in the subclass C.

The subclass C has the property that any face of a polytope in C also belongs to C. We prove this property in the following lemma.

Lemma 1 If $Q \in C$ and F is a facet of Q then $F \in C$.

Proof: Let $Q \in C$ be a polytope for which the lemma is true. Let X be a facet of $Pr(Q)$. If $X = Q$ or $X = \bar{Q}$ then by assumption $X \in C$. If however $X = Pr(F)$ where F is a facet of Q, then since the lemma is true for Q, $F \in C$ and hence $Pr(F) = X \in C$. So, if the lemma is true for a $Q \in C$ then it is also true for $Pr(Q)$.

Now we consider $Tr(Q)$. Let $v \in V(Q)$ be truncated to obtain $Tr(Q)$ and let H be the truncating hyperplane. Assume that H^+ contains $Tr(Q)$ (H^+ denotes one of the closed half-spaces of H). Let Y be a facet of $Tr(Q)$.

If $Y = H \cap Tr(Q)$ then Y is a simplex and hence $Y \in C$. So assume $Y = F \cap H^+$ where F is a facet of Q. Since the lemma is true for Q, $F \in C$. Hence $Tr(F) = Y \in C$. The only case left to consider is when $Y = F$ where F is a facet of Q. Once again $Y \in C$.
Therefore if the lemma is true for a $Q \in \mathcal{C}$ it is also true for $Tr(Q)$; that completes the proof.\)

As an immediate consequence of this lemma we obtain

Corollary 2 The entire combinatorial structure of a polytope $P \in \mathcal{C}$ can be determined from $G(P)$ by repeated application of theorems 1 and 2 and lemma 1.

The following lemma shows that \mathcal{C} is properly contained in the class of simple polytopes.

Lemma 2 \mathcal{C} is a proper subclass of simple polytopes.

Proof: We show that \mathcal{C} does not contain a simple 4-polytope with 9 vertices. Suppose it did. Then, to construct the polytope we can either start with a simple 3-polytope or a 4-simplex. Suppose we started with a 4-simplex which has 5 vertices. In this case we may only truncate vertices. But each truncation (when $d=4$) increases the vertex count by 3; so we get 4-polytopes with 5, 8, 11, \cdots vertices but not with 9 vertices. On the contrary suppose we started with a 3-polytope. Since constructing a prism doubles the vertex count we can only construct a prism over a 3-polytope with 4 vertices. The same argument as before shows that again we cannot obtain a 4-polytope with 9 vertices.

Now consider $\mathcal{C}(6,4)$ - the cyclic 4-polytope with 6 vertices has 9 facets. (refer to [3] for details). It is a simplicial polytope. Its dual which is simple has 9 vertices and is hence not in \mathcal{C}.\)

Also, it is easy to show that the dual-stacked and the dual-crosspolytopes form proper subclasses of \mathcal{C}.

4 Remarks

Perles’ conjecture is true for any simple 3-polytope[5]. So we could as well start with any simple 3-polytope and build prisms and truncate vertices finitely many
times. The foregoing results would still be valid without any modification for a polytope so obtained.

References

