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Abstract

We prove a conjecture of Micha Perles concerning simple polytopes, for a subclass
that properly contains the duals of stacked and crosspolytopes. As a consequence
of a special property of this subclass it also follows that, the entire combinatorial
structure of a polytope in the subclass can be recovered from its graph, by applying

our results recursively.



1 Introduction

Let P be a simple d-polytope and G(P) the graph (1-skeleton) of P. Perles conjec-
tured that every (d — 1)-regular, induced, connected and non-separating subgraph
of G(P) determines a facet of P [2]. In this paper we prove the conjecture for a
proper subclass of simple polytopes.

The motivation for our results comes from two subclasses of simplicial polytopes,
namely the stacked polytopes and the crosspolytopes. Polytopes obtained from a
simplex by successive addition of pyramids over facets are called stacked polytopes.
Stacked polytopes form an important subclass of simplicial polytopes in that, only
they attain equality in the lower bound theorem [3]. Secondly, if {e1,..., €4} is a set
of linearly independent vectors in R? then X = conv{zey,...,+ey} is called a d-
crosspolytope. d-crosspolytopes can be formed by successively building bipyramids
d — 1 times starting with a 1-simplex.

Consider the dual analogues of the operations of stacking and forming bipyra-
mids. It can be shown [3] that, if P is a simplicial polytope and P* a simple
polytope dual to P, then a polytope obtained by forming a pyramid over a facet
of P is dual to a polytope obtained by truncating the corresponding vertex of P*.
Also, [4] any bipyramid with basis P is dual to any prism with basis P*.

Against this background, we show that if P is any polytope for which Perles’
conjecture is true, then the conjecture is also true for a polytope obtained by trun-
cating a vertex of P and also for any prism with basis P. Since Perles’ conjecture is
trivially true for a simplex, one concludes that it is true for any polytope obtained
from a simplex by building prisms and truncating vertices finitely many times, in
any arbitrary order. The class C of polytopes so generated, properly contains duals
of crosspolytopes and duals of stacked polytopes We also show that C is a proper
subclass of simple polytopes. Moreover the class C has the interesting property that
every face of a polytope in C also belongs to C. This allows one to recover the entire

combinatorial structure of a polytope in C from its graph, by applying our results



recursively.

2 Notation

Please refer to [3] for a discussion on polytopes and for related terminology. Here
we merely indicate the convention that we will follow in the sequel.

If P is a polytope then its vertex set will be denoted V(P) and its graph G(P).
The vertex set and the edge set of a graph I' will be denoted V(I') and E(T)
respectively. Given a d-polytope P, let P = P+z be a translate of P where z
is a non-zero vector in R*. Then the convex hull of P and P is called a prism
with basis P denoted Pr(P). A hyperplane H in R? is said to truncate a vertex
xz of P, if x and V(P)\ {z} lie in different open half-spaces of H. We denote by
Tr(P) the intersection of P with the closed half-space containing V(P) \ {z}. For
our purposes, it does not matter which vertex of P is truncated to obtain Tr(P).
Tr(P) represents a (not necessarily unique) polytope obtained by truncating some
vertex of P.

Define a subclass C of simple polytopes as follows: A polytope P belongs to C uff

there 1s a sequence of polytopes
Po,Pl,"',Pn:P

where Py 1s a k-simplex (k > 1) and for 1 < i < n either P, = Tr(Pi1) or
Pi = PT(PZ'_l).
JFrom the definition of the subclass C it follows that it contains the duals of

stacked and crosspolytopes.

3 Perles’ Conjecture for the Subclass C

Theorem 1 If Perles’ conjecture s true for a simple d-polytope P then it 1s also
true for any prism Pr(P) with basis P.



Proof : Let Pr(P) be the convex hull of P and its translate P = P+ 2. Then
every vertex v € V(P) is adjacent to the vertex © = v + z of P. IfXC V(P) then
X will denote the corresponding subset of V(ﬁ) If A is any induced subgraph of
P then A will denote the subgraph of G(ﬁ) induced by the corresponding vertices
of P.

Let I" be a d-regular, induced, connected and non-separating subgraph of Pr(P).
We show that I' must determine a facet of Pr(P).

If T is a subgraph of G(P) (resp. G(ﬁ)), since both I' and G(P) (resp. G(ﬁ))
are d-regular graphs, I' = G(P) (resp. I' = G(ﬁ)) Hence I' determines a facet of
Pr(P). So we may assume that V(I) N V(P) # 0 and V(I') N V(P) # 0.

Let I'p and I's be the restrictions of I' to P and P respectively. Consider any
vertex v of T'p. v is adjacent to only one vertex in P. Also, I' is d-regular. Hence
v has at least d — 1 neighbors in I'p. We consider two cases.

Case 1 : Each vertex in I'p has exactly d — 1 neighbors in I'p.

Observe that by symmetry each vertex of I's is also (d — 1)-valent in ' and

that the two subgraphs I'p and ' are copies of each other. We also observe that:
1. T'p is (d — 1)-regular.

2. If I'p has more than one connected component, pick one and call it C'. Then

the subgraph I'c of I" induced by V(C) U V(C) is d-regular and hence not
connected to I' \ T'c contrary to the assumption that I' is connected. Hence

I'p must be connected.

3. Suppose x,y € V(P) are separated by I'p. Let C(x) and C(y) be the connected
components of G(P) \ I'p containing = and y respectively. It is easy to see
that C(z) and C(y) are separated by I';in G(P). Then I' would separate

C(z) and C(y), contrary to our assumption. Hence I'p cannot separate G(P).

Since Perles’ conjecture is true for P, using 1, 2 and 3 we conclude that I'p deter-
mines a facet F' of P. Since I'; is the image of I'p it also determines the facet F of

P. So I determines a facet of Pr(P).



Case 2 : At least one vertex in I'p has d neighbors in I'p.
Let X be the set of all the d-valent vertices in I'p, i.e.,
X ={w | w € V(I'p) and w has d neighbors in I'p }

Let Y be the set of all vertices in I'p that are adjacent to at least one vertex in X,
le.,

Y={w|wd¢gX;Jze X, (wuz)e E(Tp)}

Since vertices in Y are (d — 1)-valent in Tp, ¥ C V(T's). In G(P), all edges coming
out of X terminate in Y. In other words, any edge path in G(Pr(P)) between
a vertex € X and a vertex v ¢ X must contain a vertex in Y. We know that
there is a vertex v € (G(P) \ I') because G(P) being d-regular cannot be a proper
subgraph of I' which is also d-regular (recall that we assumed I' N V(ﬁ) # 0.) So
Y C V(I') separates v and X contrary to the assumption that T' does not separate

G(Pr(P)). Hence Case 2 is impossible.

The above argument, shows that Pr(P) satisfies Perles’ conjecture if P does. ©

Theorem 2 If Perles’ conjecture 1s true for a simple d-polytope P, then it is also
true for the d-polytope Tr(P) obtained by truncating a vertex of P.

Proof : Assume that vertex v € V(P) was truncated to obtain Tr(P). Suppose
(v,w1), ...t (v, wy) are the d edges incident on v in P. Then zi,...,z4 are the
new vertices in 7'r(P) where z; is the intersection of (v,w;) and the truncating

hyperplane H. Also, the new facet of Tr(P) (namely H N Tr(P)) is a (d — 1)-

simplex determined by the vertex set Z = {z1,...,24}.

Let T" be a (d — 1)-regular, connected, induced and non-separating subgraph of
G(Tr(P)).

If Z N V() = 0, there is nothing to prove. Also, if Z C V(I') then since Z
induces a (d — 1)-regular subgraph Z = V(I') and hence I' determines a facet of



Tr(P). So the only case left to consider is where I' contains a proper nonempty
subset of Z. Since I' is (d — 1)-regular, if it contains a vertex of Z, it must contain
at least d — 2 of its neighbors in Z. Therefore at most one vertex of Z can be left
out and without loss of generality we assume zy ¢ V(I'). Hence, w; € V(I') for
1<i<d-1.

Consider the subgraph IV of G(P) induced by the vertex set (V(I') \ Z) U {v}
I'is a (d — 1)-regular, connected, induced subgraph. z; has only one neighbour in
V(Tr(P)) \ V(I'). Therefore V(I')U{z4} does not separate G(T'r(P)) which means
I'" does not separate G(P). So I determines a facet F of P and wy,...,wy_1 are
the neighbors of v in F'. Let H be the supporting hyperplane for F'in P. HNTr(P)
is a facet of Tr(P) and the graph of this facet is I'; that completes the proof. ¢

As an immediate consequence of theorems 1 and 2 we have,
Corollary 1 Perles’ conjecture is true for every polytope in the subclass C.

The subclass C has the property that any face of a polytope in C also belongs to C.
We prove this property in the following lemma.

Lemma 1l If Q) € C and F is a facet of Q) then F € C.

Proof: Let () € C be a polytope for which the lemma is true. Let X be a facet
of Pr(Q). If X = Q or X = Q then by assumption X € C. If however X = Pr(F)
where F' is a facet of (), then since the lemma is true for @}, F € C and hence
Pr(F) =X €C. So, if the lemma is true for a ) € C then it is also true for Pr(Q).

Now we consider Tr(Q). Let v € V(Q) be truncated to obtain Tr(Q) and let H
be the truncating hyperplane. Assume that H* contains Tr(Q) (H* denotes one
of the closed half-spaces of H). Let Y be a facet of Tr(Q).

IfY = HNTr(Q) then Y is a simplex and hence Y € C. So assume Y = FNH*
where F' is a facet of ). Since the lemma is true for @, F' € C. Hence Tr(F) =
Y € C. The only case left to consider is when Y = F where F'is a facet of (). Once
again Y € C.



Therefore if the lemma is true for a @ € C it is also true for Tr(Q); that

completes the proof.o

As an immediate consequence of this lemma we obtain

Corollary 2 The entire combinatorial structure of a polytope P € C can be deter-
mined from G(P) by repeated application of theorems 1 and 2 and lemma 1.

The following lemma shows that C is properly contained in the class of simple

polytopes.
Lemma 2 C is a proper subclass of simple polytopes.

Proof : We show that C does not contain a simple 4-polytope with 9 vertices.
Suppose it did. Then, to construct the polytope we can either start with a simple
3-polytope or a 4-simplex. Suppose we started with a 4-simplex which has 5 ver-
tices. In this case we may only truncate vertices. But each truncation (when d=4)
increases the vertex count by 3; so we get 4-polytopes with 5, 8, 11, - - - vertices but
not with 9 vertices. On the contrary suppose we started with a 3-polytope. Since
constructing a prism doubles the vertex count we can only construct a prism over
a 3-polytope with 4 vertices. The same argument as before shows that again we

cannot obtain a 4-polytope with 9 vertices.

Now consider C(6,4) - the cyclic 4-polytope with 6 vertices has 9 facets. (refer
to [3] for details). It is a simplicial polytope. Its dual which is simple has 9 vertices

and is hence not in C. ¢

Also, it is easy to show that the dual-stacked and the dual-crosspolytopes form

proper subclasses of C.

4 Remarks

Perles’ conjecture is true for any simple 3-polytope[5]. So we could as well start

with any simple 3-polytope and build prisms and truncate vertices finitely many



times. The foregoing results would still be valid without any modification for a

polytope so obtained.
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