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Abstract. Grammars for many parser generators not only specify a lan-
guage’s syntax but also the corresponding syntax tree. Unfortunately,
most parser generators pick a somewhat arbitrary combination of fea-
tures from the design space for syntax trees and thus lock in specific
trade-offs between expressivity, safety, and performance. This paper dis-
cusses the three major axes of the design space—specification within or
outside a grammar, concrete or abstract syntax trees, and dynamically
or statically typed trees—and their impact. It then presents algorithms
for automatically realizing all major choices from the same, unmodified
grammar with inline syntax tree declarations. In particular, this paper
shows how to automatically (1) extract a separate syntax tree specifica-
tion, (2) embed an abstract syntax tree within a concrete one, and (3)
infer a strongly typed view on a dynamically typed tree. All techniques
are implemented in the Rats! parser generator and have been applied to
real-world C and Java grammars and their syntax trees.

1 Introduction

Parser generators convert a concise specification of a language’s syntax, the
grammar, into executable code, the parser. As a result, they automate much of
the process of parser writing and thus simplify the development of language pro-
cessing tools. However, just recognizing a language’s syntax is not sufficient,
and parsers usually generate some syntax tree representation, which is con-
sumed by later phases of a language processing tool. Consequently, many parser
generators—including ANTLR [1], Elkhound [2], JavaCC with the JJTree [3] or
JTB [4] preprocessors, SableCC [5, 6], SDF2 [7, 8], and my own Rats! [9]—go
beyond the semantic actions familiar from Yacc [10], support the declarative
specification of syntax trees, and automatically include the corresponding ac-
tion code in generated parsers. Again, this automates much of the process of
implementing syntax trees and thus simplifies tool development.

The design space for declarative syntax tree specifications spans three major
axes: The syntax tree can be declared inline within the grammar or separately;
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it can be concrete (i.e., a parse tree) or abstract; and it can be dynamically
typed or statically typed. Each choice in this design space reflects a particular
trade-off between expressivity, safety, and performance. However, none of the
above parser generators (besides Rats! ) supports all options in the design space.
And, if a parser generator supports a choice along an axis, it typically requires
modifications to the grammar. As a result, the re-use of grammars is curtailed:
depending on a project’s requirements, developers either need to use a different
parser generator or a differently written grammar. At the same time, grammar
re-use is highly desirable, since developing and maintaining the grammar for a
real-world language requires a significant effort.

To improve the flexibility of parser generators and facilitate the re-use of
grammars, this paper shows how to automatically realize all options in the de-
sign space from the same unmodified grammar and syntax tree specification. The
starting point is an inline, abstract, and dynamically typed syntax tree. The pa-
per then presents algorithms for automatically (1) extracting a separate syntax
tree specification to serve as documentation for tool developers, (2) embed an
abstract syntax tree within a concrete one to facilitate source refactorings, and
(3) infer a strongly typed view on a dynamically typed tree to improve static
safety. All techniques are implemented in the Rats! parser generator and inte-
grated with the xtc toolkit for source-to-source transformers [11]. They have also
been applied to real-world grammars for C and Java. At the same time, they do
not depend on features unique to Rats! or xtc and can thus be implemented in
other parser generators as well.

2 Design Space and Related Work

As summarized in Table 1, the design space for syntax trees spans three ma-
jor axes, which entail trade-offs between expressivity, safety, and performance.
The first axis captures whether the syntax tree specification is inline within a
grammar or separate. An inline specification certainly simplifies the grammar
writer’s task, since she needs to describe how to map a language’s syntax onto
its tree. Consequently, most parser generators rely on inline specifications. At
the same time, inline specification obscures the structure of a syntax tree, since
the grammar contains considerably more information. As a result, it also compli-
cates the work of tool developers, who may not be the same as grammar writers
and need to understand the syntax tree to get their work done. Elkhound ad-
dresses this concern by featuring a separate syntax tree specification, but also
requires explicit semantic actions in the grammar to tie the tree back to the
syntax. SableCC features an intermediate design point, with the abstract syntax
being specified separately but still within the same file. This approach results
in a more accessible specification, but also leads to duplication of code, since
concrete and abstract syntax typically have considerable overlap.

The second axis captures whether the syntax tree is concrete or abstract.
Abstract syntax trees omit information such as comments and layout, which
are not necessary for most language processing tasks. Due to this compactness,
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Table 1. The three main axes of the design space for syntax trees.

Axis Choice Main Trade-Off

Specification Inline More convenient for grammar writer
Separate More accessible for tool developer

Syntax Tree Concrete Necessary for refactorings, but higher overheads
Abstract More compact, easier to understand and process

Typing Dynamic More flexible, easier to reuse and extend
Static Safer, easier to ensure tool is correct

they are easier to understand and process, while also having lower time and
space overheads. In contrast, concrete syntax trees represent the complete input
and thus have higher overheads. But they are also required for source refactoring
tools, which need to preserve formatting as much as possible. Elkhound supports
both concrete and abstract syntax trees based on the same grammar. In contrast,
JJTree and SableCC default to a concrete syntax tree, which can then be refined
to an abstract one with additional annotations. Alternatively, SDF2 embeds the
abstract syntax tree within a concrete one, thus providing both at the same time;
though as demonstrated in [9], this approach also leads to sub-optimal parser
performance for tools that do not require the concrete syntax.

The third axis captures whether the syntax tree is dynamically typed—i.e.,
relies on a single node data structure, which includes (say) a name to distin-
guish between kinds of nodes—or statically typed—i.e., arranges nodes into a
hierarchy of data structures reflecting a language’s organization of constructs.
Dynamically typed trees tend to be more flexible and more easily extensible,
because any node can be a child of any other node. For example, SDF2’s dy-
namically typed trees enable the embedding of abstract syntax trees in concrete
ones; they also enable source code templates by embedding nodes representing
pattern variables in an existing tree [8]. Rats! provides similar facilities, again
by leveraging dynamically typed trees [11]. In contrast, statically typed trees
are generally less flexible but statically prevent program errors, especially when
leveraging the visitor design pattern for implementing processing phases [12]. At
the same time, J& demonstrates that nested inheritance can provide many of the
benefits of dynamically typed trees while still ensuring static type safety—albeit
with some notational overhead [13].

Table 2 summarizes the different parser generators and their support for syn-
tax trees. In addition to the three axes, it also lists the primary language for
generated parsers, with ANTLR supporting several other languages besides Java
and Elkhound also supporting O’Caml. Next, it lists whether a parser generator
supports semantic actions, which are not only useful for interfacing with hand-
written syntax tree representations but also for recognizing languages that are
not completely captured by a tool’s formalism. Only SableCC and SDF2 disallow
semantic actions, thus locking users into their respective grammar formalisms
and syntax tree representations. Next, the table lists the parser generator’s for-
malism and support for modules. Both SDF2 and Rats! rely on a formalism that
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Table 2. Overview of parser generators and their support for syntax trees.

System Spec. Syntax Tree Typing

ANTLR Inline Abstract Dynamic
Elkhound Separate Abstract, opt. concrete Static
JavaCC/JJTree Inline Concrete by default Dynamic by default
JavaCC/JTB Inline Concrete Static
SableCC Inline Concrete by default Static
SDF2 Inline Abstract inside concrete Dynamic

Rats! Inline Abstract, opt. inside concrete Dynamic, opt. static

System Lang. Actions Formal. Modules Traversal

ANTLR Java Optional LL(∗) — Tree grammars
Elkhound C++ Required GLR/LR — Visitors
JavaCC/JJTree Java Optional LL(k) — Visitors
JavaCC/JTB Java Optional LL(k) — Visitors
SableCC Java — LALR(1) — Visitors
SDF2 C — GLR Supported Rewrite rules

Rats! Java Optional PEG Supported Visitors

is closed under composition, integrate lexing with parsing, and feature full modu-
larity for grammars, which also improves grammar re-use. Finally, the table lists
a parser generator’s support for syntax tree traversal. In general, parser genera-
tors supporting statically typed trees also support their traversal with visitors.
In contrast, ANTLR supports the statically safe traversal of dynamically typed
trees through tree grammars. Finally, SDF2 is integrated with Stratego/XT,
which provides extensive facilities for traversing and transforming trees through
rewrite rules [14].

2.1 Rats! Approach and xtc Integration

Based on the convenience of inline specifications, the compactness and perfor-
mance of abstract syntax trees, and the flexibility of dynamically typed trees,
Rats! defaults to inline, abstract, and dynamic syntax trees. From this base-
line, Rats! can automatically (1) extract a separate syntax tree specification to
serve as documentation for tool developers, (2) embed an abstract syntax tree
in a concrete one to facilitate source refactorings, and (3) infer a strongly typed
view to improve static safety. The dynamically typed syntax trees created by
Rats! -generated parsers can be traversed with xtc’s Java-based visitors, which,
in departure from the visitor design pattern, use reflection to dynamically se-
lect the closest matching visit methods. They can also be traversed with visitors
written in Typical, which is a dialect of ML designed to simplify semantic analy-
sis, leverages the statically typed view of the syntax tree to ensure static safety,
and compiles down to Java to seamlessly integrate with other xtc code [15]. By
default, both Java-based and Typical-based visitors ignore any concrete syntax
tree nodes, thus enabling the re-use of code independent of whether an abstract

4



Table 3. The operators supported by Rats!.

Operator Type Precedence Description

’c’ Primary 6 Literal character
" . . . " Primary 6 Literal string
[ . . . ] Primary 6 Character class

_ Primary 6 Any character
{ . . . } Primary 6 Semantic action
null Primary 6 Null value
@name Primary 6 Generic node marker
(e) Primary 6 Grouping
e? Unary suffix 5 Option
e* Unary suffix 5 Zero-or-more
e+ Unary suffix 5 One-or-more
&e Unary prefix 4 And-predicate
!e Unary prefix 4 Not-predicate

id:e Unary prefix 4 Binding
" . . . ":e Unary prefix 4 String match
void:e Unary prefix 3 Voided expression

[<name>] e1 . . . en n-ary 2 Sequence
e1 / . . . / en n-ary 1 Ordered choice

syntax tree is embedded in a concrete one or not. The rest of this paper explores
how Rats! automatically realizes the different options from the same grammar
and how xtc’s visitors access the syntax trees.

3 Grammar and Syntax Tree Specification

At the core of a grammar specification are the productions relating nonterminals
to expressions. Rats! ’ productions are of the form:

Attributes Type Nonterminal = e ;

The Attributes are a space-separated list of zero or more per-production at-
tributes, Type is the Java type of the semantic value, Nonterminal is the name
of the nonterminal, and e is the expression to be parsed.

Table 3 summarizes the expression operators supported by Rats!. They mostly
mirror the operators of parsing expression grammars [16], with extensions to cre-
ate and manipulate semantic values. The PEG operators are used to specify a
language’s syntax and are comparable to the familiar EBNF notation, including
literals, options, repetitions, sequences, and choices. They differ in that options,
repetitions, and choices are greedy and in the inclusion of syntactic predicates,
which match expressions without consuming them. As discussed in detail in [16],
the greediness of PEG operators helps avoid common shortcomings of CFGs,
such as the “dangling else” problem or declarations taking precedence over other
constructs in C++, by letting grammar writers express ordering constraints di-
rectly in a language’s grammar. Where greediness is not appropriate, syntactic
predicates can limits its effects—with the full expressivity of PEGs.
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While productions can explicitly set semantic values by assigning yyValue
inside semantic actions, Rats! encourages the declarative specification of syntax
trees through void, text-only, list-valued, and generic productions:

1. Void productions are declared as void, have no semantic value, and are useful
for recognizing layout. For example,

void Space = ’ ’ / ’\t’ / ’\f’;

recognizes ignored space characters.
2. Text-only productions are declared as String, may only reference other text-

only productions, and have the text matched in the input as their semantic
values. They are useful for recognizing identifiers, keywords, and literals. For
example,

String StringLiteral = ["] (EscapeSequence / !["\\] _)* ["];

recognizes Java string literals; its semantic value is the entire literal including
the opening and closing double quotes. The !["\\] _ expression uses a not-
followed-by syntactic predicate, which inspects the input without consuming
it, to recognize any character (_) but a double quote or backslash (!["\\]).

3. List-valued productions are declared as Pair<T> and have (functional) lists
of non-void component expressions as their semantic values. For example,

Pair<Node> ExpressionList =
Expression (void:",":Symbol Expression)* ;

recognizes a comma-separated list of expressions and has a list of expression
nodes as its semantic value. The string match ",":Symbol is equivalent to

fresh-id:Symbol &{ ",".equals(fresh-id) }

but supported directly, because it represents a common idiom for matching
specific keywords or symbols in PEGs. The value of the string match, in
turn, is voided, so that Rats! can automatically deduce the repeated value
to be an expression node.

4. Generic productions are declared as generic and have dynamically typed
nodes as their semantic values. Each such generic node is an instance of class
GNode. Its name is the production’s name, unless specified through a generic
node marker @Name. Its children are the values of a sequence’s non-void
component expressions. For example,

generic ThrowStatement =
void:"throw":Keyword Expression void:";":Symbol ;

has a generic node as its semantic value. The node’s name is “ThrowState-
ment” and its only child is an expression node.

To further eliminate the need for explicit semantic actions, Rats! automatically
voids an option, repetition, or choice, if all of its component expressions are
void, i.e., either nonterminals referencing void productions or explicitly voided
expressions. Furthermore, if a sequence’s expressions contain only one non-void
expression or an explicit binding to yyValue, Rats! treats that expression’s value
as the overall sequence’s value.
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3.1 Separate Syntax Tree Specification

Given this combined grammar and syntax tree specification, the automatic ex-
traction of a language’s abstract syntax is straight-forward. First, Rats! resolves
all modules into a single grammar, voids all voidable expressions, and deduces
all sequences’ semantic values. Second, it pares down the grammar by removing
all void expressions. It also removes any extraneous information, including pro-
ductions’ attributes, sequences’ names, and bindings not to yyValue. Third, it
performs dead production elimination, which removes any productions that are
not referenced anymore. Finally, it pretty prints the resulting grammar in either
plain text or hyperlinked HTML format. Since Rats! ’ automatic deduction of
semantic values excludes void expressions and those expressions are explicitly
removed in steps two and three, the pared down grammar represents the ab-
stract syntax, thus yielding the desired result. The implementation itself re-uses
already existing functionality, with only step two requiring an additional 280
lines of Java.

4 Dynamically Typed Trees and Visitors

The visitor design pattern enables type-safe tree traversal through double dis-
patch [12]. Visitors implement a common interface V that has a visit(N) method
for every distinctly typed node N, and nodes implement an accept(V) method
that invokes the visitor on the node. While effective, the visitor design pat-
tern can also be limiting. Most importantly for our purposes, it cannot dispatch
on properties of a node, including the names of dynamically typed syntax tree
nodes. Additionally, it does not support visit methods that accept a supertype of
several nodes, thus leading to code duplication when processing several types of
nodes the same way. Finally, changes to the syntax tree’s structure tend to ripple
through the entire code base, since the visitor design pattern requires changing
the common interface V and thus all code implementing that interface.

xtc addresses these concerns by providing a more expressive alternative based
on dynamic dispatch [17]. Under this model, the appropriate visit method is dy-
namically selected and invoked through Java reflection; method resolutions are
cached to reduce the overhead of future dispatches. Intuitively, for a node of
type N, xtc finds the closest supertype N’, for which the visitor has a method
visit(N’), and calls that method. In practice, xtc’s visitor dispatch also con-
siders interfaces, starting with the interfaces implemented by the node’s class.
For generic nodes, it precedes type-based resolution with name-based resolution,
seeking a method visitName(GNode) for generic nodes with name Name.

Overall, dynamic visitor dispatch provides a simple solution that meets our
needs. Notably, we have implemented separate semantic analysis phases for Java
and C using xtc’s dynamically dispatched visitors. We have then combined them
into one visitor that performs semantic analysis for the Jeannie language, which
integrates Java and C to simplify Java native interface programming [11]. Ad-
ditionally, the combination of name-based and type-based resolution for generic
nodes enables a simple implementation of generic tree traversal. A visitor only
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needs to include visitName(GNode) methods for generic nodes of interest and
a catch-all visit method

public void visit(Node n) {
for (Object o : n) if (o instanceof Node) dispatch((Node)o);

}

to process an entire syntax tree. While expressive, dynamic dispatch does eschew
type safety. Section 6 describes how Typical complements dynamic dispatch with
statically safe traversal of the same trees. Other efforts have explored different
trade-offs between expressivity, safety, and complexity [18–20].

5 Concrete Syntax Trees

Rats! ’ support for concrete syntax is designed to preserve the structure of an ab-
stract syntax tree—so that existing analysis code including type checkers can be
re-used—while also capturing all characters in the input—so that source refac-
toring tools can preserve a program’s formatting. To this end, it departs from
established practice and does not represent each production with its own concrete
syntax tree node. Rather, it annotates the abstract syntax tree with all character
sequences in the input that are not already captured by the tree. Annotations in
general wrap nodes and are represented as instances of class Annotation, which
implements a node that references another node. Concrete syntax annotations in
particular are represented as instances of class Formatting, which provides lists
of nodes coming before and after the wrapped node. To ensure a uniform tree
structure, all character sequences are represented by instances of class Token,
which simply references a string.

The automatic embedding of abstract syntax trees in concrete ones is im-
plemented in two phases. Since Rats! is scannerless, i.e., integrates lexing and
parsing, the first phase determines the boundary between hierarchical and lexi-
cal syntax and then rewrites lexical productions to return tokens. To this end,
Rats! first performs a bottom up pass over the grammar to identify all lexi-
cal productions; a production is lexical if the transitive closure of all reachable
productions is either void or text-only. Next, Rats! performs a top down pass
starting with a grammar’s top-level production and marks all lexical productions
referenced from non-lexical productions, i.e., hierarchical syntax, as token-level.
Finally, Rats! rewrites all token-level productions to return tokens with the text
matched in the input as their semantic values. At this point, all lexical produc-
tions referenced from hierarchical syntax have semantic values.

The second phase rewrites a grammar’s hierarchical syntax to preserve all
formatting. To this end, Rats! first changes all remaining void productions into
generic productions. At this point, all productions referenced from the hierarchi-
cal syntax have semantic values, which can be captured in the syntax tree. Next,
Rats! changes all productions that are list-valued, generic, or simply pass a node
value through, so that the values of expressions that are void in the original
grammar are referenced by the before and after lists of formatting nodes. The
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formatting nodes, in turn, wrap the values of expressions that are not void in
the original grammar. For instance, the production for Java throw statements in
Section 3 contains two voided expressions whose values need to be captured in
a formatting node. Using an explicit semantic action for expositional purposes,
it is rewritten to

Node ThrowStatement =
v$1:"throw":Keyword v$2:Expression v$3:";":Symbol
{ yyValue = GNode.create("ThrowStatement",

Formatting.round1(v$1,v$2,v$3)); } ;

where round1() creates a new formatting node wrapping v$2, with v$1 the only
value on the before list and v$3 the only value on the after list.

One complication arises when a sequence does not contain nodes that can
be wrapped by formatting nodes, for example, when a sequence contains only
voided and list-valued expressions. Where possible, Rats! addresses this issue by
lifting part of the sequence into an equivalent production, whose value can be
annotated. For example, this production from the Java grammar

generic ClassBody =
void:"{":Symbol Declaration* void:"}":Symbol ;

cannot be annotated and is split into

Node ClassBody =
void:"{":Symbol ClassBody$Split1 void:"}":Symbol ;

generic ClassBody$Split1 = Declaration* @ClassBody ;

which can be properly annotated. If a sequence cannot be split, for example,
when a void expression appears between two list-valued expressions, Rats! in-
serts a formatting node annotating a null value. This ensures that all formatting
is preserved, but may change the structure of the abstract syntax tree in some
corner cases. No changes to the tree structure occur for Rats! ’ C and Java gram-
mars (in both the 1.4 and 5 versions).

To enable the re-use of analysis code for concrete syntax trees, the parent class
of all visitors Visitor provides a default visit method for processing annotations

public Object visit(Annotation a) {
return dispatch(a.node);

}

which ignores the annotation by simply returning the result of processing the
wrapped node. Additionally, the superclass of all nodes Node defines not only a
default getter

public Object get(int index) { . . . }

for accessing the child at the specified index, but also getGeneric(), which strips
any annotations before returning the child as a generic node, and getString(),
which converts tokens into strings while also stripping any annotations before
returning the child as a string. By using these facilities, tool code can process
abstract and concrete syntax trees alike.
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Table 4. Parser performance comparison.

Tree Throughput Decrease Heap Util. Increase

None 1919.0 — 47.1 —
Abstract 1421.0 1.35 58.4 1.24
Concrete 1019.0 1.39 74.8 1.28

5.1 Time and Space Overheads

To quantify the time and space overheads of concrete syntax trees, we compare
the performance of Rats! -generated Java 1.4 parsers creating no syntax tree, an
abstract syntax tree by itself, and an abstract syntax tree embedded in a con-
crete one. All three parsers are automatically generated from the same grammar;
for the first parser, Rats! voids all productions besides those for keywords and
symbols, whose values are used in string matches. As in [9], the experiments use a
sample of 38 Java source files representing different programming and comment-
ing styles and determine the overall throughput in KB/s and heap utilization
in heap bytes per input byte through a least-squares-fit. All experiments are
performed on an iMac from early 2006 with a 2 GHz Intel Core Duo processor
and 2 GB of RAM running Mac OS X 10.4.10 and Apple’s port of Java 5. Ta-
ble 4 shows the results, listing both absolute numbers as well as factor decrease
for throughput and factor increase for heap utilization. Both time and space
overheads grow at approximately the same rate when switching from no syntax
tree to an abstract syntax tree and when switching from an abstract syntax tree
to a concrete syntax tree. In other words, the results demonstrate that Rats! ’
approach of relying on select annotations instead of turning all productions into
concrete syntax tree nodes is effective at minimizing the overheads of concrete
syntax

6 Statically Typed Syntax Trees

Rats! ’ automatic inference of statically typed syntax trees is designed to type
as many trees as possible while still ensuring their static safety. To this end, it
models syntax trees through ML’s variant types. Variants are type-safe unions
of one or more constructors and nicely capture different semantic categories
such as declarations, statements, and expressions. Constructors, in turn, have
a name and some number of arguments, thus providing a good fit for generic
nodes having a name and some number of children. For example, the variant
representing Java statements

mltype statement = . . . | ThrowStatement of expression | . . . ;

includes a constructor that directly mirrors the throw statement nodes created
by the generic production in Section 3, and the variant representing Java class
bodies

mltype class_body = ClassBody of declaration list ;
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has a single constructor that directly mirrors the class body nodes created by
the generic production in Section 5.

However, variants are not sufficient to type productions such as this one
recognizing the initial clause of C for statements

Node InitialForClause = Declaration / Expression ;

or this one recognizing C sizeof expressions

generic SizeofExpression =
void:"sizeof":Keyword UnaryExpression

/ void:"sizeof":Keyword
void:"(":Symbol TypeName void:")":Symbol ;

which, by design, group different semantic constructs but do not introduce addi-
tional generic nodes. In the first example, the production simply passes the value
of a declaration or expression through. In the second example, the production
creates a generic node, whose only child is either an expression or a type name.

To statically type such productions, Rats! uses polymorphic variants [21,
22], which differ from regular, monomorphic variants in that the same construc-
tor may appear in more than one (polymorphic) variant and which are already
supported by O’Caml. At the same time, Rats! ’ use of polymorphic variants is
restricted to each polymorphic constructor wrapping exactly one regular con-
structor value. For example, the variant representing C’s initial clauses

mltype initial_for_clause = [
| `SomeExternalDeclaration of external_declaration
| `SomeExpression of expression ] ;

is polymorphic itself, thus mirroring the choice between declarations and ex-
pression in the above production for initial for clauses. Furthermore, the variant
representing C’s expressions

mltype expression = . . .
| SizeofExpression of [

| `SomeExpression of expression
| `SomeTypeName of type_name ] ;

contains an embedded polymorphic variant as the only argument to the Sizeof-
Expression constructor, thus mirroring the sizeof expression nodes created by
the above generic production. Polymorphic variants are distinct from mono-
morphic variants and thus recognizable as types automatically introduced for
static safety but without corresponding values in the dynamically typed tree.
They also enable a consistent naming convention, since polymorphic construc-
tors, such as `SomeExpression in the examples, may appear in more than one
polymorphic variant. Finally, since polymorphic constructors are restricted to
wrapping regular constructor values, pattern matches on polymorphic variants
can be implemented as set inclusion tests on the wrapped variants’ constructor
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Table 5. Overview of type constructs.

Construct Models Named After Written As

Monomorphic
– Variant Semantic category Production expression

– Constructor Generic node Generic node SizeofExpression

Polymorphic
– Variant Union of categories Production initial_for_clause

– Constructor Single category Monomorphic variant `SomeExpression

names. Table 5 summarizes the constructs used for typing syntax trees, listing
what they model, how they are named, and how they are written.

The type inference itself proceeds in two phases. The first phase creates vari-
ant types, i.e., semantic categories, for productions explicitly marked with the
variant attribute and then propagates these types across a grammar’s node-
valued productions, while also assigning constructors, i.e., generic nodes, to vari-
ants. The second phase deduces consistent types for constructors’ arguments, i.e.,
the children of generic nodes, by analyzing productions’ component expressions,
thus completing the strongly typed tree. The types are then printed as defini-
tions for the Typical language, which extends ML with declarative constructs
that simplify semantic analysis and which compiles down to Java to integrate
with other xtc code [15]. However, the same analysis could produce valid O’Caml
types with minor modifications—thus laying the foundation for Rats! -generated
O’Caml parsers. The same analysis could also produce a statically typed Java
class hierarchy, encoding each monomorphic variant as its own class, with a sub-
class for each constructor, and encoding each polymorphic variant as an interface
that is implemented by the classes of wrapped monomorphic variants.

The goal of the first phase is to assign variants to productions and construc-
tors; its algorithm is fully specified in the appendix. Basically, the algorithm cre-
ates variant types for productions explicitly marked with the variant attribute
and then pushes and pulls these types through a grammar’s productions until
all node-valued productions have been annotated. This approach is motivated
by the observation that many productions pass another production’s semantic
value through. For example, the following production from both the C and Java
grammars

generic RelationalExpression =
RelationalExpression RelationalOperator ShiftExpression

/ yyValue:ShiftExpression ;

either creates a new generic node representing a relational expression or passes
the value of the production recognizing shift expressions through. In terms of
the algorithm, ShiftExpression is a contributor to RelationalExpression,
and both productions must have the same type.

So, to assign variants to productions, the algorithm either pushes the variant
type from a production that already has a variant to contributors that have
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not yet been annotated, or it pulls the variant type from contributors that al-
ready have a variant into a production that has not yet been annotated. While
pushing, the algorithm also assigns constructors, i.e., the generic nodes created
by a production, to variants. While pulling, it also creates polymorphic vari-
ants for productions, such as the above InitialForClause production, that
pass the values of different variants through. Pushing and pulling alternate in
rounds: productions newly annotated with variants while pulling become the
candidates for the next round of pushing, and node-valued productions not yet
annotated with variants after pushing become the candidates for the next round
of pulling. Pushing and pulling stops when no productions have been annotated
while pulling, i.e., when a fixed-point has been reached.

This push/pull fixed-point computation is actually performed twice. The first
fixed-point computation groups productions and generic nodes into semantic cat-
egories based on explicit annotations in the grammar. It is initialized with all
productions that are explicitly marked with the variant attribute. For each such
production, the algorithm creates a new monomorphic variant, which is named
after the production by converting from Rats! ’ CamelCase naming convention to
ML’s lower case with underscores convention. The second fixed-point computa-
tion ensures that all node-valued productions have variant types. It is initialized
with all generic productions that do not have variant types after the first fixed-
point computation. For each such production, the algorithm again creates a new
monomorphic variant, naming it after the production.

The second phase of type inference deduces consistent types for the argu-
ments of monomorphic constructors, i.e., the children of generic nodes. Its al-
gorithm is largely straight-forward: it first determines the types of component
expressions for all alternatives in generic productions and then unifies the types
corresponding to the same argument for the same constructor across different al-
ternatives. For example, a string literal or string match has string as its type, a
nonterminal has the corresponding production’s type, and a repeated expression
has ’a list as its type, where ’a is the expression’s type. At the same time, the
implementation relies not only on polymorphic variants to unify distinct mon-
omorphic variants—as illustrated above for the production recognizing C sizeof
expressions—but two more non-standard types, which also impact how Typical
code accesses the underlying, dynamically typed syntax tree.

1. The implementation uses the built-in Typical type ’a opt = ’a to mark con-
structor arguments resulting from optional expressions in the grammar. The
corresponding values in the dynamically typed tree may be null, indicating
that the expression did not match the input. For example, this production
from the C and Java grammars

generic ReturnStatement =
void:"return":Keyword Expression? void:";":Symbol ;

results in
ReturnStatement of expression opt

as the type of generic nodes with name “ReturnStatement”. Since Typical
already injects a bottom value corresponding to Java’s null value into all
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types, the ’a opt type largely serves as documentation. Though an O’Caml
implementation would instead use O’Caml’s

mltype ’a option = None | Some of ’a ;

to make the optional value explicit in the syntax tree.
2. The implementation uses the built-in Typical type ’a var = ’a to mark con-

structor arguments that do not appear in all instances of a generic node with
that name. It accounts for a generic production having different alternatives
with different numbers of non-void component expressions. For example, this
production from the C grammar

generic CaseLabel =
void:"case":Keyword ConstantExpression
void:"...":Symbol ConstantExpression void:":":Symbol

/ void:"case":Keyword ConstantExpression void:":":Symbol ;

results in
CaseLabel of expression * expression var

as the type of generic nodes with name “CaseLabel”. Before accessing a
var argument, Typical-generated code first checks whether the generic code
has the requisite number of children, otherwise returning null. An O’Caml
implementation would instead use the ’a option type to declare such argu-
ments and the None value to pad all constructor invocations.

Rats! ’ type inference correctly types the syntax trees of the C and Java gram-
mars (both 1.4 and 5 versions). The C grammar required 8 productions to be
annotated with the variant attribute. We also had to rewrite two productions
to avoid a unification error caused by a string and node value appearing as the
same argument to the same constructor. The Java 1.4 grammar required 7 pro-
ductions to be annotated with the variant attribute, with one more annotation
to correctly type the Java 5 grammar, which is implemented as an extension
of the 1.4 version using Rats! ’ module system. For the C grammar, the an-
notated productions recognize declarations, declaration specifiers, declarators
(both abstract and concrete), statements, labels, expressions, and designations
in compound literals. For the Java grammar, the annotated productions recog-
nize declarations, modifiers, types, type names, statements, the control clause of
regular and enhanced for loops, switch clauses, and expressions. Overall, these
results demonstrate that Rats! ’ type inference is effective, while only requiring
minor modifications to a grammar.

7 Conclusion

Given a single grammar, this paper has presented automated techniques for (1)
extracting an abstract syntax tree specification, (2) capturing the concrete syn-
tax as annotations on the abstract syntax tree, and (3) inferring static types
for abstract syntax tree nodes. Taken together, these techniques significantly
increase the flexibility of parser generators, while also facilitating the re-use of
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grammars. All techniques are implemented in the Rats! parser generator and
integrated with the xtc toolkit for source-to-source transformers. They have also
been applied to real-world grammars for C and Java. The open source distribu-
tion of Rats! and xtc is available at http://cs.nyu.edu/rgrimm/xtc/.
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Appendix: The Push/Pull Fixed-Point Algorithm

global pushlist , pulllist . Declare global worklists.

procedure Assign-Variants(grammar) . Assign variants to productions.
. Process productions with variant attribute.
pushlist ← nil
for all p in productions[grammar ] do

if variant ∈ attributes[p] then
if Has-Node-Value(p) then

pushlist ← pushlist ‖ p
variant [p]← Create-Monomorphic-Variant(name[p])

else
error “Invalid variant attribute for production ” ‖ name[p]

end if
end if

end for
Fixed-Point()

. Process generic productions still without variant type.
for all p in productions[grammar ] do

if Is-Generic(p) ∧ variant [p] = nil then
pushlist ← pushlist ‖ p
variant [p]← Create-Monomorphic-Variant(name[p])

end if
end for
Fixed-Point()

end procedure

procedure Fixed-Point() . Compute fixed-point.
while pushlist 6= nil do

for all p in pushlist do Push(p) end for

pushlist ← nil
for all p in productions[grammar ] do

if Has-Node-Value(p) then
pulllist ← nil
Pull(p)

end if
end for

end while
end procedure

. Continued on next page.
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procedure Push(p) . Push variant through production.
. Assign variant to constructors.
for all c in constructors[p] do

if variant [c] = nil then
variant [c]← variant [p]

else if variant [c] 6= variant [p] then
error “Inconsistent variants for constructor ” ‖ name[c]

end if
end for

. Assign variant to contributors.
for all q in contributors[p] do

if variant [q] = nil then
variant [q]← variant [p]
Push(q)

else if variant [q] 6= variant [p] then
error “Inconsistent variants for production ” ‖ name[q]

end if
end for

end procedure

function Pull(p) . Pull variant into production.
. Avoid infinite recursions.
if variant [p] 6= nil then

return variant [p]
else if p ∈ pulllist then

return nil
end if

. Determine contributors’ variants.
pulllist ← p ‖ pulllist
variants ← {Pull(q) | q ∈ contributors[p] }
pulllist ← Tail(pulllist)

. Determine production’s variant.
if variants − {nil} = {v} where Is-Monomorphic(v) then

variant [p]← v
pushlist ← pushlist ‖ p

else if nil /∈ variants ∧ constructors[p] = ∅ then
variant [p]← Create-Polymorphic-Variant(variants)

else if variants 6= {nil} then
error “Inconsistent variants for production ” ‖ name[p]

end if
return variant [p]

end function
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