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Abstract

Symbolic execution is a more efficient and viable alternative to implementing deductive verifi-

cation tools to fully automate the formal verification of programs. Symbolic execution in many

cases can provide performance gains over verification condition generation (VCG) based verifica-

tion tools due to the fact that symbolic execution directly manipulates in-memory data structures.

This thesis presents the design and implementation of a symbolic execution engine for the

GRASShopper programming language which already supports verification using VCG. The goal

of this work was to adapt ideas from the symbolic execution engine from the Viper verification

infrastructure language to the semantics of GRASShopper and to demonstrate its utility on sam-

ple programs. We present a rigorous description of the operational semantics of the symbolic

interpreter, discuss implementation details and illustrate the symbolic execution behavior on a

set of sample programs.

In order to explore interesting details around implementing a symbolic execution backend

for GRASShopper, this work introduced a method to support encoding of snapshots at the struct

field level using injective functions. In addition, several language extensions were added to the

GRASShopper user-facing language and the intermediate representation. A few of these ex-

tensions will now allow support for finer-grained permissions for individual fields rather than

granting permissions to all fields of structures, unfolding and folding of recursive predicates, and

support for if-then-else expressions in predicate and heap-dependent functions.
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1 | Introduction

Would you buy a house or work in a skyscraper that wasn’t constructed by following a well-

designed blueprint? A reasonable person would answer no. Unfortunately, the same perception

isn’t applied to the ubiquitous use of software in today’s society. The truth is that the majority

of large software systems are never constructed from such a blueprint (e.g., a specification) and

most engineers that build these systems only rely on extensive unit-testing to demonstrate that

the test cases match some expected behavior. This is rather limited since all that this proves

is that there are no bugs for the set of program traces that the unit-tests target. What would be

better is a proof that says a given system is bug-free. Regardless of this issue, humans have placed

their trust in large tech companies to store their most personal information and the memories of

our lives. Unverified software systems manage our finances, control our vehicle’s braking and

acceleration systems.

Software defects are inevitable. Experiencing an iPhone crash or Gmail outage may be an

expensive inconvenience, but recall the Therac-25 radiation therapy device that was involved

in six incidents between 1985 and 1987 where cancer patients were given massive overdoses in

radiation resulting in death. The incident was tied back to defects in software controlling the

device. These incidents aren’t just a thing of the past. Tesla had to recall 11,706 vehicles over

a full self-driving beta software bug that caused phantom breaking. In addition to these catas-

trophic failures, we hear about software defects causing data-center outages which lead to loss

of business and disruptions for the systems that depend on these services. Software developers
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also spend a large amount of time dealing with bug reports, server crashes and back-traces sent

from customers.

This makes one wonder if there’s a better way to construct software to reduce the chance

of experiencing catastrophic defects. Thankfully, there is a promising trend that since the early

2000s where deductive verification tools have begun to be developed and adopted by industry at

scale to prove that software meets a specification, and when it’s proven that the software meets a

given specification certain bugs such as buffer overflows don’t exist. These deductive verification

systems aim to formally verify that software meets a given specification, and in turn a formally

verified system will have proven that defects are absent.

1.1 Background and Related Work

Deductive software verification has had a long history, beginning in the late 1940s with an early

paper by Turing [27] on verification that introduces some of the ideas that are later formulated

in Floyd-Hoare Logic [11, 8] and followed by Dijkstra’s weakest precondition [7]. The latter are

currently used in automated deductive verification tools such as GRASShopper [21] and Dafny

[17]. A good overview of the history of deductive verification methods is given by Hähnle and

Huisman [10]. In this work, they mention that the idea of using symbolic execution (SE) to prove

program correctness was introduced by Burstall [4]. In this approach a program is executed sym-

bolically with induction to prove that a program implies its post-condition. These seminal works

enabled several tools that leverage Verification Condition Generation (VCG) and SE [10]. Notable

deductive verification that implement VCG are SPARK [5], Dafny, and Viper (the verification lan-

guage that inspired this work). The language SPARK began in an academic setting but was later

extended for usage in an industrial setting and is actively maintained by AdaCore and Altran

[10]. Dafny was developed recently by the RiSE group at Microsoft Research [17] and Viper [18]

uses both VCG and SE. Besides VCG-based systems KIV is a notable one that is based on dynamic
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logic [9]. The KIV verifier was the first to formalize Burstall’s approach as a symbolic interpreter

and offered an alternative to VCG-backed tools.

1.1.1 Implementation of Deductive Verification Tools

In general, there are twomain approaches to developing deductive verification tools: VCG and SE.

A VCG-based tool will essentially apply transformations to the program to reduce the program

into a set of verification conditions that will imply the post-condition. After the VCG formu-

las are generated, the correctness of the program encoded in the verification conditions will be

checked by a satisfibly modulo theories (SMT) solver. Both Dafny and Viper implement this VCG

transformation by lowering their respective source programs to the Boogie [15] intermediate rep-

resentation. The Boogie language can then be used in specialized VCG algorithms to generate

the final set of constraints that are checked by the SMT solver to prove correctness of a program.

Symbolic execution is a fundamentally different approach and a viable alternative approach to

VCG. SE is essentially implemented as an interpreter that will execute the program on an abstract

machine where program variables are replaced by uninterpreted symbolic values that can take

on any value. These uninterpreted values can be instantiated by the SMT solver in their domain

which in-turn will represent all possible values a program variable may take during the actual

execution of the program. The configuration of the interpreter is designed to accumulate con-

straints to represent the possible traces of the program execution and the constraints on symbolic

values. These constraints can be be used to check entailment of the post-condition of a program

to verify correctness with an SMT solver.

VCG and SE have very different performance characteristics even though both methods will

discharge queries to an SMT solver. The performance of a given method depends on the char-

acteristics of the program being analyzed. In general, because SE is mutating in-memory data

structures in the symbolic interpreter’s configuration and is a more fined grained checking pro-

cess, SE will usually outperform VCG. However, if a program has a lot of branching, the branch
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conditions in the SE state may become large and SE could have worse performance than VCG.

A study done by Kassios et al. [14] compared the performance of VCG-based Chalice [16] to

Syxc, which is an extension for Chalice using a symbolic execution backend [23]. This study

showed that verification based on symbolic execution is roughly twice as fast as verification by

VCG. Some notable examples of deductive verification tools that support both VCG and SE are

VeriCool [25], Chalice, and Viper.

1.1.2 Separation Logic

The GRASShopper language supports proofs based on separation logic (SL) [22, 19, 20] to reason

about programs that manipulate the heap. The main goal of this work was to build an SE engine

as an alternative to using VCG for checking GRASShopper programs that use SL for their speci-

fications. Thus we will briefly introduce the idea behind SL and highlight some other tools that

use SE to support SL.

At its core, SL is an extension of Hoare logic [11] to support modular reasoning over memory

regions using in-place updating of logical facts. These logical facts are structured in a way to

mimic the way a machine would update its internal state. For example, if one was to use SL to

prove that an assignment to a field x.f := 3 is safe and preserves the value of another disjoint

heap region y.f one would write a Hoare triple of the form,

{x.f ↦→ 𝑣 ∗ y.f ↦→ 𝑤} x.f := 3 {x.f ↦→ 3 ∗ y.f ↦→ 𝑤}. (1.1)

SL introduces a points-to relation, x.f ↦→ 𝑣 which allows permissions to a variable and states

a constraint such as x.f == 𝑣 on the region’s location. To support modular reasoning and the

idea that assertions x.f ↦→ 𝑣 and y.f ↦→ 𝑤 can be separately combined, SL introduces a separating

conjunction operator, or a *-conjunct to combine permissions [19]. Now the crux of the proof for

the Hoare triple in Equation 1.1 is to decompose the triple into a local proof of the actual update

4



on x.f as,

{x.f ↦→ 𝑣} x.f := 3 {x.f ↦→ 3}. (1.2)

Using the frame rule from SL, {𝑃}𝑐{𝑄} =⇒ {𝑃 ∗ 𝑅}𝑐{𝑄 ∗ 𝑅} [19], we can frame the triple in

Equation (1.2) with a heap region 𝑅 ≜ y.f ↦→ 𝑤 to obtain (1.2). The logic, thus, guarantees for free

(i.e. via simple syntactic manipulation of assertions) that the disjoint region𝑅 is not affectedwhen

x.f := 3 is executed. In SL the Hoare triple guarantees memory safety (no access to unallocated

memory), and the in-place reasoning that enables local proofs to be combined into proofs over

larger memory regions is useful for proving properties of heap-dependent data structures.

The first tool created to automate the checking of SL based programs was Smallfoot [3] which

was based on SE rather than VCG and uses the idea of maintaining permissions on a symbolic

heap separately from stacks of constraints over values. The Viper project’s SE engine, Silicon [18],

is builds on and extends the ideas first explored in Smallfoot. Other notable tools that implement

SE engines for variants of SL are Verifast [12] and Chalice [16]. Viper, Verifast, Chalice, and

GRASShopper all consider a variant of SL called implicit dynamic frames [25].

Implicit dynamic frames (IDF) uses access predicates acc(x.f) to state permissions on amem-

ory region 𝑥 .𝑓 , and can support heap-dependent constraints such as x.f == 10 within SL state-

ments. For example, a logical statement over a heap region x.f that the field’s value is 10 written

in separation logic would be ∃𝑧. x.f ↦→ z ∧ z == 10. IDF would shorten this assertion to say

acc(x.f) &*& x.f == 10 which eliminates the need for the intermediate variable z.

1.2 Contributions

The main goal of this thesis was to implement a SE verification backend for the GRASShopper

language. Much of the design and implementation was inspired by the Viper SE engine, Silicon.

The main motivation for doing this was that GRASShopper only supported VCG and Prof Wies’
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group was interested in extending GRASShopper to support SE of Iris-style higher-order separa-

tion logic [13]. So this work was an investigation on how to build an SE backend based on the

Viper Silicon engine so we can later extend the SE backend to support Iris. The latter wasn’t in

scope for this thesis, but the knowledge and lessons learned by this project can be carried over.

Like Viper, GRASShopper is based on IDF, this seemed like a natural model to follow. How-

ever, given this fact, this work wasn’t a direct port of the SE backed from Viper to GRASShopper

since the semantics of GRASShopper differed from Viper in a few ways. One example where the

semantics differed is that Viper only has a single reference type whereas GRASShopper imple-

ments pointers to user-defined struct types. This means that Viper’s snapshot mechanism for

framing needed to be extended to support arbitrary types. Viper was also designed to target the

verification of garbage collected languages such as Java, whereasGRASShopper does not assume

garbage collection and instead relies on manual memory management. In addition to adapting

the Viper SE engine to GRASShopper, this project improved upon the implementation of Viper’s

join rule for evaluating if-then-else expressions, and unfolding expressions. We also provide a

more thorough description of how the join rule relates to the axiomatization of heap-dependent

functions.
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2 | Preliminaries

2.1 Syntax

TheGRASShopper symbolic execution enginewas designed to symbolically execute theGRASShop-

per intermediate representation (IR) rather than the user-facing syntax. Before presenting the

syntax of the IR, we will briefly illustrate a few examples of the user-facing GRASShopper syn-

tax and demonstrate the translated code in the IR. Consider a program that writes to a memory

region containing a struct value in Figure 2.1.

1 struct Node {
2 var next: Node;
3 }
4

5 procedure lookup_heap_assign(x: Node) returns (y: Node)
6 requires acc(x.next) &*& x.next == null
7 ensures acc(x.next) &*& acc(y.next) &*& x.next == y
8 {
9 y := new Node();
10 x.next := y;
11 }

Figure 2.1: Example of the user-facing GRASShopper program to illustrate the translation to the IR.

The program in Figure 2.1 allocates a new Node and then assigns it to x.next. The specifi-

cation contains a pre-condition, line 6, that requires access permission to the field x.next and a

constraint that the value of x.next is equal to null. The post-condition in line 7 states that when

the procedure lookup_heap_assign returns, permissions to x.next and y.next are given back to
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the caller and x.next == y is a true statement.

Since the SE engine forGRASShopper targets the IR, we will now discuss how the program in

Figure 2.1 is represented in the IR. The program declares a struct type Node that only consists of

a field next which will have a type Loc⟨Node⟩. The specification of lookup_heap_assign begins

with a pre- and post-condition in lines 6, and 7, respectively. The pre-condition,

acc(x.next) &*& x.next == null

is a separation logic formula and results in the following code,

acc(x.next) &*& (read(x, next) == null).

The read(x, next) syntax describes the field read expression. Similarly, the post condition is

also a separation logic formula and is thus translated to

(acc(x.next) &*& acc(y.next)) &*& (read(x, next) == y).

The body of lookup_heap_assign in lines 9 and 10 of Figure 2.1 is a classical sequence control

between two commands C1; C2 and is thus a sequence of

y := new Node(); next := write(next, x, y).

One can see that the IR is simpler than the user-facing syntax and we chose to implement the SE

engine over the simpler IR rather than the user-facing syntax.

We now present the syntax of the IR in order to define the SE rules of GRASShopper for the

syntactic domains. The syntax definitions are divided into two parts; one for terms and formulas,

and the other for loop-free commands. We note that the front-end of GRASShopper translates

loops into tail-recursive functions, so loops are omitted from the IR. The sub-grammar for terms
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𝑖 ∈ Int Integers, Z
𝑖𝑑 ∈ Ident Identifiers

𝜏 ∈ TermsF x | s(𝜏) Terms
s ∈ Symb Symbols

sF − | + | / | % | . . . Arithmetic symbols
| null | read | write Uninterpreted location symbols
| && | ∥ | ¬ | ite If-then-else symbols
| == | ≥ | ≤ | < | > Boolean predicate symbols
| old Oldification symbol
| 𝑖𝑑 Uninterpreted identifier
| true | false | 𝑖 Boolean and integer constants
| unfolding Unfolding symbol

𝑓 ∈ Form Formulas
| bop(𝑓 ) Boolean Operations
| ∀ 𝑥 ∈ 𝑇 .𝑓 (𝑥) | ∃ 𝑥 ∈ 𝑇 .𝑓 (𝑥) Quantifiers
| emp | acc(𝜏) | 𝑖𝑑 (𝜏) | 𝑓1&*&𝑓2 Separation logic op
| 𝑓 ? 𝑓1 : 𝑓1 If-then-else formula

Figure 2.2: Subset of the GRASShopper IR for terms and formulas

and formulas are defined in Figure 2.2 and definitions for the commands are presented in Figure

2.3.

In Figure 2.2, identifiers are defined in a separate domain so we can define uninterpreted

functions and symbolic values. Terms defines variables denoted as x and both uninterpreted and

interpreted functions are defined by s(𝜏) which represents an operator denoted by a Symbol ap-

plied to an n-ary list terms, 𝜏 . Symbols have associated sorts with arities, and there are basic sorts

such as Bool, Byte, Int, but the syntax of these sorts is omitted from Figure 2.2 for the sake of

brevity. Uniary sorts for locations are denoted as Loc⟨𝑇 ⟩ where𝑇 can be a sort such as Loc⟨𝐼𝑛𝑡⟩.

There are Sets and Maps over sorts, and a special Adt sort that is leveraged to represent snap-

shot trees for representing symbolic values for heap dependent variables. GRASShopper terms

disambiguate uninterpreted function and interpreted functions by using an arbitrary identifier

𝑖𝑑 ∈ Ident for the former. A few examples of the syntactic forms should illustrate the use of a

symbol s to denote both uninterpreted and interpreted functions.
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C ∈ Cmd Commands
cF x B 𝜏 Assignment
| C1; . . . ;C𝑛 Sequence control
| 𝑓 (𝜏) Procedure call
| C1□ . . .□C𝑛 Non-deterministic Choice
| havoc x Havoc
| x B new T(𝜏) Allocation
| free x Deallocation
| return x Return
| assert f Assert
| pure assert f Pure assert
| unfold 𝑝 (𝜏) Predicate unfold
| fold 𝑝 (𝜏) Predicate fold

Figure 2.3: Subset of the GRASShopper IR for loop-free commands

• Unary minus operator −.

• Binary arithmetic operators +, −, /, etc.

• Interpreted functions for manipulation of heap locations are denoted as read(x.f) for field

reads x.f writes write(f, x, 10) for a field write x.f := 10, for example.

• Uninterpreted functions can be denoted as fst(s) to represent the first of a pair 𝑠 . The

interpretation of such a function would have to be described as an axiom and discharged

into to the underlying SMT solver.

The GRASShopper syntax for loop-free commands presented in 2.3 is a set of loop-free com-

mands. For the sake of brevity, types are omitted from the presentation even though GRASShop-

per is statically typed. The Cmd sub-language exposes heap-dependent function calls, predicate

applications and method calls using the same syntactic variant 𝑓 (𝜏) but are differentiated by

auxiliary metadata about the return arguments as an implementation detail. Where the specific

context matters in this discussion, it will be explicitly mentioned if we are dealing with a predi-

cate, procedure, or heap-dependent function call by the surrounding context. Commands such as
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a sequence 𝐶1; . . . ;𝐶𝑛 are the classical sequential control, and 𝐶1□ . . .□𝐶𝑛 is a non-deterministic

choice. Two unfamiliar commands are likely to be assert 𝑓 and pure assert 𝑓 which both assert

that a given formula 𝑓 holds under a set of constraints. The difference being that assert will deter-

mine if a given formula holds under the current permissions and constraints, and pure assert

only checks the validity of the formula 𝑓 under the current set of constraints. Note that aside

from a semantic difference, there’s a syntactic difference where assert accepts a formula that

can contain SL operators whereas pure assert only accepts non-separation logic formulas (pure

formulas). GRASShopper also supports parallel assignments such as x1, . . . , x𝑛 B 𝜏2, . . . , 𝜏𝑛 for

the assignment command and for procedure calls and return commands. We omit this notation

from the syntax for loop-free commands to simplify the presentation, but any rule that would

involve an assignment, havoc, return, etc does support this multi-arity behavior.

2.2 Language extensions

The work done under this thesis augmented the GRASShopper IR in order to provide more pow-

erful features that are also supported in Viper [18]. The language changes to GRASShopperwere

the following

• Addition of if-then-else expressions, 𝑓 ? 𝜏1 : 𝜏2. Where the branch condition is a pure

formula 𝑓 ∈ Form.

• Addition of unfold and fold commands to unroll a predicate unfold 𝑙𝑒𝑛𝑔𝑡ℎ(x.next, y) or

roll up a predicate.

• Modified access predicates to cover individual fields of structures rather than assuming ac-

cess to all fields defined in a given structure. Before this changeGRASShopperwould grant

access to a location type as acc(x), and after this change finer-grained access can be speci-

fied as acc(x.f). Note that Viper uses fractional permissions to reason about concurrency,

11



and thus can grant partial access to a field as acc(x.f, 1/2), but our adaptation of this idea

assumes whole permissions on a given field.

• Addition of unfolding expression that will unroll a predicate instance and continue the

symbolic execution in the state carrying the emitted predicate instance and then remove

the predicate’s formula after the unfolding expression terminates.

2.3 Notation

We begin with some basic definitions and common notation used in the formalization of the sym-

bolic execution rules. We use the standard notation for sets where inclusion of a member 𝑥 in a

set 𝑆 is 𝑥 ∈ 𝑆 , the empty set is denoted by ∅ and set union and intersection are ∪ and ∩, respec-

tively. Set literals are denoted by {𝑎, 𝑏, 𝑐}. When a multiset can be implied by its surrounding

context we use the same notations as sets. We introduce a power set using the notation 2𝑆 as

the set of all subsets of 𝑆 . Explicit notation for multisets will use {𝑥1 ↣ 𝑖1, . . . , 𝑥𝑛 ↣ 𝑖𝑛} for the

multiset containing 𝑖1 occurrences of 𝑥1 and 𝑖2 occurrences of 𝑥2, etc. For a multiset 𝑆 , we write

𝑆 (𝑥) to denote the number of occurrences of 𝑥 ∈ 𝑆 .

The symbolic state will track a mapping from program variables to symbolic values. This

mapping is naturally a map so we will need definitions of insertion𝑚[𝑘 ↦→ 𝑣] which creates a

new map 𝑚′ where 𝑘 maps to a value 𝑣 . In a context where 𝑘 already exists a map update is

denoted by𝑚(𝑘) = 𝑣 .

A total function from 𝐴 to 𝐵 is written as 𝑓 : 𝐴 → 𝐵 and 𝑓 : 𝐴 ↛ 𝐵 for a partial function

from A to B.

We define a (finite) sequence b ∈ 𝑆∗ of elements of a set S which is defined recursively with

the syntax b F 𝜖 | b · 𝑣 with 𝑣1, 𝑣2, . . . , 𝑣𝑛 when 𝑛 ≥ 0 and is the empty sequence 𝜖 ∈ 𝑆∗ when

𝑛 = 0. We also define the concatenation b · 𝑠 of a sequence b with an element 𝑠 ∈ 𝑆 (such that

𝜖 · 𝑠 = 𝑠 is a single-element sequence).
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Iterated operators are used with sets and sequences, for example,
∧

b denotes the conjunction

of all elements of the set or sequence b . If an iterated operator is used in conjunction with other

operators such as an implication
∧
𝜔𝑠 =⇒ 𝜙 , the iterated operator is left-associative, namely

(
∧
𝜔𝑠 =⇒ 𝜙) ⇔ ((𝜔𝑠1 ∧ . . . ∧ 𝜔𝑠𝑛) =⇒ 𝜙)).

During the computation of a symbolic execution, an identifier or symbol is fresh if it differs

syntactically from any other identifier or symbol in use. When a fresh identifier or symbol is

needed fresh is used. It can also be used in places where any type of identifier is possible. In this

case 𝑏 := fresh is used.

We let R be a type for symbolic verification results with the same meaning as the verification

result in Viper [18]. A verification result R takes on two values, success or failure, and can be

composed by the iterated conjunction
∧
. For example, if a step during the SE has a return type

of R, then success
∧R is R and failure

∧R short-circuits and will evaluate to failure no

matter what value R holds.

2.4 Verification as an SMT Problem

One way to view the verification problem is to assign a logical meaning to the program using

Hoare triples [11]. A Hoare triple is a formula {𝑃}𝑄{𝑅}, where 𝑃 is a precondition𝑄 is a program

and 𝑅 is a post-condition. The correctness of such a program is checked by an SMT solver by

reducing the program to a set of logical formulas using a technique such as VCG (or SE) to verify

that the pre-condition 𝑃 and the program constraints in 𝑄 , entail the post-condition 𝑅. Suppose

the pre-condition formula and the constraints implied by the program 𝑄 reduce to a formula 𝑆 ,

then the correctness of the program will be checked by querying an SMT solver to determine

if the formula 𝑆 ∧ ¬𝑅 is satisfiable. If the solver reports that the formula is unsatisfiable, then

we know that the program is correct. Otherwise, we know that 𝑅 doesn’t hold. GRASShopper

supports queries against the CVC4 [2] and Z3 [6] SMT solvers solvers. All of the development
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and examples were checked using the Z3 SMT solver.
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3 | Design & Theory

We present the design and theory behind the implementation of the SE engine for GRASShop-

per which was largely inspired by Malte Schwerhoff’s PhD thesis [24], which describes Viper’s

SE engine. The specific contributions made by this work presented under this chapter are the

mathematical presentation of the operational semantics and semantic domains in Sections 3.2

and 3.1, the snapshot encoding extension to support structures that have fields that can carry

any GRASShopper type in Section 3.3, and the discussion around the interplay between function

axiom generation and the join rule for evaluating unfolding expressions presented in Section

3.8. All other sections around the description of the SE rules for exec, produce, consume, and

eval rules mirror the Viper presentation but may differ slightly due to variations between the

semantics of Viper and GRASShopper.

3.1 Semantic Domains

In order to define the execution rules for the symbolic interpreter, we need to define the set of

domains that compose the symbolic state (see Figure 3.1) and define the operations to manipulate

the domains during the symbolic execution.

A key idea in symbolic execution is that concrete values of program variables are replaced by

symbolic values. Symbolic values are simply Terms that don’t refer to any program variable or

a heap location. For heap locations, a sub-type of Terms called snapshots are used to denote the
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𝑣 ∈ SymbVal Symbolic values
𝑠 ∈ Snap Snapshot
𝜑 = ⟨𝑖𝑑, 𝑣, b⟩ ∈ PCScope ≜ 𝑠𝑐𝑜𝑝𝑒 (Ident × SymbVal × Stack) Path condition scope
b ∈ Stack ≜ (SymbVal∗) Stacks
𝜋 ∈ PCStack ≜ (PCScope∗) Path condition stack
^ = fld⟨id, 𝑟 , 𝑠⟩∪ ∈ HeapChunk ≜ fld (Ident × Ident × Snap) ∪ Heap chunk

pred⟨id, 𝑣, 𝑠⟩ pred (Ident × SymbVal∗ × Snap)
ℎ ∈ Heap ≜ {HeapChunk} Symbolic heap
𝜎 = ⟨𝛾, 𝜋, ℎ⟩ ∈ SymbState ≜ SymbStore × PCStack × Heap Symbolic state
𝛾 ∈ SymbStore ≜ Terms↛ SymbVal Symbolic store

Figure 3.1: Semantic domains of the GRASShopper symbolic execution semantics

symbolic values of heap locations. Thus, we let 𝑣 ∈ SymbVal be a sub-type of the Terms domain

defined in Figure 2.2. We refer to the elements of SymbVal as symbolic values. Symbolic values are

differentiated from program variables by their font in this text. Namely, x is a program variable

and 𝑥 is a symbolic value. We also define 𝑠 ∈ Snap to be a sub-type of SymbVals to represent both

symbolic values for struct fields and heap-dependent function footprints. These details around

snapshots are defined in more detail in Section 3.3.

To track the mappings from program variables to symbolic values we define a symbolic store,

𝛾 ∈ SymbStore ≜ Terms↛ SymbVal.

We let 𝜑 ∈ PCScope ≜ ⟨𝑖𝑑, 𝑣, b⟩ be defined as a path condition scope. A path condition scope

is a 3-tuple that carries a unique, fresh identifier for a scope, a branch condition, and a stack

b ∈ Stack ≜ (SymbVal∗) consisting of a sequence of symbolic values 𝑣 . These PCScopes represent

the path conditions collected under a given branch condition.

A path condition stack records the set of constraints collected during the symbolic execution

under branch conditions and is 𝜋 ∈ PCStack ≜ (PCScope∗), a sequence of 0 or more PCScopes.

To support permission-based reasoning over field references x.f and predicates we define a

heap chunk^ = fld⟨id, 𝑟 , 𝑠⟩∪pred⟨id, 𝑣, 𝑠⟩ ∈ HeapChunk ≜ fld (Ident×Ident×Snap)∪pred (Ident×

SymbVal∗ × Snap). A heap chunk ^ =
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𝑚𝑎𝑡ℎ𝑖𝑡 𝑓 𝑙𝑑 ⟨id, 𝑟 , 𝑠⟩ encodes that permissions are given to a field id with receiver 𝑟 and has a corre-

sponding symbolic value 𝑣 to represent the value located at 𝑟 .id. A heap chunk ^ = pred⟨𝑖𝑑, 𝑣,𝑤⟩

encodes permissions to a predicate instance named id with arguments that have been replaced by

symbolic values 𝑣 and the footprint of the predicate instance is the snapshot (or synonymously a

symbolic value)𝑤 . A symbolic heap is a multiset of heap chunks, ℎ ∈ Heap ≜ {HeapChunk}.

The symbolic state is defined as 𝜎 = ⟨𝛾, 𝜋, ℎ⟩ ∈ SymbState ≜ SymbStore × PCStack × Heap.

Each step taken in the symbolic interpreter’s execution will produce a fresh state that will be

used to discharge queries to the SMT solver at specific points to verify the program.

3.2 Operational Semantics

We present the operational semantics for the symbolic execution of GRASShopper. The opera-

tional semantics define the transitions the symbolic interpreter will take in order to verify meth-

ods and heap-dependent functions independently. The rules are presented using continuation

passing style instead of the usual inference rule style because the definitions clearly state what

the remainder of the computation is. For more detail on continuation passing style we refer the

reader to [1]. The rules can be represented by the following primitives

exec : SymbState→ C → (SymbState→ R) → R

produce : SymbState→ Forms→ Snap→ (SymbState→ R) → R

consume : SymbState→ Heap→ Forms→ (SymbState→ Heap→ Snap→ R) → R

eval : SymbState→ Terms→ (SymbState→ Terms→ R) → R

(3.1)

The exec rule symbolically executes a command 𝑐 ∈ C in the current symbolic state and

the continuation 𝑄 ≜ (SymbState→ R) will execute the remainder in a new state and return a

verification result R and the overall result of exec will be returned after the continuation termi-
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nates. There are two dual rules that are used to exhale and inhale permissions while executing

symbolic Terms, produce and consume. The produce rules will emit permissions in the current

symbolic state corresponding to the second argument assertion Forms and the third Snap argu-

ment. The continuation for produce will execute the remainder of the computation in a new

state and return a verification result. The consume rules will remove permissions from the Heap

and take the corresponding snapshot 𝑠 ∈ Snap for the HeapChunk that was removed and pass

the snapshot located in the third argument of, 𝑘 = fld⟨𝑖𝑑, 𝑟, 𝑠⟩ and pred⟨𝑖𝑑, 𝑣, 𝑠⟩ to its continuation

𝑄 ≜ (SymbState→ Heap→ Snap→ R). The second parameter of sort Heap of consume is a

bit peculiar since the symbolic state carries a heap. This second heap is a copy of the heap in

the symbolic state to prevent terms such as acc(x.f) &*& write(x, f) from failing. Symbolic

Terms are evaluated using the eval primitive which evaluates a Term in the current SymbState

and passes the evaluated Term to the continuation.

3.2.1 Execution Rules

Wepresent a subset of the execution rules, denoted as exec in Equation 3.1, rules for theGRASShop-

per Cmds domain. The first rule defined in Figure 3.2 for the assignment x := 𝜏 will illustrate how

program variables are mapped to symbolic values which can then be later used in more complex

rules that may need to build constraints over symbolic values. The assignment rule evaluates 𝜏

to a symbolic value 𝜏′ and passes it along with the a possibly updated state 𝜎2 to the continuation

of eval. The remainder of the evaluation will update 𝜎2’s symbolic store 𝛾 such that x now maps

to 𝜏′ and passes this state to the continuation 𝑄 .

The next rule defined in Figure 3.2 on line 5 illustrates how the symbolic execution implements

permission-based checking of heap-dependent state. The field write will first evaluate 𝜏 to a sym-

bolic value 𝜏′ and then scan the heap to check if sufficient permissions on write(x, f) exist. This

is implemented by consuming the access predicate Term, acc(x.f). If there’s a field chunk in the

symbolic heap, then the execution will continue and produce the access predicate on the heap re-
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1 exec(𝜎, x := 𝜏, 𝑄) =
2 eval(𝜎, 𝜏, (_ 𝜎2, 𝜏

′ .
3 𝑄(𝜎2{𝛾 := 𝜎2 .𝛾 [x ↦→ 𝜏 ′]})
4

5 exec(𝜎, write(x, f, 𝜏), 𝑄) =
6 eval(𝜎, 𝜏, (_ 𝜎1 𝜏

′ .
7 consume(𝜎1, 𝜎1 .ℎ, acc(x.f), (_ 𝜎2 ℎ

′ 𝑠 .
8 produce(𝜎2, acc(x.f) &*& read(x, f) == 𝜏 ′, fresh, 𝑄)))))
9

10 exec(𝜎, x := new T(𝜏), 𝑄) =
11 exec(𝜎, havoc x, (_ 𝜎2 .

12 produce(𝜎2, acc(x, 𝜏), fresh, 𝑄)))
13

14 exec(𝜎, havoc x, 𝑄) =
15 Q(𝜎{𝛾 := 𝜎.𝛾 [x ↦→ fresh]})
16

17 exec(𝜎, x := f(𝜏), 𝑄) =
18 eval(𝜎, 𝜏, (_ 𝜎2𝜏

′ .
19 consume(𝜎2, 𝜎.ℎ, 𝑓𝑝𝑟𝑒 [𝜏 ′/𝜏], (_ 𝜎3, ℎ2, 𝑠 .

20 exec(𝜎3, havoc x, (_ 𝜎4.

21 produce(𝜎4, 𝑓𝑝𝑜𝑠𝑡 [𝜏 ′/𝜏] [𝑦/𝑥], fresh, (_ 𝜎5. 𝑄(𝜎5)))))))))
22

23 exec(𝜎, fold 𝑝 (𝜏), 𝑄) =
24 eval(𝜎, 𝜏, (_ 𝜎2𝜏

′ .
25 consume(𝜎2, 𝜎.ℎ, 𝑝𝑏𝑜𝑑𝑦 [𝜏 ′/𝜏], (_ 𝜎3, _, 𝑠 .
26 produce(𝜎3, 𝑝′ (𝜏 ′), 𝑠, (_ 𝜎4. 𝑄(𝜎4)))))))
27

28 exec(𝜎, unfold 𝑝 (𝜏), 𝑄) =
29 eval(𝜎, 𝜏, (_ 𝜎2𝜏

′ .
30 consume(𝜎2, 𝜎.ℎ, 𝑝′ (𝜏 ′), (_ 𝜎3, _, 𝑠 .
31 produce(𝜎3, 𝑝𝑏𝑜𝑑𝑦 [𝜏 ′/𝜏], 𝑠, (_ 𝜎4. 𝑄(𝜎4)))))))

Figure 3.2: Execution rules for the GRASShopper Cmd domain.

gion, and subsequently push a constraint back on to the stack 𝜋 , acc(x.f) &*& read(x, f) == 𝜏 ′

with a fresh, empty snapshot.

The rule for memory allocation in Figure 3.2 on line 10 is straightforward and since the al-

location command is used in conjunction with a variable assignment the first step is to havoc x

and then push an access predicate onto the heap.

Method calls 𝑓 (𝜏) are symbolically executed by evaluating the formal parameters and then

substituting the actual symbolic formal parameters 𝜏′ in place of the formal parameters in the

function’s precondition. After the substitution, the substituted 𝑓𝑝𝑟𝑒 is consumed to establish the
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precondition. The rule then havocs the return value x and then repeats the substitution for the

formal arguments and substitutes the actual return value x for the formal return parameters y.

The fold and unfold rules in Figure 3.2 on lines 23 and 28, respectively, produce or consume the

symbolic predicate chunk, which is denoted as a primed application 𝑝′(𝜏′) to stress the symbolic

nature, relative to consuming or producing the body formula. This rule ensures that the formula

covered by the predicate is available in the symbolic state for the continuation.

3.2.2 Produce & Consume Rules

Produce rules are designed to push state into the path-condition stack 𝜋 or the symbolic heap ℎ.

We present a subset of the rules to illustrate how the symbolic state is manipulated. The most

basic produce rule is producing a pure formula such as x == 10. Figure 3.3 line 1 shows that

producing a pure formula pure(𝑓 ) evaluates 𝑓 to 𝑓 ′ and then passes it to the continuation. The

continuation will then push 𝑓 ′ onto 𝜋 and an additional constraint 𝑓 ′ == unit. This signifies that

the formula is pure and doesn’t correspond to a heap-dependent snapshot.

1 produce(𝜎, pure(𝑓 ), unit, 𝑄) =
2 eval(𝜎, 𝑓 , (_ 𝜎2, 𝑓

′ .
3 𝑄(𝜎2{𝜋 := 𝜎2.𝜋 · 𝑓 ′ · (𝑓 ′ == unit)})))
4

5 produce(𝜎, acc(x.f), 𝑠, 𝑄) =
6 eval(𝜎, x, (_ 𝜎2, 𝑥

′ .
7 𝑄(𝜎2{ℎ := 𝜎2.ℎ · 𝑓 𝑙𝑑 ⟨𝑓 , 𝑥 ′, 𝑠⟩})))
8

9 produce(𝜎, 𝑓1 &*& 𝑓2, 𝑠, 𝑄) =
10 produce(𝜎, 𝑓1, fst (𝑠) (_ 𝜎 ′ .
11 produce(𝜎, 𝑓2, snd (𝑠), Q)))
12

13 produce(𝜎, 𝑓 : 𝑓1 ? 𝑓2, 𝑠, 𝑄) =
14 eval(𝜎, f, (_ 𝜎2, 𝑓

′ .
15 branch(𝜎2, 𝑓 ′

16 (_ 𝜎3, 𝑓
′ . produce(𝜎3, 𝑓1, 𝑠, Q))

17 (_ 𝜎3, 𝑓
′ . produce(𝜎3, 𝑓2, 𝑠, Q)))))

Figure 3.3: A subset of produce rules for the GRASShopper Formula domain.

Producing an access predicate for a field read acc(x.f) in Figure 3.3 line 5 evaluates the re-
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ceiver x and then pushes a field chunk 𝑓 𝑙𝑑 ⟨𝑥′, 𝑓 , 𝑠⟩ onto the symbolic heap ℎ. The recursive

structure of GRASShopper separation logic formulas is handled by the produce rule in line 9.

Producing an if-then-else expression introduces a branching helper that will only explore feasi-

ble branches if the branching condition formula 𝑓 is satisfiable by the current symbolic state. We

will discuss this rule in more detail in Section 3.8.

We now present rules for consuming or removing permissions from the symbolic state. The

consume rules are the dual of produce rules and we present analogous rules to each produce rule

presented in Figure 3.3.

1 consume(𝜎, ℎ, 𝑠, pure(𝑓 ), 𝑄) =
2 eval(𝜎, 𝑓 , (_ 𝜎2, ℎ

′, 𝑓 ′ .
3 if pc-all(𝜎2.𝜋) ⊢ f' then
4 𝑄(𝜎2, ℎ, unit)
5 else
6 failure))
7

8 consume(𝜎, ℎ, acc(x.f), 𝑠, 𝑄) =
9 eval(𝜎, x, (_ 𝜎2, 𝑥

′ .
10 if 𝑥 ∈ 𝑑𝑜𝑚(𝜎2.ℎ) then
11 let fld⟨_, _, 𝑠⟩, ℎ′ = heap-remove(𝑥, 𝑖𝑑, ℎ) in
12 𝑄(𝜎2, ℎ

′, 𝑠)
13 else
14 failure
15

16 consume(𝜎1, ℎ1, 𝑓1 &*& 𝑓2, 𝑄) =
17 consume(𝜎1, ℎ1, 𝑓1, (_ 𝜎2, ℎ2, 𝑠1 .

18 consume(𝜎2, ℎ2, 𝑓2, (_ 𝜎3, ℎ3, 𝑠2.

19 𝑄(𝜎3, ℎ3, pair (𝑠1, 𝑠2))))))
20

21 consume(𝜎, ℎ, 𝑓 : 𝑓1 ? 𝑓2, 𝑄) =
22 eval(𝜎, f, (_ 𝜎2, 𝑓

′ .
23 branch(𝜎2, 𝑓 ′

24 (_ 𝜎3, 𝑓
′ . consume(𝜎3, 𝑓1, Q))

25 (_ 𝜎3, 𝑓
′ . consume(𝜎3, 𝑓2, Q)))))

Figure 3.4: A subset of the consume rules for the GRASShopper Formula domain.

Consuming a pure formula pure(𝑓 ), is presented in Figure 3.4. This rule on line 1 first evalu-

ates 𝑓 to 𝑓 ′ and then passes it to the continuation of eval. The continuation will then flatten all

of the formulas in 𝜎2.𝜋 and then check if the collected path conditions entail 𝑓 ′. If that entailment
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holds, then the continuation is called with the unit snapshot since consume rules pass snapshots

to continuations.

Consuming an access predicate for a field read acc(x.f) in Figure 3.4 line 8 evaluates the

receiver x and checks if the receiver is in the 𝑑𝑜𝑚(ℎ) if so then the field chunk is removed from

the heap and the matching field chunk’s snapshot is then passed to the continuation. Otherwise,

if the field chunk isn’t present in the heap, it means that sufficient permissions for that region

aren’t allowed and the verification should fail.

Consuming the recursive structure of GRASShopper separation logic formulas is handled

by the consume rule in Figure 3.4 on line 16, and is the same as the corresponding produce

rule except that we consume the left-hand side of the separation star and the right-hand side

formula. Consuming an if-then-else expression is analogous to the produce rule that introduces

the branching helper in Figure 3.3 line 13.

3.2.3 Symbolic Expression Evaluation Rules

Here we present a subset of expression evaluation rules for the GRASShopper Term and Form

domains. These rules closely follow the Viper expression evaluation rules so we will briefly

discuss the subset of rules presented in Figure 3.5. The first rule in line 1 describes a variable

is evaluated. To evaluate a variable one simply looks up the variable in the current symbolic

state’s symbolic store, 𝛾 , and passes it to the continuation. A variation on this rule can lazily

havoc a variable x if one doesn’t exist in 𝜎.𝛾 .

To evaluate a binary operator in line 5 we recursively evaluate each sub-expression and then

stitch the symbolic binary operator, bop’(𝑓 ′1 , 𝑓 ′2 ) back together and pass it to the continuation.

Recall that from the syntax of GRASShopper in Section 2.1 bop abstracts the usual binary boolean

and numeric infix operators.

The evaluation rule to evaluate a field read, read(x, f), in line 10 of Figure 3.5 will evaluate

a read on a field f with receiver x. The rule checks if the receiver is in 𝑑𝑜𝑚(𝜎.ℎ) and if so it will
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1 eval(𝜎, x, 𝑄) =
2 let 𝑣 = 𝜎.𝛾(x) in
3 𝑄(𝜎, 𝑣)
4

5 eval(𝜎, bop(𝑓1, 𝑓2), 𝑄) =
6 eval(𝜎, 𝑓1, (_ 𝜎1, 𝑓

′
1 .

7 eval(𝜎1, 𝑓2, (_ 𝜎2, 𝑓
′
2 .

8 Q(𝜎2, bop'(𝑓 ′1 , 𝑓 ′2 ))))))
9

10 eval(𝜎, read(x, f), 𝑄) =
11 eval(𝜎, x, (_ 𝜎2, 𝑥

′ .
12 if 𝑥 ∈ 𝑑𝑜𝑚(𝜎.ℎ) then
13 let fld⟨_, _, 𝑠⟩ = 𝜎.ℎ(𝑥) in
14 𝑄(𝜎2, 𝑠)
15 else
16 failure
17

18 eval(𝜎1, 𝑓1 &*& 𝑓2, 𝑄) =
19 eval(𝜎1, 𝑓1, (_ 𝜎2, 𝑓

′
1 .

20 eval(𝜎2, 𝑓2, (_ 𝜎3, 𝑓
′
2 .

21 𝑄(𝜎3, 𝑓 ′1 ∗ 𝑓 ′2 )
22

23 eval(𝜎, old(𝜏), 𝑄) =
24 eval(𝜎{ℎ := ℎ𝑜𝑙𝑑 (𝜎)}, 𝜏, (_ 𝜎2, 𝜏

′ .
25 𝑄(𝜎2{ℎ := 𝜎.ℎ}, 𝜏 ′)))

Figure 3.5: A subset of the symbolic expression rules for the GRASShopper Terms domain.

bind the snapshot, 𝑠 carried in the corresponding field chunk in the heap of the current state, 𝜎 .

Otherwise if a field chunk isn’t found then an access permission on the field wasn’t produced

earlier and the symbolic execution will fail.

The next rule in line 18 is straightforward and it will recursively evaluate the left and right sub-

trees of a separation conjunction of two formulas, 𝑓1 &*& 𝑓2. After the evaluation is complete the

symbolic formula for each sub-tree is passed to their respective continuations and the symbolic

separation conjunction is passed to 𝑄 .

Lastly, the rule to evaluate an old expression in line 23 will evaluate the term 𝜏 by re-instating

the old heap, ℎ𝑜𝑙𝑑 which is left out of the discussion for the sake of brevity, as the heap ℎ in the

current state, and then re-instate the current heap ℎ when calling the continuation. The symbolic

execution engine for GRASShopper also supports evaluation of ternary if-then-else expressions,
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Viper’s unfolding expression which are translated verbatim from Viper, thus we refer the reader

to [24].

3.3 Snapshot Encoding

In order to support modular verification of predicates and procedures, we need a way to indepen-

dently check that a procedure only depends on the heap locations covered by it’s precondition.

This idea was originally solved by Samans et al. [26] by implementing framing using snapshots.

To illustrate the idea behind snapshots and to provide background into how snapshots are en-

coded for the GRASShopper symbolic execution, consider a GRASShopper program that imple-

ments a simple counter in Figure 3.6.

In order to verify that a call to incr which uses facts about the heap encoded in counter

guarantees that the only memory locations that are mutated are the counter’s count member,

we need a way to reason that about the structure of the memory locations that are covered by

counter. This is the basic idea behind framing. Samans [26] first introduced the idea of support-

ing framing reasoning using snapshots for predicates using predicate chunk snapshots. Figure

3.7 annotates each program point with the symbolic state.

We can see in line 5 that we have permissions on the counter predicate which is denoted by

the presence of the predicate chunk pred⟨𝑐𝑜𝑢𝑛𝑡𝑒𝑟, [𝑣1, 𝑣2], 𝑠𝑛𝑎𝑝1⟩, in the symbolic heap ℎ. The

predicate chunk carries 𝑠𝑛𝑎𝑝1 ∈ 𝑆𝑛𝑎𝑝 and is the snapshot corresponding to the memory location

covered by the counter predicate. As the execution continues, and we unfold the counter pred-

icate (this is formally defined in Section 3.2) this will scan ℎ for a predicate chunk that matches

the counter(c, v) predicate instance, and it will replace it with the separation logic formula

in the body of counter. Notice in line 7 that after the counter predicate is unfolded we have a

constraint on the top scope of 𝜋 , 𝑣2 == fSnapInt (fst (𝑠𝑛𝑎𝑝1)). This equality constraint encodes the

right-hand side of the separation logic formula acc(c.count) &*& v == c.count. The field chunk
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1 struct Counter {
2 var count: Int;
3 }
4 predicate counter(c: Counter, v: Int) {
5 acc(c.count) &*& v == c.count
6 }
7

8 procedure incr(c: Counter, ghost v: Int)
9 requires counter(c, v)
10 ensures counter(c, v+1)
11 {
12 unfold counter(c, v);
13 c.count := c.count + 1;
14 fold counter(c, v+1);
15 }
16

17 procedure create() returns (c: Counter)
18 requires emp
19 ensures counter(c, 0)
20 {
21 c := new Counter();
22 c.count := 0;
23 fold counter(c, 0);
24 }

Figure 3.6: A counter predicate definition and a procedure that increments the counter by one The ghost
variable v is solely used to verify that the counter is incremented correctly. The predicate counter gives
permissions to access the c.count member of the Counter and it enforces that the counter’s count is
equal to v. The counter predicate can be used in the precondition of incr and folded and unfolded in
the body.

inherently encodes the mapping between c.count and the snapshot fst (𝑠𝑛𝑎𝑝1). In order for the

constraint to be an equality over integers since we know from the definition of counter in Figure

3.6 that the type of v is Int and we know that fst (𝑠𝑛𝑎𝑝1) ∈ Snap. Therefore, we need a way to

encode that fst (𝑠𝑛𝑎𝑝1) is a sub-type of Int which is encoded in the function fSnapInt .

Now to illustrate framing we consider a client program in Figure 3.8 that allocates two coun-

ters, c1 and c2, and increments c1 by 1 and then asserts that two separate counter regions are

disjoint. When this is the case we can conclude memory safety of c2 because only c1 has been

mutated.

We show a point-in-time instance of the symbolic state after both counters are allocated and
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1 procedure incr(c: Counter, ghost v: Int)
2 requires counter(c, v)
3 ensures counter(c, v+1)
4 {

5
{
𝜎{𝛾 = {𝑐 ↦→ 𝑣1, 𝑣 ↦→ 𝑣2};ℎ = [pred⟨𝑐𝑜𝑢𝑛𝑡𝑒𝑟, [𝑣1, 𝑣2], 𝑠𝑛𝑎𝑝1⟩];𝜋 = []}

}
6 unfold counter(c, v);

7


𝜎{𝛾 = {𝑐 ↦→ 𝑣1, 𝑣 ↦→ 𝑣2};

ℎ = [fld⟨𝑐𝑜𝑢𝑛𝑡, 𝑣1, fst (𝑠𝑛𝑎𝑝1)⟩];
𝜋 = [(𝑠𝑐𝑜𝑝𝑒1, 𝑡𝑟𝑢𝑒, [snd (𝑠𝑛𝑎𝑝1) == emp; 𝑣2 == fSnapInt (fst (𝑠𝑛𝑎𝑝1))]}


8 c.count := c.count + 1;

9


𝜎{𝛾 = {𝑐 ↦→ 𝑣1, 𝑣 ↦→ 𝑣2};

ℎ = [fld⟨𝑐𝑜𝑢𝑛𝑡, 𝑣1, fst (𝑠𝑛𝑎𝑝1)⟩];
𝜋 = [(𝑠𝑐𝑜𝑝𝑒1, 𝑡𝑟𝑢𝑒, [fSnapInt (fst (𝑠𝑛𝑎𝑝1)) == fSnapInt (fst (𝑠𝑛𝑎𝑝1) + 1;

snd (𝑠𝑛𝑎𝑝1) == emp; 𝑣2 == fSnapInt (fst (𝑠𝑛𝑎𝑝1))]}


10 fold counter(c, v+1);

11


𝜎{𝛾 = {𝑐 ↦→ 𝑣1, 𝑣 ↦→ 𝑣2};

ℎ = [pred⟨𝑐𝑜𝑢𝑛𝑡𝑒𝑟, [𝑣1, 𝑣2], 𝑠𝑛𝑎𝑝1⟩];
𝜋 = [(𝑠𝑐𝑜𝑝𝑒1, 𝑡𝑟𝑢𝑒, [fSnapInt (fst (𝑠𝑛𝑎𝑝1)) == fSnapInt (fst (𝑠𝑛𝑎𝑝1) + 1;

snd (𝑠𝑛𝑎𝑝1) == emp; 𝑣2 == fSnapInt (fst (𝑠𝑛𝑎𝑝1))]}


12 }

Figure 3.7: Symbolic state during verification of incr.

c1 has been incremented by 1. The symbolic state in Figure 3.8 line 10 shows there each predicate

chunk in the heap have unique snapshots 𝑠1, 𝑠2, and 𝑠3 that represent the footprint of each counter.

The assertion on line 11 will result in an SMT query that is shown in line 14 to check if 𝑠3 ≠ 𝑠2

which fails because each snapshot is unique and thus when each counter predicate is unfolded

there will be different snapshot values used in the subsequent reasoning, hence the counters are

properly framed.

3.3.1 Injective Axioms

One of the most interesting technical contributions of this work is the use of injective functions to

map snapshot types to program types of the variables they represent. This is necessary because

Viper has a single Ref type to represent a reference where as GRASShopper supports pointers to

any type. An example where this occurs is when a struct field can take an arbitrary type and we
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1 procedure client()
2 requires emp
3 ensures emp
4 {
5 var c1 := create();
6 var c2 := create();
7

8 incr(c1, 1);
9

10


𝜎{𝛾 = {𝑐1 ↦→ 𝑣1, 𝑐2 ↦→ 𝑣2};

ℎ = [pred⟨𝑐𝑜𝑢𝑛𝑡𝑒𝑟, [𝑣1, 1], 𝑠3⟩, pred⟨𝑐𝑜𝑢𝑛𝑡𝑒𝑟, [𝑣2, 0], 𝑠2⟩, pred⟨𝑐𝑜𝑢𝑛𝑡𝑒𝑟, [𝑣1, 0], 𝑠1⟩];
𝜋 = []}


11 assert counter(c1, 1) &*& counter(c2, 0);
12

13 // SMT query

14
{
∀𝑠1, 𝑠2, 𝑠3 ∈ Snap. 𝑠3 ≠ 𝑠2

}
15

16 delete(c1, 1);
17 delete(c2, 0);
18 }

Figure 3.8: A counter client program with annotations of the symbolic state to to demonstrate framing.

need a symbolic value to represent that heap location with a given type to execute a field read or

write. The approach taken in this work is to use injective functions to encode the mapping from

the GRASShopper type to the Snap type and vice versa.

Recall, that a function 𝑓 ∈ 𝑆1 ← 𝑆2 is injective iff ∀𝑥1 ∈ 𝑆1 . ∀𝑥2 ∈ 𝑆2 . 𝑥1 ≠ 𝑥2 =⇒ 𝑓 (𝑥1) ≠

𝑓 (𝑥2). Each symbolic value that corresponds to a location on the heap will emit an axiom using

an injective function of type 𝑓𝑖𝑛 𝑗 : Snap→ 𝑇 where T is the type of the program variable,

∀𝑥 ∈ Snap . 𝑓 −1𝑖𝑛 𝑗 (𝑓𝑖𝑛 𝑗 (𝑥)) = 𝑥

For example, the axiom that will be emitted to the SMT solver for the snapshots corresponding

to the c.counter locations in Figure 3.7 will be

∀𝑥 ∈ Snap . fSnapInt−1(fSnapInt (𝑥)) = 𝑥
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where, fSnapInt is an uninterpreted symbol with a sort 𝐼𝑛𝑡 .

3.3.2 Snapshots as ADTs

Viper encodes snapshots as a sub-type of symbolic values and encodes a signature of snapshot-

related functions:

unit : Snap→ Snap

pair : Snap→ Snap→ Snap

fst : Snap→ Snap

snd : Snap→ Snap

where unit is the empty snapshot, and fst and snd are interpreted as,

∀𝑠1, 𝑠2 ∈ Snap . fst (pair (𝑠1, 𝑠2)) = 𝑠1 ∧ snd (pair (𝑠1, 𝑠2)) = 𝑠2

A handy notation for multiple applications of fst and snd operations such as fst (fst (𝑠1)) or

fst (fst (fst (snd (snd (𝑠1))))) is to adapt a power function notation to mean the repeated application

where 𝑓 0(𝑠) ≜ 𝑠 and 𝑓 𝑛+1(𝑠) ≜ 𝑓 (𝑓 𝑛 (𝑠)). By applying this definition we can write fst (fst (𝑠1)) as

fst2(𝑠1) and fst (fst (fst (snd (snd (𝑠1))))) as fst3(snd2(𝑠1)).

We take a different approach by encoding snapshots as ADTs into the SMT solver since

GRASShopper already had an ADT type to encode binary trees for the VCG backend. The en-

coding is straightforward,

datatype Snap = emp | tree(fst : Snap, snd : Snap)
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3.4 State Consolidation

A known problem with SE engines that maintain separate state for pure formulas via a stack

and heap-based permissions in a symbolic heap are possible cases when aliasing can cause heap

incompleteness. Both Smallfoot-style verifiers and Viper encounter this issue, see [3, 24]. This

kind of incompleteness is different from Rice’s undecidability and is more related to the state not

being able to encode aliasing in these disjoint data structures.

An example of where incompleteness arises is when variables are aliased. Consider the fol-

lowing program where aliasing occurs in Figure 3.9,

1 struct Node {
2 var data: Int;
3 var next: Node;
4 }
5

6 procedure alias1(x: Node) returns (y: Node)
7 requires acc(x.next)
8 ensures acc(x.next) &*& acc(y.next)
9 {
10 y := new Node();
11 x := y;
12 // Passes
13 pure assert x == y;
14 }

Figure 3.9: An example of incompleteness due to aliasing that can be resolved by state consolidation.

State consolidation can overcome incompleteness in alias1 because at the point where the

formula is checked against the symbolic state in line 13 the PCStack is empty so the SMT solver

can never know that x == y. The state consolidation algorithm will emit the constraint x == y

to the symbolic state and the assertion will pass.

However, this state consolidation approach isn’t a silver bullet as the verification of alias2

in Figure 3.10 fails due to there being a disjunctive alias z == y || z == x regardless. Viper

discusses that this type of disjunctive aliasing can only be overcome by using ghost code to force
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branching, so this is an expected failure.

1 procedure alias2(x: Node, y: Node) returns (z: Node)
2 requires acc(x.data) &*& acc(y.data)
3 ensures acc(x.data) &*& acc(y.data) &*& acc(z.data)
4 {
5 // Fails
6 assert (z == y || z == x);
7 }

Figure 3.10: An example of incompleteness due to aliasing that cannot be resolved by state consolidation.

Since GRASShopper doesn’t support fractional permissions like Viper’s acc(x.f, 1/2) the

state consolidation operation in GRASShopper is simplified. We only implemented a function

to infer disequalities in Figure 3.11 and we add an additional constraint to ensure each receiver

of a field chunk, fld⟨𝑥, _, _⟩, is non-null.

1 infer-disequalities(h, 𝜋) =
2 let s = {(𝑥𝑖 , 𝑦𝑖 ) | fld⟨𝑥𝑖 , 𝑓 ′𝑖 , 𝑠𝑖⟩ ∈ ℎ ∧ fld⟨𝑦𝑖 , 𝑓𝑖 , 𝑠′𝑖 ⟩ ∈ ℎ ∧ 𝑓𝑖 = 𝑓 ′𝑖 } in
3 𝑓 𝑜𝑙𝑑𝑙((_𝜋

′, (𝑞𝑖 , 𝑟𝑖 ). pc-add(𝜋 ′, 𝑞𝑖 ≠ 𝑟𝑖 ∧ 𝑥𝑖 ≠ null)), 𝜋, s)

Figure 3.11: A function to infer disequalities from aliased heap chunks.

The approach taken in this work around where state consolidation occurs is done optimisti-

cally at every SMT call. A more sophisticated approach would be to only do state consolidation

when an SMT query fails while searching for matching heap chunks.

3.5 Well-Formedness and Validity Checks

The main driver functions that begin checking each procedure are implemented as a set of func-

tions that first ensure that the specifications are well-formed. Well-formedness is essential to

ensure that the verification of code contained in the body of a procedure, function, or predicate

doesn’t fail due to a buggy specification. For instance if one is to specify that the value of the

next node in a linked list should be 10 a correct specification would be
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acc(x.next) &*& x.next.data == 10 (3.2)

In Equation 3.2, the formula must specify that access is granted to x.next before we can

access the data member and push a constraint onto the stack. An incorrect specification could

be,

x.next.data == 10 &*& acc(x.next) (3.3)

Equation 3.3 is ill-formed because the evaluation of formulas is a strict left-to-right evaluation,

and in order to produce a formula that relies on a heap-dependent field the symbolic value must

be available in the symbolic heap. This is because the constraint x.next.data == 10 must be

pushed onto the stack using the symbolic value for x.next.data which is carried in the heap

chunk ^ = fld⟨𝑥, 𝑛𝑒𝑥𝑡, 𝑠⟩.

The set of verification functions that check well-formedness and that each procedure satis-

fies its specification are a bit different that the well-formedness checks in Viper, but are similar in

spirit. Themain difference between these functions inGRASShopper and Viper are due to the fact

that GRASShopper doesn’t support Viper’s inhale/exhale variant permissions [24], and are thus

simpler. The rules for checking well-formedness of pre- and post-conditions and the validity of

procedures, functions and predicates are presented in Figure 3.12. Each verify function returns

a sequence of formulas corresponding to a set of axioms and an error. The axiom sequence is only

populated when verifying heap-dependent functions which also axiomatize each checked func-

tion while doing well-formedness checks and validity checks as an optimization. The ultimately

generated axiom is returned from the verify function so it can be later emitted to the SMT solver.

So verify-proc(𝜎, 𝑎𝑟𝑔𝑠, 𝑝𝑟𝑒, 𝑝𝑜𝑠𝑡, 𝑐𝑚𝑑) ∈ SymbState×Terms×Form×𝐹𝑜𝑟𝑚×Cmds↛ Form×R.

The function signature for verifying predicates is a bit different compared to verify-proc since

predicates don’t have a specification and the only piece of the predicate that needs to be checked
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for well-formedness is the predicate body which is a Term, so verify-pred(𝜎, 𝑎𝑟𝑔𝑠, 𝑏𝑜𝑑𝑦) ∈

SymbState × Terms × Form ↛ Form × R, and since the return value of a heap-dependent

function is needed to axiomatize the function; verify-func(𝜎, 𝑖𝑑, 𝑎𝑟𝑔𝑠, 𝑟𝑒𝑡, 𝑝𝑟𝑒, 𝑝𝑜𝑠𝑡, 𝑏𝑜𝑑𝑦) ∈

SymbState × Ident × Terms × Term × Form × Form × Form↛ Form × R

1 verify-proc(𝜎, 𝑎𝑟𝑔𝑠, pre, post, 𝑐) =
2 produce(𝜎, pre, fresh, (_ 𝜎1.

3 produce(𝜎1, post, fresh, (_ 𝜎2.

4 exec(𝜎1, 𝑐, (_ 𝜎3 .

5 consume(𝜎3, post, (_ 𝜎4. (𝜖, success)))))))))
6

7 verify-pred(𝜎, 𝑎𝑟𝑔𝑠, body) =
8 exec(𝜎, havoc 𝑎𝑟𝑔𝑠, (_ 𝜎1.

9 produce(𝜎1, body, fresh, (_ 𝜎2.

10 (𝜖, success)))))
11

12

13 verify-func(𝜎, id, 𝑎𝑟𝑔𝑠, ret, pre, post, body) =
14 produce(𝜎, pre, fresh, (_ 𝜎1 .

15 exec(𝜎1, havoc ret, (_ 𝜎2 .

16 produce(𝜎2, post, fresh (_ 𝜎3.

17 produce(𝜎3, 𝑐, (_ 𝜎4.

18 let 𝑓 = axiom(𝜎2, 𝜎3, id, 𝑎𝑟𝑔𝑠, ret) in
19 consume(𝜎4, post, (_ 𝜎5. (𝜖 · 𝑓 , success)))))))))))

Figure 3.12: Well-formedness and validity checking rules for procedures, functions, and predicates.

We now explain the reasoning behind the steps in the verify rules presented in Figure 3.12.

The function verify-proc begins by producing the pre- and post-conditions for well-formedness

checks in lines 2 and 3. Once the pre- and post-conditions are validated then the body of the

procedure is executed in line 4 using the symbolic state after the pre-condition has been produced,

𝜎1. Lastly, the verification that the precondition and the body entail the post-condition is checked

by consuming the post-condition in line 5 under 𝜎3 which is the state after the body has been

executed. If this succeeds, then the result is success and the verification passes. Similar reasoning

is applied to verify-pred except that the only goal is to check well-formedness of the body and

then continue in a state that contains the result of producing the predicates body. This is done in

one-shot in line 9.
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Lastly, the verify-func logic begins by checking the well-formedness of the heap-dependent

function’s pre- and post-conditions in lines 14 and 16, but before checking well-formedness of

the post condition we need to havoc the return variable in case the post-condition term includes

any assertions over the return value. Hence, the symbolic value of the return value needs to be

present in 𝜎2.𝛾 before producing the post-condition in line 16. After the well-formedness checks

for a heap-dependent function’s pre/post conditions pass, we then can generate an axiom for the

function that will give the SMT solver an interpretation of the function denoted by the syntax

ret = 𝑖𝑑 (𝑎𝑟𝑔𝑠) in any later assertions that refer to the function. The details of the axiomatization

algorithm which is implemented in the helper axiom, is deferred to section 3.7.1 but we give

a brief set of details around why we invoke the axiom generation at this point when checking

well-formedness. At this point at line 18 we know that the pre- and post-conditions of the heap-

dependent function are well-formed and we also have a guarantee that the symbolic states have

the symbolic formulas for the pre-condition and the body on the top of 𝜎2.𝜋 ∈ PCStack and the

symbolic formula for the body (the body of a function is pure at this point by definition of a heap-

dependent function) is on the top of the 𝜎3.𝜋 ∈ PCStack. Thus, the helper axiom can utilize the

two states to implement a simple axiom translation algorithm. Once the axiom is generated from

these two stacks, the axiom can be propagated to the caller of verify-func and later discharged

into the SMT stack.

3.6 Predicates

BothGRASShopper and Viper support recursive predicates where an example of a recursive pred-

icate is a list segment,

The support for recursive predicates was directly ported fromViper [24] sowe refer the reader

to their discussion on evaluating recursive predicates.
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1 struct Node {
2 var next: Node;
3 var data: Int;
4 }
5

6 predicate lseg(x: Node, y: Node) {
7 x == y ? emp : acc(x.next) &*& acc(x.data) &*& lseg(x.next, y)
8 }

Figure 3.13: Definition of a node for a singly-linked list and an lseg predicate.

3.7 Heap-dependent Functions

Both GRASShopper and Viper support heap-dependent functions. Heap-dependent functions

are pure functions whose formal parameters are arguments with types that correspond to refer-

ences to objects that are maintained by the heap and do a pure computation. A simple example

of a heap-dependent function is a function, double, that adds the values carried by two Node

structures together. Figure 3.14 illustrates a use-case for a heap-dependent function in a client

add_nodes_double that calls the heap-dependent function double and since the pre-condition

has an if-then-else expression that requires that z == x or z == y for each value of b, the func-

tion will always double the value of x or y. The post-condition asserts that the return value r is

always x.data + z.data or y.data + z.data depending on the truthiness of b.

When checking the procedure add_nodes_double, the execution of the assignment rule at

the call-site of double in line 14 will evaluate the right-hand-side of assignment to produce a

symbolic function application, 𝑑𝑜𝑢𝑏𝑙𝑒 (𝑡𝑟𝑢𝑒, 𝑎, 𝑏, 𝑎), where 𝑎 and 𝑏 are the symbolic values of a

and b. In order for the SMT solver to infer that r >= a.data + a.data in the post-condition

of add_nodes_double it must be able to infer that the application of double will result in r >=

z.data. A common way to do this is to axiomatize the function and push the axiom onto the

SMT assertion stack.

Here we will illustrate how the GRASShopper symbolic execution engine will generate func-
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1 function double(b: Bool, x: Node, y: Node, z: Node) returns (r: Int)
2 requires acc(x.data) &*& acc(y.data)
3 requires b ? z == x : z == y
4 requires x.data > 0 && y.data > 0
5 ensures b ? r == x.data + z.data : y.data + z.data
6 {
7 b ? x.data + z.data : y.data + z.data
8 }
9

10 procedure add_nodes_double(a: Node, b: Node) returns (r: Int)
11 requires acc(a.data) &*& acc(b.data)
12 ensures acc(a.data) &*& acc(b.data) &*& r >= a.data + a.data
13 {
14 var z := double(true, a, b, a);
15 r := z;
16 }

Figure 3.14: A heap-dependent function that adds data from two Nodes in a client procedure.

tion axioms for function double in Figure 3.14 from a given symbolic state during the well-

formedness check verify_func of Figure 3.12. The goal is to generate an axiom of the form

∀𝑏 ∈ 𝐵𝑜𝑜𝑙, 𝑥,𝑦, 𝑧 ∈ 𝐿𝑜𝑐 ⟨𝑁𝑜𝑑𝑒⟩, 𝑠1 ∈ 𝑆𝑛𝑎𝑝.

(𝑏 =⇒ 𝑧 == 𝑥 && fSnapInt (fst2(snd (𝑠1))) > 0 &&

fSnapInt (fst2(snd (𝑠1))) > 0) =⇒

𝑑𝑜𝑢𝑏𝑙𝑒 (𝑏, 𝑥,𝑦, 𝑧, 𝑠1) = fSnapInt (fst2(snd (𝑠1))) + fSnapInt (fst2(snd (𝑠1)))

After we present details for the axiom generation algorithm for the simpler function double

we will discuss more involved example where the heap-dependent function involves recursion.

3.7.1 Axiomatization

The basic idea for generating an axiom is to realize that every axiom has the same form: a uni-

versally quantified formula where the binding variables are the formal parameters of double and

an additional Snap parameter if a snapshot is referred to in the function body. The body of the
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quantified formula is then constructed from the state obtained after producing the pre-condition

and then building an implication where the pre-condition symbolic formula implies the post-

condition and not the body. This is because we assume that the validity of the heap-dependent

function has already been checked. However, notice that the quantified formula is not simply

the body Form, r == x.data + z.data, but rather the return value is replaced by the symbol

𝑑𝑜𝑢𝑏𝑙𝑒 (𝑏, 𝑥,𝑦, 𝑧, 𝑠1).

The algorithm for generating the axiom is defined via 𝑎𝑥𝑖𝑜𝑚(𝜎𝑝𝑟𝑒, 𝜎𝑝𝑜𝑠𝑡 , 𝑖𝑑, 𝑎𝑟𝑔𝑠, 𝑟𝑒𝑡) ∈

SymbState×SymbState×Ident×Terms×𝑇𝑒𝑟𝑚 ↛ Form and is essentially a stack diffing approach

where we compute the post-condition stack by diffing the state after producing the body and the

state after producing the pre-condition,

𝑎𝑥𝑖𝑜𝑚(𝜎𝑝𝑟𝑒, 𝜎𝑏𝑜𝑑𝑦, 𝑖𝑑, 𝑎𝑟𝑔𝑠, 𝑟𝑒𝑡) = let ⟨_, 𝜋𝑏𝑜𝑑𝑦, _⟩ = 𝜎𝑏𝑜𝑑𝑦 in

let ⟨_, 𝜋𝑝𝑟𝑒, _⟩ = 𝜎𝑝𝑟𝑒 in

let 𝜋𝑝𝑜𝑠𝑡 = 𝑓 𝑖𝑙𝑡𝑒𝑟_𝑢𝑛𝑖𝑡_𝑠𝑛𝑎𝑝 (𝜋𝑏𝑜𝑑𝑦 − 𝜋𝑝𝑟𝑒) in

let 𝑠 = 𝑐𝑜𝑙𝑙𝑒𝑐𝑡_𝑠𝑛𝑎𝑝 (𝜋𝑝𝑜𝑠𝑡 )in

let 𝑓𝑝𝑜𝑠𝑡 = (
∧

𝜋𝑝𝑜𝑠𝑡 ) [𝑟𝑒𝑡/𝑖𝑑 (𝑎𝑟𝑔𝑠, 𝑠)] in

∀𝑎𝑟𝑔𝑠, 𝑠 .
∧

𝜋𝑝𝑟𝑒 =⇒ 𝑓𝑝𝑜𝑠𝑡 (3.4)

A few details need further explanation for the axiom definition in Equation 3.4. The first

let bindings extract the path condition stacks from the symbolic states from producing the body

and pre-condition in order to compute the stack for the post-condition. An alternative way to

do this is to use the scope identifiers for the PCScopes pushed onto the path condition stack

𝜋 ∈ PCStack. One could create a fresh scope id for the pre- and post-conditions, and then later

scan the PCStacks searching for the corresponding scopes. The stack diffing-based approach was

easier to implement and we present this approach due to time constraints.

36



The helper function 𝑓 𝑖𝑙𝑡𝑒𝑟_𝑢𝑛𝑖𝑡_𝑠𝑛𝑎𝑝 will filter out 𝑠𝑖 == unit where 𝑠 ∈ Snap constraints

that are a result of producing assertions that have pure components in rule 3.3 line 1 to avoid

possible inconsistent formulas when folding over 𝜋𝑝𝑟𝑒 and 𝜋𝑝𝑜𝑠𝑡 to build the conjunctions used

in the final axiom formulas. The 𝑐𝑜𝑙𝑙𝑒𝑐𝑡_𝑠𝑛𝑎𝑝 helper will scan a stack and collect the snapshot

variables that are needed as binders in the universally quantified axiom formula and to be used

as last parameters in 𝑖𝑑 (𝑎𝑟𝑔𝑠, 𝑠 . . .)

3.8 Unfolding Axiom Generation

Perhaps one of the most complex parts of this work was implementing the unfolding command

in order to support unfolding of recursive predicates that could contain nested if-then-else ex-

pressions. This implementation added the unfolding expression to the GRASShopper language

and essentially implemented the unfolding rule from the Viper thesis [24] verbatim. As such

we refer the reader to the definition of the unfolding eval rule which leverages a complex join

helper that implements joining of arbitrarily many paths when evaluating nested if-then-else

expressions.

Since the implementation follows the Viper implementation verbatim, we will just discuss

an example using a heap-dependent function that unfolds a lseg predicate and provide a more

detailed description of the interplay between axiom generation and the join rule. Consider the

following heap-dependent function in Figure 3.15

1 function length(x: Node, y: Node) returns (res: Int)
2 requires lseg(x, y)
3 ensures x == y ==> res == 0
4 ensures res >= 0
5 {
6 unfolding lseg(x, y) in x == y ? 0 : 1 + length(x.next, y);
7 }

Figure 3.15: Definition of a length function that leverages unfolding an lseg predicate. For a definition
of lseg see Figure 3.13.
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At the point where the unfolding expression is evaluated after the pre-condition is produced,

the symbolic state will have an empty stack andℎ = pred⟨𝑙𝑠𝑒𝑔, [𝑥,𝑦], 𝑠⟩ since the only assertion in

the precondition is lseg(x, y). The first step that will execute is evaluation of of the unfolding

expression,

1 eval(𝜎1, unfolding lseg(x, y) in x == y ? 0 : 1 + length(x.next, y), 𝑄)

The evaluation of unfolding lseg(x, y) in x == y ? 0 : 1 + length(x.next, y) will

begin with lseg(x, y) unfolded so the body of the lseg(x, y) predicate will be available in the

next state after the transition, and then the join rule will begin its work in the continuation 𝑄

and will explore each branch of the in expression, x == y ? 0 : 1 + length(x.next, y). At

the end of exploring each branch, the join rule will merge the symbolic states from each branch

into a single join function we denote as 𝑓 𝑗𝑜𝑖𝑛 .

At this point the symbolic state will then be a bit complex but can be distilled down to an

implication where the joinFn is introduced as a variable,

𝑟 =𝑓 𝑗𝑜𝑖𝑛 &&

(𝑥 ≠ 𝑦 =⇒ 𝑓 𝑗𝑜𝑖𝑛 = 0) | |

(𝑥 = 𝑦 =⇒ 𝑓 𝑗𝑜𝑖𝑛 = 1 + 𝑙𝑒𝑛𝑔𝑡ℎ(fSnapLoc (fst2(𝑠)), 𝑦, snd (𝑠1))) (3.5)

Now, since the symbolic state contains the result from the join rule Equation 3.4 can be in-

voked which will generate the axiom,

∀ 𝑥,𝑦 ∈ 𝐿𝑜𝑐 ⟨𝑁𝑜𝑑𝑒⟩, 𝑠, ∈ Snap, 𝑓 𝑗𝑜𝑖𝑛 ∈ Int.

𝑙𝑒𝑛𝑔𝑡ℎ(𝑥,𝑦, 𝑠) = 𝑓 𝑗𝑜𝑖𝑛 &&

(𝑥 ≠ 𝑦 =⇒ 𝑓 𝑗𝑜𝑖𝑛 = 0) | |

(𝑥 = 𝑦 =⇒ 𝑓 𝑗𝑜𝑖𝑛 = 1 + 𝑙𝑒𝑛𝑔𝑡ℎ(fSnapLoc (fst2(𝑠)), 𝑦, snd (𝑠))) (3.6)
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Equation 3.6 shows that the main difference between axiom generation when an unfolding

expression is present is the addition of the join function 𝑓 𝑗𝑜𝑖𝑛 which is handled as a quantified

variable, and that the recursion relies on 𝑙𝑒𝑛𝑔𝑡ℎ(fSnapLoc (fst2(𝑠)), 𝑦, snd (𝑠))) being an inductive

hypothesis that the SMT solver is able to reason about based on the generated axiom. To ensure

that the unfolding doesn’t run into an infinite cycle due to the unfolding of mutually recursive

predicates we adopted the same mechanism that the Viper implementation used which is to track

a list of seen predicate identifiers with a configurable recursion depth. Each unfolding operation

will check this global list to see if the currently unfolded predicate has been seen, if so a global

counter is incremented, and if the depth is exceeded, we short-circuit the unfolding and produce

an uninterpreted function, 𝑓𝑟𝑒𝑐 which is a similar idea to the use of 𝑓 𝑗𝑜𝑖𝑛 . Since this detail is the

same as the Viper implementation, we omit details on this discussion.
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4 | Implementation & Experiments

We present a suite of case-study programs that will be verified using the new GRASShopper

symbolic execution engine in order to demonstrate its capabilities and run-times. The overall

implementation of the SE engine consists of over 2050 lines of OCaml code split into five modules

along with a test suite of 890 lines of GRASShopper programs. The source code is open source

and available on GitHub in the GRASShopper repository under the symb-exec-viper branch.

4.1 Linked List Data Structures

Here we present a few examples of GRASShopper programs for verifying algorithms over linked

list data structures. These examples will make heavy use of the list segment predicate, lseg. The

lseg predicate will be used in specifications as a shorthand for providing access permissions to

segments of a list, and will demonstrate usage of fold and unfold statements. Recall that Figure

3.13 presents a definition for a typical Node and the recursive lseg predicate. The first example

presented in Figure 4.1 will remove the first node in a linked list andwill unfold the lseg predicate

to emit permissions to the regions for first.data and first.next.

The symbolic state that is obtained before the unfold in line 7 of Figure 4.1 carries a predicate

chunk pred⟨𝑙𝑠𝑒𝑔, [𝑣1, 𝑣2], 𝑠1⟩ due to the pre-condition assertion which is consumed by the unfold

operation. The unfold operationwill then produce the body of the lseg predicatewhich iswhy the

symbolic heap carries access predicates for the first data members first.data and first.next.
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1 procedure remove_first(first: Node, last: Node)
2 returns (value: Int, second: Node)
3 requires lseg(first, last)
4 requires first != last
5 ensures lseg(second, last)
6 {

7
{
𝜎{𝛾 = {𝑓 𝑖𝑟𝑠𝑡 ↦→ 𝑣1, 𝑠𝑒𝑐𝑜𝑛𝑑 ↦→ 𝑣2 𝑣𝑎𝑙𝑢𝑒 ↦→ 𝑣3 𝑙𝑎𝑠𝑡 ↦→ 𝑣4};ℎ = [pred⟨𝑙𝑠𝑒𝑔, [𝑣1, 𝑣2], 𝑠1⟩];𝜋 = [𝑣1 ≠ 𝑣2]}

}
8 unfold lseg(first, last);

9


𝜎{𝛾 = {𝑓 𝑖𝑟𝑠𝑡 ↦→ 𝑣1, 𝑠𝑒𝑐𝑜𝑛𝑑 ↦→ 𝑣2 𝑣𝑎𝑙𝑢𝑒 ↦→ 𝑣3 𝑙𝑎𝑠𝑡 ↦→ 𝑣4};

ℎ = [pred⟨𝑙𝑠𝑒𝑔, [fSnapLoc (fst3 (𝑠1)), 𝑣4]⟩, fld⟨𝑑𝑎𝑡𝑎, 𝑣1, fst2 (snd (𝑠1))⟩,
fld⟨𝑛𝑒𝑥𝑡, 𝑣1, fst3 (𝑠1)⟩];

𝜋 = [𝑣1 ≠ 𝑣2]}


10

11 value := first.data;
12 second := first.next;

13


𝜎{𝛾 = {𝑓 𝑖𝑟𝑠𝑡 ↦→ 𝑣1, 𝑠𝑒𝑐𝑜𝑛𝑑 ↦→ 𝑣2 𝑣𝑎𝑙𝑢𝑒 ↦→ 𝑣3 𝑙𝑎𝑠𝑡 ↦→ 𝑣4};

ℎ = [pred⟨𝑙𝑠𝑒𝑔, [fSnapLoc (fst3 (𝑠1)), 𝑣4]⟩, fld⟨𝑑𝑎𝑡𝑎, 𝑣1, fst2 (snd (𝑠1))⟩,
fld⟨𝑛𝑒𝑥𝑡, 𝑣1, fst3 (𝑠1)⟩];

𝜋 = [𝑣1 ≠ 𝑣2; 𝑣3 == fst2 (snd (𝑠1)); 𝑣3 == fst3 (𝑠1)]}


14

15 free first;

16


𝜎{𝛾 = {𝑓 𝑖𝑟𝑠𝑡 ↦→ 𝑣1, 𝑠𝑒𝑐𝑜𝑛𝑑 ↦→ 𝑣2 𝑣𝑎𝑙𝑢𝑒 ↦→ 𝑣3 𝑙𝑎𝑠𝑡 ↦→ 𝑣4};

ℎ = [pred⟨𝑙𝑠𝑒𝑔, [fSnapLoc (fst3 (𝑠1), 𝑣4]⟩];
𝜋 = [𝑣1 ≠ 𝑣2; 𝑣3 == fst2 (snd (𝑠1)); 𝑣3 == fst3 (𝑠1)]}


17

18 }

Figure 4.1: A procedure to remove the first node of a linked list with annotations for the symbolic state
during the execution.

The assignments to value and second will first evaluate the right-hand-side expressions to the

snapshots corresponding to first.next and first.data by searching the heap for the respective

field chunks and then push equality constraints 𝑣3 == fst2(snd (𝑠1)) and 𝑣3 == fst3(𝑠1) onto the

stack. Lastly, the free command will remove heap chunks for the all of the declared fields for the

receiver first, which will result in the heap only carrying the lseg predicate chunk in line 16 of

Figure 4.1.

In Figures 4.2 and 4.3, we present two additional procedures that will append a node carrying

an integer value v to the end of a linked list and reverse a linked list, respectively. Since the
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1 procedure append(lst: Node, v: Int)
2 requires lseg(lst, null) &*& lst != null
3 ensures lseg(lst, null)
4 {
5 unfold lseg(lst, null);
6

7 if (lst.next == null) {
8 var n := new Node();
9 n.data := v;
10 n.next := null;
11 lst.next := n;
12

13 fold lseg(n, null);
14 } else {
15 append(lst.next, v);
16 }
17 fold lseg(lst, null);
18 }

Figure 4.2: Procedure to append a node to the end of a linked list.

algorithms are slightly more involved, we omit annotating the symbolic state and will discuss

only a few relevant points. Notice that the pre-condition of append in Figure 4.2 at line 2 uses an

additional pure constraint that lst is non-null. This is necessary so that permissions to lst.next

in the recursive call can be inferred from unfolding the lseg predicate in line 5. This pure formula

can be omitted if each time an access predicate is produced, we push an additional disequality

constraint onto the stack to denote that the reference is non-null. The reverse procedure on line

1 of Figure 4.3 illustrates how list segment predicates can be used in loop invariants to assert that

loops that move pointers always guarantee that they are operating over memory regions that are

lists. These invariants are necessary so the loop body can contain fold and unfold commands to

emit state into the heap in order to verify the code in the loop body.

4.2 Tree Data Structures

Here we present a few simple programs to illustrate the verification of a binary-search tree used

to implement a set data structure. The code relies on a Node definition and a tree(r: Node)
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1 procedure reverse(lst: Node)
2 returns (rev: Node)
3 requires lseg(lst, null)
4 ensures lseg(rev, null)
5 {
6 rev := null;
7 var curr := lst;
8 unfold lseg(lst, null);
9 while (curr != null)
10 invariant lseg(rev, null)
11 invariant lseg(curr, null)
12 invariant acc(curr.next) &*& curr.next != null
13 {
14 unfold lseg(rev, null);
15 var tmp := curr;
16 curr := curr.next;
17 tmp.next := rev;
18 rev := tmp;
19 fold lseg(rev, null);
20 }
21 fold lseg(lst, null);
22 }

Figure 4.3: Procedure to reverse a linked list with an iterative algorithm.

predicate to recursively define the meaning of a tree which are presented in Figure 4.4

The tree predicate definition in line 7 of Figure 4.4 defines the base case to be r == null as the

empty tree, and then for the non-empty case it grants access permissions to the data member and

the pointers to the left and right sub-trees. It then states that these pointers point again tomemory

regions that indeed satisfy the tree predicate recursively. We now define a simple procedure to

illustrate that the SE engine can reason about recursive predicate calls and demonstrate the fold

and unfold commands which are used in the linked list programs discussed above.

Figure A.10 illustrates a simple recursive program to traverse a binary tree. Much like the

linked list programs, we need to unfold and fold the tree predicate in order to emit permis-

sions for the left and right sub-trees before recursively calling traverse. The unfold command

on line 5 of Figure A.10 will evaluate the root and then produce access predicate field chunks

for root.data, root.left, and root.right so that the pre-condition of the recursive call to

traverse(root.left) and traverse(root.right) will have the proper permissions so that
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1 struct Node {
2 var left: Node;
3 var right: Node;
4 var data: Int;
5 }
6

7 predicate tree(r: Node) {
8 r == null
9 r != null &*& acc(r.data) &*& acc(r.left) &*& acc(r.right)
10 &*& tree(r.left) &*& tree(r.right)
11 }

Figure 4.4: Definition of a node for a binary tree and a tree predicate.

the tree predicate can be consumed for the left and right sub-trees.

4.3 Results

We present results from running theGRASShopper SE engine on a suite of programs that test the

implementation of the operational semantics. The test suite was critical during the implemen-

tation of the symbolic execution for exploring the behavior of the rules and for debugging. The

results are presented in an evaluation table in Figure 4.1 we label each program with the syntax

tag:procedure_name where the tag denotes the class of program:

• basic - programs that exercise assignments, memory allocation, if-then-else commands,

loops, arithmetic expressions, etc.

• frame - programs that test the framing behavior of predicates.

• func - programs that use procedures that use heap-dependent functions.

• list - programs for linked list algorithm verification.

• tree - programs for tree set algorithm verification.
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The evaluation table also provides a reference to the source code for each example in the

Appendix A and the running times as measured using an Intel Core i7-8565U CPU with 1.80GHz

4 core processor, 32 GB of ram, and the OCaml compiler at version 4.08.1.

Program Source Code LoC Time (ms)
basic:assign Figure A.1, line 1 6 38
basic:assign2 Figure A.1, line 8 7 19
basic:loop0 Figure A.2, line 5 12 18
basic:loop1 Figure A.2, line 18 16 347
basic:pure1 Figure A.3, line 1 8 17
basic:pure2 Figure A.3, line 10 7 18
basic:pure_swap Figure A.3, line 18 7 16
basic:assume1 Figure A.3, line 25 7 16
basic:if1 Figure A.4, line 1 10 33
basic:if2 Figure A.4, line 12 10 27
basic:old1 Figure A.4, line 23 9 338
frame:foo_heap Figure A.5, line 5 6 93
frame:bar_heap Figure A.5, line 12 8 215
func:add_nodes Figure A.6, line 13 14 857
func:add_nodes_double_1 Figure A.6, line 31 15 807
list:unfold_lseg Figure A.7, line 10 9 285
list:fold_left Figure A.7, line 17 9 272
list:empty_list Figure A.7, line 24 9 191
list:append Figure A.8, line 1 22 807
list:append_loop Figure A.8, line 20 23 288
list:remove_first Figure A.9, line 1 15 241
list:reverse Figure A.9, line 14 25 330
tree:traverse Figure A.10, line 1 11 243
tree:insert Figure A.11, line 1 32 677
tree:rotate_left Figure A.12, line 1 20 243
tree:rotate_right Figure A.12, line 17 20 242

Table 4.1: Evaluation table for GRASShopper programs checked by symbolic execution. The data was
collected on a Linux machine running an Intel Core i7-8565U CPU with 1.80GHz 4 core processor, 32 GB
of ram, and the OCaml compiler at version 4.08.1. All source code is listed in Appendix A and LoC denotes
lines of code.

There are a few notable trends in the running times. Overall, for simple programs the symbolic

execution will terminate in the lower millisecond time range, but the more complex the queries
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are generated for SMT solver checks the longer the computation time takes. A few programs

such as func:add_nodes and func:add_nodes_double_1 approach the 850 millisecond range

all involve heap-dependent functions that generate substantial function axiomatization due to

branching of if-then-else expressions.

In the future, support to the VCG backend for field-level access permissions, and the elimina-

tion of fold/unfold expressions, plus the support for the translation of unfolding expressions

would allow for speedup comparisons to be measured for the symbolic execution backend. We

leave that to future work, but not all deductive verification systems support VCG generation and

symbolic execution so we felt that this detail wasn’t strictly necessary for this scope of work.
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5 | Conclusion

This work demonstrated that the approach taken by Viper and its predecessors is a viable method

for building symbolic execution engines for fully automated deductive verification languages that

use separation logic. Through the addition of support for injective functions to handle snapshot

encoding of structure fields of different types we demonstrated that the semantics of the Viper

symbolic execution engine can be adapted to a language with different features.

By going through this process and learning from the existing literature we attempted to im-

prove the formal specification of the interpreter rules to hopefully clarify some hurdles we en-

countered when implementing heap-dependent function axiomatization. We also provided more

detail regarding the relationship between evaluation of unfolding expressions with nested if-

then-else expressions and discussed its relationship to axiomatization. Through this, we made a

contribution to the implementation of joining arbitrary execution paths in the state-of-the-art.
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A | Appendix

A.1 Sample Code for Evaluation Results

The code used to generate the evaluation table in Section 4.3 is provided here.

1 procedure assign(x: Int, y: Int)
2 requires x == 0 && y == x
3 ensures x == 0 && y == x
4 {
5 pure assert x == 0;
6 }
7

8 procedure assign2(x: Int, y: Int)
9 requires x == 10 && y == 5
10 ensures x == 10 && y == 5
11 {
12 x := 10;
13 y := 5;
14 }

Figure A.1: Basic assignment code.
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1 struct DNode {
2 var data: Int;
3 }
4

5 procedure loop0(x: Int)
6 requires x == 0
7 ensures x == 1
8 {
9 var i := 1;
10 while (i < 2)
11 invariant x == i - 1 && i <= 2
12 {
13 x := i;
14 i := i + 1;
15 }
16 }
17

18 procedure loop1(x: DNode)
19 requires acc(x.data) &*& x.data == 0
20 ensures acc(x.data) &*& x.data == 10
21 {
22 var i := 1;
23 var y := new DNode();
24 y.data := 10;
25 while (i < 11)
26 invariant acc(x.data) &*& acc(y.data) &*& x.data == i - 1
27 &*& y.data == 10 &*& i <= 11
28 {
29 x.data := i;
30 y.data := 10;
31 i := i + 1;
32 }
33 }

Figure A.2: Basic loop code.
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1 procedure pure1(x: Int)
2 requires x == 0
3 ensures x == 10
4 {
5 x := 2;
6 x := x + 5;
7 x := x + 3;
8 }
9

10 procedure pure2(x: Int, y: Int)
11 requires x == y
12 ensures x == y + 8
13 {
14 x := x + 5;
15 x := x + 3;
16 }
17

18 procedure pure_swap(x: Int, y: Int)
19 requires x == 0 && y == 10
20 ensures x == 10 && y == 0
21 {
22 y, x := x, y;
23 }
24

25 procedure assume1(x: Int)
26 requires x > 0
27 ensures x == 100
28 {
29

30 x := 10;
31 pure assume x == 100;
32 }

Figure A.3: Basic pure assertion code.
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1 procedure if1(x: Int, y: Int)
2 requires x == 0
3 ensures x > 2
4 {
5 if (x > 2) {
6 x := 3;
7 } else {
8 x := x + 3;
9 }
10 }
11

12 procedure if2(x: Int, y: Int)
13 requires x == 0
14 ensures x >= 3
15 {
16 if (x > 2) {
17 x := 3;
18 } else {
19 pure assume x >= 3;
20 }
21 }
22

23 procedure old1(x: Node, y: Node)
24 requires acc(x.next) &*& acc(y.next)
25 ensures acc(x.next) &*& x.next == old(y.next)
26 &*& acc(y.next) &*& y.next == old(x.next)
27 {
28 var z := x.next;
29 x.next := y.next;
30 y.next := z;
31 }

Figure A.4: Basic if-then-else and old expression code.
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1 struct Node {
2 var next: Node;
3 }
4

5 procedure foo_heap(x: Node, y: Node)
6 requires acc(x.next)
7 ensures acc(x.next) &*& x.next == y
8 {
9 x.next := y;
10 }
11

12 procedure bar_heap(x: Node, y: Node)
13 requires acc(x.next) &*& acc(y.next)
14 ensures acc(x.next) &*& acc(y.next) &*& y.next == old(y.next)
15 {
16 var z := y.next;
17 foo_heap(x, y);
18 pure assert (y.next == z);
19 }

Figure A.5: Code to illustrate framing of procedure calls.
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1 struct Node {
2 var data: Int;
3 var next: Node;
4 }
5

6 function f(x: Node, y: Node) returns (z: Int)
7 requires acc(x.data) &*& acc(y.data)
8 ensures x.data + y.data == z
9 {
10 x.data + y.data
11 }
12

13 procedure add_nodes(a: Node, b: Node) returns (c: Node)
14 requires acc(a.data) &*& acc(b.data)
15 ensures acc(a.data) &*& acc(b.data) &*& acc(c.data) &*& c.data == a.data + b.data
16 {
17 var z := f(a, b);
18 c := new Node();
19 c.data := z;
20 }
21

22 function double(b: Bool, x: Node, y: Node, z: Node) returns (r: Int)
23 requires acc(x.data) &*& acc(y.data)
24 requires b ? z == x : z == y
25 requires x.data > 0 && y.data > 0
26 ensures r >= z.data
27 {
28 b ? x.data + z.data : y.data + z.data
29 }
30

31 procedure add_nodes_double_1(a: Node, b: Node) returns (r: Int)
32 requires acc(a.data) &*& acc(b.data)
33 ensures acc(a.data) &*& acc(b.data) &*& r == a.data + a.data
34 {
35 var z := double(true, a, b, a);
36 r := z;
37 }

Figure A.6: Code to illustrate heap-dependent function calls.
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1 struct Node {
2 var next: Node;
3 var data: Int;
4 }
5

6 predicate lseg(x: Node, y: Node) {
7 x == y ? emp : acc(x.next) &*& acc(x.data) &*& lseg(x.next, y)
8 }
9

10 lemma unfold_lseg(x: Node, y: Node)
11 requires lseg(x, y) &*& x != y
12 ensures acc(x.next) &*& acc(x.data) &*& lseg(x.next, y)
13 {
14 unfold lseg(x, y);
15 }
16

17 lemma fold_left(x: Node, y: Node)
18 requires acc(x.next) &*& acc(x.data) &*& lseg(x.next, y) &*& y != x
19 ensures lseg(x, y)
20 {
21 fold lseg(x, y);
22 }
23

24 lemma empty_list(x: Node)
25 requires emp
26 ensures lseg(x, x)
27 {
28 fold lseg(x, x);
29 }

Figure A.7: Code to illustrate fold/unfold verification primitives.
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1 procedure append(lst: Node, v: Int)
2 requires lseg(lst, null) &*& lst != null
3 ensures lseg(lst, null)
4 {
5 unfold lseg(lst, null);
6

7 if (lst.next == null) {
8 var n := new Node();
9 n.data := v;
10 n.next := null;
11 lst.next := n;
12

13 fold lseg(n, null);
14 } else {
15 append(lst.next, v);
16 }
17 fold lseg(lst, null);
18 }
19

20 procedure append_loop(lst: Node, v: Int)
21 requires lseg(lst, null) &*& lst != null
22 ensures lseg(lst, null)
23 {
24 unfold lseg(lst, null);
25

26 var curr := lst;
27 while (curr.next != null)
28 invariant lseg(lst, curr) &*& acc(curr.next) &*& lseg(curr.next, null)
29 {
30 curr := curr.next;
31 unfold lseg(curr, null);
32 }
33

34 var n := new Node();
35 n.data := v;
36 n.next := null;
37 lst.next := n;
38

39 fold lseg(lst, null);
40 }

Figure A.8: Code for appending a node to the end of a linked list
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1 procedure remove_first(first: Node, last: Node)
2 returns (value: Int, second: Node)
3 requires lseg(first, last)
4 requires first != last
5 ensures lseg(second, last)
6 {
7 unfold lseg(first, last);
8

9 value := first.data;
10 second := first.next;
11 free first;
12 }
13

14 procedure reverse(lst: Node)
15 returns (rev: Node)
16 requires lseg(lst, null)
17 ensures lseg(rev, null)
18 {
19 rev := null;
20 var curr := lst;
21 unfold lseg(lst, null);
22 while (curr != null)
23 invariant lseg(rev, null)
24 invariant lseg(curr, null)
25 invariant acc(curr.next) &*& curr.next != null
26 {
27 unfold lseg(rev, null);
28 var tmp := curr;
29 curr := curr.next;
30 tmp.next := rev;
31 rev := tmp;
32 fold lseg(rev, null);
33 }
34 fold lseg(lst, null);
35 }

Figure A.9: Code for removing a node from a linked list and reversing a list.
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1 procedure traverse(root: Node)
2 requires tree(root);
3 ensures tree(root);
4 {
5 unfold tree(root);
6 if (root != null) {
7 traverse(root.left);
8 traverse(root.right);
9 }
10 fold tree(root);
11 }

Figure A.10: A simple procedure that will recursively traverse a tree.

1 procedure insert(root: Node, value: Int)
2 returns (new_root: Node)
3 requires tree(root)
4 ensures tree(new_root)
5 {
6 unfold tree(root);
7 if (root == null) {
8 var t := new Node;
9 t.left := null;
10 t.right := null;
11 t.data := value;
12 return t;
13 } else {
14 var n: Node;
15 if (root.data > value) {
16 n := insert(root.left, value);
17 root.left := n;
18 return root;
19 } else if (root.data < value) {
20 n := insert(root.right, value);
21 root.right := n;
22 return root;
23 }
24 return root;
25 }
26 fold tree(root);
27 unfold tree(new_root);
28 }

Figure A.11: Insertion of a value into a tree-set.

57



1 procedure rotate_left(h: Node)
2 returns (res: Node)
3 requires tree(h)
4 requires h != null &*& acc(h.right) &*& h.right != null
5 ensures tree(res)
6 {
7 unfold tree(h);
8 var x: Node;
9 x := h.right;
10 h.right := x.left;
11 x.left := h;
12 fold tree(h);
13 unfold tree(res);
14 return x;
15 }
16

17 procedure rotate_right(h: Node)
18 returns (res: Node)
19 requires tree(h)
20 requires h != null &*& acc(h.left) &*& h.left != null
21 ensures tree(res)
22 {
23 unfold tree(h);
24 var x: Node;
25 x := h.left;
26 h.left := x.right;
27 x.right := h;
28 fold tree(h);
29 unfold tree(res);
30 return x;
31 }

Figure A.12: A left and right rotation of a tree-set.
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