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ABSTRACT

Matching problems arise in several settings in practice and have been a longstanding subject

of theoretical analysis. Typically, the settings of interest involve a large number of agents. We

further the study of matching problems in two settings: the stable matching setting, which has

been studied since the seminal work of Gale and Shapley, and a setting where agents’ values to

prospective partners degrade over time, leading them to have to balance the trade-off between

searching for a better partner versus deciding to match.

In the stable matching setting, we extend a line of research that seeks to explain the dichotomy

between the fact that Gale and Shapley’s Deferred Acceptance algorithm seems to work well in

practice, even when agents only submit a short list of prospective partners to the centralized

matching algorithm, and the fact that if the agents’ preferences are allowed to be arbitrary, com-

plete lists of all agents’ preferences are needed in order to guarantee a stable matching. To this

end, we consider probabilistically generated preference lists and we show that under fairly gen-

eral assumptions and in a variety of models, with high probability, short lists of prospective part-

ners, namely lengthΘ(log𝑛) instead of 𝑛, suffice for most of the agents. We prove our bounds are

tight up to constant factors. Furthermore, we construct a simple set of Θ(log𝑛) possible matches

per agent for almost all agents and demonstrate (in the form of an approximate equilibrium re-

sult) that they can afford to restrict their proposals to this set, while incurring only a small loss

in utility.

In the time discounted utilities setting, we consider a dynamic matching market, and study

how agents should balance accepting a proposed match with the cost of continuing their search.

Our model has two new features: finite agent lifetimes with linear loss in utility over time, and

a discrete population model, aspects which are underexplored in the literature. We quantify

how well the agents can do by providing upper and lower bounds on the collective losses of the

agents, with a polynomially small failure probability, where the notion of loss is with respect to

a plausible baseline we define. These bounds are also tight up to constant factors.
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In both settings, we complement our theoretical results with numerical simulations.
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1 | Introduction

1.1 A Perspective on Algorithmic Game Theory

Algorithmic game theory is a field that combines concepts from computer science and economics

to study strategic interactions among agents. People interacting among themselves, either with

or without the mediation of a centralised third party, are typically modeled as rational agents,

and the rules governing their interaction are modeled by a mechanism. In the field of mechanism

design, a mechanism refers to an algorithm that takes inputs from the participants in the game

or economic system and outputs an outcome.

At a very high level, in this setting, there are two very different directions of study:

• Designing good mechanisms

Typically there is a tension between the desires of each agent and the sort of outcome the

mechanism designer wants. To resolve this, a common goal is to construct mechanisms that

align the individual incentives of the participants with the desired collective outcome. The

alignment is often achieved by creating mechanisms in which the agents have no incentive

to misreport their preferences, thus removing the need for participants to strategize about

what to report. Standard desirable outcomes include satisfying certain fairness properties,

or being optimal with respect to some overall measure of quality (see [Finocchiaro et al.

2021] for a detailed discussion of this literature). Finally, the mechanism should ideally not
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be too computationally complex (the importance of this requirement has been recognized

from very early on: see [Suppes 1958]).

Thus mechanism design focuses on the question of what makes a mechanism ‘good’ and

seeks to design ’good’ mechanisms in a variety of settings. In the opposite direction there is

a corresponding literature of work showing hardness bounds and impossibility results that

set out the limits on what ‘good’ properties can possibly be achieved by any mechanism.

See [Papadimitriou et al. 2008; Dobzinski et al. 2022; Feigenbaum et al. 2003] for examples.

• Explaining agent behaviour and why existing mechanisms work well

Several mechanisms that have poor worst case guarantees seem to work quite well in prac-

tice. We will see an example of this in Chapter 2, with regards to the stable matching

problem. The explanation may be that in reality the agents participating in the mechanism

do not have arbitrary preferences but rather there are specific features of real world settings

that enable these mechanisms to work well. We can seek to characterize such features.

Furthermore people in the real world do not engage in arbitrary strategies when interacting

with others. We can seek to explain people’s behaviour and/or provide useful advice in the

form of simple strategies that agents can follow that will yield close to optimal outcomes.

For an excellent introduction to the literature exploring both of the important directions of

reasearch in algorithmic game theory generally, along with examples, we refer the reader to

[Roughgarden 2008]. The questions this thesis studies are all in the domain of the second topic.

Using ideas from computer science to explain the behaviour of interacting agents, is a long-

standing line of work. [Friedman and Shenker 1998] points out the importance of rethinking

notions of rationality and equilibrium concepts in an effort to come up with more compelling

models of agent behaviour. See ([Blum et al. 2008; Babaioff et al. 2006; Fabrikant and Papadim-

itriou 2008; Nisan et al. 2008]) for examples of work that couple worst case guarantees with novel
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behavioural models. Even more broadly, there is a burgeoning literature of work seeking to ex-

plain results from economics and the social sciences by constructing appropriate mathematical

models and applying ideas from theoretical computer science. One early shining example of this

is Jon Kleinberg’s work aimed at explaining the famous ‘small world phenomenon’ from the social

sciences literature ([Kleinberg 2000b]).

The small-world phenomenon refers to the idea that we are all connected through short chains

of acquaintances. It is a fundamental concept in social networks, which can be understood as the

presence of numerous short paths in a graph representing people, where edges represent acquain-

tances between individuals. This observation was famously demonstrated by social psychologist

Stanley Milgram in the 1960s by means of experiments. Milgram ([Milgram 1967]) conducted

a study where participants in Kansas and Nebraska were asked to forward a letter to a “target

person" near Boston, with the condition that each person could forward the letter to just one

acquaintance. The results showed that the median length of completed chains was six, since

popularized via the term “six degrees of separation."

Kleinberg raised two important questions:

• Why should there exist short chains of acquaintances linking together arbitrary pairs of

strangers?

• Why should arbitrary pairs of strangers be able to find short chains of acquaintances that

link them together?

The first question had already been partly addressed. One of Kleinberg’s insights was the

important distinction between the two questions. He proposed a relatively simple family of ran-

dom network models and showed that for exactly one of these models, there was an efficient

decentralized algorithm to find short paths ([Kleinberg 2000a, 2001, 2006]).

As Kleinberg observed:
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The ability to construct a searchable network in this way has since proved useful in

the design of peer-to-peer file-sharing systems on the Internet, where content must

be found by nodes consulting one another in a decentralized fashion. In other words,

nodes executing these look-up protocols are behaving very much like participants in

the Milgram experiments – a striking illustration of the way in which the computa-

tional and social sciences can inform one another, and theway inwhichmathematical

models in the computational world turn into design principles with remarkable ease.

- Jon Kleinberg, The small-world phenomenon and decentralized search [Kleinberg

2004]

The questions considered in this thesis have a similar flavour, insofar as we too seek to un-

derstand and explain agent behaviour and characterize what allows mechanisms to work sur-

prisingly well in real world settings. Our focus is on matching problems, a topic that comes up

in numerous real world scenarios: matching students to colleges, employees to employers and

dating applications are just a few salient examples.

In Chapter 2 we consider the Deferred Acceptance (DA) algorithm of Gale and Shapley [Gale

and Shapley 1962]. When agents do not list all possible partners in order of preference, there is,

in general, no guarantee that the agents will all be matched. Moreover the DA algorithm is not

incentive compatible for all agents: agents may be able to get a better partner by misreporting

their preferences. In reality, agents often do not list their preferences among all possible partners:

eliciting this many preferences is generally too time consuming or expensive. In fact, people’s

preferences are correlated, not arbitrary. We model this correlation and show that in this setting

the DA mechanism, with high probability, matches all agents and that the agents obtain reason-

ably good matches. Furthermore, we are able to show that agents do not have much to gain by

misreporting their preferences. This provides a simple intuitive answer to the question: where

should (as an example) medical residents apply to for residency positions. The answer turns
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out to be: apply to a range of hospitals ranked about as highly as you are publicly perceived to

be ranked among the pool of applicants, and of the hospitals within this range, apply to your

favourite ones.

In Chapter 3, we explore how agents should behave when faced with the task of finding a

match when they have to balance the trade-off between exploring for better matches and ac-

cepting a match so as to enjoy the match for a longer period of time. We consider a model with

fixed finite agent lifetimes, and the utility derived by the agents is the product of the quality of

the match and the minimum of the two matched agents’ lifetimes. While this is quite a crude

approximation of any real world setting, it still captures important qualitative features of agent

behaviour: for example, as might be expected, the agents should get less picky with time. Even in

our setting, finding an exactly optimal strategy for each agent is quite hard and our investigation

suggests these strategies are quite complex. However, we are able to analyze a much simpler

strategy which still yields reasonable outcomes.

1.2 Types of Matching Problems

Matching problems, broadly speaking, involve scenarios where items or agents need to be paired

up in some way. Such pairing up tasks are common in practice and matching problems have been

widely studied in the mathematics, computer science and economics literature.

One broad type of problem consists of purely combinatorial matching problems: typical ex-

amples being the task of finding or counting maximal or maximum matchings in graphs (for a

detailed survey see [Biggs 1988]; [Avis 1983] surveys matchings involving points in Euclidean

space). These kinds of problems and their variants remain an important topic of study. How-

ever, we will focus on settings where the entities being matched have some notion of preferences

between various possible match options.

Matching problems of this kind can themselves be categorized across several dimensions.
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1. The matching problem may be one-sided or two-sided. In a one-sided matching, agents are

matched to items; each agent has an ordering of the items based on their own preferences,

but the items have no associated preferences. This setting is often called the assignment

or allocation problem and is used to model several real world settings. A typical example

would be a market where items must be allocated to bidders for a price [Abdulkadiroglu

and Sönmez 2013]. There are also allocation problems without money, such as the task of

assigning classes to students, where classes have capacities and there is the further con-

straint that the class allocations for each student must be non-overlapping [Diebold et al.

2014; Diebold and Bichler 2017].

Two-sided matchings refer to settings where both sides being matched have preference

orderings over the other side. Common real world examples include dating applications

[Abadi and Prabhakar 2017], matching employers and employees as well as ride-share

mechanisms [Chau et al. 2020]. Once again, each of these applications may come with

its own set of additional constraints. Our work focuses on two-sided matching problems.

2. The preferences of the agents may be ordinal or cardinal. In the ordinal preference setting,

the agents each have an ordered list of their potential matches, while in the case of cardi-

nal preferences the agents have an underlying utility value associated with their possible

partners. From a modelling perspective, these two types of preferences both have pros and

cons. While ordinal preferences are easier to elicit, cardinal utilities are more expressive,

enabling an agent to report not only if they prefer one good/partner to another but also

by how much. This can allow for better measures of the quality of the matching. In both

Chapters 2 and 3 we work with cardinal utility models.

3. The matching algorithmmay seek to optimize a variety of different measures of the quality

of the matching. In one-sided matching, the mechanism assigning items to bidders may be

trying to maximize total utility or it may instead seek to optimize some metric of fairness
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(especially commonly studied in allocation problems without money [Amanatidis et al.

2017]). In two-sided matching problems, one solution concept that has been explored in

detail in the literature is the notion of stable matching. We will discuss this in detail in

Chapter 2.

4. The matching may be performed by some centralized mechanism or the setting may be

that of a dynamicmatchingmarket where the agents themselves encounter one another and

decide onwhom tomatchwith. A real world example of the formerwould be the USmedical

residency program, where doctors and hospitals submit their preferences to a centralized

matching mechanism that runs a version of the deferred acceptance algorithm and outputs

a stable matching. Our work in Chapter 2 examines this setting. A less centralized process

is considered in Chapter 3, which examines a dynamic matching market where agents are

paired up at random and they can either choose to match or not match. Often in real-

world applications there is a mix of both centralized and individual decision making: for

example a dating application might suggest potential matches, not wholly at random but

rather based on expressed preferences, and then the agents on both sides make the choice

to match or not.

5. The setting may be online or offline. The matching mechanism may receive the informa-

tion about the agents/items being matched all at once (the offline setting), or it may receive

such information in an online manner. A well-studied example studied in the online set-

ting is the item allocation problem: the mechanism sees one item arrive at a time and it

only sees the agents’ bids for an item once the item arrives (see [Mehta et al. 2013] for a

detailed survey of one-sided online matching problems). The mechanism then has to make

a (typically irrevocable) assignment of the item to some bidder before it gets to see the next

item. Another well-studied problem in the online setting is the online bipartite matching

problem, where algorithms have to decide whether to add edges to the matching being

7



constructed when each edge arrives. In models with online arrivals, the items may arrive

in a random or adversarial order.

The work presented in Chapter 2 considers the stable matching problem, while Chapter 3

considers a dynamic matching market with agent utilities diminishing over time.
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2 | Stable Matching: Choosing Which

Proposals to Make

2.1 Introduction

Consider a doctor applying for residency positions. Where should she apply? To the very top

programs for her specialty? Or to those where she believes she has a reasonable chance of success

(if these differ)? And if the latter, how does she identify them? We study these questions in the

context of Gale and Shapley’s Deferred Acceptance (DA) algorithm [Gale and Shapley 1962].

Wewill beginwith a brief discussion of the StableMatching problem and the classical Deferred

Acceptance algorithm, since these will be of central importance throughout this chapter.

2.1.1 Stable Matching and the Deferred Acceptance (DA) Algorithm

The stable matching problem is classically stated in terms of matching men and women. Let𝑀 be

a set of 𝑛 men and𝑊 a set of 𝑛 women. Each man𝑚 has an ordered list of women that represents

his preferences, i.e. if a woman 𝑤 comes before a woman 𝑤 ′
in 𝑚’s list, then 𝑚 would prefer

matching with 𝑤 rather than 𝑤 ′
. The position of a woman 𝑤 in this list is called 𝑚’s ranking

of 𝑤 . Similarly each woman 𝑤 has a ranking of the men
1
. The stable matching task is to pair

1
Throughout this chapter, we assume that each man𝑚 (woman 𝑤 ) ranks all the possible women (men), i.e.𝑚’s

(𝑤 ’s) preference list is complete.
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ALGORITHM 1: Woman Proposing Deferred Acceptance (DA) Algorithm.
Initially, all the men and women are unmatched.

while some woman𝑤 with a non-empty preference list is unmatched do
let𝑚 be the first man on her preference list;

if 𝑚 is currently unmatched then
tentatively match𝑤 to𝑚.

end
if 𝑚 is currently matched to𝑤 ′, and𝑚 prefers𝑤 to𝑤 ′ then

make𝑤 ′
unmatched and tentatively match𝑤 to𝑚.

end
remove𝑚 from𝑤 ’s preference list

end

(match) the men and women in such a way that no two people prefer each other to their assigned

partners. More formally:

Definition 2.1 (Matching). A matching is a pairing of the agents in 𝑀 with the agents in𝑊 .

It comprises a bijective function 𝜇 from 𝑀 to𝑊 , and its inverse 𝜈 = 𝜇−1
, which is a bijective

function from𝑊 to𝑀 .

Definition 2.2 (Blocking pair). A matching 𝜇 has a blocking pair (𝑚,𝑤) if and only if:

1. 𝑚 and𝑤 are not matched: 𝜇 (𝑚) ≠ 𝑤 .

2. 𝑚 prefers𝑤 to his current match 𝜇 (𝑚).

3. 𝑤 prefers𝑚 to her current match 𝜈 (𝑤).

Definition 2.3 (Stable matching). A matching 𝜇 is stable if it has no blocking pair.

Gale and Shapley [Gale and Shapley 1962] proposed the seminal deferred acceptance (DA)

algorithm for the stable matching problem. We present the woman-proposing DA algorithm

(Algorithm 1); the man-proposing DA is symmetric.

Gale and Shapley’s work was motivated by issues they observed in the US college admission

process. [Gale et al. 2001] contains a discussion on the process of the development of the algo-

rithm. Gale states that the starting point of their investigation was a New York Times article on
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10th September 1960 in which a reporter observing the undergraduate admissions process at Yale

noted that:

“the admissions men very often have no way of discovering howmany other colleges

each applicant is trying for, nor have they any way of knowing how many students

they decide to admit actually intend to come to their college"

With the consequence that:

“the admissions officer may end up "discovering that he has acceptances from a fresh-

man class either half as large or twice as large as the school has room for. ...because

of all the guess work, one would expect the final allocation of applicants to colleges

would be highly “non-optimal", so the first problem was to pin down precisely the

nature of these “non-optimalities". With this in mind, I decided to look first at the

special case where each college has a quota of one."

- David Gale, The two-sided matching problem. Origin, development and current

issues [Gale et al. 2001]

The idea of stability of the form we described above (absence of blocking pairs) is quite in-

tuitive, as evidenced by the fact that this notion of stability and indeed deferred acceptance type

algorithms have been informally discovered and implemented repeated times independently. The

celebrated result of Gale and Shapley formalized these intuitions and proved the correctness of

the algorithm: showing that with complete preferences it is guaranteed to find a stable matching.

The need for a centralized matching mechanism had become evident in various other settings

as well. One striking example was the case of medical internships. Internships have been a

form of postgraduate medical education since around 1900. For hospitals this provided a source

of relatively cheap labour; thus there was significant competition among hospitals for interns.

As a consequence hospitals tried to set the date for the binding agreements earlier than their

11



competitors. By 1944 dates of appointments were up to two full years before the internship was

actually to begin. Students waited for offers from preferable positions, and hospitals got last

minutes rejections. Ultimately a centralized clearinghouse was proposed: instead of hospitals

making individual offers and students responding, students and programs would submit rank

order list to indicate their preferences. In 1950–1951 a trial run of the centralized algorithm was

held and in 1951–1952 the newNIMP algorithmwas implemented which was very similar to what

we now know as the DA algorithm. This program gets very high levels of voluntary participation

up to the present day. For a detailed discussion of this history, see [Roth 1984].

The matching system based on DA has even faced legal challenges. In 2002 law firms brought

an antitrust suit against thematching system on the grounds that it was a conspiracy to hold down

wages for medical residents. The counter argument was that the algorithms based on DA have

been shown to be robust and useful in a wide variety of contexts, including the medical residency

match. This latter perspective prevailed, and the use of the Deferred Acceptance algorithm has

been explicitly recognized as part of pro-competitive market mechanism in American law. For a

detailed survey of the literature on stable-matching problem and the DA algorithm, including the

history of use of the DA algorithm in the US medical residency match context, see [Roth 2008].

Nowadays, DA algorithm is widely used to compute matchings in a wide variety of real-world

applications: the National Residency Matching Program (NRMP), which matches future residents

to hospital programs [Roth and Peranson 1999]; university admissions programs which match

students to programs, e.g. in Chile [Rios et al. 2021], school choice programs, e.g. for placement

in New York City’s high schools [Abdulkadiroğlu et al. 2005], the Israeli psychology Masters

match [Hassidim et al. 2017], and many others (e.g. [Gonczarowski et al. 2019]).

Gale and Shapley’s work sparked a great deal of work on the stable matching problem and

more generally on various approaches to the two sided matching problem with preferences. See

[Iwama and Miyazaki 2008] for a detailed review of various extensions and generalisations of

the stable matching problem and [Ren et al. 2021] for a survey on matching algorithms. [Biró
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and Klijn 2013] also reviews the literature on the stable matching problem, including the gener-

alisation to the many-to-one matching setting, before considering the problem with additional

constraints. For a detailed discussion of applications, see [Biró 2017]. [Hakimov and Kübler 2019]

provides a discussion of experimental results. In addition there are numerous books on the topic:

see [Gusfield and Irving 1989] for an overview, [Roth and Sotomayor 1992; Manlove 2013] for an

algorithmic perspective and [Knuth 1996] for a discussion of how the stable matching problem

can be related to other combinatorial problems.

The following facts about the DA algorithm are well known and we will use them freely

throughout this chapter.

Lemma 2.4. DA terminates and outputs a stable matching.

Proof. The DA algorithm always terminates since no woman proposes twice to the same man.

During an execution of the woman-proposing DA algorithm, a man, once matched, remains

matched. Suppose the algorithm ends with an unmatched woman 𝑤 , and hence an unmatched

man 𝑚. But 𝑤 would have proposed to 𝑚 at some point, so 𝑚 would not be unmatched. Thus

when the algorithm terminates, every man and woman is matched.

Suppose the matching resulting from DA is not stable. In the output matching suppose𝑤1 is

matched with𝑚1 and 𝑤2 is matched with𝑚2. Suppose (𝑤1,𝑚2) form a blocking pair. Then 𝑤1

prefers𝑚2 to𝑚1. This means that, according to the algorithm, she must have already proposed

to𝑚2 and been rejected by him. This means that𝑚2 strictly prefers 𝑤2 to 𝑤1, since a man only

improves his match over time. Hence𝑤1 and𝑚2 cannot form a blocking pair. □

The following result is an immediate consequence of Lemma 2.4.

Corollary 2.5. For any given set of preferences of the men and women, a stable matching always

exists.

Lemma 2.6. Woman-proposing DA is woman-optimal, i.e. each woman is matched with the best

partner she could be matched with in any stable matching.
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Proof. The woman-proposing DA algorithm is under-specified: at each step we have a choice

regarding which unmatched woman is chosen to propose. Consider any fixed execution of the

woman-proposing DA algorithm. Let 𝑅 = {(𝑤,𝑚)} denote the set of pairs (𝑚,𝑤) such that 𝑚

rejects 𝑤 at some point in this fixed execution of the woman-proposing algorithm. Since each

woman systematically works her way down her preference list, if 𝑤 is matched to𝑚 at the con-

clusion of the algorithm, then (𝑤,𝑚′) ∈ 𝑅 for every𝑚′
that 𝑤 prefers to𝑚′

. Thus, the following

claim would imply the theorem: for every (𝑤,𝑚) ∈ 𝑅, no stable matching pairs up𝑤 and𝑚.

We prove the claim by induction on the number of iterations of the algorithm. Initially, 𝑅 = 𝜙

and the claim is true. For the inductive step, consider an iteration of the algorithm in which

𝑚 rejects 𝑤 in favor of 𝑤 ′
. Thus one of 𝑤 , 𝑤 ′

proposed to 𝑚 in this iteration. Since 𝑤 ′
makes

proposals in the order specified by her preference list, for every𝑚′
that𝑤 ′

prefers to𝑚, (𝑤 ′,𝑚′)

is already in the current set 𝑅 of rejected proposals. By the inductive hypothesis, in every stable

matching,𝑤 ′
is paired with𝑚 or someone she prefers less. Since𝑚 prefers𝑤 ′

to𝑤 , and𝑤 ′
prefers

𝑚 to anyone else she might be matched to in a stable matching, there is no stable matching that

pairs𝑤 with𝑚 since otherwise (𝑤 ′,𝑚) would form a blocking pair. □

The following result is an immediate consequence of Lemma 2.6.

Corollary 2.7. The stable matching generated by DA is independent of the order in which the

unmatched agents on the proposing side are processed.

Lemma2.8. Woman-proposing DA isman-pessimal, i.e. eachman ismatchedwith the worst partner

he could be matched with in any stable matching.

Proof. Let 𝑃 be the woman-optimal matching, and suppose that 𝑃 was not man-pessimal. By

definition this would mean that there is some man 𝑚 who could be worse off with some other

stable matching 𝑃 ′. Let’s say that 𝑃 pairs 𝑚 with 𝑤 , and 𝑃 ′ pairs 𝑚 with 𝑤 ′
. By assumption 𝑚

likes 𝑤 better than 𝑤 ′
. However, since 𝑃 ′ pairs 𝑚 to 𝑤 ′

, it must pair 𝑤 with some other man,

𝑚′
. However, since 𝑃 is assumed to be woman-optimal,𝑚 is a man 𝑤 prefers to any other man
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she can be matched with in any stable matching. In particular, 𝑤 likes 𝑚 better than 𝑚′
. But

this means that𝑚 and 𝑤 form a blocking pair for 𝑃 ′, which contradicts the stability of 𝑃 ′. Thus

a woman-optimal matching must be man-pessimal and thus the result now follows by Lemma

2.6 □

The DA algorithm is incentive compatible for the proposing side. That is, no individual agent

on the proposing side can gain a more preferred partner by misreporting their preference list.

Theorem 2.9. [Dubins and Freedman 1981; Roth 1982] In the game induced by the man-proposing

deferred acceptance algorithm, in which each player states a preference list, it is a weakly dominant

strategy for each man to state his true preferences.

However the same incentive compatibility properties do not apply to the side receiving pro-

posals. In fact there is no mechanism to output stable matchings that is incentive compatible for

every participating agent.

Theorem 2.10. [Roth and Sotomayor 1990] When any stable mechanism is applied to a marriage

market in which preferences are strict and there is more than one stable matching, then at least one

agent can profitably misrepresent his or her preferences, assuming the others tell the truth. (This

agent can misrepresent so that in every stable matching under the mis-stated preferences, they are

matched to their most preferred achievable partner under the true preferences.)

2.1.2 Stable matching with short preference lists

It is well-known that in DA the optimal strategy for the proposing side is to list their choices in

order of preference. However, this does not address which choices to list. This issue has been

relatively overlooked in the literature.

Recall that each agent provides the mechanism a list of its possible matches in preference or-

der, including the possibility of “no match” as one of its preferences. These mechanisms promise
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that the output will be a stablematchingwith respect to the submitted preference lists. In practice,

submitted preference lists are relatively short. This may be directly imposed by the mechanism

or could be a reflection of the costs—for example, in time or money—of determining these pref-

erences. Note that a short preference list is implicitly stating that the next preference after the

listed ones is “no match”.

Thus it is important to understand the impact of short preference lists. Roth and Peranson

observed that the NRMP data showed that preference lists were short compared to the number

of programs and that these preferences yielded a single stable partner for most participants; we

note that this single stable partner could be the “no match” choice, and in fact this is the outcome

for a constant fraction of the participants. They also confirmed this theoretically for the simplest

model of uncorrelated random preferences; namely that with the preference lists truncated to the

top O(1) preferences, almost all agents have a unique stable partner. Subsequently, in [Immorlica

and Mahdian 2015] the same result was obtained in the more general popularity model which

allows for correlations among different agents’ preferences; in their model, the first side—men—

can have arbitrary preferences; on the second side—women—preferences are selected byweighted

random choices, the weights representing the “popularity” of the different choices. These results

were further extended by Kojima and Parthak in [Kojima and Pathak 2009].

The popularity model does not capture behavior in settings where bounds on the number of

proposals lead to proposals being made to plausible partners, i.e. partners with whom one has

a realistic chance of matching. One way to capture such settings is by way of tiers [Ashlagi

et al. 2019], also known as block correlation [Coles et al. 2013]. Here agents on each side are

partitioned into tiers, with all agents in a higher tier preferred to agents in a lower tier, and with

uniformly random preferences within a tier. Tiers on the two sides may have different sizes. If

we assign tiers successive intervals of ranks equal to their size, then, in any stable matching, the

only matches will be between agents in tiers whose rank intervals overlap.

A more nuanced way of achieving these types of preferences bases agent preferences on car-
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dinal utilities; for each side, these utilities are functions of an underlying common assessment of

the other side, together with idiosyncratic individual adjustments for the agents on the other side.

These include the separable utilities defined by Ashlagi, Braverman, Kanoria and Shi in [Ashlagi

et al. 2019], and another class of utilities introduced by Lee in [Lee 2016]. This last model will be

the focus of our study.

To make this more concrete, we review a simple special case of Lee’s model, the linear sepa-

rable model. Suppose that there are 𝑛 men and 𝑛 women seeking to match with each other. Each

man𝑚 has a public rating 𝑟𝑚 , a uniform random draw from [0, 1]. These ratings can be viewed as

the women’s joint common assessment of the men. In addition, each woman𝑤 has an individual

adjustment, which we call a score, 𝑠𝑤 (𝑚) for man𝑚, again a uniform random draw from [0, 1].

All the draws are independent. Woman𝑤 ’s utility for man𝑚 is given by
1

2
[𝑟𝑚 + 𝑠𝑤 (𝑚)]; her full

preference list has the men in decreasing utility order. The men’s utilities are defined similarly.

Lee stated that rather than being assumed, short preference lists should arise from the model;

this appears to have been a motivation for the model he introduced. A natural first step would

be to show that for some or all stable matchings, the utility of each agent can be well-predicted,

for this would then allow the agents to limit themselves to the proposals achieving such a utility.

Lee proved an approximate version of this statement, namely that with high probability (w.h.p.,

for short) most agents obtain utility within a small 𝜀 of an easily-computed individual bench-

mark. Unfortunately, it is not clear this is enough to allow agents to limit their proposals as just

indicated.

2.1.3 Our Contribution

Our work seeks to resolve this issue. We obtain the following results. Note that in these results,

when we refer to the bottommost agents, we mean when ordered by decreasing public rating.

Also, we let the term loss mean the difference between an agent’s benchmark utility and their

achieved utility.
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1. We show that in the linearly separable model, for any constant 𝑐 > 0, with probability

1− 1/𝑛𝑐 , in every stable matching, apart from a sub-constant 𝜎 fraction of the bottommost

agents, all the other agents obtain utility equal to an easily-computed individual benchmark

±𝜀, where 𝜀 is also sub-constant.

We show that both 𝜎, 𝜀 = Θ̃(𝑛−1/3).2 As we will see, this implies, w.h.p., that for all the

agents other than the bottommost 𝜎 fraction, each agent has Θ(ln𝑛) possible edges (pro-

posals) that could be in any stable matching, namely the proposals that provide both agents

utility within 𝜀 of their benchmark. Furthermore, we show our bound is tight: with fairly

high probability, there is no matching, let alone stable matching, providing every agent a

partner if the values of 𝜀 and 𝜎 are reduced by a suitable constant factor.

An interesting consequence of this lower bound on the agents’ utilities is that the agents can

readily identify amoderate sized subset of the edge set towhich they can safely restrict their

applications. More precisely, any woman 𝑤 outside the bottommost 𝜎 fraction, knowing

only her own public rating, the public ratings of the men, and her own private score for

each man, can determine a preference list of length Θ̃(𝑛1/3) which, w.h.p, will yield the

same result as her true full-length list. Our analysis also shows that if 𝑤 obtained the

men’s private scores for these proposals, then w.h.p. she could safely limit herself to a

length 𝑂 (ln𝑛) preference list.

2. The above bounds apply not only to the linearly separable model, but to a significantly

more general bounded derivative model (in which derivatives of the utility functions are

bounded).

3. The result also immediately extends to settings with unequal numbers of men and women.

Essentially, our analysis shows that the loss for an agent is small if there is a 𝜎 fraction of

agents of lower rank on the opposite side. Thus even on the longer side, w.h.p., the topmost

2
The Θ̃(·) notation means up to a poly-logarithmic term; here 𝜎, 𝜀 = Θ((𝑛/ln𝑛)−1/3).
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𝑛(1−𝜎) agents all obtain utility close to their benchmark, where 𝑛 is the size of the shorter

side. This limits the “stark effect of competition” [Ashlagi et al. 2017]—namely that the

agents on the longer side are significantly worse off—to a lower portion of the agents on

the longer side.

4. The result extends to the many-to-one setting, in which agents on one side seek multiple

matches. Our results are given w.r.t. a parameter 𝑑 , the number of matches that each agent

on the “many” side desires. For simplicity, we assume this parameter is the same for all

these agents. In fact, we analyze a more general many-to-many setting.

5. A weaker result with arbitrarily small 𝜎, 𝜀 = Θ(1) holds when there is no restriction on

the derivatives of the utility functions, which we call the general values model. Again,

we show this bound cannot be improved in general. This setting is essentially the general

setting considered by Lee [Lee 2016]. He had shown there was a 𝜎 fraction of agents who

might suffer larger losses; our bound identifies this 𝜎 fraction of agents as the bottommost

agents.

6. In the bounded derivative model, with slightly stronger constraints on the derivatives, we

also show the existence of an 𝜖-Bayes-Nash equilibrium in which no agent proposes more

than𝑂 (ln2 𝑛) times and all but the bottommost𝑂 ((ln𝑛/𝑛)1/3) fraction of the agents make

only the 𝑂 (ln𝑛) proposals identified in (1) above. Here 𝜀 = Θ(ln𝑛/𝑛1/3).

These results all follow from a lemma showing that, w.h.p., each non-bottommost agent has

at most a small loss. In turn, the proof of this lemma relies on a new technique which sidesteps

the conditioning inherent to runs of DA in these settings.

Experimental results Much prior work has been concerned with preference lists that have a

constant bound on their length. For moderate values of 𝑛, say 𝑛 ∈ [10
3, 10

6], ln𝑛 is quite small,

so our Θ(ln𝑛) bound may or may not be sufficiently small in practice for this range of 𝑛. What
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matters are the actual constants hidden by the Θ notation, which our analysis does not fully

determine. To help resolve this, we conducted a variety of simulation experiments.

We have also considered how to select the agents to include in the preference lists, when

seeking to maintain a constant bound on their lengths, namely a bound that, for the values of 𝑛

we considered, was smaller than the Θ(ln𝑛) bound determined by the above simulations; again,

our investigation was experimental.

2.1.4 Other Related work

The random preference model was introduced by Knuth [Knuth 1976] (for a version in English

see [Knuth 1996]), and subsequently extensively analyzed [Pittel 1989; Knuth et al. 1990; Pittel

1992; Mertens 2005; Pittel et al. 2008; Pittel 2019; Kupfer 2020]. In this model, each agent’s pref-

erences are an independent uniform random permutation of the agents on the other side. An

important observation was that when running the DA algorithm, the proposing side obtained a

match of rank Θ(ln𝑛) on the average, while on the other side the matches had rank Θ(𝑛/ln𝑛).

A recent and unexpected observation in [Ashlagi et al. 2017] was the “stark effect of compe-

tition”: that in the random preferences model the short side, whether it was the proposing side

or not, was the one to enjoy the Θ(ln𝑛) rank matches. Subsequent work showed that this ef-

fect disappeared with short preference lists in a natural modification of the random preferences

model [Kanoria et al. 2021]. Our work suggests yet another explanation for why this effect may

not be present: it does not require that short preference lists be imposed as an external constraint,

but rather that the preference model generates few edges that might ever be in a stable matching.

The number of edges present in any stable matching has also been examined for a variety of

settings. When preference lists are uniform the expected number of stable pairs isΘ(𝑛 ln𝑛) [Pittel

1992]; when they are arbitrary on one side and uniform on the other side, the expected number is

𝑂 (𝑛 ln𝑛) [Knuth et al. 1990]. This result continues to hold when preference lists are arbitrary on

the men’s side and are generated from general popularities on the women’s side [Gimbert et al.
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2019]. Our analysis shows that in the linear separable model (and more generally in the bounded

derivative setting) the expected number of stable pairs is also 𝑂 (𝑛 ln𝑛).

Another important issue is the amount of communication needed to identify who to place on

one’s preference lists when they have bounded length. In general, the cost is Ω(𝑛) per agent (in

an 𝑛 agent market) [Gonczarowski et al. 2015], but in the already-mentioned separable model of

Ashlagi et al. [Ashlagi et al. 2019] this improves to𝑂 (
√
𝑛) given some additional constraints, and

further improves to𝑂 (ln4 𝑛) in a tiered separablemarket [Ashlagi et al. 2019]. We note that for the

bounded derivatives setting, with high probability, the communication cost will be𝑂 (𝑛1/3
ln

2/3 𝑛)

for all agents except the bottommost Θ(𝑛2/3
ln

1/3 𝑛), for whom the cost can reach𝑂 (𝑛2/3
ln

1/3 𝑛).

Another approach to selecting which universities to apply to was considered by Shorrer who

devised a dynamic program to compute the optimal choices for students assuming universities

had a common ranking of students [Shorrer 2019].

2.2 Preliminaries

2.2.1 Some useful notation and definitions

There are 𝑛 men and 𝑛 women. In all of our models, each man𝑚 has a utility𝑈𝑚,𝑤 for the woman

𝑤 , and each woman𝑤 has a utility 𝑉𝑚,𝑤 for the man𝑚. These utilities are defined as

𝑈𝑚,𝑤 = 𝑈 (𝑟𝑤 , 𝑠𝑚 (𝑤)), and

𝑉𝑚,𝑤 = 𝑉 (𝑟𝑚, 𝑠𝑤 (𝑚)),

where 𝑟𝑚 and 𝑟𝑤 are common public ratings, 𝑠𝑚 (𝑤) and 𝑠𝑤 (𝑚) are private scores specific to the

pair (𝑚,𝑤), and𝑈 (·, ·) and𝑉 (·, ·) are continuous and strictly increasing functions from R2

+ to R+.

The ratings are independent uniform draws from [0, 1] as are the scores.

In the Linear Separable Model, each man𝑚 assigns each woman𝑤 a utility of 𝑈𝑚,𝑤 = 𝜆 · 𝑟𝑤 +
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(1 − 𝜆) · 𝑠𝑚 (𝑤), where 0 < 𝜆 < 1 is a constant. The women’s utilities for the men are defined

analogously as 𝑉𝑚,𝑤 = 𝜆 · 𝑟𝑚 + (1 − 𝜆) · 𝑠𝑤 (𝑚). All our experiments are for this model.

We let {𝑚1,𝑚2, . . . ,𝑚𝑛} be the men in descending order of their public ratings and

{𝑤1,𝑤2, . . . ,𝑤𝑛} be a similar ordering of the women. We say that𝑚𝑖 has public rank 𝑖 , or rank 𝑖

for short, and similarly for𝑤𝑖 . We also say that𝑚𝑖 and𝑤𝑖 are aligned. In addition, we often want

to identify the men or women in an interval of public ratings. Accordingly, we define𝑀 (𝑟, 𝑟 ′) to

be the set of men with public ratings in the range (𝑟, 𝑟 ′), and 𝑀 [𝑟, 𝑟 ′] to be the set with public

ratings in the range [𝑟, 𝑟 ′]; we also use the notation 𝑀 (𝑟, 𝑟 ′] and 𝑀 [𝑟, 𝑟 ′) to identify the men

with ratings in the corresponding semi-open intervals. We use an analogous notation, with𝑊

replacing𝑀 , to refer to the corresponding sets of women.

We will be comparing the achieved utilities in stable matchings to the following benchmarks:

the rank 𝑖 man has as benchmark 𝑈 (𝑟𝑤𝑖
, 1), the utility he would obtain from the combination

of the rank 𝑖 woman’s public rating and the highest possible private score; and similarly for the

women. Based on this we define the loss an agent faces as follows.

Definition 1 (Loss). Suppose man𝑚 and woman 𝑤 both have rank 𝑖 . The loss𝑚 sustains from a

match of utility 𝑢 is defined to be𝑈 (𝑟𝑤 , 1) − 𝑢. The loss for women is defined analogously.

In our analysis we will consider a complete bipartite graph whose two sets of vertices corre-

spond to the men and women, respectively. For each man𝑚 and woman𝑤 , we view the possible

matched pair (𝑚,𝑤) as an edge in this graph. Thus, throughout this work, we will often refer to

edges being proposed, as well as edges satisfying various conditions.

2.3 Upper Bound in The Linear Separable Model

To illustrate our proof technique for deriving upper bounds, we begin by stating and proving our

upper bound result for the special case of the linear separable model with 𝜆 = 1

2
.
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Theorem 2.11. In the linear separable model with 𝜆 = 1/2, when there are 𝑛 men and 𝑛 women,

for any given constant 𝑐 > 0, for large enough 𝑛, with probability at least 1 − 𝑛−𝑐 , in every stable

matching, for every 𝑖 , with 𝑟𝑤𝑖
⩾ 𝜎 ≜ 3𝐿/2, agent𝑚𝑖 suffers a loss of at most 𝐿, where 𝐿 = (16(𝑐 +

2) ln𝑛/𝑛)1/3, and similarly for the agents𝑤𝑖 .

In words, w.h.p., all but the bottommost agents (those whose aligned agents have public rating

less than 𝜎) suffer a loss of no more than 𝐿. This is a special case of our basic upper bound for

the bounded utilities model (Theorem 2.15).

One of our goals is to be able to limit the number of proposals the proposing side needs to

make. We identify the edges that could be in some stable matching, calling them acceptable edges.

Our definition is stated generally so that it covers all our results; accordingly we replace the terms

𝐿 and 𝜎 in Theorem 2.11 with parameters 𝐿 and 𝜎 .

Definition 2 (Acceptable edges). Let 0 < 𝜎 < 1 and 0 < 𝐿 < 1 be two parameters. An edge (𝑚𝑖,𝑤 𝑗 )

is (𝐿, 𝜎)-man-acceptable either if it provides𝑚𝑖 utility at least𝑈 (𝑟𝑤𝑖
, 1) −𝐿, or if𝑚𝑖 ∈ 𝑀 [0, 𝜎). The

definition of (𝐿, 𝜎)-woman-acceptable is symmetric. Finally, (𝑚𝑖,𝑤 𝑗 ) is (𝐿, 𝜎)-acceptable if it is both

(𝐿, 𝜎)-man and (𝐿, 𝜎)-woman-acceptable.

To prove our various results, we choose 𝐿 and 𝜎 so that w.h.p. the edges in every stable

matching are (𝐿, 𝜎)-acceptable. We call this high probability event E. We will show that if E

occurs, then running DA on the set of acceptable edges, or any superset of the acceptable edges

obtained via loss thresholds, produces the same stable matching as running DA on the full set of

edges.

Theorem 2.12. If E occurs, then running woman-proposing DA with the edge set restricted to the

acceptable edges or to any superset of the acceptable edges obtained via loss thresholds (including the

full edge set) result in the same stable matching.

The implication is that w.h.p. a woman can safely restrict her proposals to her acceptable

edges, or to any overestimate of this set of edges obtained by her setting an upper bound on the

23



loss she is willing to accept. There is a small probability— at most 𝑛−𝑐—that this may result in a

less good outcome, which can happen only if E does not occur. Note that Theorem 2.12 applies to

every utility model we consider. Then, w.h.p., every stable matching gives each woman𝑤 , whose

aligned agent𝑚 has public rating 𝑟𝑚 ⩾ 𝜎 = Ω((ln𝑛/𝑛)1/3), a partner with public rating in the

range [𝑟𝑚 − 2𝐿, 𝑟𝑚 + 5

2
𝐿] (see Theorem 2.24 in Section 2.9.1). The bound 𝑟𝑚 − 2𝐿 is a consequence

of the bound on the woman’s loss; the bound 𝑟𝑚 + 5

2
𝐿 is a consequence of the bound on the men’s

losses. An analogous statement applies to the men.

This means that if we are running woman-proposing DA, each of these women might as well

limit her proposals to her woman-acceptable edges, which is at most the men with public ratings

in the range 𝑟𝑚 ± Θ(𝐿) for whom she has private scores of at least 1 − Θ(𝐿). In expectation, this

yields Θ(𝑛1/3(ln𝑛)2/3) men to whom it might be worth proposing. It also implies that a woman

can have a gain of at most Θ(𝐿) compared to her target utility.

If, in addition, each man can inexpensively signal the women who are man-acceptable to him,

then the women can further limit their proposals to just those men providing them with a signal;

this reduces the expected number of proposals these women can usefully make to just Θ(ln𝑛).

2.4 Proof of Theorem 2.11

We begin by outlining the main ideas used in our analysis. Our goal is to show that when we

run woman proposing DA, w.h.p. each man receives a proposal that gives him a loss of at most

𝐿 (except possibly for men among the bottommost Θ(𝑛𝐿)). As the outcome is the man-pessimal

stable matching, this means that w.h.p., in all stable matchings, these men have a loss of at most

𝐿. By symmetry, the same bound holds for the women.

Next, we provide some intuition for the proof of this result. See Fig. 2.1. Our analysis uses 3

parameters 𝛼, 𝛽,𝛾 = Θ(𝐿). Let𝑚𝑖 be a non-bottommost man. We consider the set of men with

public rank at least 𝑟𝑚𝑖
− 𝛼 : 𝑀𝑖 = 𝑀 [𝑟𝑚𝑖

− 𝛼, 1]. We consider a similar, slightly larger set of

24



◦rating 𝑟𝑚𝑖
, man𝑚𝑖 ◦ woman𝑤𝑖

𝑀𝑖 = [𝑟𝑚𝑖
− 𝛼, 1]

ℎ𝑖 men, rating range 𝛼

ℓ𝑖 women

men women

cutoff 𝑟𝑚𝑖
− 𝛼

𝑊𝑖 =𝑊 [𝑟𝑤𝑖
, 1]

◦
woman𝑤 𝑖 = 𝑤𝑖+ℓ𝑖

Figure 2.1: Illustrating Lemma 2.13

women: 𝑊𝑖 = 𝑊 [𝑟𝑤𝑖
− 3𝛼, 1]. Now we look at the best proposals by the women in𝑊𝑖 , i.e. the

ones they make first. Specifically, we consider the proposals that give these women utility at least

𝑉 (𝑟𝑚𝑖
−𝛼, 1), proposals that are therefore guaranteed to be to the men in𝑀𝑖 . Let

��𝑀𝑖

�� = 𝑖 +ℎ𝑖 and��𝑊𝑖

�� = 𝑖 + ℓ𝑖 . In expectation, ℓ𝑖 − ℎ𝑖 = 2𝛼𝑛. Necessarily, at least ℓ𝑖 − ℎ𝑖 + 1 women in 𝑀𝑖 cannot

match with men in 𝑀𝑖 \ {𝑚𝑖}. But, as we will see, these women all have probability at least 𝛽 of

having a proposal to𝑚𝑖 which gives them utility at least𝑉 (𝑟𝑚𝑖
− 𝛼, 1). These are proposals these

women must make before they make any proposals to men with public rating less than 𝑟𝑚𝑖
− 𝛼 .

Furthermore, for each of these proposals,𝑚𝑖 has probability at least 𝛾 of having a loss of 𝐿 or less.

Thus, in expectation,𝑚𝑖 receives at least 2𝛼𝛽𝛾𝑛 proposals which give him a loss of 𝐿 or less.

We actually want a high-probability bound. So we choose 𝛼, 𝛽,𝛾 so that 𝛼𝛽𝛾𝑛 ⩾ 𝑐 log𝑛 for a

suitable constant 𝑐 > 0, and then apply a series of Chernoff bounds. There is one difficulty. The

Chernoff bounds requires the various proposals to be independent. Unfortunately, in general,

this does not appear to be the case. However, we are able to show that the failure probability

for our setting is at most the failure probability in an artificial setting in which the events are

independent, which yields the desired bound.

We now embark on the actual proof.

We formalize the men’s rating cutoff with the notion of DA stopping at public rating 𝑟 .
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Definition 3 (DA stops). The women stop at public rating 𝑟 if, in each woman’s preference list, all

the edges with utility less than 𝑉 (𝑟, 1) are removed. The women stop at man𝑚 if, in each woman’s

preference list, all the edges following her edge to 𝑚 are removed. The women double cut at man

𝑚 and public rating 𝑟 , if they each stop at𝑚 or 𝑟 , whichever comes first. Men stopping and double

cutting are defined similarly. Finally, an edge is said to survive the cutoff if it is not removed by the

stopping.

To obtain our bounds for man𝑚𝑖 , we will have the women double cut at rating 𝑟𝑚𝑖
−𝛼 and at

man𝑚𝑖 , where 𝛼 > 0 is a parameter we will specify later.

Our upper bounds in all of the utility models depend on a parameterized key lemma (Lemma

2.13) stated shortly. This lemma concerns the losses the men face in the woman-proposing DA; a

symmetric result applies to the women. The individual theorems follow by setting the parameters

appropriately. Our key lemma uses three parameters: 𝛼, 𝛽,𝛾 > 0. To avoid rounding issues,

we will choose 𝛼 so that 𝛼𝑛 is an integer. The other parameters need to satisfy the following

constraints.

for 𝑟 ⩾ 𝛼 : 𝑉 (𝑟 − 𝛼, 1) ⩽ 𝑉 (𝑟, 1 − 𝛽) (2.1)

for 𝑟 ⩾ 3𝛼 : 𝑈 (𝑟, 1) −𝑈 (𝑟 − 3𝛼, 1 − 𝛾) ⩽ 𝐿 (2.2)

Equation (2.1) relates the range of private values that will yield a woman an edge to 𝑚𝑖 that

survives the cut at 𝑟𝑚𝑖
− 𝛼 , or equivalently the probability of having such an edge. Observation 1

below, shows that Equation (2.2) identifies the range of𝑚𝑖 ’s private values for proposals from𝑊𝑖

that yield him a loss of at most 𝐿 (for we will ensure the women in𝑊𝑖 have public rating at least

𝑟𝑤𝑖
− 3𝛼).

Observation 1. Consider the proposal from woman 𝑤 to the rank 𝑖 man 𝑚𝑖 . Suppose the rank 𝑖

woman𝑤𝑖 has rating 𝑟𝑤𝑖
⩾ 3𝛼 . If𝑤 has public rating 𝑟 ⩾ 𝑟𝑤𝑖

− 3𝛼 and𝑚𝑖 ’s private score for𝑤 is at

least 1 − 𝛾 , then𝑚𝑖 ’s utility for𝑤 is at least𝑈 (𝑟𝑤𝑖
− 3𝛼, 1 − 𝛾) ⩾ 𝑈 (𝑟𝑤𝑖

, 1) − 𝐿.
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In the linear separable model with 𝜆 = 1

2
, we set 𝛼 = 𝛽 = 𝛾 and 𝐿 = 2𝛼 .

The next lemma determines the probability that man𝑚𝑖 receives a proposal causing him a loss

of at most 𝐿. The lemma calculates this probability in terms of the parameters we just defined.

Note that the result does not depend on the utility functions𝑈 (·, ·) and𝑉 (·, ·) being linear. In fact,

the same lemma applies tomuchmore general utility models whichwe also study (see Section 2.6)

and it is the crucial tool we use in all our upper bound proofs.

In what follows, to avoid heavy-handed notation, by 𝑟𝑚𝑖
− 𝛼 we will mean max{0, 𝑟𝑚𝑖

− 𝛼}.

In order to state our next result crisply, we define the following Event E𝑖 . It concerns a run

of woman-proposing DA with double cut at the rank 𝑖 man𝑚𝑖 and at public rating 𝑟𝑚𝑖
− 𝛼 . Let

ℎ𝑖 =
��𝑀 [𝑟𝑚𝑖

− 𝛼, 𝑟𝑚𝑖
)
��
, ℓ𝑖 =

��𝑊 [𝑟𝑤𝑖
− 3𝛼, 𝑟𝑤𝑖

)
��
, and𝑤 𝑖 be the woman with rank 𝑖 + ℓ𝑖 . See Figure 2.1

for an illustration of these definitions. Event E𝑖 occurs if 𝑟𝑤𝑖
⩾ 3𝛼 and between them the 𝑖 + ℓ𝑖

women in𝑊 [𝑟𝑤𝑖
− 3𝛼, 1] make at least one proposal to𝑚𝑖 that causes him a loss of at most 𝐿.

Finally we define Event E: it happens if E𝑖 occurs for all 𝑖 such that 𝑟𝑤𝑖
⩾ 3𝛼 .

Lemma 2.13. Let 𝛼 > 0 and 𝐿 > 0 be given, and suppose that 𝛽 and 𝛾 satisfy (2.1) and (2.2),

respectively. Then, Event E occurs with probability at least 1 − 𝑝 𝑓 , where the failure probability

𝑝 𝑓 = 𝑛 · exp(−𝛼 (𝑛 − 1)/12) + 𝑛 · exp(−𝛼 (𝑛 − 1)/24) + 𝑛 exp(−𝛼𝛽𝑛/8) + 𝑛 · exp(−𝛼𝛽𝛾𝑛/2) .

The following simple claim notes that the men’s loss when running the full DA is no larger

than when running double-cut DA.

Claim 2.4.1. Suppose a woman-proposing double-cut DA at man𝑚𝑖 and rating 𝑟𝑚𝑖
− 𝛼 is run, and

suppose𝑚𝑖 incurs a loss of 𝐿. Then in the full run of woman-proposing DA,𝑚𝑖 will incur a loss of at

most 𝐿.

Proof. Recall that when running thewomen-proposing DA the order in which unmatchedwomen

are processed does not affect the outcome. Also note that as the run proceeds, whenever a man’s
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match is updated, the man obtains an improved utility. Thus, in the run with the full edge set we

can first use the edges used in the double-cut DA and then proceed with the remaining edges.

Therefore if in the double-cut DA𝑚𝑖 has a loss of 𝐿, in the full run𝑚𝑖 will also have a loss of at

most 𝐿. □

To illustrate how this lemma is applied, we now prove Theorem 2.11. Note that 𝐿 is the value

of 𝐿 used in this theorem. Our other results use other values of 𝐿.

Proof. (Of Theorem 2.11) By Lemma 2.13, in the double-cut DA, for all 𝑖 with 𝑟𝑤𝑖
⩾ 3𝛼 , 𝑚𝑖

obtains a match giving him loss at most 𝐿, with probability at least 1 − 𝑛 · exp(−𝛼 (𝑛 − 1)/12) −

𝑛 · exp(−𝛼𝑛/24) − 𝑛 exp

(
−𝛼2𝑛/8

)
− 𝑛 · exp

(
−𝛼3𝑛/2

)
.

By Claim 2.4.1,𝑚𝑖 will incur a loss of at most 𝐿 in the full run of woman-proposing DA with

at least as large a probability. But this is the man-pessimal match. Consequently, in every stable

match,𝑚𝑖 has a loss of at most 𝐿. By symmetry, the same bound applies to each woman𝑤𝑖 such

that 𝑟𝑚𝑖
⩾ 3𝛼 .

We choose 𝐿 = [16(𝑐 + 2) ln𝑛/𝑛]1/3
. Recalling that 𝛼 = 𝐿/2, we see that for large enough 𝑛

the probability bound, over all the men and women, is at most 1 − 𝑛−𝑐 . The bounds 𝑟𝑤𝑖
⩾ 3𝛼 and

𝑟𝑚𝑖
⩾ 3𝛼 imply we can set 𝜎 = 3𝛼 = 3

2
𝐿. □

Proof. (Of Lemma 2.13.) We run the double-cut DA in two phases, defined as follows. Recall that

ℎ𝑖 =
��𝑀 [𝑟𝑚𝑖

− 𝛼, 𝑟𝑚𝑖
)
��
and ℓ𝑖 =

��𝑊 [𝑟𝑤𝑖
− 3𝛼, 𝑟𝑤𝑖

)
��
. Note that women with rank at most 𝑖 + ℓ𝑖 have

public rating at least 𝑟𝑤𝑖
− 3𝛼 .

Phase 1. Every unmatched woman with rank at most 𝑖+ℓ𝑖 keeps proposing until her next proposal

is to𝑚𝑖 , or she runs out of proposals.

Phase 2. Each unmatched women makes her next proposal, if any, which will be a proposal to𝑚𝑖 .

Our analysis is based on the following four claims. The first two are simply observations

that w.h.p. the number of agents with public ratings in a given interval is close to the expected

number.
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A critical issue in this analysis is to make sure the conditioning induced by the successive

steps of the analysis does not affect the independence needed for subsequent steps. To achieve

this, we use the Principle of Deferred Decisions, only instantiating random values as they are

used. Since each successive bound uses a different collection of random variables this does not

present a problem.

Claim 2.4.2. Let B1 be the event that for some 𝑖 , ℎ𝑖 ⩾ 3

2
𝛼 (𝑛−1). B1 occurs with probability at most

𝑛 · exp(−𝛼 (𝑛 − 1)/12). The only randomness used in the proof are the choices of the men’s public

ratings. The same bound applies to the women.

Proof. We prove the bound for an arbitrary man𝑚 with public rating 𝑟𝑚 . The expected number

𝑛𝑥 of men other than 𝑚 in 𝑀 [𝑟𝑚 − 𝛼, 𝑟𝑚] is 𝛼 (𝑛 − 1). This bound depends on the independent

random choices of the men’s public ratings. Thus, by a Chernoff bound,

Pr

[
𝑛𝑥 ⩾

3

2
𝛼 (𝑛 − 1)] ⩽ exp(𝛼 (𝑛 − 1)/12).

Now, we apply a union bound to all 𝑛 men to obtain the stated result. □

Claim 2.4.3. Let B2 be the event that for some 𝑖 , ℓ𝑖 ⩽ 5

2
𝛼 (𝑛− 1). B2 occurs with probability at most

𝑛 · exp(−𝛼 (𝑛 − 1)/24). The only randomness used in the proof are the choices of the women’s public

ratings. The same bound applies to the men.

Proof. This proof is very similar to the proof of Claim 2.4.2. We prove the bound for an arbitrary

woman 𝑤 with public rating 𝑟𝑤 ⩾ 3𝛼 . The expected number 𝑛𝑦 of women other than 𝑤 in

𝑊 [𝑟𝑤 − 3𝛼, 𝑟𝑚] is 3𝛼 (𝑛 − 1). This bound depends on the independent random choices of the

women’s public ratings. Thus, by a Chernoff bound,

Pr

[
𝑛𝑦 ⩽

5

2
𝛼 (𝑛 − 1)] ⩽ exp(𝛼 (𝑛 − 1)/24).
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Now, we apply a union bound to all 𝑛 women to obtain the stated result. □

Claim 2.4.4. Let B3 be the event that between them, the women with rank at most 𝑖 + ℓ𝑖 make fewer

than 1

2
𝛼𝛽𝑛 Step 2 proposals to𝑚𝑖 . If events B1 and B2 do not occur, then B3 occurs with probability

at most exp(−𝛼𝛽𝑛/8). The only randomness used in the proof are the choices of the women’s private

scores.

This bound uses the private scores of the women and employs a novel argument given below

to sidestep the conditioning among these proposals.

Claim 2.4.5. If none of the events B1, B2, or B3 occur, then at least one of the Step 2 proposals to

𝑚𝑖 will cause him a loss of at most 𝐿 with probability at least 1− (1−𝛾)𝛼𝛽𝑛/2 ⩾ 1− exp(−𝛼𝛽𝛾𝑛/2).

The only randomness used in the proof are the choices of the men’s private scores.

Proof. Note that each Phase 2 proposal is from a woman 𝑤 with rank at most 𝑖 + ℓ𝑖 . As al-

ready observed, her public rating is at least 𝑟𝑤𝑖
− 3𝛼 . Recall that man 𝑚𝑖 ’s utility for 𝑤 equals

𝑈 (𝑟𝑤 , 𝑠𝑚𝑖
(𝑤)) ⩾ 𝑈 (𝑟𝑤𝑖

− 3𝛼, 𝑠𝑚𝑖
(𝑤)). To achieve utility at least𝑈 (𝑟𝑤𝑖

, 1) − 𝐿 ⩽ 𝑈 (𝑟𝑤𝑖
− 3𝛼, 1 − 𝛾)

(using (2.2)) it suffices to have 𝑠𝑚𝑖
(𝑤) ⩾ 1 − 𝛾 , which happens with probability 𝛾 . Consequently,

utility at least𝑈 (𝑟𝑤𝑖
, 1) − 𝐿 is achieved with probability at least 𝛾 .

For each Phase 2 proposal these probabilities are independent as they reflect 𝑚𝑖 ’s private

scores for each of these proposals. Therefore the probability that there is no proposal providing

𝑚𝑖 a loss of at most 𝐿 is at most

(
1 − 𝛾

)𝛼𝛽𝑛/2

⩽ exp(𝛼𝛽𝛾𝑛/2) .

□

Concluding the proof of Lemma 2.13: The overall failure probability summed over all 𝑛 choices
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of 𝑖 is

𝑛 · exp(−𝛼 (𝑛 − 1)/12) + 𝑛 · exp(−𝛼 (𝑛 − 1)/24) + 𝑛 exp(−𝛼𝛽𝑛/8) + 𝑛 · exp(−𝛼𝛽𝛾𝑛/2) .

□

Proof. (Of Claim 2.4.4.) First, we simplify the action space by viewing the decisions as being made

on a discrete utility space, as specified in the next claim.

Claim 2.4.6. For any 𝛿 > 0, there is a discrete utility space in which for each woman the probability

of selecting 𝑚𝑖 is only increased, and the probability of having any differences in the sequence of

actions in the original continuous setting and the discrete setting is at most 𝛿 .

Proof. For each man 𝑚 we partition the interval [𝑉 (𝑟𝑚, 0),𝑉 (𝑟𝑚, 1)] of utilities it can provide

into the following 𝑧 subintervals: [𝑉 (𝑟𝑚, 0),𝑉 (𝑟𝑚, 1/𝑧)), [𝑉 (𝑟𝑚, 1/𝑧),𝑉 (𝑟𝑚, 2/𝑧)), . . . , [𝑉 (𝑟𝑚, (𝑧 −

2)/𝑧),𝑉 (𝑟𝑚, (𝑧 − 1)/𝑧)), [𝑉 (𝑟𝑚, (𝑧 − 1)/𝑧),𝑉 (𝑟𝑚, 1)]. Note that the probability that woman 𝑤 ’s

edge to𝑚 occurs in any one subinterval is 1/𝑧. Over all 𝑛 men this specifies 𝑛(𝑧−1) utility values

that are partitioning points. Now, for each man𝑚, we partition the interval [𝑉 (𝑟𝑚, 0),𝑉 (𝑟𝑚, 1)]

about all 𝑛(𝑧 − 1) of these points, creating 𝑛(𝑧 − 1) + 1 subintervals. The values at these partition

points plus the endpoint 𝑉 (𝑟𝑚, 0) are the discrete utilities available to the women for evaluating

man𝑚, obtained by rounding down her actual utility.

Consider a single interval 𝐼 = [𝑉 (𝑟𝑚, 𝑎),𝑉 (𝑟𝑚, 𝑏)) and an arbitrary woman 𝑤 . Let 𝑝
𝐼 ,𝑐
𝑗

be

the probability that in the original continuous private score setting, the probability exactly one

man𝑚 𝑗 provides her a utility in 𝐼 , let 𝑝
𝐼 ,𝑐
none

be the probability no one provides her a utility in 𝐼 ,

and let 𝑝
𝐼 ,𝑐

be the probability that two or more men provide her a utility in 𝐼 . Note that 𝑝
𝐼 ,𝑐 ⩽

𝑛(𝑛 − 1)/2𝑧2
. In the discrete setting, we remove the possibility of making two proposals and

increase the probability of selecting man 𝑚𝑖 by this amount: the probability of selecting man

𝑚 𝑗 ≠ 𝑚𝑖 alone, with private score 𝑎 will be 𝑝
𝐼 ,𝑐
𝑗
, the probability of selecting no one will be 𝑝

𝐼 ,𝑐
none

,
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while the probability of selecting man𝑚𝑖 with private score 𝑎 becomes 𝑝
𝐼 ,𝑑
𝑖

= 𝑝
𝐼 ,𝑐
𝑖

+ 𝑝𝐼 ,𝑐 .

Recall that in the run of double-cut DA, each woman repeatedly makes the next highest utility

proposal. We view this as happening as follows. For each successive discrete utility value, woman

𝑤 has the following choices.

i. she selects some man to propose to (among the men𝑤 she has not yet proposed to); or

ii. she takes “no action”. This corresponds to 𝑤 making no proposal achieving the current

utility.

Every run of DA in the continuous setting that does not have a woman selecting two men over

the course of a single utility interval will result in the identical run in the discrete setting in terms

of the order in which each woman proposes to the men. Thus, the probability that in the discrete

setting 𝑤 ’s action in terms of who she selects and in what order differs from her actions in the

continuous setting is at most 𝑛3/2𝑧 ≜ 𝛿/𝑛 (because, in each possible computation, 𝑤 makes at

most 𝑛𝑧 choices, and for each choice the probability difference is at most 𝑛2/2𝑧2). Furthermore,

the probability of selecting man 𝑚𝑖 is only increased. So over all 𝑛 women, the probability of

anything changing is at most 𝛿 . Clearly, 𝛿 can be made arbitrarily small. □

We represent the possible computations of the double-cut DA in this discrete setting using a

tree𝑇 . Each womanwill be going through her possible utility values in decreasing order, with the

possible actions of the various women being interleaved in the order given by the DA processing.

Each node 𝑢 corresponds to a woman 𝑤 processing her next utility value. The possible choices

at this utility are each represented by an edge descending from 𝑢. These choices are:

i. Proposing to some man (among those men𝑤 has not yet proposed to); or

ii. “no action”. This corresponds to𝑤 making no proposal achieving the current utility.

We observe the following important structural feature of tree𝑇 . Let 𝑆 be the subtree descend-

ing from the edge corresponding to woman 𝑤 proposing to𝑚𝑖 ; in 𝑆 there are no further actions

of𝑤 , i.e. no nodes at which𝑤 makes a choice, because the double cut DA cuts at the proposal to

𝑚𝑖 .
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The assumption that B1 and B2 do not occur means that for all 𝑖 , ℎ𝑖 <
3

2
𝛼 (𝑛 − 1) and ℓ𝑖 >

5

2
𝛼 (𝑛 − 1), and therefore ℓ𝑖 − ℎ𝑖 > 𝛼 (𝑛 − 1).

At each leaf of𝑇 , up to 𝑖 +ℎ𝑖 − 1 women will have been matched with someone other than𝑚𝑖 .

The other women either finishedwith a proposal to𝑚𝑖 or both failed tomatch and did not propose

to𝑚𝑖 . Let𝑤 be a woman in the latter category. Then, on the path to this leaf,𝑤 will have traversed

edges corresponding to a choice at each discrete utility in the range [𝑉 (𝑟𝑚𝑖
− 𝛼, 1),𝑉 (1, 1)].

We now create an extended tree, 𝑇𝑥 , by adding a subtree at each leaf; this subtree will corre-

spond to pretending there were nomatches; the effect is that each womenwill take an action at all

their remaining utility values in the range [𝑉 (𝑟𝑚𝑖
−𝛼, 1),𝑉 (1, 1)], except that in the sub-subtrees

descending from edges that correspond to some woman𝑤 selecting𝑚𝑖 ,𝑤 has no further actions.

For each leaf in the unextended tree, the probability of the path to that leaf is left unchanged.

The probabilities of the paths in the extended tree are then calculated by multiplying the path

probability in the unextended tree with the probabilities of each woman’s choices in the extended

portion of the tree.

Next, we create an artificial mechanism M that acts on tree 𝑇𝑥 . The mechanism M is al-

lowed to put 𝑖 + ℎ𝑖 − 1 “blocks” on each path; blocks can be placed at internal nodes. A block

names a woman 𝑤 and corresponds to her matching (but we no longer think of the matches as

corresponding to the outcome of the edge selection; they have no meaning beyond making all

subsequent choices by this woman be the “no action” choice).

DA can be seen as choosing to place up to 𝑖 +ℎ𝑖 − 1 blocks at each of the nodes corresponding

to a leaf of 𝑇 . M will place its blocks so as to minimize the probability 𝑝 of paths with at least

1

2
𝛼𝛽𝑛 women choosing edges to𝑚𝑖 . Clearly 𝑝 is a lower bound on the probability that the double-

cut DA makes at least
1

2
𝛼𝛽𝑛 proposals in Step 2. Given a choice of blocks we call the resulting

probability of having fewer than
1

2
𝛼𝛽𝑛 women choosing edges to𝑚𝑖 the blocking probability.

Claim 2.4.7. The probability thatM makes at least 1

2
𝛼𝛽𝑛 proposals to𝑚𝑖 is at least

1 − exp(−𝛼𝛽𝑛/8).
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Corollary 1. The probability that the double-cut DA makes at least 1

2
𝛼𝛽𝑛 proposals to𝑚𝑖 is at least

1 − exp(−𝛼𝛽𝑛/8).

Proof. For any fixed 𝛿 , by Claim 2.4.7, the probability that M makes at least
1

2
𝛼𝛽𝑛 proposals to

𝑚𝑖 is at least 1 − exp(−𝛼𝛽𝑛/8). By construction, the probability is only larger for the double-cut

DA in the discrete space.

Therefore, by Claim 2.4.1, the probability that the double-cut DA makes at least
1

2
𝛼𝛽𝑛 pro-

posals to𝑚𝑖 in the actual continuous space is at least 1− exp(−𝛼𝛽𝑛/8) −𝛿 , and this holds for any

𝛿 > 0, however small. Consequently, this probability is at least 1 − exp(−𝛼𝛽𝑛/8). □

Proof. (Of Claim 2.4.7.) We will show that the most effective blocking strategy is to block as many

women as possible before they have made any choices. This leaves at least (𝑖 + ℓ𝑖) − (𝑖 − 1+ℎ𝑖) ⩾

1 + 𝛼 (𝑛 − 1) ⩾ 𝛼𝑛 women unmatched. Then, as we argue next, each of these remaining at least

𝛼𝑛 women𝑤 has independent probability at least 𝛽 that their proposal to𝑚𝑖 is cutoff-surviving.

To be cutoff-surviving, it suffices that 𝑉 (𝑟𝑚𝑖
, 𝑠𝑤 (𝑚𝑖)) ⩾ 𝑉 (𝑟𝑚𝑖

− 𝛼, 1). But we know by (2.1) that

𝑉 (𝑟𝑚𝑖
− 𝛼, 1) ⩽ 𝑉 (𝑟𝑚𝑖

, 1 − 𝛽), and therefore it suffices that 𝑠𝑤 (𝑚𝑖) ⩾ 1 − 𝛽 , which occurs with

probability 𝛽 .

Consequently, in expectation, there are at least 𝛼𝛽𝑛 proposals to𝑚𝑖 , and therefore, by a Cher-

noff bound, at least
1

2
𝛼𝛽𝑛 proposals with probability at least exp(−𝛼𝛽𝑛/8).

We consider the actual blocking choices made by M and modify them bottom-up in a way

that only reduces the probability of there being
1

2
𝛼𝛽𝑛 or more proposals to𝑚𝑖 .

Clearly, M can choose to block the same maximum number of women on every path as it

never hurts to block more women (we allow the blocking of women who have already proposed

to𝑚𝑖 even though it does not affect the number of proposals to𝑚𝑖 ).

Consider a deepest block at some node 𝑢 in the tree, and suppose 𝑏 women are blocked at 𝑢.

Let 𝑣 be a sibling of 𝑢. As this is a deepest block, there will be no blocks at proper descendants

of 𝑢, and furthermore as there are the same number of blocks on every path, 𝑣 will also have 𝑏
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blocked women.

Observe that if there is no blocking in a subtree, then the probability that a woman makes

a proposal to 𝑚𝑖 is independent of the outcomes for the other women. Therefore the correct

blocking decision at node 𝑢 is to block the 𝑏 women with the highest probabilities of otherwise

making a proposal to𝑚𝑖 , which we call their proposing probabilities; the same is true at each of

its siblings 𝑣 .

Let 𝑥 be𝑢’s parent. Suppose the action at node 𝑥 concerns woman𝑤𝑥 . Note that the proposing

probability for any woman 𝑤 ≠ 𝑤𝑥 is the same at 𝑢 and 𝑣 because the remaining sequence of

actions for woman𝑤 is the same at nodes 𝑢 and 𝑣 , and as they are independent of the actions of

the other women, they yield the same probability of selecting𝑚𝑖 at some point.

We need to consider a number of cases.

Case 1. 𝑤 is blocked at every child of 𝑥 .

Then we could equally well block𝑤 at node 𝑥 .

Case 2. At least one woman other than𝑤𝑥 is blocked at some child of 𝑥 .

Each such blocked woman 𝑤 has the same proposing probability at each child of 𝑥 . Therefore

by choosing to block the women with the highest proposing probabilities, we can ensure that at

each node either𝑤𝑥 plus the same 𝑏 − 1 other women are blocked, or these 𝑏 − 1 woman plus the

same additional woman𝑤 ′ ≠ 𝑤𝑥 are blocked. In any event, the blocking of the first 𝑏 − 1 women

can be moved to 𝑥 .

Case 2.1. 𝑤𝑥 is not blocked at any child of 𝑥 .

Then the remaining identical blocked woman at each child of 𝑥 can be moved to 𝑥 .

Case 2.2. 𝑤𝑥 is blocked at some child of 𝑥 but not at all the children of 𝑥 .

Notice that we can avoid blocking 𝑤𝑥 at the child 𝑢 of 𝑥 corresponding to selecting 𝑚𝑖 , as the

proposing probability for𝑤𝑥 after it has selected𝑚𝑖 is 0, so blocking any other women would be

at least as good. Suppose that𝑤 ≠ 𝑤𝑥 is blocked at node 𝑢.

Let 𝑣 be another child of 𝑥 at which𝑤𝑥 is blocked. Necessarily, 𝑝𝑣,𝑤𝑥
, the proposing probability
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for𝑤𝑥 at node 𝑣 , is at least the proposing probability 𝑝𝑣,𝑤 for𝑤 at node 𝑣 (for otherwise𝑤 would be

blocked at node 𝑣); also, 𝑝𝑣,𝑤 equals the proposing probability for𝑤 at every child of 𝑥 including

𝑢; in addition, 𝑝𝑣,𝑤𝑥
equals the proposing probability for 𝑤𝑥 at every child of 𝑥 other than 𝑢. It

follows that𝑤 is blocked at 𝑢 and𝑤𝑥 can be blocked at every other child of 𝑥 . But then blocking

𝑤𝑥 at 𝑥 only reduces the proposing probability.

Thus in every case one should move the bottommost blocking decisions at a collection of

sibling nodes to a single blocking decision at their parent. □

□

2.5 Making Fewer Proposals

We identify a sufficient set of edges that contains all stable matchings, and on which the DA

algorithm produces the same outcome as when it runs on the full edge set.

Definition 4 (Viable edges). An edge (𝑚,𝑤) is man-viable if, according to 𝑚’s preferences, 𝑤 is

at least as good as the woman he is matched to in the man-pessimal stable match. Woman-viable

is defined symmetrically. An edge is viable if it is both man and woman-viable. 𝐸𝑣 is the set of all

viable edges.

Lemma 2.14. Running woman-proposing DAwith the edge set restricted to 𝐸𝑣 andwith any superset

obtained via loss thresholds, including the full edge set, results in the same stable matching.

Proof. Suppose a new stable matching, 𝑆 , now exists in the restricted edge set: it could not be

present when using the full edge set, therefore there must be a blocking edge (𝑚,𝑤) in the full

edge set. But neither𝑚 nor𝑤 would have removed this edge when forming their restricted edge

set since for both of them it is better than an edge they did not remove (the edge they are matched

with in 𝑆).
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It follows that w.h.p. the set of stable matchings is the same when using 𝐸𝑣 (or any super set of

it generated by truncation with larger loss thresholds) and the whole set. Thus woman-proposing

DA run on the restricted edge set will yield the same stable matching as on the full edge set.

□

Proof. (Of Theorem 2.12.) If E occurs, the set of acceptable edges contains all the viable edges.

Furthermore, the acceptable edges are defined bymeans of loss thresholds. The result now follows

from Lemma 2.14. □

For some of the very bottommost agents, almost all edges may be acceptable. However, in

the bounded derivatives model, with slightly stronger constraints on the derivatives, we also

show (see Section 2.11) the existence of an 𝜀-Bayes-Nash equilibrium in which all but a bottom

Θ((ln𝑛/𝑛)1/3) fraction of agents use only Θ(ln𝑛) edges, and all agents propose using at most

Θ(ln2 𝑛) edges, with 𝜀 = 𝑂 (ln𝑛/𝑛1/3).

2.6 More General Models

2.6.1 Utility Models

The General Utilities Model There are 𝑛 men and 𝑛 women. Each man𝑚 has a utility𝑈𝑚,𝑤

for the woman𝑤 , and each woman𝑤 has a utility𝑉𝑚,𝑤 for the man𝑤 . These utilities are defined

as

𝑈𝑚,𝑤 = 𝑈 (𝑟𝑤 , 𝑠𝑚 (𝑤)), and

𝑉𝑚,𝑤 = 𝑉 (𝑟𝑚, 𝑠𝑤 (𝑚)),

where 𝑟𝑚 and 𝑟𝑤 are common public ratings, 𝑠𝑚 (𝑤) and 𝑠𝑤 (𝑚) are private scores specific to the

pair (𝑚,𝑤), and𝑈 (·, ·) and𝑉 (·, ·) are continuous and strictly increasing functions from R2

+ to R+.
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The public ratings and private scores are drawn independently from distributions with posi-

tive density functions with bounded support on R+. We assume without loss of generality that all

public ratings and private scores are drawn uniformly and independently from [0, 1] since there

is always a change of variables that transforms them into uniform draws while transforming the

utility functions monotonically.

𝑈 and 𝑉 are not explicitly assumed to be bounded. However they are continuous and for

the purpose of our analysis we can restrict the domain of𝑈 and𝑉 to the product of the bounded

supports of our ratings and score distributions. These restricted𝑈 and𝑉 are continuous functions

on a compact set and hence are bounded. Now, WLOG, by scaling appropriately, we can assume

the range of𝑈 and 𝑉 are both [0, 1].

The Bounded Derivatives Model We add a notion of bounded derivatives to the general util-

ities model.

Definition 5. A function 𝑓 (𝑥,𝑦) : R2 → R+ has (𝜌, 𝜇)-bounded derivatives if for all (𝑥,𝑦) ∈ R2,

𝜌 ⩽
𝜕𝑓

𝜕𝑥

/ 𝜕𝑓
𝜕𝑦

— the ratio bound;

𝜕𝑓

𝜕𝑥
≤ 𝜇 — the first derivative bound.

Note that this definition implies
𝜕𝑓

𝜕𝑦
is upper bounded by 𝜇/𝜌 .

In the bounded derivatives model, the utility functions𝑈 and𝑉 are restricted to having (𝜌, 𝜇)-

bounded derivatives, for some constants 𝜌, 𝜇 > 0. In the linear separable model, which is a special

case of this model, 𝜇 = 𝜆 and 𝜌 = 𝜆/(1 − 𝜆).

2.6.2 Other Generalizations

Uneqal numbers of men and women We generalize the above models to allow for 𝑛 women

and 𝑝 men, where 𝑛 and 𝑝 need not be equal. Suppose that 𝑛 ⩽ 𝑝 . It is then convenient to
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change the public rating ranges to be [0, 𝑝/𝑛] for the men and [𝑝/𝑛 − 1, 𝑝/𝑛] for the women. We

proceed symmetrically when 𝑛 > 𝑝 . We will keep the private score range at [0, 1]. The effect

of this change is to ensure that with high probability the top 𝑛 public ratings for the men cover

approximately the same range as the women’s public ratings.

Many-to-one matchings The stable matching problem has also been studied in the setting of

many-to-one matchings. For example, in the setting of employees and employers, often employ-

ers want to hire multiple employees. For this setting, we will refer to the two sides as companies

and workers. Also, we will focus on the bounded derivatives setting.

There are𝑛𝑐 companies and𝑛𝑤 workers. Each company has𝑑 positions, meaning that it wants

to match with 𝑑 workers. Each worker can be hired by only one company. The total capacity of

all the companies exactly matches the number of workers, i.e. 𝑛𝑐 · 𝑑 = 𝑛𝑤 .
3

𝑟𝑐 will denote the public rating of company 𝑐 , and 𝑟𝑤 the public rating of worker 𝑤 . Worker

𝑤 has private score 𝑠𝑤 (𝑐) for company 𝑐 , and company 𝑐 has private score 𝑠𝑐 (𝑤) for worker 𝑤 .

𝑈 (𝑟𝑤 , 𝑠𝑐 (𝑤)) denotes the utility company 𝑐 has for worker𝑤 , and𝑉 (𝑟𝑐, 𝑠𝑤 (𝑐)) denotes the utility

worker𝑤 has for company 𝑐 .

To define the loss in the many-to-one setting, we need to define a non-symmetric notion of

alignment of workers and companies.

Definition 6 (Alignment). Suppose company 𝑐 has rank 𝑖 (as per its public rating). Let 𝑤 be the

worker of rank 𝑑 · 𝑖 (also as per its public rating). Then𝑤 is aligned with 𝑐 . Likewise, suppose worker

𝑤 ′ has rank 𝑗 . Let 𝑐′ be the company with rank ⌈ 𝑗/𝑑⌉. Then 𝑐′ is aligned with𝑤 ′.

Definition 7 (Loss, cont.). Let 𝑐 be a company and let𝑤 be aligned with 𝑐 . The loss 𝑐 sustains from

a match of utility 𝑢 is defined to be 𝑈 (𝑟𝑤 , 1) − 𝑢. Similarly, let 𝑤 ′ be a worker and let 𝑐′ be aligned

with𝑤 ′. The loss𝑤 ′ sustains from a match of utility 𝑢 is defined to be 𝑉 (𝑟𝑐 ′, 1) − 𝑢.
3
Our results generalize easily to the case in which the number of workers differs from the number of available

positions. We omit the details.
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2.7 Results

The Bounded Derivatives Model We begin by stating our basic result for this model.

Theorem 2.15. In the bounded derivatives model, when there are 𝑛 men and 𝑛 women, for any

given constant 𝑐 > 0, for large enough 𝑛, with probability at least 1 − 𝑛−𝑐 , in every stable match,

for every 𝑖 , if 𝑟𝑤𝑖
⩾ 𝜎 ≜ 3𝐿/4𝜇, agent𝑚𝑖 suffers a loss of at most 𝐿, where 𝐿 = Θ((ln𝑛/𝑛)1/3), and

similarly for the agents𝑤𝑖 .

Note that w.h.p., the public ratings of aligned agents are similar.

In words, w.h.p., all but the bottommost agents (those whose aligned agent has public rating

less than 𝜎) suffer a loss of no more than 𝐿. We call this high probability outcome E.

By Theorem 2.12, the implication is that w.h.p. a woman can safely restrict her proposals to

her acceptable edges, or to any overestimate of this set of edges obtained by her setting an upper

bound on the loss she will accept from a match. There is a small probability— at most 𝑛−𝑐—that

this may result in a less good outcome, namely the probability that E does not occur.

Then, w.h.p., every stable match gives each woman 𝑤 , whose aligned agent 𝑚 has public

rating 𝑟𝑚 ⩾ 𝜎 = Ω((ln𝑛/𝑛)1/3), a partner with public rating in the range [𝑟𝑚 − 𝐿/𝜇, 𝑟𝑚 + 5/4𝐿/𝜇]

(see Section 2.9.1). An analogous statement applies to the men.

This means that if we are running woman-proposing DA, each of these women might as well

limit her proposals to her woman-acceptable edges, which is at most the men with public ratings

in the range 𝑟𝑚 ± Θ(𝐿) for whom she has private scores of at least 1 − Θ(𝐿). In expectation, this

yields Θ(𝑛1/3(ln𝑛)2/3) men to whom it might be worth proposing. It also implies that a woman

can have a gain of at most Θ(𝐿) compared to her target utility.

If, in addition, each man can inexpensively signal the women who are man-acceptable to him,

then the women can further limit their proposals to just those men providing them with a signal;

in the case of accurate signals, this reduces the expected number of proposals these women can
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usefully make to just Θ(ln𝑛).

Our next result provides a distribution bound on the losses. It states that for most agents, the

losses are at most Θ(𝐿/(ln𝑛)1/3), with a geometrically decreasing number of agents facing larger

losses.

Theorem 2.16. In the bounded derivatives model, when there are𝑛men and𝑛 women, for any given

constant 𝑐 > 0, for large enough 𝑛, with probability at least 1−𝑛−𝑐 , in every stable match, among the

agents whose aligned partner has public score at least 𝜎 ≜ 3𝐿/4𝜇, at most 2𝑛 ·exp

(
−(𝑐 + 2) ln𝑛/2

3ℎ
)

men suffer a loss of more than 𝐿/2
ℎ , for integerℎ with 1

3
log

(
(𝑐+2) ln𝑛

ln[𝑛/3(𝑐+2) ln𝑛]

)
⩽ ℎ ⩽ 1

3
log[(𝑐+2) ln𝑛],

and likewise for the women.

We now generalize Theorem 2.15 to possibly unequal numbers of men and women, and also

state what can be said for agents with low public ratings.

Theorem 2.17. Suppose there are 𝑝 men and 𝑤 woman, with 𝑝 ⩾ 𝑛. Let 𝑡 ⩾ 1 be a parameter. In

the bounded derivatives model, for any given constant 𝑐 > 0, for large enough 𝑛, with probability at

least 1−𝑛−𝑐 , in every stable match, every agent, except possibly the men whose aligned agents have

public rating less than 𝑝−𝑛
𝑛

+ 𝜎
𝑡
and the women whose aligned agents have public rating less than 𝜎

𝑡
,

suffers a loss of at most 𝐿𝑡2, where 𝐿 = Θ((ln𝑛/𝑛)1/3) and 𝜎 = 3𝐿/4𝜇.

Note that when 𝐿 = 1 (i.e. 100% loss), 𝑡 = Θ((𝑛/ln𝑛)1/6) and therefore 𝜎/𝑡 = Θ((ln𝑛)/𝑛)1/2),

providing a lower bound on the range for which this result bounds the loss.

Setting 𝑡 = 1 and 𝑝 = 𝑛 yields Theorem 2.15.

The implication is similar to that for Theorem 2.15, but as 𝑡 increases, i.e., for women whose

aligned agents have increasingly low public ratings, the bound on the number of proposals she

can usefully make grows by roughly a 𝑡2
factor.

𝜀-Bayes-Nash Eqilibrium
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Definition 8. A function 𝑓 (𝑥,𝑦) : R2 → R+ has (𝜌ℓ , 𝜌𝑢, 𝜇ℓ , 𝜇𝑢)-bounded derivatives if for all

(𝑥,𝑦) ∈ R2,

The ratio bound: 𝜌ℓ ⩽
𝜕𝑓

𝜕𝑥

/ 𝜕𝑓
𝜕𝑦
⩽ 𝜌𝑢 .

The first derivative bound: 𝜇ℓ ⩽
𝜕𝑓

𝜕𝑥
≤ 𝜇𝑢 .

Then 𝑓 is said to have the strong bounded derivative property. Note that in the linearly separable

model, 𝜌ℓ = 𝜌𝑢 and 𝜇ℓ = 𝜇𝑢 .

Let 𝑡 ≥ 1 be a parameter and 𝜎 = Θ( [ln𝑛/𝑛]1/3). Define. 𝐿𝑚𝑡 ≜ 𝑈 (𝑟𝑤 , 1) − 𝑈 (𝑟𝑤 − 𝜎𝑡2, 1)

and 𝐿𝑤𝑡 ≜ 𝑉 (𝑠𝑚, 1) −𝑉 (𝑟𝑚 − 𝜎𝑡2, 1). For this to be meaningful when 𝑟𝑤 − 𝜎𝑡2 < 0, we extend the

definition of 𝑈 to this domain as follows. For 𝑠 < 0,
𝜕𝑈 (𝑟,𝑠)
𝜕𝑟

= 𝜇ℓ and
𝜕𝑈 (𝑟,𝑠)
𝜕𝑠

= 𝜌ℓ . We proceed

analogously to handle the case that 𝑟𝑚−𝜎𝑡2 < 0. Define parameters 𝜎𝑚 = 𝛽/𝑛1/3
and 𝜎𝑤 = 𝜈/𝑛1/3

,

where 𝛽 > 1 and 𝜈 < 1 are constants. We then define 𝑡𝑚 = 𝜎/𝜎𝑚 and 𝑡𝑤 = 𝜎/𝜎𝑤 . Note that in the

strongly bounded derivatives model, 𝐿𝑚𝑡𝑚 ⩽ Θ
(
𝜇𝑢
𝛽2

· ln𝑛

𝑛1/3

)
and 𝐿𝑤𝑡𝑤 ⩽ Θ

(
𝜇𝑢
𝜈2

· ln𝑛

𝑛1/3

)
.

Theorem 2.18. Let 𝜀 = Θ(1/𝑛1/3). There are constants 𝛽 > 1 and 𝜈 < 1 such that in the strongly

bounded derivatives model, there exists an 𝜀-Bayes-Nash equilibrium where, with probability a least

1−𝑛𝑐 , agents with public ratings greater than 𝜎 make at mostΘ(ln𝑛) proposals and all agents make

at most Θ(ln2 𝑛) proposals. Furthermore, in this equilibrium, with probability a least 1 − 𝑛𝑐 , every

man has a loss of at most 𝐿𝑚𝑡𝑚 , and every woman𝑤 has a loss of at most 𝐿𝑤𝑡𝑤 .

The General Utilities Model

Theorem 2.19. Let 0 < 𝜀 < 1, 0 < 𝜎 < 1, and 𝑐 > 0 be constants. In the general utilities model,

for large enough 𝑛, with probability at least 1 − exp(−Θ(𝑛)), in every stable matching, every agent,

except possibly those whose aligned agents have public rating less than 𝜎 , suffers a loss of at most 𝜖 .

Clearly the smaller 𝜀, the smaller the ranges of public ratings and private scores that can
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yield acceptable proposals; however, there does not appear to be a simple functional relationship

between 𝜀 and the sizes of these ranges in this general model.

TheMany to One Setting Next, we state our many-to-one result, expressing it in terms of the

𝑛𝑤 workers and 𝑛𝑐 companies, each having 𝑑 positions. We now have possibly different bounds

𝐿𝑤 = Θ( [(ln𝑛𝑤 )/𝑛𝑐]1/3) = Θ( [(𝑑 ln𝑛𝑤 )/𝑛𝑤 ]1/3), and

𝐿𝑐 =


Θ((max{𝑑, ln𝑛𝑤 }/𝑛𝑤 )1/3) 𝑑 = 𝑂 ((𝑛𝑤/ln𝑛𝑤 )2/3)

Θ((𝑑 ln𝑛𝑤 )/𝑛𝑤 ) 𝑑 = Ω(𝑛𝑤/ln𝑛𝑤 )2/3)

on the losses for non-bottommost workers and companies. Analogous to the one-to-one case, we

define 𝜎𝑐 = 3𝐿𝑐/4𝜇 and 𝜎𝑤 = 3𝐿𝑤/4𝜇, the public rating thresholds below which these loss bounds

need not hold.

Theorem 2.20. Let 𝐿𝑐 , 𝐿𝑤 , 𝜎𝑐 and 𝜎𝑤 be as defined above. Suppose that 𝑑 = 𝑂 ((𝑛/ln𝑛)2/3). Then,

for any given constant 𝑘 > 0, with probability at least 1−𝑛−𝑘 , in every stable match, every company,

except possibly those whose aligned agent has public rating less than 𝜎𝑤 , suffers a loss of at most 𝐿𝑐 ,

and every worker, except possibly those whose aligned agent has public rating less than 𝜎𝑐 , suffers a

loss of at most 𝐿𝑤 .

Lower Bounds The next two theorems show that the bounded derivative result is tight in two

senses. First, we show that the bound 𝐿 on the loss is tight up to a constant factor.

Theorem 2.21. In the linear separable model with 𝜆 = 1

2
, if 𝑛 ⩾ 32, 000 and 𝐿 = 1

8
(ln𝑛/𝑛)1/3, then

with probability at least 1

4
𝑛−1/8 there is no perfect matching, let alone stable matching, in which

every agent with public rating 3

2
𝐿 or larger suffers a loss of at most 𝐿. (Here 𝜇 = 1

2
, so 3

2
𝐿 = 3𝐿/4𝜇.)

Next, we show that to obtain sub-constant losses in general, one needs constant bounds on
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the derivatives. We first define a notion of a sub-constant function, which we use to specify

sub-constant losses.

Definition 9 (Sub-constant function). A function 𝑓 (𝑥) : R→ R+ is sub-constant if for every choice

of constant 𝑐 > 0, there exists an 𝑥 such that for all 𝑥 ⩾ 𝑥 , 𝑓 (𝑥) ⩽ 𝑐 .

Theorem 2.22. Let 𝑓 : 𝑁 → R+ be a continuous, strictly decreasing sub-constant function, and

let 𝛿, 𝜎 ∈ (0, 1) be constants. Then, in the following two cases, there exist continuous and strictly

increasing utility functions𝑈 (., .) and𝑉 (., .) such that for some 𝑛 > 0, for all 𝑛 ⩾ 𝑛, with probability

at least 1−𝛿 , in every perfect matching, some rank 𝑖 man𝑚𝑖 or woman𝑤𝑖 with public rating at least

𝜎 receives utility less than𝑈 (𝑟𝑤𝑖
, 1) − 𝑓 (𝑛) or 𝑉 (𝑟𝑚𝑖

, 1) − 𝑓 (𝑛), respectively.

i. 𝑈 (., .) and𝑉 (., .) have derivatives w.r.t. their second variables that are bounded by a constant,

but for (at least) one of which the derivative w.r.t. their first variable is not bounded by any constant.

ii. 𝑈 (., .) and𝑉 (., .) have derivatives w.r.t. their first variables that are bounded by a constant, but

for (at least) one of which the derivative w.r.t. their second variable is not bounded by any constant.

2.8 Proof Sketches for the Remaining Results

In Section 2.3, we proved Theorem 2.15 for the special case of the linear separable model with

𝜆 = 1/2. We will now briefly outline how we extend the analysis to the bounded derivative model

and the general utilities model, as well as to the case where the number of men and women is

unequal and the setting of many-to-one matchings. The full analyses can be found in Section 2.9.

We will also briefly discuss our construction of an 𝜖-Bayes-Nash equilibrium in the bounded

derivatives model as well as sketch our lower bound proofs in both the bounded derivatives and

the general utility models. The full proofs can be found in Sections 2.11 and 2.10, respectively.
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2.8.1 Extending the Upper Bound Result

1. Weaker bounds on the losses for agents with lower ranks.

This is obtained by reducing 𝛼 to 𝛼/𝑡 , where 𝑡 > 1, and replacing 𝐿 by 𝐿 = 4𝛼𝑡2
. The only change

occurs in recalculating the loss probability.

2. Unequal numbers of men and women.

The critical condition for the bound on 𝑚𝑖 ’s loss is 𝑟𝑤𝑖
⩾ 3𝛼 . This simply states that there is a

range of 3𝛼 ratings below 𝑤𝑖 . But this statement is independent of how many agents there are

on each side. Similarly, the bound on𝑤𝑖 ’s loss requires that there be a range of 3𝛼 ratings below

𝑚𝑖 . So all one has to do is rephrase these conditions in terms of 𝑝 and 𝑛, the numbers of men and

women, respectively.

3. The bounded derivatives model.

It suffices to scale the values of 𝛼 , 𝛽 , 𝛾 and 𝐿 to take account of the bounded derivative property

so as to ensure that Equations (2.1) and (2.2) still hold. As we shall see, setting 𝛽 = 𝛼𝜌 , 𝛾 = 𝛼𝜌

and 𝐿 = 4𝛼𝜇 suffices.

4. The many-to-one result.

We actually analyze the many-to-many setting. The main issue is that a company (replacing a

man in the previous argument) seeks 𝑑𝑐 matches rather than 1 and a worker seeks 𝑑𝑤 matches.

We need to restate Lemma 2.13, for now the alignment we seek is between positions sought by

the workers and provided by the companies, rather than between men and women.

However, the significant change occurs in deducing the theorem, for now we need to de-

termine the probability that a company receives 𝑑𝑐 matches. The remaining changes are due to

replacing 𝑛, the number of men and of women, with 𝑛𝑐 and 𝑛𝑤 , the numbers of companies and

workers, respectively.

5. A distribution bound on the losses.

By reducing both 𝛼 and 𝐿 by a factor 𝑠 > 1, we increase the failure probability for a single agent
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from 𝑛−(𝑐+1)
to 𝑛−(𝑐+1)/𝑠3

. This implies, for example, that in expectation half the agents have a loss

of𝑂 (1/𝑛1/3). In fact an analysis along the lines of observation (3) in the sketch proof shows that

this bound holds with high probability.

2.8.2 Extensions to More General Models

1. The bounded derivative setting.

The only places we use the bounds on the derivatives are to determine 𝛽 , 𝛾 , and 𝐿 satisfying (2.1)

and (2.2). As we show in Section 2.7, 𝛽 = 𝛾 = 𝛼𝜌 , and 𝐿 = 4𝛼/𝜇 suffice.

2. The general utilities model.

Given constants 𝜀, 𝜎 > 0, we need to choose 𝛼, 𝛽,𝛾 > 0 and 𝑛 large enough so that (2.1) and (2.2)

are satisfied. The existence of such constant valued 𝛼 , 𝛽 , and 𝛾 follows using the fact that 𝑈 and

𝑉 , the utility functions, are continuous and strictly increasing.

2.8.3 Epsilon-Bayes-Nash Eqilibrium

In the bounded derivative model, with slightly stronger constraints on the derivatives, we also

show the existence of an 𝜖-Bayes-Nash equilibrium in which agents make relatively few propos-

als. Specifically, there is an equilibrium in which no agent proposes more than𝑂 (ln2 𝑛) times and

all but the bottommost 𝑂 ((ln𝑛/𝑛)1/3) fraction of the agents make only 𝑂 (ln𝑛) proposals. Here

𝜀 = Θ(ln𝑛/𝑛1/3).

We use the idea of considering a run of DA with cuts just as in the proof of Theorem 2.15;

in addition, the proposal receiving side will impose reservation thresholds based on their public

rank. We also apply the distribution bound on losses described in (4) in the previous subsection.

The resulting analysis is somewhat involved (see Section 2.11).
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2.8.4 Lower Bounds

1. The lower bound complementing the one-to-one upper bound.

The main idea is to show by a direct computation that for each woman, with probability at least

1/𝑛1/8
, all her incident edges provide a loss of more than 𝐿 to either her or her partner. We will

need to exclude some low-probability events in which the number of agents in an interval is far

from its expectation, and also eliminate the agents with public ratings less than
3

2
𝐿. The net effect

is that with probability at least 1/4𝑛1/8
some woman has no incident (𝐿, 3

2
𝐿)-acceptable edge,

where 𝐿 = 1

8
(ln𝑛/𝑛)1/3

, and hence with this probability there is no matching using solely (𝐿, 3

2
𝐿)-

acceptable edges. Consequently, in order to obtain a stable matching with high probability, we

need to increase the value of 𝐿.

2. The lower bound complementing the general utilities model upper bound.

To show that no sub-constant loss bound (such as (ln𝑛/𝑛)1/3
) is possible, we consider a loss bound

that is shrinking (slowly) as a function of 𝑛. For a given 𝑛, this can be expressed as a loss bound

𝜀 (𝑛). We provide two similar constructions as there are two separate derivative bounds.

Our first construction uses a utility function 𝑈 (𝑠, 𝑣) = 1

2
(𝑠 + 𝑔(𝑣)), with 𝑔(1) = 1 and 𝑔(·)

being unboundedly rapidly growing as 𝑣 → 1. 𝑔 is designed to ensure that with high probability

the edges to the women with public ratings 𝑠 ⩾ 1−2𝜀 (𝑛) all have private scores less than 1−𝜀 (𝑛).

This will ensure that with high probability𝑚1, the man with the highest public ranking, will have

no edge providing him a loss of at most 𝜀 (𝑛). However slowly 𝜀 (𝑛) decreases as a function of 𝑛,

we show that we can construct a corresponding 𝑔 that grows suitably quickly. This construction

demonstrates that the parameter 𝜖 needs to be constant. Notice that our construction actually

shows that, in the general setting, w.h.p, there is not only no stable matching where all high

public rating agents face sub-constant losses, but in fact no perfect matching.
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2.9 Proofs of the Remaining Upper Bound Results

Proof. (Of Theorem 2.15.) We now consider what changes occur when we are no longer restricted

to the linear separable model with 𝜆 = 1

2
.

First, we need to determine the values for 𝛽 , 𝛾 and 𝐿 implied by the bounded derivative pa-

rameters 𝜌 and 𝜇. We show the following values, 𝛽 = 𝛼𝜌 , 𝛾 = 𝛼𝜌 and 𝐿 = 4𝛼𝜇, satisfy (2.1) and

(2.2).

For by the definition of 𝜌 ,𝑉 (𝑟 −𝛼, 1) ⩽ 𝑉 (𝑟, 1−𝛼𝜌) = 𝑉 (𝑟, 1− 𝛽), satisfying (2.1). And by the

definition of 𝜌 and 𝜇,𝑈 (𝑟, 1)−𝑈 (𝑟−3𝛼, 1−𝛾) ⩽ 𝑈 (𝑟, 1)−𝑈 (𝑟−3𝛼−𝛾/𝜌, 1) ⩽ (3𝛼+𝛾/𝜌)𝜇 = 4𝛼𝜇 = 𝐿,

satisfying (2.2).

To complete the argument, it suffices to determine the failure probability on setting 𝐿 = 𝐿

when running the double-cut DA. Recall that the failure probability (summed over the 2𝑛 men

and women) is given by:

𝑝 𝑓 = 2𝑛 · exp(−𝛼 (𝑛 − 1)/12) + 2𝑛 · exp(−𝛼 (𝑛 − 1)/24) + 2𝑛 exp(−𝛼𝛽𝑛/8) + 2𝑛 · exp(−𝛼𝛽𝛾𝑛/2)

⩽ 2𝑛 · exp(−𝛼 (𝑛 − 1)/12) + 2𝑛 · exp(−𝛼 (𝑛 − 1)/24) + 2𝑛 exp

(
−𝛼2𝜌𝑛/8

)
+ 2𝑛 · exp

(
−𝛼3𝜌2𝑛/2

)
We note that 𝛼 = 𝐿/4𝜇, and set 𝐿 = [128(𝑐 + 2)𝜇3

ln𝑛/(𝜌2𝑛)]1/3
. For large enough 𝑛 this ensures

a failure probability of at most 𝑛−𝑐 . □

Proof. (Of Theorem 2.17.) We now need to consider smaller intervals of men and women below

𝑚𝑖 and𝑤𝑖 respectively.

We set 𝜎 = 𝜎/𝑡 , where 𝑡 ⩾ 1. We then set 𝛼 = 𝜎/4 and 𝛽 = 𝛼𝜌 as before, but to keep the

most significant term in the probability bound unchanged (2𝑛 · exp(−𝛼𝛽𝛾𝑛/2)), we increase 𝛾 by

a factor of 𝑡2
. We also set 𝐿 = 𝐿𝑡2

.

The failure probability continues to be at most 𝑛−𝑐 for large enough 𝑛 so long as 𝛼𝛽𝑛 =

Ω(𝑐 ln𝑛); this holds for 𝜎 = Ω((ln𝑛)/𝑛)1/2
.
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Now let’s consider what happens when there are 𝑝 men and 𝑛 women. We start with the case

𝑝 ⩾ 𝑛. Our key lemma is stated w.r.t. the rank 𝑖 man𝑚𝑖 and the rank 𝑖 woman 𝑤𝑖 , and requires

𝑟𝑤𝑖
⩾ 3𝛼 when the bottom of the rating range is 0 for both men and women.

It is convenient to have the range of ratings for the men be [0, 𝑝/𝑛] and for the women be

[𝑝/𝑛 − 1, 𝑝/𝑛]. The effect is that the expected values for 𝑟𝑤𝑖
and 𝑟𝑚𝑖

are equal. The condition for

𝑚𝑖 to have a loss of at most 𝐿 becomes 𝑟𝑤𝑖
⩾

𝑝

𝑛
+ 3𝛼 (i.e. 𝑤𝑖 has a rating at least 3𝛼 greater than

the bottommost possible rating for the women). But the condition for𝑤𝑖 to have a loss of at most

𝐿 remains 𝑟𝑚𝑖
⩾ 3𝛼 (i.e.𝑚𝑖 has a rating at least 3𝛼 greater than the bottommost possible rating

for the men).

Symmetric bounds apply when 𝑛 ⩾ 𝑝 . □

Proof. (Of Theorem 2.19) We set 𝛼 = 𝜎/3 and 𝐿 = 𝜀. Again, we need to satisfy (2.1) and (2.2).

To define 𝛽 we begin by specifying a parameter 𝛽 (𝑟, 𝛼). There are two cases. If 𝑉 (𝑟 − 𝛼, 1) ⩽

𝑉 (𝑟, 0), then 𝛽 (𝑟, 𝛼) = 1. Otherwise, as 𝑉 is continuous and strictly increasing, there must be a

value 𝛽 (𝑟, 𝛼) > 0 such that𝑉 (𝑟 −𝛼, 1) = 𝑉 (𝑟, 1−𝛽 (𝑟, 𝛼)). Now, we define 𝛽 = min𝑟∈[𝛼,1]{𝛽 (𝑟, 𝛼)}.

As this is the minimum of strictly positive values on a compact set, it follows that 𝛽 > 0, also.

Note that 𝑉 (𝑟 − 𝛼, 1) ⩽ 𝑉 (𝑟, 1 − 𝛽) for all 𝑟 ∈ [𝛼, 1], satisfying (2.1). Also, 𝛽 = Θ(1) if 𝛼 = Θ(1).

Similarly, to define𝛾 we begin by specifying a parameter𝛾 (𝑟, 𝛼, 𝜀). Again, there are two cases.

If 𝑈 (𝑟, 1) − 𝑈 (𝑟 − 3𝛼, 0) ⩽ 𝐿 = 𝜀 then 𝛾 (𝑟, 𝛼, 𝜀) = 1. Otherwise, as 𝑈 is continuous and strictly

increasing, there must be a value 𝛾 (𝑟, 𝛼, 𝜀) > 0 such that 𝑈 (𝑟, 1) − 𝑈 (𝑟 − 3𝛼, 1 − 𝛾 (𝑟, 𝛼, 𝜀)) = 𝜀.

Now, we define 𝛾 ≜ min𝑟∈[3𝛼,1]{𝛾 (𝑟, 𝛼, 𝜀)}. Again, as this is a minimum of strictly positive values

on a compact set, 𝛾 > 0 also. Note that𝑈 (𝑟, 1) − 𝜀 ⩽ 𝑈 (𝑟 − 3𝛼, 1−𝛾) for all 𝑟 ∈ [3𝛼, 1], satisfying

(2.2). Also, 𝛾 = Θ(1) if 𝛼 = Θ(1).

As 𝜎 = Θ(1), all of 𝛼, 𝛽,𝛾 = Θ(1). Therefore, by Lemma 2.13, the failure probability is

exp(−Θ(𝑛)). □

Because the many-to-one setting is non-symmetric it is actually simpler to analyze the many-
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to-many setting, many-to-one being just a special case of this. We will use the terminology of

workers and companies, for want of a better alternative. (One could think of these workers as

being consultants or gig workers who seek multiple tasks at a time.)

In this setting there are 𝑛𝑐 companies 𝑐1, 𝑐2, . . . , 𝑐𝑛𝑐 , and 𝑛𝑤 workers, 𝑤1,𝑤2, . . . ,𝑤𝑛𝑤 , both

ordered by their public ranks. Each company has 𝑑𝑐 tasks, and each worker desires 𝑑𝑤 tasks. For

simplicity, we suppose 𝑛𝑐 · 𝑑𝑐 = 𝑛𝑤 · 𝑑𝑤 ≜ 𝑛. We let 𝑛max = max{𝑛𝑐, 𝑛𝑤 }. There will be two loss

parameters, 𝐿𝑐 , for the companies, and 𝐿𝑤 , for the workers. Finally, we use the notation𝐶 (𝐼 ) and

𝑊 (𝐼 ), where 𝐼 is an interval of public ratings, to denote, respectively, the companies and workers

with public ratings in the interval 𝐼 .

Definition 10 (Alignment). Suppose company 𝑐 has rank 𝑖 . Let 𝑤 be the worker with rank ⌈𝑑𝑐 ·

𝑖/𝑑𝑤 ⌉. Then𝑤 is aligned with 𝑐 . Likewise, suppose worker𝑤 ′ has rank 𝑗 . Let 𝑐′ be the company with

rank ⌈𝑑𝑤 · 𝑗/𝑑𝑐⌉. Then 𝑐′ is aligned with𝑤 ′.

Definition 11 (company-acceptable edges). Let 0 < 𝜎𝑐, 𝜎𝑤 < 1, 0 < 𝐿𝑐, 𝐿𝑤 < 1 be parameters.

An edge (𝑐,𝑤) is company-acceptable if either 𝑐 ∈ 𝐶 [0, 𝜎𝑐), or the utility 𝑐 gets from this match is

at least 𝑈 (𝑟𝑤 ′, 1) − 𝐿𝑐 , where 𝑤 ′ is the worker aligned with 𝑐 . Worker-acceptability requires either

𝑐 ∈ [0, 𝜎𝑤 ), or utility at least 𝑉 (𝑟𝑐 ′, 1) − 𝐿𝑤 , where 𝑐′ is the company aligned with 𝑤 . An edge is

acceptable if it is both company and worker-acceptable. (Strictly speaking, the definition is w.r.t. the

four parameters 𝜎𝑐 , 𝜎𝑤 , 𝐿𝑐 , and 𝐿𝑤 , but for the sake of readability, we omit them from the terms

company- and worker-acceptable.)

Definition 12 (DA stops). The workers stop at public rating 𝑟 if in each worker’s preference list

all the edges with utility less than 𝑉 (𝑟, 1) are removed. The workers stop at company 𝑐 if in each

worker’s preference list all the edges following their edge to 𝑐 are removed. The workers double cut

at 𝑐 and public rating 𝑟 , if they each stop at 𝑐 or 𝑟 , whichever comes first. Companies stopping and

double cutting are defined similarly.
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Theorem 2.23. Suppose that 𝑑𝑤/𝑑𝑐 = 𝑂 ((𝑛𝑤/ln𝑛max)2/3). Then, in the bounded derivatives model,

for any given constant 𝑘 > 0, with probability at least 1 − 𝑛−𝑘 , in every stable matching, every

company 𝑐𝑖 , for which the aligned worker 𝑤 𝑗𝑖 has public rating at least 𝜎𝑤 = Θ(𝐿𝑤 ), suffers loss at

most

𝐿𝑐 =


Θ( [(ln𝑛max)/𝑛𝑤 ]1/3) 𝑑𝑐 = 𝑂 (ln𝑛max)

Θ( [𝑑𝑐/𝑛𝑤 ]1/3) ln𝑛max ⩽ 𝑑𝑐 = 𝑂 (𝑑𝑤 (𝑛𝑤/ln𝑛max)2/3)

Θ(𝑑𝑐 ln𝑛max/[𝑑𝑤𝑛𝑤 ]) 𝑑𝑐 = Ω(𝑑𝑤 (𝑛𝑤/ln𝑛max)2/3)

and a corresponding symmetric bound for the workers’ loss.

Proof. We need to take account of the fact that each company seeks to fill 𝑑𝑐 positions and each

worker seeks 𝑑𝑤 positions. So we slightly redefine the double-cut DA to state that each worker

who is not fully matched, i.e., who has fewer than 𝑑𝑤 matches, keeps trying to match, stopping

when she runs out of proposals, or she is fully matched, or her next proposal is to 𝑐𝑖 .

First, to avoid rounding issues, we assume 𝛼 is chosen so that 𝛼 (𝑛𝑤 − 5

2
) is an integer for the

argument bounding 𝐿𝑐 , and similarly 𝛼 (𝑛𝑐 − 5

2
) is an integer for the argument bounding 𝐿𝑤 .

We introduce one more index: 𝑗𝑖 = ⌈𝑑𝑐 · 𝑖/𝑑𝑤 ⌉. We then define ℓ𝑖 = ⌊𝑑𝑐 (𝑖 + ℎ𝑖 − 1)/𝑑𝑤 ⌋ +

𝛼 (𝑛𝑤 − 5

2
) − 𝑗𝑖 (this is where we use the assumption that 𝛼 (𝑛𝑤 − 5

2
) is an integer as ℓ𝑖 has to

be an integer). This will ensure that after running the double cut DA, the number of not fully

matched workers is at least 𝛼 (𝑛𝑤 − 5

2
). To see this, note that the number of available positions

is 𝑑𝑐 (𝑖 + ℎ𝑖 − 1) (remember 𝑐𝑖 is not matched in Step 1); therefore, the number of fully matched

workers is at most ⌊𝑑𝑐 (𝑖+ℎ𝑖−1)/𝑑𝑤 ⌋ and therefore the number of not-fully matched workers is at

least ℓ𝑖 + 𝑗𝑖 − ⌊𝑑𝑐 (𝑖 +ℎ𝑖 −1)/𝑑𝑤 ⌋ ⩾ ⌊𝑑𝑐 (𝑖 +ℎ𝑖 −1)/𝑑𝑤 ⌋ +𝛼 (𝑛𝑤 − 5

2
) − ⌊𝑑𝑐 (𝑖 +ℎ𝑖 −1)/𝑑𝑤 ⌋ ⩾ 𝛼 (𝑛𝑤 − 5

2
).

We need to make small changes to Claims 2.4.2–2.4.5 and to their proofs. It seems simplest to

restate and, as necessary, reprove the claims.

Claim 2.9.1. Let B1 be the event that for some 𝑖 , ℎ𝑖 =
��𝐶 [𝑟𝑐𝑖 − 𝛼, 𝑟𝑐𝑖 )�� ⩾ 3

2
𝛼 (𝑛𝑐 − 1). B1 occurs with
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probability at most 𝑛𝑐 · exp(−𝛼 (𝑛𝑐 − 1)/12). The only randomness used in the proof are the choices

of the companies’ public ratings. An analogous bound applies to the workers.

Its proof is unchanged. We just replace 𝑛 by 𝑛𝑐 .

Claim 2.9.2. Let B2 be the event that for some 𝑖 , ℓ𝑖 =
��𝑊 [𝑟𝑤𝑖

− 3𝛼, 𝑟𝑤𝑖
)
�� ⩽ 5

2
𝛼 (𝑛𝑤 − 1). Then B2

occurs with probability at most 𝑛𝑤 · exp(−𝛼 (𝑛𝑤 − 1)/24). The only randomness used in the proof

are the choices of the workers’ public ratings. An analogous bound applies to the companies.

Its proof is unchanged. We just replace 𝑛 by 𝑛𝑤 .

Claim 2.9.3. Let B3 be the event that between them, the workers with rank at most 𝑗𝑖 + ℓ𝑖 make at

least 1

2
𝛼𝛽 (𝑛𝑤 − 5/2) Step 2 proposals to 𝑐𝑖 . If events B1 and B2 do not occur, then B3 occurs with

probability at most exp(−𝛼𝛽 (𝑛𝑤 − 5/2)/8).

It’s proof is largely unchanged. The first issue is that now in the run of the DA algorithm

placing a block on a worker𝑤 corresponds to𝑤 having matched 𝑑𝑤 times. The proof is otherwise

unchanged as any unblocked worker will run through her full utility range as before. However,

the calculations change as follows. The number of not-fully matched workers is at least

𝑑𝑤 ( 𝑗𝑖 + ℓ𝑖) − 𝑑𝑐 (𝑖 − 1 + ℎ𝑖) ⩾ 𝑑𝑤 · 5

2

𝛼 (𝑛𝑤 − 1) + 𝑑𝑐 − 𝑑𝑐 ·
3

2

𝛼 (𝑛𝑐 − 1)

⩾ 𝛼𝑑𝑤𝑛𝑤 − 5

2

𝛼𝑑𝑤 ⩾ 𝛼𝑑𝑤 (𝑛𝑤 − 5

2

).

This causes the replacement of 𝑛 by 𝑛𝑤 − 5/2 in the bounds.

Claim 2.9.4. If none of the events B1, B2, or B3 occur, then at least 1

4
𝛼𝛽𝛾 (𝑛𝑤 − 5/2) of the Step 2

proposals to 𝑐𝑖 will each cause 𝑐𝑖 a loss of at most 𝐿𝑐 with probability at least

1 − exp(−𝛼𝛽𝛾 (𝑛𝑤 − 5/2)/16).

To ensure 𝑐𝑖 receives at least 𝑑𝑐 proposals that each cause it a loss at most 𝐿𝑐 , by Claim 2.9.4,
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we need that

1

4
𝛼𝛽𝛾

(
𝑛𝑤 − 5

2

)
⩾ 𝑑𝑐 . (2.3)

Then the overall failure probability summed over all companies is at most

𝑛𝑐 · exp(−𝛼 (𝑛𝑐 − 1)/12) + 𝑛𝑤 · exp(−𝛼 (𝑛𝑤 − 1)/24) + 𝑛𝑐 exp(−𝛼𝛽 (𝑛𝑤 − 5/2)/8)

+ 𝑛𝑐 exp(−𝛼𝛽𝛾 (𝑛𝑤 − 5/2)/16).

In the bounded derivative setting, we continue to set 𝛽 = 𝛼𝜌 , 𝛾 = 𝛼𝜌 and 𝐿𝑐 = 4𝛼𝜇. Then,

for large enough 𝑛𝑐, 𝑛𝑤 , with 𝐿𝑐 ⩾ 4𝜇 · [16(𝑘 + 2) ln𝑛max/𝜌2(𝑛𝑤 − 5/2)]1/3
and 𝐿𝑐 ⩾ 48𝜇 (𝑘 +

2) ln𝑛max/(𝑛𝑐−1) ⩾ 47𝜇 (𝑑𝑐/𝑑𝑤 ) [(𝑘+2) ln𝑛max/(𝑛𝑤−1)], the overall failure probability is at most

𝑛−𝑘
max

. The first of the two bounds on 𝐿𝑐 dominates if 𝑑𝑐/𝑑𝑤 = 𝑂 ((𝑛𝑤/ln𝑛max)2/3). In addition,

with 𝐿𝑐 ⩾ 4𝜇 · (4𝑑𝑐/𝜌2(𝑛𝑤 − 5

2
))1/3

, (2.3) is satisfied. Thus, the overall condition is that 𝐿𝑐 =

Ω(max{𝑑𝑐, ln𝑛max}/𝑛𝑤 )1/3).

The corresponding bound 𝐿𝑤 = Ω(max{𝑑𝑤 , ln𝑛max}/𝑛𝑐)1/3) can be deduced using the

company-proposing DA.

It remains to prove Claim 2.9.4, which we do below. □

Proof. (Of Claim 2.9.4.) As B3 does not occur, by Claim 2.9.3, there are at least
1

2
𝛼𝛽 (𝑛𝑤 − 5/2)

Step 2 proposals to 𝑐𝑖 . As explained in observation (4) of the sketch proof, each Step 2 proposal

has independent probability at least 𝛾 of causing 𝑐𝑖 a loss of at most 𝐿𝑐 (the independence is

because this is due to the private score of 𝑐𝑖 for this proposal). In expectation, there are at least

1

2
𝛼𝛽𝛾 (𝑛𝑤 − 5/2) of the proposals causing 𝑐𝑖 a loss of at most 𝐿𝑐 , and by a Chernoff bound at least

1

4
𝛼𝛽𝛾 (𝑛𝑤−5/2) such proposals to 𝑐𝑖 with failure probability at most exp(−𝛼𝛽𝛾 (𝑛𝑤 − 5/2)/16). □
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2.9.1 Range of Public Ratings for Acceptable Edges

Here we prove that in the one-to-one bounded derivative setting, with high probability, for each 𝑖 ,

the acceptable edges fromwomen𝑤𝑖 are to menwith public rating in the range [𝑟𝑚𝑖
−4𝛼, 𝑟𝑚𝑖

+5𝛼],

which we call𝑤𝑖 ’s cone. A symmetric bound applies to the men.

We then obtain a similar bound for the many-to-one setting.

Theorem 2.24. In the one-to-one bounded derivative setting with 𝑛 men and 𝑛 women, for large

enough 𝑛, with probability 1 − 𝑛−𝑐 , for each 𝑖 , the acceptable edges from women𝑤𝑖 are to men with

public rating in the range [𝑟𝑚𝑖
− 4𝛼, 𝑟𝑚𝑖

+ 5𝛼], where 𝛼 = 𝐿/4𝜇. A symmetric bound applies to the

men.

Proof. Theorem 2.15 bounds the loss by 𝐿 for non-bottommost agents with probability 1−𝑛−𝑐 for

large enough 𝑛. Therefore𝑤𝑖 will not be interested in matching with any man with public rating

less than 𝑟𝑚𝑖
− 𝐿/𝜇 (for any such man would give a loss greater than 𝐿).

The situation to higher rated men needs a little more calculation. Let 𝑚𝑔 be such a man.

Then what matters is whether 𝑚𝑔 incurs a loss of more than 𝐿 if matched to 𝑤𝑖 . This happens

if 𝑟𝑤𝑔
− 𝑟𝑤𝑖

> 𝐿/𝜇 = 4𝛼 . We now show that to obtain 𝑟𝑤𝑔
− 𝑟𝑤𝑖

⩽ 4𝛼 , w.h.p. we must have

𝑟𝑚𝑔
− 𝑟𝑚𝑖

⩽ 5𝛼 .

We prove this in two steps: first, we show that w.h.p., if 𝑟𝑤𝑔
− 𝑟𝑤𝑖

⩽ 4𝛼 then 𝑖 − 𝑔 < 4𝛼 (𝑛 −

1) + 1

2
𝛼 (𝑛 − 1). Second, we show that w.h.p., 𝑟𝑚𝑔

− 𝑟𝑚𝑖
⩽ (4𝛼 + 1

2
𝛼) + 1

2
𝛼 = 5𝛼 = 5

4
𝐿/𝜇.

The expected number of women in𝑊 [𝑟𝑤𝑔
− 4𝛼, 𝑟𝑤𝑔

] other than 𝑤𝑔 is at most 4𝛼 (𝑛 − 1); and

so by a Chernoff bound this number is at least 4𝛼 (𝑛 − 1) + 1

2
𝛼 (𝑛 − 1) with probability at most

exp(−𝛼 (𝑛 − 1)/48). Call this bad event B4. Note that by assumption, 𝑤𝑖 ∈𝑊 [𝑟𝑤𝑔
− 4𝛼, 𝑟𝑤𝑔

], and

so if B4 does not occur 𝑖 − 𝑔 < 4
1

2
𝛼 (𝑛 − 1).

Now suppose B4 does not occur, and consider the set 𝑀 [𝑟𝑚𝑔
− 5𝛼, 𝑟𝑚𝑔

]. In expectation, other

than 𝑚𝑔, it contains 5𝛼 (𝑛 − 1) men. By a Chernoff bound, it contains at most 4
1

2
𝛼 (𝑛 − 1) men

other than𝑚𝑔 with probability at most exp(−𝛼 (𝑛 − 1)/40). Call this bad event B5.
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If neither B4 nor B5 occur, as 𝑖 − 𝑔 < 4
1

2
𝛼 (𝑛 − 1), 𝑚𝑖 ∈ 𝑀 (𝑟𝑚𝑔

− 5𝛼, 𝑟𝑚𝑔
], and therefore

𝑟𝑚𝑔
− 𝑟𝑚𝑖

< 5𝛼 ⩽ 5

4
𝐿/𝜇.

A union bound over the 𝑛 women and 𝑛 men gives a failure probability of

2𝑛 · exp(−𝛼 (𝑛 − 1)/48) + 2𝑛 · exp(−𝛼 (𝑛 − 1)/40), plus the failure probability from the proof of

Theorem 2.15, which was actually at most

2𝑛 · exp(−𝛼 (𝑛 − 1)/12) + 2𝑛 · exp(−𝛼𝑛/24) + 2𝑛 exp

(
−𝛼2𝜌𝑛/8

)
+ 2𝑛 · exp

(
−𝛼3𝜌2𝑛/2

)
.

Even adding the new terms, for large enough𝑛 it still suffices to set𝐿 = [128(𝑐+2)𝜇3
ln𝑛/(𝜌2𝑛)]1/3

to achieve an overall 𝑛−𝑐 failure probability. □

We now extend the result to the many-to-many setting.

Theorem2.25. In themany-to-many bounded derivative settingwith𝑛𝑐 companies and𝑛𝑤 workers,

for large enough 𝑛𝑐 and 𝑛𝑤 , with probability 1 − 𝑛−𝑘 , for each 𝑖 , the acceptable edges from worker

𝑤𝑖 are to companies with public rating in the range [𝑟𝑐 𝑗𝑖 − 𝐿𝑤/𝜇, 𝑟𝑐 𝑗𝑖 + 5𝐿𝑐𝑛𝑐/4𝜇 (𝑛𝑐 − 1)], where 𝑐 𝑗𝑖
is the company aligned with𝑤𝑖 . A symmetric bound applies to the companies.

Proof. We need to adapt the previous proof to account for the fact that there are 𝑛𝑐 companies

and 𝑛𝑤 workers.

The argument demonstrating the lower limit is unchanged, except we replace 𝐿 with 𝐿𝑤 . For

the upper limit, we change the argument as follows. Now, we replace 𝐿 by 𝐿𝑐 .

We first observe that the number of workers in𝑊 [𝑟𝑤𝑔
− 4𝛼, 𝑟𝑤𝑔

] other than 𝑤𝑔 is at least

4𝛼 (𝑛𝑤 − 1) + 1

2
𝛼 (𝑛𝑤 − 1) with probability at most exp(−𝛼 (𝑛𝑤 − 1)/48). Call this bad event B4.

Second, if B4 does not occur, the set 𝑀 [𝑟𝑐𝑔 − 5𝛼𝑛𝑐/(𝑛𝑐 − 1), 𝑟𝑐𝑔] contains at most 4
1

2
𝛼𝑛𝑐 com-

panies other than 𝑐𝑔 with probability at most exp(−𝛼𝑛𝑐/40). Call this bad event B5.

Suppose neither B4 nor B5 occur. Then, the number of positions sought by the workers in

𝑀 [𝑟𝑤𝑖−1
, 𝑟𝑤𝑔

] is𝑑𝑤 (𝑖−𝑔) < 4
1

2
𝑑𝑤𝛼 (𝑛𝑤−1) = 4

1

2
𝛼𝑑𝑐𝑛𝑐−4

1

2
𝑑𝑤𝛼 , while the number of positions avail-
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able in 𝐶 [𝑟𝑐𝑔 − 5𝛼, 𝑟𝑐𝑔] is more than 4
1

2
𝑑𝑐𝛼𝑛𝑐 = 4

1

2
𝛼𝑑𝑐𝑛𝑐 . Thus the number of available positions

is at least the number sought, and therefore 𝑐𝑖 ∈ 𝐶 [𝑟𝑐𝑔 − 5𝛼𝑛𝑐/(𝑛𝑐 − 1), 𝑟𝑐𝑔].

It remains to revisit the probability bounds. The failure probability from the proof of Theo-

rem 2.20 summed over all workers is

𝑛𝑤 · exp(−𝛼 (𝑛𝑤 − 1)/12) + min{𝑛𝑐, 𝑛𝑤 } · exp(−𝛼 (𝑛𝑐 − 1)/24)

+ 𝑛𝑤 exp(−𝛼𝛽 (𝑛𝑐 − 5/2)/8) + 𝑛𝑤 exp(−𝛼𝛽𝛾 (𝑛𝑐 − 5/2)/16),

where 𝛽 = 𝛾 = 𝛼𝜌 . There is an analogous bound for the companies. Again, for large enough 𝑛𝑐

and 𝑛𝑤 , we can use the same values for 𝐿𝑐 and 𝐿𝑤 as before while maintaining the total failure

probability at 𝑛−𝑘 . □

2.9.2 Distribution Bound on Losses (Proof of Theorem 2.16)

Recall event B3 from the proof of Lemma 2.13, that the women with rank at most 𝑖 + ℓ𝑖 make

fewer than
1

2
𝛼𝛽𝑛 Step 2 proposals to𝑚𝑖 . Claim 2.4.4 shows that if B1 and B2 do not occur then

B3 occurs with probability at most exp(−𝛼𝛽𝑛/8).

Now, consider a man𝑚 and the aligned woman 𝑤 , where 𝑟𝑤 ⩾ 4𝛼 . Let 𝛽 = 𝛾 = 𝛼𝜌 . We will

bound the probability that𝑚 has a loss of more than 𝐿𝑚𝛼 ≜ 𝑈 (𝑟𝑤 , 1) − (𝑟𝑤 − 4𝛼, 1).

If, in addition, 𝑟𝑤 ⩾ 𝜎 and 𝛼 = 𝜎/(4 · 2ℎ) = 𝐿/(4𝜇 · 2ℎ), as𝑈 (𝑟, 1) −𝑈 (𝑟 − 4𝛼, 1) ⩽ 4𝛼𝜇 = 𝐿/2
ℎ
,

this implies a loss of at most 𝐿/2
ℎ
.

Lemma 2.26. Let𝑚 be a man and let 𝑤 be the aligned woman. Suppose we run the DA algorithm

cutting at 𝑚 and 𝑟𝑚 − 𝛼 . Then the probability that every Step 2 proposal to 𝑚 gives him a loss of

more than 𝐿𝑚𝛼 is at most exp(−𝛼𝛽𝛾𝑛/2).

Proof. Let 𝑚 be a man in 𝑀 [𝑟𝑚, 𝑟𝑚 + 𝛿]. As B3 does not occur, 𝑚 receives at least
1

2
𝛼𝛽𝑛 Step 2

proposals. As shown in Observation 4 of the proof sketch, each proposal gives a loss of more
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than 𝐿𝑚𝛼 with probability at most 𝛾 . Thus, the probability that every one of these proposals give

𝑚 a loss of more than 𝐿𝑚𝛼 is at most

(1 − 𝛾)𝛼𝛽𝑛/2 ⩽ exp(−𝛼𝛽𝛾𝑛/2).

□

Corollary 2. Suppose we run the DA algorithm cutting at𝑚 and 𝑟𝑚 − 𝛼 . Let Bℎ
6
be the event that

at least 2[1 + (𝑛 − 1)𝛿] · exp(−𝛼𝛽𝛾𝑛/2) men in 𝑀 [𝑟𝑚, 𝑟𝑚 + 𝛿] suffer loss greater than 𝐿𝑚𝛼 , where

0 < 𝛿 ⩽ 1 and 𝛼 = 𝜎/(4 · 2
ℎ). If 𝑟𝑤 ⩾ 𝜎 , 𝛽 = 𝛾 = 𝛼𝜌 , and none of B1–B3 occur, then Bℎ

6
occurs with

probability at most 𝑛−(𝑐+2) , where 1

3
log

( (𝑐+2) ln𝑛

ln[𝛿𝑛/(3(𝑐+2) ln𝑛)]
)
⩽ ℎ ⩽ 1

3
log[(𝑐 + 2) ln𝑛].

Proof. Consider a man𝑚 in 𝑀 [𝑟𝑚, 𝑟𝑚 + 𝛿]. By Lemma 2.26 it follows that the probability that𝑚

experiences a loss of more than 𝐿𝑚𝛼 is at most exp(−𝛼𝛽𝛾𝑛/2).

This bound depends only on𝑚’s private scores for the Step 2 proposals made to him. Thus

the outcomes for the different men in𝑀 [𝑟𝑚, 𝑟𝑚 + 𝛿] are independent.

In expectation, at most (1 + (𝑛 − 1)𝛿) · exp(−𝛼𝛽𝛾𝑛/2) men in 𝑀 [𝑟𝑚, 𝑟𝑚 + 𝛿] suffer a loss of

more than 𝐿𝑚𝛼 , and by a Chernoff bound, at most 2(1 + (𝑛 − 1)𝛿) · exp(−𝛼𝛽𝛾𝑛/2) men suffer such

a loss with probability exp(−𝛿𝑛 · exp(−𝛼𝛽𝛾𝑛/2)/3).

Now exp(−𝛼𝛽𝛾𝑛/2) = exp

(
−𝐿3

𝑛𝜌2/[128𝜇3
2

3ℎ]
)
= exp

(
−(𝑐 + 2) ln𝑛/2

3ℎ
)
. Let ℎ = 1

3
log[(𝑐 +

2) ln𝑛] − 1

3
log𝑔. Then exp(−𝛼𝛽𝛾𝑛/2) = exp(−𝑔). In sum, at most 2(1 + (𝑛 − 1)𝛿)/exp(𝑔) men in

𝑀 [𝑟𝑚, 𝑟𝑚 + 𝛿] have a loss of more than 𝐿𝑚𝛼 with probability at least 1 − exp(−𝛿𝑛 · exp(−𝑔)/3). So

the failure probability is at most 𝑛−(𝑐+2)
if 𝑔 ⩽ ln(𝛿𝑛/[3(𝑐 + 2) ln𝑛]). □

Proof. (Of Theorem 2.16) We apply Corollary 2 with 𝛿 = 1. Over all the men and women whose

aligned partners have public score at least 𝜎 , this yields that at most 2𝑛 · exp(−𝛼𝛽𝛾𝑛/2) = 2𝑛 ·

exp

(
−(𝑐 + 2) ln𝑛/2

3ℎ
)
men suffer a loss of more than 𝐿/2

ℎ
, and likewise for the women, with

failure probability at most 2𝑛−(𝑐+1)
log log𝑛, for integer ℎ in the range stated in the lemma.
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Applying the prior analysis, if none of B1–B3 occur, then the outcome is a stable matching

with the bounds on the losses as stated in the previous paragraph. For large enough 𝑛, the failure

probability will be at most 𝑛−𝑐 . □

2.10 Lower Bounds

2.10.1 A Lower Bound in the Linear Model

The following theorem shows that the upper bound we obtained is the best possible up to a

constant factor. The intuition is as follows: the expected number of acceptable edges per agent is

Θ(ln𝑛), excluding the agents with public ratings of less than 𝐿. So long as the constant is small

enough, the variance in the number of these edges over all the agents will be sufficient to ensure

a good probability that at least one agent will have no incident acceptable edge.

For the lower bound we set 𝜆 = 1

2
. We begin by identifying and bounding the probability of

some bad events, denoted by B4 and B5. We then perform an analysis for the case that B4 and

B5 do not occur.

To do this, we need some additional notation. In the following lemmas, we let (𝑚,𝑤) and

(𝑚′,𝑤 ′) be two pairs of men and women with equal public ranks, and suppose their public ratings

are 𝑟𝑚, 𝑟𝑤 , 𝑟𝑚′, 𝑟𝑤 ′ , respectively. We let 𝑥 = 𝑟𝑚 − 𝑟𝑚′ and 𝑦 = 𝑟𝑤 − 𝑟𝑤 ′ . Note that sign(𝑥) = sign(𝑦).

Event B4. Let E4 be the following event: If |𝑥 | ⩽ 4𝐿, then the number of men with public ratings

in the range [𝑟𝑚, 𝑟𝑚′] lies in the range (2 + 𝑥 · (𝑛 − 2) − 𝐿(𝑛 − 2), 2 + 𝑥 · (𝑛 − 2) + 𝐿(𝑛 − 2)), and

similarly for the women. B4 is the (bad) event that E4 does not occur.

Lemma 2.27. B4 occurs with probability at most 2𝑛2 · 𝑛−𝐿(𝑛−2)/12 ln𝑛 .

Proof. Not counting 𝑚 and 𝑚′
, the expected number of men with public ratings in the range

[𝑟𝑚, 𝑟𝑚′] is |𝑥 | (𝑛− 2). By a Chernoff bound, this number lies outside the range ( |𝑥 | (𝑛− 2) −𝐿(𝑛−
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2), |𝑥 | (𝑛 − 2) + 𝐿(𝑛 − 2)) with probability at most 𝑒−𝐿
2 (𝑛−2)/2|𝑥 | + 𝑒−𝐿2 (𝑛−2)/3|𝑥 | ⩽ 2𝑒−𝐿(𝑛−2)/12

, as

|𝑥 | ⩽ 4𝐿 by assumption.

The same bound applies to the women. Now we apply a union bound to all
1

2
𝑛(𝑛 − 1) pairs

(𝑚,𝑤) and (𝑚′,𝑤 ′) to obtain the result. □

Event B5. This is the event that for some pairs (𝑚,𝑤) and (𝑚′,𝑤 ′), either (i) |𝑦 | =
��𝑟𝑤 ′ − 𝑟𝑤

�� > 4𝐿

and the number of women in the range [𝑟𝑤 , 𝑟𝑤 ′] is at most 2+3𝐿(𝑛−2), or (ii) |𝑥 | =
��𝑟𝑚′−𝑟𝑚

�� > 4𝐿

and the number of men in the range [𝑟𝑚, 𝑟𝑚′] is at most 2 + 3𝐿(𝑛 − 2).

Lemma 2.28. B5 occurs with probability at most 𝑛2 · 𝑛−𝐿(𝑛−2)/8 ln𝑛 .

Proof. We obtain a bound in case (i). Excluding𝑤 and𝑤 ′
, the expected number of women in the

range [𝑟𝑤 , 𝑟𝑤 ′] is at least |𝑦 | (𝑛 − 2). By a Chernoff bound it is at most 𝑦 (𝑛 − 2) − (|𝑦 | − 3𝐿) ·

(𝑛 − 2) with probability at most exp

(
−(|𝑦 | − 3𝐿)2(𝑛 − 2)/2|𝑦 |

)
⩽ exp

(
−(|𝑦 |/4)2(𝑛 − 2)/2|𝑦 |

)
⩽

exp(−𝐿(𝑛 − 2)/8).

The same bound holds in case (ii). Now we apply a union bound to all
1

2
𝑛(𝑛 − 1) pairs (𝑚,𝑤)

and (𝑚′,𝑤 ′) to obtain the result. □

Theorem 2.29. If 𝑛 ⩾ 32, 000 and 𝐿 = 1

8
(ln𝑛/𝑛)1/3 then with probability at least 1

4
𝑛−1/8 there is

no perfect matching, let alone stable matching, in which every edge is (𝐿, 3

2
𝐿)-acceptable.

Proof. Suppose that B4 and B5 do not occur. Then, we will show that the expected number of

women with no acceptable incident edge is greater than or equal to
1

2
𝑛7/8

. As there are 𝑛 women,

it immediately follows that with probability at least
1

2
𝑛−1/8

there is no matching in which every

edge is acceptable. The result now follows if the probability of B4 ∪B5 is at most
1

4
𝑛−1/8

, i.e. that

2𝑛2 · 𝑛−𝐿(𝑛−2)/12 ln𝑛 + 𝑛2 · 𝑛−𝐿(𝑛−2)/8 ln𝑛 ⩽ 1

4
𝑛−1/8

; 𝑛 ⩾ 32, 000 suffices.

Lemma 2.34 below shows that in expectation there are at least 𝑛7/8
women (and men) such

that every possible proposal to one of these women would cause at least one of the two parties a

loss greater than 𝐿. Recall that every edge to a womanwith a public rating less than
3

2
𝐿 is woman-

acceptable. Let 𝑤 ′
be the topmost such woman (i.e. the one with the highest public rating). Let
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𝑤 be the woman with the lowest public rating equal to or greater than 𝑟𝑤 ′ + 2𝐿, and let𝑚 be𝑤 ’s

aligned partner. Then the edge (𝑚,𝑤 ′) gives𝑚 a loss greater than 𝐿, and thus every edge (𝑚,𝑤 ′′)

that is man-acceptable to𝑚 will be acceptable to𝑤 ′′
only if it gives𝑤 ′′

a loss of at most 𝐿. So for

men with public rating at least 𝑟𝑚 , an edge is acceptable only if it gives both partners a loss of at

most 𝐿. We show that there are at most 5𝐿𝑛 such men if B4 does not occur. For if this event does

not occur, then the number of women in the range [𝑟𝑤𝑛
, 𝑟𝑤 ], and hence the number of men in the

range [𝑟𝑚𝑛
, 𝑟𝑚], is at most 2 + 9

2
𝐿(𝑛 − 2) ⩽ 5𝐿𝑛, if 2 ⩽ 1

16
(𝑛 − 2) ln

1/3 𝑛/𝑛1/3
; 𝑛 ⩾ 256 suffices. The

same bound applies to the women.

Thus, there are at least 𝑛7/8 − 5𝐿𝑛 women who do not have acceptable matches. So long as

1

2
𝑛7/8 ⩾ 5𝐿𝑛 = 5

16
𝑛2/3

ln
1/3 𝑛, this implies that the number of women with no acceptable match is

at least
1

2
𝑛7/8

. This condition holds when 𝑛 ⩾ 1. □

Lemma 2.30. Suppose thatB4 andB5 do not occur. Further suppose that either |𝑥 | ⩽ 2𝐿 or |𝑦 | ⩽ 2𝐿.

Then,
��𝑥 − 𝑦 | < 2𝐿.

Proof. We consider the case that 𝑥 ⩽ 2𝐿. The proof for the other case is symmetric.

Let ℎ be the the number of men in the range [𝑟𝑚, 𝑟𝑚′]; ℎ is also the number of women in the

range [𝑟𝑤 , 𝑟𝑤 ′]. By Lemma 2.27, ℎ ∈ 2+
(
|𝑥 | (𝑛−2) −𝐿(𝑛−2), |𝑥 | (𝑛−2) +𝐿(𝑛−2)

)
and if |𝑦 | ⩽ 4𝐿,

ℎ ∈ 2 +
(
|𝑦 | (𝑛 − 2) − 𝐿(𝑛 − 2), |𝑦 | (𝑛 − 2) + 𝐿(𝑛 − 2)

)
. Consequently |𝑥 − 𝑦 | < 2𝐿 if |𝑦 | ⩽ 4𝐿.

If |𝑦 | > 4𝐿, as B5 does not occur, the number of women in the range [𝑟𝑤 , 𝑟𝑤 ′] is more than

2+3𝐿(𝑛−2). But as B4 does not occur, the number of men is at most 2+3𝐿(𝑛−2). These numbers

are supposed to be equal, and therefore |𝑦 | > 4𝐿 cannot happen. □

Lemma 2.31. Suppose thatB4 andB5 do not occur. Further suppose that𝑦 = 𝑟𝑤−𝑟𝑤 ′ ⩾ 0. Then, the

probability that edge (𝑚,𝑤 ′) causes a loss of at most 𝐿 to both𝑚 and𝑤 ′ is at most (2𝐿−𝑦) · (4𝐿+𝑦) ⩽

8𝐿2. A symmetric bound applies if 𝑥 = 𝑟𝑚′ − 𝑟𝑚 ⩾ 0.

Proof. We show the proof for the first bound. The argument for the second bound is identical.

𝑚 has a loss of at least 𝑦 on edge (𝑚,𝑤 ′). Therefore, for (𝑚,𝑤 ′) to be acceptable to𝑚, we need
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𝑦 ⩽ 2𝐿. The probability that (𝑚,𝑤 ′) is acceptable is (2𝐿 − 𝑦) · (2𝐿 + 𝑥), and by Lemma 2.30, this

is at most (2𝐿 − 𝑦) · (2𝐿 + 𝑦 + 2𝐿). □

Lemma 2.32. Consider an edge (𝑚,𝑤 ′). If 𝑥 < −2𝐿 or 𝑦 > 2𝐿 then (𝑚,𝑤 ′) is not acceptable.

Proof. If 𝑦 > 2𝐿 then 𝑚 has a loss of more than 2𝐿, and if 𝑥 < −2𝐿 then 𝑤 ′
has a loss of more

than 2𝐿. □

Definition 13. Let (𝑚,𝑤 ′) be an edge. If 𝑥 ⩾ −2𝐿 and 𝑦 ⩽ 2𝐿 we say (𝑚,𝑤 ′) passes the public

rating test, and otherwise it fails the test.

Lemma 2.33. Suppose that B4 and B5 do not occur. Then apart from at most 3 + 6𝐿(𝑛 − 2) edges

(𝑚,𝑤 ′) all other edges incident on𝑚 fail the public rating test.

Proof. Let 𝑤 ′
be the lowest rated woman in𝑊 [𝑟𝑤 − 2𝐿, 𝑟𝑤 ]. By Lemma 2.27, there are at most

2 + 3𝐿(𝑛 − 2) women in𝑊 [𝑟𝑤 ′, 𝑟𝑤 ] ⊆𝑊 [𝑟𝑤 − 2𝐿, 𝑟𝑤 ]. By Lemma 2.32, for any woman𝑤 ′′
with a

lower rating than𝑤 ′
, (𝑚,𝑤 ′′) will fail the public rating test (as for𝑤 ′′

, 𝑦 > 2𝐿).

Now let𝑚′
be the highest rated man in 𝑀 [𝑟𝑚, 𝑟𝑚 + 2𝐿]. By Lemma 2.27, for any woman 𝑤 ′′

with a higher rating than 𝑤 ′
, (𝑚,𝑤 ′′) will fail the public rating test (as for 𝑤 ′′

, 𝑥 < −2𝐿). By

Lemma 2.27, there are at most 2 + 3𝐿(𝑛 − 2) men in 𝑀 [𝑟𝑚, 𝑟𝑚 + 2𝐿], and therefore there are at

most 2 + 3𝐿(𝑛 − 2) women in𝑊 [𝑟𝑤 , 𝑟𝑤 ′].

𝑤 belongs to both these sets of women. So there are at most 3 + 6𝐿(𝑛 − 2) women who pass

the public rating test. □

Lemma 2.34. Suppose that B4 and B5 do not occur and 𝑛 ⩾ 100. If 𝐿 ⩽ 1

8
(ln𝑛/𝑛)1/3, and there are

equal numbers of men and women, then the expected number of unmatched men (and women) is at

least 𝑛7/8.

Proof. Consider an arbitrary man𝑚. By Lemma 2.31, each edge which passes the public rating

test is acceptable with probability at most 8𝐿2
. By Lemma 2.33, there are at most 3 + 6𝐿(𝑛 − 2)
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such edges incident on𝑚. Therefore the probability that all 𝑛 edges incident on𝑚 cause one or

both parties a loss of more than 𝐿 is at least

(
1 − 8𝐿2

)
3+6𝐿(𝑛−2)

= 𝑒 (3+(6𝐿(𝑛−2)) ln(1−8𝐿2) ⩾ 𝑛−1/8,

as we argue next.

For this to hold, it suffices that

− 8 · 3 + 6𝐿(𝑛 − 2)
ln𝑛

(
− 8𝐿2 − 1

2

(8𝐿2)2 − 1

3

(8𝐿2)3 − . . .
)
⩽ 1

or that 8 · 7𝐿𝑛

ln𝑛
· 8𝐿2

1 − 8𝐿2
⩽ 1 (if 3 ⩽ 𝐿𝑛)

or that 56 · 𝑛2/3

8 ln
2/3 𝑛

· ln
2/3 𝑛

8𝑛2/3 − ln
2/3 𝑛

⩽ 1

or that

7

8

· 1

1 − ln
2/3 𝑛/8𝑛2/3

⩽ 1

which holds if ln
2/3 𝑛/8𝑛2/3 ⩽ 1/8, which holds for 𝑛 ⩾ 1. Our other condition, 3 ⩽ 𝐿𝑛, or

3 ⩽ 1

8
𝑛2/3

ln
1/3 𝑛, holds if 𝑛 ⩾ 100.

Thus the expected number of women having all incident edges causing a loss of more than 𝐿

to both parties is at least 𝑛7/8
. □

2.10.2 Lower Bound on Performance for the General Utility Model

Now we show that without the bounds on the derivatives, no sub-constant loss is achievable in

general.

Definition 14 (Sub-constant function). A function 𝑓 (𝑥) : R → R+ is sub-constant if for every

choice of constant 𝑐 > 0, there exists an 𝑥 such that for all 𝑥 ⩾ 𝑥 , 𝑓 (𝑥) ⩽ 𝑐 .

We first examine what happens if the derivatives w.r.t. private scores are not bounded, but the

derivatives w.r.t. public ratings are bounded; this implies there is no lower bound on the ratio of

62



the derivatives of the utility functions w.r.t. public ratings and private scores (recall Definition 5).

Lemma 2.35. Let 𝑓 : 𝑁 → R+ be a continuous, strictly decreasing sub-constant function, and let

𝜎, 𝛿 ∈ (0, 1) be constants. Suppose the public ratings and private scores of the𝑛men and𝑛 women are

drawn uniformly and independently from [0, 1]. Then there exist continuous and strictly increasing

utility functions 𝑈 (., .) and 𝑉 (., .) having derivatives w.r.t. their first variables that are bounded by

a constant, but for (at least) one of which the derivatives w.r.t. their second variables are not bounded

by any constant, having the following property: for some 𝑛 > 0, for all 𝑛 ⩾ 𝑛, with probability at

least 1 − 𝛿 , in every perfect matching, some rank 𝑖 man𝑚𝑖 or woman 𝑤𝑖 with public rating at least

𝜎 receives utility less than𝑈 (𝑟𝑤𝑖
, 1) − 𝑓 (𝑛) or 𝑉 (𝑟𝑚𝑖

, 1) − 𝑓 (𝑛), respectively.

Proof. We will give an example where, with probability at least 1 − 𝛿 , in every perfect matching,

man𝑚1 receives utility less than𝑈 (𝑟𝑤1
, 1) − 𝑓 (𝑛).

Observe that proving the result for a more slowly decreasing 𝑓 implies it for faster decreasing

functions. In what follows, at times we will need to assume 𝑓 decreases sufficiently slowly, but

given the just made observation, we can do so WLOG.

Now we define𝑈 (𝑟, 𝑠) = 𝑟 +𝑔(𝑠) where 𝑔(𝑠) is a continuous, strictly increasing function, and

for which

𝑔

(
1 − 𝛿

8𝑛 · 𝑓 (𝑛)

)
= 𝑔(1) − 𝑓 (𝑛).

The reason for this condition will become clear in due course. We will first demonstrate that

there is such a 𝑔. To this end, define

𝑘 (𝑦) = 8𝑦 · 𝑓 (𝑦)
𝛿

for 𝑦 ⩾ 0

𝑔(𝑠) = 𝑔(1) − 𝑓 (𝑘−1(1/(1 − 𝑠))), if 𝑠 < 1

𝑔(1) = 𝑓 (𝑘−1((1))) (so 𝑔(0) = 0).
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We will want 𝑘 to be strictly increasing and unbounded. This is true if 𝑓 is sufficiently slowly

decreasing. Next, note that as 𝑓 is continuous, so is 𝑘 . Therefore 𝑘−1
is continuous and strictly

increasing, and therefore so is 𝑔, except possibly at 𝑠 = 1. For 𝑔 to be continuous at 𝑠 = 1 we

need lim𝑠→1 𝑓 (𝑘−1(1/(1 − 𝑠))) = 0, which happens as lim𝑥→∞ 𝑓 (𝑥) = 0, which happens since 𝑓

is sub-constant.

Setting 𝑠 = 1 − 𝛿
8𝑛·𝑓 (𝑛) gives

𝑔(𝑠) = 𝑔(1) − 𝑓
(
𝑘−1

(
8𝑛 · 𝑓 (𝑛)

𝛿

))
= 𝑔(1) − 𝑓 (𝑛), (2.4)

as desired.

Strictly speaking, we should rescale the utility so that its range is [0, 1] rather than the actual[
0, 1 + 𝑔(1)] ⊂

[
0, 1 + 𝑓 (0)

]
. Note that although 1 + 𝑔(1) is a function of 𝛿 , it is always bounded

by 1 + 𝑓 (0), a constant, and so the rescaling does not affect the result stated in the lemma. We

omit performing the rescaling to avoid unnecessary clutter.

For𝑚1 to face a loss of at most 𝑓 (𝑛), he must match with a woman having public rating at

least 𝑟𝑤1
− 𝑓 (𝑛).

The probability that no woman has a public rating in the range [1 − ln(4/𝛿)/𝑛, 1] is at most

(
1 − ln(4/𝛿)

𝑛

)𝑛
⩽ exp(− ln(4/𝛿)) = 1

4
𝛿.

Otherwise, 𝑟𝑤1
⩾ 1 − ln(4/𝛿)/𝑛. If 𝑓 is sufficiently slowly decreasing, for large enough 𝑛,

ln(4/𝛿)/𝑛 ⩽ 𝑓 (𝑛). Therefore, for such large enough𝑛, with probability at least 1− 1

4
𝛿 , 𝑟𝑤1

− 𝑓 (𝑛) ⩾

1 − 2𝑓 (𝑛). Call the probability 1

4
𝛿 event B1.

The same analysis shows that, with failure probability at most
1

4
𝛿 , 𝑟𝑚1

⩾ 1 − 𝑓 (𝑛), and as 𝑓 is

a sub-constant function, for large enough 𝑛, 𝑟𝑚1
⩾ 1− 𝑓 (𝑛) ⩾ 𝜎 . Call the probability 1

4
𝛿 event B2.

The expected number of women other than𝑤1 in𝑊 [𝑟𝑤1
− 𝑓 (𝑛), 𝑟𝑤1

] is (𝑛 − 1) · 𝑓 (𝑛). Let 𝑛𝑤
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be the actual number of women other than𝑤1 in this range. By a Chernoff bound,

Pr

[
𝑛𝑤 ⩾ (𝑛 − 1) · 𝑓 (𝑛) +

√︁
3(𝑛 − 1) · 𝑓 (𝑛) · ln(4/𝛿)

]
⩽ 𝑒− ln(4/𝛿) = 1

4
𝛿.

If 𝑓 is decreasing sufficiently slowly, then for sufficiently large 𝑛, 1+
√︁

3(𝑛 − 1) · 𝑓 (𝑛) · ln(4/𝛿) ⩽

𝑛 · 𝑓 (𝑛); therefore, in addition, 1+𝑛𝑤 ⩽ 2𝑛 · 𝑓 (𝑛) with probability at least 1− 1

4
𝛿 . Note that 1+𝑛𝑤

is the number of women in𝑊 [𝑟𝑤1
− 𝑓 (𝑛), 1]. Call the probability 1

4
𝛿 event B2.

Next, consider an edge (𝑚1,𝑤) for which𝑚1’s private score is 𝑠 . For this edge to cause more

than 𝑓 (𝑛) loss to𝑚, it suffices that 𝑔(𝑠) < 𝑔(1) − 𝑓 (𝑛) = 𝑔(1−𝛿/[8𝑛 · 𝑓 (𝑛)]) by (2.4). This occurs

with probability 𝛿/[8𝑛 · 𝑓 (𝑛)].

We now lower bound the probability that every match with a woman in𝑊 [𝑟𝑤1
− 𝑓 (𝑛), 1]

causes𝑚 a loss of more than 𝑓 (𝑛) if none of the events B1–B3 occur. This probability is at least:

(
1 − 𝛿

8𝑛 · 𝑓 (𝑛)

)
2𝑛·𝑓 (𝑛)

⩾ 1 − 1

4
𝛿.

Thus, by a union bound, modulo an overall failure probability of at most 𝛿 ,𝑚1 has a loss of

more than 𝑓 (𝑛) on every incident edge, and hence in every perfect matching some agent (𝑚1

actually) incurs a loss of more than 𝑓 (𝑛). □

We now consider the case where the derivatives w.r.t. the first variable are bounded, but there

is no bound on the derivatives w.r.t. the second variable.

Lemma 2.36. Let 𝑓 : 𝑁 → R+ be a continuous, strictly decreasing sub-constant function, and let

𝜎, 𝛿 ∈ (0, 1) be constants. Suppose the public ratings and private scores of the𝑛men and𝑛 women are

drawn uniformly and independently from [0, 1]. Then there exist continuous and strictly increasing

utility functions 𝑈 (., .) and 𝑉 (., .) having derivatives w.r.t. their second variables that are bounded

by a constant, but for (at least) one of which the derivative w.r.t. their first variable is not bounded by

any constant, having the following property: for some 𝑛 > 0, for all 𝑛 ⩾ 𝑛, with probability at least
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1 − 𝛿 , in every perfect matching, some man𝑚𝑖 or woman 𝑤𝑖 with public rating at least 𝜎 receives

utility less than𝑈 (𝑟𝑤𝑖
, 1) − 𝑓 (𝑛) or 𝑉 (𝑟𝑚𝑖

, 1) − 𝑓 (𝑛), respectively.

Proof. Wewill give an example where, in every stable matching, man𝑚1 receives utility less than

𝑈 (𝑟𝑤1
, 1) − 𝑓 (𝑛). The analysis has the same thrust as the one for the preceding lemma.

Let 𝑈 (𝑟, 𝑠) = 𝑔(𝑟 ) + 𝑠 , where 𝑔 is defined below is a very similar way to the 𝑔 in the proof of

Lemma 2.35.

�̃� (𝑦) = 8𝑦 · 𝑓 (𝑦)
𝛿

𝑔(𝑟 ) = 𝑔(1) − 3 · 𝑓 (�̃�−1(1/(1 − 𝑟 ))), if 𝑟 < 1

𝑔(1) = 3 · 𝑓 (�̃�−1((1))) (so 𝑔(0) = 0).

Now, setting 𝑟 = 1 − 𝛿
8𝑛·𝑓 (𝑛) ≜ 1 − 𝜈 , gives 𝑔(𝑟 ) = 𝑔(1) − 3 · 𝑓 (𝑛). Again, strictly speaking, we

should rescale the utility so that its range is [0, 1].

Next, we will show that 𝑔(1−𝜈/3) −𝑔(𝑟 ) ⩾ 𝑓 (𝑛). As 𝑔(𝑟 ) = 𝑔(1) − 3 · 𝑓 (𝑛), it suffices to show

that 𝑔(1 − 𝜈/3) ⩾ 𝑔(1) − 2 · 𝑓 (𝑛), which we do as follows:

𝑔(1 − 𝜈/3) = 𝑔(1) − 3 · 𝑓
(
�̃�−1

(
3

𝜈

))
= 𝑔(1) − 3 · 𝑓

(
�̃�−1

(
3 · 8𝑛 · 𝑓 (𝑛)

𝛿

))
= 𝑔(1) − 3 · 𝑓

(
�̃�−1

(
3

2

· 𝑓 (𝑛)
𝑓 (2𝑛) ·

8 · 2𝑛 · 𝑓 (2𝑛)
𝛿

))
If 𝑓 is sufficiently slowly decreasing, for all 𝑛, 3

2
· 𝑓 (𝑛)
𝑓 (2𝑛) ⩾ 1, and as �̃�−1

is increasing and 𝑓 is

decreasing, the RHS of the above expression is at least

𝑔(1) − 3 · 𝑓
(
�̃�−1

(
8 · 2𝑛 · 𝑓 (2𝑛)

𝛿

))
= 𝑔(1) − 3 · 𝑓 (2𝑛) ⩾ 𝑔(1) − 2 · 𝑓 (𝑛),

as 3 · 𝑓 (2𝑛) ⩾ 2 · 𝑓 (𝑛), if 𝑓 decreases sufficiently slowly.
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The probability that no woman has a public rating in the range [1 − ln(4/𝛿)/𝑛, 1] is at most

1

4
𝛿 . As 𝑓 is a sub-constant function, for large enough 𝑛, ln(4/𝛿)/𝑛 ⩽ 1

3
· 𝛿/[8𝑛 · 𝑓 (𝑛)] = 1

3
𝜈 .

Therefore, for large enough 𝑛, with probability at least 1 − 1

4
𝛿 ,

𝑔(𝑟𝑤1
) − 𝑔(1 − 𝜈) ⩾ 𝑔(1 − 𝜈/3) − 𝑔(1 − 𝜈) ⩾ 𝑓 (𝑛).

Thus, with probability at least 1 − 1

4
𝛿 , all women with public rating less than (1 − 𝜈) will cause

𝑚1 a loss of more than 𝑓 (𝑛). Call the probability 1

4
𝛿 event B1.

Let 𝑛𝑤 be the actual number of women, aside𝑤1, with public rating at least (1 − 𝜈). E
[
𝑛𝑤

]
⩽

(𝑛 − 1)𝜈 . By a Chernoff bound,

Pr

[
𝑛𝑤 ⩾ (𝑛 − 1)𝜈 +

√︁
3(𝑛 − 1)𝜈 · ln(4/𝛿)

]
⩽ exp(− ln(4/𝛿)) = 1

4
𝛿.

However slowly 𝑓 is decreasing, for large enough 𝑛, 1+
√︁

3(𝑛 − 1)𝜈 · ln(4/𝛿) ⩽ 𝑛𝜈 , which implies

1 + 𝑛𝑤 ⩽ 2𝑛𝜈 . Call the probability 1

4
𝛿 event B2.

The same analysis as in the proof of Lemma 2.35 shows that, with failure probability at most

1

4
𝛿 , 𝑟𝑚1

⩾ 1 − 𝑓 (𝑛), and as 𝑓 is a sub-constant function, for large enough 𝑛, 𝑟𝑚1
⩾ 1 − 𝑓 (𝑛) ⩾ 𝜎 .

Call the probability
1

4
𝛿 event B3.

Next, note that an edge (𝑚1,𝑤) causes𝑚1 a loss of more than 𝑓 (𝑛) based on the private score

alone with probability 1 − 𝑓 (𝑛).

Thus, if none of the eventsB1–B3 occur, the probability that every edge incident on𝑚1 causes

it a loss of more than 𝑓 (𝑛) is at least

(
1 − 𝑓 (𝑛)

)
2𝑛𝜈

=
(
1 − 𝑓 (𝑛)

)𝛿/[4·𝑓 (𝑛)]
⩾ 1 − 𝛿/4,

if 𝛿 ⩽ 1.

Therefore, by a union bound, modulo an overall failure probability of at most 𝛿 ,𝑚1 has a loss

67



of more than 𝑓 (𝑛) on every incident edge, and hence in every perfect matching some agent (𝑚1

actually) incurs a loss of more than 𝑓 (𝑛). □

2.11 Epsilon-Bayes-Nash Eqilibria

In this section, we demonstrate that there is a 𝜀-Nash equilibrium in which with high probabil-

ity all agents have low losses. To obtain this result, we need the stronger bounded-derivatives

condition, namely we need both lower and upper bounds for the two derivative expressions (see

Definition 8). We will assume that both𝑈 and 𝑉 satisfy the strong bounded derivative property.

Our analysis here will repeatedly use weak stochastic dominance to justify the application of

Chernoff bounds. To avoid repetition, we summarize the technique here.

We begin by proving a useful technical lemma.

Lemma 2.37. Suppose X = {𝑋1, 𝑋2, . . . , 𝑋𝑚} is a collection of not-necessarily independent bi-

nary random variables. Suppose that Pr[𝑋𝑖 = 1|X \ {𝑋𝑖}] ⩽ 𝑝𝑖 . Let 𝑌𝑖 be a binary variable with

Pr[𝑌𝑖 = 1] = 𝑝𝑖 , with the 𝑌𝑖 being independent. For all 𝑧, Pr[∑𝑖 𝑋𝑖 ⩾ 𝑧] ⩽ Pr[∑𝑖 𝑌𝑖 ⩾ 𝑧].

Proof. We will define a collection of random variables Z = {𝑍1, 𝑍2, . . . , 𝑍𝑚} such that 𝑍𝑖 has the

exact same distribution as 𝑌𝑖 and whenever

∑
𝑖 𝑋𝑖 ⩾ 𝑧, then

∑
𝑖 𝑍𝑖 ⩾ 𝑧.

Draw the 𝑋𝑖 sequentially. Suppose 𝑋1 = 𝑥1, 𝑋2 = 𝑥2, . . . 𝑋𝑖−1 = 𝑥𝑖−1.

Let Pr[𝑋𝑖 = 1|𝑋1 = 𝑥1, 𝑋2 = 𝑥2, . . . , 𝑋𝑖−1 = 𝑥𝑖−1] = 𝑞𝑖 ≤ 𝑝𝑖 . We define 𝑍𝑖 as follows:

• If 𝑋𝑖 = 1, set 𝑍𝑖 = 1.

• If 𝑋𝑖 = 0, set 𝑍𝑖 = 1 with probability
𝑝𝑖−𝑞𝑖
1−𝑞𝑖 and set 𝑍𝑖 = 0 with probability

1−(𝑝𝑖−𝑞𝑖 )
1−𝑞𝑖 .

Notice that Pr[∑𝑖 𝑋𝑖 ⩾ 𝑧] ⩽ Pr[∑𝑖 𝑍𝑖 ⩾ 𝑧] = Pr[∑𝑖 𝑌𝑖 ⩾ 𝑧], which completes the proof.

□
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By Lemma 2.37, for all 𝑧, Pr[∑𝑖 𝑋𝑖 ⩾ 𝑧] ⩽ Pr[∑𝑖 𝑌𝑖 ⩾ 𝑧]. Thus, if by means of a Chernoff

bound, we show that Pr[∑𝑖 𝑌𝑖 ⩾ 𝑧] ⩽ 𝑞, then Pr[∑𝑖 𝑋𝑖 ⩾ 𝑧] ⩽ 𝑞 also. Henceforth, we will justify

this application of a Chernoff bound to X by saying it uses stochastic dominance.

Our analysis will build on the bound shown in Theorem 2.20. It will be helpful to review the

randomness that was used. The probability that events B1 and B2 do not occur is based on the

public ratings of the men and women. The bound on the probability that event B3 occurs for

a particular man 𝑚𝑖 is based on the private scores of the edges to 𝑚𝑖 , namely the private score

of the woman 𝑤 𝑗 for the man𝑚𝑖 , for each such edge (𝑚𝑖,𝑤 𝑗 ). Note that B3 is the bad event in

Claim 2.4.4. The bound on the final error term is based on the private scores of𝑚𝑖 for their edges

to the women 𝑤 𝑗 , as given in Claim 2.4.5. We will let B7 denote the bad event in Claim 2.4.5,

namely that all the proposals to 𝑚𝑖 cause him too large a loss. Symmetric bounds apply to the

women.

In the analysis that follows, we will identify additional bad events concerning there being too

few or too many agents in a range of public ratings; these will depend on the range. We will

also bound the probability of losses for bottommost women and men using the private scores of

proposals to these agents; these private scores will be disjoint from the ones used in the bounds

mentioned in the previous paragraph.

In the remainder of this section, 𝑚 and 𝑤 are always aligned, as are𝑚′
and 𝑤 ′

, 𝑚′′
and 𝑤 ′′

,

etc.

In addition, in order to improve some of the bounds, we will restate losses in terms of public

ratings and private scores. A quick inspection of the proof of Theorem 2.15 shows that the high

probability bound on the loss for a man 𝑚, whose aligned woman 𝑤 has public rating 𝑟𝑤 ⩾

𝜎 , is at most 𝑈 (𝑟𝑤 , 1) − (𝑟𝑤 − 𝜎, 1) (recall that 𝛼 = 1

4
𝜎). Also note that is suffices to set 𝜎 =

[128(𝑐 + 2) ln𝑛/(𝜌2

𝑙
𝑛)]1/3

. Similarly, if 𝑟𝑤 ⩾ 𝜎/𝑡 , where 𝑡 > 1, the bound on the loss is at most

𝐿𝑚𝑡 ≜ 𝑈 (𝑟𝑤 , 1) −𝑈 (𝑟𝑤 − 𝜎𝑡2, 1) (see the proof of Theorem 2.17). Analogously, for a woman 𝑤 , if

𝑟𝑚 ⩾ 𝜎/𝑡 , where 𝑡 > 1, the bound on the loss is at most 𝐿𝑤𝑡 ≜ 𝑉 (𝑟𝑚, 1) −𝑉 (𝑟𝑚 − 𝜎𝑡2, 1).
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As already noted, these bounds use the private scores of proposals to men and women with

public ratings of at least 𝜎/𝑡 .

Shortly, we will specify maximum values 𝑡𝑚 and 𝑡𝑤 of 𝑡 for the men and women, respectively.

We will demonstrate the existence of a stable match in which w.h.p. every man 𝑚 has a loss

of at most 𝐿𝑚𝑡𝑚 , and every woman 𝑤 has a loss of at most 𝐿𝑤𝑡𝑤 . For this to be meaningful when

𝑟𝑤 − 𝜎𝑡2

𝑚 < 0, we extend the definition of 𝑈 to this domain as follows. For 𝑟 < 0,
𝜕𝑈 (𝑟,𝑠)
𝜕𝑟

= 𝜇ℓ and

𝜕𝑈 (𝑟,𝑠)
𝜕𝑠

= 𝜌ℓ . We proceed analogously to handle the case that 𝑟𝑚 − 𝜎𝑡2

𝑤 < 0.

We define 𝑡𝑚 and 𝑡𝑤 using suitable constants 𝜂 > 1 and 0 < 𝜈 < 1, which we will specify

later. We set 𝜎𝑚 = 𝜈/𝑛1/3
and 𝜎𝑤 = 𝜂/𝑛1/3

. We then define 𝑡𝑚 = 𝜎/𝜎𝑚 and 𝑡𝑤 = 𝜎/𝜎𝑤 . Note that

𝜎𝑤/𝜎𝑚 = 𝜂/𝜈 .

The maximum loss will occur only to some of the agents with low public ratings. We identify

the potentially high-loss agents as follows.

Definition 15. Let 𝑤 ′ be the bottommost woman with a public rating of at least 𝜎𝑚 and let𝑚′ be

aligned with 𝑤 ′. Then the bottom zone of men comprises the set 𝐵𝑀 ≜ 𝑀 [0, 𝑟𝑚′), and the top zone

𝑇𝑀 comprises 𝑀 [𝑟𝑚′, 1]. Similarly, let𝑚′′ be the bottommost man with a rating of at least 𝜎𝑤 and

let𝑤 ′′ be aligned with𝑚′′. Then the bottom zone of women comprises the set 𝐵𝑊 ≜𝑊 [0, 𝑟𝑤 ′′), and

the top zone 𝑇𝑊 comprises𝑊 [𝑟𝑤 ′′, 1].

Note that by Theorem 2.17, in any stable match, every man 𝑚 ∈ 𝑇𝑀 has loss at most 𝐿𝑚𝑡𝑚 .

Likewise, every woman𝑤 ∈ 𝑇𝑊 has loss at most 𝐿𝑤𝑡𝑤 .

We also want to distinguish those edges which yield men a utility of at least 𝑈 (0, 1) and

women a utility of at least 𝑉 (0, 1).

Definition 16. An edge (𝑚𝑖,𝑤 𝑗 ) is man-high if 𝑈 (𝑟𝑤 𝑗
, 𝑠𝑚𝑖

(𝑤 𝑗 )) ⩾ 𝑈 (0, 1), and otherwise it is

man-low; it is woman-high if 𝑉 (𝑟𝑚𝑖
, 𝑠𝑤 𝑗

(𝑚𝑖)) ⩾ 𝑉 (0, 1), and otherwise it is woman-low.

We begin by identifying two bad events B8 and B9 and bounding the probabilities they occur.
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Event B8. Let E8 be the event that the number of men in 𝐵𝑀 lies in the range ( 1

2
𝜎𝑚 · 𝑛, 2𝜎𝑚 · 𝑛),

and each of these men has public rating less than 3𝜎𝑚 , together with the corresponding event for

women. Let B8 be the complementary event.

Lemma 2.38. B8 occurs with probability at most exp(−𝜎𝑚 · 𝑛/3) + exp(−𝜎𝑚 · 𝑛/6)

+ exp(−𝜎𝑚 · 𝑛/8) + exp(−𝜎𝑤 · 𝑛/3) + exp(−𝜎𝑤 · 𝑛/6) + exp(−𝜎𝑤 · 𝑛/8) ⩽ 6 exp(−𝜎𝑚 · 𝑛/8). This

bound is based on the independent random choices of public ratings for the men and women.

Proof. In expectation, there are 𝜎𝑚 · 𝑛 women with public rating less than 𝜎𝑚 . These choices are

based on the women’s independent public scores. Hence, by a Chernoff bound, the probability

that there are at least 2𝜎𝑚 · 𝑛 women with public rating less than 𝜎𝑚 is at most exp(−𝜎𝑚 · 𝑛/3),

and the probability that there are at most
1

2
𝜎𝑚 ·𝑛 women with public rating less that 𝜎𝑚 is at most

exp(−𝜎𝑚 · 𝑛/8). But these are the women aligned with the men in 𝐵𝑀 . Hence these bounds also

apply to the number of men in 𝐵𝑀 .

Now we bound the probability that there are at most 2𝜎𝑚 · 𝑛 men in the public rating range

[0, 3𝜎𝑚). The expected number of men in this range is 3𝜎𝑚 ·𝑛. This is based on their independent

public ratings. Then, by a Chernoff bound, there are at most 2𝜎𝑚 · 𝑛 men in this range with

probability at most exp(−𝜎𝑚 · 𝑛/6).

Analogous bounds apply to the women. □

Event B9. This is the event that 𝑟𝑚′ < 4𝜎𝑚 .

Lemma 2.39. If B8 does not occur, then B9 occurs with probability at most exp(−𝜎𝑚 · 𝑛). This

bound is based on the independent random choices of public ratings for the men.

Proof. As B8 does not occur, by Lemma 2.38,

𝐵𝑀 ⊂ 𝑀 [0, 3𝜎𝑚). Therefore, if 𝑟𝑚′ ⩾ 4𝜎𝑚 , 𝑀 [3𝜎𝑚, 4𝜎𝑚) is empty. But the probability that

𝑀 [3𝜎𝑚, 4𝜎𝑚) is empty is at most (1−𝜎𝑚)𝑛 ⩽ exp(−𝜎𝑚 · 𝑛), and it follows that this is the probability

that 𝑟𝑚′ ⩾ 4𝜎𝑚 . □
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The desired stable match will be found by running the woman-proposing DA when each

man𝑚, whose aligned woman 𝑤 has public rating less than 𝜎𝑚 , applies a truncation strategy of

refusing proposals that provide a loss greater than 𝐿𝑚𝑡𝑚 . No truncation is applied by men with

higher public ratings, but we already know their losses are bounded by 𝐿𝑚𝑡𝑚 . The women apply a

symmetric truncation, meaning that a woman𝑤 will only propose edges that provide a loss of at

most 𝐿𝑤𝑡𝑤 .

Our analysis considers the result of running woman-proposing DA on the truncated edge set.

We begin by observing that every man in 𝑇𝑀 is matched, and similarly every woman in 𝑇𝑊 is

matched. We then argue that every woman in 𝐵𝑊 will be matched, from which we deduce that

every man in 𝐵𝑀 must also be matched.

As we showed in Theorem 2.17, with failure probability 𝑂 (𝑛−(𝑐+1)), in every stable match,

every man 𝑚 in 𝑇𝑀 will have a loss of at most 𝐿𝑚𝑡𝑚 . Furthermore, this match is achieved with

the edge set cut as in Lemma 2.13. As the men in 𝑇𝑀 do not truncate any edges, all the edges

required for Lemma 2.13 remain present despite the men’s truncations. Also, all the edges used

by this lemma are women-high, and the women do not truncate such edges. Thus the result of

Lemma 2.13 continues to apply as does Theorem 2.17.

A symmetric argument shows that with failure probability𝑂 (𝑛−(𝑐+1)), in every stable match,

every woman𝑤 in 𝑇𝑊 will have a loss of at most 𝐿𝑤𝑡𝑤 .

To analyse what happens to the women in 𝐵𝑊 we proceed as follows.

We observe that w.h.p.:

i. The men in 𝐵𝑀 receive at most
1

4
|𝐵𝑀 | proposals which are both man-high and woman-high.

ii. The men in 𝐵𝑀 receive at most
1

4
|𝐵𝑀 | proposals which are both man-high and woman-low.

iii. We conclude that at most half the men in 𝐵𝑀 will receive a man-high proposal.

iv. The proposals from 𝐵𝑊 to 𝐵𝑀 that are both man-low and woman-low behave in the same way

as in the uniform random model, up to a constant factor. This will mean that it suffices that the

women in 𝐵𝑊 have Θ(ln2 𝑛) man-low and women-low edges to the men in 𝐵𝑀 (which they do),
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and ensures that each man in 𝐵𝑀 receives at least one proposal.

Our analysis will also be concernedwith the following subsets𝑊ℎ of women, for integerℎ ⩾ 0;

𝑊ℎ comprises the women aligned with the men in𝑀 [2ℎ𝜎𝑤 , 2ℎ+1𝜎𝑤 ).

Event B10. Bℎ
10
is the event that |𝑊ℎ | ⩾ 2

ℎ+1𝜂 · 𝑛2/3
. And B10 = ∪ℎ⩾0Bℎ

10
.

Lemma 2.40. Bℎ
10
occurs with probability at most exp

(
−2

ℎ𝜂 · 𝑛2/3/3

)
. And B10 occurs with prob-

ability at most 2 exp

(
−𝜂 · 𝑛2/3/3

)
, if 𝑛2/3 ⩾ 3. These bounds are based on the independent random

choices of public ratings for the men.

Proof. The expected number of men in 𝑀 [2ℎ𝜂/𝑛1/3, 2ℎ+1𝜂/𝑛1/3) is 2
ℎ𝜂𝑛2/3

, and these choices are

based on the men’s public ratings. Thus, by a Chernoff bound, there are at least 2
ℎ+1𝜂𝑛2/3

men

in this range with probability at most exp

(
−2

ℎ𝜂𝑛2/3/3

)
. This is also the bound on the number of

women aligned with these men.

The second claim follows on summing the probability bound over ℎ, using the assumption

that 𝑛2/3 ⩾ 3. □

Lemma 2.41. Suppose that none of B1–B10 occur. Then there are at most 1

4
|𝐵𝑀 | matches between

women in𝑇𝑊 and men in 𝐵𝑀 , with failure probability at most exp(−|𝐵𝑀 |/24), if 𝜂 ⩾ 6𝜈 and 4(𝜂/𝜈) ·

exp

(
−(𝜂/2)3𝜌2

ℓ /128

)
⩽ 1

10
.

Proof. We will consider the sets𝑊ℎ of women aligned with 𝑀 [2ℎ𝜂/𝑛1/3, 2ℎ+1𝜂/𝑛1/3), for ℎ ⩾ 0.

The union of the sets forms 𝑇𝑊 .

If a woman𝑤 𝑗 in𝑊ℎ is matched to a man𝑚𝑖 in 𝐵𝑀 the difference in public scores between𝑚 𝑗

and𝑚𝑖 is at least

𝑟𝑚 𝑗
− 𝑟𝑚𝑖

⩾ (2ℎ𝜂 − 3𝜈)/𝑛1/3 ⩾ 2
ℎ−1𝜂/𝑛1/3 ≜ 𝑔ℎ,

as 𝜂 ⩾ 6𝜈 and B8 does not occur (and hence 𝑟𝑚𝑖
⩽ 3𝜎𝑚).
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We will apply Lemma 2.26, swapping the roles of the men and women, with 𝛼 = 1

4
𝑔ℎ , 𝛽 = 𝛾 =

𝛼𝜌ℓ , to bound the probability 𝑝ℎ that𝑤 𝑗 sustains a loss of more than𝑉 (𝑟𝑚 𝑗
, 1) −𝑉 (𝑟𝑚 𝑗

−𝑔ℎ, 1). To

match with any man𝑚𝑖 in 𝐵𝑀 , 𝑤 𝑗 must sustain such a loss. Therefore, with probability at least

1 − 𝑝ℎ ,𝑤 𝑗 does not match with a man in 𝐵𝑀 .

As none of B1–B10 occur, By Lemma 2.26, the probability that in the man-proposing DA with

cuts at𝑤 𝑗 and 𝑟𝑤 𝑗
−𝛼 , gives her a loss of more that 𝐿𝑚

ℎ
is at most exp

(
−2

3(ℎ−1) (𝜂/𝑛1/3)3𝜌2

ℓ𝑛/128

)
,

and this bound depends only on the private scores of the proposals between the woman and the

men in 𝑇𝑀 . But if this does not occur, 𝐿
𝑚
ℎ
is also a bound on 𝑤 𝑗 ’s loss in the woman proposing

DA. As 𝐿𝑚
ℎ
⩽ 𝑔ℎ , this implies𝑚 𝑗 is matched to a man in 𝑇𝑀 .

As B10 does not occur, by Lemma 2.40, |𝑊ℎ | ⩽ 2
ℎ+1𝜂𝑛2/3

. Also, as B8 does not occur, by

Lemma 2.38, |𝐵𝑀 | ⩾ 1

2
𝜎𝑚 · 𝑛 = 1

2
𝜈𝑛2/3

. Finally, recall that 𝜎3

= 128(𝑐 + 2) ln𝑛/(𝜌2

ℓ𝑛). Thus the

expected number of matches between women in 𝑇𝑊 and men in 𝐵𝑀 is at most

(2ℎ+1𝜂𝑛2/3) · exp

(
−2

3(ℎ−1) (𝜂/𝑛1/3)3𝜌2

ℓ𝑛/128

)
⩽ 2

ℎ+2(𝜂/𝜈) · ( 1

2
𝜈𝑛2/3) · exp

(
−2

3ℎ (𝜂/2)3𝜌2

ℓ /128

)
.

As 4(𝜂/𝜈) · exp

(
−(𝜂/2)3𝜌2

ℓ /128

)
⩽ 1

10
, we see that exp

(
−(𝜂/2)3𝜌2

ℓ /128

)
⩽ 𝜈/40𝜂, and therefore

the bound on the number of matches is at most

2
ℎ · ( 1

2
𝜈𝑛2/3)

10

(
40𝜂

𝜈

)
2

3ℎ−1

.

Summing over allℎ ⩾ 0, we obtain that the expected number of matches is at most
1

8
· ( 1

2
𝜈𝑛2/3). By

a Chernoff bound, the number of matches is at most
1

4
· ( 1

2
𝜈𝑛2/3) ⩽ 1

4
|𝐵𝑀 |, with failure probability

at most exp

(
𝜈𝑛2/3/48

)
.

Next, we argue that this use of a Chernoff bound is justified by stochastic dominance. The

expectation is the product of two terms: a bound on |𝑊ℎ |, which follows from the assumption

that B10 does not occur, and a bound on the probability that an arbitrary woman 𝑤 in𝑊ℎ has a
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small loss and therefore cannot be proposing to any man in 𝐵𝑀 . The upper bound on the latter

probability depends only on the men’s and women’s private scores for the proposals from 𝑤 to

the men in 𝑇𝑀 , and so we can safely apply stochastic dominance. □

Lemma 2.42. Suppose that that neither B8 nor B9 occur. Then, the probability that a proposal from

a woman in 𝐵𝑊 to a man in 𝐵𝑀 is man-high is at most 𝜂𝜈2𝜌𝑢𝜌ℓ/[32(𝑐 + 2) ln𝑛], if 𝑡𝑚 ⩾ 2.

Proof. Since B8 does not occur, by Lemma 2.38, every woman in 𝐵𝑊 has rating at most 3𝜎𝑤 . We

now use this to bound the probability that an edge from woman 𝑤 𝑗 ∈ 𝐵𝑊 to man 𝑚𝑖 ∈ 𝐵𝑀 is

man-high. For the edge to be man-high, we need 𝑈 (𝑟𝑤 𝑗
, 𝑠𝑚𝑖

(𝑤 𝑗 )) ⩾ 𝑈 (0, 1). Now, 𝑈 (0, 𝑠𝑚𝑖
(𝑤 𝑗 ) +

𝑟𝑤 𝑗
· 𝜌𝑢) ⩾ 𝑈 (𝑟𝑤 𝑗

, 𝑠𝑚𝑖
(𝑤 𝑗 )), so the edge is man-high with probability at most 𝑟𝑤 𝑗

· 𝜌𝑢 ⩽ 3𝜎𝑤 · 𝜌𝑢 .

Because of the truncation, the edge is low if 𝑈 (𝑟𝑤𝑖
− 𝜎 · 𝑡2

𝑚, 1) ⩽ 𝑈 (𝑟𝑤 𝑗
, 𝑠𝑚𝑖

(𝑤 𝑗 )) < 𝑈 (0, 1).

Because 𝑟𝑤𝑖
⩽ 𝜎𝑚 = 𝜎/𝑡𝑚 , the edge is low if 𝑈 (𝜎/𝑡𝑚 − 𝜎 · 𝑡2

𝑚, 1) ⩽ 𝑈 (𝑟𝑤 𝑗
, 𝑠𝑚𝑖

(𝑤 𝑗 )) < 𝑈 (0, 1).

Consequently the probability that the edge is low is at least 𝜌ℓ (𝜎𝑡2

𝑚 − 𝜎/𝑡𝑚) ⩾ 3

4
𝜌ℓ𝜎𝑡

2

𝑚 , as 𝑡𝑚 ⩾ 2.

Therefore the probability that a proposal is man-high is at most

3𝜎𝑤 · 𝜌𝑢
3

4
𝜎𝑡2

𝑚𝜌ℓ
=

4𝜎𝑤 · 𝜌𝑢
𝜎𝑡2

𝑚𝜌ℓ
.

Recall that 𝜎 = 𝜎𝑚 · 𝑡𝑚 and 𝜎3

= 128(𝑐 + 2) ln𝑛/(𝜌2

𝑙
𝑛). Thus, the probability bound is

4𝜎𝑤 · 𝜌𝑢 · 𝜎2

𝑚

𝜎3𝜌ℓ
=

4𝜂𝜈2𝜌𝑢𝜌ℓ

128(𝑐 + 2) ln𝑛
=

𝜂𝜈2𝜌𝑢𝜌ℓ

32(𝑐 + 2) ln𝑛
.

□

Wewill now analyze the women-low proposals. Note that once a womenmakes one such pro-

posal, all her subsequent proposals will be woman-low. We now state two assumptions regarding

the proposals by women in 𝐵𝑊 . They will be demonstrated later.

Assumption 1. i. The edges proposed by each woman in 𝐵𝑊 have private score at least 1

2
.

ii. Each woman in 𝐵𝑊 proposes to at most half the men in 𝐵𝑀 .
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Lemma 2.43. Let 𝑤 be a woman in 𝐵𝑊 , who is now proposing woman-low edges. For her next

proposal, let 𝑝min be the minimum probability that she selects a particular man in 𝐵𝑀 , and let 𝑝max

be the maximum probability, over the men she has not yet proposed to. Then 𝑝max/𝑝min ⩽ 2𝜇𝑢/𝜇ℓ .

Proof. Suppose𝑤 ’s most recent proposal provided her a utility of 𝑢. Consider the utility interval

(𝑢,𝑢 − 𝛿𝑢]. The probability that she selects a man providing utility in this interval is given by

the private score decrease that reduces the utility 𝑢 to 𝑢 − 𝛿𝑢 divided by the remaining available

private score, which includes the range [0, 1

2
] by assumption. Thus the probability that she selects

a particular man in 𝐵𝑀 varies between 𝛿𝑢 · 𝜇ℓ and 2𝛿𝑢 · 𝜇𝑢 . □

Corollary 3. There are at most 𝑑 ln𝑛 |𝐵𝑀 | woman-low proposals to men in 𝐵𝑀 , where 𝑑 = 2(𝑐 +

2)𝜇𝑢/𝜇ℓ , with failure probability at most 𝑛−(𝑐+1) .

Proof. Suppose𝑚 ∈ 𝐵𝑀 does not receive a woman-high proposal. The probability that𝑚 receives

no proposals among 𝑑 ln𝑛 |𝐵𝑀 | woman-low proposals is at most

(
1 − 𝜇ℓ

2𝜇𝑢 |𝐵𝑀 |

)𝑑 ln𝑛 |𝐵𝑀 |
⩽ exp(−𝑑𝜇ℓ ln𝑛/2𝜇𝑢).

As 𝑑 = 2(𝑐 + 2)𝜇𝑢/𝜇ℓ , the probability is at most 𝑛−(𝑐+2) . A union bound over the men in 𝐵𝑀 yields

the claim. □

Lemma 2.44. The number of man-high proposals from women in 𝐵𝑊 to men in 𝐵𝑀 is at most

𝑑𝜂𝜈2𝜌𝑢𝜌ℓ |𝐵𝑀 |/[16(𝑐 + 2)], with failure probability at most exp

(
−𝑑𝜂𝜈2𝜌𝑢𝜌ℓ |𝐵𝑀 |/[48(𝑐 + 2)]

)
.

Proof. By Lemma 2.42, the probability that a proposal is man-high is at most 𝜂𝜈2𝜌𝑢𝜌ℓ/[32(𝑐 +

2) ln𝑛]. Over 𝑑 ln𝑛 |𝐵𝑀 | proposals, this yields an expected 𝑑𝜂𝜈2𝜌𝑢𝜌ℓ |𝐵𝑀 |/[32(𝑐 + 2)] proposals.

By a Chernoff bound, there are at most 𝑑𝜂𝜈2𝜌𝑢𝜌ℓ |𝐵𝑀 |/[16(𝑐 + 2)] such proposals with failure

probability at most exp

(
−𝑑𝜂𝜈2𝜌𝑢𝜌ℓ |𝐵𝑀 |/[48(𝑐 + 2)]

)
. □

Lemma 2.45. Suppose neither B8 nor B9 occur. Then, over the course of the first 𝑑 ln𝑛 |𝐵𝑀 | woman-

low proposals from women in 𝐵𝑊 to men in 𝐵𝑀 , assuming each woman proposes to at most half
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the men in 𝐵𝑀 , no man in 𝐵𝑀 receives more than 𝑒1 ln𝑛 of these proposals, with failure probability

𝑛 · exp(−4𝑑 ln𝑛(𝜇𝑢/𝜇ℓ)/3), where 𝑒1 = 8𝑑 (𝜇𝑢/𝜇ℓ).

Proof. Let 𝑚 be a man in 𝐵𝑀 . First, we bound the probability that a proposal is to man 𝑚. By

Lemma 2.43, the ratio of probabilities for the proposals to men in 𝐵𝑀 is bounded by 2𝜇𝑢/𝜇ℓ , and

by assumption, as least
1

2
|𝐵𝑀 | have not yet been proposed to. Therefore, the probability that a

proposal is to man𝑚 is at most 2(𝜇𝑢/𝜇ℓ) · (2/|𝐵𝑀 |). Thus the expected number of woman-low

proposals𝑚 receives is at most

2𝜇𝑢

𝜇ℓ
· 2

|𝐵𝑀 |
· 𝑑 ln𝑛 |𝐵𝑀 | ⩽

4𝜇𝑢

𝜇ℓ
· 𝑑 ln𝑛.

The upper bounds on these probabilities are based on thewomen’s private scores for𝑚, and there-

fore we can use stochastic dominance to justify applying a Chernoff bound. Thus, the number of

these proposals is at most 8𝑑 (𝜇𝑢/𝜇ℓ) ln𝑛 with failure probability at most exp(−4𝑑 ln𝑛(𝜇𝑢/𝜇ℓ)/3).

A union bound over the men in 𝐵𝑀 yields the final result. □

Let 𝐵𝑀,ℎ denote the set of men in 𝐵𝑀 who eventually receive a man-high proposal, and 𝐵𝑀,ℓ

denote the set 𝐵𝑀 \ 𝐵𝑀,ℎ .

Lemma 2.46. If a woman 𝑤𝑖 ∈ 𝐵𝑊 is currently matched with a man 𝑚 𝑗 in 𝐵𝑀,ℓ , the probability

that the next woman-low and man-low proposal is to𝑚 𝑗 is at most 4(𝜇𝑢/𝜇ℓ)/|𝐵𝑀 |.

Proof. By Lemma 2.43, the ratio of probabilities for the proposals to men in 𝐵𝑀 is bounded by

2𝜇𝑢/𝜇ℓ , and by assumption, as least
1

2
|𝐵𝑀 | men have not yet been proposed to. Therefore, the

probability that a proposal is to𝑚 𝑗 is at most 2(𝜇𝑢/𝜇ℓ) · (2/|𝐵𝑀 |). □

Lemma 2.47. Suppose that 8𝑑 (𝜇𝑢/𝜇ℓ) ln𝑛 is an integer. Let𝑤 ∈ 𝐵𝑊 . If𝑤 has at least 𝑒2(ln𝑛)2 man-

low and woman-low edges to men in 𝐵𝑀 , then the probability that she is unmatched after 𝑑 ln𝑛 |𝐵𝑀 |

man andwomen-low proposals to𝐵𝑀 is at most exp

(
−8

3
𝑑 · 𝑒1

( 𝜇𝑢
𝜇ℓ

)
2 · (ln𝑛)2

)
, where 𝑒2 = 16𝑑 ·𝑒1

( 𝜇𝑢
𝜇ℓ

)
2.
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Proof. Suppose𝑤 is currently matched to a man in 𝐵𝑀,ℓ . By Lemma 2.46, the probability that she

is bumped (i.e. loses her current match) by the next man and women-low proposal to 𝐵𝑀 is at

most 4(𝜇𝑢/𝜇ℓ)/|𝐵𝑀 |.

Therefore, over the course of 𝑑 ln𝑛 |𝐵𝑀 | such proposals, she is bumped at most an

expected 4𝑑 (𝜇𝑢/𝜇ℓ) ln𝑛 times. Using stochastic dominance, we can apply a Chernoff bound,

which shows she is bumped at most 8𝑑 (𝜇𝑢/𝜇ℓ) ln𝑛 − 1 times with failure probability at most

exp

(
−4

3
𝑑 (𝜇𝑢/𝜇ℓ) ln𝑛

)
.

We now bound the probability that 𝑤 tentatively matches with that man. By Lemma 2.45,

𝑚 receives at most 𝑒1 ln𝑛 proposals (including the current proposal by 𝑤 ). Each proposal has

probability at most 𝜇𝑢Δ and at least 𝜇ℓΔ of being in a Δ range of loss for the man, and therefore

𝑤 ’s proposal produces the least loss among these up to 𝑒1 ln𝑛 proposals with probability at least

𝜇ℓ

(𝑒1 ln𝑛 − 1) · 𝜇𝑢 + 𝜇ℓ
⩾

1

𝑒1 ln𝑛
· 𝜇ℓ
𝜇𝑢
.

Note that the bounds for each man are independent as they depend on the private scores of

that man for the proposals he has received.

Therefore, to end up matched after these 𝑑 ln𝑛 |𝐵𝑀 | proposals, it suffices that 𝑤 make an

expected

8𝑑
𝜇𝑢

𝜇ℓ
ln𝑛 · 𝑒1 ln𝑛 · 𝜇𝑢

𝜇ℓ
= 8𝑑 · 𝑒1

(𝜇𝑢
𝜇ℓ

)
2

· (ln𝑛)2
proposals. (2.5)

Then, by a Chernoff bound, she makes at most 16𝑑 · 𝑒1

( 𝜇𝑢
𝜇ℓ

)
2 · (ln𝑛)2

proposals with failure

probability at most exp

(
−8

3
𝑑 · 𝑒1

( 𝜇𝑢
𝜇ℓ

)
2 · (ln𝑛)2

)
. □

Lemma 2.48. Each woman in 𝐵𝑊 has at least 𝑒2(ln𝑛)2 man and woman-low edges to 𝐵𝑀 with

failure probability at most exp

(
−𝑒2 ln

2 𝑛/3

)
, if 𝜈 ⩽ 1

8𝜂2

(
𝜇ℓ
𝜌ℓ

)
2
(
𝜇𝑢
𝜇ℓ

)
5

, 𝑡𝑚 ⩾ 2, and 𝑡𝑤 ⩾ 2.

Proof. As in the proof of Lemma 2.42, the probability that an edge from a woman 𝑤 𝑗 ∈ 𝐵𝑊 to
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a man 𝑚𝑖 ∈ 𝐵𝑀 is man-low is at least
3

4
𝜎𝑡2

𝑤𝜌ℓ and this depends on the man’s private score for

this edge; similarly the probability that it is woman low is at least
3

4
𝜎𝑡2

𝑚𝜌ℓ and depends on the

woman’s private score for the edge. As B8 does not occur, by Lemma 2.38, |𝐵𝑀 | ⩾ 1

2
𝜎𝑚 · 𝑛. Thus,

the expected number of man and woman-low edges from𝑤 𝑗 to 𝐵𝑀 is at least

3

4

𝜎𝑡2

𝑤𝜌ℓ ·
3

4

𝜎𝑡2

𝑚𝜌ℓ · 1

2
𝜎𝑚 · 𝑛 ⩾ 1

4

· 𝜎
6 · 𝑛
𝜎2

𝑤𝜎𝑚
(𝜌ℓ)2

⩾ 32 · 128(𝑐 + 2)2

( 𝜇ℓ
𝜌ℓ

)
2 (ln𝑛)2

𝜂2𝜈

⩾ 2𝑒2(ln𝑛)2, if

2𝑒2 = 16𝑑𝑒1

(𝜇𝑢
𝜇ℓ

)
2

= 8 · 16

[
2(𝑐 + 2)

(𝜇𝑢
𝜇ℓ

)]
2

·
(𝜇𝑢
𝜇ℓ

)
3

⩽ 32 · 128(𝑐 + 2)2

( 𝜇ℓ
𝜌ℓ

)
2 1

𝜂2𝜈

i.e., if 8

( 𝜇ℓ
𝜌ℓ

)
2

⩾
( 𝜇ℓ
𝜇𝑢

)
5

𝜂2𝜈.

Applying stochastic dominance, by a Chernoff bound, the number of edges is at least 𝑒2 ln
2 𝑛

with probability at most exp

(
−𝑒2 ln

2 𝑛/3

)
. □

Lemma 2.49. All the women in 𝑇𝑊 are matched with failure probability at most 𝑂 (𝑛−(𝑐+1)).

Proof. Let 𝑤 𝑗 be a woman in 𝑇𝑊 . If 𝑟𝑚 𝑗
⩾ 𝜎 , then the truncation does not remove any of the

acceptable edges to𝑤 𝑗 and so the previous analysis shows𝑤 𝑗 is matched with failure probability

𝑂 (𝑛−(𝑐+2)).

So now suppose that 𝑟𝑚 𝑗
< 𝜎 . Consider a run of man-proposing DA with the edge set cut at

𝑤 𝑗 and
1

4
𝑟𝑤 𝑗

. Now, the acceptable edges are all woman-high. Furthermore, the acceptable edges

cause a man 𝑚𝑖 a loss of at most 𝑈 (𝑟𝑤𝑖
, 1) − 𝑈 (𝑟𝑤𝑖

− 𝜎𝑡2

𝑤 , 1), and these are edges that are not

truncated by𝑚𝑖 . The proof of Theorem 2.17 shows that such a woman𝑚 𝑗 is matched using these

edges with failure probability 𝑂 (𝑛−(𝑐+2)). □
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Lemma 2.50. If B8 does not occur, then, for large enough 𝑛, Assumption 1 holds with failure prob-

ability exp(−|𝐵𝑀 |/8).

Proof. Assumption (i) holds if 𝜎𝑡2

𝑤𝜌𝑢 ⩽
1

2
, i.e. if 𝜎3/𝜎2

𝑤𝜌𝑢 ⩽
1

2
, i.e. if 128(𝑐 + 2) ln𝑛/(𝜌2

ℓ𝑛) ·𝑛2/3/𝜂2 ·

𝜌𝑢 ⩽
1

2
; this holds if (𝑛1/3/ln𝑛) ⩾ 256(𝑐 + 2)𝜌𝑢/[(𝜌2

ℓ𝜂
2], which is true for large enough 𝑛.

Assumption (ii) holds if each woman in 𝐵𝑊 has at most
1

2
|𝐵𝑀 | untruncated edges to men in

𝐵𝑀 . The probability that an edge (𝑚𝑖,𝑤 𝑗 ) is not truncated by𝑚𝑖 is at most (𝑟𝑤 𝑗
+𝜎𝑡2

𝑚)𝜌𝑢 ⩽ 2𝜎𝑡2

𝑚𝜌𝑢 ,

and the probability that it is not truncated by 𝑤 𝑗 is at most (𝑟𝑚𝑖
+ 𝜎𝑡2

𝑤 )𝜌𝑢 ⩽ 2𝜎𝑡2

𝑤𝜌𝑢 . Thus the

expected number of untruncated edges from a woman𝑤 ∈ 𝐵𝑊 to the men in 𝐵𝑀 is at most

2𝜎𝑡2

𝑤𝜌𝑢 · 2𝜎𝑡2

𝑚𝜌𝑢 · |𝐵𝑀 | ⩽ 4

𝜎6

𝜎2

𝑤𝜎
2

𝑚

𝜌2

𝑢 |𝐵𝑀 | ⩽
(256(𝑐 + 2) ln𝑛𝜌𝑢)2

𝜌4

ℓ
𝜂2𝜈2𝑛2/3

|𝐵𝑀 | ⩽ 1

4
|𝐵𝑀 |,

if 𝑛 is large enough.

Note that the bounds on the probabilities are due to the men’s and women’s independent

private scores for these edges. Thus, using stochastic dominance, by means of a Chernoff bound,

we obtain that the number of these edges is at most
1

2
|𝐵𝑀 | with failure probability exp(−|𝐵𝑀 |/8).

□

Lemma 2.51. The run of woman-proposing DA with the truncated edge sets matches every woman

(and man) with failure probability 𝑛−𝑐 if 𝑛 is large enough, if 𝜈 = 64

𝜂2
·
(

1

𝜌ℓ

)
2 ·

(
𝜇ℓ
𝜇𝑢

)
4

and 𝜂 satisfies

4𝜂3𝜌4

ℓ (𝜇𝑢/𝜇ℓ)4 · exp

(
−𝜂3𝜌2

ℓ /128

)
⩽ 1

10
.

Proof. As any unmatched woman in 𝐵𝑊 will keep proposing until she runs out of proposals, we

deduce from Lemmas 2.47 and 2.48 that all the women in 𝐵𝑊 are matched, modulo the lemma’s

failure probability. By Lemma 2.49, all the women in𝑇𝑊 are matched, modulo the lemma’s failure

probability. Thus all the women are matched.

This entails the following constraints, from Lemmas 2.40, 2.41, 2.42, Corollary 3, Lemmas 2.45,
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2.47, 2.48, 2.41, respectively.

𝑛2/3 ⩾ 3

𝜂 ⩾ 6𝜈

𝑡𝑚 ⩾ 2

𝑑 = 2(𝑐 + 2)𝜇𝑢/𝜇ℓ

𝑒1 = 16𝑑 (𝜇𝑢/𝜇ℓ) = 8(𝑐 + 2) (𝜇𝑢/𝜇ℓ)2

𝑒2 = 8𝑑 · 𝑒1(𝜇𝑢/𝜇ℓ)2 = 8(𝑐 + 2)2(𝜇𝑢/𝜇ℓ)4

𝑡𝑤 ⩾ 2

𝜈 ⩽
1

8𝜂2
·
( 𝜇ℓ
𝜌ℓ

)
2

·
(𝜇𝑢
𝜇ℓ

)
5

1

10
⩾ 4(𝜂/𝜈) · exp

(
−(𝜂/2)3𝜌2

ℓ /128

)

We set 𝜈 = 1

8𝜂2
·
(
𝜇ℓ
𝜌ℓ

)
2

·
(
𝜇𝑢
𝜇ℓ

)
5

. The final constraint becomes

𝜂3(𝜌ℓ/𝜇ℓ)2(𝜇ℓ/𝜇𝑢)5 · exp

(
−(𝜂/2)3𝜌2

ℓ /128

)
⩽ 8

10
.

In addition, we need to satisfy 𝜂 ⩾ 6𝜈 . Clearly, 𝜂 = 𝑂 (1) suffices.

Finally, to ensure 𝑡𝑤 ⩾ 2 it suffices to have

(
128(𝑐 + 2) ln𝑛

𝜌2

ℓ

)
1/3

⩾ 2𝜂,

and clearly this holds if 𝑛 is large enough. As 𝑡𝑚 > 𝑡𝑤 , this also ensures that 𝑡𝑤 ⩾ 2.

We also assume that 8𝑑 (𝜇𝑢/𝜇ℓ) ln𝑛 = 8(𝑐 + 2) (𝜇𝑢/𝜇ℓ)2
ln𝑛 is an integer (in Lemma 2.47). This

can be achieved by increasing 𝜇𝑢 slightly.
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The overall failure probability obtained by summing the terms in Lemmas 2.48, 2.47, 2.45,

2.44, 2.41, 2.40, 2.39, 2.38, 2.49, 2.50, and Corollary 3, plus ruling out B1–B3, is at most

exp

(
−𝑒2(ln𝑛)2/3

)
+ exp

(
−8

3
𝑑 · 𝑒1(𝜇𝑢/𝜇ℓ)2 · (ln𝑛)2

)
+ 𝑛 · exp(−4𝑑 ln𝑛(𝜇𝑢/𝜇ℓ)/3)

+ exp

(
−𝑑𝜂𝜈2𝜌𝑢𝜌ℓ |𝐵𝑀 |/[48(𝑐 + 2)]

)
+ exp(−|𝐵𝑀 |/24) + 2 exp

(
− 𝜂 · 𝑛2/3/3

)
+ exp(−𝜎𝑚 · 𝑛) + 6 exp(−𝜎𝑚 · 𝑛/8) + exp(−|𝐵𝑀 |/8) +𝑂 (𝑛−(𝑐+1)).

This totals 𝑂 (𝑛−(𝑐+1)), which is bounded by 𝑛−𝑐 for large enough 𝑛. □

Proof. (of Theorem 2.18) Lemma 2.51 shows that, with probability at least 1 − 𝑛−𝑐 , there exists

a stable matching, in which every man and woman obtains a match with a loss of less than

𝐿𝑚𝑡𝑚 and 𝐿𝑤𝑡𝑤 , respectively; it results from the men with public rating 𝜎𝑡 implementing reservation

strategies with reservation thresholds 𝐿𝑚𝑡 , for 𝑡 < 𝑡𝑚 , and the remainingmen using the reservation

threshold 𝐿𝑚𝑡𝑚 . The edges meeting this constraint are the acceptable edges for this run of DA.

By Theorem 2.15, w.h.p, no man 𝑚 gets utility greater than 𝑈 (𝑟𝑚, 1) + Θ( [ln𝑛/𝑛]1/3), and an

analogous bound applies to the women. Thus, the most a man could gain by deviating from the

equilibrium strategy, in terms of his expected utility, is

𝑛−𝑐 · 2 + (1 − 𝑛−𝑐) · (Θ( [ln𝑛/𝑛]1/3) + 𝐿𝑚𝑡𝑚 ).

Since 𝐿𝑚𝑡𝑚 = Θ(ln𝑛/𝑛1/3), this is an 𝜀-Bayes-Nash equilibrium with 𝜀 = Θ(ln𝑛/𝑛1/3).

Further notice that, for each agent, the number of acceptable edges is at most Θ(ln2 𝑛); fur-

thermore, this bound improves to at mostΘ(ln𝑛) for all agents outside the bottomΘ( [ln𝑛/𝑛]1/3)

fraction of agents. □
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2.12 Numerical Simulations

We present several simulation results which are complementary to our theoretical results.

Throughout this section, we focus on the linear separable model.

2.12.1 NRMP Data

We used NRMP data to motivate some of our choices of parameters for our simulations. The

NRMP provides extensive summary data [nrmp.org 2021]. We begin by discussing this data.

Over time, the number of positions and applicants has been growing. We mention some

numbers for 2021. There were over 38,000 positions available and a little over 42,000 applicants.

The main match using the DA algorithm (modified to allow for couples, who comprise a little

over 5% of the applicants) filled about 95% of the available positions. The NRMP also ran an

aftermarket, called SOAP, after which about 0.5% of the positions remained unfilled.

The positions cover many different specialities. These specialities vary hugely in the number

of positions available, with the top 11, all of size at least 1,000, accounting for 75% of the posi-

tions. In addition, about 75% of the doctors apply to only one speciality. We think that as a first

approximation, w.r.t. the model we are using, it is reasonable to view each speciality as a separate

market. Accordingly, we have focused our simulations on markets with 1,000–2,000 positions

(though the largest speciality in the NRMP data had over 9,000 positions).

On average, doctors listed 12.5 programs in their preference lists, hospital programs listed

88 doctors, and the average program size was 6.5 (all numbers are approximate). While there

is no detailed breakdown of the first two numbers, it is clear they vary considerably over the

individual doctors and hospitals. For our many-to-one simulations we chose to use a fixed size for

the hospital programs. Our simulations cause the other two numbers to vary over the individual

doctors and programs because the public ratings and private scores are chosen by a random

process.
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2.12.2 Numbers of Available Edges

The first question we want to answer is how long do the preference lists need to be in order to

have a high probability of including all acceptable edges, for all but the bottommost agents?

We chose bottommost to mean the bottom 20% of the agents, based on where the needed

length of the preference lists started to increase in our experiments for 𝑛 = 1,000–2,000.

We ran experiments with 𝜆 = 0.5, 0.67, 0.8, corresponding to the public rating having respec-

tively equal, twice, and four times the weight of the private scores in their contribution to the

utility. We report the results for 𝜆 = 0.8. The edge sets were larger for smaller values of 𝜆, but

the results were qualitatively the same. We generated 100 random markets and determined the

smallest value of 𝐿 that ensured all agents were matched in all 100 markets. 𝐿 = 0.12 sufficed.

In Figure 2.2, we show results by decile of women’s rank (top 10%, second 10%, etc.), specifically

the average length of the preference list and the average number of edges proposed by a woman

in woman-proposing DA, over these 100 randomly generated markets. We also show the max

and min values over the 100 runs; these can be quite far from the average value. Note that the

min values in Figure 2.2(a) are close to the max values in Figure 2.2(b), which suggests that be-

ing on the proposing side does not significantly reduce the value of 𝐿 that the women could use

compared to the value the men use. We also show data for a typical single run in Figure 2.3.

We repeated the simulation for the many-to-one setting. In Figure 2.4, we show the results

for 2000 workers and 250 companies, each with 8 positions. Now, on average, a typical worker

(i.e. among the top 80%) has an average preference list length of 55 and makes 7 proposals.

The one-to-one results show that for non-bottommost agents, the preference lists have

length 150 on the average, while women make 30 proposals on the average (these numbers are

slightly approximate). What is going on? We believe that the most common matches provide a

small loss or gain (Θ(𝑛−1/3) in our theoretical bounds) as opposed to the maximum loss possible

(Θ(𝑛−1/3
ln

1/3 𝑛) in our theoretical bounds), as is indicated by our distribution bound on the losses
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(a) Number of edges in the acceptable edge set,
per woman, by decile; average in blue with circles,
minimum in red with stars. (𝑛 = 2,000, 𝜆 = 0.8,
𝐿 = 0.12.)

(b) Number of edges in the acceptable edge set
proposed during the run of DA, per women, by
decile; average in blue with circles, maximum in
red with stars.

Figure 2.2: One-to-one case (𝑛 = 2000): summary statistics.

(a)Number of edges in the acceptable edge set for
each woman.

(b) Number of edges in the acceptable edge set
proposed by each woman.

Figure 2.3: One-to-one case (𝑛 = 2000): a typical run.

(see item 4 in Section 2.8.1). The question then is where do these edges occur in the preference list,

and the answer is about one fifth of the way through (for one first has the edges providing a gain,

which only go to higher up agents on the opposite side, and then one has the edges providing

a loss, and these go both up and down). However, a few of the women will need to go through

most of their list, as indicated by the fact that the max and min lines (for example in Figure 2.4)

roughly coincide.

This effect can also be seen in the many-to-one experiment but it is even more stark on the

worker’s side. The reason is that the number of companies with whom a worker𝑤 might match

which are above 𝑤 , based on their public ratings alone, is Θ(𝐿𝑐𝑛𝑐), while the number below 𝑤
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(a) Many to One Setting: Number of edges in the
acceptable edge set per worker, by decile; average
in blue with circles, minimum in red with stars.
(𝑛𝑤 = 2,000, 𝑑 = 8, 𝜆 = 0.8, 𝐿𝑐 = 0.14, 𝐿𝑤 = 0.24.)

(b) Number of edges in the acceptable edge set
proposed during the run of DA, per worker, by
decile; average in blue with circles, maximum in
red with stars.

Figure 2.4: Many to One Setting (𝑛 = 2000).

is Θ(𝐿𝑤𝑛𝑐), a noticeably larger number. (See Section 2.9.1 for a proof of these bounds.) The net

effect is that there are few edges that provide 𝑤 a gain, and so the low-loss edges, which are the

typical matches, are reached even sooner in this setting.

Now we turn to why the number of edges in the available edge set per woman changes at

the ends of the range. There are two factors at work. The first factor is due to an increasing loss

bound as we move toward the bottommost women, which increases the sizes of their available

edge sets. The second factor is due to public ratings. For a woman 𝑤 the range of men’s public

ratings for its acceptable edges is [𝑟𝑚 − Θ(𝐿), 𝑟𝑚 + Θ(𝐿)], where𝑚 is aligned with 𝑤 . But at the

ends a portion of this range will be cut off, reducing the number of acceptable edges, with the

effect more pronounced for low public ratings. Because 𝜆 = 0.8, initially, as we move to lower

ranked women, the gain due to increasing the loss bound dominates the loss due to a reduced

public rating range, but eventually this reverses. Both effects can be clearly seen in Figure 2.3(a),

for example.

2.12.3 Uniqe Stable Partners

Another interesting aspect of our simulations is that they showed that most agents have a unique

stable partner. This is similar to the situation in the popularity model when there are short
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preference lists, but here this result appears to hold with full length preference lists. In Figure 2.5,

we show the outcome on a typical run and averaged over 100 runs, for𝑛 = 2,000 in the one-to-one

setting. We report the results for the men, but as the setting is symmetric they will be similar for

the women. On the average, among the top 90% of agents by rank, 0.5% (10 of 1,800) had more

than one stable partner, and among the remainder another 2% had multiple stable partners (40 of

200).

Also, as suggested by the single run illustrated in Figure 2.5(a), the pair around public rank

1,600 and the triple between 1,200 and 1,400 havemultiple stable partners which they can swap (or

exchange via a small cycle of swaps) to switch between different stable matchings. This pattern

is typical for the very few men with multiple stable partners outside the bottommost region.

(a) Public ranks of men with multiple stable part-
ners in a typical run.

(b) Average numbers of men with multiple stable
partners, by decile.

Figure 2.5: Unique stable partners, one-to-one setting (𝑛 = 2000).

2.12.4 Constant Number of Proposals

Our many-to-one experiments suggest that the length of the preference lists needed by our model

are larger than those observed in the NRMP data. In addition, even though there is a simple rule

for identifying these edges, in practice the communication that would be needed to identify these

edges may well be excessive. In light of this it is interesting to investigate what can be done when

the agents have shorter preference lists.

We simulated a strategywhere theworkers’ preference lists contain only a constant number of
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edges. We construct an Interview Edge Set which contains the edges (𝑤, 𝑐) satisfying the following

conditions:

1. Let 𝑟𝑤 and 𝑟𝑐 be the public ratings of𝑤 and 𝑐 respectively. Then |𝑟𝑤 − 𝑟𝑐 | ⩽ 𝑝 .

2. The private score𝑤 has for 𝑐 as well as the private score of 𝑐 for𝑤 are both greater than 𝑞.

We choose the parameters 𝑝 and 𝑞 so as to have 15 edges per agent on average. Many combina-

tions of 𝑝 and 𝑞 would work. We chose a pair that caused relatively few mismatches. We then

ran worker proposing DA on the Interview Edge Set.

One way of identifying these edges is with the following communication protocol: the work-

ers signal the companies which meet their criteria (the workers’ criteria); the companies then

reply to those workers who meet their criteria. In practice this would be a lot of communication

on the workers’s side, and therefore it may be that an unbalanced protocol where the workers

use a larger 𝑞𝑤 as their private score cutoff and the companies a correspondingly smaller 𝑞𝑐 is

more plausible. Clearly this will affect the losses each side incurs when there is a match, but we

think it will have no effect on the non-match probability, and as non-matches are the main source

of losses, we believe our simulation is indicative. We ran the above experiment with 𝑝 = 0.19

and 𝑞 = 0.60, with the company capacity being 8. Figure 2.6(a) shows the locations of unmatched

workers in a typical run of this experiment while 2.6(b) shows the average numbers of unmatched

workers per quantile (of public ratings) over 100 runs. We observe that the number of unmatched

workers is very low (about 1.5% of the workers) and most of these are at the bottom of the public

rating range.

Figure 2.6(c) compares the utility obtained by the workers in the match obtained by running

worker-proposing DA on the Interview Edge Set to the utility they obtain in the worker-optimal

stablematch. We observe that only a small number of workers have a significantly worse outcome

when restricted to the Interview Edge Set.
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(a) Public ranks of unmatched
workers in a typical run.

(b) Average numbers of
unmatched workers by public
rating decile.

(c) Distribution of
workers’ utilities with
worker-proposing DA:
(full edge set result)
−(Interview edge set result)

Figure 2.6: Constant number of proposals (𝑛 = 2000).

2.13 Additional Numerical Simulations

Here we provide another set of the experiments, but for 𝑛 = 1,000 instead of 2,000. The relative

weight of public ratings and private scores is unchanged (𝜆 = 0.8).

2.13.1 Numbers of Available Edges

2.13.1.1 One-to-one

𝑛 = 1,000, 𝜆 = 0.8, 𝐿 = 0.15, 100 runs.

(a)Number of edges in the acceptable edge set for
each woman.

(b) Number of edges in the acceptable edge set
proposed by each woman.

Figure 2.7: One-to-one case: Outcome in a typical run (𝑛 = 1000).
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(a) Number of edges in the acceptable edge set,
per woman, by decile; average in blue with circles,
minimum in red with stars.

(b) Number of edges in the acceptable edge set
proposed during the run of DA, per women, by
decile; average in blue with circles, maximum in
red with stars.

Figure 2.8: One-to-one case (𝑛 = 1000): summary statistics.

2.13.1.2 Many-to-one

𝑛 = 1,000, 𝜆 = 0.8, 𝑑 = 4, 𝐿𝑐 = 0.16, 𝐿𝑤 = 0.25, 100 runs.

We chose to present the results for 𝑑 = 4 rather than 8 (as used in the 𝑛 = 2,000 experiments)

because the needed value for 𝐿𝑤 with 𝑑 = 8 leads to very large acceptable edge sets, which we do

not consider an interesting case.

(a) Number of edges in the acceptable edge set,
per woman, by decile; minimum in red with stars,
average in blue with circles. (𝑛𝑤 = 1,000, 𝑑 = 4,
𝜆 = 0.8, 𝐿𝑐 = 0.15, 𝐿𝑤 = 0.25.)

(b) Number of edges in the acceptable edge set
proposed during the run of DA, per woman, by
decile; maximum in redwith stars, average in blue
with circles.

Figure 2.9: Many to One Setting (𝑛 = 1000)
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2.13.2 Uniqe Stable Partners

100 runs; 38 men have multiple stable partners in the typical run shown.

(a) Public rank of men with multiple stable part-
ners in a typical run.

(b) Average numbers of men with multiple stable
partners, by decile.

Figure 2.10: Unique stable partners, one-to-one setting (𝑛 = 1000).

2.13.3 Constant Number of Proposals

𝑟 = 0.19, 𝑞 = 0.60, company capacity = 4, 100 runs.

(a) Public ranks of unmatched
workers in a typical run.

(b) Average number of
unmatched workers, by decile.

(c) Distribution of
workers’ utilities with
worker-proposing DA:
(full edge set result)
−(Interview edge set result)

Figure 2.11: Constant number of proposals (𝑛 = 1000).
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2.14 Discussion and Open Problems

Our work shows that in the bounded derivatives model, apart from a sub-constant fraction of the

agents, each of the other agents has𝑂 (ln𝑛) easily identified edges on their preference list which

cover all their stable matches w.h.p.

As described in Section 2.12, our experiments for the one-to-one setting yield a need for what

appear to be impractically large preference lists. While the results in the many-to-one setting

are more promising, even here the preference lists appear to be on the large side. Also, while

our rule for identifying the edges to include is simple, in practice it may well require too much

communication to identify these edges. At the same time, our outcome is better than what is

achieved in practice: we obtain a complete match with high probability, whereas in the NRMP

setting a small but significant percentage of positions are left unfilled. Our conclusion is that it

remains important to understand how to effectively select smaller sets of edges.

In the popularity model, it is reasonable for each agent to simply select their favorite partners.

But in the current setting, which we consider to be more realistic, it would be an ineffective

strategy, as it would result in most agents remaining unmatched. Consequently, we believe the

main open issue is to characterize what happenswhen the number of edges𝑘 that an agent can list

is smaller than the size of the allowable edge set. We conjecture that following a simple protocol

for selecting edges to list, such as the one we use in our experiments (see Section 2.12.4), will

lead to an 𝜀-Bayes-Nash equilibrium, where 𝜀 is a decreasing function of 𝑘 . Strictly speaking, as

the identification of allowable edges requires communication, we need to consider the possibility

of strategic communication, and so one would need to define a notion of 𝜀-equilibrium akin to a

Subgame Perfect equilibrium. We conjecture that evenwith this, it would still be an 𝜀-equilibrium.

Finally, it would be interesting to resolve whether the experimentally observed near unique-

ness of the stable matching for non-bottom agents is a property of the linear separable model.

We conjecture that in fact it also holds in the bounded derivatives model.
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3 | Selecting a Match: Exploration vs

Decision

3.1 Introduction

What strategies make sense when deciding whether to commit to a long-term relationship? We

are interested in pairings between members of two sets of agents, such as an employer offering

a job and a worker accepting, a woman (or man) proposing marriage to a person of the opposite

sex,
1
a landlord agreeing to rent an apartment to a potential renter.

The key feature of these relationships is that the longer they last, the greater the utility they

provide; for simplicity, we assume this utility is linear in the duration of the match. Nonetheless,

as a rule agents do not choose to match as soon as they receive a proposal, for different potential

partnersmay provide different utilities. An employermay be supportive or not, amarriagemay be

happy or not; the possibilities are myriad. Agents seek to assess the utility of a proposed match

and then decide whether to accept or keep searching (such an assessment might be implicit).

These judgements can be based on some combination of idiosyncratic factors and commonly

shared perspectives. Both sides of a potential match are making this assessment, and a match

happens only if both sides accept it.

1
Single-sex marriages could also be studied, but then there would be just one set of agents. In fact, this does not

appear to significantly affect our results, but in this work we have focused on the case of two sets of agents.
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Assessing potential matches takes time and therefore an agent can consider only a relatively

small number of potential matches at any one time. In many circumstances, choices are offered

on a take it or lose it basis. Typically, job offers are made with a short decision window. While

marriage or its equivalents have many cultural variations, as a rule offers of marriage when made

are accepted or declined; it would be unusual to collect multiple offers and only then decide (in

the somewhat unlikely event the parties on the other side would be willing to wait). Again, for

simplicity, we assume agents can consider only one match at a time.

Furthermore, agents are aware of time slipping by. An unemployed worker cannot afford

to stay unemployed indefinitely. Businesses wish to fill open positions promptly as they need

workers to carry out the duties of these open positions. Many men and women appear to want to

pair sooner rather than later (whether the pairing is called marriage or not). We see two forces at

work here: one is the ongoing utility from a match, which starts only when the match is formed.

The second is that the longer an agent waits the shorter the duration of the match they can offer.

We are interested in two questions:

What decision rule make sense and how can their effectiveness be measured?

Each potential decision rule provides a balance between the urge to form a match soon so as

to have a longer time in which to enjoy it, and the desire to continue searching in the hopes of

finding a better match.

The equilibrium properties of decision rules have been studied previously in models with a

continuum population, a continuum model for short [Adachi 2003; Burdett and Coles 1997, 1999;

Burdett and Wright 1998; Smith 2006; Shimer and Smith 2000; Bloch and Ryder 2000; Eeckhout

1999; Lauermann and Nöldeke 2014; McNamara and Collins 1990; Damiano et al. 2005]. In these

works, agents are assumed to arrive according to a variety of processes, such as a Poisson process.

In some of these works, they are also assumed to use time discounting of future utility. Either

they have infinite lifetimes in which to seek matches or they depart—die—according to another
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process. We discuss this in more detail in the related work section below. Each agent has an

intrinsic appeal, a numeric value, called charm in Burdett and Coles [Burdett and Coles 1999]. The

utility an agent derives from a match is assumed to be an increasing function of their partner’s

charm. Agents receive match proposals at a fixed rate and agents either accept or reject a match

immediately; for a match to succeed both participating agents must agree to it. One natural class

of agent strategies are reservation strategies; an agent will accept a proposed match exactly if the

partner has charm at least 𝑐 . Typically the chosen 𝑐 is a function of the agent’s own charm. The

right choices of reservations 𝑐 yield equilibrium strategies.

In contrast, we study this problem in a discrete, albeit stochastic, setting. By this we mean

that a finite number of agents arrive at each time step; we also choose time to be discrete. In

addition, we model lifetimes differently, viewing all lives as having duration 𝑇 . This has the

effect of making agents less demanding over time, which we believe is a real effect, and an effect

that will not arise with a departure rate that stays the same over time.

Discreteness introduces variance, which leads to localized imbalances in the numbers of men

and women (by localized, we mean agents of a given age and charm). The analysis and bounding

of these imbalances are the largest challenge we face, and while asymptotically small, for mod-

erate values of our parameters these are non-trivial quantities, as confirmed by our simulation

results. This is in sharp contrast to a continuum setting, where there will be no variance. Finally,

it is not clear that our setting will converge to an equilibrium or near-equilibrium, and while our

simulations for moderate parameter values suggest a certain level of stability, they also show that

there is continuing substantial variability. In any event, our concern is to understand the quality

of the outcomes: in a sense we make precise shortly, our model achieves near-optimal utility with

high probability.

Related Work Rogerson [Rogerson et al. 2005] surveyed issues of search cost and bargain-

ing in job markets. More recently, Chade, Eeckout and Smith [Chade et al. 2017] gave a broad
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survey of matching in economic models, covering search with and without costs, and settings

with and without transferable utility. We focus on settings with search costs and no transferable

utility. Even in this domain there are many works. We characterize these works w.r.t. multiple

dimensions.

The first is the treatment of time, both as regards arrivals and departures. Most papers assume

agents remain in the market till they are matched. A few allowmatches to be broken via a Poisson

process (e.g., jobs end, partners divorce) and then the agents return to the market; see Shimer and

Smith [Shimer and Smith 2000] and Smith [Smith 2006]. Others have agents ending their partici-

pation via various randomprocesses: Burdett andWright [Burdett andWright 1998] use a Poisson

process, Adachi [Adachi 2003] uses an exponential random variable, and Lauermann and Nold-

eke [Lauermann and Nöldeke 2014] use an exogeneous rate. Arrivals are similarly varied. Poisson

processes are considered in Burdett and Coles [Burdett and Coles 1997], Smith [Smith 2006], and

Shimer and Smith [Shimer and Smith 2000]. Other works consider cloning: when agents leave

due to a match they are replaced by clones thereby keeping the available matches unchanged;

see Adachi [Adachi 2003] and Burdett and Wright [Burdett and Wright 1998]. Fixed arrival rates:

see Eeckhout [Eeckhout 1999], and Lauermann and Noldeke [Lauermann and Nöldeke 2014]. Fi-

nally, no new arrivals: see Damiano, Hao and Suen [Damiano et al. 2005], and McNamara and

Collins [McNamara and Collins 1990].

The second dimension is the choice of utility model. These are all functions of the partner’s

charm, though there is considerable variation. The most common is that the utility an agent gains

is a non-decreasing function, either linear [Burdett and Coles 1997] or more general [Smith 2006;

Eeckhout 1999]; some papers allow for time discounting [Adachi 2003; Bloch and Ryder 2000];

the utility can be the product of the partners’ charms [Damiano et al. 2005]; or it is given by

independent random variables for each pair of agents [Burdett and Wright 1998; McNamara and

Collins 1990]; another option is that the agents obtain their utility by dividing a reward which is

a function of their individual charms [Shimer and Smith 2000].
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The final dimension is the choice of equilibrium model. Most of the papers consider a steady

state equilibrium; McNamara and Collins [McNamara and Collins 1990] consider Nash Equilibria,

and Damiano, Hao and Suen [Damiano et al. 2005] analyze a multi-round dynamic equilibrium.

The tension between taking a choice now and waiting for potentially better options arises in

multiple other domains, including secretary problems [Ferguson 1989], online matching [Karp

et al. 1990], matching market thickening [Akbarpour et al. 2020; Baccara et al. 2020], and regret

minimization [Blum and Mansour 2007]. In spirit, the secretary problem seems the most analo-

gous as it involves a single decision, albeit by just a single agent. We discuss it briefly in the next

paragraph. In contrast, online matching has a centralized decision maker that seeks to optimize

the outcome of many choices. Regret minimization occurs in a distributed setting, however here

each agent makes multiple decisions over time, with the goal of achieving a cumulatively good

outcome; again, this seems quite distinct from our setting. Market thickening is used in contexts

where a global matching is being computed, which seem unlike the random matches on offer in

our setting.

The standard secretary problem is expressed in terms of ranks. A cardinal version was con-

sidered by Bearden [Bearden 2006]; here the goal is to maximize the expected value of the chosen

secretary, with values uniform on [0, 1]. For each applicant the decision maker learns whether

they are the best so far. Bearden shows the optimal strategy is to reject the first

√
𝑛 − 1 can-

didates, and then choose the first candidate who meets the “best so far” criteria. Clearly, the

expected value of the selected secretary is 1 − Θ(1/
√
𝑛), which is analogous to the bounds we

obtain, although the settings appear quite distinct. Bearden argued that the payoff rule in this

version of the problem is more natural that the classic version. The problem of maximizing the

duration of a relatively best choice has also been considered [Ferguson 1989].
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3.2 The Model

We consider a setting in which, at each time step, 𝑛 agents enter a matching pool. Agents exit

the pool either when they are matched or if they have been in the pool for 𝑇 time steps. There

are two types of agents, called men and women. Each match pairs a man with a women. At each

time step the agents are paired uniformly at random. Each pair comprises a proposed match.

Each agent in a pair can accept or reject the proposed match as they prefer; a match occurs only

if both agents accept it.

In a discrete setting, a random pairing seemsmore natural than having pairs arrive one by one,

for the process of pairing will proceed in parallel, and pairs are necessarily mutually exclusive.

While in practice the pairings under consideration at any one time will not cover the whole of the

smaller side of the population, considering amaximalmatching seems a reasonable simplification.

We assume agents evaluate their potential partners using cardinal values, and furthermore

these are common values: every agent of the opposite type (gender) has the same value 𝑣𝑖 for

agent 𝑖 . In the terminology of Burdett and Coles, this is agent 𝑖’s charm.

We associate two parameters 𝑣𝑖 and 𝑡𝑖 with agent 𝑖 . 𝑣𝑖 is the agent’s charm and 𝑡𝑖 is the total

time remaining before agent 𝑖 is forced to exit the pool. Agent 𝑖 derives utility 𝑣 𝑗 · min(𝑡𝑖, 𝑡 𝑗 )

when matched with agent 𝑗 . We assume that the values lie in the range [𝑇, 2𝑇 ), and that an

agent’s value, chosen when it enters the pool, is one of {𝑇,𝑇 + 1, . . . , 2𝑇 − 1}, picked uniformly

at random. We note that the relative utilities of an agent are scale free; in other words, the

range assumption is equivalent to assuming the values lie in the range [1, 2). We could have

used a separate discretization for the values, but we preferred to avoid an additional parameter.

Furthermore, it would not affect the results qualitatively.

Entering agents are either male or female with equal probability.

Throughout this work it will be useful to view the market as a 𝑇 × 𝑇 size box, with agents

located at grid points. The box is indexed by value on the horizontal axis and by time on the
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vertical axis. Consider the set of 𝑇 points on the top edge: {(𝑇, 0), (𝑇 + 1, 0), . . . , (2𝑇 − 1, 0)}.

Agents enter the market at one of these points, picked uniformly at random. At each time step,

an agent either matches and leaves the box or moves down vertically by 1 unit. After 𝑇 steps, if

unmatched for all these times, the agent exits the box (at the bottom).

AReasonableNotion of Loss In a single gender version of this setting, the total utility derived

by the 𝑛 agents that enter at any one time step is at most 𝑛 ·∑𝑖 𝑣𝑖 ·𝑇 ; in the two-gender case, by

applying a Chernoff bound, one can obtain a similar bound with high probability. This bound can

easily be achieved if all agents simply accept whatever match is proposed to them in the very first

step in which they enter the matching pool. However such behavior seems implausible for high

value agents, as their expected utility would be much smaller than what they might reasonably

hope to achieve. Consequently, we set 𝑣𝑖 ·𝑇 as a reasonable target for 𝑖’s achieved utility. Based

on this, we define the total loss suffered by the agents to be:

∑︁
𝑖

[𝑣𝑖 ·𝑇 − utility obtained by agent 𝑖]+ .

This measure captures the intuition that agents who obtain less than their worth due either

to a lower value partner, or to accepting a match only later on in the process, are suffering losses.

We want to capture howmuch utility is lost compared to the benchmark in which each agent gets

an equal value partner for the whole length 𝑇 time period. It also addresses what is implausible

about the naive solution, in which all agents immediately accept whatever match is proposed to

them, and which maximizes the usual notion of social welfare.

It is not clear how to determine an optimal strategy, let alone whether it can be computed

feasibly. For a truly optimal strategy would incorporate the effects of past variance, a level of

knowledge that seems implausible in practice; and even an ex-ante optimal strategy seems out

of reach. Instead, we will present a strategy, which we call the reasonable strategy, which seeks

to ensure that if it is followed by all the players, then the total loss will be at most a constant
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factor larger than what could be achieved by the optimal strategy. Actually, we introduce two

strategies, and the second one, called the modified reasonable strategy, is the one we analyze.

3.3 Our Results

We obtain a lower bound on the total loss suffered by agents; no matter their behavior, they will,

with high probability, suffer an average loss of Ω(𝑇
√
𝑇 ).

Theorem 3.1. Suppose the matching market runs for 𝜏 time steps. If 16 ≤ 𝑇 + 1 ≤ 𝑛, 𝑐 ≥ 1,𝑇 ≤

𝜏 ≤ 𝑛𝑐 , and 𝑛 ≥ 96𝑇 (2𝑐 + 2) ln𝑛, then, over 𝜏 time steps, whatever strategies the agents use, with

probability at least 1 − 1

4𝑛𝑐
, the average loss per agent is at least 𝑇

√
𝑇

20
.

On the other hand, we construct a strategy profile, which if followed by all the agents, leads,

with high probability, to a total loss of at most O(𝑇
√
𝑇 ).

Theorem 3.2. Suppose 2𝑇 ≤ 𝜏 ≤ 𝑛𝑐 , 𝑐 ≥ 1, 676 ≤ 𝑇 , and 𝑛 ≥ (3654+2436𝑒12+546(𝑒12+1)𝑐)2(3𝑐+

4)𝑇 3(log
2
𝑛)2

ln𝑛. Then, over 𝜏 time steps, if all agents follow the modified reasonable strategy, with

probability at least 1 − 1

𝑛𝑐
, the average loss per agent is at most 11𝑇

√
𝑇 .

Our results hold for large 𝑛 and 𝑇 . Furthermore, Theorem 3.2 applies only when 𝑛 is much

larger than𝑇 . However, our numerical simulations suggest that similar results hold even for quite

moderate values of 𝑛 and 𝑇 and also do not require 𝑛 to be much bigger than 𝑇 . To simplify the

presentation, we assume that 𝑇 = 4
𝑖
for some integer 𝑖 > 0, though the bounds extend to all

values of 𝑇 , possibly with somewhat larger constants.

3.4 Preliminaries

We review the notion of negative cylinder dependence and make a simple observation regarding

the matching procedure.
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Lemma 3.3. Suppose there are𝑚 men and𝑤 women in total. Further suppose that for a given man

𝑥 , there are𝑤 ′ women for which a proposed match would be accepted by both sides. Then a random

match will provide man 𝑥 such a match with probability𝑤 ′/max{𝑚,𝑤}.

Proof. If there are at least as many women as men, every man will be offered a match, and the

probability that it is accepted by both sides is 𝑤 ′/𝑤 . While if there are more men, a man will be

offered a match with probability 𝑤/𝑚, and thus the probability that he is offered an acceptable

match is𝑤/𝑚 ·𝑤 ′/𝑤 = 𝑤 ′/𝑚. □

Negative Dependence Consider a set of 0-1 valued valued random variables {𝑋𝑖}𝑛𝑖=1
. The set

{𝑋𝑖} is 𝜆-correlated if

𝐸

[ 𝑛∏
𝑖=1

𝑋𝑖

]
≤ 𝜆 ·

𝑛∏
𝑖=1

𝐸

[
𝑋𝑖

]
,

where 𝜆 ≥ 1. The set {𝑋𝑖} is negative cylinder dependent if {𝑋𝑖} and {1−𝑋𝑖} are both 1−correlated.

In our arguments we will apply Chernoff-like bounds to negative cylinder dependent variables.

We will use the following lemmas.

Lemma 3.4. Let 𝑆𝑚 and 𝑆𝑤 be two sets of 𝑁1 and 𝑁2 agents respectively, Suppose that 𝑁1 ≤ 𝑁2.

Let 𝑆𝑎 = {𝑎1, 𝑎2, . . . , 𝑎𝑛} ⊆ 𝑆𝑚 and 𝑆𝑏 = {𝑏1, 𝑏2, . . . , 𝑏𝑟 } ⊆ 𝑆𝑤 . Consider a matching between 𝑆𝑚 and

𝑆𝑤 chosen uniformly at random. Let 𝑋𝑖 be an indicator variable which equals 1 if agent 𝑎𝑖 is paired

with an agent in 𝑆𝑏 , and 0 otherwise. Then the set {𝑋𝑖} is negative cylinder dependent and for any

𝛿 > 0,

Pr

[∑︁
𝑋𝑖 ≥ (1 + 𝛿)𝜇

]
≤ 𝑒−

𝛿2𝜇

3 and Pr

[∑︁
𝑋𝑖 ≤ (1 − 𝛿)𝜇

]
≤ 𝑒−

𝛿2𝜇

2 .

Proof. Let 𝑁 = max{𝑁1, 𝑁2}. Consider any subset 𝑆 ⊆ [𝑛] where |𝑆 | = 𝑘 . W.l.o.g. let 𝑆 = [𝑘].
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Then,

𝐸

[∏
𝑖∈𝑆

𝑋𝑖

]
= Pr

[∏
𝑖∈𝑆

𝑋𝑖 = 1

]
= Pr [𝑋1 = 1, 𝑋2 = 1, . . . , 𝑋𝑘 = 1]

]
= Pr [𝑋1 = 1] · Pr [𝑋2 = 1|𝑋1 = 1] , . . . , Pr [𝑋𝑘 = 1|𝑋1 = 1, 𝑋2 = 1, . . . , 𝑋𝑘−1 = 1]

=
𝑟

𝑁
· 𝑟 − 1

𝑁 − 1

, . . . ,
𝑟 − 𝑘 + 1

𝑁 − 𝑘 + 1

.

Hence,

𝐸

[∏
𝑖∈𝑆

𝑋𝑖

]
≤

( 𝑟
𝑁

)𝑘
,

while ∏
𝑖∈𝑆

𝐸 [𝑋𝑖] =
( 𝑟
𝑁

)𝑘
.

Similarly,

𝐸

[∏
𝑖∈𝑆

(1 − 𝑋𝑖)
]
= Pr

[∏
𝑖∈𝑆

(1 − 𝑋𝑖) = 1

]
= Pr [𝑋1 = 0, 𝑋2 = 0, . . . , 𝑋𝑘 = 0]

]
= Pr [𝑋1 = 0] · Pr [𝑋2 = 0|𝑋1 = 0] , . . . , Pr [𝑋𝑘 = 0|𝑋1 = 0, 𝑋2 = 0, . . . , 𝑋𝑘−1 = 0]

=
𝑁 − 𝑟
𝑁

· 𝑁 − 𝑟 − 1

𝑁 − 1

, . . . ,
𝑁 − 𝑟 − 𝑘 + 1

𝑁 − 𝑘 + 1

.

Hence,

𝐸

[∏
𝑖∈𝑆

(1 − 𝑋𝑖)
]
≤

(𝑁 − 𝑟
𝑁

)𝑘
,

while ∏
𝑖∈𝑆

𝐸 [1 − 𝑋𝑖] =
(𝑁 − 𝑟
𝑁

)𝑘
.

Thus the set {𝑋𝑖} is negative cylinder dependent. By [Panconesi and Srinivasan 1997, Theorem

3.4] with 𝜆 = 1, Chernoff bounds for sums of independent random variables apply to the sums of

negative cylinder dependent random variables as well. This concludes the proof. □
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Lemma 3.5. If {𝑋𝑖}𝑛𝑖=1
are 1-correlated random variables taking value {0, 1} and 𝜇 is an upper

bound on 𝜇 = 𝐸 [∑𝑋𝑖], then, for any 𝛿 > 0,

Pr

[∑︁
𝑋𝑖 ≥ (1 + 𝛿)𝜇

]
≤ 𝑒−

𝛿2𝜇

3 and Pr

[∑︁
𝑋𝑖 ≤ 𝜇 − 𝛿𝜇

]
≤ 𝑒−

𝛿2𝜇

2 .

Proof. First we prove that

Pr

[∑︁
𝑋𝑖 ≥ (1 + 𝛿)𝜇

]
≤ 𝑒−

𝛿2𝜇

3 .

Let 𝜇 = (1 + 𝜃 )𝜇. By Lemma 3.4,

Pr

[∑︁
𝑋𝑖 ≥ (1 + 𝛾)𝜇

]
≤ 𝑒−

𝛾2𝜇

3 . (3.1)

Set (1 + 𝛾) = (1 + 𝜃 ) (1 + 𝛿). Then, from equation (3.1) we obtain,

Pr

[∑︁
𝑋𝑖 ≥ (1 + 𝛿)𝜇

]
≤ exp

[
− (𝜃 + 𝛿 + 𝜃 · 𝛿)2𝜇

3

]
≤ exp

[
− (𝛿 + 𝜃 · 𝛿)2𝜇

3

]
≤ exp

[
− 𝛿2(1 + 𝜃 )2𝜇

3

]
≤ exp

[
− 𝛿2(1 + 𝜃 )𝜇

3

]
≤ exp

[
− 𝛿2𝜇

3

]
which proves the claim. We will now prove that

Pr

[∑︁
𝑋𝑖 ≤ 𝜇 − 𝛿𝜇

]
≤ 𝑒−

𝛿2𝜇

2

Let 𝜃 =
𝜇

𝜇
. By Lemma 3.4,

Pr

[∑︁
𝑋𝑖 ≤ 𝜇 − 𝛿𝜇

]
≤ 𝑒−

𝛿2𝜇

2

Let 𝛾 =
𝜇

𝜇
. Note that 𝛾 ≥ 1

103



Pr

[∑︁
𝑋𝑖 ≤ 𝜇 − 𝛿𝜇

]
= Pr

[∑︁
𝑋𝑖 ≤ 𝜇 − 𝛾𝛿𝜇

]
≤ exp

[
− (𝛾𝛿)2𝜇

2

]
≤ exp

[
− 𝛿2𝛾𝜇

2

]
≤ exp

[
− 𝛿2𝜇

2

]
which completes the proof.

□

3.5 Lower Bound on the Loss for Any Strategy

The intuition for this result is fairly simple. If an agent remains unmatched for

√
𝑇 steps, then

any subsequent proposed match would cause a loss of at least

√
𝑇 to one of the participating

agents. Thus to avoid having average losses of Ω(
√
𝑇 ), most matches would need to occur during

an agent’s first

√
𝑇 steps.

But we will show that for at least a constant fraction of the agents, the matches they are

offered during their first

√
𝑇 steps will all have the property that the values of the two agents

differ by at least

√
𝑇 , and consequently one of the participating agents would suffer a

√
𝑇 loss.

The overall result follows.

This second claim is not immediate because the probability that an agent is offered a close-

in-value match might vary significantly from agent to agent and over time.

We somewhat optimize constants and consequently consider a period of time𝑤 = Θ(
√
𝑇 ) and

value differences𝑤 , instead of precisely the value

√
𝑇 used in the above outline.

Proof. (Of Theorem 3.1) We divide the grid into width𝑤 columns, where a column includes the

low-value side boundary, but not the high-value boundary; one end column may be narrower.

We will set the parameter𝑤 later.

We consider the set of proposed matches at some arbitrary time 𝑡 . We say a proposed match is

safe if the paired agents are in the same or adjacent columns. We also define the male match rate

104



𝑝𝑖 for column 𝑖 to be the probability that a man in the column has a safe match. By Lemma 3.3,

this is at most the number of women in columns 𝑖 − 1, 𝑖 , and 𝑖 + 1 divided by the maximum of the

total number of women and the total number of men, which is at most the number of women in

these columns divided by the total number of women. Clearly the sum of the male match rates

over all the columns is at most 3. The same claim holds for the analogous female match rates.

Consider the men entering the system at time 𝑡 , which we call the new men. Each column

contains at most𝑤 points at which agents enter the market, namely the points along the column’s

top edge, and each entering agent is equally likely to be aman or awoman. By applying a Chernoff

bound, we see that for any given column 𝑖 ,

Pr

[
# of new men in column 𝑖 at time 𝑡 ⩾

(1 + 𝛿)𝑛𝑤
2𝑇

]
⩽ 𝑒−𝛿

2𝑛𝑤/6𝑇 .

Applying this bound to every column over 𝜏 consecutive time steps yields:

Pr

[
every column receives at most

(1 + 𝛿)𝑛𝑤
2𝑇

new men

for each of 𝜏 consecutive time steps

]
⩾

(
1 − 𝑒−𝛿2𝑛𝑤/6𝑇

)𝜏𝑇 /𝑤
.

Call this event E. Henceforth we condition on E.

Now suppose that every time an agent was offered a safe match, they accepted it. Recall that

𝑝𝑖 is the match rate for column 𝑖 . By Lemma 3.4, for the new men at time 𝑡 in column 𝑖 , for any 𝑡 ,

Pr

[
# safely matched men ⩽

(1 + 𝛿)𝑛𝑤𝑝𝑖
2𝑇

]
⩾ 1 − 𝑒−𝛿2𝑛𝑤𝑝𝑖/6𝑇 .

In fact, agents may not accept every proposed safe match; but this only reduces the number

of agents safely matched, and therefore the bound on the probability continues to hold.
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Furthermore, by Lemma 3.5, letting 𝜇 =
𝑛𝑤 max{𝑝𝑖 ,𝑤𝑇 }

2𝑇
, gives

Pr

[
number of safely matched men ⩽

(1 + 𝛿)𝑛𝑤 max{𝑝𝑖, 𝑤𝑇 }
2𝑇

]
⩾ 1 − 𝑒−

𝛿2𝑛𝑤 max{𝑝𝑖 , 𝑤𝑇 }
6𝑇 ⩾ 1 − 𝑒−

𝛿2𝑛𝑤2

6𝑇 2 .

Recalling that

∑
𝑖 𝑝𝑖 ⩽ 3, and applying a union bound over all 𝑇 /𝑤 strips for 𝑤 successive

steps, we obtain, for any given set of new men entering at some time 𝑡 , over their first 𝑤 time

steps,

Pr

[
# of safely matched men ≤ 2(1 + 𝛿)𝑛𝑤2

𝑇

]
⩾ 1 − 𝑇

𝑤
𝑤𝑒−𝛿

2𝑛𝑤2/6𝑇 2

. (3.2)

In addition, for any given set of new men, on applying a Chernoff bound, we know that

Pr

[
# of new men ≥ 𝑛(1 − 𝜖)

2

]
⩾ 1 − 𝑒−𝜖2𝑛/4. (3.3)

For each remaining man in each of the first 𝜏 − 𝑤 sets of new men—of which there are at least

(𝜏 −𝑤)
(𝑛(1−𝜖)

2
− 2(1+𝛿)𝑛𝑤2

𝑇

)
— one of the following two cases must apply.

• He has not been matched after spending 𝑤 time in the system. Now, if and when he is

matched, the only way he can avoid suffering a 𝑤𝑇 loss is to match with a sufficiently

higher value woman. In this case the higher value woman suffers at least a𝑤𝑇 loss.

• He has been matched within𝑤 time but it was not a safe match. In such a match whichever

agent had the higher value suffered at least a𝑤𝑇 loss.

Since the system runs for 𝜏 time steps, this argument can be applied to all agents except those

that enter the system during the last𝑤 time steps. We deduce that the total loss generated by all

these agents is at least (𝜏 −𝑤) (𝑛(1−𝜖)
2

− 2(1+𝛿)𝑛𝑤2

𝑇
) ·𝑤𝑇 .

Note that this loss is being shared by up to 𝑛𝜏 agents. Hence there is an average loss of at

least
1

2

(
𝑤𝑇 (1 − 𝜖) − 4(1+𝛿)𝑤3𝑇

𝑇

)
· 𝜏−𝑤

𝜏
. Setting𝑤 =

√
𝑇
4
, and using the lower bound on 𝜏 (𝜏 ≥ 𝑇 ), we
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obtain:

average loss per agent ≥ 1

2

(𝑇√𝑇 (1 − 𝜖)
4

− 𝑇
√
𝑇 (1 + 𝛿)

16

)
·
(
1 −

√
𝑇

4𝑇

)
.

Now we set 𝛿 =

√︃
6𝑇 2

𝑛𝑤2
ln(3𝑛𝑐𝑇𝜏) and 𝜖 =

√︃
4

𝑛
ln(3𝜏𝑛𝑐). We would like to have 𝛿 ≤ 1, which

we enforce by our choice of constraints on 𝑛,𝑇 , 𝜏 and 𝑐 (namely 16 ≤ 𝑇 ≤ 𝑛, 𝑐 ≥ 1,𝑇 ≤ 𝜏 ≤ 𝑛𝑐

and 𝑛 ≥ 96𝑇 (2𝑐 + 2) ln𝑛). These constraints also ensure that 𝜖 ≤ 1/16. Substituting 𝛿 ⩽ 1 and

𝜖 ≤ 1/16 yields:

average loss per agent ≥ 7𝑇
√
𝑇

128

· 15

16

≥ 𝑇
√
𝑇

20

.

By (3.2) and (3.3), this bound holds with probability at least

Pr[E] ·
(
1 − 𝜏𝑇𝑒−

𝛿2𝑛𝑤2

6𝑇 2 − 𝜏𝑒− 𝜖2𝑛
4

)
⩾

(
1 − 𝑒−𝛿2𝑛𝑤

6𝑇

)𝜏 𝑇
𝑤 ·

(
1 − 𝜏𝑇𝑒−

𝛿2𝑛𝑤2

6𝑇 2 − 𝜏𝑒− 𝜖2𝑛
4

)
≥

[
1 −

(
1

3𝑛𝑐𝑇𝜏

)
4

√
𝑇 ]4𝜏

√
𝑇

·
(
1 − 1

3𝑛𝑐
− 1

3𝑛𝑐

)
≥

[
1 − 4𝜏

√
𝑇

(
1

3𝑛𝑐𝑇𝜏

)
2
]
·
(
1 − 1

3𝑛𝑐
− 1

3𝑛𝑐

)
≥

[
1 −

(
1

3𝑛𝑐

)
4

√
𝑇 ]

·
(
1 − 2

3𝑛𝑐

)
≥

(
1 − 1

𝑛𝑐

)
.

□

3.6 Upper Bound on the Loss when Using the Modified

Reasonable Strategy

The lower bound suggests that plausible agent strategies will yield a constant probability of

matching every

√
𝑇 steps. This would imply that the number of agents present decreases ge-

ometrically with agent age; more precisely, there would be a constant factor decrease for every

√
𝑇 increment in age. Then, in order to maintain match probabilities, all agents would have to

be willing to match with young agents who will accept them. In fact, the decreases we just de-
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scribed are far from uniform, which makes the analysis quite non-trivial. Nonetheless, the above

intuition informed the design of the following agent strategies. The first strategy, which we call

“a reasonably good strategy” seems quite natural, but for ease of analysis we consider a modified

strategy which we prove to be asymptotically within a constant factor of optimal.

We define the worth of an agent to be 𝑣𝑖 · (𝑇 − 𝑡𝑖); this is the maximum utility its partner could

derive from a match with this agent. Note that the worth of an agent decreases as it ages.

AReasonably Good Strategy In this strategy an agent accepts a proposedmatch if it gives the

agent utility at least 𝑣𝑖 · (𝑇 −𝑡𝑖) · (1− 1√
𝑇
− 𝑡𝑖
𝑇
). The terms 1/

√
𝑇 and 𝑡𝑖/𝑇 are present to approximately

balance the expected loss of utility from not matching in a single step with the marginal gain in

utility agent 𝑖 could receive from being more demanding in terms of the minimum worth it will

accept in a partner.

TheModified Reasonable Strategy We partition the𝑇 ×𝑇 size space into the regions defined

below, as shown in Figure 3.1. In themodified strategy, an agent accepts a proposedmatch exactly

if the proposed partner lies in the same region. This partition uses regions of two kinds, which

we call strips.

• Type 1 strips: these are strips that have new people entering the strip at the top. The 𝑖-th

Type 1 strip is defined as the region between the parallel lines 𝑣 = 2(𝑡 − 1) +𝑇 + (𝑖 − 1)
√
𝑇

and 𝑣 = 2(𝑡 − 1) +𝑇 + 𝑖
√
𝑇 ; they have

√
𝑇 width and

√
𝑇 /2 height. Points on the first (left)

line are included in the strip, but points on the second (right) line are excluded. There are

√
𝑇 Type 1 strips.

• Type 2 strips: these strips do not touch the top boundary of the box. The strips are again

defined by parallel lines. They have successive heights

√
𝑇 ,

√
𝑇 , 2

√
𝑇 , and then repeatedly

doubling up to𝑇 /2. Here the points on the first (upper) line are excluded from the strip and

the points on the second (lower) line are included in the strip. There are log
2

√
𝑇 + 1 Type
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2 strips.

Figure 3.1: The two types of strips used to partition the matching pool.

We note that with the previously stated reasonable strategy, agents would be willing to match

with some agents outside their strip and would reject some agents in the same strip. However,

using the modified strategy simplifies the analysis, for if all agents use the modified strategy,

agents will definitely get accepted when they accept a match. We will prove that the modified

strategy is not much worse than the optimal strategy in terms of the average loss of value suffered

by an agent.

Outline of the proof of the upper bound Our analysis assumes the following constraints

on 𝑛 and 𝑇 .

𝑐 ≥ 1,

𝑇 ⩾ 676,

𝑛 ≥ (3654 + 2436𝑒12 + 546(𝑒12 + 1)𝑐)2(3𝑐 + 4)𝑇 3(log
2
𝑛)2

ln𝑛.

(3.4)
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The result follows from a high-probability inductive bound on the overall population, the strip

populations, and the male-female imbalances in each strip. We start at time 𝑡 = 0. Time 𝑡 will

refer to the moment after the new agents have entered in this step, but before the match occurs.

Lemma 3.6. Let 𝑁 denote the total number of strips. Suppose that the constraints in (3.4) hold.

Then, with probability at least 1− 1/𝑛𝑐 , the following inductive hypothesis 𝐻 (𝑡) holds at the start of

every time step 𝑡 , immediately following the entry of the new agents at time 𝑡 , for
√
𝑇 ⩽ 𝑡 ⩽ 𝑛𝑐 .

1. The total population is at most 3

2
𝑛𝑁 + 𝑛.

2. The population of every Type 1 strip is at most 2.6𝑛.

3. The population of every Type 2 strip is at most 7.5𝑛
√
𝑇

maximum height of the strip .

4. The population in the bottommost Type 2 strip is no more than 60𝑛/
√
𝑇 .

5. In every strip 𝑠 , except possibly the bottommost Type 2 strip, the imbalance, Imb(𝑠, 𝑡) =��the number of men in 𝑠 − the number of women in 𝑠
�� ≤ 𝑛/25

√
𝑇 .

Proof. (Sketch.) We will show in Theorems 3.10 and 3.12–3.15 that each of the above five clauses

holds with high probability. The last of these results also requires a high-probability lower bound,

Theorem 3.9, on the population size in the same time range. In addition, in Theorem 3.16, we

show that, with high probability, the inductive hypothesis is true initially. Summing the failure

probabilities prove the lemma. This calculation can be found in Appendix A.1.6. □

With this result in hand we can upper bound the average agent loss.

3.6.1 The Theorems and Proof Sketches

Let Ẽ be the event that the inductive hypothesis𝐻 (𝑡) holds at the start of time step 𝑡 immediately

following the arrival of the new agents in this step, for

√
𝑇 ⩽ 𝑡 ⩽ 𝑛𝑐 .
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3.6.1.1 Bounding the loss

We first bound an individual agent’s loss based on its match time. We then obtain an overall

bound on the loss. As argued below, Theorem 3.2 follows immediately.

Lemma 3.7. In the modified reasonable strategy, if an agent with value 𝑣 matches at time 𝑡 , its

utility loss is at most 4𝑇𝑡 + 2𝑡
√
𝑇 .

This result follows by a simple calculation based on the strip geometry. The proof is in Ap-

pendix A.1.1.

Theorem 3.8. Suppose the constraints in (3.4) hold. Also, suppose that all agents follow the modified

reasonable strategy. In addition, suppose the system runs for 𝜏 ⩾ 2𝑇 time steps, where 𝜏 ≤ 𝑛𝑐 . Then

the average loss per departing agent over these 𝜏 steps will be at most 11𝑇
√
𝑇 .

Proof. Consider the first 𝜏 time steps of the matching process. Let 𝑛𝑖 denote the number of agents

who match and thereby leave the pool at age 𝑖 during these 𝜏 steps. By Lemma 3.7, each such

agent suffers a loss of at most 4𝑇𝑖 + 2𝑇
√
𝑇 . Thus the total loss is bounded by:

Total loss ⩽
𝑇−1∑︁
𝑖=0

(
4𝑇𝑖 · 𝑛𝑖 + 2𝑇

√
𝑇 · 𝑛𝑖

)
.

Each agent who is matched at age 𝑖 is present in the matching pool for 𝑖 + 1 steps. By clause 1

of the inductive hypothesis in Lemma 3.6, at each time during this period, the population of the

matching pool is at most
3

2
𝑛𝑁 + 𝑛 ≤ 3

2
𝑛(
√
𝑇 + log

2

√
𝑇 + 1) + 𝑛 ≤ 2𝑛

√
𝑇 , where the last inequality

follows from

√
𝑇 ⩽ 26 due to constraint (3.4). Thus,

𝜏−1∑︁
𝑖=0

(𝑖 + 1)𝑛𝑖 ⩽ 2𝑛
√
𝑇 · 𝜏 .
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Therefore,

Total loss ⩽ 8𝑛𝑇
√
𝑇 · 𝜏 +

𝑇−1∑︁
𝑖=0

2𝑇 (
√
𝑇 − 2) · 𝑛𝑖 .

Let 𝐷 ≜
∑𝜏−1

𝑖=0
𝑛𝑖 , the number of agents that leave during the first 𝜏 steps. We observe that 𝐷

is at most 𝑛𝜏 , the number of agents that entered during this period. Also, as the population of

the pool at any time is at most 2𝑛
√
𝑇 , we see that 𝐷 ≥ 𝑛𝜏 − 2𝑛

√
𝑇 . By assumption, 𝜏 ⩾ 2𝑇 and

√
𝑇 ⩾ 26, so

12

13

𝑛𝜏 ⩽ 𝐷 ⩽ 𝑛𝜏 .

This yields the following bound on the total loss:

Total loss ≤ 8𝑛𝜏𝑇
√
𝑇 + 2𝑛𝜏𝑇

√
𝑇 ⩽ 10𝑛𝜏𝑇

√
𝑇 .

And therefore,

Average loss per agent =
Total loss

𝐷
≤ 10𝑛𝑇𝜏

√
𝑇

12

13
𝑛𝜏

< 11𝑇
√
𝑇 .

□

Proof. (Of Theorem 3.2) This follows immediately from Lemma 3.6 and Theorem 3.8. □

23

3.6.1.2 Total Size Lower Bound

Theorem 3.9. Suppose 𝐻 (𝑡) and the constraints in (3.4) hold. If all agents follow the modified

reasonable strategy, then with probability at least 1 − 1/𝑛2𝑐+1, for every time 𝑡 ∈ [
√
𝑇, 𝑛𝑐], the

population in the matching pool is at least 1

3
𝑛
√
𝑇 .
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Proof. (Idea.) We consider only the new agents that entered the matching pool over the last

√
𝑇 time steps. We then bound how many of these agents could have been matched in this time

period. Suppose that at any particular time step 𝑡 , the match rate experienced by the men in

strip 𝑖 is 𝑝𝑖 . The critical observation is that the sum of the 𝑝𝑖 is at most 1. The same is true for

the women. This allows us to prove that even if we could set the match rates in an adversarial

manner, only about 𝑛/
√
𝑇 of the agents that entered at any one time could be matched in any

single time step (in the discussion here, we neglect the effects of variance). This allows us to

show that, of the agents we consider, only about

∑√
𝑇

𝑖=1
𝑖𝑛/

√
𝑇 ≈ 𝑛

√
𝑇 /2 could have been matched

over the last

√
𝑇 time steps. This provides a lower bound on the total size of roughly 𝑛

√
𝑇 /2.

Accounting for the variance that can occur when achieving a high probability bound causes the

bound on the number of matches to degrade to 𝑛
√
𝑇 /3. The full proof can be found in Appendix

A.1.2. □

3.6.1.3 Population Upper Bound

Theorem 3.10. Suppose 𝐻 (𝑡) and the constraints in (3.4) hold. If all agents follow the modified

reasonable strategy, then at the start of time step 𝑡 + 1, with probability at least 1− 1/𝑛2𝑐+1, the total

population of the matching pool will be at most (3/2)𝑛𝑁 + 𝑛, where 𝑁 is the total number of strips.

Proof. (Idea.) We seek to lower bound the number of matches in one time step. If it exceeds the

number of incoming agents, then the total population reduces. The expected number of matches

is minimized when the strip populations are equal, and on applying Lemma 3.3, this yields the

following lower bound on the number of matched women (or men): [𝑁 · (𝑃/2𝑁 )2/(𝑃/2)] =

𝑃/(2𝑁 ), where 𝑃 is the upper bound on the population. This yields the condition 𝑃/𝑁 ⩽ 𝑛, or

𝑃 ⩽ 𝑛𝑁 . The argument is completed by taking account of the deviations needed to ensure a

high-probability bound. The full proof can be found in Appendix A.1.3. □
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3.6.1.4 Upper Bound on the Size of a Strip.

We begin with a technical lemma.

Lemma 3.11. Let 𝑠 be a strip, and let 𝑆 be an arbitrary subset of the men and women in 𝑠 . Let𝑚 be

the number of men and𝑤 be the number of women in 𝑆 . In addition, let 𝑋 be the imbalance for the

whole of 𝑠 . Then the expected number of people in 𝑆 that are matched in a single step is at least

(𝑚+𝑤)2

2
− 𝑋 2

2

max{# of men, # of women} in the whole population

Proof. We need only consider the case that |𝑋 | ≤ 𝑚 + 𝑤 .
2
Let 𝑚𝑡 denote the total number of

men in this strip and 𝑤𝑡 the total number of women. In addition, let Δ ≜ 𝑚 − 𝑤 , 𝑃 ≜ 𝑚 + 𝑤 ,

𝑄 ≜ 𝑚𝑡 +𝑤𝑡 and 𝑋 = 𝑚𝑡 −𝑤𝑡 . Then,𝑚 = 𝑃+Δ
2
, 𝑤 = 𝑃−Δ

2
,𝑚𝑡 =

𝑄+𝑋
2

and 𝑤𝑡 =
𝑄−𝑋

2
. The expected

number of people matched in this subset of men and women is

𝑚𝑤𝑡 +𝑚𝑡𝑤

max{# of men, # of women} in the whole population

.

We now focus on the numerator:𝑚𝑤𝑡 +𝑚𝑡𝑤 = (𝑃𝑄−𝑋Δ)/2 = (𝑃2+𝑃 (𝑄−𝑃) −𝑋 2−𝑋 (Δ−𝑋 ))/2.

In order to show this is larger than
𝑃2

2
− 𝑋 2

2
, it suffices to show 𝑃 (𝑄 − 𝑃) ≥ 𝑋 (Δ − 𝑋 ).

As𝑚𝑡 ≥ 𝑚 and𝑤𝑡 ≥ 𝑤 , 𝑄 − 𝑃 ≥ Δ −𝑋 and 𝑄 − 𝑃 ≥ 𝑋 − Δ. Recall that it suffices to consider

the case |𝑋 | ≤ 𝑚 +𝑤 = 𝑃 . Combining these two inequalities yields 𝑃 (𝑄 − 𝑃) ≥ 𝑋 (Δ −𝑋 ), which

proves the result. □

Next, we give an upper bound on the size of a Type 1 strip.

Theorem 3.12. Suppose 𝐻 (𝑡) and the constraints in (3.4) hold. If all agents follow the modified

reasonable strategy, then at time 𝑡 + 1, right after the new agents have entered, with probability

> 1 − 1

𝑛2𝑐+1
, each Type 1 strip will continue to have population at most 𝑑𝑛, where 𝑑 = 2.6.

2
Otherwise, the bound is negative.

114



Proof. (Sketch). Consider a strip 𝑠′ and its successor strip 𝑠 (the strip immediately to its left). We

will follow the collection of agents occupying

√
𝑇 adjacent diagonals over

√
𝑇 steps, beginning

with the at most 𝑑𝑛 agents in strip 𝑠′ and ending in strip 𝑠 , with the remainder of these agents

plus any new agents who have entered these diagonals. The heart of our proof is to show that in

a single step we maintain the 𝑑𝑛 bound on the number of agents in this collection of advancing

diagonals. The basic idea is straightforward: we compute a lower bound on the expected number

of matches using Lemma 3.11 taking into account the maximum possibly imbalance, add the

incoming agents and correct for variance. One more important detail is that the expected number

of matches is minimized if, in the collection of agents we are tracking, half are in strip 𝑠 and half

are in 𝑠′; so this is the value we use in these calculations. The full proof can be found in Appendix

A.1.4. □

Theorem 3.13. Suppose 𝐻 (𝑡) and the constraints in (3.4) hold. If all agents follow the modified

reasonable strategy, then at time 𝑡 + 1, right after the new agents have entered, with probability

> 1 − 1

𝑛2𝑐+1
, each Type 2 strip (apart from the bottommost one) will continue to have population at

most g𝑛
√
𝑇

height of the strip where g = 7.5.

Proof. (Idea.) For the topmost Type 2 strip 𝑠 we obtain a bound of 2 · 2.6𝑛 = 5.2𝑛
√
𝑇 /

√
𝑇 , as the

items in 𝑠 are obtained from its predecessor strip over the previous

√
𝑇 steps, i.e. the sum of the

contents at times

√
𝑇 /2 and

√
𝑇 earlier. The same bound applies to the second Type 2 strip. Each

subsequent Type 2 strip 𝑠 has twice the height of its predecessor. Let 𝑠 have height𝐻 . The contents

of 𝑠 come from its predecessor over a period of length 𝐻 , which by the inductive hypothesis

contain at most 2g𝑛
√
𝑇 /(𝐻/2) = 4g𝑛

√
𝑇 /𝐻 agents. To prove our bound, we need to show at

least 3g𝑛
√
𝑇 /𝐻 of them are removed during these 𝐻 steps. Again, as in Theorem 3.12, we seek to

track a population as it moves from 𝑠′ to 𝑠 . The challenge is that in the analysis this population

shrinks over time and the match rate is proportional to the square of this population. To get a

fairly tight bound, we formulate this as a differential expression and determine the smallest value
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for the constant g that enables this number of matches. The full proof can be found in Appendix

A.1.5. □

Theorem 3.14. Suppose 𝐻 (𝑡) and the constraints in (3.4) hold. If all agents follow the modified

reasonable strategy, then at time 𝑡 + 1, right after the new agents have entered, the strip population

for the bottommost Type 2 strip will continue to be at most 60𝑛√
𝑇
.

This simple calculation is deferred to Appendix A.1.5.

3.6.1.5 Bound on Imbalance

Theorem 3.15. Suppose that𝐻 (𝜏) and the constraints in (3.4) hold. If all agents follow the modified

reasonable strategy, then with probability at least 1 − 2/𝑛2𝑐+1, in every strip 𝑠 (except possibly the

bottommost Type 2 strip), Imb(𝑠) ⩽ 𝑛/25

√
𝑇 .

Proof. We divide each strip into thin diagonals of width 1. Let the diagonal include the bottom

but not the top boundary. Notice that for each value, a diagonal contains at most one grid point.

We introduce the following notationw.r.t. diagonal𝑑 at time step 𝜏 , wherewe are conditioning

on the outcome of step 𝜏 − 1.

𝐼 (𝑑, 𝜏) = 𝐸 [(number of men at time 𝜏 − number of women at time 𝜏)]

𝑋 (𝑑, 𝜏) = (number of men matching at time 𝜏 − number of women matching at time 𝜏)

− 𝐸 [(number of men matching at time 𝜏 − number of women matching at time 𝜏)]

𝑌 (𝑑, 𝜏) = number of men entering at time 𝜏 − number of women entering at time 𝜏

𝐴(𝑑, 𝜏) = (number of men matching at time 𝜏 + number of women matching at time 𝜏)/2.

𝐼 (𝑑, 𝜏) is measured after the entry of the new agents at time 𝜏 but prior to the match for this

step. Also, note that 𝑌 (𝑑, 𝜏) = 0 if 𝑑 is in a Type 2 strip.

In addition, observe that the imbalance Imb(𝑠) at the start of step 𝑡 equals ∑𝑑∈𝑠 𝐼 (𝑑, 𝑡).
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We observe that a match between two agents in distinct diagonals of the same strip will

increment the (number of men − number of women) in one diagonal and decrement it in the

other. Thus there is a zero net change over all the diagonals in the strip due to the matches.

However, as the agents all age by 1 unit during a step, some agents enter the strip and some leave,

which can cause changes to the imbalance within a strip. However, the entry of new agents can

introduce new imbalances. We will need to understand more precisely how these imbalances

evolve.

It is convenient to number the diagonals as 𝑑1, 𝑑2, 𝑑3, . . ., in right to left order.

Claim 3.6.1. Let 𝑑𝑖 and 𝑑 𝑗 be two diagonals in the same strip 𝑠 . For brevity, let 𝐼𝑖 ≜ 𝐼 (𝑑𝑖, 𝜏 − 1),

𝐼 𝑗 ≜ 𝐼 (𝑑 𝑗 , 𝜏 − 1), 𝐴𝑖 ≜ 𝐴(𝑑𝑖, 𝜏 − 1), 𝐴 𝑗 ≜ 𝐴(𝑑 𝑗 , 𝜏 − 1), 𝑋𝑖 ≜ 𝑋 (𝑑𝑖, 𝜏 − 1), 𝑋 𝑗 ≜ 𝑋 (𝑑 𝑗 , 𝜏 − 1). Finally,

let 𝑅 denote the maximum of the total number of men and the total number of women in the system

at time 𝜏 − 1.

Then the new imbalance on diagonal 𝑑𝑖 , prior to every unmatched agent adding 1 to their age

(which causes the agents on 𝑑𝑖 to move to 𝑑𝑖+1), denoted by 𝐼 ′(𝑑𝑖, 𝜏), is given by:

𝐼 ′(𝑑𝑖, 𝜏) =

𝐼𝑖 + 𝑋𝑖 −
∑︁
𝑑 𝑗∈𝑠

[
𝑋𝑖

(2𝐴 𝑗 − 𝐼 𝑗 − 𝑋 𝑗 )
4𝑅

− 𝑋 𝑗
(2𝐴𝑖 − 𝐼𝑖 − 𝑋𝑖)

4𝑅
+ 𝐼𝑖

(2𝐴 𝑗 − 𝐼 𝑗 − 𝑋 𝑗 )
4𝑅

− 𝐼 𝑗
(2𝐴𝑖 − 𝐼𝑖 − 𝑋𝑖)

4𝑅

]
;

and 𝐼 (𝑑𝑖, 𝜏) = 𝐼 ′(𝑑𝑖−1, 𝜏 − 1) + 𝑌 (𝑑, 𝜏).

This claim is shown by considering the expected number of matches involving agents in di-

agonals 𝑑𝑖 and 𝑑 𝑗 . The proof can be found in Appendix A.1.6.

The expression𝑋𝑖 (2𝐴 𝑗 − 𝐼 𝑗 −𝑋 𝑗 )/4𝑅 reflects the reduction of the contribution of𝑋𝑖 to the total

imbalance on diagonal 𝑑𝑖 and the corresponding increase on diagonal 𝑑 𝑗 . Thus it is convenient

to view the multiplier (2𝐴 𝑗 − 𝐼 𝑗 − 𝑋 𝑗 )/4𝑅 as indicating the fraction of 𝑋𝑖 that is being moved to

diagonal 𝑗 ; the remaining fraction of 𝑋𝑖 remains on 𝑑𝑖 .
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𝑋 (𝑑, 𝜏) and 𝑌 (𝑑, 𝜏) are generated at diagonal 𝑑 at time 𝜏 . In each subsequent time step the

portion on each diagonal where it is present will be further redistributed:

1. Due to the expected matching at time 𝜏′ ⩾ 𝜏 , each portion of 𝑋 (𝑑, 𝜏) and 𝑌 (𝑑, 𝜏) spreads to

other diagonals in the same strip.

2. At the end of time step 𝜏′ the portions of 𝑋 (𝑑, 𝜏) and 𝑌 (𝑑, 𝜏) present on diagonal 𝑑𝑖 move

to diagonal 𝑑𝑖+1.

Building on these observations, we will show our bound on the imbalance by means of the

following two arguments. Specifically, we show that:

1. For any 𝜏 and 𝜏′, the total contribution from𝑋 (·, 𝜏) and𝑌 (·, 𝜏) to strip 𝑠 at time 𝜏′ is bounded.

2. For times 𝜏′ ⩾ 𝜏 + Ω(𝑇 log𝑛), the remaining portions of 𝑋 (·, 𝜏) and 𝑌 (·, 𝜏) in the market

are small.

Bound on the contribution of𝑋 to the strip 𝑠 Notice that

∑
𝑑𝑖∈𝑠 𝐼

′(𝑑𝑖, 𝜏) =
∑
𝑑𝑖∈𝑠 𝐼 (𝑑𝑖, 𝜏−1),

for the coefficients multiplying 𝑋𝑖 cancel, as they also do for 𝐼𝑖 . Thus we can think of this process

as redistributing the imbalance, but not changing the total imbalance.

Over time an imbalance 𝑋 (𝑑𝑖, 𝜏) will be redistributed over many diagonals. We write

𝑋 (𝑑𝑖, 𝜏, 𝑑 𝑗 , 𝜏′) to denote the portion of 𝑋 (𝑑𝑖, 𝜏) on diagonal 𝑑 𝑗 at time 𝜏′. 𝑑 𝑗 need not be in the

same strip as 𝑑𝑖 . Note that

∑
𝑑 𝑗
𝑋 (𝑑𝑖, 𝜏, 𝑑 𝑗 , 𝜏′) = 𝑋 (𝑑𝑖, 𝜏) for all 𝜏′ ⩾ 𝜏 . 𝑌 (𝑑𝑖, 𝜏, 𝑑 𝑗 , 𝜏′) is defined

analogously.

An important property concerns the relative distribution of the 𝑋 (𝑑𝑖, 𝜏, 𝑑 𝑗 , 𝜏′) and the

𝑋 (𝑑𝑘 , 𝜏, 𝑑 𝑗 , 𝜏′). In a sense made precise in the following claim, if 𝑘 > 𝑖 the 𝑑𝑘 terms remain to the

left of the 𝑑𝑖 terms.

For the purposes of the following claim, we treat the final strip as a single diagonal, and in

addition ignore the fact that people depart at age𝑇 (which means that once an imbalance appears

118



in this strip it remains there). The reason this strip is different is that it covers the whole of the

bottom boundary and so is the only strip from which people leave the system by aging out.

Claim 3.6.2. For all ℓ , for all 𝑖 < 𝑘 , and for all 𝜏′ ⩾ 𝜏 ,
�� ∑

𝑗>ℓ 𝑋 (𝑑𝑖, 𝜏, 𝑑 𝑗 , 𝜏′)
�� ⩽ �� ∑

𝑗>ℓ 𝑋 (𝑑𝑘 , 𝜏, 𝑑 𝑗 , 𝜏′)
��.

The same property holds for the 𝑌 (𝑑𝑖, 𝜏, 𝑑 𝑗 , 𝜏′).

Proof. We prove the result for the 𝑋 terms by induction on 𝜏′; the same argument applies to the

𝑌 terms. Clearly the property holds for 𝜏′ = 𝜏 . Let 𝑥𝑖 𝑗 ≜ 𝑋 (𝑑𝑖, 𝜏, 𝑑 𝑗 , 𝜏′)/𝑋 (𝑑𝑖, 𝜏), and define 𝑥𝑘 𝑗

analogously. Our claim states that

∑
𝑗>ℓ 𝑥𝑖 𝑗 ⩽

∑
𝑗>ℓ 𝑥𝑘 𝑗 ; we need to show it holds at time 𝜏′+1 also.

We view the 𝑥𝑖 𝑗 as sitting on the unit interval, with 𝑥𝑖 𝑗 taking a portion of length 𝑥𝑖 𝑗 , ordered by

increasing 𝑗 , and likewise for the 𝑥𝑘 𝑗 . We map aligned portions of the 𝑥𝑖 𝑗 and 𝑥𝑘 𝑗 ′ to each other.

This mapping has the property that the 𝑗 index in the 𝑥𝑖 𝑗 term is always equal to or smaller than

the 𝑗 ′ index in the 𝑥𝑘 𝑗 ′ term.

Let’s look at how aligned portions of 𝑥𝑖 𝑗 and 𝑥𝑘 𝑗 ′ are dispersed in the next step. If they are in

distinct strips, then 𝑗 < 𝑗 ′ and this property is maintained for all the dispersed portions.

We view the multiplier (2𝐴 𝑗 − 𝐼 𝑗 − 𝑋 𝑗 )/4𝑅 in Claim 3.6.1 as specifying the fraction of 𝑋𝑖 that

moves from diagonal 𝑖 to diagonal 𝑗 . Notice that this multiplier is the same for every diagonal in

this strip.

We also note that 𝐼𝑖 consists of a sum of terms 𝑋 (𝑑𝑖, 𝜏, 𝑑 𝑗 , 𝜏′) and 𝑋 (𝑑𝑖, 𝜏, 𝑑 𝑗 , 𝜏′) for diagonals

𝑑 𝑗 in the same strip as 𝑑𝑖 or to the right of 𝑑𝑖 . Furthermore, the multiplier (2𝐴 𝑗 − 𝐼 𝑗 − 𝑋 𝑗 )/4𝑅

specifies the fraction of each of these terms that moves from diagonal 𝑖 to diagonal 𝑗 . Thus if 𝑑 𝑗

and 𝑑 𝑗 ′ are in the same strip, the𝑋 terms corresponding to the aligned portions of 𝑥𝑖 𝑗 and 𝑥𝑘 𝑗 ′ are

redistributed identically, thereby maintaining the property for these fragments. Naturally, the

property also continues to hold for undispersed fragments.

Finally, shifting down by one diagonal, as is done following the dispersal, will leave the prop-

erty unaffected.

□
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Later, we will show a common bound 𝐵 on the sums

�� ∑
𝑖⩽ 𝑗⩽𝑘 𝑋 (𝑑 𝑗 , 𝜏)

��
, which holds for all 𝑑𝑖

and 𝑑𝑘 in the same strip and all
3 𝜏 . With this bound and Claim 3.6.2 in hand, for each strip 𝑠 , we

can bound the contribution of the 𝑋 (𝑑𝑖, 𝜏, 𝑑 𝑗 , 𝜏′) summed over all 𝑑𝑖 and over 𝑑 𝑗 ∈ 𝑠 by 2𝐵.

Claim 3.6.3. For all 𝜏′ ⩾ 𝜏 , for every strip 𝑠 ,
�� ∑

𝑑𝑖 ;𝑑 𝑗∈𝑠 𝑋 (𝑑𝑖, 𝜏, 𝑑 𝑗 , 𝜏′)
�� ⩽ 2𝐵.

Proof. Let 𝑑𝑟 (𝑠) be the rightmost

(lowest index) diagonal in 𝑠 and 𝑑𝑙 (𝑠) be the leftmost (highest index) diagonal in 𝑠 . Let 𝑤𝑖 =∑
𝑗⩾𝑟 (𝑠) 𝑋 (𝑑𝑖, 𝜏, 𝑑 𝑗 , 𝜏′)/𝑋 (𝑑𝑖, 𝜏). Let’s consider

∑
𝑑𝑖∈𝑠 ′; 𝑗⩾𝑟 (𝑠) 𝑋 (𝑑𝑖, 𝜏, 𝑑 𝑗 , 𝜏′) =

∑
𝑑𝑖∈𝑠 ′𝑤𝑖 · 𝑋 (𝑑𝑖, 𝜏). No-

tice that

∑
𝑟 (𝑠 ′)≤𝑖≤𝑙 (𝑠) 𝑋 (𝑑𝑖, 𝜏) = 0. By Claim 3.6.2,𝑤𝑖 ⩽ 𝑤𝑘 , for 𝑖 < 𝑘 . Thus,

��� ∑︁
𝑑𝑖∈𝑠 ′; 𝑗⩾𝑟 (𝑠)

𝑋 (𝑑𝑖, 𝜏, 𝑑 𝑗 , 𝜏′)
��� = ��� ∑︁

𝑑𝑖∈𝑠 ′
𝑤𝑖 · 𝑋 (𝑑𝑖, 𝜏)

��� ≤ ∑︁
𝑟 (𝑠 ′)⩽𝑟<𝑙 (𝑠 ′)

(𝑤𝑖 −𝑤𝑖−1)
��� ∑︁
𝑟⩽𝑖⩽𝑙 (𝑠 ′)

𝑋 (𝑑𝑖, 𝜏)
���

⩽ (𝑤𝑙 (𝑠 ′) −𝑤𝑟 (𝑠 ′)) · max

𝑟≥𝑟 (𝑠 ′)

��� ∑︁
𝑟⩽𝑖⩽𝑙 (𝑠 ′)

𝑋 (𝑑𝑖, 𝜏)
���.

We apply this bound to the diagonals from every strip to obtain:

��� ∑︁
𝑑𝑖 ; 𝑗⩾𝑟 (𝑠)

𝑋 (𝑑𝑖, 𝜏, 𝑑 𝑗 , 𝜏′)
��� = ���∑︁

𝑠 ′

∑︁
𝑑𝑖∈𝑠 ′; 𝑗⩾𝑟 (𝑠)

𝑋 (𝑑𝑖, 𝜏, 𝑑 𝑗 , 𝜏′)]
��� ≤ ∑︁

𝑠 ′
(𝑤𝑙 (𝑠 ′) −𝑤𝑟 (𝑠 ′)) · 𝐵 ≤ 𝐵.

(3.5)

Using the same argument,

�� ∑
𝑑𝑖 ; 𝑗⩾𝑙 (𝑠)+1

𝑋 (𝑑𝑖, 𝜏, 𝑑 𝑗 , 𝜏′)
�� ⩽ 𝐵, since 𝑙 (𝑠) + 1 = 𝑟 (𝑠′′) where 𝑠′′ is

the strip immediately below 𝑠 . Therefore,

��� ∑︁
𝑑𝑖 ;𝑑 𝑗∈𝑠

𝑋 (𝑑𝑖, 𝜏, 𝑑 𝑗 , 𝜏′)
��� = ��� ∑︁

𝑑𝑖 ; 𝑗⩾𝑟 (𝑠)
𝑋 (𝑑𝑖, 𝜏, 𝑑 𝑗 , 𝜏′) −

∑︁
𝑑𝑖 ; 𝑗⩾𝑙 (𝑠)+1

𝑋 (𝑑𝑖, 𝜏, 𝑑 𝑗 , 𝜏′)
��� ⩽ 2𝐵.

□

Claim3.6.4. For any time𝜏 ≤ 𝑛𝑐 , with probability at least 1− 1

𝑛2𝑐+1
, 𝐵 ≤ 96

[
𝑛 ln(4𝑛3𝑐+1 (𝑇 2/32+𝑇 /8)𝑁 )√

𝑇

]
1/2

.

3
The calculation for the bound proved in Claim 3.6.4 only applies to |

∑
𝑖⩽ 𝑗⩽𝑘 𝑋 (𝑑 𝑗 , 𝜏) |, where 𝜏 >

√
𝑇 . However

for times in the initial

√
𝑇 steps, the bound is only better. A calculation of this bound for times in this initial period

is done in the proof of Theorem 3.16; see Claim A.1.5 in Appendix A.1.7.
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Proof. First we bound |∑𝑑∈𝑆 𝑋 (𝑑, 𝜏) | for any subset 𝑆 of consecutive diagonals in a strip 𝑠 . Sup-

pose the total number of men in 𝑆 is𝑚 and the total number of women is𝑤 .

By Theorem 3.9, the total population is at least 1/3·𝑛
√
𝑇 . By Theorem 3.10, it is atmost 3𝑛𝑁 /2+

𝑛. In addition, by the inductive hypothesis, the total imbalance is bounded by the bottommost

strip population plus the individual strip imbalances, and this is at most 60𝑛/
√
𝑇 + 25𝑛𝑁 /

√
𝑇 .

Therefore,

𝑛
√
𝑇

6

≤ max

{
total number of men,

total number of women

}
≤ 1

2

(
3𝑛(

√
𝑇 + log

2

√
𝑇 + 1)

2

+𝑛+60𝑛/
√
𝑇+𝑛𝑁 /25

√
𝑇

)
.

As

√
𝑇 ≥ 26 by constraint (3.4),

𝑛
√
𝑇

6

≤ max

{
total number of men,

total number of women

}
≤ 𝑛

√
𝑇 . (3.6)

Let 𝑀 = max{total number of men, total number of women}. Lemmas 3.4 and 3.3 yield the

following bound on the deviation from the expected number of the number of men in 𝑆 matched

in a given time step:

Pr

[��� number of men matched

−𝐸 [number of men matched]

��� > 𝑚𝑤𝜖

𝑀

]
≤ 2𝑒−𝑚𝑤𝜖

2/3𝑀 . (3.7)

By the lower bound on𝑀 provided by (3.6):

Pr

[��� number of men matched

−𝐸 [number of men matched]

��� > 6𝑚𝑤𝜖

𝑛
√
𝑇

]

≤ Pr

[��� number of men matched

−𝐸 [number of men matched]

��� > 𝑚𝑤𝜖

𝑀

]
.
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And by the upper bound on𝑀 given by (3.6), 2𝑒−𝑚𝑤𝜖
2/3𝑀 ≤ 2𝑒−𝑚𝑤𝜖

2/3𝑛
√
𝑇
.

We now apply these two bounds to equation (3.7) to obtain:

Pr

[��� number of men matched

−𝐸 [number of men matched]

��� > 6𝑚𝑤𝜖

𝑛
√
𝑇

]
≤ 2𝑒−2𝑚𝑤𝜖2/9𝑛

√
𝑇 .

The same reasoning can be applied to the number of women matched in 𝑆 .

We set 𝜖 =
[

3𝑛
√
𝑇

𝑚𝑤
ln

(
4𝑛3𝑐+1(𝑇 2/32 +𝑇 /8)𝑁

) ]
1/2

. By the inductive hypothesis,𝑚 +𝑤 ≤ 7.5𝑛,

and therefore𝑚𝑤 ≤ (15𝑛/4)2
. We obtain:

6𝑚𝑤𝜖

𝑛
√
𝑇

[
3𝑚𝑤 ln

(
4𝑛3𝑐+1(𝑇 2/32 +𝑇 /8)𝑁

)
𝑛
√
𝑇

]
1/2

=
45

√
3

2

[𝑛 ln

(
4𝑛3𝑐+1(𝑇 2/32 +𝑇 /8)𝑁

)
√
𝑇

]
1/2

,

and 2𝑒−2𝑚𝑤𝜖2/9𝑛
√
𝑇 ⩽

1

2𝑛3𝑐+1(𝑇 2/32 +𝑇 /8)𝑁 .

On adding the bounds for the numbers of men and women, this yields:

Pr

[��∑︁
𝑑∈𝑆

𝑋 (𝑑, 𝜏)
�� ≤ 45

√
3

[𝑛 ln

(
4𝑛3𝑐+1(𝑇 2/32 +𝑇 /8)𝑁

)
√
𝑇

]
1/2

]
≤ 1

𝑛3𝑐+1(𝑇 2/32 +𝑇 /8)𝑁 . (3.8)

Recall that there are 𝑁 strips, at most 𝑛𝑐 rounds, and, for each strip, there are at most (𝑇 2/32+

𝑇 /8) choices of 𝑙 and 𝑟 . Therefore, the total failure probability is at most
1

𝑛2𝑐+1
.

□

Bound on the contribution of 𝑌 to strip 𝑠 . As for 𝑋 , we define 𝑌 (𝑑𝑖, 𝜏, 𝑑 𝑗 , 𝜏′) to be the

portion of 𝑌 (𝑑𝑖, 𝜏) on diagonal 𝑑 𝑗 at time 𝜏′.

Claim3.6.5. With probability at least 1− 1

𝑛2𝑐+1
, for all𝜏′ ⩾ 𝜏 , for every strip 𝑠 ,

�� ∑
𝑑𝑖 ;𝑑 𝑗∈𝑠 𝑌 (𝑑𝑖, 𝜏, 𝑑 𝑗 , 𝜏′)

�� ⩽
2

√︃
3𝑛
2

ln (2𝑇𝑛3𝑐+1).

The proof of this claim is similar in spirit to that of Claim 3.6.4. We defer it to Appendix A.1.6.

122



Remaining 𝑋 and 𝑌 in the market. Next, we want to show that after𝑂 (𝑇 ) time the portions

of 𝑋 and 𝑌 remaining in the market are small.

Claim 3.6.6. 𝑒2
ln 2

log
2
(4/3)

√
𝑇 (

√
𝑇 + log

2
(2𝑛𝑘)) time after their creation, there is only a 1

2𝑛𝑘
fraction of

𝑋 (𝑑, 𝜏) and 𝑌 (𝑑, 𝜏) remaining in the Type 1 strips.

Proof. Consider some 𝑋 (𝑑, 𝜏) or 𝑌 (𝑑, 𝜏) generated in a Type 1 strip.

We first bound

∑
𝑗 :𝑑 𝑗∈𝑠 (2𝐴 𝑗 − 𝐼 𝑗 −𝑋 𝑗 )/4𝑅 for any Type 1 strip 𝑠 . By Theorem 3.9, the total size

of the population is lower bounded by (1/3)𝑛
√
𝑇 . By the inductive hypothesis, any Type 1 strip 𝑠

has total size at most 2.6𝑛. The term
∑
𝑗 :𝑑 𝑗∈𝑠 (2𝐴 𝑗 − 𝐼 𝑗 −𝑋 𝑗 ) is 2 times the total number of women in

strip 𝑠 . By the inductive hypothesis, the number of women in 𝑠 is at most 1.3𝑛 +𝑛/50

√
𝑇 . Lemma

3.3 provides the following upper bound on the probability that a man receives a match in a Type

1 strip:

∑︁
𝑗 :𝑑 𝑗∈𝑠

(2𝐴 𝑗 − 𝐼 𝑗 − 𝑋 𝑗 )
4𝑅

≤ 1

2

·
1.3𝑛 + 𝑛

50

√
𝑇

1

6
𝑛
√
𝑇

<
4

√
𝑇
, as (

√
𝑇 ⩾ 26 by constraint 3.4). (3.9)

Consider any 𝑋 (𝑑, 𝜏, 𝑑′, 𝜏′). If 𝑑′ is in a Type 1 strip then by (3.9) in one step at most
4√
𝑇
of it

disperses to some location in the same strip, and at least 1 − 4√
𝑇
of it moves down distance one.

This implies that in

√
𝑇 /2 time a Type 1 strip loses at least 𝑒−2

of the 𝑋 (𝑑, 𝜏, 𝑑′, 𝜏′) that had been

present within it at time 𝜏′. Let 𝐾1 = 𝑒
2

ln 2. By time 𝜏′ +𝐾1

√
𝑇 /2 at least half of the 𝑋 (𝑑, 𝜏, 𝑑′, 𝜏′)

in a Type 1 strip has moved out of the strip.

We number the Type 1 strips from top to bottom. Let 𝛾 be the distribution of 𝑋 (𝑑, 𝜏) (or

𝑌 (𝑑, 𝜏)) where 𝛾𝑖 is the fraction of 𝑋 (𝑑, 𝜏) (or 𝑌 (𝑑, 𝜏)) in strip 𝑖 . Recall that there are
√
𝑇 Type 1

strips. We consider the worst case: the 𝑋 (𝑑, 𝜏) starts out in the topmost strip. Define a potential

function 𝜙 (𝛾) =
∑√

𝑇
𝑖=1
𝛾𝑖 · 2

√
𝑇−𝑖+1. Any fraction of 𝑋 (𝑑, 𝜏) that has left the bottommost Type 1

strip contributes nothing to the potential. The initial potential is 2

√
𝑇
. Every 𝐾1

√
𝑇 time steps, the

potential decreases by at least 1/4. Therefore, after
1

log
2
(4/3)𝐾1

√
𝑇 log

2
(2

√
𝑇

2𝑛𝑘) time, the potential
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would have reduced to at most
1

2𝑛𝑘
, which means that the fraction of 𝑋 (𝑑, 𝜏) (or 𝑌 (𝑑, 𝜏)) in the

Type 1 strips after
1

log
2
(4/3)𝐾1

√
𝑇 (

√
𝑇 + log

2
(2𝑛𝑘)) time is at most

1

2𝑛𝑘
. □

We will analyze the progress through the Type 2 strips, apart from the bottommost one, in a

similar way. The proof can be found in Appendix A.1.6.

Claim 3.6.7. 𝑒2
ln 2

log
2
(4/3)

√
𝑇 (

√
𝑇 + log

2
(2𝑛𝑘)) + 𝑒12

ln 2

4 log
2
(4/3)𝑇 log

2
(2𝑛𝑘

√
𝑇 ) time after their creation, there

is only 1

𝑛𝑘
fraction of 𝑋 (𝑑, 𝜏) and 𝑌 (𝑑, 𝜏) remaining in any strip other than the bottommost Type 2

strip.

The Total Bound on Imbalance Now we can bound the total imbalance in a strip 𝑠 at time 𝜏′.

Let 𝜅 = 𝑒2
ln 2

log
2
(4/3)

√
𝑇 (

√
𝑇 + log

2
(2𝑛𝑘)) + 𝑒12

ln 2

4 log
2
(4/3)𝑇 log

2
(2𝑛𝑘

√
𝑇 ). We divide the time interval [0, 𝜏′]

into two periods: [0, 𝜏′ − 𝜅] and [𝜏′ − 𝜅 + 1, 𝜏′].

• In the first period, we bound each |𝑋 (𝑑, 𝜏) | and |𝑌 (𝑑, 𝜏) | by 7.5𝑛 as no strip can have more

than 7.5𝑛 agents on it by Lemma 3.6. By Claims 3.6.6 and 3.6.7, the total imbalance for this

period is at most 15𝑛𝑇𝑛𝑐/𝑛𝑘 ;

• For the second period, using Claims 3.6.3, 3.6.4, and 3.6.5, The total imbalance is at most

⌈𝜅⌉ ·
(
192

√︃
𝑛 ln(4𝑛3𝑐+1 (𝑇 2/32+𝑇 /8)𝑁 )√

𝑇
+ 2

√︃
3𝑛
2

ln (2𝑇𝑛3𝑐+1)
)
.

We choose𝑘 = 𝑐+4 and sum themup. We desire that both these contributions to the imbalance

add up to no more than 𝑛/25

√
𝑇 . Using 𝑛 ≥ 𝑇 ≥ 676 (by the constraint (3.4)), we simplify this

condition to conclude that it suffices to have:

𝑛 ≥ (3654 + 2436𝑒12 + 546(𝑒12 + 1)𝑐)2(3𝑐 + 4)𝑇 3(log
2
𝑛)2

ln𝑛.

The details of this calculation can be found in Appendix A.1.6.

Finally, the failure probability of 2/𝑛2𝑐+1
arises from Claims 3.6.4 and 3.6.5, which each have

failure probability at most 1/𝑛2𝑐+1
.
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□

3.6.1.6 Initialization

Theorem 3.16. Suppose that constraint (3.4) holds. If all agents follow the modified reasonable

strategy, then 𝐻 (
√
𝑇 ) holds with probability at least 1 − 1

𝑛𝑐+1
.

The proof is similar to the earlier analysis and can be found in Appendix A.1.7.

3.7 Numerical Simulations

We have demonstrated a strategy which is asymptotically close to optimal with regard to mini-

mizing the average loss experienced by agents. Complementing this, in this section we simulate

the evolution of the system for moderately large values of 𝑛 and𝑇 . In order to gain a sense of the

overall stability of the system, we track the total population over time.

We now discuss some observations based on our simulations.
4

Figure 3.2: The evolution of total population
over time in the discrete (blue) and continuum
(orange) settings for 𝑛 = 500,𝑇 = 100, using the
reasonable strategy.

Figure 3.3: The evolution of total population
over time in the discrete (blue) and continuum
(orange) settings for 𝑛 = 500,𝑇 = 100, using the
modified reasonable strategy.

4
For every pair of 𝑛 and𝑇 that we considered in the discrete setting, we ran the simulation 10 times; letting each

run for 2000 iterations. The error ranges mentioned below are obtained from the range of values we obtained over

these 10 runs. The values for each run can be found in Appendix A.2.
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For the continuummodel we obtain reasonably rapid convergence—in about𝑇 time—whereas

for the discrete model in a similar time the system reaches its long-term average value, but with

somewhat chaotic oscillations about this value, as shown in Figures 3.2 and 3.3. In addition, the

long-term average population for the discrete case is a bit larger than the continuum equilibrium

value. (This is not surprising, for both variance andmale/female imbalances will reduce thematch

rate.)

For moderate values of 𝑛 and𝑇 , the average loss in the modified reasonable strategy is better

than the asymptotic bound we obtain. For example, consider the 𝑛 = 500, 𝑇 = 100 case. We

prove an upper bound on the total loss of 11𝑇
√
𝑇 but the simulation achieves an average loss of

just 2.21𝑇
√
𝑇 (±1.7%). The total populations are significantly closer (an upper bound of close to

1.5𝑛𝑁 in our theorem vs. close to 𝑛
√
𝑇 in the simulation).

For the case where agents use the modified reasonable strategy, we also examine the average

population size and average loss for various 𝑇 (with 𝑛 fixed at 500). Figure 3.4 shows a plot of

Average Population/𝑛
√
𝑇 and Average Loss/

√
𝑇 for five different values of 𝑛. The result is quite

consistent with the 𝑛
√
𝑇 scaling of the average total size and the

√
𝑇 scaling of the average loss

that we prove hold asymptotically, even though these are only moderately large values of 𝑛 and

𝑇 , and even though we are not in the 𝑛 much greater than 𝑇 regime of our analysis.

Finally, we examine the population on a "typical" diagonal
5
in the case that all agents are fol-

lowing the modified strip strategy (Figure 3.5). Notice that the range of oscillations for this value

is large compared to the range of oscillations in the total population (Figure 3.3). Furthermore,

these oscillations proceed at a much faster rate than the changes in the overall population. The

results also indicate that while the system remains within reasonable bounds, there is substantial

ongoing variation, particularly at a local level.

5
Here we consider the diagonal region with width 1 that starts at value 3𝑇 /2 at the top (𝑡 = 0) boundary.
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Figure 3.4: Average Population/𝑛
√
𝑇 (blue)

and Average Loss/
√
𝑇 (red) for five values of 𝑇 ,

using the modified reasonable strategy.

Figure 3.5: The evolution of the population on
a "typical diagonal" over time in the discrete
setting (for 𝑛 = 500, 𝑇 = 100), using the modi-
fied reasonable strategy.

3.8 Open Problems

Two natural extensions of our model come to mind.

• The values in our model are common to all agents, but in reality agents will have individual

preferences. This could be captured with a model in which each agent 𝑎 has a value for

agent 𝑏 given by 𝑣𝑎 +𝑤𝑎,𝑏 , where 𝑣𝑎 is a common public value while𝑤𝑎,𝑏 is an idiosyncratic

private value of 𝑎 for 𝑏. The combining of public and private values has been studied in the

literature on matchings in other settings [Ashlagi et al. 2019; Lee 2016].

• In our model, agents receive match proposals that are generated by choosing agents from

the other side of the market uniformly at random. It would be interesting to consider a

more sophisticated method of recommending matches, with recommended matches being

localised in value and time around the agent.

Another intriguing direction concerns the stability of this system. We have shown that if the

agents play the modified reasonable strategy then with high probability the strip sizes, the total

size, and the imbalance between men and women in any strip, all remain within some range. But
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we conjecture that if any of these parameters were to have a large deviation which took it outside

its typical range, then with high probability it would soon return to being within this range.

Finally, the Bayes-Nash Equilibrium strategy for the agents seems likely to be highly complex

and dependent on the local populations throughout the system. Characterizing this equilibrium,

as well as the loss bounds that can be achieved in such an equilibrium setting (or a simpler and

perhaps more plausible 𝜖-Bayes-Nash Equilibrium setting), remain open questions.
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4 | Conclusion

As mentioned in Chapter 1, several mechanisms that have poor worst case guarantees seem to

work quite well in practice. An underlying theme of this thesis has been to characterize situations

where simple/commonly used matching algorithms appear to result in reasonable outcomes and

to explain why they do so. We also sought to explain people’s behaviour and/or provide useful

advice in the form of simple strategies that agents can follow that have a high probability of

yielding reasonably good matches.

In Chapter 2 we studied the stable matching problem in the public-private setting introduced

by Lee [Lee 2016]. The two basic questions we sought to address are:

• Why does the deferred acceptance algorithm seem to work well even when agents submit

short preference lists?

• Given that agents submit short preference lists, which prospective partners should they

include?

We showed that, for a fairly general class of utility functions, in every stable matching, all

but the bottom 𝜖 fraction of agents (as per their public rating) will be matched with an agent

having a ranking (as per their public rating) close to their own. We considered a benchmark

utility for each agent; we set the benchmark for an agent as the utility derived from matching

with someone with the same ranking as per their public rating and the best possible private value.

We showed that, in every stable matching, all but the bottom most agents obtain a match that
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yields utility close to their benchmark. We generalized these results to the many to one setting

and also showed that our bounds are close to tight. Finally, we were able to demonstrate an 𝜖-

Bayes-Nash equilibrium where all but the bottommost agents make only Θ(ln𝑛) proposals and

no agent makes more than Θ(ln2 𝑛) proposals. Once again, in this approximate equilibrium, the

agents propose to agents with similar public rating.

Our results point toward a rather intuitive answer to the question of which prospective part-

ners an agent should apply to: it suffices to apply to their favourite prospective partners with a

similar ranking as per public rating. This is because applying to a few prospective partners that

are ranked about as highly as you are publicly perceived to be ranked suffices to obtain a utility

which is close to the best you could achieve in any stable matching.

In Chapter 3 we studied a different setting; we considered a dynamic matching market where,

at each time step, agents are paired up at random and can choose either to accept the pairing

or to reject the pairing. A match occurs only if both agents choose to accept the pairing. We

investigated how agents should behave when faced with the task of finding a match when they

have to balance the trade-off between exploring for better matches and accepting a match now

so as to enjoy a match for a longer period of time.

In our model, each agent has an individual value 𝑣𝑖 and the same total lifetime 𝑇 . The utility

an agent obtains from a match is the value of their partner multiplied by the duration of the

match, which is the minimum of their and their partner’s remaining lifetimes. While this is quite

a crude approximation of any real world setting, it still captures important qualitative features of

agent behaviour: for example, as might be expected, it turns out that the agents should get less

picky with time.

For an agent 𝑖 we considered 𝑣𝑖 ·𝑇 as a benchmark for the utility. This corresponds to the utility

the agent would derive if they were matched with an agent with the same value as themselves

for the maximum possible duration. We provided a simple strategy, which if followed by all the

agents, results in a low average loss for the agents, when the losses are computed with respect
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to the above defined benchmark. We also proved that our upper bound on the average loss is

tight up to a constant factor. While our strategy yields low average loss if all agents follow it,

characterizing a Nash equilibrium solution, ideally where the average loss is still low, remains

open.
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A | Appendices

A.1 Deferred Proofs from Section 3.6

Proof. (Of Lemma 3.6.) We complete the sketch proof by bounding the failure probability. Per

time step, Theorems 3.9, 3.10, 3.12, 3.13 all have failure probability of at most 1/𝑛2𝑐+1
, Theo-

rem 3.15 has failure probability at most 2/𝑛2𝑐+1
, and Theorem 3.16, which is applied once, has

failure probability at most 1/𝑛𝑐+1
. Theorem 3.14 does not introduce any additional possibility

of failure. Multiplying by the 𝑛𝑐 possible time steps, gives a total failure probability of at most

7/𝑛𝑐+1 < 1/𝑛𝑐 . □

A.1.1 Upper Bound on Loss due to a Match

Proof. (of Lemma 3.7). Consider an agent (Agent 1) at value 𝑣 and time 𝑡 . Suppose they match

with another agent (Agent 2) who is present in the same strip. The worst location for Agent 2 is

to be on the low value strip boundary, and on this boundary to be at one of the endpoints.

Type 1 strip. If Agent 2 is at the top endpoint, Agent 1 obtains utility 𝑤 · 𝑇 − 𝑡 , where 𝑤 is the

value at the top endpoint. We can see that𝑤 ⩾ 𝑣−
√
𝑇 −2𝑡 (move from 𝑣 horizontally to the lower

boundary, a distance of at most

√
𝑇 and then move up to the 𝑡 = 0 location, which subtracts 2𝑡

from the value). Thus the utility Agent 1 receives is at least (𝑇 − 𝑡) (𝑣 −
√
𝑇 − 2𝑡). Therefore the

loss is at most 𝑡 (𝑣 + 2𝑇 +
√
𝑇 ) ⩽ 4𝑡𝑇 + 2𝑇

√
𝑇 .

If Agent 2 is at the lower endpoint of a Type 1 strip, we argue as follows. The 𝑣 ·𝑇 − 𝑡 product
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is equal at the two endpoints of a boundary, and therefore the loss is greatest at the top endpoint,

for the utility garnered by Agent 1 would be 𝑤 · (𝑇 − 𝑡) and not 𝑤 · 𝑇 , whereas at the bottom

endpoint the garnered utility is 2𝑇 ·𝑤/2 = 𝑤𝑇 .

Type 2 Strip. We define the following 𝑡 values: 𝑎 is the value for the left end of the top boundary

of the strip, 𝑏 the value for the left end of the bottom boundary. and 𝑐 the value for the right end

of the bottom boundary, Then 𝑎 ⩽ (2𝑡 +𝑇 − 𝑣)/2, 𝑏 ≤ 2𝑎 +
√
𝑇 , and 𝑐 = 𝑇 /2 + 𝑏 ≤ 𝑇 /2 + 2𝑎 +

√
𝑇 .

If Agent 2 is at the lower endpoint, then Agent 1 would receive utility 2𝑇 · (𝑇 − 𝑐) ⩾ 2𝑇 (𝑣 −

𝑇 /2 − 2𝑡 −
√
𝑇 ). Thus the loss is at most 𝑇 (𝑇 − 𝑣) + 4𝑡𝑇 + 2𝑇

√
𝑇 ⩽ 4𝑡𝑇 + 2𝑇

√
𝑇 .

If Agent 2 is at the top endpoint and Agent 1 is older than Agent 2, then Agent 1 receives

utility 𝑇 (𝑇 − 𝑡). As we are in a Type 2 strip, (𝑣 −𝑇 ) ⩽ 2𝑡 or 𝑣 ⩽ 𝑇 + 2𝑡 . So Agent 1 incurs a loss

of at most 𝑣𝑇 −𝑇 (𝑇 − 𝑡) ⩽ (𝑇 + 2𝑡)𝑇 −𝑇 (𝑇 − 𝑡) ⩽ 3𝑡𝑇 .

While if Agent 1 is no older than Agent 2, then Agent 1 receives utility𝑇 (𝑇 −𝑏) ⩾ 𝑇 (𝑣 − 2𝑡 −
√
𝑇 ). Thus the loss is at most 𝑣𝑇 −𝑇 (𝑣 − 2𝑡 −

√
𝑇 ) = 2𝑇𝑡 +𝑇

√
𝑇 . □

A.1.2 Lower Bound on the Total Population

Proof. (of Theorem 3.9) The agents enter with one of 𝑇 values chosen uniformly at random and

are equally likely to be men or women. Hence, for all 𝑛𝑐 time steps, for each value 𝑣 ,

Pr

[
At most

𝑛(1 + 𝜖)
2𝑇

men enter with value 𝑣

]
≥ 1 − 𝑛𝑐𝑇𝑒− 𝜖2𝑛

6𝑇 .

Call this event E. Henceforth we condition on E.

Let’s consider those agents that enter at times in the range [𝜏 −
√
𝑇 + 1, 𝜏] for some 𝜏 ⩽ 𝑛𝑐 .

We want to lower bound the number of these agents who are present in the pool for the match

at time 𝜏 .

In fact, henceforth, We will only consider men with values in the range [𝑇 +
√
𝑇, 2𝑇 ). Among

these men, consider those who have been in the pool for 𝑡 time, where 0 ⩽ 𝑡 <
√
𝑇 . Let 𝑝𝑡𝑖 be
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the probability that during their 𝑡 th time step, the men in strip 𝑖 are offered a match in their own

strip. Even if all these men were still present in the matching pool,

Pr

[
# of these men matched in strip 𝑖 at age 𝑡 ⩽

𝑛(1 + 𝛿) (1 + 𝜖) · 𝑝𝑖 ·𝑤𝑖
2𝑇

]
≥ 1 − 𝑒−

𝛿2𝑛𝑝𝑖𝑤𝑖
6𝑇 ,

where𝑤𝑖 is the horizontal width of strip 𝑖 occupied by these men when aged 𝑡 . For every Type 1

strip, 𝑤𝑖 ⩽
√
𝑇 . For the one Type 2 strip, since all values are at least 𝑇 +

√
𝑇 , for ages up to

√
𝑇 ,

𝑤𝑖 ⩽
√
𝑇 . By applying 𝜇 =

𝑛(1+𝜖) max{𝑝𝑖 , 1

𝑇
}
√
𝑇

2𝑇
in Lemma 3.5, it follows that:

Pr

[
# of these men matched in strip 𝑖 at age 𝑡 ⩽

𝑛(1 + 𝛿) (1 + 𝜖) · max{𝑝𝑖, 1

𝑇
}

2

√
𝑇

]
≥ 1 − 𝑒−

𝛿2𝑛 max{𝑝𝑖 , 1

𝑇
}
√
𝑇

6𝑇 ≥ 1 − 𝑒−
𝛿2𝑛

6𝑇 1.5 ,

The sum of the match probabilities—the 𝑝𝑖s— is at most 1. Notice that at any fixed time we

only need to consider

√
𝑇 strips, because at any time step, the men we are considering will occupy

only

√
𝑇 many strips. This implies

∑
max{𝑝𝑖, 1

𝑇
} ≤ 1 + 1√

𝑇
. Therefore,

Pr

[
# of these men being matched

over all the strips at age 𝑡

⩽
(1 + 1√

𝑇
)𝑛(1 + 𝛿) (1 + 𝜖)

2

√
𝑇

]
≥ 1 −

√
𝑇 · 𝑒−

𝛿2𝑛

6𝑇 1.5 .

Hence, we can bound the probability of the number of men who entered at time 𝜏 −Δ + 1 and

left by time 𝜏 , for any Δ ⩽
√
𝑇 , as follows:

Pr

[
# men being matched

in their first Δ steps

⩽
(1 + 1√

𝑇
)𝑛Δ(1 + 𝛿) (1 + 𝜖)

2

√
𝑇

]
≥ 1 − Δ𝑇 · 𝑒−

𝛿2𝑛

6𝑇 1.5 .

Consequently, we can bound the probability for the number of men that enter in the time

interval [𝜏 −
√
𝑇 + 1, 𝜏 − 1] and are matched no later than time 𝜏 − 1 as follows, where we sum
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over all 𝜏 ⩽ 𝑛𝑐 :

Pr

[
# men who entered and were

matched in a

√
𝑇 − 1 time window

⩽
(1 + 1√

𝑇
)𝑛(1 + 𝛿) (1 + 𝜖) (

√
𝑇 − 1)

4

]
≥ 1 − 1

2

𝑛𝑐𝑇 1.5𝑒
− 𝛿2𝑛

6𝑇 1.5 .

We set 𝛿 =

[
6𝑇 1.5

𝑛
ln

(
10𝑛2𝑐+1𝑛𝑐𝑇 1.5

) ]1/2

and 𝜖 =

[
6𝑇
𝑛

ln

(
20𝑛2𝑐+1𝑛𝑐𝑇

) ]1/2

. By constraint (3.4),

𝑐 ≥ 1, 400 ≤ 𝑇 ≤ 𝑛, and 𝑛 ≥ 96𝑇 2(3𝑐 + 3) ln𝑛, therefore 𝛿 ≤ 1/4 and 𝜖 ≤ 1/64. This yields the

bound:

Pr

[
# men who entered in a

√
𝑇 − 1

window being matched

⩾
65

64
· 5

4
𝑛
√
𝑇

4

]
≥ 1 − 1

20𝑛2𝑐+1
.

Since we have been conditioning on E, this bound holds with probability at least 1 − 1

10𝑛2𝑐+1
.

The same bound applies to the women.

Recalling that we excluded the men with values less than 𝑇 +
√
𝑇 , this yields the following

lower bound on the total population size, throughout this 𝑛𝑐 time period:

𝑛
√
𝑇 − 𝑛(1 + 𝜖)

2

√
𝑇

− 0.635𝑛
√
𝑇 ≥ 1

3

𝑛
√
𝑇,

with probability at least 1 − 1

5𝑛2𝑐+1
. □

A.1.3 Upper Bound on The Total Population

Proof. (Of Theorem 3.10.) Let 𝑃 (𝑡) be the total population at the start of time step 𝑡 . Let 𝑁 be

the total number of strips. By Constraint 3.4, 𝑇 ≥ 676, so 𝑁 ≤
√
𝑇 + log

2

√
𝑇 + 1 ≤ 5

√
𝑇 /4.

If 𝑃 (𝑡) ⩽ 3

2
𝑛𝑁 , then 𝑃 (𝑡 + 1) ⩽ 3

2
𝑛𝑁 + 𝑛. So we will only consider the case that 𝑃 (𝑡) > 3

2
𝑛𝑁 .

In this case, the average strip population at the start of step 𝑡 is more than
3

2
𝑛.
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Next, we upper bound the number of men in the population; the same bound applies to the

number of women.

By 𝐻 (𝑡), clause 5, the excess of men over women in each strip is at most 𝑛/25

√
𝑇 except for

the last Type 2 strip. So the excess over all these 𝑁 − 1 strips is at most 𝑛(𝑁 − 1)/25

√
𝑇 . For the

last Type 2 strip, the population is less than 60𝑛/
√
𝑇 which is smaller than 40𝑃 (𝑡)/676 as𝑇 ≥ 676.

Consequently, there are at most 𝑃 (𝑡)/2 + 𝑛𝑁 /50

√
𝑇 + 20𝑃 (𝑡)/676 ⩽ 11𝑃 (𝑡)/20 men in the total

population.

The expected number of matches in strip 𝑖 , 𝜇𝑖 , is given by

𝐸 [𝜇𝑖] =
( number of women in strip 𝑖) × ( number of men in strip 𝑖)

number of men in the whole population

.

Let 𝑠𝑖 denote the population of the 𝑖-th strip. The denominator is at most
11

20
𝑃 (𝑡) and at least

1

2
𝑃 (𝑡). The numerator is minimized when the number of women and men in the strip are as far

apart as possible. So, for the strips other than the last Type 2 strip, the numerator is at least

(𝑠𝑖/2 + 𝑛/50

√
𝑇 ) (𝑠𝑖/2 − 𝑛/50

√
𝑇 ) = 𝑠2

𝑖 /4 − 𝑛2/2500𝑇 2
. The numerator is maximized when the

numbers of women and men are equal. Therefore,

𝑠2

𝑖 /4 − 𝑛2/2500𝑇 2

11

20
𝑃 (𝑡)

≤ 𝐸 [𝜇𝑖] ≤
𝑠2

𝑖

2𝑃 (𝑡) . (A.1)

Consider an indicator random variable 𝑋𝑖 for each man in this strip, which is 1 if that man

gets matched. By Lemma 3.4 we can use a Chernoff bound to obtain:

Pr

[
number of matches in strip 𝑖 ≤ 𝜇𝑖 (1 − 𝜖)

]
≤ 𝑒−𝜖2𝜇𝑖/2. (A.2)

For 𝐸 [𝜇𝑖] ⩾ 𝛼𝑛/
√
𝑇 ,

Pr

[
number of matches in strip 𝑖 ≤ 𝐸 [𝜇𝑖] (1 − 𝜖)

]
≤ 𝑒−𝜖2𝐸 [𝜇𝑖 ]/2 ≤ 𝑒−𝜖2𝛼𝑛/(2

√
𝑇 ) .
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Let 𝜖 =

√︃
2

√
𝑇

𝛼𝑛
ln(𝑁𝑛2𝑐+1). Then Pr

[
number of matches in strip 𝑖 ≤ 𝜇𝑖 (1 − 𝜖)

]
≤ 1

𝑁𝑛2𝑐+1

For 𝐸 [𝜇𝑖] < 𝛼𝑛/
√
𝑇 , let 𝜖 = 𝜃

𝐸 [𝜇𝑖 ] , then (A.2) becomes

Pr

[
number of matches in strip 𝑖 ≤ 𝐸 [𝜇𝑖] − 𝜃

]
≤ 𝑒−𝜃2/(2𝐸 [𝜇𝑖 ]) ≤ 𝑒−𝜃2

√
𝑇 /(2·𝛼𝑛) .

Let 𝜃 =
√︃

2𝛼𝑛√
𝑇

ln(𝑁𝑛2𝑐+1) = 𝛼𝜖 𝑛√
𝑇
, then Pr

[
number of matches in strip 𝑖 ≤ 𝜇𝑖 − 𝜃

]
≤ 1

𝑁𝑛2𝑐+1

Let NL be the set of all strips except for the last Type 2 strip. Then, with probability at least

1 − 1

𝑛2𝑐+1
, the number of matches is larger than (1 − 𝜖)∑𝑖∈NL 𝐸 [𝜇𝑖] − 𝑁𝜃 . In addition, by (A.1),∑

𝑖∈NL 𝐸 [𝜇𝑖] is lower bounded by:

∑︁
𝑖∈NL

𝑠2

𝑖 /4 − 𝑛2/2500𝑇 2

11

20
𝑃 (𝑡)

≥
∑︁
𝑖∈NL

1

4

(
9𝑃 (𝑡)
10𝑁

)
2

− 𝑛2/2500𝑇 2

11

20
𝑃 (𝑡)

≥
(

81

220

𝑃 (𝑡)
𝑁

− 𝑛2𝑁

1375𝑇 2𝑃 (𝑡)

)
≥

(
243

440

𝑛 − 2𝑛

4125𝑇 2

)
≥ 11

20

𝑛.

The first inequality follows as

∑
𝑖∈NL 𝑠𝑖 ⩾

9

10
𝑃 (𝑡), and the next to last inequality follows as 𝑃 (𝑡) ≥

3

2
𝑛𝑁 . Let 𝛼 = 0.4. Since 𝜖 ≤ 1

22
, as 𝑛 ≥ 2420

√
𝑇 (2𝑐 + 2) ln𝑛, and 𝑁𝜃 ≤ 5

4
𝛼𝜖𝑛, as 𝑁 ≤ 5

4

√
𝑇 and

𝜃 = 𝛼𝜖𝑛/
√
𝑇 ,

(1 − 𝜖)
∑︁
𝑖∈NL

𝐸 [𝜇𝑖] − 𝑁𝜃 ≥ (1 − 𝜖) 11

20

𝑛 − 5

4

𝛼𝜖𝑛 ≥ 𝑛

2

.

This means the total number of people matched in the market is greater than 𝑛, which is the

number of people entering, which completes the proof.

□
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A.1.4 Upper Bound on the Size of a Type 1 Strip.

Proof. (Of Theorem 3.12) Consider any Type 1 strip 𝑠 . For any two points (𝑣, 𝑡1) and (𝑣, 𝑡2) in 𝑠

which have the same value 𝑣 , we have |𝑡2 − 𝑡1 | ≤
√
𝑇
2
. Let 𝑠′ be the strip immediately to the right

of 𝑠 .

We are going to lower bound the number of matches in time step 𝑡 . Let’s consider the agents

who will be in strip 𝑠 at time 𝑡 +1. They will all enter 𝑠 during a length
√
𝑇 /2 time interval ending

at time 𝑡 + 1.

Let 𝑃
𝑡−

√
𝑇+1

be the agents in strip 𝑠′ at time 𝑡 −
√
𝑇 . By the inductive hypothesis, applied to 𝑠′

at time 𝑡 −
√
𝑇 , we know that |𝑃

𝑡−
√
𝑇+1

| ⩽ 𝑑𝑛. We are going to track the subset of these agents

who remain in the system after each step of matches, for the next

√
𝑇 steps, along with the new

agents who join the diagonals used by this subset of agents. Define 𝑆
𝑡−

√
𝑇+𝑖 to be the rightmost

√
𝑇 + 1 − 𝑖 diagonals in 𝑠′ plus the leftmost 𝑖 − 1 diagonals in 𝑠 , for 1 ⩽ 𝑖 ⩽

√
𝑇 + 1. Let 𝑃

𝑡−
√
𝑇+𝑖

be the population occupying 𝑆
𝑡−

√
𝑇+𝑖 at the start of step 𝑡 −

√
𝑇 + 𝑖 . Then 𝑃

𝑡−
√
𝑇+𝑖+1

is obtained

from 𝑃
𝑡−

√
𝑇+𝑖 by removed matched agents and then adding the new agents for the diagonals in

𝑆
𝑡−

√
𝑇+𝑖+1

. Our analysis will show that, with high probability, for each of these

√
𝑇 steps, the

number of matches is at least the number of new agents. This implies the upper bound on the

strip population continues to hold.

By means of a Chernoff bound, we observe that the number of new agents per step can be

bounded with high probability as follows:

Pr

[
# new agents ≤ 𝑛

√
𝑇
(1 + 𝛿)

]
⩾ 1 − 𝑒−

𝑛𝛿2

3

√
𝑇 . (A.3)

Let 𝛿 =

√︃
3

√
𝑇
𝑛

ln(𝑁𝑛2𝑐+1). As 𝑛 ⩾ 60𝑇 (2𝑐 + 2) ln𝑛, 𝛿 ≤ 1

20
, which yields

Pr

[
# new agents ≤ 41𝑛

40

√
𝑇

= 1.025

𝑛
√
𝑇

]
⩾ 1 − 1

𝑁𝑛2𝑐+1
. (A.4)
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By (3.6), the maximum of the number of men and number of women in the market is at most

𝑛
√
𝑇 .

Let 𝑃𝑡 ′′,𝑠 and 𝑃𝑡 ′′,𝑠 ′ be the portions of population 𝑃𝑡 ′′ at time 𝑡 ′′ in strips 𝑠 and 𝑠′, resp., for

𝑡 + 1 −
√
𝑇 ⩽ 𝑡 ′′ ⩽ 𝑡 .

By Lemma 3.11, the matches remove at least the following number of people from 𝑃𝑡 ′′,𝑠 :

( |𝑃𝑡 ′′,𝑠 |2)/2 − (𝑛/25

√
𝑇 )2/2

𝑛

√
𝑇 =

|𝑃𝑡 ′′,𝑠 |2 − 𝑛2/625𝑇

2𝑛
√
𝑇

A similar bound applies to the matches involving 𝑃𝑡 ′′,𝑠 ′ . To minimize the terms |𝑃𝑡 ′′,𝑠 ′ |2/2𝑛
√
𝑇

for 𝑃𝑡 ′′,𝑠 and 𝑃𝑡 ′′,𝑠 ′ , we should make them equal. Thus the expected number of matches of popu-

lation 𝑃𝑡 ′′ is at least

|𝑃𝑡 ′′ |2

4𝑛
√
𝑇

− 𝑛

625𝑇
√
𝑇
. (A.5)

Next, we want to obtain a high probability bound.

There are four sets of people, resp. the men and women in each of 𝑃𝑡 ′′,𝑠 and 𝑃𝑡 ′′,𝑠 ′ . Let 𝜇 be the

number of matches of one set. If 𝐸 [𝜇] ≥ 𝛼𝑛√
𝑇
, then

Pr

[
𝜇 ⩾ 𝐸 [𝜇] (1 − 𝜖)

]
⩾ 1 − 𝑒−(𝐸 [𝜇]𝜖2)/2 ⩾ 1 − 𝑒−𝜖2𝛼𝑛/(2

√
𝑇 )

;

letting 𝜖 =

√︃
2

√
𝑇

𝛼𝑛
ln(4𝑇𝑛2𝑐+1) yields Pr

[
𝜇 ⩾ 𝐸 [𝜇] (1 − 𝜖)

]
⩾ 1 − 1

4𝑇𝑛2𝑐+1
.

Otherwise, 𝐸 [𝜇] ≤ 𝛼𝑛√
𝑇
, and

Pr

[
𝜇 ⩾ 𝐸 [𝜇] − 𝜃

]
⩾ 1 − 𝑒−(𝜃2)/(2𝐸 [𝜇]) ⩾ 1 − 𝑒−(

√
𝑇𝜃2)/(2𝛼𝑛)

;

setting 𝜃 =

√︂
2𝛼𝑛√
𝑇

ln

(
4

√
𝑇𝑛2𝑐+1

)
= 𝛼𝜖 𝑛√

𝑇
yields Pr

[
𝜇 ⩾ 𝐸 [𝜇] − 𝜃

]
⩾ 1 − 1

4𝑇𝑛2𝑐+1
.
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Recall (A.4), the high probability bound that the number of new agents is at most 1.025
𝑛√
𝑇
.

By (A.5), the number of people matched is at least (1 − 𝜖)
[
|𝑃𝑡 ′′ |2
4𝑛
√
𝑇
− 𝑛

625𝑇
√
𝑇

]
− 4𝜃 . Recall that

|𝑃𝑡 ′′ | ≤ 𝑑𝑛; we let 𝑥 = 𝑑𝑛 − |𝑃𝑡 ′′ |. Then, the number of people left is at most:

𝑑𝑛 − 𝑥 −
[
(1 − 𝜖)

[
(𝑑𝑛 − 𝑥)2

3𝑛
√
𝑇

− 𝑛

625𝑇
√
𝑇

]
− 4𝜃

]
≤ 𝑑𝑛 −

[
(1 − 𝜖)

[
(𝑑𝑛)2

4𝑛
√
𝑇

− 𝑛

625𝑇
√
𝑇

]
− 4𝜃

]
,

if 1 ≥ (1 − 𝜖)𝑑/2

√
𝑇 . This number is upper bounded by 𝑑𝑛 − (1 − 𝜖) (𝑑2

4
− 1

422,500
) 𝑛√

𝑇
+ 4𝛼𝜖 𝑛√

𝑇

as 𝑇 ≥ 676 and |𝑃𝑡 ′′ | ≥ 𝑑𝑛. Let 𝑑 = 2.6 and 𝛼 = 3

16
. Also, 𝜖 ≤ 1

10
as 𝑛 ⩾ 27(2𝑐 + 2)𝑇 ln𝑛 and

676 ⩽ 𝑇 ≤ 𝑛. A final calculation shows that (1 − 𝜖) (𝑑2

4
− 1

422,500
) 𝑛√

𝑇
− 4𝛼𝜖 𝑛√

𝑇
is at least 1.025

𝑛√
𝑇
,

demonstrating the result.

□

A.1.5 Upper Bound on the Size of a Type 2 Strip

Proof. (of Theorem 3.13)

Consider any Type 2 strip s. If 𝑠 is the topmost Type 2 strip, clearly we can upper bound its

size by twice the bound on the size of a Type 1 strip given in Theorem 3.12. In addition, if 𝑠 is

the Type 2 strip next to the topmost Type 2 strip, then the size of strip 𝑠 is less than that of the

topmost Type 2 strip at time 𝑡 + 1 −
√
𝑇 , which completes the proof for this strip too.

We now assume that 𝑠 has at least two Type 2 strips above it. Let 𝑠′ be the strip immediately

above 𝑠 , and let ℎ denote the height of 𝑠 . Then the height of 𝑠′ is ℎ/2 and ℎ ≥
√
𝑇 .

Let’s consider the agents who will be in strip 𝑠 at time 𝑡 + 1. They will all enter 𝑠 during a

length ℎ time interval ending at time 𝑡 + 1. They can be partitioned into two sets as follows:

• 𝑌𝑡+1 = {agents that will have spent less than ℎ/2 time in strip 𝑠 by time 𝑡 + 1}. .

• 𝑂𝑡+1 = {agents that will have spent at least ℎ/2 time steps in strip 𝑠 by time 𝑡 + 1}.

The agents in 𝑌𝑡+1 were all present at time 𝑡 ′ = 𝑡 + 1 − ℎ/2 as part of the population of strip
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𝑠′ at that time. By the inductive hypothesis, applied to 𝑠′ at time 𝑡 ′, we know that there were at

most 2g𝑛
√
𝑇 /ℎ agents in 𝑠′ at that time. Let 𝑃𝑦 denote this population. The agents in 𝑂𝑡+1 were

all present at time 𝑡 ′ = 𝑡 + 1 −ℎ as part of the population of strip 𝑠′ at that time. By the inductive

hypothesis, applied to 𝑠′ at time 𝑡 ′, we know that there were at most 2g𝑛
√
𝑇 /ℎ agents in 𝑠′ at that

time. Let 𝑃𝑜 denote this population.

Let 𝑃
𝑦

𝑡 ′′,𝑠 and 𝑃
𝑦

𝑡 ′′,𝑠 ′ be the remainder of population 𝑃𝑦 at time 𝑡 ′′ in strips 𝑠 and 𝑠′, resp., for

𝑡 + 1 −
√
𝑇 ⩽ 𝑡 ′′ ⩽ 𝑡 . Also, let 𝑃

𝑦

𝑡 ′′ = 𝑃𝑡 ′′,𝑠 ∪ 𝑃𝑡 ′′,𝑠 ′ . Similarly, define 𝑃𝑜
𝑡 ′′,𝑠 , 𝑃

𝑜
𝑡 ′′,𝑠 ′ and 𝑃

𝑜
𝑡 ′′ .

To this end, we need to compute lower bounds on the match rates.

By (3.6), the maximum of the number of men and number of women in the market is at most

𝑛
√
𝑇 .

We divide the period [𝑡 + 1 − ℎ, 𝑡 + 1) into two phases; Phase 1, [𝑡 + 1 − ℎ, 𝑡 + 1 − ℎ/2), and

Phase 2, [𝑡 + 1 − ℎ/2, 𝑡 + 1). We will show that the size of 𝑃
𝑦

𝑡 ′′ at the end of Phase 1 is at most

g
1
𝑛
√
𝑇 /ℎ. We will specify g

1
later. Then, at the start of Phase 2 the size of 𝑃𝑜 ∪ 𝑃𝑦 is at most

2g𝑛
√
𝑇 /ℎ + g

1
𝑛
√
𝑇 /ℎ. We claim that after Phase 2, the size of 𝑃𝑜 ∪ 𝑃𝑦 is at most g𝑛

√
𝑇 /ℎ.

We analyze Phase 1 first. Consider the set 𝑃𝑜
𝑡 ′′,𝑠 and time 𝑡 ′′ ∈ [𝑡 + 1 − ℎ, 𝑡 + 1 − ℎ/2).

By Lemma 3.11, at time 𝑡 ′′ thesematches remove, in expectation, at least the following number

of people from 𝑃𝑜
𝑡 ′′,𝑠 :

|𝑃𝑜
𝑡 ′′,𝑠 |2 − 𝑛2/625𝑇

2𝑛
√
𝑇

(A.6)

Similar bounds will hold for the sets 𝑃𝑜
𝑡 ′′,𝑠 ′ . Notice that the total expected number of matches

from 𝑃𝑜
𝑡 ′′ isminimized if |𝑃𝑜

𝑡 ′′,𝑠 | = |𝑃𝑜
𝑡 ′′,𝑠 ′ |. Thuswe obtain that the size of 𝑃𝑜𝑡 ′′ reduces, in expectation,

by at least

|𝑃𝑜
𝑡 ′′ |2

4𝑛
√
𝑇

− 𝑛

625𝑇
√
𝑇
. (A.7)

As in the analysis for the Type 1 strip, we then give a high probability bound. We have four

sets of people, the men and the women in the sets 𝑃𝑜
𝑡 ′′,𝑠 ′ and 𝑃

𝑜
𝑡 ′′,𝑠 , respectively. Suppose 𝜇 be the
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number of matches in one of these set at time 𝑡 ′′.

If 𝐸 [𝜇] ≥ 𝛼𝑛
√
𝑇 /ℎ2

, by Lemma 3.4,

Pr

[
𝜇 ⩾ 𝐸 [𝜇] (1 − 𝜖)

]
⩾ 1 − 𝑒−(𝐸 [𝜇]𝜖2)/2 ⩾ 1 − 𝑒−𝜖2𝛼𝑛

√
𝑇 /2ℎ2

,

Setting 𝜖 =

[
2ℎ2

𝛼𝑛
√
𝑇

ln

(
𝑇 (log

2

√
𝑇 + 1)𝑛2𝑐+1

)] 1

2

yields Pr

[
𝜇 ⩾ 𝐸 [𝜇] (1−𝜖)

]
⩾ 1− 1

𝑇 (log
2

√
𝑇+1)𝑛2𝑐+1

.

Otherwise, 𝐸 [𝜇] ≤ 𝛼𝑛
√
𝑇 /ℎ2

, so by Lemma 3.4,

Pr

[
𝜇 ⩾ 𝐸 [𝜇] − 𝜃

]
⩾ 1 − 𝑒−(𝜃2)/(2𝐸 [𝜇]) ⩾ 1 − 𝑒−(𝜃2ℎ2)/(2𝛼𝑛

√
𝑇 ),

Setting 𝜃 =

[
2𝛼𝑛

√
𝑇

ℎ2
ln

(
𝑇 (log

2

√
𝑇 + 1)𝑛2𝑐+1

)] 1

2

= 𝜖𝛼 𝑛
√
𝑇

ℎ2
yields Pr

[
𝜇 ⩾ 𝐸 [𝜇] − 𝜃 )

]
⩾ 1 −

1

𝑇 (log
2

√
𝑇+1)𝑛2𝑐+1

.

For each of the four sets we can use one of the two bounds above.

We can set 𝛼 = 0.1, 𝜖 ≤ 0.1 by imposing the constraints 𝑐 ≥ 1, 400 ≤ 𝑇 ≤ 𝑛, 𝑛 ≥ 125(2𝑐 +

2.5)𝑇
√
𝑇 ln𝑛 which are provided by the constraints in (3.4), ℎ ≤ 𝑇 /4, and log

2

√
𝑇 + 1 ≤

√
𝑇 /4 .

Let g(·) be a real valued function. Suppose the size of the set 𝑃𝑜
𝑡 ′′ at round 𝑡

′′
is smaller than

g(𝑡 ′′) · 𝑛
√
𝑇 /ℎ and let 𝑋 = g(𝑡 ′′) · 𝑛

√
𝑇 /ℎ − |𝑃𝑜

𝑡 ′′ |. If (1 − 𝜖)g(𝑡 ′′)/(2ℎ) ≤ 1,
1
then the size of the

set 𝑃𝑜
𝑡 ′′+1

at round 𝑡 ′′ + 1 is at most

g(𝑡 ′′)𝑛
√
𝑇 /ℎ − 𝑋 − (1 − 𝜖)

[
(g(𝑡 ′′)𝑛

√
𝑇 /ℎ − 𝑋 )2

4𝑛
√
𝑇

− 𝑛

625𝑇
√
𝑇

]
+ 4𝜖𝛼

𝑛
√
𝑇

ℎ2

≤ g(𝑡 ′′)𝑛
√
𝑇 /ℎ − (1 − 𝜖)

[
(g(𝑡 ′′)𝑛

√
𝑇 /ℎ)2

4𝑛
√
𝑇

− 𝑛

625𝑇
√
𝑇

]
+ 4𝜖𝛼

𝑛
√
𝑇

ℎ2

≤ g(𝑡 ′′)𝑛
√
𝑇 /ℎ − 9g(𝑡 ′′)2𝑛

√
𝑇

40ℎ2
+ 9𝑛

6250𝑇
√
𝑇

+ 𝑛
√
𝑇

25ℎ2

≤ 𝑛
√
𝑇 /ℎ

[
g(𝑡 ′′) − 1

ℎ

(
9g(𝑡 ′′)2

40

− 0.041

)]
.

1
Note that this is satisfied when g(𝑡 ′′) ≤ 21.5 and ℎ ≥

√
𝑇 = 20.
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The last inequality uses the constraint that ℎ ≤ 𝑇 /4.

Let g(𝑡 +1−ℎ) = 2g and g(𝑡 ′′+1) =
[
g(𝑡 ′′) − 1

ℎ

(
9g(𝑡 ′′)2

40
− 0.041

)]
for 𝑡 ′′ ∈ [𝑡 +1−ℎ, 𝑡 +1−ℎ/2),

then we have shown that the size of the set 𝑃𝑜
𝑡 ′′ at round 𝑡 +1−ℎ/2 is at most g(𝑡 +1−ℎ/2) ·𝑛

√
𝑇 /ℎ.

One way to solve g(·) by using a differential equation. Consider the differential equation dḡ/d𝑡 =

− 1

ℎ

(
9ḡ2

40
− 0.041

)
and ḡ(𝑡 + 1−ℎ) = 2g. Note that ḡ(𝑡 ′′) ≥ g(𝑡 ′′) for all 𝑡 ′′ ∈ [𝑡 + 1−ℎ, 𝑡 + 1−ℎ/2].

2

Therefore, in order to prove g(𝑡 + 1 − ℎ/2) ≤ g
1
, we only need ḡ(𝑡 + 1 − ℎ/2) ≤ g

1
. We look

at the total time for ḡ to reduce from the value g(𝑡 + 1 − ℎ) = 2g to g
1
: d𝑡 = −ℎdḡ/( 9ḡ2

40
− 0.041).

Therefore, the total time is

∫
2g
ḡ=g

1

ℎdḡ/( 9ḡ2

40
− 0.041) <=

∫
2g
ḡ=g

1

ℎdḡ/( 9ḡ2

40
− 0.041

ḡ2

g2

1

) = (ℎ/( 9

40
−

0.041

g2

1

)) (1/g
1
− 1/(2g)). To have this be at most ℎ/2 (the total duration of Phase 1), we only need

2(1/g
1
− 1/(2g)) ≤ 9/40 − 0.041/(g

1
)2
, which is satisfied by letting g = 7.5 and g

1
= 6.5.

We consider Phase 2 next. Consider the set 𝑃𝑜
𝑡 ′′,𝑠 ∪ 𝑃

𝑦

𝑡 ′′,𝑠 and time 𝑡 ′′ ∈ [𝑡 + 1 − ℎ/2, 𝑡 + 1).

The analysis is exactly the same as that for Phase 1. By Lemma 3.11, these matches remove, in

expectation, at least the following number of people from 𝑃𝑜
𝑡 ′′,𝑠 ∪ 𝑃

𝑦

𝑡 ′′,𝑠 :

|𝑃𝑜
𝑡 ′′,𝑠 ∪ 𝑃

𝑦

𝑡 ′′,𝑠 |2 − 𝑛2/625𝑇

2𝑛
√
𝑇

(A.8)

Similar boundswill hold for the set 𝑃𝑜
𝑡 ′′,𝑠 ′∪𝑃

𝑦

𝑡 ′′,𝑠 ′ . We also reduce the size of 𝑃𝑜
𝑡 ′′∪𝑃

𝑦

𝑡 ′′ , in expectation,

by at least

|𝑃𝑜
𝑡 ′′ ∪ 𝑃

𝑦

𝑡 ′′ |2

3𝑛
√
𝑇

− 𝑛

625𝑇
√
𝑇
. (A.9)

Then, as in Phase 1, suppose the size of the set 𝑃𝑜
𝑡 ′′ ∪𝑃

𝑦

𝑡 ′′ at time 𝑡 ′′ is smaller than 𝑔(𝑡 ′′)𝑛
√
𝑇 /ℎ

and let 𝑋 = 𝑔(𝑡 ′′)𝑛
√
𝑇 /ℎ − |𝑃𝑜

𝑡 ′′ ∪ 𝑃
𝑦

𝑡 ′′ |. If (1 − 𝜖)𝑔(𝑡 ′′)/(2ℎ) ≤ 1, then the size of the set 𝑃𝑜
𝑡 ′′ ∪ 𝑃

𝑦

𝑡 ′′

2
Suppose it is not true. Since ḡ(𝑡 +1−ℎ) = g(𝑡 +1−ℎ) = 2g, there exists a 𝑡 ′, such that ḡ(𝑡 ′) ≥ g(𝑡 ′) and ḡ(𝑡 ′+1) <

g(𝑡 ′+1). Then, there exist a 𝑡 ′′ ∈ [𝑡 ′, 𝑡 ′+1) such that ḡ(𝑡 ′′) = g(𝑡 ′). After time 𝑡 ′′, dḡ(𝑡 ′′)/d𝑡 ≥ − 1

ℎ

(
9

¯g (𝑡 ′′)2

40
− 0.041

)
=

g(𝑡 ′ + 1) − g(𝑡 ′). Therefore, ḡ(𝑡 ′ + 1) = ḡ(𝑡 ′′) +
∫ 𝑡 ′+1

𝑠=𝑡 ′′
dḡ(𝑠) ≥ g(𝑡 ′) +

∫ 𝑡 ′+1

𝑠=𝑡 ′′
[g(𝑡 ′ + 1) − g(𝑡 ′)]d𝑠 ≥ g(𝑡 ′ + 1), which

contradicts the assumption.
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at round 𝑡 ′′ + 1 is at most

𝑛
√
𝑇 /ℎ

[
𝑔(𝑡 ′′) − 1

ℎ

(
9𝑔(𝑡 ′′)2

40

− 0.041

)]
.

Let g(𝑡+1−ℎ/2) = 2g+g
1
and𝑔(𝑡 ′′+1) =

[
𝑔(𝑡 ′′) − 1

ℎ

(
9g(𝑡 ′′)2

40
− 0.041

)]
for 𝑡 ′′ ∈ [𝑡+1−ℎ/2, 𝑡+1),

then we have shown that the size of the set 𝑃𝑜
𝑡 ′′ ∪ 𝑃

𝑦

𝑡 ′′ at round 𝑡 + 1 is at most g(𝑡 + 1) · 𝑛
√
𝑇 /ℎ.

We consider the same differential equation here, dḡ/d𝑡 = − 1

ℎ

(
9ḡ2

40
− 0.041

)
, with ḡ(𝑡 + 1 −ℎ/2) =

2g + g
1
. Note that ḡ(𝑡 ′′) ≥ g(𝑡 ′′) for all 𝑡 ′′ ∈ [𝑡 + 1 − ℎ/2, 𝑡 + 1].

Therefore, in order to prove g(𝑡 + 1) ≤ g, we only need ḡ(𝑡 + 1) ≤ g. We look at the total time

for ḡ to reduce from the value 2𝑔 + 𝑔1 to g: d𝑡 = −ℎdḡ/( 9ḡ2

40
− 0.041). Therefore, the total time is∫

2g+g
1

ḡ=g ℎ · dḡ/( 9ḡ2

40
− 0.041) <=

∫
2g+g

1

ḡ=g ℎ · dḡ/( 9ḡ2

40
− 0.041

ḡ2

g2
) = (ℎ/( 9

40
− 0.041

g2
)) (1/g − 1/(2g + g

1
)).

To have this be at most ℎ/2 (the total duration of Phase 2), we only need 2(1/g − 1/(2g + g
1
)) ≤

9/40 − 0.041/(g)2
, which is also satisfied by letting g = 7.5 and g

1
= 6.5.

Finally, as there are log
2

√
𝑇 + 1 Type 2 strips, and, for each Type 2 strip, we consider ℎ ≤ 𝑇 /4

steps, the success probability is at least 1 − 𝑇 /4·4·(log
2

√
𝑇+1)

𝑇 (log
2

√
𝑇+1)𝑛2𝑐+1

≤ 1 − 1

𝑛2𝑐+1
.

□

Proof. (Of Theorem 3.14.) Let’s call the bottommost Type 2 strip 𝑠 and the Type 2 strip immedi-

ately above it strip 𝑠′. Any agent in the population in 𝑠 at time 𝑡 + 1 must belong to one of the

following categories:

• The agent was present in 𝑠′ at time 𝑡 + 1 −𝑇 /4.

• The agent was present in 𝑠′ at time 𝑡 + 1 −𝑇 /2.

However, by our inductive hypothesis 𝐻 (𝑡), we know that at all time steps before 𝑡 + 1, the

size of 𝑠 was always less than 7.5𝑛
√
𝑇

height of strip 𝑠
≤ 4 · 7.5𝑛/

√
𝑇 .

Thus, the size of 𝑠 at time 𝑡 + 1 is bounded by 8 · 7.5𝑛/
√
𝑇 ≤ 60𝑛/

√
𝑇 , which concludes the

proof. □
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A.1.6 Bound on the Imbalance

Proof. (Of Claim 3.6.1). The expected number of matches at time 𝜏 between men in diagonal 𝑑𝑖

and women in diagonal 𝑑 𝑗 is

(2𝐴𝑖 + 𝐼𝑖 + 𝑋𝑖) (2𝐴 𝑗 − 𝐼 𝑗 − 𝑋 𝑗 )
4𝑅

.

Similarly, the expected number of women in 𝑑𝑖 that match with men in 𝑑 𝑗 is

(2𝐴𝑖 − 𝐼𝑖 − 𝑋𝑖) (2𝐴 𝑗 + 𝐼 𝑗 + 𝑋 𝑗 )
4𝑅

.

Thus 𝐼 ′(𝑑𝑖, 𝜏) is given by:

𝐼𝑖 + 𝑋𝑖 −
∑︁
𝑑 𝑗∈𝑠

[ (2𝐴𝑖 + 𝐼𝑖 + 𝑋𝑖) (2𝐴 𝑗 − 𝐼 𝑗 − 𝑋 𝑗 )
4𝑅

−
(2𝐴𝑖 − 𝐼𝑖 − 𝑋𝑖) (2𝐴 𝑗 + 𝐼 𝑗 + 𝑋 𝑗 )

4𝑅

]
= 𝐼𝑖 + 𝑋𝑖 −

∑︁
𝑑 𝑗∈𝑠

[
𝑋𝑖

(2𝐴 𝑗 − 𝐼 𝑗 − 𝑋 𝑗 )
4𝑅

− 𝑋 𝑗
(2𝐴𝑖 − 𝐼𝑖 − 𝑋𝑖)

4𝑅
+ 𝐼𝑖

(2𝐴 𝑗 − 𝐼 𝑗 − 𝑋 𝑗 )
4𝑅

− 𝐼 𝑗
(2𝐴𝑖 − 𝐼𝑖 − 𝑋𝑖)

4𝑅

]
.

□

Proof. (Of Claim 3.6.5.) We first give a high probability bound on

∑
𝑌 (𝑑𝑖, 𝜏). Let𝑚(𝑑𝑖, 𝜏) be the

number of men entering the market on diagonal 𝑑𝑖 at time 𝜏 . Note that 𝑑𝑇 is the last Type 1

diagonal. Let 𝑑𝑟 be a diagonal in Type 1 strip 𝑠; then,

Pr

[��� ∑︁
𝑟≤𝑖≤𝑇

𝑌 (𝑑𝑖, 𝜏)
��� > Δ

]
= Pr

[��� ∑︁
𝑟≤𝑖≤𝑇

𝑚(𝑑𝑖, 𝜏) − (𝑇 − 𝑟 + 1) · 𝑛
2𝑇

��� > Δ/2

]
.
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Note that

Pr

[��� ∑︁
𝑟≤𝑖≤𝑇

𝑚(𝑑𝑖, 𝜏) − (𝑇 − 𝑟 + 1) · 𝑛
2𝑇

��� > Δ/2

]
≤ 2 exp

[
− Δ2/

(
3 · (𝑇 − 𝑟 + 1) · 𝑛

2𝑇

)]
≤ 2 exp

[
− Δ2/

(
3𝑛

2

)]
.

The last inequality follows as 𝑇 − 𝑟 + 1 ≤ 𝑇 . Letting Δ =

√︃
3𝑛
2

ln (2𝑇𝑛3𝑐+1) yields

Pr

[��� ∑︁
𝑟≤𝑖≤𝑇

𝑌 (𝑑𝑖, 𝜏)
��� > √︂

3𝑛

2

ln (2𝑇𝑛3𝑐+1)
]
≤ 1

𝑇𝑛3𝑐+1
.

Therefore, with probability at least
1

𝑛3𝑐+1
, for all 𝑟 such that 𝑑𝑟 is a diagonal in a Type 1 strip,��∑

𝑟≤𝑖≤𝑇 𝑌 (𝑑𝑖, 𝜏)
�� ≤ √︃

3𝑛
2

ln (2𝑇𝑛3𝑐+1).

With this result in hand, we prove the claim as follows. Let 𝑑𝑟 (𝑠) be the rightmost (lowest

index) diagonal in 𝑠 and 𝑑𝑙 (𝑠) be the leftmost (highest index) diagonal in 𝑠 .

Let 𝑤𝑖 =
∑
𝑗⩾𝑟 (𝑠) 𝑌 (𝑑𝑖, 𝜏, 𝑑 𝑗 , 𝜏′)/𝑌 (𝑑𝑖, 𝜏). Let’s consider

∑
𝑑𝑖∈𝑠 ′; 𝑗⩾𝑟 (𝑠) 𝑌 (𝑑𝑖, 𝜏, 𝑑 𝑗 , 𝜏′) =

∑
𝑑𝑖∈𝑠 ′𝑤𝑖 ·

𝑌 (𝑑𝑖, 𝜏). By Claim 3.6.2,𝑤𝑖 ⩽ 𝑤𝑘 , for 𝑖 < 𝑘 . Thus,

��� ∑︁
𝑑𝑖 ; 𝑗⩾𝑟 (𝑠)

𝑌 (𝑑𝑖, 𝜏, 𝑑 𝑗 , 𝜏′)
��� = ��� 𝑇∑︁

𝑖=1

𝑤𝑖 · 𝑌 (𝑑𝑖, 𝜏)
��� ≤ 𝑤𝑇 max

𝑟≤𝑇

�� ∑︁
𝑟⩽𝑖⩽𝑇

𝑌 (𝑑𝑖, 𝜏)
��� ≤ √︂

3𝑛

2

ln (2𝑇𝑛3𝑐+1).

Finally,

��� ∑︁
𝑑𝑖 ;𝑑 𝑗∈𝑠

𝑌 (𝑑𝑖, 𝜏, 𝑑 𝑗 , 𝜏′)
��� = ��� ∑︁

𝑑𝑖 ; 𝑗⩾𝑟 (𝑠)
𝑌 (𝑑𝑖, 𝜏, 𝑑 𝑗 , 𝜏′) −

∑︁
𝑑𝑖 ; 𝑗⩾𝑙 (𝑠)+1

𝑌 (𝑑𝑖, 𝜏, 𝑑 𝑗 , 𝜏′)
��� ⩽ 2

√︂
3𝑛

2

ln (2𝑇𝑛3𝑐+1),

which completes the proof. □
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Proof. (Of Claim 3.6.7.) We begin by bounding

∑
𝑗 :𝑑 𝑗∈𝑠 (2𝐴 𝑗 − 𝐼 𝑗 − 𝑋 𝑗 )/4𝑅 for any Type 2 strip 𝑠 .

∑︁
𝑗 :𝑑 𝑗∈𝑠

(2𝐴 𝑗 − 𝐼 𝑗 − 𝑋 𝑗 )
4𝑅

≤ 1

2

3.75𝑛
√
𝑇

𝐻
+ 𝑛/50

√
𝑇

𝑛
√
𝑇

6

<
23

2𝐻
(as

√
𝑇 ⩾ 26 by constraint 3.4). (A.10)

Let 𝑠 have height 𝐻 .

Consider 𝑋 (𝑑, 𝜏, 𝑑′, 𝜏′). If 𝑑′ is in a Type 2 strip then by (A.10) at most
23

2𝐻
of it disperses to

some location in the same strip and at least 1 − 23

2𝐻
of it moves down distance one. This implies

that, within 𝐻 time, a Type 2 strip loses at least 𝑒−23/2
of the 𝑋 (𝑑, 𝜏, 𝑑′, 𝜏′) that had been present

within it at time 𝜏′. Let 𝐾2 = 𝑒12
ln 2. Therefore, by time 𝜏′ + 𝐾2𝐻 (≤ 𝜏′𝐾2𝑇 /4) at least half of the

𝑋 (𝑑, 𝜏, 𝑑′, 𝜏′) in a Type 2 strip has moved out of the strip.

Similarly, we can now carry out the same kind of argument for the Type 2 strips. After

2𝑒2(ln 2)
√
𝑇 (

√
𝑇 + log

2
(2𝑛𝑘)) time there is at most

1

2𝑛𝑘
fraction of 𝑋 (𝑑, 𝜏) in the Type 1 strips.

We focus on the remaining 1− 1

2𝑛𝑘
portion of𝑋 (𝑑, 𝜏) which has already entering the type 2 strips.

Number the Type 2 strips from top to bottom
3
. Now consider 𝛾 as a distribution of the rest of

the 𝑋 (𝑑, 𝜏) where 𝛾𝑖 is the fraction of 𝑋 (𝑑, 𝜏) in strip number 𝑖 . Recall that there are log
2
(
√
𝑇 )

Type 2 strips other than the bottom Type 2 strip. We consider the worst case where all the

remaining (1 − 1

2𝑛𝑘
) · 𝑋 (𝑑, 𝜏) starts out at the topmost Type 2 strip. Define a potential function

𝜙 (𝛾) =
∑log

2

√
𝑇+1

𝑖=1
𝛾𝑖 · 2

(log
2

√
𝑇 )−𝑖+1

. For the remaining (1 − 1

2𝑛𝑘
) · 𝑋 (𝑑, 𝜏), The initial potential is

at most

√
𝑇 . Every 𝐾2𝑇 /4 time steps, the potential decreases by at least 1/4. Therefore, after

1

log
2
(4/3)𝐾2𝑇 /4 log

2
(2𝑛𝑘

√
𝑇 ) time steps, the potential would have reduced to at most

1

2𝑛𝑘
.

There is also
1

2𝑛𝑘
fraction which might still be in the Type 1 strips. Thus the fraction of𝑋 (𝑑, 𝜏)

in any strip other than the bottommost Type 2 strip after
1

log
2
(4/3)𝐾1

√
𝑇 (

√
𝑇 + log

2
(2𝑛𝑘))+

1

log
2
(4/3)𝐾2𝑇 /4 log

2
(2𝑛𝑘

√
𝑇 ) time is at most

1

𝑛𝑘
. □

Proof. (Final Calculation in Theorem 3.15)

3
Our argument doesn’t involve the last Type 2 strip, so we will end at the second to last strip.
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As𝜅 = 𝑒2
ln 2

log
2
(4/3)

√
𝑇 (

√
𝑇+log

2
(2𝑛𝑘))+ 𝑒12

ln 2

4 log
2
(4/3)𝑇 log

2
(2𝑛𝑘

√
𝑇 ) ≤ 12.35(𝑇+

√
𝑇+(𝑐+4)

√
𝑇 log

2
𝑛)+

𝑒12

2
(𝑇 + (𝑐 + 4)𝑇 log

2
𝑛 + 0.5𝑇 log

2
𝑇 ), the total imbalance is at most

15𝑇

𝑛3
+
[
12.35(𝑇 +

√
𝑇 + (𝑐 + 4)

√
𝑇 log

2
𝑛) + 𝑒

12

2

(𝑇 + (𝑐 + 4)𝑇 log
2
𝑛 + 0.5𝑇 log

2
𝑇 )

]
·(

192

√︄
𝑛 ln(4𝑛3𝑐+1(𝑇 2/32 +𝑇 /8)𝑁 )

√
𝑇

+ 2

√︂
3𝑛

2

ln (2𝑇𝑛3𝑐+1)
)
.

In order to make it smaller than
𝑛

25

√
𝑇
, we only need that

375𝑇
√
𝑇

𝑛3
+
[
309(𝑇 +

√
𝑇 + (𝑐 + 4)

√
𝑇 log

2
𝑛) + 25𝑒12

2

(𝑇 + (𝑐 + 4)𝑇 log
2
𝑛 + 0.5𝑇 log

2
𝑇 )

]
·(

192

√︃√
𝑇 ln[4𝑛3𝑐+1(𝑇 2/32 +𝑇 /8)𝑁 ] + 2

√︂
3𝑇

2

ln (2𝑇𝑛3𝑐+1)
)
≤
√
𝑛.

As 375𝑇
√
𝑇 /𝑛3 ≤ 0.0012

√
𝑛 from the constraint 𝑛 ≥ 𝑇 ≥ 676, we need

[
309(𝑇 +

√
𝑇 + (𝑐 + 4)

√
𝑇 log

2
𝑛) + 25𝑒12

2

(𝑇 + (𝑐 + 4)𝑇 log
2
𝑛 + 0.5𝑇 log

2
𝑇 )

]
·(

192

√︃√
𝑇 ln[4𝑛3𝑐+1(𝑇 2/32 +𝑇 /8)𝑁 ] + 2

√︂
3𝑇

2

ln (2𝑇𝑛3𝑐+1)
)
≤ 0.9988

√
𝑛. (A.11)

In addition, as 𝑛 ≥ 𝑇 ≥ 676,

[
309(𝑇 +

√
𝑇 + (𝑐 + 4)

√
𝑇 log

2
𝑛) + 25𝑒12

2

(𝑇 + (𝑐 + 4)𝑇 log
2
𝑛 + 0.5𝑇 log

2
𝑇 )

]
≤ (86.61 + 12.876𝑐 + 57.62𝑒12 + 12.5𝑒12𝑐)𝑇 log

2
𝑛, (A.12)

and, as 𝑛 ≥ 𝑇 ≥ 676 and 𝑛 ≥ 𝑁 ,

(
192

√︃√
𝑇 ln[4𝑛3𝑐+1(𝑇 2/32 +𝑇 /8)𝑁 ] + 2

√︂
3𝑇

2

ln (2𝑇𝑛3𝑐+1)
)
≤ 42

√︁
𝑇 (3𝑐 + 4) ln𝑛. (A.13)
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By inequalities (A.11), (A.12), and (A.13),

(86.61 + 12.876𝑐 + 57.62𝑒12 + 12.5𝑒12𝑐)𝑇 log
2
𝑛 · 42

√︁
𝑇 (3𝑐 + 4) ln𝑛 ≤ 0.9988

√
𝑛.

Therefore, 𝑛 ≥ (3654 + 2436𝑒12 + 546(𝑒12 + 1)𝑐)2(3𝑐 + 4)𝑇 3(log
2
𝑛)2

ln𝑛 suffices.

□

A.1.7 Initialization

Proof. (Of Theorem 3.16.) At any point in the first

√
𝑇 time steps:

• The total population in the entire matching pool is clearly less than 𝑛
√
𝑇 < 𝑛𝑁 , as only

these many agents could have even entered the matching pool.

• In any single Type 1 strip,

Pr

[
Number of agents that entered the strip from the top ≤ 𝑛

√
𝑇 (1 + 𝜖)
√
𝑇

]
≥ 1 − 𝑒−𝑛𝜖2

3 .

However the agents that enter a Type 1 strip during the first

√
𝑇 time must either have

entered from the top or they could have entered at the top boundary of the previous strip.

Thus, by a union bound,

Pr [Number of agents that entered any Type 1 strip ≤ 2𝑛(1 + 𝜖)] ≥ 1 −
√
𝑇𝑒−

𝑛𝜖2

3 .

So by setting 𝜖 =

√︂
3

𝑛
ln

(
𝑛𝑐+1

√
𝑇

)
, and imposing the constraints 𝑐 ⩾ 1, 𝑇 ⩽ 𝑛, and 𝑛 ⩾

35(𝑐 +2) ln𝑛 that guarantee that 𝜖 < 0.3 (from (3.4)), we obtain that with probability 1− 1

𝑛𝑐+1

every Type 1 strip has a population < 2.6𝑛.
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• The agents in the first Type 2 strip after

√
𝑇 time steps (the only Type 2 strip with any

population after

√
𝑇 time) could only be those agents that entered the leftmost two Type

1 strips from the top. However the previous bound already guarantees that this number is

also < 2.6𝑛.

• Also, the population in the bottom most Type 2 strip will be 0.

• Now it remains only to show that in each of the strips, except possibly the bottommost

Type 2 strip, |number of men − number of women| ≤ 𝑛

25

√
𝑇
.

We will follow the proof of Theorem 3.15, though the proof will be simplified by the fact that

we only need to consider

√
𝑇 many time steps.

We divide each strip into thin diagonals of width 1. Let the diagonal include the bottom but

not the top boundary. Notice that for each value, a diagonal contains at most one grid point.

As in Theorem 3.15, we introduce the following notation w.r.t. diagonal𝑑 at time step 𝜏 , where

we are conditioning on the outcome of step 𝜏 − 1.

𝐼 (𝑑, 𝜏) = 𝐸 [(number of men at time 𝜏 − number of women at time 𝜏)]

𝑋 (𝑑, 𝜏) = (number of men matching at time 𝜏 − number of women matching at time 𝜏)

− 𝐸 [(number of men matching at time 𝜏 − number of women matching at time 𝜏)]

𝑌 (𝑑, 𝜏) = number of men entering at time 𝜏 − number of women entering at time 𝜏

𝐴(𝑑, 𝜏) = (number of men matching at time 𝜏 + number of women matching at time 𝜏)/2.

𝐼 (𝑑, 𝜏) is measured after the entry of the new agents at time 𝜏 but prior to the match for this

step. Also, note that 𝑌 (𝑑, 𝜏) = 0 if 𝑑 is in a Type 2 strip.

In addition, observe that the imbalance Imb(𝑠) at the start of step 𝑡 equals ∑𝑑∈𝑠 𝐼 (𝑑, 𝑡).

We observe that a match between two agents in distinct diagonals of the same strip will

increment the (number of men − number of women) in one diagonal and decrement it in the
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other. Thus there is a zero net change over all the diagonals in the strip due to the matches.

However, as the agents all age by 1 unit during a step, some agents enter the strip and some leave,

which can cause changes to the imbalance within a strip. However, the entry of new agents can

introduce new imbalances. We will need to understand more precisely how these imbalances

evolve.

It is convenient to number the diagonals as 𝑑1, 𝑑2, 𝑑3, . . ., in right to left order.

We recall the following claims from the proof of Theorem 3.15.

Claim A.1.1. Let 𝑑𝑖 and 𝑑 𝑗 be two diagonals in the same strip 𝑠 . For brevity, let 𝐼𝑖 ≜ 𝐼 (𝑑𝑖, 𝜏 − 1),

𝐼 𝑗 ≜ 𝐼 (𝑑 𝑗 , 𝜏 − 1), 𝐴𝑖 ≜ 𝐴(𝑑𝑖, 𝜏 − 1), 𝐴 𝑗 ≜ 𝐴(𝑑 𝑗 , 𝜏 − 1), 𝑋𝑖 ≜ 𝑋 (𝑑𝑖, 𝜏 − 1), 𝑋 𝑗 ≜ 𝑋 (𝑑 𝑗 , 𝜏 − 1). Finally,

let 𝑅 denote the maximum of the total number of men and the total number of women in the system

at time 𝜏 − 1. Then the new imbalance on diagonal 𝑑𝑖 , prior to every unmatched agent adding 1 to

their age (which causes the agents on 𝑑𝑖 to move to 𝑑𝑖+1), denoted by 𝐼 ′(𝑑𝑖, 𝜏), is given by:

𝐼 ′(𝑑𝑖, 𝜏) =

𝐼𝑖 + 𝑋𝑖 −
∑︁
𝑑 𝑗∈𝑠

[
𝑋𝑖

(2𝐴 𝑗 − 𝐼 𝑗 − 𝑋 𝑗 )
4𝑅

− 𝑋 𝑗
(2𝐴𝑖 − 𝐼𝑖 − 𝑋𝑖)

4𝑅
+ 𝐼𝑖

(2𝐴 𝑗 − 𝐼 𝑗 − 𝑋 𝑗 )
4𝑅

− 𝐼 𝑗
(2𝐴𝑖 − 𝐼𝑖 − 𝑋𝑖)

4𝑅

]
;

and 𝐼 (𝑑𝑖, 𝜏) = 𝐼 ′(𝑑𝑖−1, 𝜏 − 1) + 𝑌 (𝑑, 𝜏).

𝑋 (𝑑, 𝜏) and𝑌 (𝑑, 𝜏) are generated at diagonal𝑑 at time 𝜏 and, by ClaimA.1.1, at any subsequent

time step, 𝑋 (𝑑, 𝜏) and 𝑌 (𝑑, 𝜏) will be redistributed over other diagonals.

1. Due to the expected matching at time 𝜏′ ⩾ 𝜏 , each 𝑋 (𝑑, 𝜏) and 𝑌 (𝑑, 𝜏) spreads to other

diagonals in the same strip.

2. At the end of time step 𝜏′ the portions of 𝑋 (𝑑, 𝜏) and 𝑌 (𝑑, 𝜏) present on diagonal 𝑑𝑖 move

to diagonal 𝑑𝑖+1.

Building on these observations, we will show our bound on the imbalance by bounding the
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total contribution from 𝑋 (·, 𝜏) and 𝑌 (·, 𝜏) to strip 𝑠 at time 𝜏′.

Notice that

∑
𝑑𝑖∈𝑠 𝐼

′(𝑑𝑖, 𝜏) =
∑
𝑑𝑖∈𝑠 𝐼 (𝑑𝑖, 𝜏 −1), for the coefficients multiplying𝑋𝑖 cancel, as they

also do for 𝐼𝑖 . Thus we can think of this process as redistributing the imbalance, but not changing

the total imbalance.

Over time an imbalance 𝑋 (𝑑𝑖, 𝜏) will be redistributed over many diagonals.

We write 𝑋 (𝑑𝑖, 𝜏, 𝑑 𝑗 , 𝜏′) to denote the portion of 𝑋 (𝑑𝑖, 𝜏) on diagonal 𝑑 𝑗 at time 𝜏′. 𝑑 𝑗 need not

be in the same strip as 𝑑𝑖 . Note that
∑
𝑑 𝑗
𝑋 (𝑑𝑖, 𝜏, 𝑑 𝑗 , 𝜏′) = 𝑋 (𝑑𝑖, 𝜏) for all 𝜏′ ⩾ 𝜏 . 𝑌 (𝑑𝑖, 𝜏, 𝑑 𝑗 , 𝜏′) is

defined analogously.

For the purposes of the following claim, we treat the final strip as a single diagonal, and in

addition ignore the fact that people depart at age𝑇 (which means that once an imbalance appears

in this strip it remains there). The reason this strip is different is that it covers the whole of the

bottom boundary and so is the only strip from which people leave the system by aging out.

ClaimA.1.2. For all ℓ , for all 𝑖 < 𝑘 , and for all 𝜏′ ⩾ 𝜏 ,
�� ∑

𝑗>ℓ 𝑋 (𝑑𝑖, 𝜏, 𝑑 𝑗 , 𝜏′)
�� ⩽ �� ∑

𝑗>ℓ 𝑋 (𝑑𝑘 , 𝜏, 𝑑 𝑗 , 𝜏′)
��.

The same property holds for the 𝑌 (𝑑𝑖, 𝜏, 𝑑 𝑗 , 𝜏′).

Later, we will show a common bound 𝐵 on the sums

�� ∑
𝑖⩽ 𝑗⩽𝑘 𝑋 (𝑑 𝑗 , 𝜏)

��
, which holds for all 𝑑𝑖

and 𝑑𝑘 in the same strip and all 𝜏 .

With this bound and Claim A.1.2 in hand, for each strip 𝑠 , we can bound the contribution of

the 𝑋 (𝑑𝑖, 𝜏, 𝑑 𝑗 , 𝜏′) summed over all 𝑑𝑖 and over 𝑑 𝑗 ∈ 𝑠 by 2𝐵.

Claim A.1.3. For all 𝜏′ ⩾ 𝜏 , for every strip 𝑠 ,
�� ∑

𝑑𝑖 ;𝑑 𝑗∈𝑠 𝑋 (𝑑𝑖, 𝜏, 𝑑 𝑗 , 𝜏′)
�� ⩽ 2𝐵.

This allows us to obtain the bound the imbalance in a strip 𝑠 at any time 𝜏′ ≤
√
𝑇 by consider-

ing the contributions of

�� ∑
𝑑𝑖 ;𝑑 𝑗∈𝑠 𝑋 (𝑑𝑖, 𝜏, 𝑑 𝑗 , 𝜏′)

��
and

�� ∑
𝑑𝑖 ;𝑑 𝑗∈𝑠 𝑌 (𝑑𝑖, 𝜏, 𝑑 𝑗 , 𝜏′) ·𝑌 (𝑑𝑖, 𝜏)

��
at all possible

previous times (which is at most

√
𝑇 time).

Regarding the contribution of Y, we also have the following claim,

Claim A.1.4. With probability at least 1 − 1

𝑛2𝑐+1
, for all 𝜏′ ⩾ 𝜏 , for every strip 𝑠 ,�� ∑

𝑑𝑖 ;𝑑 𝑗∈𝑠 𝑌 (𝑑𝑖, 𝜏, 𝑑 𝑗 , 𝜏′)
�� ⩽ 2

√︃
3𝑛
2

ln (2𝑇𝑛3𝑐+1).
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Thus,

| Imb(𝑠, 𝜏′) | ≤
[
2𝐵 + 2

√︂
3𝑛

2

ln (2𝑇𝑛3𝑐+1)
]√
𝑇 (A.14)

We now calculate 𝐵.

Claim A.1.5. For any diagonal 𝑑 𝑗 and any 𝑑𝑖 and 𝑑𝑘 that lie in the same strip, at any time 𝜏 ≤
√
𝑇 ,

Pr

[��� ∑︁
𝑖≤ 𝑗≤𝑘

𝑋 (𝑑 𝑗 , 𝜏)
��� ≥ 2

√√√
𝑛(1 + 𝜖)2

√
3 ln

(
16𝑇

√
𝑇 (

√
𝑇 + 1)𝑛𝑐+1

)
0.48

√
𝑇

]
≤ 1

4𝑛𝑐+1
.

Proof. The agents enter with one of 𝑇 values chosen uniformly at random and are equally likely

to be men or women. Hence, for all 𝜏 ≤
√
𝑇 time steps, for each value 𝑣 ,

Pr

[
At most

𝑛(1 + 𝜖)
2𝑇

men enter with value 𝑣

]
≥ 1 − 𝜏𝑇𝑒− 𝜖2𝑛

6𝑇 ≥ 1 −𝑇
√
𝑇𝑒−

𝜖2𝑛
6𝑇 .

Call this event E𝑚 . Similarly,

Pr

[
At most

𝑛(1 + 𝜖)
2𝑇

men enter with value 𝑣

]
≥ 1 − 𝜏𝑇𝑒− 𝜖2𝑛

6𝑇 ≥ 1 −𝑇
√
𝑇𝑒−

𝜖2𝑛
6𝑇 .

Call this event E𝑤 . Henceforth we condition on E𝑚 and E𝑤 .

Consider some time𝜏 . At this time, let𝑀 = max{total number of men, total number of women}

while𝑚 = number of men in strip 𝑠 and𝑤 = number of men in strip 𝑠 . Using Lemmas 3.4 and 3.3,

we obtain the following bound on the deviation from the expected number of the number of men

in 𝑠 matched in a given time step, 𝜏 :

Pr

[��� number of men matched

−𝐸 [number of men matched]

��� > 𝑚𝑤𝛿

𝑀

]
≤ 2𝑒−𝑚𝑤𝛿

2/3𝑀 . (A.15)

We will later prove the following claim,
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Claim A.1.6. For all time 0 ≤ 𝑡 ≤
√
𝑇 , 0.12𝑛𝑡 ≤ 𝑀 ≤ 𝑛𝑡 for all 𝑡 ≤

√
𝑇 , with probability at least

1 − 1

5𝑛2𝑐+1
.

Call this event E𝑀 . Henceforth, we further condition on E𝑀 .

Thus, from equation A.15, we obtain

Pr

[��� number of men matched

−𝐸 [number of men matched]

��� > 𝑚𝑤𝛿

0.12𝑛𝑡

]
≤ 2𝑒−𝑚𝑤𝛿

2/3𝑛𝑡 .

Setting 𝛿 =

[
3𝑛𝑡
𝑚𝑤

ln(𝑛𝑐𝐴(𝑛,𝑇 ))
]

1/2

, we obtain

Pr

[��� number of men matched

−𝐸 [number of men matched]

��� > √︄
𝑚𝑤

√
3 ln(𝑛𝑐𝐴(𝑛,𝑇 ))

0.12𝑛𝑡

]
≤ 2

𝐴(𝑛,𝑇 )𝑛𝑐 .

We will specify 𝐴(𝑛,𝑇 ) later. It is easy to see that because of E𝑚 and E𝑤 ,𝑚 ≤ 𝑛𝑡 (1 + 𝜖)/2

√
𝑇 and

𝑤 ≤ 𝑛𝑡 (1 + 𝜖)/2

√
𝑇 . So we obtain,

Pr

[��� number of men matched

−𝐸 [number of men matched]

��� > √︄
𝑛𝑡 (1 + 𝜖)2

√
3 ln(𝑛𝑐𝐴(𝑛,𝑇 ))

0.48𝑇

]
≤ 2

𝐴(𝑛,𝑇 )𝑛𝑐 .

Since 𝑡 ≤
√
𝑇 ,

Pr

[��� number of men matched

−𝐸 [number of men matched]

��� > √︄
𝑛(1 + 𝜖)2

√
3 ln(𝑛𝑐𝐴(𝑛,𝑇 ))

0.48

√
𝑇

]
≤ 2

𝐴(𝑛,𝑇 )𝑛𝑐 .

We can perform the same argument for the women to obtain,
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Pr

[��� number of women matched

−𝐸 [number of women matched]

��� > √︄
𝑛(1 + 𝜖)2

√
3 ln(𝑛𝑐𝐴(𝑛,𝑇 ))

0.48

√
𝑇

]
≤ 2

𝐴(𝑛,𝑇 )𝑛𝑐 .

From this it immediately follows that

Pr

[���∑︁
𝑑∈𝑆

𝑋 (𝑑, 𝜏)
��� > 2

√︄
𝑛(1 + 𝜖)2

√
3 ln(𝑛𝑐𝐴(𝑛,𝑇 ))

0.48

√
𝑇

]
≤ 4

𝐴(𝑛,𝑇 )𝑛𝑐 .

where 𝑆 is any subset of the diagonals in strip 𝑠 . We have to consider

√
𝑇 many possible times,

𝑇 many diagonals 𝑑 𝑗 and up to (
√
𝑇 + 1) many strips. Thus setting 𝐴(𝑛,𝑇 ) = 16𝑇

√
𝑇 (

√
𝑇 + 1)𝑛,

proves the claim. □

From equation (A.14) we obtain, for every strip 𝑠 and 𝜏 ≤
√
𝑇 , the following bound on

| Imb(𝑠, 𝜏′) |:

| Imb(𝑠, 𝜏′) | ≤
[
2𝐵 + 2

√︂
3𝑛

2

ln (2𝑇𝑛3𝑐+1)
]√
𝑇

≤ 8

√︂
𝑛(1 + 𝜖)2

√
𝑇 ln

(
16𝑇

√
𝑇 (

√
𝑇 + 1)𝑛𝑐+1

)
+
√︁

6𝑛𝑇 ln (2𝑇𝑛3𝑐+1).

We are conditioning on E𝑚 , E𝑤 and E𝑀 . Set 𝜖 =

[
6𝑇
𝑛

ln

(
4𝑇

√
𝑇𝑛3𝑐+1

)]
1/2

. We choose con-

straints so that 𝜖 ≤ 1. So, for every strip 𝑠 and 𝜏 ≤
√
𝑇 ,

Pr

[��
Imb(𝑠, 𝜏′)

�� ≤ 16

√︂
𝑛
√
𝑇 ln

(
16𝑇

√
𝑇 (

√
𝑇 + 1)𝑛𝑐+1

)
+
√︁

6𝑛𝑇 ln (2𝑇𝑛3𝑐+1)
]

≥
(
1 − 1

4𝑛𝑐+1
− 1

𝑛2𝑐+1

) (
1 − 1

5𝑛2𝑐+1
− 1

2𝑛2𝑐+1

)
.

Then we obtain,
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Pr

[��
Imb(𝑠, 𝜏′)

�� ≤ 16

√︂
𝑛
√
𝑇 ln

(
16𝑛𝑐+1𝑇

√
𝑇 (

√
𝑇 + 1)

)
+
√︁

6𝑛𝑇 ln (2𝑇𝑛3𝑐+1)
]

≥
(
1 − 1

4𝑛𝑐+1
− 1

𝑛2𝑐+1

) (
1 − 7

10𝑛2𝑐+1

)
] ≥ 1 − 1

𝑛𝑐+1
.

We desire that

16

√︂
𝑛
√
𝑇 ln

(
16𝑛𝑐+1𝑇

√
𝑇 (

√
𝑇 + 1)

)
+
√︁

6𝑛𝑇 ln (2𝑇𝑛3𝑐+1) ≤ 𝑛

25

√
𝑇

for which it suffices (by constraints (3.4)) that

32 · 25 ·𝑇
√︁
(3𝑐 + 3) ln𝑛 ≤

√
𝑛.

or,

𝑛 ≥ (3𝑐 + 3) (25 · 32 ·𝑇 ln𝑛)2,

which is also provided by the constraints (3.4). □

It now remains to prove Claim A.1.6. We proceed exactly as in the proof of Theorem 3.9.

Proof. (of Claim A.1.6 ).

Let’s consider those agents that enter at times in the range [0, 𝑡] for some 𝑡 ⩽
√
𝑇 . We want

to lower bound the number of these agents who are present in the pool for the match at time 𝑡 .

Henceforth, we will only consider men with values in the range [𝑇 +
√
𝑇, 2𝑇 ). Among these

men, consider those who have been in the pool for 𝑡 ′ time, where 0 ⩽ 𝑡 ′ <
√
𝑇 . Let 𝑝𝑡

′
𝑖 be the

probability that during their 𝑡 ′-th time step, the men in strip 𝑖 are offered a match in their own

strip. Even if all these men were still present in the matching pool,

Pr

[
# of these men matched in strip 𝑖 at age 𝑡 ′ ⩽

𝑛(1 + 𝛿) (1 + 𝜖) · 𝑝𝑖 ·𝑤𝑖
2𝑇

]
≥ 1 − 𝑒−

𝛿2𝑛𝑝𝑖𝑤𝑖
6𝑇 ,
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where 𝑤𝑖 is the horizontal width of strip 𝑖 occupied by these men when aged 𝑡 ′. For every Type

1 strip,𝑤𝑖 ⩽
√
𝑇 . For the one Type 2 strip, since all values are at least 𝑇 +

√
𝑇 , for ages up to

√
𝑇 ,

𝑤𝑖 ⩽
√
𝑇 . By applying 𝜇 =

𝑛(1+𝜖) max{𝑝𝑖 , 1

𝑇
}
√
𝑇

2𝑇
in Lemma 3.5, it follows that:

Pr

[
# of these men matched in strip 𝑖 at age 𝑡 ′ ⩽

𝑛(1 + 𝛿) (1 + 𝜖) · max{𝑝𝑖, 1

𝑇
}

2

√
𝑇

]
≥ 1 − 𝑒−

𝛿2𝑛 max{𝑝𝑖 , 1

𝑇
}
√
𝑇

6𝑇 ≥ 1 − 𝑒−
𝛿2𝑛

6𝑇 1.5 ,

The sum of the match probabilities—the 𝑝𝑖 ’s— is at most 1. Notice that at any fixed time we

only need to consider

√
𝑇 strips, because at any time step, the men we are considering will occupy

only

√
𝑇 many strips. This implies

∑
max{𝑝𝑖, 1

𝑇
} ≤ 1 + 1√

𝑇
. Therefore,

Pr

[
# of these men being matched

over all the strips at age 𝑡 ′
⩽

(1 + 1√
𝑇
)𝑛(1 + 𝛿) (1 + 𝜖)

2

√
𝑇

]
≥ 1 −

√
𝑇 · 𝑒−

𝛿2𝑛

6𝑇 1.5 .

Hence, we can bound the probability of the number of men who entered at time 𝑡 −Δ + 1 and

left by time 𝑡 , for any Δ ⩽ 𝑡 , as follows:

Pr

[
# men being matched

in their first Δ steps

⩽
(1 + 1√

𝑇
)𝑛Δ(1 + 𝛿) (1 + 𝜖)

2

√
𝑇

]
≥ 1 − Δ

√
𝑇 · 𝑒−

𝛿2𝑛

6𝑇 1.5 .

Consequently, we can bound the probability for the number of men that enter in the time

interval [0, 𝑡 − 1] and are matched no later than time 𝑡 − 1 as follows:

Pr

[
# men who entered and were

matched in a 𝑡 − 1 time window

⩽
(1 + 1√

𝑇
)𝑛(1 + 𝛿) (1 + 𝜖) (𝑡 − 1)

4

]
≥ 1 − 1

2

𝑡2

√
𝑇𝑒

− 𝛿2𝑛

6𝑇 1.5 .
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We set 𝛿 =

[
6𝑇 1.5

𝑛
ln

(
10𝑛2𝑐+1𝑇 1.5

) ]1/2

. Note that 𝑡 ≤
√
𝑇 .

We already chose 𝜖 =

[
6𝑇
𝑛

ln

(
4𝑇

√
𝑇𝑛2𝑐+1

)]
1/2

. By constraint (3.4), 𝑐 ≥ 1, 400 ≤ 𝑇 ≤ 𝑛, and

𝑛 ≥ 96𝑇 2(2𝑐 + 3) ln𝑛, 𝛿 ≤ 1/4 and 𝜖 ≤ 1/64. This yields the bound:

Pr

[
# men who entered in a 𝑡 − 1

window being matched

⩾
65

64
· 5

4
𝑛𝑡

4

]
≥ 1 − 1

20𝑛2𝑐+1
.

Since we have been conditioning on E, this bound holds with probability at least 1 − 1

10𝑛2𝑐+1
.

The same bound applies to the women.

Recalling that we excluded the men with values less than 𝑇 +
√
𝑇 , this yields the following

lower bound on the total population size, at time t:

𝑛𝑡 − 𝑛(1 + 𝜖)√
𝑇

− 0.635𝑛𝑡 ≥ 0.25𝑛𝑡,

with probability at least 1 − 1

5𝑛2𝑐+1
.

Thus 0.12𝑛𝑡 ≤ 𝑀 ≤ 𝑛𝑡 for all 𝑡 ≤ 𝑇 , with probability at least 1 − 1

5𝑛2𝑐+1
, which proves the

claim. □
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A.2 Further Detailed Data from Numerical Simulations in

Section 3.7

Here we provide the average population size and average loss we obtained from every run of our

numerical simulations.
4
.

A.2.1 Reasonable Strategy

• Discrete Setting:

𝑛 = 500, 𝑇 = 100 :

Run number Average population size Average Loss/T

1 1544.1 10.07

2 1507.7 9.96

3 1558.7 10.13

4 1458.1 9.8

5 1456.4 9.82

6 1565.5 10.16

7 1487.6 9.91

8 1567 10.17

9 1499.5 9.93

10 1508.3 9.99

Table A.1: Reasonable Strategy (𝑛 = 500, 𝑇 = 100): Average population size and loss

Average Population Size = 1511.7 ± 3.7%.

Average Loss/T = 9.99 ± 1.9%.

4
every run was for 2000 iterations
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• Continuum Setting (= 500, 𝑇 = 100):

Average Population Size = 1180.9.

Average Loss/T = 8.89.

A.2.2 Modified Reasonable Strategy

• Discrete Setting:

– 𝑛 = 500, 𝑇 = 100:

Run number Average population size Average Loss/T

1 4733.1 22.04

2 4735 22.06

3 4666.8 21.82

4 4827.4 22.38

5 4726 22.04

6 4685.4 21.87

7 4785.1 22.25

8 4732.8 22.06

9 4681.4 21.89

10 4721.2 22.02

Table A.2: Modified Reasonable Strategy (𝑛 = 500, 𝑇 = 100): Average population size and loss

Average Population Size = 4747.1 ± 1.7%.

Average Loss/T = 22.1 ± 1.7%.

– 𝑛 = 500, 𝑇 = 200:
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Run number Average population size Average Loss/T

1 6972.6 32.39

2 7194.9 33.17

3 7210.3 33.19

4 7148.8 33.01

5 7336.1 33.67

6 7085.7 32.79

7 7153.2 32.97

8 7119.2 32.94

9 7195.2 33.11

10 7086.6 32.79

Table A.3: Modified Reasonable Strategy (𝑛 = 500, 𝑇 = 200): Average population size and loss

Average Population Size = 7154.4 ± 2.6%.

Average Loss/T = 33.03 ± 2%.

– 𝑛 = 500, 𝑇 = 300:
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Run number Average population size Average Loss/T

1 8963.4 41.25

2 8930.5 41.21

3 8937 41.17

4 8744.5 40.49

5 8889.2 41.07

6 8798.6 40.75

7 8854.8 40.89

8 8783.7 40.68

9 8682.9 40.34

10 8705.3 40.37

Table A.4: Modified Reasonable Strategy (𝑛 = 500, 𝑇 = 300): Average population size and loss

Average Population Size = 8823.2 ± 1.6%.

Average Loss/T = 40.8 ± 1.2%.

– 𝑛 = 500, 𝑇 = 400:
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Run number Average population size Average Loss/T

1 10554.7 48.4

2 10281 47.22

3 10060.9 46.52

4 10168.1 47

5 10748.9 48.9

6 10295.3 47.39

7 10185.9 46.86

8 10094.6 46.75

9 10555.1 48.3

10 10185.3 46.99

Table A.5: Modified Reasonable Strategy (𝑛 = 500, 𝑇 = 400): Average population size and loss

Average Population Size = 10404.9 ± 3.4%.

Average Loss/T = 47.71 ± 2.5%.

– 𝑛 = 500, 𝑇 = 500:
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Run number Average population size Average Loss/T

1 11186.2 52.09

2 11268.1 52.38

3 11530 53.44

4 12209.8 55.8

5 12198.1 55.63

6 12027.3 55.07

7 11710.77 54.03

8 11372.4 52.78

9 11493.2 53.27

10 11378.5 52.77

Table A.6: Modified Reasonable Strategy (𝑛 = 500, 𝑇 = 500): Average population size and loss

Average Population Size = 11698 ± 4.4%.

Average Loss/T = 53.95 ± 3.5%.

In summary:

n T Average population size Average Loss/T

500 100 4747.1 ± 1.7% 22.1 ± 1.7%

500 200 7154.4 ± 2.6% 33.03 ± 2%

500 300 8823.2 ± 1.6% 40.8 ± 1.2%

500 400 10404.9 ± 3.4%. 47.71 ± 2.5%

500 500 11698 ± 4.4% 53.95 ± 3.5%

Table A.7: Modified Reasonable Strategy (summary): Average population size and loss

• Continuum Setting (𝑛 = 500, 𝑇 = 100):

164



Average Population Size = 4484.8

Average Loss/T = 20.85.
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