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1 Introduction

Classical potential theory reduces elliptic partial differential equations to second kind
boundary integral equations, by representing the solutions by single-layer or double-layer
potentials on the boundaries of the regions.

While there are many regimes in which such boundary integral equations have been
studied, this report deals only with polygonal boundaries. In this case, both the ker-
nels and the solutions of the integral equations of potential theory are singular at the
corners. The existence and uniqueness of the solutions in the L2-sense have long been
known (see [3], [14]), and the properties of the solutions to both the differential and
integral equations on polygons have been the subject of extensive research (see, for ex-
ample, [9], [16], [15]; reviews of the literature can be found in, for example, [7], [10]).
While much is known about the spaces to which to solutions belong, and the leading
singular terms of the solutions are well-known, it was observed in [12] that the solutions
admit an explicit representation which appears to have been overlooked.

In [12], it is shown that when the second kind boundary integral equations of potential
theory are solved on polygonal domains, the solutions near corners are explicitly repre-
sentable by linear combinations of certain non-integer powers, except at finitely many
angles of the corners. In this report, we extend the results of [12] to all angles of the cor-
ners. In particular, we show that the solutions to the boundary integral equations near
corners are, for any angle, representable by certain linear combinations of non-integer
powers and non-integer powers multiplied by logarithms. We prove this result by con-
structing a mapping from the coefficients of these singular terms to the coefficients of the
Taylor series representing the boundary data, and show that this mapping is invertible
for any angle of the corner.

The structure of the report is as follows. Section 2 provides an overview of the
principal results of the report. In Section 3, we introduce the necessary mathematical
preliminaries. Section 4 contains the analytical apparatus. Sections 5 and 6 analyze the
Neumann and Dirichlet cases respectively.

2 Overview

The following two subsections 2.1 and 2.2 summarize the Neumann and Dirichlet cases
respectively. The principal results of this report are theorems 2.1 and 2.2.

Suppose that γ : [−1, 1] → R
2 is a wedge in R2 with a corner at γ(0), and with

interior angle πα. Suppose further that γ is parameterized by arc length, and let ν(t)
denote the inward-facing unit normal to the curve γ at t. Let Γ denote the set γ([−1, 1]).
By extending the sides of the wedge to infinity, we divide R2 into two open sets Ω1 and
Ω2 (see Figure 1).

2.1 The Neumann Case

Let φ : R2 \ Γ → R denote the potential induced by a charge distribution on γ with
density ρ : [−1, 1]→ R. In other words, let φ be defined by the formula

φ(x) = − 1

2π

∫ 1

−1
log(‖γ(t)− x‖)ρ(t) dt, (1)
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Figure 1: A wedge in R2

for all x ∈ R2 \ Γ, where ‖ · ‖ denotes the Euclidean norm. Suppose that g : [−1, 1]→ R

is defined by the formula

g(t) = lim
x→γ(t)
x∈Ω1

∂φ(x)

∂ν(t)
, (2)

for all −1 ≤ t ≤ 1, i.e. g is the limit of the normal derivative of integral (1) when x
approaches the point γ(t) from outside. It is well known that

g(s) =
1

2
ρ(s) +

1

2π

∫ 1

−1
K(s, t)ρ(t) dt, (3)

for all −1 ≤ s ≤ 1, where

K(s, t) =
〈γ(t)− γ(s), ν(s)〉
‖γ(t)− γ(s)‖2

, (4)

for all −1 ≤ s, t ≤ 1, where 〈·, ·〉 denotes the inner product in R2.
In this report, we prove the following theorem, which holds for any angle 0 < πα < 2π,

and which is the first of the two principal results of this report.

Theorem 2.1. Suppose that 0 < α < 2 and that N is a positive integer. Letting b·c and
d·e denote the floor and ceiling functions respectively, suppose that

L =
⌈αN

2

⌉
, (5)

L =
⌊αN

2

⌋
, (6)

and

M =
⌊(2− α)N

2

⌋
, (7)

M =
⌈(2− α)N

2

⌉
, (8)
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and observe that L+ M = N and M + L = N . Suppose further that ρ is defined by the
formula

ρ(t) =

L∑
i=1

bi|t|
2i−1
α
−1 +

M∑
i=1
i/∈S

bL+i|t|
2i

2−α−1 +

M∑
i=1
i∈S

bL+i|t|
2i

2−α−1 log(|t|)

+
M∑
i=1

ci sgn(t)|t|
2i−1
2−α−1 +

L∑
i=1
i/∈T

cM+i sgn(t)|t|
2i
α
−1 +

L∑
i=1
i∈T

cM+i sgn(t)|t|
2i
α
−1 log(|t|), (9)

for all −1 ≤ t ≤ 1, where b1, b2, . . . , bN and c1, c2, . . . , cN are arbitrary real numbers,

S =
{
i ∈ Z, 1 ≤ i ≤M :

2i

2− α
=

2j − 1

α
for some integer 1 ≤ j ≤ L

}
, (10)

and

T =
{
i ∈ Z, 1 ≤ i ≤ L :

2i

α
=

2j − 1

2− α
for some integer 1 ≤ j ≤M

}
. (11)

Suppose finally that g is defined by (3). Then there exist sequences of real numbers
β0, β1, . . . and γ0, γ1, . . . such that

g(t) =
∞∑
n=0

βn|t|n +
∞∑
n=0

γn sgn(t)|t|n, (12)

for all −1 ≤ t ≤ 1. Conversely, suppose that g has the form (12). Suppose further
that N is an arbitrary positive integer. Then, for all angles πα, there exist unique real
numbers b1, b2, . . . , bN and c1, c2, . . . , cN such that ρ, defined by (9), solves equation (3)
to within an error O(tN ).

In other words, if ρ has the form (9), then g is smooth on each of the intervals [−1, 0]
and [0, 1]. Conversely, if g is smooth on each of the intervals [−1, 0] and [0, 1], then for
each positive integer N , and for each angle πα, there exists a unique solution ρ of the
form (9) that solves equation (3) to within an error O(tN ).

2.2 The Dirichlet Case

Let φ : R2 \ Γ → R denote the potential induced by a dipole distribution on γ with
density ρ : [−1, 1]→ R. In other words, let φ be defined by the formula

φ(x) =
1

2π

∫ 1

−1

〈x− γ(t), ν(t)〉
‖x− γ(t)‖2

ρ(t) dt, (13)

for all x ∈ R2 \ Γ, where ‖ · ‖ denotes the Euclidean norm and 〈·, ·〉 denotes the inner
product in R2. Suppose that g : [−1, 1]→ R is defined by the formula

g(t) = lim
x→γ(t)
x∈Ω2

φ(x), (14)
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for all −1 ≤ t ≤ 1, i.e. g is the limit of integral (13) when x approaches the point γ(t)
from inside. It is well known that

g(s) =
1

2
ρ(s) +

1

2π

∫ 1

−1
K(t, s)ρ(t) dt, (15)

for all −1 ≤ s ≤ 1, where

K(t, s) =
〈γ(s)− γ(t), ν(t)〉
‖γ(s)− γ(t)‖2

, (16)

for all −1 ≤ s, t ≤ 1, where 〈·, ·〉 denotes the inner product in R2.
In this report, we prove the following theorem, which holds for any angle 0 < πα < 2π,

and which is the second of the two principal results of this report.

Theorem 2.2. Suppose that 0 < α < 2 and that N is a positive integer. Letting b·c and
d·e denote the floor and ceiling functions respectively, suppose that

L =
⌈αN

2

⌉
, (17)

L =
⌊αN

2

⌋
, (18)

and

M =
⌊(2− α)N

2

⌋
, (19)

M =
⌈(2− α)N

2

⌉
, (20)

and observe that L+ M = N and M + L = N . Suppose further that ρ is defined by the
formula

ρ(t) = b0 +

L∑
i=1

bi|t|
2i−1
α +

M∑
i=1
i/∈S

bL+i|t|
2i

2−α +

M∑
i=1
i∈S

bL+i|t|
2i

2−α log(|t|) + c0 · sgn(t)

+

M∑
i=1

ci sgn(t)|t|
2i−1
2−α +

L∑
i=1
i/∈T

cM+i sgn(t)|t|
2i
α +

L∑
i=1
i∈T

cM+i sgn(t)|t|
2i
α log(|t|), (21)

for all −1 ≤ t ≤ 1, where b0, b1, . . . , bN and c0, c1, . . . , cN are arbitrary real numbers,

S =
{
i ∈ Z, 1 ≤ i ≤M :

2i

2− α
=

2j − 1

α
for some integer 1 ≤ j ≤ L

}
, (22)

and

T =
{
i ∈ Z, 1 ≤ i ≤ L :

2i

α
=

2j − 1

2− α
for some integer 1 ≤ j ≤M

}
. (23)

Suppose finally that g is defined by (15). Then there exist sequences of real numbers
β0, β1, . . . and γ0, γ1, . . . such that

g(t) =

∞∑
n=0

βn|t|n +

∞∑
n=0

γn sgn(t)|t|n, (24)
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for all −1 ≤ t ≤ 1. Conversely, suppose that g has the form (24). Suppose further
that N is an arbitrary positive integer. Then, for all angles πα, there exist unique real
numbers b0, b1, . . . , bN and c0, c1, . . . , cN such that ρ, defined by (21), solves equation (15)
to within an error O(tN+1).

In other words, if ρ has the form (21), then g is smooth on each of the intervals
[−1, 0] and [0, 1]. Conversely, if g is smooth on each of the intervals [−1, 0] and [0, 1],
then for each positive integer N , and for each angle πα, there exists a unique solution ρ
of the form (21) that solves equation (15) to within an error O(tN+1).

3 Mathematical Preliminaries

3.1 Boundary Value Problems

Figure 2: A curve in R2

Suppose that γ : [0, L]→ R
2 is a simple closed curve of length L with a finite number of

corners. Suppose further that γ is analytic except at the corners. We denote the interior
of γ by Ω and the boundary of Ω by Γ, and let ν(t) denote the normalized internal
normal to γ at t ∈ [0, L]. Supposing that g is some function g : [0, L]→ R, we will solve
the following four problems.

1) Interior Neumann problem (INP): Find a function φ : Ω→ R such that

∇2φ(x) = 0 for x ∈ Ω, (25)

lim
x→γ(t)
x∈Ω

∂φ(x)

∂ν(t)
= g(t) for t ∈ [0, L]. (26)

2) Exterior Neumann problem (ENP): Find a function φ : R2 \ Ω→ R such that

∇2φ(x) = 0 for x ∈ R2 \ Ω, (27)

lim
x→γ(t)

x∈R2\Ω

∂φ(x)

∂ν(t)
= g(t) for t ∈ [0, L]. (28)
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3) Interior Dirichlet problem (IDP): Find a function φ : Ω→ R such that

∇2φ(x) = 0 for x ∈ Ω, (29)

lim
x→γ(t)
x∈Ω

φ(x) = g(t) for t ∈ [0, L]. (30)

4) Exterior Dirichlet problem (EDP): Find a function φ : R2 \ Ω→ R such that

∇2φ(x) = 0 for x ∈ R2 \ Ω, (31)

lim
x→γ(t)

x∈R2\Ω

φ(x) = g(t) for t ∈ [0, L]. (32)

Suppose that g ∈ L2([0, L]). Then the interior and exterior Dirichlet problems have
unique solutions. If g also satisfies the condition∫ L

0
g(t) dt = 0, (33)

then the interior and exterior Neumann problems have unique solutions up to an additive
constant (see, for example, [8], [5]).

3.2 Integral Equations of Potential Theory

In classical potential theory, boundary value problems are solved by representing the
function φ by integrals of potentials over the boundary. The potential of a unit charge
located at x0 ∈ R2 is the function ψ0

x0 : R2 \ x0 → R, defined via the formula

ψ0
x0(x) = log(‖x− x0‖), (34)

for all x ∈ R2 \ x0, where ‖ · ‖ denotes the Euclidean norm. The potential of a unit
dipole located at x0 ∈ R2 and oriented in direction h ∈ R2, ‖h‖ = 1, is the function
ψ1
x0,h

: R2 \ x0 → R, defined via the formula

ψ1
x0,h(x) =

〈h, x0 − x〉
‖x0 − x‖2

, (35)

for all x ∈ R2 \ x0, where 〈·, ·〉 denotes the inner product.
Charge and dipole distributions with density ρ : [0, L] → R on Γ produce potentials

given by the formulas

φ(x) =

∫ L

0
ψ0
γ(t)(x)ρ(t) dt, (36)

and

φ(x) =

∫ L

0
ψ1
γ(t),ν(t)(x)ρ(t) dt, (37)

respectively, for any x ∈ R2 \ Γ.
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Reduction of Boundary Value Problems to Integral Equations

The following four theorems reduce the boundary value problems of Section 3.1 to bound-
ary integral equations. They are found in, for example, [11], [14].

Theorem 3.1 (Exterior Neumann problem). Suppose that ρ ∈ L2([0, L]). Suppose
further that g : [0, L]→ R is defined by the formula

g(s) = −πρ(s) +

∫ L

0
ψ1
γ(s),ν(s)(γ(t))ρ(t) dt, (38)

for any s ∈ [0, L]. Then g is in L2([0, L]), and a solution φ to the exterior Neumann
problem with right hand side g is obtained by substituting ρ into (36). Moreover, for any
g ∈ L2([0, L]), equation (38) has a unique solution ρ ∈ L2([0, L]).

Theorem 3.2 (Interior Dirichlet problem). Suppose that ρ ∈ L2([0, L]). Suppose further
that g : [0, L]→ R is defined by the formula

g(s) = −πρ(s) +

∫ L

0
ψ1
γ(t),ν(t)(γ(s))ρ(t) dt, (39)

for any s ∈ [0, L]. Then g is in L2([0, L]), and the solution φ to the interior Dirichlet
problem with right hand side g is obtained by substituting ρ into (37). Moreover, for any
g ∈ L2([0, L]), equation (39) has a unique solution ρ ∈ L2([0, L]).

The following two theorems make use of the function ω : [0, L] → R, defined as the
solution to the equation∫ L

0
ω(t) log(‖x− γ(t)‖) dt = 1, (40)

for all x ∈ Ω. In other words, we define the function ω as the density of the charge
distribution on Γ when Ω is a conductor.

Theorem 3.3 (Interior Neumann problem). Suppose that ρ ∈ L2([0, L]). Suppose fur-
ther that g : [0, L]→ R is defined by the formula

g(s) = πρ(s) +

∫ L

0
ψ1
γ(s),ν(s)(γ(t))ρ(t) dt, (41)

for any s ∈ [0, L]. Then g is in L2([0, L]), and a solution φ to the exterior Neumann
problem with right hand side g is obtained by substituting ρ into (36).

Now suppose that g is an arbitrary function in L2([0, L]) such that∫ L

0
g(t) dt = 0. (42)

Then equation (41) has a solution ρ ∈ L2([0, L]). Moreover, if ρ1 and ρ2 are both
solutions to equation (41), then there exists a real number C such that

ρ1(t)− ρ2(t) = Cω(t), (43)

for t ∈ [0, L], where ω is the solution to (40).
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Theorem 3.4 (Exterior Dirichlet problem). Suppose that ρ ∈ L2([0, L]). Suppose further
that g : [0, L]→ R is defined by the formula

g(s) = πρ(s) +

∫ L

0
ψ1
γ(t),ν(t)(γ(s))ρ(t) dt, (44)

for any s ∈ [0, L]. Then g is in L2([0, L]), and the solution φ to the interior Dirichlet
problem with right hand side g is obtained by substituting ρ into (37).

Now suppose that g is an arbitrary function in L2([0, L]) such that∫ L

0
g(t)ω(t) dt = 0, (45)

where ω is the solution to (40). Then equation (44) has a solution ρ ∈ L2([0, L]).
Moreover, if ρ1 and ρ2 are both solutions to equation (44), then there exists a real number
C such that

ρ1(t)− ρ2(t) = C, (46)

for t ∈ [0, L].

Observation 3.1. Equation (38) is the adjoint of equation (39), and equation (41) is
the adjoint of equation (44).

Observation 3.2. Suppose that the curve γ : [0, L]→ R
2 is not closed. We observe that

if ρ ∈ L2([0, L]), and g is defined by either (38), (39), (41), or (44), then g ∈ L2([0, L]).
Moreover, if g ∈ L2([0, L]), then equations (38), (39), (41), and (44) have unique solutions
ρ ∈ L2([0, L]).

Properties of the Kernels of Equations (38), (39), (41), and (44)

The following theorem shows that if a curve γ is has k continuous derivatives, where
k ≥ 2, then the kernels of equations (38), (39), (41), and (44) have k − 2 continuous
derivatives. It is found in, for example, [2].

Theorem 3.5. Suppose that γ : [0, L] → R
2 is a curve in R2 that is parameterized by

arc length. Suppose further that k ≥ 2 is an integer. If γ is Ck on a neighborhood of a
point s, where 0 < s < L, then

ψ1
γ(s),ν(s)(γ(t)), (47)

ψ1
γ(t),ν(t)(γ(s)), (48)

are Ck−2 functions of t on a neighborhood of s and

lim
t→s

ψ1
γ(s),ν(s)(γ(t)) = lim

t→s
ψ1
γ(t),ν(t)(γ(s)) = −1

2
k(s), (49)

where k : [0, L] → R is the signed curvature of γ. Furthermore, if γ is analytic on a
neighborhood of a point s, where 0 < s < L, then (47) and (48) are analytic functions of
t on a neighborhood of s.
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Figure 3: A wedge in R2

When the curve γ is a wedge, the kernels of equations (38), (39), (41), and (44) have
a particularly simple form, which is given by the following lemma. It is proved in [13].

Lemma 3.6. Suppose γ : [−1, 1]→ R
2 is defined by the formula

γ(t) =

{
−t · (cos(πα), sin(πα)) if −1 ≤ t < 0,
(t, 0) if 0 ≤ t ≤ 1,

(50)

shown in Figure 3. Then, for all 0 < s ≤ 1,

ψ1
γ(s),ν(s)(γ(t)) =


t sin(πα)

s2 + t2 + 2st cos(πα)
if −1 ≤ t < 0,

0 if 0 ≤ t ≤ 1,
(51)

and, for all −1 ≤ s < 0,

ψ1
γ(s),ν(s)(γ(t)) =

 0 if −1 ≤ t < 0,
−t sin(πα)

s2 + t2 + 2st cos(πα)
if 0 ≤ t ≤ 1.

(52)

Corollary 3.7. Identities (51) and (52) remain valid after any rotation or translation
of the curve γ in R2.

Corollary 3.8. When the curve γ is a straight line, ψ1
γ(s),ν(s)(γ(t)) = 0 for all −1 ≤

s, t ≤ 1.

3.3 Boundary Integral Equations on a Wedge

Suppose that the curve γ : [−1, 1] → R
2 is a wedge defined by (50) with interior angle

πα, where 0 < α < 2 (see Figure 3), and let ν(t) denote the inward-facing unit normal
to the curve γ at the point γ(t).

The Neumann Case

Let g be a function in L2([−1, 1]), and suppose that ρ ∈ L2([−1, 1]) solves the equation

g(s) = −πρ(s) +

∫ 1

−1
ψ1
γ(s),ν(s)(γ(t))ρ(t) dt, (53)

for all s ∈ [−1, 1], where ψ1
γ(s),ν(s) is defined by (35).

The following lemma combines equation (53) with identities (51) and (52).
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Lemma 3.9. Let g ∈ L2([−1, 1]), and suppose that ρ ∈ L2([−1, 1]) solves equation (53).
Then

g(s) = −πρ(s)−
∫ 1

0

t sin(πα)

s2 + t2 + 2st cos(πα)
ρ(t) dt, (54)

for all −1 ≤ s < 0, and

g(s) = −πρ(s) +

∫ 0

−1

t sin(πα)

s2 + t2 + 2st cos(πα)
ρ(t) dt, (55)

for all 0 < s ≤ 1.

The following theorem uses a symmetry argument to reduce (54), (55) from two
coupled integral equations on the interval [−1, 1] to two independent integral equations
on the interval [0, 1]. It is proved in [12].

Theorem 3.10. Suppose that g is a function in L2([−1, 1]), and ρ ∈ L2([−1, 1]) solves
equation (53). Suppose further that even functions geven, ρeven ∈ L2([−1, 1]) are defined
via the formulas

geven(s) =
1

2
(g(s) + g(−s)), (56)

ρeven(s) =
1

2
(ρ(s) + ρ(−s)). (57)

Then

geven(s) = −πρeven(s)−
∫ 1

0

t sin(πα)

s2 + t2 − 2st cos(πα)
ρeven(t) dt, (58)

for all 0 < s ≤ 1.
Likewise, suppose that odd functions godd, ρodd ∈ L2([−1, 1]) are defined via the for-

mulas

godd(s) =
1

2
(g(s)− g(−s)), (59)

ρodd(s) =
1

2
(ρ(s)− ρ(−s)). (60)

Then

godd(s) = −πρodd(s) +

∫ 1

0

t sin(πα)

s2 + t2 − 2st cos(πα)
ρodd(t) dt, (61)

for all 0 < s ≤ 1.

The Dirichlet Case

Let g be a function in L2([−1, 1]), and suppose that ρ ∈ L2([−1, 1]) solves the equation

g(s) = −πρ(s) +

∫ 1

−1
ψ1
γ(t),ν(t)(γ(s))ρ(t) dt, (62)

for all s ∈ [−1, 1], where ψ1
γ(t),ν(t) is defined by (35).

The following lemma combines equation (62) with identities (51) and (52).
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Lemma 3.11. Let g ∈ L2([−1, 1]), and suppose that ρ ∈ L2([−1, 1]) solves equation (62).
Then

g(s) = −πρ(s)−
∫ 1

0

s sin(πα)

s2 + t2 + 2st cos(πα)
ρ(t) dt, (63)

for all −1 ≤ s < 0, and

g(s) = −πρ(s) +

∫ 0

−1

s sin(πα)

s2 + t2 + 2st cos(πα)
ρ(t) dt, (64)

for all 0 < s ≤ 1.

The following theorem uses a symmetry argument to reduce (63), (64) from two
coupled integral equations on the interval [−1, 1] to two independent integral equations
on the interval [0, 1]. It is proved in [12].

Theorem 3.12. Suppose that g is a function in L2([−1, 1]), and ρ ∈ L2([−1, 1]) solves
equation (62). Suppose further that even functions geven, ρeven ∈ L2([−1, 1]) are defined
via the formulas

geven(s) =
1

2
(g(s) + g(−s)), (65)

ρeven(s) =
1

2
(ρ(s) + ρ(−s)). (66)

Then

geven(s) = −πρeven(s)−
∫ 1

0

s sin(πα)

s2 + t2 − 2st cos(πα)
ρeven(t) dt, (67)

for all 0 < s ≤ 1.
Likewise, suppose that odd functions godd, ρodd ∈ L2([−1, 1]) are defined via the for-

mulas

godd(s) =
1

2
(g(s)− g(−s)), (68)

ρodd(s) =
1

2
(ρ(s)− ρ(−s)). (69)

Then

godd(s) = −πρodd(s) +

∫ 1

0

s sin(πα)

s2 + t2 − 2st cos(πα)
ρodd(t) dt, (70)

for all 0 < s ≤ 1.

3.4 Chebyshev Systems

The following defines the concept of a Chebyshev system.
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Definition 3.1 (Chebyshev system). Let a < b be real numbers and let n be a positive
integer. A set of n functions ϕ1, ϕ2, . . . , ϕn : [a, b]→ R will be referred to as a Chebyshev
system if each function is continuous on [a, b] and the determinants

det


ϕ1(x1) ϕ2(x1) . . . ϕn(x1)
ϕ1(x2) ϕ2(x2) . . . ϕn(x2)

...
...

...
ϕ1(xn) ϕ2(xn) . . . ϕn(xn)

 (71)

are nonzero for any set of n distinct points x1, x2, . . . , xn ∈ [a, b].

The following theorem states that the Lagrange interpolating polynomials form a
Chebyshev system. For completeness, a proof is provided in Appendix A.

Theorem 3.13. Suppose that K and L are nonnegative integers such that K ≤ L.
Suppose further that µ1, µ2, . . . , µL are distinct real numbers. Suppose finally that p : R→
R is defined by

p(x) =
L∏
`=1

(x− µ`)
K∏
k=1

(x− µk), (72)

for all x ∈ R. Then the set of L+K functions{ p(x)

x− µ`

}L
`=1
∪
{ p(x)

(x− µk)2

}K
k=1

, (73)

where x ∈ R, is a Chebyshev system.

3.5 Miscellaneous Analytical Facts

This section contains a number of miscellaneous elementary technical lemmas.

Theorem 3.14. Suppose that 0 < α < 2. Then

sin(πµ(1− α))

sin(πµ)
= −1, (74)

if and only if

µ =
2n− 1

α
, (75)

or

µ =
2n

2− α
, (76)

for some integer n. Likewise,

sin(πµ(1− α))

sin(πµ)
= 1, (77)
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if and only if

µ =
2n

α
, (78)

or

µ =
2n− 1

2− α
, (79)

for some integer n.

Theorem 3.15. Suppose that 0 < α < 2 and that n and m are positive integers. Then

2n

2− α
=

2m− 1

α
, (80)

if and only if

α =
4m− 2

2n+ 2m− 1
. (81)

Proof. Suppose that

2n

2− α
=

2m− 1

α
. (82)

Multiplying both sides of (82) by

2− α
2m− 1

, (83)

we have

2n

2m− 1
=

2

α
− 1. (84)

Thus,

2

α
=

2n+ 2m− 1

2m− 1
, (85)

so

α =
4m− 2

2n+ 2m− 1
. (86)

�

Corollary 3.16. Suppose that 0 < α < 2 and that n and m are positive integers. Then

2n

α
=

2m− 1

2− α
, (87)

if and only if

α =
4n

2n+ 2m− 1
. (88)
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Theorem 3.17. Suppose that 0 < α < 2 and that n is a positive integer. Suppose further
that

2n

2− α
=

2m− 1

α
, (89)

for some positive integer m. Then

2n

2− α
= n+m− 1

2
. (90)

Proof. By Theorem 3.15,

α =
4m− 2

2n+ 2m− 1
. (91)

Therefore,

2m− 1

α
=

2n+ 2m− 1

2
= n+m− 1

2
. (92)

�

Corollary 3.18. Suppose that 0 < α < 2 and that n is a positive integer. Suppose
further that

2n

α
=

2m− 1

2− α
, (93)

for some positive integer m. Then

2n

α
= n+m− 1

2
. (94)

Theorem 3.19. Suppose that 0 < α < 2. Suppose further that

µ =
2n

2− α
, (95)

where n is a positive integer. Then

(1− α) cos(π(1− α)µ)− cot(πµ) sin(π(1− α)µ) = 0, (96)

if and only if

2n

2− α
=

2m− 1

α
, (97)

for some positive integer m.

Proof. Suppose that

2n

2− α
=

2m− 1

α
, (98)
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for some positive integer m. Then, by Theorem 3.17,

µ = n+m− 1

2
, (99)

so

cos(πµ) = cos(π(n+m− 1
2)) = 0. (100)

Furthermore, by Theorem 3.15,

α =
4m− 2

2n+ 2m− 1
. (101)

Therefore,

1− α =
2n− 2m+ 1

2n+ 2m− 1
. (102)

Combining (102) and (99),

(1− α)µ =
2n− 2m+ 1

2n+ 2m− 1
·
(
n+m− 1

2

)
= n−m+

1

2
, (103)

so

cos(π(1− α)µ) = cos(π(n−m+ 1
2)) = 0. (104)

Thus, from (104) and (100), we have that

(1− α) cos(π(1− α)µ)− cot(πµ) sin(π(1− α)µ) = 0. (105)

For the converse, suppose now that

(1− α) cos(π(1− α)µ)− cot(πµ) sin(π(1− α)µ) = 0. (106)

By Theorem 3.14,

sin(π(1− α)µ)

sin(πµ)
= −1. (107)

Thus,

(1− α) cos(π(1− α)µ) + cos(πµ) = 0. (108)

Combining (108) and (95), we have that

(1− α) cos
(
π(1− α) 2n

2−α
)

+ cos
(
π 2n

2−α
)

= 0. (109)

Since

cos
(
π(1− α) · 2n

2−α
)

= cos
(
−π 2n

2−α + 2nπ
)

= cos
(
π 2n

2−α
)
, (110)

it follows that

(1− α) cos
(
π 2n

2−α
)

+ cos
(
π 2n

2−α
)

= 0, (111)
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so

(2− α) · cos
(
π 2n

2−α
)

= 0. (112)

Thus,

cos
(
π 2n

2−α
)

= 0. (113)

Clearly, (113) implies that

2n

2− α
= k +

1

2
, (114)

for some integer k > n− 1. Therefore

4n

2− α
= 2k + 1, (115)

and

2− α =
4n

2k + 1
, (116)

so

α =
4k − 4n+ 2

2k + 1
. (117)

Letting m = k − n+ 1, we have

α =
4m− 2

2n+ 2m− 1
(118)

and m > 0, so, by Theorem 3.15,

2n

2− α
=

2m− 1

α
. (119)

�

Corollary 3.20. Suppose that 0 < α < 2. Suppose further that

µ =
2n

α
, (120)

where n is a positive integer. Then

(1− α) cos(π(1− α)µ)− cot(πµ) sin(π(1− α)µ) = 0, (121)

if and only if

2n

α
=

2m− 1

2− α
, (122)

for some positive integer m.
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Theorem 3.21. Suppose 0 < α < 2 and that i and n are integers. If

i =
2n− 1

α
, (123)

then

lim
ν→α

sin(iπν)

i− 2n−1
ν

= −πα. (124)

Likewise, if

i =
2n

2− α
, (125)

then

lim
ν→α

sin(iπν)

i− 2n
2−ν

= −π(2− α). (126)

Proof. Suppose that

i =
2n− 1

α
. (127)

Then, by L’Hôpital’s rule,

lim
ν→α

sin(iπν)

i− 2n−1
ν

= −π · lim
ν→α

ν · sin(iπν − (2n− 1)π)

iπν − (2n− 1)π
= −πα. (128)

Likewise, suppose that

i =
2n

2− α
. (129)

Then,

lim
ν→α

sin(iπν)

i− 2n
2−ν

= −π · lim
ν→α

(2− ν) · sin(iπ(2− ν)− 2nπ)

iπ(2− ν)− 2nπ
= −π(2− α). (130)

�

Theorem 3.22. Suppose 0 < α < 2 and that i and n are integers. If

i =
2n− 1

2− α
, (131)

then

lim
ν→α

sin(iπν)

i− 2n−1
2−ν

= π(2− α). (132)

Likewise, if

i =
2n

α
, (133)

then

lim
ν→α

sin(iπν)

i− 2n
ν

= πα. (134)
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Theorem 3.23. Suppose that 0 < α < 2, and that L and M are arbitrary nonnegative
integers. Suppose further that p : (0, 2)× Z→ R is defined by

p(ν, i) =
L∏
`=1

(
i− 2`− 1

ν

) M∏
m=1

(
i− 2m

2− ν

)
, (135)

for all 0 < ν < 2 and integers i. Then, for each integer i, the limit

lim
ν→α

sin(iπν)

p(ν, i)
(136)

exists and is finite.

Proof. Suppose that i is an integer and that

i =
2`− 1

α
, (137)

for some integer 1 ≤ ` ≤ L. By Theorem 3.17,

2`− 1

α
6= 2m

2− α
, (138)

for all positive integers m, so, by Theorem 3.21,

lim
ν→α

sin(iπν)

p(ν, i)
(139)

exists and is finite.
Likewise, suppose that i is an integer and that

i =
2m

2− α
, (140)

for some integer 1 ≤ m ≤M . By Theorem 3.17,

2m

2− α
6= 2`− 1

α
, (141)

for all positive integers `. Thus, by Theorem 3.21,

lim
ν→α

sin(iπν)

p(ν, i)
(142)

exists and is finite.
�

Corollary 3.24. Suppose that 0 < α < 2, and that L and M are arbitrary nonnegative
integers. Suppose further that p : (0, 2)× Z→ R is defined by

p(ν, i) =

L∏
`=1

(
i− 2`− 1

2− ν

) M∏
m=1

(
i− 2m

ν

)
, (143)

for all 0 < ν < 2 and integers i. Then, for each integer i, the limit

lim
ν→α

sin(iπν)

p(ν, i)
(144)

exists and is finite.
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Theorem 3.25. Suppose that x is a real number, and let b·c and d·e denote the floor
and ceiling functions respectively. Then

bx+ 1
2c ≤ dxe. (145)

Proof. Let y = x− bxc. Then 0 ≤ y < 1, and

bx+ 1
2c = bbxc+ y + 1

2c = bxc+ by + 1
2c. (146)

If 0 ≤ y < 1
2 , then by + 1

2c = byc. On the other hand, if 1
2 ≤ y < 1, then by + 1

2c = dye.
Thus,

by + 1
2c ≤ dye. (147)

Combining (147) and (146),

bx+ 1
2c ≤ bxc+ dye = dbxc+ ye = dxe. (148)

�

4 Analytical Apparatus

4.1 Integral Identities

The following theorem is proved in [12], and is an identity involving the integral of a
ratio of a polynomial and a non-integer power.

Theorem 4.1. Suppose that 0 < α < 2, and that Reµ > −1 and µ 6= 1, 2, 3, . . . . Then∫ 1

0

xµ sin(πα)

a2 − 2ax cos(πα) + x2
dx = πaµ−1 sin

(
µπ(1− α)

)
sin(µπ)

+
∞∑
k=0

sin
(
(k + 1)πα

)
µ− k − 1

ak,

(149)

for all 0 < a < 1.

The following theorem computes the integral in (149) when the integrand is multiplied
by log(x). It is proved by differentiating (149) with respect to µ.

Theorem 4.2. Suppose that 0 < α < 2, and that Re(µ) > −1 and µ 6= 1, 2, 3, . . . .
Then∫ 1

0

xµ log(x) sin(πα)

a2 − 2ax cos(πα) + x2
dx = πaµ−1 log(a)

sin(µπ(1− α))

sin(µπ)

+
π2aµ−1

sin(πµ)

(
(1− α) cos(π(1− α)µ)− cot(πµ) sin(π(1− α)µ)

)
−
∞∑
k=0

sin((k + 1)πα)

(µ− k − 1)2
ak, (150)

for all 0 < a < 1.
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4.2 The Invertibility of a Certain Linear Mapping

In this section, we show that a certain matrix is invertible. The principal result of this
section is Theorem 4.4.

The following is a technical lemma involving the limits of a certain ratio of a sine
function and a rational function.

Lemma 4.3. Suppose that N is a positive integer and that 0 < α < 2. Letting b·c and
d·e denote the floor and ceiling functions respectively, suppose further that

L =
⌈αN

2

⌉
, (151)

and

M =
⌊(2− α)N

2

⌋
, (152)

and observe that L+M = N . Suppose finally that p : (0, 2)× Z→ R is defined by

p(ν, i) =
L∏
j=1

(
i− 2j − 1

ν

) M∏
k=1

(
i− 2k

2− ν

)
, (153)

for all 0 < ν < 2 and integers i. Then, for each integer 1 ≤ i ≤ N ,

lim
ν→α

sin(iπν)

p(ν, i)
(154)

exists and is finite, and

lim
ν→α

sin(iπν)

p(ν, i)
6= 0. (155)

Proof. Suppose that 1 ≤ i ≤ N is an integer. Then, by Theorem 3.23, the limit

lim
ν→α

sin(iπν)

p(ν, i)
(156)

exists and is finite. Suppose further that αi is an integer. Then

sin(iπα) = 0, (157)

and, furthermore,

lim
ν→α

sin(iπν)

p(ν, i)
6= 0 (158)

if and only if either

i =
2j − 1

α
, (159)

for some integer j, where

1 ≤ j ≤
⌈Nα

2

⌉
, (160)
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or

i =
2k

2− α
, (161)

for some integer k, where

1 ≤ k ≤
⌊(2− α)N

2

⌋
. (162)

Suppose that iα is an odd integer. Then

iα = 2j − 1, (163)

for some integer j. Therefore,

i =
2j − 1

α
, (164)

for some integer j. Observing that

j =
αi

2
+

1

2
, (165)

and combining (165) with 1 ≤ i ≤ N , we have

α

2
+

1

2
≤ j ≤ Nα

2
+

1

2
, (166)

so

1 ≤ j ≤
⌊Nα

2
+

1

2

⌋
. (167)

Thus, by Theorem 3.25,

1 ≤ j ≤
⌈Nα

2

⌉
. (168)

Suppose now that iα is an even integer. Then

i(2− α) = 2k, (169)

for some integer k. Therefore,

i =
2k

2− α
, (170)

for some integer k. Observing that

k =
(2− α)i

2
, (171)

and combining (171) with 1 ≤ i ≤ N , we have

2− α
2
≤ k ≤ (2− α)N

2
. (172)

Thus,

1 ≤ k ≤
⌊(2− α)N

2

⌋
. (173)

�

The following theorem is the principal result of this section.
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Theorem 4.4. Suppose that 0 < α < 2. Suppose further that N is a positive integer,
and, letting b·c and d·e denote the floor and ceiling functions respectively, suppose that

L =
⌈αN

2

⌉
, (174)

and

M =
⌊(2− α)N

2

⌋
, (175)

and observe that L+M = N . Suppose finally that A is the N ×N matrix defined by the
formula

Ai,j = lim
ν→α

sin(iπν)

i− 2j−1
ν

, (176)

Ai,L+k =


lim
ν→α

sin(iπν)

i− 2k
2−ν

if 2k
2−α 6=

2`−1
α for all integers 1 ≤ ` ≤ L,

sin(iπα)

(i− 2k
2−α)2

if 2k
2−α = 2`−1

α for some integer 1 ≤ ` ≤ L,
(177)

for all integers 1 ≤ i ≤ N , 1 ≤ j ≤ L and 1 ≤ k ≤ M (Theorems 3.21 and 3.17 show
that matrix A is well-defined). Then matrix A is invertible.

Proof. Suppose that p : (0, 2)× Z→ R is defined by

p(ν, i) =

L∏
j=1

(
i− 2j − 1

ν

) M∏
k=1

(
i− 2k

2− ν

)
, (178)

for all 0 < ν < 2 and integers i. Suppose further that D is the diagonal N ×N matrix
defined by

Di,j =

 lim
ν→α

sin(iπν)

p(ν, i)
if i = j,

0 if i 6= j,
(179)

for all integers 1 ≤ i, j ≤ N . By Lemma 4.3, the matrix D is well-defined and invertible.
Therefore,

(D−1A)i,j = lim
ν→α

p(ν, i)

i− 2j−1
ν

, (180)

(D−1A)i,L+k =


lim
ν→α

p(ν, i)

i− 2k
2−ν

if 2k
2−α 6=

2`−1
α for all integers 1 ≤ ` ≤ L,

p(α, i)

(i− 2k
2−α)2

if 2k
2−α = 2`−1

α for some integer 1 ≤ ` ≤ L,
(181)

for all integers 1 ≤ i ≤ N , 1 ≤ j ≤ L and 1 ≤ k ≤ M . By Theorem 3.13, the matrix
D−1A is invertible and, since D is invertible, so is the matrix A.

�
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5 Analysis of the Integral Equation: the Neumann Case

Suppose that the curve γ : [−1, 1] → R
2 is a wedge defined by (50) with interior angle

πα, where 0 < α < 2 (see Figure 3), and let ν(t) denote the inward-facing unit normal
to the curve γ at the point γ(t). Let g be a function in L2([−1, 1]), and suppose that
ρ ∈ L2([−1, 1]) solves the equation

− πρ(s) +

∫ 1

−1
ψ1
γ(s),ν(s)(γ(t))ρ(t) dt = g(s), (182)

for all s ∈ [−1, 1], where ψ1
γ(s),ν(s) is defined by (35).

In this section, we analyze this boundary integral equation, which is well-posed even
though the curve γ is open (see Observation 3.2). We investigate the behavior of (182)
for functions ρ ∈ L2([−1, 1]) of the forms

ρ(t) = |t|µ−1, (183)

ρ(t) = |t|µ−1 log(|t|), (184)

ρ(t) = sgn(t)|t|µ−1, (185)

ρ(t) = sgn(t)|t|µ−1 log(|t|), (186)

where µ > 1
2 is a real number. If ρ has the forms (183), (184), (185), (186), then for most

values of µ the resulting g is singular. In Section 5.1, we observe that for certain µ, the
function g is smooth. In Section 5.2, we fix g and view (182) as an integral equation in
ρ. We then observe that if g is smooth, then the solution ρ is representable by a series
of functions of the forms (183), (184), (185), (186).

5.1 The Singularities in the Solution of Equation (182)

In this section we observe that for certain functions ρ, the function g is representable by
convergent Taylor series on the intervals [−1, 0] and [0, 1].

The Even Case

Suppose that ρ ∈ L2([−1, 1]) is an even function, and suppose that g ∈ L2([−1, 1]) is
defined by (182). By Theorem 3.10, g is also even and

g(s) = −πρ(s)−
∫ 1

0

t sin(πα)

s2 + t2 − 2st cos(πα)
ρ(t) dt, (187)

for all 0 < s ≤ 1.
Suppose that ρ(t) = tµ−1 for all 0 ≤ t ≤ 1. The following theorem shows that

for certain values of µ, the function g in (187) is representable by a convergent Taylor
series on the interval [0, 1]. This theorem is proved in [12]; a proof is provided here for
completeness.
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Theorem 5.1. Suppose that 0 < α < 2 is a real number and n is a positive integer.
Then

πs
2n−1
α
−1 +

∫ 1

0

t sin(πα)

s2 + t2 − 2st cos(πα)
t
2n−1
α
−1 dt = −

∞∑
m=1

(
lim
ν→α

sin(mπν)

m− 2n−1
ν

)
sm−1, (188)

πs
2n
2−α−1 +

∫ 1

0

t sin(πα)

s2 + t2 − 2st cos(πα)
t

2n
2−α−1 dt = −

∞∑
m=1

(
lim
ν→α

sin(mπν)

m− 2n
2−ν

)
sm−1, (189)

for all 0 < s ≤ 1.

Proof. Substituting

µ =
2n− 1

α
(190)

into identity (149) and applying Theorem 3.14, we have

πs
2n−1
α
−1 +

∫ 1

0

t sin(πα)

s2 + t2 − 2st cos(πα)
t
2n−1
α
−1 dt = −

∞∑
m=1

sin(mπα)

m− 2n−1
α

sm−1, (191)

for all 0 < α < 2 such that
2n− 1

α
6= 1, 2, 3, . . . . (192)

Viewing both sides of (191) as functions of α, we observe that Theorem 3.21 extends
identity (191) to all 0 < α < 2. The proof of identity (189) is essentially identical.

�

Suppose now that ρ(t) = tµ−1 log(t) for all 0 ≤ t ≤ 1. The following theorem shows
that, for certain values of µ, the function g in (187) is representable by a convergent
Taylor series on the interval [0, 1].

Theorem 5.2. Suppose that 0 < α < 2 is a real number and n is a positive integer.
Suppose further that

2n

2− α
=

2k − 1

α
, (193)

for some positive integer k. Then

πs
2n
2−α−1 log(s) +

∫ 1

0

t sin(πα)

s2 + t2 − 2st cos(πα)
t

2n
2−α−1 log(t) dt = −

∞∑
m=1

sin(mπα)

(m− 2n
2−α)2

sm−1,

(194)

for all 0 < s ≤ 1.

Proof. Identity (194) follows from combining

µ =
2n

2− α
(195)

and (193) with (150) and theorems 3.14 and 3.19. By Theorem 3.17 and (193),

2n

2− α
= n+ k − 1

2
, (196)

so the right hand side of (194) is well-defined.
�
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The Odd Case

Suppose that ρ ∈ L2([−1, 1]) is an odd function, and suppose that g ∈ L2([−1, 1]) is
defined by (182). By Theorem 3.10, g is also odd and

g(s) = −πρ(s) +

∫ 1

0

t sin(πα)

s2 + t2 − 2st cos(πα)
ρ(t) dt, (197)

for all 0 < s ≤ 1.
Suppose that ρ(t) = tµ−1 for all 0 ≤ t ≤ 1. The following theorem shows that for

certain values of µ, the function g in (197) is representable by a convergent Taylor series
on the interval [0, 1].

Theorem 5.3. Suppose that 0 < α < 2 is a real number and n is a positive integer.
Then

− πs
2n−1
2−α −1 +

∫ 1

0

t sin(πα)

s2 + t2 − 2st cos(πα)
t
2n−1
2−α −1 dt = −

∞∑
m=1

(
lim
ν→α

sin(mπν)

m− 2n−1
2−ν

)
sm−1,

(198)

− πs
2n
α
−1 +

∫ 1

0

t sin(πα)

s2 + t2 − 2st cos(πα)
t
2n
α
−1 dt = −

∞∑
m=1

(
lim
ν→α

sin(mπν)

m− 2n
ν

)
sm−1, (199)

for all 0 < s ≤ 1.

Suppose now that ρ(t) = tµ−1 log(t) for all 0 ≤ t ≤ 1. The following theorem shows
that, for certain values of µ, the function g in (197) is representable by a convergent
Taylor series on the interval [0, 1].

Theorem 5.4. Suppose that 0 < α < 2 is a real number and n is a positive integer.
Suppose further that

2n

α
=

2k − 1

2− α
, (200)

for some positive integer k. Then

− πs
2n
α
−1 log(s) +

∫ 1

0

t sin(πα)

s2 + t2 − 2st cos(πα)
t
2n
α
−1 log(t) dt = −

∞∑
m=1

sin(mπα)

(m− 2n
α )2

sm−1,

(201)

for all 0 < s ≤ 1.

5.2 Series Representation of the Solution of Equation (182)

Suppose that g is representable by convergent Taylor series on the intervals [−1, 0] and
[0, 1]. Suppose further that ρ solves equation (182). In this section we observe that ρ
is representable by a linear combination of certain non-integer powers and non-integer
powers multiplied by logarithms, on the intervals [−1, 0] and [0, 1].
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The Even Case

Suppose that g ∈ L2([−1, 1]) is an even function, and suppose that ρ ∈ L2([−1, 1])
satisfies equation (182). By Theorem 3.10, ρ is also even and

− πρ(s)−
∫ 1

0

t sin(πα)

s2 + t2 − 2st cos(πα)
ρ(t) dt = g(s), (202)

for all 0 < s ≤ 1, where 0 < α < 2.
Suppose that N is a positive integer. Letting b·c and d·e denote the floor and ceiling

functions respectively, suppose that

L =
⌈αN

2

⌉
, (203)

(204)

and

M =
⌊(2− α)N

2

⌋
, (205)

(206)

and observe that L+ M = N . The following theorem shows that if g is representable by
a convergent Taylor series on [0, 1], then there exist real numbers numbers b1, b2, . . . , bN
such that the function

ρ(t) =

L∑
i=1

bit
2i−1
α
−1 +

M∑
i=1
i/∈S

bL+it
2i

2−α−1 +

M∑
i=1
i∈S

bL+it
2i

2−α−1 log(t), (207)

where 0 < t ≤ 1 and

S =
{
i ∈ Z, 1 ≤ i ≤M :

2i

2− α
=

2j − 1

α
for some integer 1 ≤ j ≤ L

}
, (208)

solves equation (202) to within an error O(tN ).

Theorem 5.5. Suppose that 0 < α < 2 and that N is a positive integer. Letting b·c and
d·e denote the floor and ceiling functions respectively, suppose that

L =
⌈αN

2

⌉
, (209)

and

M =
⌊(2− α)N

2

⌋
, (210)

and observe that L+ M = N . Suppose that g : [0, 1]→ R is defined by the formula

g(t) =
∞∑
i=0

ci+1t
i, (211)
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for all 0 ≤ t ≤ 1, where c1, c2, . . . are real numbers. Then, for any 0 < α < 2, there exist
unique real numbers b1, b2, . . . , bN such that if

ρ(t) =

L∑
i=1

bit
2i−1
α
−1 +

M∑
i=1
i/∈S

bL+it
2i

2−α−1 +

M∑
i=1
i∈S

bL+it
2i

2−α−1 log(t), (212)

where 0 < t ≤ 1 and

S =
{
i ∈ Z, 1 ≤ i ≤M :

2i

2− α
=

2j − 1

α
for some integer 1 ≤ j ≤ L

}
, (213)

then

− πρ(s)−
∫ 1

0

t sin(πα)

s2 + t2 − 2st cos(πα)
ρ(t) dt = g(s) +

∞∑
i=N

dis
i, (214)

for all 0 < s ≤ 1, for some real numbers dN , dN+1, . . . .

Proof. By Theorem 4.4, the N ×N matrix A, defined by (176) and (177), is invertible
for any 0 < α < 2. Therefore, there exist unique real numbers b1, b2, . . . , bN such that

n∑
j=1

Ai,jbj = ci, (215)

for each i = 1, 2, . . . , N . Suppose that ρ : [0, 1]→ R is defined by (212). By Theorems 5.1
and 5.2,

− πρ(s)−
∫ 1

0

t sin(πα)

s2 + t2 − 2st cos(πα)
ρ(t) dt

=
L∑
j=1

bj

∞∑
i=1

(
lim
ν→α

sin(iπν)

i− 2j−1
ν

)
si−1 +

M∑
j=1
j /∈S

bL+j

∞∑
i=1

(
lim
ν→α

sin(iπν)

i− 2j
2−ν

)
si−1

+

M∑
j=1
j∈S

bL+j

∞∑
i=1

sin(iπα)

(i− 2j
2−α)2

si−1

=
L∑
j=1

bj

N∑
i=1

(
lim
ν→α

sin(iπν)

i− 2j−1
ν

)
si−1 +

M∑
j=1
j /∈S

bL+j

N∑
i=1

(
lim
ν→α

sin(iπν)

i− 2j
2−ν

)
si−1

+

M∑
j=1
j∈S

bL+j

N∑
i=1

sin(iπα)

(i− 2j
2−α)2

si−1 +
∞∑
i=N

dis
i, (216)

where 0 < s ≤ 1 and S is defined by (213), for some real numbers dN , dN+1, . . . .
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Therefore,

− πρ(s)−
∫ 1

0

t sin(πα)

s2 + t2 − 2st cos(πα)
ρ(t) dt

=

N∑
i=1

N∑
j=1

Ai,jbjs
i−1 +

∞∑
i=N

dis
i

=
N∑
i=1

cis
i−1 +

∞∑
i=N

dis
i

= g(s) +
∞∑
i=N

(di − ci+1)si, (217)

for all 0 < s ≤ 1.
�

The Odd Case

Suppose that g ∈ L2([−1, 1]) is an odd function, and suppose that ρ ∈ L2([−1, 1]) satisfies
equation (182). By Theorem 3.10, ρ is also odd and

− πρ(s) +

∫ 1

0

t sin(πα)

s2 + t2 − 2st cos(πα)
ρ(t) dt = g(s), (218)

for all 0 < s ≤ 1, where 0 < α < 2.
Suppose that N is a positive integer. Letting b·c and d·e denote the floor and ceiling

functions respectively, suppose that

M =
⌈(2− α)N

2

⌉
, (219)

(220)

and

L =
⌊αN

2

⌋
, (221)

(222)

and observe that M + L = N . The following theorem shows that if g is representable by
a convergent Taylor series on [0, 1], then there exist real numbers numbers b1, b2, . . . , bN
such that the function

ρ(t) =

M∑
i=1

bit
2i−1
2−α−1 +

L∑
i=1
i/∈T

bM+it
2i
α
−1 +

L∑
i=1
i∈T

bM+it
2i
α
−1 log(t), (223)

where 0 < t ≤ 1 and

T =
{
i ∈ Z, 1 ≤ i ≤ L :

2i

α
=

2j − 1

2− α
for some integer 1 ≤ j ≤M

}
, (224)

solves equation (218) to within an error O(tN ).
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Theorem 5.6. Suppose that 0 < α < 2 and that N is a positive integer. Letting b·c and
d·e denote the floor and ceiling functions respectively, suppose that

M =
⌈(2− α)N

2

⌉
, (225)

and

L =
⌊αN

2

⌋
, (226)

and observe that M + L = N . Suppose that g : [0, 1]→ R is defined by the formula

g(t) =

∞∑
i=0

ci+1t
i, (227)

for all 0 ≤ t ≤ 1, where c1, c2, . . . are real numbers. Then, for any 0 < α < 2, there exist
unique real numbers b1, b2, . . . , bN such that if

ρ(t) =
M∑
i=1

bit
2i−1
2−α−1 +

L∑
i=1
i/∈T

bM+it
2i
α
−1 +

L∑
i=1
i∈T

bM+it
2i
α
−1 log(t), (228)

where 0 < t ≤ 1 and

T =
{
i ∈ Z, 1 ≤ i ≤ L :

2i

α
=

2j − 1

2− α
for some integer 1 ≤ j ≤M

}
, (229)

then

− πρ(s) +

∫ 1

0

t sin(πα)

s2 + t2 − 2st cos(πα)
ρ(t) dt = g(s) +

∞∑
i=N

dis
i, (230)

for all 0 < s ≤ 1, for some real numbers dN , dN+1, . . . .

6 Analysis of the Integral Equation: the Dirichlet Case

Suppose that the curve γ : [−1, 1] → R
2 is a wedge defined by (50) with interior angle

πα, where 0 < α < 2 (see Figure 3), and let ν(t) denote the inward-facing unit normal
to the curve γ at the point γ(t). Let g be a function in L2([−1, 1]), and suppose that
ρ ∈ L2([−1, 1]) solves the equation

− πρ(s) +

∫ 1

−1
ψ1
γ(t),ν(t)(γ(s))ρ(t) dt = g(s), (231)

for all s ∈ [−1, 1], where ψ1
γ(t),ν(t) is defined by (35).

In this section, we analyze this boundary integral equation, which is well-posed even
though the curve γ is open (see Observation 3.2). We investigate the behavior of (231)
for functions ρ ∈ L2([−1, 1]) of the forms

ρ(t) = |t|µ, (232)

ρ(t) = |t|µ log(|t|), (233)

ρ(t) = sgn(t)|t|µ, (234)

ρ(t) = sgn(t)|t|µ log(|t|), (235)
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where µ > 1
2 is a real number. If ρ has the forms (232), (233), (234), (235), then for most

values of µ the resulting g is singular. In Section 6.1, we observe that for certain µ, the
function g is smooth. In Section 6.2, we fix g and view (231) as an integral equation in
ρ. We then observe that if g is smooth, then the solution ρ is representable by a series
of functions of the forms (232), (233), (234), (235).

6.1 The Singularities in the Solution of Equation (231)

In this section we observe that for certain functions ρ, the function g is representable by
convergent Taylor series on the intervals [−1, 0] and [0, 1].

The Even Case

Suppose that ρ ∈ L2([−1, 1]) is an even function, and suppose that g ∈ L2([−1, 1]) is
defined by (231). By Theorem 3.12, g is also even and

g(s) = −πρ(s)−
∫ 1

0

s sin(πα)

s2 + t2 − 2st cos(πα)
ρ(t) dt, (236)

for all 0 < s ≤ 1.
Suppose that ρ(t) = tµ for all 0 ≤ t ≤ 1. The following theorem shows that for

certain values of µ, the function g in (236) is representable by a convergent Taylor series
on the interval [0, 1].

Theorem 6.1. Suppose that 0 < α < 2 is a real number and n is a positive integer.
Then

π +

∫ 1

0

s sin(πα)

s2 + t2 − 2st cos(πα)
dt = (2− α)π −

∞∑
m=1

sin(mπα)

m
sm, (237)

πs
2n−1
α +

∫ 1

0

s sin(πα)

s2 + t2 − 2st cos(πα)
t
2n−1
α dt = −

∞∑
m=1

(
lim
ν→α

sin(mπν)

m− 2n−1
ν

)
sm, (238)

πs
2n
2−α +

∫ 1

0

s sin(πα)

s2 + t2 − 2st cos(πα)
t

2n
2−α dt = −

∞∑
m=1

(
lim
ν→α

sin(mπν)

m− 2n
2−ν

)
sm, (239)

for all 0 < s ≤ 1.

Suppose now that ρ(t) = tµ log(t) for all 0 ≤ t ≤ 1. The following theorem shows
that, for certain values of µ, the function g in (236) is representable by a convergent
Taylor series on the interval [0, 1].

Theorem 6.2. Suppose that 0 < α < 2 is a real number and n is a positive integer.
Suppose further that

2n

2− α
=

2k − 1

α
, (240)

for some positive integer k. Then

πs
2n
2−α log(s) +

∫ 1

0

s sin(πα)

s2 + t2 − 2st cos(πα)
t

2n
2−α log(t) dt = −

∞∑
m=1

sin(mπα)

(m− 2n
2−α)2

sm, (241)

for all 0 < s ≤ 1.
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The Odd Case

Suppose that ρ ∈ L2([−1, 1]) is an odd function, and suppose that g ∈ L2([−1, 1]) is
defined by (231). By Theorem 3.12, g is also odd and

g(s) = −πρ(s) +

∫ 1

0

s sin(πα)

s2 + t2 − 2st cos(πα)
ρ(t) dt, (242)

for all 0 < s ≤ 1.
Suppose that ρ(t) = tµ for all 0 ≤ t ≤ 1. The following theorem shows that for

certain values of µ, the function g in (242) is representable by a convergent Taylor series
on the interval [0, 1].

Theorem 6.3. Suppose that 0 < α < 2 is a real number and n is a positive integer.
Then

− π +

∫ 1

0

s sin(πα)

s2 + t2 − 2st cos(πα)
dt = −απ −

∞∑
m=1

sin(mπα)

m
sm, (243)

− πs
2n−1
2−α +

∫ 1

0

s sin(πα)

s2 + t2 − 2st cos(πα)
t
2n−1
2−α dt = −

∞∑
m=1

(
lim
ν→α

sin(mπν)

m− 2n−1
2−ν

)
sm, (244)

− πs
2n
α +

∫ 1

0

s sin(πα)

s2 + t2 − 2st cos(πα)
t
2n
α dt = −

∞∑
m=1

(
lim
ν→α

sin(mπν)

m− 2n
ν

)
sm, (245)

for all 0 < s ≤ 1.

Suppose now that ρ(t) = tµ log(t) for all 0 ≤ t ≤ 1. The following theorem shows
that, for certain values of µ, the function g in (242) is representable by a convergent
Taylor series on the interval [0, 1].

Theorem 6.4. Suppose that 0 < α < 2 is a real number and n is a positive integer.
Suppose further that

2n

α
=

2k − 1

2− α
, (246)

for some positive integer k. Then

− πs
2n
α log(s) +

∫ 1

0

s sin(πα)

s2 + t2 − 2st cos(πα)
t
2n
α log(t) dt = −

∞∑
m=1

sin(mπα)

(m− 2n
α )2

sm, (247)

for all 0 < s ≤ 1.

6.2 Series Representation of the Solution of Equation (231)

Suppose that g is representable by convergent Taylor series on the intervals [−1, 0] and
[0, 1]. Suppose further that ρ solves equation (231). In this section we observe that ρ
is representable by a linear combination of certain non-integer powers and non-integer
powers multiplied by logarithms, on the intervals [−1, 0] and [0, 1].
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The Even Case

Suppose that g ∈ L2([−1, 1]) is an even function, and suppose that ρ ∈ L2([−1, 1])
satisfies equation (231). By Theorem 3.12, ρ is also even and

− πρ(s)−
∫ 1

0

s sin(πα)

s2 + t2 − 2st cos(πα)
ρ(t) dt = g(s), (248)

for all 0 < s ≤ 1, where 0 < α < 2.
Suppose that N is a positive integer. Letting b·c and d·e denote the floor and ceiling

functions respectively, suppose that

L =
⌈αN

2

⌉
, (249)

(250)

and

M =
⌊(2− α)N

2

⌋
, (251)

(252)

and observe that L+ M = N . The following theorem shows that if g is representable by
a convergent Taylor series on [0, 1], then there exist real numbers numbers b0, b1, . . . , bN
such that the function

ρ(t) = b0 +

L∑
i=1

bit
2i−1
α +

M∑
i=1
i/∈S

bL+it
2i

2−α +

M∑
i=1
i∈S

bL+it
2i

2−α log(t), (253)

where 0 < t ≤ 1 and

S =
{
i ∈ Z, 1 ≤ i ≤M :

2i

2− α
=

2j − 1

α
for some integer 1 ≤ j ≤ L

}
, (254)

solves equation (248) to within an error O(tN+1).

Theorem 6.5. Suppose that 0 < α < 2 and that N is a positive integer. Letting b·c and
d·e denote the floor and ceiling functions respectively, suppose that

L =
⌈αN

2

⌉
, (255)

and

M =
⌊(2− α)N

2

⌋
, (256)

and observe that L+ M = N . Suppose that g : [0, 1]→ R is defined by the formula

g(t) =
∞∑
i=0

ci t
i, (257)
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for all 0 ≤ t ≤ 1, where c0, c1, . . . are real numbers. Then, for any 0 < α < 2, there exist
unique real numbers b0, b1, . . . , bN such that if

ρ(t) = b0 +

L∑
i=1

bit
2i−1
α +

M∑
i=1
i/∈S

bL+it
2i

2−α +

M∑
i=1
i∈S

bL+it
2i

2−α log(t), (258)

where 0 < t ≤ 1 and

S =
{
i ∈ Z, 1 ≤ i ≤M :

2i

2− α
=

2j − 1

α
for some integer 1 ≤ j ≤ L

}
, (259)

then

− πρ(s)−
∫ 1

0

s sin(πα)

s2 + t2 − 2st cos(πα)
ρ(t) dt = g(s) +

∞∑
i=N+1

dis
i, (260)

for all 0 < s ≤ 1, for some real numbers dN+1, dN+2, . . . .

The Odd Case

Suppose that g ∈ L2([−1, 1]) is an odd function, and suppose that ρ ∈ L2([−1, 1]) satisfies
equation (231). By Theorem 3.12, ρ is also odd and

− πρ(s) +

∫ 1

0

s sin(πα)

s2 + t2 − 2st cos(πα)
ρ(t) dt = g(s), (261)

for all 0 < s ≤ 1, where 0 < α < 2.
Suppose that N is a positive integer. Letting b·c and d·e denote the floor and ceiling

functions respectively, suppose that

M =
⌈(2− α)N

2

⌉
, (262)

(263)

and

L =
⌊αN

2

⌋
, (264)

(265)

and observe that M + L = N . The following theorem shows that if g is representable by
a convergent Taylor series on [0, 1], then there exist real numbers numbers b0, b1, . . . , bN
such that the function

ρ(t) = b0 +
M∑
i=1

bit
2i−1
2−α +

L∑
i=1
i/∈T

bM+it
2i
α +

L∑
i=1
i∈T

bM+it
2i
α log(t), (266)

where 0 < t ≤ 1 and

T =
{
i ∈ Z, 1 ≤ i ≤ L :

2i

α
=

2j − 1

2− α
for some integer 1 ≤ j ≤M

}
, (267)

solves equation (261) to within an error O(tN+1).
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Theorem 6.6. Suppose that 0 < α < 2 and that N is a positive integer. Letting b·c and
d·e denote the floor and ceiling functions respectively, suppose that

M =
⌈(2− α)N

2

⌉
, (268)

and

L =
⌊αN

2

⌋
, (269)

and observe that M + L = N . Suppose that g : [0, 1]→ R is defined by the formula

g(t) =

∞∑
i=0

cit
i, (270)

for all 0 ≤ t ≤ 1, where c0, c1, . . . are real numbers. Then, for any 0 < α < 2, there exist
unique real numbers b0, b1, . . . , bN such that if

ρ(t) = b0 +

M∑
i=1

bit
2i−1
2−α +

L∑
i=1
i/∈T

bM+it
2i
α +

L∑
i=1
i∈T

bM+it
2i
α log(t), (271)

where 0 < t ≤ 1 and

T =
{
i ∈ Z, 1 ≤ i ≤ L :

2i

α
=

2j − 1

2− α
for some integer 1 ≤ j ≤M

}
, (272)

then

− πρ(s) +

∫ 1

0

s sin(πα)

s2 + t2 − 2st cos(πα)
ρ(t) dt = g(s) +

∞∑
i=N+1

dis
i, (273)

for all 0 < s ≤ 1, for some real numbers dN+1, dN+2, . . . .

7 Appendix A

In this section we provide a proof of Theorem 3.13, which is restated here as Theorem 7.1.
The following theorem states that the Lagrange interpolating polynomials form a

Chebyshev system (see Definition 3.1).

Theorem 7.1. Suppose that K and L are nonnegative integers such that K ≤ L. Sup-
pose further that µ1, µ2, . . . , µL are distinct real numbers. Suppose finally that p : R→ R

is defined by

p(x) =

L∏
`=1

(x− µ`)
K∏
k=1

(x− µk), (274)

for all x ∈ R. Then the set of L+K functions{ p(x)

x− µ`

}L
`=1
∪
{ p(x)

(x− µk)2

}K
k=1

, (275)

where x ∈ R, is a Chebyshev system.
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Proof. Let ϕ1, ϕ2, . . . , ϕL : R→ R be defined by

ϕi(x) =


p(x)

(x− µi)2
if 1 ≤ i ≤ K,

p(x)

x− µi
if K + 1 ≤ i ≤ L,

(276)

where x ∈ R and p is defined by (274), for all integers 1 ≤ i ≤ L. Furthermore, let
ψ1, ψ2, . . . , ψK : R→ R be defined by

ψi(x) =
p(x)

x− µi
, (277)

where x ∈ R and p is defined by (274), for all integers 1 ≤ i ≤ K. Suppose that

Ci =
L∏
`=1
6̀=i

(µi − µ`)
K∏
k=1
k 6=i

(µi − µk), (278)

for all integers 1 ≤ i ≤ L. Then it is straightforward to show that

ϕi(µj)

Ci
=

{
1 j = i,
0 j 6= i,

(279)

for all integers 1 ≤ i, j ≤ L, and

ψi(µj) = 0, (280)

for all integers 1 ≤ i ≤ K, 1 ≤ j ≤ L, and

ψ′i(µj)

Ci
=

{
1 j = i,
0 j 6= i,

(281)

for all integers 1 ≤ i, j ≤ K.
Suppose that f : R→ R is defined by

f(x) =
L∑
i=1

bi
ϕi(x)

Ci
+

K∑
i=1

ci
ψi(x)

Ci
, (282)

where x ∈ R and Ci is defined by (278), and where b1, b2, . . . , bL and c1, c2, . . . , cK are
arbitrary real numbers. Suppose further that there exists a set of L+K distinct points
y1, y2, . . . , yL+K such that

f(yi) = 0, (283)

for each integer 1 ≤ i ≤ L+K. Since f is a polynomial of order at most L+K − 1 with
L + K distinct roots, it must be uniformly zero. We will show that this implies bi = 0
for all 1 ≤ i ≤ L and ci = 0 for all 1 ≤ i ≤ K.

First, suppose that bi 6= 0 for some integer 1 ≤ i ≤ L. Then, by (282), (279),
and (280),

f(µi) = bi, (284)
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so f is not uniformly zero.
Next, suppose that ci 6= 0 for some integer 1 ≤ i ≤ K. If b` 6= 0 for some 1 ≤

` ≤ L, then f is not uniformly zero, so suppose further that b` = 0 for all 1 ≤ ` ≤ L.
Combining (282) with (281), we have

f ′(µi) = ci, (285)

so f is not uniformly zero.
Therefore, the only vector (b1, b2, . . . , bL, c1, c2, . . . , cK)T for which

ϕ1(y1) . . . ϕL(y1) ψ1(y1) . . . ψK(y1)
ϕ1(y2) . . . ϕL(y2) ψ1(y2) . . . ψK(y2)

...
...

...
...

...
...

...
...

...
...

...
...

ϕ1(yL+K) . . . ϕL(yL+K) ψ1(yL+K) . . . ψK(yL+K)





b1
...
bL
c1
...
cK


=



0
0
...
...
...
0


(286)

is true is the zero vector. Thus

det



ϕ1(y1) . . . ϕL(y1) ψ1(y1) . . . ψK(y1)
ϕ1(y2) . . . ϕL(y2) ψ1(y2) . . . ψK(y2)

...
...

...
...

...
...

...
...

...
...

...
...

ϕ1(yL+K) . . . ϕL(yL+K) ψ1(yL+K) . . . ψK(yL+K)


6= 0, (287)

for any set of L+K distinct points y1, y2, . . . , yL+K .
�
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