HIERARCHICAL A POSTERIORI ERROR ESTIMATORS FOR MORTAR
FINITE ELEMENT METHODS WITH LAGRANGE MULTIPLIERS
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Abstract. Hierarchical a posteriori error estimators are introduced and analyzed for mortar finite element
methods. A weak continuity condition at the interfaces is enforced by means of Lagrange multipliers. The two
proposed error estimators are based on a defect correction in higher order finite element spaces and an adequate
hierarchical two-level splitting. The first provides upper and lower bounds for the discrete energy norm of the mortar
finite element solution whereas the second also estimates the error for the Lagrange multiplier. It is shown that
an appropriate measure for the nonconformity of the mortar finite element solution is the weighted L2-norm of the
jumps across the interfaces.
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1. Introduction. In this paper, we consider a special nonoverlapping domain decomposition
method for the discretization of the following model problem

Lu:= —div(aVu) +bu = [ in Q, (1.1)
u = 0 onI':=09Q, ’
where Q is a bounded, polygonal domain in R* and f € L?(Q). Furthermore, we assume a =
(ai)7 j=1 to be a symmetric, uniformly positive definite matrix-valued function with a;; € L (%),
1<i4,j <2 and 0<be L*°(N). The largest eigenvalue of a restricted to a subset D C Q is
denoted by ap.

The decomposition of €2 into nonoverlapping subdomains allows a more flexible numerical

approach including a discontinuous finite element solution and geometrical nonmatching triangu-
lations across the interfaces of the subdomains. In particular, our approach is based on a hybrid
formulation which gives rise to a saddle point problem. A good overview of more general mortar
finite element methods including also the coupling of spectral elements with finite elements can be
found in [15] (see also [5, 6, 11, 12, 13, 14, 18, 21, 22, 26]).
Recently, a lot of work has been done on the construction of efficient iterative solvers based on
multilevel techniques [1, 3, 4, 25, 27, 28], but in contrast, there are only a few papers considering
adaptive refinement techniques and a posteriori error estimators. Bernardi and Maday [16] have
proved a priori estimates for the case that the gridsize of the different subdomains is either H or
27FH. In [29], a residual based error indicator is presented but no lower bound for the true error
is established. Finally in [33], a residual based error estimator is investigated.

This paper is organized as follows. In section 2, we briefly introduce a special mortar finite
element discretization. We review well-known a priori estimates for the discretization with con-
forming finite elements in each subdomain, and we then consider the nonconformity of the discrete
ansatz space in detail. A relation between the weighted L2-norm of the jumps across the interfaces
and the nonconformity is established.

In sections 3 and 4, we present two different hierarchical basis a posteriori error estimators.
Both of them are based on a defect correction in a higher order space and a hierarchical two-
level splitting. This type of error estimator is well known for standard conforming discretizations
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2 B. 1. WOHLMUTH

[10, 19, 20, 31]. An excellent overview of different techniques can be found in [31] (see also the
references therein).

Section 3 is devoted to the construction of a hierarchical basis type error estimator for the energy
norm of the error. We first consider the continuous defect problem with Dirichlet boundary con-
ditions on each subdomain. In the next step, we replace the continuous problem by a discrete one
in a higher order space, and the exact by adequate discrete boundary conditions. These simpli-
fications are based on saturations assumptions which are motivated by certain a priori estimates.
To obtain upper and lower bounds for the error, we additionally have to take the nonconformity
of the mortar finite element solution into account.

In section 4, we introduce what we will call a fully hierarchical error estimator. Here, not only the
energy norm of the error is measured but also that of the Lagrange multiplier. We note that a more
general concept of hierarchical error estimators including saddle point formulations is presented in
[9]. Error estimators for mixed finite element methods can be found in [2, 9, 24, 33]. In case of our
fully hierarchical error estimator, the nonconformity of the mortar finite element solution enters in
the error estimator in a natural way.

Finally in section 5, we present some numerical results illustrating the adaptive refinement
process and the performance of the error estimators. In particular, we consider the influence of
the choice of the Lagrange multiplier on the error and the adaptively generated mesh. We find
that the Lagrange multiplier should preferably be defined on the side of the interface where the
coeflicient a of the partial differential equation is smaller.

2. A priori estimates. The initial domain 2 is decomposed into non-overlapping subdomains
Qp, 1<k<K

Q= ﬁk with Q; N Qy = 0, k#I

C=

k=1

We restrict ourselves to the geometrical conforming situation where the intersection between the
boundary of any two different subdomains 9Q; N9Qy, k # [, and 9; N 0N is either empty, a vertex
or a common edge, and we also assume that the subdomains are polygons. The interface between
two subdomains is denoted by T, = L'y := 0Q; N0, and ny;, stands for the unit normal from
towards Q. The union of all interfaces is called the skeleton S := Uf,z:1 Tii- In each subdomain
Q. we use conforming P, finite elements associated with a shape regular simplicial triangulation
Thi,- En, and Pp, stand for the sets of edges and vertices of the triangulation 7, , respectively.
The set of all triangles, vertices and edges is denoted by Tx, Pp and &, respectively. We do not
require that the triangulations, 75, and 7, coincide on the interface I'y;.
In the following, S, (Q; Tr, ) is the standard conforming P,, space defined locally on Q by

Sn(Qk; Thy) = {v € C(Q) | v|T € Po(T), T € Thy,, v|oanaa, =0} .

Let X;}l(Q) be the global product space given by

K
Xoh () =TT Sn(%; Ta)-
k=1

In general, the mortar finite element solutions do not satisfy a pointwise continuity across the
interfaces, but some weak continuity conditions have to be imposed in terms of Lagrange multipliers
which are defined on the skeleton. Each interface I';; = I'j;, inherits two 1D triangulations, one
from 7y, and one from 7,. Without any restriction of generality, we will select 75, for the definition
of the space of Lagrange multipliers. In the following, the side where the Lagrange multiplier is
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defined will be called the nonmortar side, and the opposite the mortar side. With this choice, the
skeleton can be uniquely decomposed into the union of the edges of the nonmortar sides:

S = U e, &p:={e€&| F,j 1<i<K, je M(i) such that e € &, NT;;}
e€lp

where M(i) := {1 < j < K| nonmortar side of I';; associated with Q;} (see Fig. 2.1).

Fic. 2.1. Lagrange multiplier space for n =1

The space W, (S) of Lagrange multiplier is now defined as

K
Wn;h(s) = JI 1II Wn(rij;ﬂu)
=1 jeM(i)
Wn(I‘”,ﬂh) = {1) € C(F”) | U|e € Pn(e), e e ghi n F,’j,

v|e € P,_1(e), if e contains an endpoint of T';;} .

Then, the mortar finite element solution (un,An) € X . 1(Q) X W1, (S) is defined as the unique
solution of the saddle point problem

a (un,v) +b(Ap,v) = (f,v)o, v E X;}L(Q), 2.1)
b (k, un) = 0, 1€ Wiin(S)-
The bilinear forms a (+,-) and b (-,-) are given by
K K
a(v,w) = Zai (v,w), a;(v,w):= /aVv -Vw+bvwdr, v,we HHI(Q )
Q

b (p,w)

D> [ utwl, do, weHH e[ T 7y

i= IJEM(Z)F” i=1 jEM(3)

with the jump across I';; given by [w]; := w|o, — w|q,;. The broken energy norm is defined as

lvll? :== a(v,v), v € Hle H'(©Q;). In the following, the constants 0 < ¢ < C' < oc are generic
constants which depend on the local ratio of the eigenvalues of the coefficient matrix a, the local
ratio of ar and h2.b|7, the shape regularity of the initial triangulation and the order n of the finite
element ansatz space but not on the refinement level.

If the solution (u, A) of the continuous saddle point problem

k
a (ua U) +b (Aﬂ}) = (f7 U)Oa vE 'Hl H(};BQiﬂaQ(Qi)a
K . (2.2)
b(uau) = 0, JURS H H H_E(Fij)a
i=1jeM(q)
is smooth enough, we obtain the following a priori estimate
k
llu = wnll® + X = Anl2 -1 < C0) Y hMullf 10, (2.3)

i=1
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(see, e.g., [11, 15, 16]). Here, || - | -

—1/2 stands for the dual norm of Hz_ HJeM(z) HO_OI/Z(F,J) ie

(v, 1)
||/’L||1q—1/2 = sup ’77
* PV o
vell T1 Ho*(Tij) 00
i=15€M@)
where ||v]|? v Zl 10 X /2(1“ ) Sometimes it is more convenient to use a mesh
dependent norm [| -]z for the Lagrange mulmpher
2 . he 2 L2(S 4
ol == D" =lollge, v € L(S) (24)
Qe
e€fL
and the corresponding discrete dual norm |[v|| :

71 = Yecer, wellvllg,e- The weight a, e C Ty, is
defined by a, := ar, where T € Ty, and e C OT. Note that the mesh dependent norm requires
higher regularity of the Lagrange multiplier than the H

-1/ 2_norm.
LEMMA 2.1. A discrete Babuska-Brezzi condition holds

b(u,v
Il <8 _sup P e W) (25)
vEX (D) ol
for the mesh dependent norm || - ||
solution (u,\) is smooth enough

The same type of a priori estimate as in (2.3) holds if the

k
= wall? + 1A = Aall < C) S B2l 10 (2.6)
i=1
Proof. In a first step, we define a positive, continuous, piecewise linear function g € Wy.,(S)
We use that each element of Wy, (S) is uniquely determined by its values at the interior vertices
— —_ b

of [;;,1 <i <K, j € M(i). g reflects the weights of the mesh dependent norm and is given by

1 (he,  he, o
= - + , €e1Nex =
9(p) B (ael e, 1fle2 =p
where p is an interior vertex of I';;, 1
the L2-projection onto W2(Tyj; Th,) =

0 if p is an endpoint of I';;} deﬁned1 by

§z<KJ€M()andel,62€8L
{v

C(Tij) |

Let Pr;; be
vle € Pole), e € &, NTyj, v(p)

/ uvda:/ '[,LPFijUdO', HGWn(szyﬂl)
T Tis

ij

Due to the stability of Pr,, with respect to the mesh dependent L2-norm || - ||-: and the shape
regularity of the triangulation, we obtain

1Pr; (g wll-+ < Cllgpllr-+ < Cllplln
and

2.7)
K
lullz < CZ Z (s g p)osr; =

i=1 jeM(i)

HMN

Z (1 Pri; (g ))orrs; < CllPry; (g w)llz-1 - llullz. (2.8)
eM(i
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For each p € Wy (S) there exists a v, € X’;}l(ﬂ) with X’;}Z(Q) = {v € X;}l(Q)| U|§jmr,-j =
0, 1 <i<k,je M(i)}, such that ¢f|lv,|| < ||[vp]s]lL-1 holds and the jump of v, across I';; is
equal to Pr;(gp), 1 <i< K, j € M(i). Then, (2.7) and (2.8) yield

”,U”L Scb(ﬂavu) < b(ﬂavu) < Cb(ﬂavu)
llpll llvulsll- lloel

and thus estimate (2.5) holds.
The proof of the a priori estimate (2.6) is based on the approximation property in the mesh
dependent norm:

k
inf A — < C(n B2 |ull? .o 2.9
%Wmh(s)ll plln < C( )izzl i w10 (2.9)

In our next step, we have to consider ||\, — p||z in more detail. The first equation of the saddle
point problems (2.1) and (2.2) yields

b (A — p,v) = a(u—upn,v) +b(A—pu,v), UEX;;}I(Q)

and thus

[w]sllp-

[An = plle <C | llu=unll + A = plle sup inf S E— (2.10)
vEXTL(Q) wEX (@) [l
' lwly=[®ly

which together with the approximation property (2.9) gives the a priori estimate (2.6). O
The nonconformity of a finite element w € X ;}L(Q) can be measured by

inf ||lw—ol|
vEH(Q)

where || - ||1 denotes the broken H'-norm on Q. The following lemma shows a relation between the
jumps of w € X ;}L(Q) along the interfaces and the nonconformity.

LEMMA 2.2. Let w € X;,ll(Q) satisfy
b(p,w) =0, u€ Wii(S). (2.11)

Then, there exists a constant 0 < Cjy independent of the refinement level such that

Qe
> h_||[w]J||(2);e < Cyllw=|?, v e Hy(Q).
ecEr ¢

Proof. We consider the L?-orthogonal projection operator Ir,; : L*(T;;) — W1 (Tij; Th,),
defined by

/Hpijvuda = /v,uda, w€ Wi(Tijs Ths)-
F,’j Fij
Then, there exits a constant C'; independent of i and j, 1 <i< K, j € M(%) such that

1 ~ .
Z h_”v - HFijv”(z);e < CJ|v|f/2;Fij7 v € H1/2(FU) (212)

GESLﬁFij €
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This property can easily be seen by using

1 1 1
Z h_||v_HFijv||(2);e S 2 Z h_”U_QU”?);g + Z h_”HFz] (Q’U—U)”g;e

ec€fLNly; € ec&LNly; € ec€&LNly; €

Here @ denotes a locally defined quasi-interpolant, and we also use the stability of IIr,; with respect
to the weighted norm. Assumption (2.11) guarantees that IIr,; (w|e;) = IIr,; (w|e,) and we can
conclude that for v € Ho(f)

> ellwl;Be = X %l [w=v=Tr,w=0v)], .
e€fr e€cfr
K
<205 Y (0491-|w|9i- —vfijar,; +ag,lwla, — vﬁ/a;r,-j) < Cyllw —ol?
i=1 jeM(i)

where |- |y /o,r,, is the standard H'/?-seminorm on T';;. O

Remark 2.1: The constant C; depends on the ratio of the eigenvalues of a along the inter-
faces. In case that the Lagrange multiplier is defined on the side where a is smaller, we obtain a
smaller constant.
Remark 2.2: For Lemma 2.2 it is sufficient that the jump of w € X;}l(ﬂ) is orthogonal to
Win(S) with respect to the bilinear form b(-,-).

To introduce a posteriori error estimators, we restrict ourselves to the lowest order mortar
finite elements, n = 1. However our results can be easily extended to the higher order case.

3. A Hierarchical Basis Error Estimator on Subdomains. In this section, we present
a hierarchical basis error estimator which is based on a defect correction in an appropriate higher
order space, a hierarchical splitting, as well as some localization techniques, cf., e.g., [9, 10, 19, 20,
31]. For standard conforming finite element discretizations there are basically two ways to obtain
such an error estimator. One of them follows Bank and Weiser [10], where the defect problem is first
localized and then discretized. Secondly, using the ideas of Deuflhard, Leinen, Yserentant [19], the
resulting continuous defect problem is first discretized and then localized. These concepts have been
generalized for nonconforming Crouzeix-Raviart, [23], and mixed Raviart-Thomas discretizations,
[2, 24, 32]. Here, we will use a combination of both techniques.
In a first step, the continuous defect problem will be localized for each subdomain ;, 1 <i < K.
We then use a higher order finite element discretization as well as an approximation of the exact
Neumann data given by the Lagrange multipliers in the solution of a boundary value problem on
each subdomain. Finally, the same decoupling techniques as in [19] are applied to obtain one scalar
equation for each edge of the subdomains. To obtain an efficient and reliable error estimator, we
additionally have to take the jump of the mortar finite element solution across the interfaces into
account.

3.1. Saturation assumptions. A characteristic feature of hierarchical basis error estimators
is that they are based on adequate saturation assumptions. Here, we need two different types of
saturation assumptions. The first concerns the approximation of the normal derivative:

inf [[A—pllp+ inf |
HEW1LR(S) REW1;R(S)

A = pllg-12 < Crllu —will, Cn>0 (3.1)
with C, < Cs < 0c. This assumption and (2.10) at once yield

inf [[A=Ai|lz < Coolu—
et o IA= Ml < Coollu — il
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with a constant 0 < Cy < 00. The same type of estimate as in (2.10) holds for the dual norm
Il ;=12 (see, e.g., [11]) and thus

inf A=A —172 < Cxolle — wil|.
it A= Mle < Coolu— ]

In addition to (3.1), we need a second saturation assumption which is related to higher order
finite elements. We consider the space of conforming piecewise quadratic finite elements on each
subdomain with homogeneous boundary conditions

S2,0(Qi; Th,) = {v € S2(Q; Tw;) | vlae; = 0}.

If we assume that the weak solution w is continuous on {2, we can define the Dirichlet boundary
condition of a discrete finite element solution pointwise. Let us;; € Sa(Qi;Tr;), 1 < i < K be the
conforming piecewise quadratic solution of the following variational problem on 2;:

a; (u2;ia 'U) = (fa U)O;Qi; v € 52;0 (Qza 77Lz) (32)
with ug;; given on the boundary 0€2; by
Ua; () = u(x). (3.3)

Here z is either a vertex of P;NO; or the midpoint of an edge e € £;NIQ;. Then, unique solvability
of the variational problem (3.2) is guaranteed and if the weak solution is smooth enough, the error
u — ug,; in the energy norm [lu — usy|lq; is of order O(h?). This well known a priori estimate
motivates the saturation assumption

llw — uzsille; < Bhillu — uille; (3.4)

with 8, < B where 4 has to be small enough.

3.2. Definition of the Error Estimator. The main problem with the variational problem
(3.2) is that the boundary data are unknown. Therefore, us,; cannot be used as an efficient and
reliable error estimator. A first step towards the definition of such an error estimator is to use an
adequate approximation of the boundary values. It is natural to select the Lagrange multiplier \;
as Neumann boundary condition. As we will see, this simplification is justified by the saturation
assumption (3.1).

Let £; € S2(Q4; Tr,), 1 <i < K be the conforming piecewise quadratic solution of the following
variational problem on ;:

a; (51'3 U) = ri(v) = (fa U)U;Qi —a; (ul,v) -b ()‘laﬁ) , UVE 52(Qi; 771.1) (35)

where ¥ € L*(), 9|o, = v, and ¥|g\g, = 0. Let ¢ € Hfil Sa (45 Tp,) with €|, = ;. For each
interior subdomain Q;, 8Q; N 90 =  with b = 0, ¢; is only defined up to a constant and we

therefore require
/Ei dx = 0.

Q;

Then, it is easy to verify that

a; (Ez',’l)) =0, ve 51(91';77“). (36)



8 B. I. WOHLMUTH

We are now in the standard conforming situation on ; with Neumann boundary data. It is well
known, [19], that in (3.5), the coupling between S;(2;; Tr,) and the hierarchical quadratic bubble
surplus can be neglected. Therefore, there exist constants Ceon > ceon > 0, independent of the
refinement level, such that

Ccon Z "h/e(pe" ?21- S |||51|| ?Zi S Ccon Z ”h/eq)e”
eEShi\BQ eeshi\an

0, 1<i<K (3.7)

where 7. € R is defined as

_ ri(®e)
’Ye—m, eeShi\(‘?Q.

Here the bubble function @, living on (;, is associated with the midpoint of the edge e € &, .
Unfortunately, we obtain only a lower bound for the error ||u — uq|| by means of ||e||. Therefore,

we have to include a further term in the definition of a reliable and efficient error estimator. The
hierarchical basis error estimator is defined locally by:

2. 2
Ma - Z NH;T>
TeTh

T > welle®ellt, + X 3wl e, T €T,
eCOT\0Q2 eCOTNEL

where w, = 0.5 if e is an interior edge of a subdomain Q; and w. = 1 otherwise.
THEOREM 3.1. Under the weak saturation assumptions (3.1) and (3.4) there exist constants
0 < chier < Chier independent of the refinement level, such that

Chiern%{ S |||'LL —u1 |||2 S Chiern%{-

Proof. The upper bound for the error estimator can be established easily. Due to Lemma, 2.2
and (3.7) we need to consider only ||e|| in detail. The Galerkin orthogonality (3.6) yields

K K
llell? = Za,- (€8s —v) = Zai (u—wug,g; —v) —=b(A1 — A\ e—v), vE Xl_,ll(Q)
i=1 i=1

The special choice v = Ie, where [ is the Lagrange interpolant defined locally on each subdomain,
guarantees that (¢ — Ie)|r,; € HS({Z(I‘M-). By means of the saturation assumption (3.1) and ||[e —
Iel|l 12 < Crlle — Iglq;, we conclude that

00

el < llu—wlllle = Iell + 1M = All g-1r2ll [ = Te] [l a2
< Crllw = uall - llell-

Hence, the upper bound for ng is proved with a constant which also depends on the choice of the
mortar side and on the ratio of the eigenvalues of a in the individual subdomains.
The saturation assumption (3.4) guarantees the following equivalence

1

— e = w ] < | — ] <
T BOOIII 1l <l 1l <

= uall

1
l_ﬂoo

where 4o, = ug;;. Furthermore, we obtain on each subdomain Q;

Nluzsi — willf, = ai (€5, w25 — ur) + @i (ug;s — w, uzgs — ur) + b (A — A uzyi — uy),
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where us;; is extended to zero on Q;, j # 4. Since (u — ug;i)|r;; € HS({Z(F“), we obtain

b = Ad —u) = b = X —u =) <A = Al g2l —ulall gasz + 1M = Al +[[fudsll -2
Summing over all subdomains, we finally get, by means of a trace theorem, (3.1), and (3.4),
e = uill* < (llell + Coolllur]sllz-1 + (1 + cCoo)llw = @)@ — wi]].

If B is small enough, the error estimator provides an upper bound for energy norm of the error.
O

Remark 3.1: The constants in the upper and lower bound are better if the Lagrange multiplier
is defined on the side where the eigenvalues of the diffusion coefficient a in (1.1) are smaller.

4. A Fully Hierarchical Basis Error Estimator. In the previous section, we have studied
a hierarchical basis error estimator ng for the broken energy norm of the error v — u;. Its design
was mainly based on the decoupling of the subdomains and on the use of appropriate Neumann
boundary conditions.
A more general framework for hierarchical based error estimators is presented in [9]. In particular,
the results obtained for elliptic variational problems are applied on saddle point formulations. We
also refer to [2, 24, 32] where hierarchical error estimators for mixed finite elements are considered.
In this section, we consider a fully hierarchical basis error estimator where we will use the higher
order mortar ansatz space X;; ,IL(Q) for the approximation of the weak solution u and the space
Wa, (S) for a better approximation of the normal derivative.

Motivated by the a priori error estimate (2.6), we will use the following saturation assumption
lu = ual* + 11X = X2l < Bl — wall® + [1X = Aall) (4.1)

where 0 < 87 < 8% < 1/2. Under this assumption, (us —u1, A2 — A1) yields upper and lower bounds
of the error (u — u1, A — A1)

(1+6%) (e = uall® + 1A = AdllZ) < fluz —ul” + 112 = AllZ < (1+26%) (llw = wal® + 1A = AdlZ) -

In addition, (us — u1, As — A1) satisfies the following discrete defect problem: )
a(uz —u1,v) +b(Ae — Ar,v) = r1(v), vEX;;,i(Q), (4.3)
b(p,uz2 —u1) = 12(v), p€ Wyn(S)

where 71 (v) = (f;v)o — a(u1,v) — b(A1,v) and ro(p) := —b(w,u1). Then, it is obvious that

ri(v) =0forv e Xl_;(ﬂ) and that ro(p) = 0 for p € Wi, (S).
It is sufficient to consider the solution of the variational problem (4.3) in more detail. Unfortunately,
it is a global saddle point problem and its exact solution cannot be obtained locally. We therefore
need to construct an adequate approximation of us —u; and A — A; which can be easily computed,
and that is, at the same time, equivalent to (u2 — u1, A2 — A1).

A first step towards the definition of an efficient and reliable a posteriori error estimator is the
introduction of a hierarchical splitting of the spaces

K
Xon(@) =X (@) e X0 (Q), X :=F & span{d.}
k=1 e€&,\OQ

where @, denotes the quadratic bubble function associated with the midpoint of e. The support
of ®., e € & is restricted to Q. The ansatz space for the Lagrange multiplier is decomposed
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according to

Wain(S) = Win(S) ® Wan(S), Woin(S) = €D span{®.}

ecéL

where W, is the one dimensional quadratic bubble function associated with e, if e contains no
endpoint of an interface I';;, and ¥, is the linear hat function associated with p otherwise. In the
case that e contains two endpoints of an interface, we select only one of the two hat functions (see

Fig. 4.1).
We Yo
e 1 e

Fi1G. 4.1. Basis functions of the hierarchical surplus Wg;h(s)

Based on this splitting, we consider the following modified saddle point problem on the hier-
archical surplus space: Find (ue, Ae) € X () x Wayp(S) such that

a(ue,v) +b(Ae,v) = 11(v), vE Xgh(Q),
b (1, ue) = ro(v), € Wan(S).

We will show that the solution of the variational problem (4.3) can be replaced by that of (4.4),
and that (ue, Ae) still yields upper and lower bounds for the error. The equivalence of the saddle
point problems (4.3) and (4.4) is obtained by a strengthened Cauchy-Schwarz inequality and the
stability of the discrete saddle point problem (4.3) with respect to a mesh dependent norm. The
natural norm for the Lagrange multiplier will be replaced by ||- || , see definition (2.4). Associated
with || - || is the weighted bilinear form (-,-);, which is defined by

(4.4)

(N:g)L = :E: 232‘1(155(107 M, f S vv&;h(é;y

ecéL

The strengthened Cauchy-Schwarz inequalities have to be established between the functions of the
original space and those of the hierarchical surplus spaces.

LEMMA 4.1. There exist constants 0 < n1,1m2 < 1 independent of the refinement level such that
the following strengthened Cauchy-Schwarz inequalities hold

a(v,w)* <l lwll®, v € XTa(R), w e X54() (4.5)

(1,63 <i3lull2 I3, 1€ Win(S), & € Waun(S). (4.6)

Proof. The strengthened Cauchy-Schwarz inequality (4.5) is well known [19]. Taking the local
structure of the ansatz space X, ;(Q) into account, we easily get

5
/ugda < \/%HH“O;e”g“O;e

and thus (4.6) holds with 73 = 2. O
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For the stability, we need to consider the bilinear form b(-,-) in more detail; the discrete
Babuska-Brezzi condition is essential for the proof of the equivalence between (u., Ae) and (u2 —

Ui, )\2 — )\1) R
LEMMA 4.2. The bilinear form b(-,-) is continuous on XZ,IL(Q) X Wa.p(S)

b(n,0) < Cellulizlloll, v € Xy h(R), 1€ Wain(S) (4.7)

with a constant C. independent of h. In addition o discrete Babuska-Brezzi condition holds

b(u,v
sup 2V S s, e, (48)
S Tl

where X XV € {Xi,ll(ﬂ) X Wg;h(S),f;;i(Q) X Wg;h(S)} and the constant c, is independent of the
refinement level.
Proof. By the definition of || - || and || - ||-1, we obtain immediately

b(u,v) < Nullellfoly llp-1,  wlo]; € L3(S),

and || [v]; |[z-1 < Cc|v]| for v € )/(\'2_,11(9) Thus, (4.7) is established.
The Babuska-Brezzi bound for X x V = X1 () x Wa;(S) has been established in Lemma 2.1. In

case of X x V = )/(\'i,lb(ﬂ) X I7V\2;h(8), we can choose [v]; | = heay 'ple on each edge e € & which
does not contain an endpoint of an interface. We get (4.8) by recalling that pl. € Pi(e) on the
edges e containing one endpoint of an interface, and by following the same lines of arguments as
in the proof of Lemma 2.1, we get (4.8). O

The following theorem states the equivalence of the solution of the defect problem in the
hierarchical surplus (ue, Ac) and the solution of the original discrete defect problem (us—uj, Aa—A1).

THEOREM 4.3. Under the saturation assumption (4.1), there exit constants 0 < ¢y < Cf, such
that

ey (lluell® + IAellZ) < flw = uall® + 1A = Adllz < Cp(lluell® + IAeNIZ)-

Proof. The proof is basically based on the discrete Babuska-Brezzi condition (4.8) and the
strengthened Cauchy-Schwarz inequality (4.5). By means of the saturation assumption (4.1), it is
sufficient to show the equivalence of [Ju.[|* + || Xe||2 and [Juz —uq||* +||A2 — A% In a first step, we
establish the lower bound. Taking the stability of the saddle point problem (4.4), the continuity
of the bilinear form b (-,-) on X’;i(ﬂ) X Wa.p(S), and Lemma 2.2 into account, we obtain

c(lluell> +[1XellZ)? < sup @ (ue,v) +b(Ae,v) +  sup b (p,ue)
veXy (@) 1EWa,, (S)
(TS el <1
= sup ri(v)+ sup ra(p)
veX5 () HEWa 5, ()
Ioli<1 llellg <1
= sup  a(uz —u1,v) +b(A2 —A1,v)+ sup  b(p,us —uq)
veXy (@) HEWs 1, (S)
o<t el <1

< (14 Cy)fluz — ual + Cel[Aa — M|z

The upper bound follows from the stability of the saddle point problem (4.3), the continuity of
the bilinear form b (-,-) and Lemma 4.1. Let v = v1 + v and p = p1 + pa, with v; € Xii(ﬂ),
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vy € )A(;,ll(ﬂ) and p1 € Wi (S), pe € Wg;h(S), respectively. Then,

c(lluz — ur]l® + A2 = Acl3)Y2 < sup a(up —u1,v) +b(A2 — A1,v) + sup b (p,us — u1)

vEX5 5 (2) HEWih (S)
i< el <
< sup ri(v) + sup re(u) = sup ri(v2) + sup ra(ua)
vexy ) HEWg 1 (S) vexs o) HEWap (S)
lloli<1 lelp <t floli<1 lullr <1

= sup  a(ue,v2) +b(Ae,v2) +  sup b (2, ue)

vEX; 1 (9) HEWg,,(S)
o<t lullz <1
< (Jlwell + CellAell)  sup  |v2|] + Cefluel|  sup  ||p2llz
vexs (@) HEWo 1 (S)
i< el <1
< (‘/—11—771 + \/&W) llee ll + %”Ae”L.

a

In the next step, we have to localize the saddle point problem (4.4) defined on the hierarchical
surplus. As in the previous section, we neglect the coupling between the quadratic bubble functions
and replace the bilinear form af(-,-) by a(:,-)

K K K
a(¢,¢) = Z Z GeTea(Qe: q)e)a ¢ = Z Z 0P, Y= Z Z TePe.

i=1 e€&p, \0Q i=1 e€&p; \OQ i=1 e€&p,; \OQ
The following simplified saddle point problem leads to the definition of the fully hierarchical basis
error estimator: Find (e, Ae) € XZ,IL(Q) X Wa.(S) such that

allic,v) +b(Ae,v) = ri(v), veE X5 (Q), (4.9)
b

(N: ae) = T2(U), JIAS W\Q;h(s)-

Then, the solution %, can be written in the form

K
- .
Te=), ) e

i=1 e€&n; \OQ

and the coefficients 4, are given by (4.9). The coefficients associated with the interior edges of the
subdomains can be obtained by the formula

__n (@)
Te a((I)e,Q)e)'

Remark 4.1: In the interior of each subdomain, we obtain the same formula, as in the previous
section for the definition of the error estimator.

To get the coefficients 7, associated with an edge on the skeleton and \., we have to solve
one global system on each interface I';;. These systems are not coupled and are, in contrast to
the original saddle point problem, associated, with an 1D triangulation; the dimension is small
compared with the original global system. Additionally, the condition number does not depend on
the refinement level. Therefore, the system can be solved approximately in a few iteration steps.
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We now define the fully hierarchical basis error estimator locally by:

N = Z Mwr + M
) TETh )
Nea,T = Y wellve®el Q;»
eCOT\ox2 _
e = > Xl TeTh
eCOTNEL

where w, = 0.5 if e is an interior edge of some subdomain ; and w, = 1 otherwise.
THEOREM 4.4. Under the saturation assumption (4.1), there exit constants cfyiy, Cruiy >0
independent of the refinement level, such that

crutyim < lu—udll* + X = Ml < Crunymion-

Proof. The proof is an easy consequence of Theorem 4.3 and the equivalence of the bilinear
forms a(-,-) and a(-,-). O

Considering the 1D subproblems on the interfaces in detail, we obtain the following algebraic
system on the interfaces

DM 0 B)\ Upn M
0 DL D,\ ur, = rL ,
B/j\-' D)\ 0 )\L DY

where the stiffness matrices starting with capital D stand for diagonal matrices. The index L refers
to the nodes on the nonmortar side whereas the index M refers to those on the opposite mortar
side. We recall, that the Lagrange multiplier is defined on the nonmortar side. Then, elimination
of uys and uy, gives

<D>\D51D>\ + BfD;;BA) AL = F. (4.10)
The first part of the Schur complement matrix D ,\DZID A is a diagonal matrix whereas the second

matrix, generally, is not.
We call an edge e C I';; a macroedge if it can be written as

e= U é, e€&y or e= U é, e€C&,.

é€&n,, eCe éEShJ., éCe
bt 1 1 )\ €, |
e | ——— # # Y
T -1
- T
B) D:/I B, B\ Dy B)

Fi1G. 4.2. Macroedge e on mortar side (left) or on nonmortar side (right)

Figure 4.2 shows the two different types of macroedges depending on the choice of the Lagrange
multiplier. If two edges e; € &, and e; € &y, are the same, e; = e;, we will designate only as a
macroedge; the choice is arbitrary.
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F1G. 4.3. Nonconforming initial triangulation

In the special case where we start with a geometrical conforming macrotriangulation and use
some standard refinement techniques based on bisection of the edges [7, 8] to obtain the initial
coarse triangulation, each interface is the union of its macroedges. This is not true if we start with
a nonconforming initial triangulation (see Fig. 4.3) or if we use sliding meshes.

In case that the skeleton can be written as the union of macroedges, the second part of the
Schur complement BY Dy} By is blockdiagonal. The number of blocks of the Schur complement is
given by the number of macroedges whereas the dimension of a single block, associated with the
macroedge e, is given by n., where n. is the number of its subedges. A closer look at the structure
of the block systems shows that it can be easily solved explicitly. Thus, in this special case the use
of the error estimator only requires the solution of local problems on the macroedges.

5. Numerical Results. In this section, we will present some numerical results illustrating
the adaptive refinement process and the efficiency of the different error estimators. We consider
the error estimators analyzed in section 3 and 4.

Starting from a coarse triangulation, the discretized saddle point problems are solved on each
refinement level by a preconditioned iteration scheme [3, 25, 28]. For the adaptive refinement
process, we use the bisection strategy proposed by Bénsch [7].

We apply the error estimators on two examples with discontinuous coefficients. We consider
the diffusion equation —divaVu = f, on (0,1)2, where the coefficient a is discontinuous. The unit
square ) is decomposed into four subdomains Q := {(z,y) € Q| z <y <1 -2z}, Qs := {(z,y) €
Qyu<z<l-yh WB={(z,9) e z>y>1—z}and QU :={(z,y) €0 1 —y <z <y} and
the coefficient a restricted to the subdomains 2; is given by a constant a;, 1 < i < 4. The right
hand side f and the Dirichlet boundary conditions are chosen to match a given exact solution.

In the first example, the solution is u(z,y) = (y—z)(1—z—y)(z—0.5)?(y—0.5)?/a; and a; = a3 = 1,
as = a4 = 100.
Figure 5.1 shows the adaptively generated triangulations for example 1. No matching between

Hierarchical Error Estimator Fully Hierarchical Error Estimator

F1G. 5.1. Adaptive refined triangulations (Example 1)

the triangulations at the interfaces is required. Strongly nonconforming global triangulations are
generated by the adaptive process. This illustrates the advantage of the mortar method compared
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with a standard approach where only conforming triangulations are allowed.

F1a. 5.2. Nonmortar side where a is larger (Fully Hierarchical EE)

Figure 5.2 and Figure 5.3 show the influence of the choice of the Lagrange multiplier on the
adaptively generated triangulations. We observe a completely different behavior during the first
refinement steps. In the first case, we obtain a strong adaptive refinement along the nonmortar
side at the beginning of the refinement process. However, asymptotically the adaptive refinement
generates almost the same triangulations on the subdomains where the coefficient is smaller. In

F1G. 5.3. Nonmortar side where a is smaller (Fully Hierarchical EE)

Figures 5.1 and 5.3 the Lagrange multiplier are defined on the side where a is smaller. If the
nonmortar side is chosen where a is larger, we obtain a triangulation which tends to be more
conforming at the interfaces. In this case, the Lagrange multiplier is associated with the subdomain
where the triangulation is coarser. This leads to poor approximation properties for the Neumann
boundary condition, and we have to adapt the triangulation along the interface on the side where
a is larger, see Fig. 5.2.

TABLE 5.1
Efficiency error for the fully hierarchical error estimator (Example 1)

Lagrange multiplier on a = 100 Lagrange multiplier on a =1
level | nodes | est. err. | realerr. | eff. in. | nodes [ est. err. [ realerr. [ eff. in.
0 24 0.173 0.287-10~! | 6.03 24 0.171 0.287-10~! | 5.96
1 42 [0.33810°T | 0.156-10° 1 | 2.17 42 [0.169-107 T | 0.132-10°T | 1.28
2 88 0.224-10~' | 0.101-10~' | 2.23 92 0.604-10~2 | 0.615-10~2 | 0.981
3 144 | 0.916-10=2 | 0.528-102 | 1.73 172 | 0.303-1072 | 0.321-102 | 0.945
4 492 | 0.148.10~2 | 0.143-102 | 1.03 364 | 0.189-10~2 | 0.178-10~2 | 1.06
5 1242 | 0.117-10~2 | 0.846-10—3 | 1.39 862 | 0.116:10~2 | 0.107-10~2 | 1.09
6 3128 | 0.546-10~2 | 0.508-10~2 | 1.07 2246 | 0.636:10~° | 0.619-10~2 | 1.03
7 8374 | 0.307-10~3 | 0.301-1073 | 1.02 5922 | 0.375-10~2 | 0.371-10~3 | 1.01
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In Table 5.1, the efficiency index as well as the norm of the error is given for the different
choices of the Lagrange multiplier. At the beginning the error is smaller in case where the non-
mortar side is associated with a = 1. In both cases, the efficiency index tends to one within the
adaptive refinement process.

The second example is more complicate (see [30]) and the solution u(x,y) = a;7°! sin(0.1¢+6;)
has a singularity at (z,y) = (0.5,0.5). Here z =7 -cos¢ + 0.5, y = r -sin¢ + 0.5 and ¢ € [, 2F).
The parameters of the subdomains §; are given by a1 = g = 1, ap = ag = sin(2.15)(sin(0.17)) !
and a1 = a3 =1, ay = agy = o3 and 6; = 0.97, 2 = 1.35m, 63 = 1.8, 64 = 0.457. Then, the
solution is continuous and [a;Vun]; is equal to zero on the interfaces.

Nonmortar side where a is smaller Nonmortar side where a is larger

F1G. 5.4. Hierarchical Error Estimator (Ezample 2)

Figures 5.4 and 5.5 show the influence of the choice of the Lagrange multiplier on the adaptive
refinement process for the second example. Here, we use the hierarchical basis error estimator
defined in section 3.

Nonmortar side where a is smaller Nonmortar side where a is larger

F1G. 5.5. Hierarchical Error Estimator - Zoom of final triangulation (Ezample 2)

If we compare the true error in Table 5.2, we find that in case where the nonmortar side
is associated with the smaller coefficient a the number of nodes to obtain a given accuracy is
considerably smaller. Therefore, to obtain better numerical results the Lagrange multiplier should
be chosen on the side where the coefficient @ is smaller. This can be also seen by a detailed a
priori analysis; the constants in the estimates depend on the ratio of the coefficients restricted to
the subdomains. We recall that the constants in the upper and lower a posteriori bounds are also
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TABLE 5.2
Efficiency error for the hierarchical error estimator (Ezample 2)

Lagrange multiplier on a = 161.44 Lagrange multiplier on ¢ = 1
level | nodes | est. err. | real err. | eff. in. | nodes | est. err. | real err. | eff. in.
0 60 16.4 8.43 1.95 60 5.97 8.43 0.708
1 108 | 10.2 7.28 1.41 132 | 4.55 6.39 0.712
2 162 | 9.95 6.41 1.55 168 | 4.06 5.69 0.715
3 252 | 8.03 5.73 1.40 220 | 3.64 5.09 0.715
4 366 | 4.09 5.14 0.794 274 | 3.29 4.60 0.716
5 444 | 3.42 4.65 0.737 344 | 2.99 4.17 0.718
6 522 | 2.99 4.23 0.708 416 | 2.74 3.80 0.721
7 600 | 2.68 3.86 0.695 488 | 2.52 3.48 0.726
8 696 | 2.43 3.54 0.687 560 | 2.34 3.20 0.731
9 780 | 2.23 3.25 0.686 632 | 2.17 2.95 0.737
10 872 | 2.06 3.00 0.686 710 | 2.02 2.73 0.742
11 944 | 1.91 2.78 0.690 814 | 1.88 2.52 0.747
12 1032 | 1.11 2.72 0.409 869 | 1.77 2.35 0.754
13 1808 | 0.908 2.48 0.366 1006 | 1.66 2.18 0.760

better if the nonmortar side is defined on the side where the eigenvalues of a are smaller, and the
constants do not depend on the ratio of the eigenvalues on two subdomains sharing one interface.
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