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Abstract

In this thesis, we outline the research on the design of Domain Faithful Deep Learning Systems,

that translate expert-understandable domain knowledge and constraints to be faithfully incorpo-

rated into learning deep learning models. In high-stakes domains like health, socio-economic in-

ference, and content moderation, a fundamental roadblock for developing deep learning systems

is that machine learning models’ predictions diverge from established causal domain knowledge

when deployed in the real world and fail to faithfully incorporate domain-speci�c structure in

counterfactual data distributions. To overcome these limitations, we developed domain faithful

deep learning systems through methodological contributions in ML model design, constrained

optimization, data augmentation, and feature selection, for real-world applications. Speci�cally,

we developed ML systems for consequential socio-technical and natural language understanding

tasks by collaborating with domain experts and addressing critical research questions such as

“What data distributions do domain practitioners care about?”, “How to faithfully convert do-

main knowledge into model constraints for better generalization?” and �nally “How to evaluate

whether the ML models we learn are grounded in the domain knowledge and in what ways do

they deviate?”. The causal-aware and robust prediction models developed have shown that rely-

ing on data alone can lead to incorporating spurious correlations, and low accuracy in data-sparse

or counterfactual scenarios, and hence, incorporating domain-speci�c structure in all stages of

the machine learning pipeline is necessary for building robust predictive models.
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1 | Introduction

In this thesis, we focus on the design of Domain Faithful Deep Learning Systems, that trans-

late expert-understandable domain knowledge and constraints to be faithfully incorporated into

learning deep learning models. In high-stakes domains like health, socio-economic inference

and content moderation, a fundamental roadblock for developing deep learning systems is that

machine learning models’ predictions diverge from established causal domain knowledge when

deployed in the real world and fail to faithfully incorporate domain speci�c structure in coun-

terfactual data distributions. Prior work in this space have formulated this problem as that of

model generalization [298], data and label distribution change [251], domain adaptation [131],

or adversarial robustness [70]. By doing so, they argue about model under-speci�cation in the

in�nite data regime and data representativeness [75] over data distributions that are not realisti-

cally observed. While improving robustness of machine learning models is the core objective of

all these approaches, they still fail to meet the expectations of domain experts on how machine

learning models should behave when deployed in the real world.

Currently, domains where machine learning is being applied can be broadly distinguished

based on the amount of prevalent enforceable domain knowledge in that domain. For example,

causal models [328] are robust and compact representations of domain knowledge which have

implications of the conditional probabilities of the e�ect given the treatment and covariate dis-

tributions. Such an abstraction is common and well understood in industrial settings where the

data generating procedure is well documented. Causal knowledge is often expressed in various
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forms - graphical causal models, semantic causal roles in sentences, theoretical model parame-

ters. For example, causality based question answering lies at the core of customer support tools

like chatbots. Prior ML models fail to capture the directed nature of causality, for example rain

causes tra�c delay, and not vice versa. Hence, learning asymmetric causal embeddings faithful

to causal graphs can improve accuracy. Causal knowledge is also useful in data sparse conditions

where interventions are often infeasible. For example, the task of forecasting famine is critical for

the mobilization of aid to millions of people, but hard to solve due to data scarcity in fragile and

poorer countries. By building a news-based causal-aware forecasting framework that extracts

causal features from 11.2 million news articles across 2 decades in 15 fragile countries, we can

improve forecasting accuracy compared to state-of-the-art predictive models.

On the other hand, even in domains where causal models are not established, certain coun-

terfactual behavior of the machine learning models are expected. For example, trustworthy ML

models in health recommendations need to be robust to medical concepts over unseen patient

data, while traditional ML models focus only on optimizing accuracy over the observed but lim-

ited test data. By incorporating trust through doctor-speci�ed mapping rules between diagnoses

and medications through data augmentation, we can improve accuracy of state-of-the-art end-

to-end neural models. Automated detection of online toxic comments improves the quality of

interaction in social media. However, the variations in the context of comments make it hard to

protect speci�c demographic groups from disparate impact. By explicitly modeling such nuances

through counterfactual data augmentation, we can bridge the gap and improve the accuracy of

detecting toxicity by 6%.

To overcome these limitations, I have developed domain faithful deep learning systems that

directly incorporate domain knowledge in various stages of the machine learning pipeline - model

design, constrained optimization, data augmentation and feature selection. This has led to de-

ployments of domain faithful ML systems for consequential socio-technical and natural language

understanding tasks by collaborating with domain experts. Speci�cally, we address critical re-
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search questions such as “What data distributions do domain practitioners care about?”, “How

to faithfully convert domain knowledge into model constraints for better generalization?” and

�nally “How to evaluate whether the ML models we learn are grounded in the domain knowl-

edge and in what ways do they deviate?”. In doing so, we enable ML to be used towards positive

socio-economic development, by tackling real-world societal problems in computational social

science and NLP, and simultaneously addressing the fundamental ML research questions under-

lying these problems. Throughout this thesis, we adopt a research philosophy that strongly em-

phasizes “end-to-end system design”, where algorithmic contributions are evaluated and deployed

in the real world with the aim to adopt them at scale. For instance, the causal-aware and robust

prediction models developed in collaboration with the World Bank and Google, have shown that

relying on data alone can lead to incorporating spurious correlations, and low accuracy in data

sparse or counterfactual scenarios, and hence, domain-speci�c structure is necessary for building

robust predictive models. Overall, the research in the thesis has been focused on applying domain

faithful deep learning to build causally faithful and heterogeneously robust predictive models in

the domains of socio-economic inference, causal-aware deep learning, health, and toxicity de-

tection. Each of these domains pose unique challenges on how to incorporate structure and the

diverse techniques required to execute them. Now, we present the outline of the 4 sections of the

thesis:

Domain Faithful Causal Models: Question Answering tasks power technologies like chatbots

for customer support in businesses. Recent advances in machine learning for processing natu-

ral language text have broadly relied on large neural language models like Transformers which

capture the relationships between the word tokens in long sequences. The �ne-tuning of these

language models for multiple tasks have demonstrated state-of-the-art performance on bench-

marks like GLUE. However, these �ne-tuned models perform poorly on counterfactual sentences

or inconsistently on downstream tasks which have speci�c structure like graphical causal models
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or domain-speci�c theory. In the causal-QA dataset [5], questions of the form “What causes X?”

are posed, where X can be a disease, phenomenon and a real-world event. Neural Network mod-

els have been modi�ed to predict causal links, but lack the consistency required, i.e undirected

paths in a graph are still considered causal, whereas causal graphs are strictly directional. On the

other hand, traditional Information Retrieval (IR) techniques that mine such causal information

from knowledge graphs are limited in their generalizability to new and related terms mentioned

in questions, i.e “�ood” and “deluge” may have similar causes, but if “deluge” is not in the graph,

then we have no way of estimating its cause. To overcome the limitations of using either an end-

to-end model or domain knowledge as-is in its limited scale, we provide a way to incorporate the

constraints imposed by the domain-speci�c structure - causal graphs in this case into BERT-like

transformer based models. We demonstrate that when proximity between the embeddings of two

nodes is modeled using a pseudo-quasi-metric, we are able to capture the directedness of causal

graphs. Speci�cally, we measure three properties of faithfulness namely the uniformity of the

embeddings, the correlation between distances of any two random nodes in the graph, and link

prediction accuracy. In each of these graph-speci�c indicators, by imposing a regularization loss

which penalizes inconsistencies in how the embeddings satisfy these two properties over two

large causal graphs with 800K nodes, we obtain a �ne-tuned embedding that not only achieves

causal faithfulness better, but also improves the area under the Precision-Recall curve over the

Yahoo! Answers causal-QA dataset by 21%.

Domain Faithful Feature Extraction: In socio-economic inference, the motivation is to

have a broader positive societal impact using data-driven machine learning tools. Many applica-

tions which relied purely on data have faced issues as they did not incorporate domain-speci�c

causal structure. For example, in the Flu prediction model based on Google Search Trends, it was

shown that the model deviates over-time as compared to a one that incorporates signals derived

from the Center for Disease Control (CDC). In the problem of predicting food insecurity task,
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we overcome the challenge of data sparsity in fragile states which are often encumbered with

infrastructural and con�ict-based issues that makes the task of data collection harder. As tra-

ditional indicators like rainfall, vegetation index, etc are often delayed, we aim to use the news

streams published by reputed sources like BBC, Reuters, AP, etc. to automatically extract and

construct causally grounded indicators. Our contributions extend beyond the methodologies and

have implications on the ethical and operational trade-o�s a domain practitioner needs to make

in a socio-technical system. In the famine prediction task, by extracting causes from scienti�c lit-

erature using Semantic Frame Parsing and then constructing time-series indicators by expanding

to tokens with low Word-Mover distances, we are able to reduce the food insecurity forecasting

errors by 32%. Additionally, alignment of models to domain expertise provides an additional in-

centive to practitioners - counterfactual reasoning: Not all episodes of famine are the same, and

our methodology allows us to model what is the implication of each of the causes in improving

the prediction accuracy at a �ne-grained level of districts in 15 of the most fragile countries in

the world over two decades.

Domain Speci�c Concordance and Counterfactual Robustness: Recent advances in ap-

plying AI for healthcare have often relied purely on data, but fail categorically when patients

with di�erent characteristics than the ones present in training data are presented. Speci�cally,

in the medication recommendation task, learning end-to-end neural models based on historical

electronic health records might prove to be accurate, but may not inculcate trust in doctors, un-

less the ontologies of medicine that are used as standards by trusted medical associations are

incorporated. In the medication recommendation task, since all possible diagnoses that may be

relevant might not be present in the training data, we improve the neural network model - G-

BERT’s domain-speci�c concordance based on expert-speci�ed medical ontologies like medication

and diagnostic code hierarchies and the mapping rules between them. By incorporating causal

structure into machine learning models through categorical counterfactual data augmentation
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and regularization, we guard against predictions that violate the domain knowledge over cate-

gories and improve the categorical robustness of prediction models by 1.2x and accuracy by 12% on

the MIMIC-III dataset, as we rely less on spurious correlations in the data.

Further, in the domain of toxicity detection in online social media comments, social-science

experts have long advocated for incorporating how speci�c demographic groups are susceptible

to speci�c types of toxic comments. It is important to model secondary attributes that are relevant

to the toxicity of a sentence explicitly when we aim to be fair based on demographic groups. In

this scenario, one needs to be aware of group-speci�c language, idioms, quirks, and background

history to ascertain the toxicity of a comment. But this nuance was never captured explicitly in

BERT-based neural network models. We incorporated this domain knowledge through counter-

factual data augmentation that model secondary variables and were able to improve the ability to

detect toxic comments for all demographic groups, speci�cally black women, who were suscepti-

ble to more directed toxic comments. By augmenting examples of directed toxicity in a weighted

manner to demographic groups that are more exposed to such comments, we are able to classify

toxicity better on all demographic groups. Without this nuance of how toxic comments vary,

and just optimizing for overall absolute error, the toxicity detection model would disparately

perform poorer on speci�c demographic groups unintentionally. Through intervention on sec-

ondary attributes through counterfactual data augmentation, we not only improved the model’s

understanding of what constitutes toxicity, but also improved the accuracy on all demographic

groups by 7%. This application clearly demonstrates that as a text classi�cation model is scaled to

be applicable to all demographic groups in a society, the secondary e�ects of covariates and how

they impact the performance of a ML system depends on domain knowledge, and needs carefully

expert supervision. Such business decisions and design choices have the capacity to in�uence the

product experience for billions of users.

Domain Faithful Evaluation: Domain practitioners have often minimal guidance on the

choice of parameters that AI tools in healthcare operate over. For example, in the angiographic
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disease status prediction task, the variability of diagnostic features in di�erent demographic

groups is well studied. Here, practitioners need to carefully evaluate the trade-o�s between the

per-group accuracy across demographic groups, when an end-to-end jointly trained model is

used. When we analyze the performance of ML models on speci�c demographic groups, we out-

line the choice of parameters of fairness and accuracy trade-o�s that practitioners have based on

Pareto E�ciency. For example, how accurate an ML model should be over patients with darker

skin tone than lighter skin tone in a heart disease status prediction model is a choice that cannot

be made blindly, but with careful consideration of the medical diagnostic equipment’s character-

istics and the Pareto optimality of the model’s performance across demographic groups. Through

the principle of Pareto E�ciency, we can potentially improve group-level accuracies by 9.6% on UCI

datasets. Acting blindly based on the neural model’s decisions in high-stakes scenarios might be

sub-optimal and using our methodology, experts can now justify their choice, in case they were

to be contested.
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Part I

Improving Robustness through Domain

Faithful Causal Models
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2 | Learning Causal Graph Faithful

Language Representations

2.1 Introduction

Learning distributed word representations that capture causal relationships are useful for real-

world natural language processing tasks [359, 414, 127, 126]. Approximating the notion of causal-

ity with a similarity-based distance metric using separate vector representations for cause and

e�ect tokens has led to signi�cant improvement in the performance of downstream tasks like

Question Answering, but can be too restrictive to generalize over unobserved edges in larger

causal graphs [378]. In downstream causal reasoning based tasks like dialog systems [308], ex-

planation generation [160], question answering [378], it is important to align the models with

the corresponding causal graph. However, words that have low cosine similarity capture vari-

ous semantic similarities, like relatedness, synonyms, replaceability, or complementarity, but not

directionality [167]. Hence, any symmetric distance in an embedding space cannot convey the

directed causal semantics for a downstream task [286]. In this paper, we overcome these two

shortcomings and propose to optimize for directed faithfulness [391] that word embeddings have

to satisfy towards a causal graph.

Prior work on capturing su�cient information for causal inference tasks from embeddings

aims to directly use them for average treatment e�ect estimation [414]. We are, however, inter-
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ested in a complementary question: “Can we learn word embeddings based on a distance measure

that maps the directed distance between nodes in a causal graph to that in the embedding space?”.

Unlike prior work, which aims to learn a causal aware embedding restricted to direct link predic-

tion [167], we propose faithfulness constraints so that causal word embeddings aims to preserve

the partial ordering over pairwise distances in the directed causal graph. In this paper, to achieve

the goal of learning faithful word embeddings with a vocabulary of more than 100K tokens, we

minimize faithfulness violations over pairwise samples of nodes in the causal graph. Through

this constrained optimization, we learn an embedding that can be applied directly for causal in-

ference tasks but also generalizes to emergent causal links. It has been shown that NLP models

need to understand such causal links that persist in the real world for safe deployment [127, 294].

Embeddings that violate the faithfulness property, can lead to spurious correlations based on

co-location in the embedding space. For example, in a Yahoo! causal question-answering task’s

example: “What causes nosebleed?”: the answers were “dry air”, “heavy dust”, “damaged nasal

cells” and “liver problems”. If we were to only rely on an undirected association based embed-

dings, the causes “dry air” and “liver problems” might be nearby (with distance of 2), but would be

appropriately placed far in a directed causality based embedding space. To capture such asymmet-

ric properties, we aim to preserve alignment with the causal graph by mapping causal links to an

asymmetric quasi-pseudo distance measure during training to capture directionality of the causal

graph as per Figure 2.1. Since human validated causal graphs can be used directly to answer ques-

tions of the type “What causes X?”, we demonstrate the utility of learning faithful representations

by using our distance-based features to solve the Yahoo! causal question-answering (QA) task. A

causal QA task, unlike a standard QA task, can directly bene�t from incorporating a causal graph

into word embeddings to answer anti-causal queries. Our key contributions are:

• We de�ne a faithfulness property for word embeddings over a causal graph, that captures

geometric properties of the causal graph, beyond the direct link prediction by ensuring

global proximity preservation.
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• We propose a methodology to learn faithful embeddings through violation minimization

which improves neighborhood detection by 31.3%, uniformity by 42.6%, and distance cor-

relation by 54.2% using a quasi-pseudo distance metric.

• The faithful BERT and RoBERTa-based embeddings we learn, when used as inputs to a

causal QA task, increases the precision of the �rst ranked answer (P@1) over existing base-

lines by 10.2%.

C: causal graph

M: uniform manifold
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Figure 2.1: Schematic of our Faithful BERT-based model
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2.2 Related Work

2.2.1 Causal Model Representations

Causal Inference, as outlined in [328] formalizes cause and e�ects discovered through interven-

tion based experiments and communicates them via directed acyclic graphs. With the availability

of large observational datasets for machine learning, various methods and assumptions have been

proposed for learning causal graphs [372], data fusion and transportability properties [28, 48].

Speci�cally, our work closely aligns with the assumption of faithfulness [391], which requires

that the observed probability distributions of nodes in a causal graph are conditionally indepen-

dent as per the links in the graph. In our work, we use the probability distributions as modeled in

a natural language model [231] and align it with the causal links in a graphical causal model. We

extend the faithfulness assumption to be re�ected in embeddings learnt by a masked language

model [87, 255] for downstream tasks. This de�nition of faithfulness is di�erent from the one

proposed by [192] used to evaluate models for interpretability of models used for downstream

tasks. Instead, our work builds on embeddings learnt in [378], given a causal model and learn

embeddings that are boot-strapped using a small set of cause-e�ect seeds. Causal models have

also been used to learn auxiliary tasks [110] using adversarial training to ensure that a language

model learns causal-inspired representations. Such approaches use causal models to learn coun-

terfactual embeddings invariant to the presence of confounding concepts in a sentence, while we

encode the geometrical properties of causal graphs into the embeddings and the distance measure

to maintain their faithfulness. In principle, we adopt a similar approach to [414] of �ne-tuning

towards a causal link prediction task. This is in contrast with approaches that use energy-based

transition vectors used to represent the cause-to-e�ect and e�ect-to-cause links [467]. Our ap-

proach uses regularization constraints similar to the ones proposed for information bottlenecks in

word embeddings [244, 153], text-based games [303], activation links in neuroscience [57], causal
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consistency with ordinary di�erential equations [364] and temporal Granger Causality [400]. For

an extensive survey of using text for causal inference tasks, we refer to [219].

2.2.2 Graph Representation Learning

Learning asymmetric transitive graph representations which generalize the causal graph have

been studied extensively in Information Retrieval [60, 106, 247, 161]. They either utilize a ran-

dom walk learning technique [331] or matrix factorization techniques [241, 402, 427, 291] to

incorporate priors such as the stationary transition probability matrix, community structure, etc.

More recently, [253, 321, 261] have incorporated knowledge graphs in BERT and shown increased

accuracy in knowledge-centric NLP tasks. [470, 150, 322, 393, 398] propose asymmetric higher

order proximity preserving graph embedding methods by learning separate source and target

embeddings. While we can learn faithful 3-dimension embeddings for any �xed �nite undirected

graph deterministically [71], �ne-tuning pre-trained word embeddings such that they generalize

over all sub-graphs in a directed graph is known to be a hard graph kernel design problem that

scales cubically with the number of nodes [420]. Our approach builds on e�orts to incorporate

graph-like structure in BERT, but overcomes the issue of learning dual embeddings for cause-

e�ect edges by learning uni�ed embeddings for both cause and e�ect roles of words. Through

such embeddings, we can further aid causal discovery that is not yet captured in a graphical

notation [61].

2.2.3 Graph Neural Networks

Recently, Graph neural networks that capture the graph neighborhood structure have been em-

ployed in link prediction [473, 2]. In [454], the problem is reduced to that of sequence prediction

by reducing the graph to breadth-�rst search based deterministic sequence. In [246], node embed-

dings are updated after several rounds of message passing, while in [407] a variant of the random
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walk is incorporated with a max-margin discriminative constraint. In [415], models are learned

by attending over the neighborhood of nodes for context, while [223] apply spectral graph convo-

lutions for a self-supervised learning task. We adopt the incremental approach proposed in [415]

which does not rely on knowing the entire graph structure apriori and �ne-tune on cause-e�ect

pairs for the link prediction task on a pre-trained BERT-based language model.

2.3 Learning Faithful Embeddings

2.3.1 Background

Causal inference [328] aims to understand the cause and e�ect relationships between events.

Learning purely based on correlations in observational data can lead to spurious causal links and

can severely impact downstream tasks. Hence, intervention-based studies are conducted which

carefully study the impact of a cause using controlled randomized experiments and other criterion

to learn if links between causes and e�ects exist using observed data under speci�c assumptions.

The �ndings of such studies are formalized using frameworks like Rubin Causal Models [365],

Structural Causal Models [328], etc. While there are di�erences in abstractions between them,

there is formal equivalence [124] in modeling counterfactuals (“What is the e�ect when the cause

is intervened?”) and we refer the reader to [330] for a primer in causal modeling.

In this paper, we assume a graphical structural causal modelC [328] is given, whose nodes are

linked with directed edges that denote the cause-e�ect relationship. For example, the cause-e�ect

of “smoking” causes “cancer”, references to the real world action of “smoking” in individuals that

leads to the development of “cancer” kind of disease in those individuals. While causal models

have a close relationship to the knowledge graph, the links of the causal graph have a well-de�ned

causal interpretation that can be validated through counterfactual experiments. In this work, we

assume the availability of such a causal graph and we do not aim to build one. Instead, we rely
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on human annotators who with the help of web crawlers [177] and other information retrieval

tools [378] produce a directed graphical causal model as shown in Figure 2.1.

2.3.2 Faithfulness

Given a graphical causal modelC , we now present a faithfulness property an embedding that aims

to closely align with the causal model has to satisfy. The faithfulness property was �rst proposed

for any two causal spaces in [47] in the domain of quantum physics with the space-time dimen-

sion. Inspired by this, we propose an instantiation for word embeddings and a corresponding

graphical causal model.

De�nition 2.1 (Faithfulness). An embedding f : C → M from a causal set (C,dC) to a vector

space (M,dM ) is faithful if:

• ∃λ,∀x,y ∈ C,dC(x,y) = 1⇔ dM (f (x), f (y)) ≤ λ

• f (C) is distributed uniformly

• ∀x,y,w, z ∈ C,dC(x,y) ≤ dC(w, z) ⇔ dM (f (x), f (y)) ≤ dM (f (w), f (z))

Note that we use the causal set (C,dC) as a tuple of the graphical causal modelC and a distance

measure dC which is used to measure the directed distance between nodes in the graph. The

vector space in which we map our embeddings is also characterized by a tuple (M,dM ), where

M is the multidimensional real number space Rm, and a distance measure dM which identi�es

nearby words in that vector space. The three conditions posed by the faithfulness property, more

concretely specify that there needs to be a real threshold, within the embedding space, which can

cover all the neighboring nodes of a word, the embedding space needs to be uniformly distributed,

and �nally, any inequality relationships between two distance measures in the causal graph needs

to hold in the embedding space too. An embedding that satis�es this property can then be used

to su�ciently represent the causal graph in downstream tasks.
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2.3.2.1 Distance Measures

The de�nition of faithfulness is dependent on the distance measure used in both the causal graph

and the embedding domains. In this work, we assume that the causal graph is a directed acyclic

graph, and hence we measure dC as the shortest directed distance (number of edges in an un-

weighted graph) between two nodes. If no such path exists between two nodes, we consider the

distance to be a large number, which in the case of an unweighted graph, can be set to > n, where

n is the number of nodes in the acyclic graph. Note that weighted graphs can also be incorporated

with minor changes based on the maximum path in the graph.

However, the distance measure in the embedding space faces challenges in evaluation of sim-

ple supervised tasks [195]. To overcome these, we chose a distance measure that is closely tied to

our faithfulness de�nition. We chose a uni�ed set of embeddings for both the cause u and e�ect

v , and, if there exists a causal edge from u → v , then we would expect that dM (f (u), f (v)) <<

dM (f (v), f (u)). For this reason, symmetric distance choices like Euclidean distance, cosine simi-

larity are not suitable. Our chosen distance measure, hence should follow the properties of quasi-

pseudo metrics, de�ned as follows in [301]:

De�nition 2.2 (Quasi-Pseudo Metric). A measure dM : X ×X → [0,∞) is a quasi-pseudo metric

if ∀x,y, z ∈ X ,

• dM (x,y) ≥ 0

• dM (x, x) = 0, but dM (x,y) = 0 is possible for x , y

• dM (x, z) ≤ dM (x,y) + dM (y, z)

Hence, quasi-psuedo metrics, which do not satisfy the symmetry property are best suited

to measure the distance between any two embeddings. We can generate such metrics, given a

measure d . If the cause phrase u has p word tokens, and the e�ect phrase v has q word tokens,
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we choose the Max-Matching method given in [447] in our de�nition of dM by iterating through

all pairs of words (vb,ua) : vb , ua . Note that the measure d computes the di�erence between v

to u over the totalm number of dimensions in f (vb), f (ua).

d(u,v) = min
a=1..p
b=1..q
vb,ua

m∑
j=1
(fj (vb ) − fj (ua)) (2.1)

dM (f (u), f (v)) =


d(u,v), if d(u,v) > 0

10−d (u ,v) − 1, otherwise
(2.2)

We chose this de�nition, as it is di�erentiable (except at 0, where we choose the gradient to be

0). Also, for each pointu in the embedding space, there is a corresponding hyperplane that passes

through it that de�nes the half-space which separates the reachable nodes v : d(u,v) > 0 - nodes

which have either an indirect or direct causal link and the unreachable nodes v : d(u,v) < 0.

Also, by the property of d(u,v) = −d(v,u), we see that if v is reachable from u, then u is not

reachable from v , thus a�rming that this is suitable to represent a causal graph that is directed

and acyclic.

2.3.3 Causal Graph Link Prediction

There are currently many approaches to learning causal representations, one which uses a masked

language modeling approach where the word tokens in the cause are paired with word tokens

in the e�ect using a skip-gram technique in an unsupervised setting. In the supervised setting,

models align the cause-e�ect embeddings to solve either a sequence-to-sequence translation task

or logistic classi�cation task. Since we aim to capture all the nodes of the causal graph into a

single set of word embeddings, we choose this approach. Further, in the supervised setting, we

make explicit the causal relationship between cause and e�ect, thereby capturing the direction-
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ality of the linkage. Thus, a supervised model could translate a cause to an e�ect or predict the

link that exists from a cause to an e�ect. Among these supervised modeling choices, we choose

the binary classi�cation task of predicting if a directed edge exists between two nodes in the

causal graph. This supervised learning is achieved by following the technique of �ne-tuning as

proposed in [414]. Formally, given a cause phrase u, an e�ect phrase v , let an i(u,v) be an edge

indicator variable i(u,v) = 1u→v that takes binary values of {0, 1} based on the existence of an

edge from u → v in the causal graph.

Pre-trained Contextual Models: Pre-trained models based on transformers like BERT [87],

RoBERTa [255] learn contextual embeddings of words or tokens by optimizing for the self-supervision

task of predicting randomly masked tokens in a sentence. These pre-trained embeddings for word

tokens have been used extensively for �ne-tuning. Here, we use such �ne-tuned models denoted

as д̃ to predict the existence of an edge between the cause and e�ect u,v , by embedding them

into f (u), f (v) respectively and further optimizing them in the �ne-tuning stage on the following

cross-entropy classi�cation loss

Ls = Eu ,v∼C CrossEnt(i(u,v), д̃(u,v)) (2.3)

2.3.4 Violation Minimization

Given the faithfulness de�nition, our goal is to learn an embedding that minimizes the number

of violations of the faithfulness property. For each of the 3 conditions present in the faithfulness

property, we de�ne how we measure their adherence and incorporate it in the loss function. In

addition to the causal graph link prediction task, we now present how the faithfulness properties

are incorporated through regularization constraints.
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2.3.4.1 Neighborhood

Since we expect a single embedding distance threshold that perfectly encapsulates the neighbor-

hood of a node, we can measure this by varying distance thresholds for neighborhood detection

and compute the area under the curve of the precision-recall curve. Since we aim to retain all

the neighbors of a node in the causal graph within an upper bound of the distance in the em-

bedding space, we add the sum of the distance between the nodes and their neighbors as an L1

regularization loss.

Ln = E u∼C
v ∈Neiдh(u)

|dM (f (u), f (v))| (2.4)

2.3.4.2 Uniformity

Since checking for true uniformity can be computationally intractable, we approximate by com-

puting the per-dimension aggregate of all the word embeddings and compute the Wasserstein

distance [312] between the observed distribution and the expected uniform distribution centered

around zero (0m). Since, in the uniformity constraint, we would expect that the embeddings are

centered around zero, the mean of the embeddings should be close to zero. We measure the dis-

tance from this expected centroid and penalize the model for a high distance. IfCb denote the set

of nodes chosen in a batch b, with size |b |, and fj(p) denote the jth dimension of the embedding

of node p, then we present the uniformity regularization loss:

Lu =

m∑
j=1

1
b
|
∑
p∈Cb

fj (p)| (2.5)

19



2.3.4.3 Distance Correlation

To measure if inequalities between two distances in the causal graph hold in the embedding space,

we measure the Pearson correlation coe�cient between samples of distances between words in

the causal graph and that of the embeddings. To ensure that any two distances sampled from the

causal graph maintain the same inequality in the embedding space, we sample random nodes from

the causal graph and compute the empirical Pearson Correlation Coe�cient of their distances in

the embedding space. A perfect correlation would lead to a coe�cient of +1, so we penalize any

deviation from that ideal correlation and present the distance correlation loss:

Lc = 1 − ρdC ,dM

= 1 −
cov(dC,dM )

σdCσdM
(2.5)

Note that all the above constraints are at a batch level and hence is added on to the batch cross-

entropy loss during every back-propagation step. Since the losses are di�erentiable, we have used

the auto-di� capability available in Tensor�ow. The contribution of each of the above losses are

combined using the Augmented Lagrangian method [182] and controlled using 3 parameters

α, β,γ as follows:

L = (1 − α − β − γ )Ls + αLn + βLu + γLc (2.6)

The values of these hyperparameters were chosen to be 0.1, 0.15, 0.1 respectively after cross-

validation to optimize causal link prediction accuracy and faithfulness metrics. A summary of

our approach is outlined in Algorithm 1.

The learning rate a = 0.01, Lu,Lc are computed per batch by maintaining the required vari-
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Algorithm 1 Faithful Embedding Training
1: Input: Pre-trained BERT based model д̃, causal graph C , distance measures: dC,dM ,
2: for e=1..#epochs do
3: L = 0
4: for j=1..b do
5: u,v ∼ C :

∑
1i(u,v)=0 =

∑
1i(u,v)=1

6: Ls += CrossEnt(i(u,v), д̃(u,v))
7: Ln +=

∑
w∈Neiдh(u) dM (f (u), f (w))

8: Store f (u), f (v) to update Lu

9: Store dC(u,v),dM (f (u), f (v)) to update Lc

10: end for
11: Update Lu,Lc and compute L (Eqn 2.6)
12: Backprop д̃← д̃ − a( ∂L∂д̃ )

13: end for

ables f (u), f (v),dC(u,v),dM (f (u), f (v)) in memory. These are implemented using Tensor�ow’s

eager execution framework.

2.4 Evaluation

2.4.1 Causal Evidence Graphs

The causal evidence graphs we use contain phrases like “heavy rainfall” as causes and e�ects,

which require us to learn the combined embeddings of the phrases. Restricting ourselves to just

individual words would leave out the context required to understand the context to understand

the cause-e�ect pairs. For example, the kind of e�ects “heavy rainfall” might have could be

di�erent from just “rainfall”. We thus utilize the contextual embedding framework used to learn

language models in BERT [87], as a way to learn contextual embeddings that align with a given

graphical causal model. Note that there may be more than one causal model provided by experts

based on their domains, and it is important to view our contribution as a way to align with

domain expertise (for example, medical, legal, privacy, etc) with their respective causal models

as a common mechanism to represent the said domain knowledge.
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We use two causal graphs to construct their respective faithful embeddings, and demonstrate

the utility of the embeddings in downstream tasks. The �rst causal graph we use is identical to

the one used in [378], which uses the 815,233 cause-e�ect pairs extracted from the Annotated

Gigaword and Wikipedia dataset, and an equal number of random relation pairs that are not

causal as negative samples. The second causal graph is extracted from the web by [178], who use

a bootstrapping approach with the initial pattern of “A causes B" and apply it to the ClueWeb12

web crawl dataset with 733,019,372 English web pages, between February and May 2012. From

this web crawl, they provide a causal graph with 80,223 concept nodes and 199,803 causal links

between the nodes. This graph has been sampled and validated by human annotators with over

96% precision. For our indirect evaluation based on downstream question answering tasks, we

use the 3031 causal questions from Yahoo! Answers corpus [378]. These questions are of the form

“What causes X?”, and we use our faithful embeddings as a drop-in replacement for this causal

QA task.

2.4.2 Metrics

Evaluating embeddings intrinsically has often led to varying leaderboards [195], hence we eval-

uate our embeddings based on their ability to map to the cause-e�ect relationship directly. We

measure the faithfulness of the trained embeddings, using 3 metrics, one per property as per Eqns

2.4, 2.5, 2.5. For the neighborhood condition, we measure the area under the precision-recall curve

as we choose multiple thresholds to de�ne the neighborhood in the embedding space to corre-

spondingly identify the relevant neighbors in the causal graph. For the uniformity condition, we

measure the means of the per-dimension values of the word embeddings and compute the 1st

Wasserstein [312] distance from the expected centroid of zero. We also perform a statistical test

for uniform distribution, which measures the mean Kolmogorov-Smirnov (K-S) test statistic [76]

by bucketing embedding each dimension into 10 buckets. Since each dimension’s test statistic

can either pass or fail the test based on the signi�cance level, we present the total number of
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dimensions that pass the test at α = 0.05 signi�cance level. Finally, to measure the distance cor-

relation property, we report the Pearson correlation coe�cient between distances in the causal

graph and the embeddings on a held-out part of the causal graph. For the QA task, we report the

precision-at-one (P@1), the fraction of test samples where the highest ranked answer is relevant

and the mean reciprocal rank (MRR) [270], the inverse of the position of the correct answer in

our ranking on the held-out question set provided by [379].

2.4.3 Baselines

We evaluate our faithful embeddings by comparing them against two state-of-the-art approaches

described in [378] and [414]. cEmbedBi uses a bi-directional model, with the task of predicting the

masked cause and e�ect word tokens. This approach uses separate embeddings for words used as

causes and e�ects. Causal-{BERT,RoBERTa} [414] uses the �ne-tuning technique for the binary

classi�cation of edge detection, similar to ours, on the pre-trained large-uncased model. We can

thus compare the gains we get by incorporating faithfulness conditions on the embeddings in

downstream tasks.

2.5 Results

2.5.1 Faithfulness

As shown in Tables 2.1 and 2.2, our Faithful-RoBERTa model outperforms Causal-{BERT, RoBERTa}

and cEmbedBi [378] on each of the three properties of faithfulness, namely the neighborhood,

uniformity, and distance correlation, by more than 30%. Additionally, we report the correlation

for Euclidean and Cosine similarity, despite not using it to optimize at training time. Faithful ver-

sions of the BERT and RoBERTa models increase the area under the curve of the precision-recall

curve in detecting neighboring nodes of the Gigaword and CauseNet causal graphs by 21-23%
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Embedding Distance Correlation Neighborhood
Euclidean Cosine Quasi-Pseudo AUC-PR

Gigaword Causal Graph
cEmbedBi 0.33 0.48 0.52 0.67
Causal-BERT 0.40 0.55 0.61 0.71
Causal-RoBERTa 0.41 0.61 0.66 0.76
Faithful-BERT 0.42 0.63 0.78 0.88
Faithful-RoBERTa 0.45 0.67 0.81 0.89

CauseNet from ClueWeb12 web crawl
cEmbedBi 0.23 0.37 0.34 0.54
Causal-BERT 0.25 0.38 0.39 0.56
Causal-RoBERTa 0.28 0.36 0.47 0.59
Faithful-BERT 0.31 0.41 0.55 0.68
Faithful-RoBERTa 0.37 0.43 0.58 0.71

Table 2.1: Correlation and Neighborhood faithfulness measures of the embeddings trained for both the
Gigaword causal graph and ClueWeb12 CauseNet graph.

and 17-20% respectively. In Figure 2.2, we present the precision-recall curve when we use the

models for ranking causal pairs above non-causal pairs on the SemEval Task 8 tuples [179] by

varying the distance threshold in the embedding space which outlines the boundary of the neigh-

boring nodes in the causal graph. This increase in accuracy for neighborhood detection indicates

that incorporating the constraints during training time with our asymmetric causal embedding

distance provides bene�ts in aligning the contextual embeddings as per the causal graph.

Embedding 1st -Wasserstein Mean K-S statistic Uniform dimensions (1024)
cEmbedBi 0.54 0.54 205
Causal-BERT 0.45 0.43 348
Causal-RoBERTa 0.39 0.38 385
Faithful-BERT 0.31 0.21 541
Faithful-RoBERTa 0.30 0.18 574

Table 2.2: Uniformity measures on the embeddings learnt for Gigaword Causal Graph.
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Figure 2.2: Precision-Recall to detect neighboring nodes in causal graph from the embeddings by applying
threshold on distance measure

2.5.2 QA task

To evaluate if learning faithful embeddings is useful for causal aligned downstream tasks, we

evaluate the �ne-tuned embeddings to be directly used for question answering. As used in [120],

we use the maximum, minimum, average distance between words of the question and answer

words and the overall distance between the composite question and answer vectors from the

embedding. Note that since both cEmbedBi and Causal-{BERT, RoBERTa} are trained with cosine

similarity in mind, we use the cosine similarity, but for our Faithful-{BERT, RoBERTa} models,

the distance measure used to rank is the quasi-pseudo metric de�ned in Def 2.2. We use these 4

features to train an SVM ranker to re-rank candidate answers provided by the candidate retrieval

tool [194]. We see in Table 2.3 that Faithful-RoBERTa increases both the precision of the �rst

answer predicted by 10.2%, and the mean reciprocal rank by 10.8%. This means that not only

is the �rst ranked answer more causally correct, but the retrieval of the correct answer in the

top-k positions has improved. This improvement in an out-of-domain QA task by aligning the

embeddings to an externally available causal graph demonstrates that bene�ts of faithfulness

transfer to downstream tasks.
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Embedding P@1 MRR
cEmbedBi 37.28 46.39
Causal-BERT 38.12 47.26
Causal-RoBERTa 38.74 49.01
Faithful-BERT 39.21 49.72
Faithful-RoBERTa 41.07 51.42

Ablation Study of Faithful-BERT
w/o Neighborhood 38.55 48.67
w/o Uniformity 39.01 48.92
w/o Distance Correlation 38.28 48.04

Ablation Study of Faithful-RoBERTa
w/o Neighborhood 39.69 49.39
w/o Uniformity 40.43 50.06
w/o Distance Correlation 39.50 49.28

Table 2.3: Performance on the QA task in Yahoo! Answers dataset using the Faithful versions of BERT
and RoBERTa incorporating the Gigaword causal graph.

2.5.3 Re-alignment towards causation

To understand the reason behind the improved performance, we performed a qualitative inspec-

tion of 100 randomly sampled word pairs from the Gigaword causal graph 1 that are at varying

distances in the original pre-trained embedding and trace how they have re-aligned after �ne-

tuning with the faithfulness objective. We annotate each of these word-pairs as being either

causal or not as shown in the confusion matrix with examples in Table 2.4. In Figure 2.3, we see

re-alignment of these word pairs from association based RoBERTa embeddings to the causally

aligned Faithful-RoBERTa embedding space, that is, causal word pairs (blue and orange) move

closer, and non-causal word pairs (green and red) move further based on the quasi-pseudo metric

dM . Speci�cally, the associative but non-causal word pairs (green) have moved further in Faithful-

RoBERTa, while the non-associative but causal word pairs (orange) have moved closer. We see

that in the cosine-similarity based RoBERTa, the causal word pairs had a mean distance of 0.48,

while in the quasi-pseudo metric based Faithful-RoBERTa, the mean distance between the causal

word pairs reduced to 0.28. The distances are normalized between 0 and 1 based on the maximum

and minimum values of distances (cosine or dM ) in the sampled word-pairs.

We further analyzed how these associative and causal re-alignments impacted the causal QA

task by categorizing the word pairs into three types of variables - mediators, colliders and con-
1https://github.com/ananthnyu/faithful-causal-rep/
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Cause Non-cause
Associated rain→ �ood accident→ fog

Non-Associated war→ epidemic earthquake→ spring
Table 2.4: Examples of word-pairs chosen to inspect faithfulness over the Gigaword causal graph.
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Figure 2.3: Re-alignment of word-pairs from the causal-RoBERTa embedding to our Faithful-RoBERTa
(best viewed in color)

founders. Mediators: For the question, “What causes a tornado?”, the answer involves “thun-

derstorms”, which is a mediator caused by “high pressure”. We see that “high pressure” is now

much closer to “tornado” in Faithful-RoBERTa than baseline embeddings. Colliders: For the

question, “What causes persistent cough?”, the colliders “smoking” and “asthma” have moved

further based on dM in Faithful-RoBERTa. Confounders: For questions with confounders like,

“What causes indigestion?”, the confounding links “anxiety→ indigestion”, and “anxiety→ in-

somnia” are near, but “insomnia→ indigestion”, is far. This further demonstrates the utility of

incorporating faithfulness over multiple nodes of the graph, in addition to pairwise causal link
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prediction.

2.6 Conclusion

We show that the faithfulness of text embeddings to a causal graph is important for causal

inference-aligned downstream tasks. By incorporating the three faithfulness properties of neigh-

borhood, uniformity, and distance correlation through regularization constraints while learning

embeddings, we improve the precision of the �rst ranked answer in the causal QA task by 10.2%.

We show that this is due to causal re-alignment of embeddings as per an asymmetric pseudo-

distance metric.
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3 | Reconstructing the MERS disease

outbreak using news

3.1 Introduction

The Middle Eastern Respiratory Syndrome - Corona Virus (MERS-CoV) disease is a new illness

caused by a type of corona virus found in the Arabian peninsula since 2012. While most corona

viruses have only cold-like symptoms, most people with the MERS virus had severe respiratory

illness, gastrointestinal problems, sometimes leading to death [190]. As of end of September

2018, there were a total of 2260 laboratory con�rmed cases and 803 associated deaths from MERS

[320]. Despite the decreasing number of new cases over the years, WHO maintains its global

risk assessment as it is mainly acquired from dromedary camels, a popular domesticated animal.

There have been 218 instances of exported cases where contact with animals happened in the

Middle East, but symptoms later manifest in the home countries of travellers. The di�culty in

tracking MERS stems from the fact that, the dromedary camels show no symptoms when they

are infected by MERS, making it harder to isolate them.

Early detection of MERS outbreaks is critical for health care resource allocation similar to

diseases like malaria, dengue [1] and Ebola [74]. On the ground interventions can be mobilized

in a more precise manner if the health agencies understand the local geographic, cultural and

socio-economic conditions in a much �ne-grained manner. However, structured signals on these
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aspects are available yearly or quarterly through extensive surveys conducted by organizations

like WHO and UNICEF [408], making it di�cult to apply traditional machine learning techniques

to predict outbreaks, which usually span a few weeks. For communicable diseases speci�cally,

the mobility patterns of people and animals play an important role in determining the risk of an

outbreak in a region and measuring this in regions with low access to tracking technology can

be non-trivial.

In our study, we measure the factors that impact the propagation of the disease based on their

mentions in the news. Speci�cally, we hypothesize that mobility patterns and access to local

health care is impacted due to the presence of con�ict within a region. This, in turn, in�uences

the risk of a disease outbreak in a region. We use real time news streams such as GDELT [242]

and the Uppsala Con�ict data program [143] that aggregate statistics of con�ict related death

counts within a given geography. We use this localized knowledge in addition to a traditional

disease transmission model for MERS [65] which estimates the susceptible, infected and recovered

(SIR) number of people in a population based on the instrinsic characteristics of the disease as

studied in a hospital. We extract interpretable variables, by running Granger Causality [155]

tests for each of the hypothesized 56 news based indicators and keep only the ones which are

statistically signi�cant. We then embed the trained SIR model with the Granger-causal variables

in a multivariate auto-regressive linear model to predict future infected number of cases and

deaths.

Using sparse but rich con�ict signals from the GDELT news database, our disease outbreak

model is able to reconstruct the time series of actual infected cases as reported by WHO with a

sum of squared errors which is 3.36x lower than using the standard MERS epidemiological model

alone. The news based indicators which are most in�uential in our model represent the number

of people killed, wounded and a�ected due to con�ict in the regions of Lebanon, Kuwait, Egypt

and Jordan. Some of these factors negatively in�uence the population mobility patterns and have

disparate in�uence across regions. In addition to the variations of coe�cients for news based
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factors, we use sensitivity analysis and Granger Causal [155] time lags to interpret how each of

these factors a�ect the timing and scale of the MERS outbreak in the middle east from 2013-2018.

3.2 Related Work

The environmental, animal and human transmission model [65] provided an understanding of

how we could initialize the parameters for the transmission rate in the SIR Model. This work

analyzed transmission patterns in a hospital in Saudi Arabia and identi�ed the parameters of

the SIR model. Apart from human-human transmissions, this model also incorporates animal-

human interaction, especially from dromedary camels which serve as a large reservoir for the

transmission of this disease. Incorporating this transmission alongside the human transmission

rate signi�cantly improves the accuracy of the model. The WHO currently educates people in

the region to stop using animal products which could have come in contact with these camels

when an outbreak is imminent.

The Dynamical Transmission Model [453] provided a corroboration to our parameter esti-

mates. The sensitivity analysis provides an overview as to how the parameters would �uctuate

on each iteration, which is in line with the modeling based on [65]. These analyses determined

the changes that a parameter has on a model and the key drivers in a model(this happens to be

the transmission rate b)

News based indicators have been used to predict man-made disasters and other natural events

which are worthy of global attention previously in [309]. The tool developed was used to aid

journalists in tracking events of consequence from Twitter streams [146]. In our work, we rely

on established news sources and their aggregations. Parsing social media feeds would require

sophisticated tools to �lter false positives and would remain the focus of our future research

direction.

Other auxiliary data like internet search history [in�uenzagoog] and the web [72] have been
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used for disease surveillance, but the limitations of a fully unsupervised system without validation

can cause spurious correlations as noted in [237]. A more purposeful and dedicated system built

for disease tracking have also been deployed in real world systems as shown in [1, 107] rely on

time series of structured data collected by specialists who were trained for this speci�c purpose.

In this work, we try to take a combined approach [118, 455] by relying on aggregated news data

which is not only easy to scale, but also validated by tools known to journalists and con�ict

trackers like the Uppsala con�ict program. Thus, we aim to extract valid signals from a large

news stream corpora to better understand disease transmission properties for MERS.

3.3 Background

In this section, we elaborate on the speci�cs of the MERS disease and motivate the need of news

based modeling to overcome the challenges of addressing sparsity constraints in diseases like

MERS. The hypothesis we will motivate in this section is that sparsity of on-the-ground signals

relevant to disease modeling can be overcome by augmenting events from news which impact

the migration and hence the disease propagation patterns indirectly. Speci�cally, we explore

the scenario where con�ict events impact the disease modeling of MERS in the Middle Eastern

countries like Saudi Arabia, Kuwait, Lebanon, Egypt is presented here.

3.3.1 MERS

The Middle East Respiratory Syndrome is a respiratory illness caused by a coronavirus (MERS-

CoV) and shows symptoms like fever, cough and shortness of breath. Close to 3-4 people who

were infected have died of MERS related complications [190]. Although the disease was �rst

reported in September 2012 in Saudi Arabia, it has since spread across the globe. In 2015, the

largest outbreak outside the Arabian peninsula happened in South Korea and was traced back

to a traveller from the middle east. MERS symptoms have been varied based on the risk factors
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like diabetes, heart disease or weakened immune system. While severe complications including

pneumonia or kidney failure have led to death, people who have shown milder symptoms or

no symptoms have recovered. The incubation period of MERS is usually 5-6 days, but larger

variations of 2-14 days have also been observed. This means that people who have come in

contact with the virus can show no symptoms for up to 1-2 weeks [190]. This makes detecting

MERS extremely di�cult as it is known to have been transmitted through close contact with

an infected person in addition to infected animals like dromedary camels, a popular animal for

transportation in the middle east. Thus, 10 countries in the Arabian peninsula and 17 countries

outside it have seen more than 2200 cases of MERS and there continues to be a threat of an

outbreak.

3.3.2 Data Sparsity

As MERS is extremely hard to detect during the incubation period, many patients who show

milder symptoms might go untested and can potentially infect people who have a higher risk of

developing severe complications. Thus, the number of actual cases of MERS is harder to estimate

due to lack of resources for testing and a lack of awareness. Thus, WHO and other health agencies

rely on laboratory con�rmed cases which form an extremely sparse data source. This will form

the ground truth data in our analysis. Since the reports by the disease outbreak team by WHO

are carefully cross-checked, it can be weeks or even months before the actual data is available

for analysis. The reports are published weekly and sometimes fortnightly on the WHO’s website

[319] and is released widely. This limits the granularity of our analysis and rules out any real

time analysis, daily or less based on streaming signals.

News signals about con�ict are also considerably sparse with most coverage in the news

relying on local sources that makes aggregation of data time-consuming. Press releases appear

in batches, often with aggregate numbers over a longer time window. However, even such sparse

news reports capture rich signals of con�ict which can be speci�cally useful to predict the impact
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on human migration. For example, initial death counts from a con�ict gets reported on the day

of the event, but the actual numbers are usually updated once more information is learnt and the

corresponding statistics are updated. Relying on such sparse corrected sources is much useful

than trying to parse all the available data, which can contain false information. We use such

rich time series which are curated and veri�ed by journalists and agencies on the ground for our

analysis.

Given these sparsity constraints, we aim to reconstruct the time series of the actual number

of infected MERS cases based on richer signals extracted from domain-speci�c knowledge about

con�ict and the corresponding limited data in the news.

3.3.3 Disease Outbreak Modeling

Traditional disease outbreak modeling relies on developing a mathematical model which denotes

the rates of susceptibility (S), infection (I) and recovery (R) of a disease. This is usually mod-

eled as di�erential equations where the assumptions are embedded in the way the equations are

parameterized [65]. For example, for incurable diseases, recovery (R) is not modeled at all and

sometimes, more than one type of infected and susceptible populations are tracked separately

based on the mode of disease propagation. These assumptions stem from biological laboratory

research which study the intrinsic propagation properties of a disease. Once such a mathemat-

ical epidemiological model is constructed by enumerating the number of compartments (S, I, R)

and their interactions, its parameters are estimated and validated by a case study of a few spe-

ci�c hospitals and their surrounding regions. A critical parameter estimated through such case

studies is the disease’s basic reproduction number (Ro), which signi�es the risk of the disease be-

coming an outbreak in a population [98]. An Ro > 1, indicates that unless su�cient interventions

are not carried out, there would be an exponential increase in the infected population through a
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multiplicative e�ect. Mathematically,

Ro = ρ(FV
−1)

where ρ is the spectral radius of the next generation matrix, where F is a column matrix denoting

the rate of increase in population of compartments and V is the rate of decrease in population

from compartments due to all other causes.

3.3.4 Sensitivity Analysis

Once the parameters of the di�erential equations are estimated, a thorough sensitivity analysis

of the parameters is done to understand how changing any of these parameters a�ects the sus-

ceptible, infected and recovered populations. Mathematically, this is done using the sensitivity

index relative to the reproduction number for parameter p [369],

SIRo,p =
∂Ro
∂p
∗
p

Ro

Higher the SIRo,p , higher is the impact obtained by interventions that in�uence that parameter.

One of the critical assumptions made while such models are used in practice is that the surround-

ing socio-economic, political and infrastructural environments of the place where the study was

conducted and where it is deployed are identical for all matters concerning the spread of a disease.

This inherently ignores the changes in the availability of health care and other such extrinsic fac-

tors. This deviation of the on-ground reality and conditions of case studies signi�cantly impacts

the e�cacy of such models. Large data sets of these extrinsic signals are also not readily available

in the regions which are most at risk of disease outbreaks.
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Figure 3.1: Outline of News-influenced Disease Outbreak Modeling

3.4 Methodology

In order to overcome this compounded problem of not being able to scale the epidemiology model

to regions which are most at risk, due to the lack of extrinsic knowledge of socio-economic con-

ditions in those fragile states, we resort to the news to extract meaningful signals for disease

modeling. However, not all event-indicators in the news are relevant to disease modeling and

careful inspection of the variables chosen is required. Hence, we take a conservative approach

and �lter only those variables related to the factors studied by social researchers for disease out-

break modeling and prescribed by WHO [317]. As per WHO, con�ict is the primary factor that

increases the risk of spread of infectious diseases like MERS. Hence, early indicators of even such

sparse con�ict related signals from news streams can signi�cantly boost the accuracy of the SIR

model applied for infectious diseases. In the remaining sections, we describe the methodology of

our news based models and results.

Building news based models for disease outbreak modeling requires information retrieval

tools to extract signals from the news, ground truth data from trusted sources, domain knowledge

of the disease captured in graphical models of disease propagation and �nally the prediction

model which integrates all of this to produce the �nal estimate of the number of people infected

by the disease. This is illustrated in Figure 3.1.
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3.4.1 News Extraction

In order to incorporate news based signals in our disease outbreak prediction modeling to model

extrinsic factors, we need to convert the words present in the news to a suitable representation

which can capture the trends in the news. We hence chose to model it as a time series of events

and its relevant statistics which are relevant to the disease. For example, for a regional con�ict

which is causing stress, we take into account the number of times that con�ict was mentioned in

the news and its associated number of deaths, wounded and sickened people. The de�nition of

con�ict can be ambiguous depending on the stakeholders and this extraction is conditioned on the

domain expertise of the journalists in ensuring that aggregate statistics are not duplicated. These

are usually extracted from the news article where it was mentioned. Quite often, the statistics

reported are cumulative instead of the incremental change required at time t and hence we needed

to build suitable tools and language �lters to prune them.

In addition to raw news articles, we also used structured tables which are curated by organiza-

tions like Uppsala Con�ict Program [333] to extract some of these relevant news signals. These

are again suitably �ltered using data processing tools. Once these time series were generated,

they were normalized such that the time series is centered. This is required so that the variations

in raw values across regions are comparable and are not dominated by the largest value. Any

time series prediction task does not usually converge unless the time series is stationary and lack

seasonal trends. To remove such trends, it is common to take di�erences until the �nal time series

is stationary. However, in the case of sparse time series where con�ict occurs based on seasonal

and other trends which are not stationary, we resort to time series chunking. Each time series

chunk, denoted by a start and an end date corresponds to a con�ict episode and the time series

within each episode is ensured to be stationary. We use such time series chunks throughout our

prediction task.
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3.4.2 Disease Ground Truth Extraction

Extracting ground truth of the number of cases and deaths associated to a disease can be quite con-

troversial due to di�ering reports in the news and medical agencies. We rely on trusted sources

like the UN, WHO to provide us with these estimates based on on-the-ground healthcare person-

nel. Some of these trusted sources provide data in the form of monthly reports or bulletins in the

form of natural language text. We parse this text and extract relevant statistics like time, number

of new cases and deaths reported for a disease across regions. Extraction is done using regular ex-

pressions as most of this text usually follows a template, which can be easily reverse-engineered.

This provides the time series of the ground truth for the prediction task.

In order to take into account data outages and changes in template, we utilized RSS feeds on

the disease outbreak portals to cross check the numbers extracted. These usually serve as e�-

cient noti�cations of updates, but need to be monitored for changes undetected by web scrapers.

Scaling these scrapers to multiple sources and in multiple languages remains out of scope for this

task. However, while inspecting the news articles cited in these trusted disease outbreak sources,

we usually noted that they were in the local language. Incorporating signals from these would

be immensely useful for early-detection of outbreaks.

3.4.3 Epidemiological Modeling

Disease modeling based on rates of changes in population sizes at di�erent stages of a disease is

a common mathematical modeling approach. In this model, populations are compartmentalized

and the rate of transfer of individuals from one compartment to another is modeled using di�er-

ential equations. This can be easily visualized in a graphical model with each node denoting a

compartment and the weights of the directed edges denoting the transfer rates. Each compart-

ment is semantically annotated with a stage in their exposure to the disease like “susceptible”,

i.e sub-population which is at risk of getting the infection, “infected” who have the infection
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and “recovered” who have either recovered or died from the infection. In all such compartmen-

talized models, the population of the region is assumed to be constant and transitions between

compartments have Markov assumptions.

This makes it easier to denote the graphical model in terms of di�erential equations with the

rates of transfer and the nodes in the model being speci�c to a disease. MERS being an infectious

disease has been studied by epidemiologists and several models have been proposed including

SISI and SIR models [453]. SISI model, for example has two types of infections (primary and

secondary) in two regions, where primary infections occur from contact with animals and sec-

ondary infections occur from contact with other infected humans in hospitals. The corresponding

susceptible (S) and infected (I) populations are estimated using links from S → I → S → I .

In our modeling, we refer to the SIR (Susceptible, Infected, Recovered) model, a standard

mathematical model which predicts how a disease propagates in a closed population over time.

It represents the SIR population numbers as a function of time, and describes the time line of an

epidemic, by �tting data from case studies on a small number of hospitals in the region where the

disease is endemic. The sensitivity of this model is de�ned by the reproductive number (Ro) and

the e�ect of MERS speci�c parameters on it are validated by epidemiologists on the population

of Saudi Arabia [453]. We can relate the population numbers s(t), i(t) and r (t) by the following

di�erential equations. Solving for i(t), given the initial population numbers, gives us the estimate

of number of infected patients, which we refer to as SIR[t] in the following sections.

∂s

∂t
= −bs(t)i(t) (3.1)

∂i

∂t
= bs(t)i(t) − ki(t) (3.2)

∂r

∂t
= ki(t) (3.3)
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where b = rate of transmission, k = rate of recovery

3.4.4 Granger Causal Testing

Given two time-series X and Y , the Granger causality test checks whether the X is more e�ective

in predicting Y than using just Y and if this holds then the test concludes X “Granger-causes” Y

[155]. However, if both X and Y are driven by a common third process with di�erent lags, one

might still fail to reject the alternative hypothesis of Granger causality that X “does not Granger-

cause” Y. Hence, in our modeling, we explore the possibility of causal links ignoring confounding

variables due to the domain knowledge that there are no such confounding variable noted by the

WHO. We note that if such an unobserved confounding variable exists, it is not considered in our

Granger causality test.

In order to ensure that the news variables chosen are indeed related to the disease outbreak

and not spurious correlations, we ran the Granger Causal test [155] between all of the news indi-

cator variables (x) and the disease outbreak (y) as seen in Figures 3.2. We chose linear equations as

our choice of modeling the prediction between x and y as it retains the bene�ts of interpretability

in their coe�cients. If,m,p,q denote the time lags of y, x in the auto-regressive equation at time

t , then we can write:

yt = a0 + a1yt−1 + ... + amyt−m + bpxt−p + ... + bqxt−q + errort

Speci�cally, x is known to Granger-cause y, if there exists at least one non-zero coe�cient of x

which then leads to a signi�cant improvement in prediction error over the case when we just use

lagged values ofy. We perform parametric F-tests on the non-zero coe�cients of lagged variables

and chose only the signi�cant variables (p-values ≤ 0.05) to reject the null hypothesis that “the

news indicator variable (x ) does not Granger-cause the disease outbreak (y)”. The chosen Granger

Causal news variables are denoted by the vector News[t] for a given time t , in the next sections.
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Figure 3.2: Granger causal link between two time series

Note that since true causality is hard to establish through observational studies, our goal here

is to only �nd news variables which depict “predictive causality” and better predict future time

series of the disease outbreak.

3.4.5 News Influenced SIR Modeling

Incorporating the news signals which are Granger Causal of the disease outbreak infections, into

the epidemiological SIR model is the main methodological contribution of the paper. One option is

to make changes to the equilibrium of the SIR model by altering the nodes in the graphical model

and estimating the corresponding changes based on compartments induced by the news variables.

This however does not scale to every disease speci�c model. Recon�guring the disease model

directly requires a lot of domain knowledge of both the disease and the related news variable,

and remains out of scope of our paper.

Instead, we perceive the SIR model as yet another time series variable in a multivariate linear

regression. This makes it possible to model other diseases easily in a similar manner without

having to worry about the complex di�erential equations that govern the epidemiological trans-

mission model of each disease. Now that we have the relevant news con�ict variables chosen

by the Granger Causal Test News[t] and the MERS SIR model’s value SIR[t], we train a multi-

variate auto-regressive model with Lasso penalty [16] using glmnet [121] from lagged values of

the ground truth It−δ and the regression variables as follows, where A,B,C are weight matrices,
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maximum lag δ , and for any matrix x, let xt−δ = x[t − δ : t − 1].

I [t] = A.It−δ + B.Newst−δ +C .SIRt−δ (3.4)

min
A,B,C
‖I [t] −A.It−δ − B.Newst−δ −C .SIRt−δ ‖

2
2 (3.5)

subject to‖(A,B,C)‖1 ≤ r , for a Lasso penalty r . (3.6)

The non-zero news coe�cients that remain in the Lasso equation best explain the di�erence

between SIR and ground truth in the News in�uenced disease model (Figure 3.5). The Lasso reg-

ularization embodies a variable selection procedure that ensures that only the most important

variables are selected for prediction. We also reduce collinear variables in order to ensure that

the Lasso regularizer does not pick variables which depict the same underlying event. This can be

seen as a pre-processing step of removing a potential confounder variable as we cannot remove it

once the regression model is trained. We use Variance In�ation Scores to prune out collinear vari-

ables [30]. This ensures that only those variables which cannot be estimated using the remaining

news variables are used in the prediction task.

3.5 Evaluation

In this section, we explain the datasets used and the implementation details in the news in�uenced

disease models.

3.5.1 Dataset

In this section, we describe the disease outbreak ground truth source and the news event databases

used to extract con�ict related signals in the region.
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3.5.1.1 WHO-UN Dataset

The WHO-UN website [320] presents a collection of articles, which are updated every 8 to 15

days. Articles on each disease include statistics such as the number of cases or deaths and the

date of the detected disease. The total size of this data spans 400 events for 192 countries from

2013 to 2018. There are 242 articles mentioning MERS, with breakdown of aggregate cases for

each of the 12 Middle eastern regions + South Korea (traced back to a traveler from the Middle

East). This data serves as our ground truth set.

3.5.1.2 GDELT Dataset

GDELT 1.0 Global Knowledge Graph [242] monitors the world’s news from every country in over

100 languages with more than 1.5 billion events per year from April 2013 to Jan 2018, updated

daily. These events are categorized based on killings or other crises such as natural disasters.

It also provides a daily human count for each of these event types from sources like AFP, BBC

monitoring, AP, WP, NYT and aggregator tools like Google News. We particularly focus on killed,

wounded, sickened and a�ected events reported in each of the 12 regions as shown in Figure 3.3.

3.5.1.3 Uppsala Conflict Data Program

The Uppsala Con�ict dataset [143, 333] provides deaths from organized violence keyed by a con-

�ict ID and country, where each con�ict has at least 25 related deaths in a year. The data set is

presented as a time series with an yearly number of deaths per con�ict. We focused on 8 of the

12 MERS regions which had a con�ict (includes Saudi Arabia).

3.5.2 Data Preprocessing

We retrieved all the disease outbreak news articles from the UN website. These were later �ltered

to contain only the headline, timestamp, new cases and deaths using rule based string matching
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Figure 3.3: Killed and Sickened count in GDELT

Figure 3.4: Number of new cases and deaths by MERS as reported by UN-WHO (> 70% in Saudi Arabia)

as can be seen in Figure 3.4. We extracted time series for each of the 48 normalized news indi-

cator variables to range in [−1, 1] for all (country, event-type) tuples from GDELT and 8 con�ict

variables per country from Uppsala. Time series chunking is also done to ensure that all the time

series used for a speci�c time window is stationary. We take di�erences between consecutive

values until stationarity is achieved. If we do not observe stationarity after di�erencing twice,

we drop that time series from consideration as it no longer holds any interpretable meaning.

3.5.3 Model Parameters

The values of the SIR model’s parameters as noted in Eqns [1-3] are predetermined. Speci�cally,

the transmission rate b = 1.4248 and recovery rate k = 0.1484, used are based on the epidemiology

study for MERS done in [65], as opposed to making theoretical estimations. The maximum time

lag used for Granger Causal link estimation δ = 6 weeks. The same maximum time lag was also

used for the �nal news in�uenced multivariate auto-regressive model. This value was chosen

based on the minimum size of the time chunk obtained in the data for 20 weeks.
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3.5.4 Implementation

An overview of our implementation of building a news in�uenced disease model is given in Al-

gorithm 2.

Algorithm 2 News In�uenced Disease Modeling
Extract the ground truth timeseries for number of cases from the WHO-UN articles
Fit the epidemiological SIR model using pre-de�ned MERS speci�c parameters
Filter relevant con�ict signals from GDELT and Uppsala by running Granger Causality tests
Train a multivariate auto-regressive model with SIR estimate and relevant con�ict signals

3.6 Results

In this section, we will discuss the performance of the News In�uenced disease model against

several baselines. We pick 10 short outbreaks from 2013-2018, each spanning 21 weeks with the

peak of the outbreak in the middle of the time series. The disease numbers reported are new

cases and new deaths reported per week due of the disease. We �t the SIR model for each of

these 10 outbreaks as per the variables mentioned above. We then normalize both the ground

truth values and the SIR modeled values such that minimum and maximum values in the time

series are scaled between 0 and 1 as seen in Figure 3.5. The �nal error calculated is the sum of

the point-wise (one point per week) squared errors between the modeled and the ground truth.

We report the average 10-fold cross validation error across multiple outbreaks.

3.6.1 Choice of News Source

In building a news based disease model, the source of the signals incorporated can have a signif-

icant impact on the trustability and accuracy of a model. Choosing between news sources can

also in�uence the implementation requirements if this model were to be scaled. We tried vari-
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Figure 3.5: Di�erence between SIR and ground truth for an outbreak time window.

ous sources for the Newst−δ variable in Equation 3.4: 1) Con�ict signals from GDELT 2) Con�ict

signals from Uppsala 3) Both GDELT and Uppsala 4) Only GDELT signals (no SIR, Uppsala). As

mentioned in Table 3.1, SIR model with GDELT signals performs the best, reducing the error from

the baseline SIR model of 8.99 to 2.68, an improvement by a factor of 3.36. The results presented

in Table 3.1 are average errors from 10-fold cross validation of the episodes identi�ed from time

chunking. The low standard deviation of the errors shows that there is not a huge variation based

on which chunks of outbreak episodes were used for training, indicating consistency and internal

validity of the news in�uenced disease model.

Uppsala con�ict signals were not useful for predicting the disease outbreak time series. We

attribute this to the hand curated condensed extremely sparse (yearly) representation in the Up-

psala event database. GDELT on the other hand is a daily aggregated database which captures

the signals as represented in the news. This shows that GDELT has a better trade-o� between

aggregation coarseness and the time duration taken to put out veri�ed con�ict statistics. Another

surprising result was that, using factors from GDELT alone in the multivariate auto-regressive

prediction, produces a much lower error than the SIR model. This clearly indicates that local

environmental and social factors are as important if not more important than the propagation

properties of the disease within hospitals.

In Table 3.2, we see that , the news in�uenced SIR model performs well across outbreak

episodes. The results presented are for those cross-validation rounds when the said episode was

used for testing. The low variation is indicative that we can use the approach in predicting future
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Model Residual sum of squares error Std deviation

SIR 8.99 0.65
SIR+GDELT 2.68 0.42
SIR+Uppsala 35.30 4.34
SIR+GDELT+Uppsala 2.81 0.43
GDELT 5.08 1.29

Table 3.1: Performance of News Influenced SIR Model

outbreaks and consistently explain the factors that were highlighted in the model.

Outbreak Episode RMSE

March–June 2014 2.06
July–December 2014 0.40
January–April 2015 1.29
May–June 2015 2.38
June–July 2015 6.06
July–Sep 2015 1.92
April 2016 – August
2017

1.63

Table 3.2: Performance of News Influenced SIR Model across Episodes

3.6.2 Explainability of News Signals

Claiming lower prediction errors for the disease transmission patterns is not useful unless the

model can be explained in terms of the multiple con�ict signals in our model. Since, the time

series used for analyzing each episode are normalized, we can directly compare the values of the

coe�cients. We chose the coe�cients with the maximum absolute value over the many cross val-

idation runs. This is highly correlated to the sensitivity index (SIRo ) usually computed for disease

outbreak models. The sign of the coe�cients also indicate how con�ict might indirectly in�uence

the transmission patterns of the disease outbreak as can be seen in Table 3.3. In addition to the

raw value of the coe�cient, it is also useful to determine what is the expected time lag between a

news signal appearing in the news and the expected in�uence on the number of infected people.

This number (in weeks) when combined with the coe�cient value, provides the estimate of when
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and how much of an impact a signal in the news will have on the disease outbreak.

To illustrate this explainability, we choose to analyse the model predicting the outbreak from

March-June 2014. Table 3.3 shows that although the time-lagged ground truth (actual counts from

WHO) and SIR model remain the most important variables, con�ict signals like kills in Kuwait

and Lebanon (neighboring regions to Saudi Arabia) have a negative impact on the transmission

of the disease, whereas increase in wounded and sick people in Egypt and a�ected people in

Jordan indicate the increase in disease transmission of MERS. While events related to people

being killed in con�icts could be traced to severe restriction of migration, while events related to

being a�ected or wounded could seen as early indicators of people migrating due to the upcoming

severe con�icts. While we note that there might be some feedback built into our model based on

sick events retrospectively used, this requires further explorations.

Feature Coe�cient Best time lag (weeks)

Lagged_Truth 0.17 1
SIR 0.23 3
kill_Kuwait -0.17 5
kill_Lebanon -0.15 5
wound_Egypt 0.12 5
a�ect_Jordan 0.10 1
sick_Egypt 0.03 1

Table 3.3: Important factors of the News Influenced SIR model

3.6.3 Implications

The above results which show more than 3x reduction in root means squared error is signi�cant

also because of the evidence it provides con�rming the hypothesis articulated by WHO that con-

�ict causes severe distress and exacerbates the spread of diseases. All the coe�cients reported

above are statistically signi�cant (p-values < 0.05). Additionally, the time lags corresponding to

each of the variables in multivariate regression provides us actionable information to facilitate

timely interventions for disease containment. For example, when people in Jordan were a�ected
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by con�ict in March–June 2014, it led to an increase in MERS infected cases due to migration 1

week after the said con�ict as illustrated in Table 3.3. Similar insights can be extracted for other

outbreak episodes too. As per the current WHO fact sheet about MERS [320], there is no vaccine

available for MERS, but appropriate hygiene needs to be practiced by people handling dromedary

camels and the consumption of raw animal products should be minimized during the outbreak.

Such advice is particularly useful for people a�ected in the region as symptoms of MERS appear

later in the infection stage and is not easily distinguishable by health care workers. This early

warning indicator is also bene�cial for health care workers to prepare and use appropriate eye

protection and other containment strategies including proactive blood tests.

3.6.4 News Sensitivity

Along with the timeliness of the news based disease model, we can also measure the sensitivity

of the model for changes in the future related to con�ict. This provides a way to distinguish the

variations in the disease propagation pattern with any future signi�cant escalation in con�ict.

We illustrate this sensitive analysis on the MERS outbreak from March–June 2014. Similar anal-

yses can be done on other outbreak episodes too. We observe that even though some coe�cients

of news based variables are closer in value (kill_Kuwait and kill_Lebanon), the patterns they de-

pict with respect to sensitivity signi�cantly vary due to the underlying time series. For example,

in Figure 3.6, we mostly see an increase in the number of MERS infected cases throughout the

time series uniformly with increase in the number of people killed due to con�ict in Kuwait.

Whereas,in Figure 3.7 for Lebanon, we see both a phase shift and change in number of MERS in-

fected cases with increase in number of people killed in con�ict. We correspondingly see speci�c

time periods where the impact is the highest from the con�ict (week 9) as can be seen in Egypt

for number of people wounded in con�ict in Figure 3.8. Such variations in expected number of

infected cases was not previously known or understood through time-based sensitivity analysis.

This not only allows decision makers to categorize di�erent types of con�icts, but also increases
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Figure 3.6: Sensitivity analysis based on number killed in conflicts in Kuwait indicates a uniform value
shi� in number of infected cases in March-June 2014.

Figure 3.7: Sensitivity analysis based on number killed in conflicts in Lebanon indicates a disparate phase
and value shi� in number of infected cases in March-June 2014.

the awareness of the complexity and tight linkage between con�ict and disease outbreaks.

3.7 Discussion

Is news a good modeling choice?: There is usually a disconnect between the disease modeling

and the health care policy communities. While, the former relies on mathematical modeling to

extract the most accurate parameters of the model, the latter cares more about adapting to on-the-

Figure 3.8: Sensitivity analysis based on number wounded in conflicts in Egypt shows varied shi�s in
number of infected cases at specific time intervals in March-June 2014.
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ground realities and incorporating information on-the-�y into decision making. Mathematical

models which are rigid and harder to interpret is usually not implemented by policy decision

makers. This has led to customized web-tools built for practitioners to interface their knowledge

with the underlying model [80]. We are inspired by such approaches and extend it to directly

incorporate local information from the news. While news based modeling has the potential pitfall

of relying on sentiments more than facts, we incorporate veri�ed statistics about con�icts which

get reported instead of the story around the event, which can be interpreted subjectively. This

makes news based modeling a worthwhile choice for disease outbreaks which communicable

through social contact.

Is MERS di�erent than other diseases?: As MERS is heavily localized to countries in the

Arabian Peninsula, it makes local news based modeling easier and drastically reduces the scope

of news articles to be studied. MERS also has the clear distinction of a disease which spreads

due to human and animal transportation in this region. This movement of people, animals and

products is known to be a social indicator of the underlying political, economic and humanitarian

conditions in the region. Thus, modeling MERS through news based modeling in the middle east

makes more sense than other vector borne diseases or in any other region, outside the area of

impact of the above macro-level events like con�ict.

How can this be used at scale?: Having been able to reconstruct the time series of pre-

vious episodes of MERS with low average prediction error and low deviation in errors across

all cross-validation of episodes, it provides us con�dence to incorporate this model to predict

future outbreaks. The model however might have to be tweaked to account for the e�cient im-

plementation of health care advisories issued by the WHO, which has signi�cantly reduced the

risk of MERS since it �rst occurred in 2012. This would impact the SIR component of the news

in�uenced model, but not the factors learnt from the news, which are updated by design. Such

a model, if adopted by the WHO or other health agency can signi�cantly improve prediction of

disease outbreaks based on historical patterns in the news, and lead to better intervention and
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information dissemination strategies.

Whenwould thismodel notwork?: Further analysis however is required to breakdown the

di�erent types of con�ict and the corresponding regions they impact. This can be done through

spatial and text based categorization of the news articles which mention con�ict. Such a model

would however signi�cantly su�er from the sparsity in the data post the categorization of con�ict,

similar to how news signals from the Uppsala Con�ict Data program proved to be less e�ective

due to the sparsity of data. This challenge needs further model improvements and cannot be

addressed by the current news based model. One option we are actively pursuing is the tree-

based factorization of the news signals which combines the best of both sub-categorization and

larger datasets in a hierarchical approach.

3.8 Conclusion

Susceptibility, infection and recovery is modeled in disease transmission models using intrinsic

properties of the disease. However, extrinsic factors also in�uence disease transmission and have

been previously unexplored. We study the e�ect of regional con�ict on the mobility patterns

of people and animals for the transmission of MERS-CoV and show that by augmenting con-

�ict based signals in real time news streams with a standard MERS SIR model, we signi�cantly

lower the infected population prediction error. Inspection of our news in�uenced disease model

provides a human interpretable understanding even with very sparse signals.
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Part II

Domain Faithful Feature Extraction
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4 | Extracting Causal factors from

News Streams for Famine

Forecasting

4.1 Introduction

Food insecurity continues to threaten the lives of hundreds of millions of people around the

world today. According to the Food and Agriculture Organization of the United Nations (FAO),

the number of undernourished increased from 624 million people in 2014 to 688 million in 2019

[109]. There is considerable evidence that quickly responding to emerging risks of food insecu-

rity saves lives and lowers humanitarian costs [352], which leads aid agencies to resort to early

warning systems to decide when and where to deploy emergency relief [23]. While risk fac-

tors are well-established [374, 285, 279, 287], ranging from con�icts to pests, weather shocks and

migration, delayed or infrequent measurements of these factors typically impede early warning

systems’ ability to promptly anticipate food crises [14]. Furthermore, fragile states prone to food

insecurity often lack the capacity to systematically measure risk factors, generating data gaps

[441]. Against this backdrop, the past decade has seen an explosion in the availability of vast

repositories of digital data, from satellite imagery to call detailed records, which are increasingly

being analyzed to address socioeconomic challenges [196, 43]. Encouraged by these approaches,
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we take advantage of recent advances in deep learning and natural language processing to extract

anticipatory signals of food insecurity episodes from the text of a large corpus of news articles.

Unlike existing food insecurity early warning systems, the articles we collect are published on

a daily basis, allowing us to generate high-frequency forecasts [423]. News aggregators provide

access to media articles curated in a transparent manner going back several decades, enabling the

analysis of long time series of news streams [426]. Finally, authoritative media sources such as

BBC or Reuters have a long-standing reputation for providing trustworthy information on local

contexts, suited to produce disaggregated forecasts [38].

4.2 Background

Our study focuses on predicting the Integrated Phase Classi�cation (IPC) of food insecurity. This

classi�cation is available at the district level across 37 fragile states in Africa, Asia, and Latin

America, and was reported every four months between 2009 and 2015 and every three months

thereafter. Food insecurity is classi�ed according to an ordinal scale composed of �ve phases:

minimal, stressed, crisis, emergency, and famine (supplementary text 4.3.2). We postulate that

the factors triggering a food crisis are mentioned in the news prior to being potentially measured

by traditional risk indicators. We therefore collect a novel dataset from the news aggregator Fac-

tiva containing 11.2 million articles covering countries included in the IPC dataset and published

between June 1980 and July 2020 (supplementary text 4.3.3). We then develop a methodology

based on semantic role labeling to elicit textual mentions of causes of food insecurity [24, 394].

We start from a handpicked list of 13 target keywords related to food insecurity and we use

a frame-semantic parser to uncover causes of food insecurity appearing in the same semantic

frame as one of the target keywords (supplementary text 4.4.1). For example, when the parser

examines the sentence “Famine may return to some parts of the country, with the eastern Pibor

county, where �oods and pests have ravaged crops, at particular risk”, it detects that “�oods” and
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“pests”, both being established causes of food insecurity, are mentioned in the same semantic

frame as the target keyword “famine”. We apply this method on our corpus of news which al-

lows us to elicit 1,062 text features consisting of unigrams, bigrams and trigrams occurring in the

same semantic frame as a target keyword. To ensure that we capture a wide range of causes of

food insecurity recognized both by journalists and by experts, we repeat the same procedure on

a manually selected list of 93 peer-reviewed studies and books on food insecurity, which reveals

149 additional text features. We then expand this seed list of 1,211 features by considering text

features mentioned in the news which are semantically similar to a seed [289, 234], obtaining 738

new features (supplementary text 4.4.2). Finally, to drop any irrelevant text feature that might

have accidentally been picked up, we �rst convert each text feature into an index per month and

per district by computing the proportion of monthly news articles mentioning both the text fea-

ture and the district (“news factor”). We then discard news factors which are not predictive of

the IPC phase [222], leading to a �nal set of 167 text features (supplementary text 4.4.3). To shed

light on these features, we partition them into 12 semantically distinct clusters (Fig. 4.10). We

�nd that text features belonging to the same clusters tend to co-occur in the news, the average

pairwise correlation between news factors in the same cluster being 69.9% versus 34.9% for those

in di�erent clusters, which provides support to our partitioning (Fig. 4.5). We also �nd that 9 of 12

clusters are composed of text features related to known causes of food insecurity – “con�ict and

violence”, “political instability”, “economic issues”, “production shortage”, “weather conditions”,

“land-related issues”, “pests and diseases”, “forced displacements”, and “environmental issues” –

accounting for 92% of the articles in which text features are mentioned. The remaining 3 clusters

include terms related to “food crises”, to “humanitarian aid”, and “other” negative terms unspe-

ci�c to food insecurity. Having established the consistency between our text features and known

causes of food insecurity, we also demonstrate the presence of a strong cross-sectional relation-

ship between news mentions and traditional measures of causes of food insecurity (Fig. 4.11).

We use a comprehensive dataset containing traditional measures of food insecurity risk factors
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(“traditional factors”) used in early-warning systems – a con�ict fatality count, the change in

food prices, an evapotranspiration index, a rainfall index, and an inverted vegetation index –

covering 21 fragile states over the period 2009-2020 (supplementary text 4.5.1). After summariz-

ing each traditional factor and each news factor at the district level with its maximum monthly

value during the observation period, we associate with each traditional factor the news factor

with which it has the highest Spearman correlation across districts (Fig. 4.11A-4.11J). We �nd

that the con�ict fatality count, change in food prices, evapotranspiration index, rainfall index,

and inverted vegetation index are most strongly correlated to news mentions of “con�ict”, “food

prices”, “drought”, “�oods”, and “pests” respectively (rS > 0.89), thereby providing an additional

sanity check for our approach (Fig. 4.11K-4.11O). Taken together, these results indicate that our

procedure allows us to uncover text features that are consistent with established causes of food

insecurity, interpretable, and validated by traditional risk indicators.

4.3 Dataset

4.3.1 Data collection

4.3.2 Food insecurity classification data

Our dataset on food insecurity comes from the Famine Early Warning System Network (FEWS

NET). Food insecurity is classi�ed into 5 phases following the Integrated Phase Classi�cation

(IPC) framework: (1) minimal, (2) stressed, (3) crisis, (4) emergency, and (5) famine. Phases are

determined by experts and published at the district level across 37 countries since 2009, allowing

us to compare food insecurity levels across time and regions in a standardized way. The classi-

�cation covers the following countries: Afghanistan, Angola, Burundi, Central African Repub-

lic, Cameroon, Chad, Congo, El Salvador, Ethiopia, Guatemala, Guinea, Haiti, Honduras, Kenya,

Liberia, Madagascar, Malawi, Mali, Mauritania, Mozambique, Nigeria, Niger, Rwanda, Senegal
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Sierra Leone, Somalia, South Sudan, Sudan, Tajikistan, Djibouti, Tanzania, Uganda, Burkina Faso,

Republic of Yemen, Democratic Republic of the Congo, Zambia, and Zimbabwe. It was established

4 times per year from 2009 to 2015 – in January, April, July, October – and 3 times per year there-

after – in February, June, October (Fig. 4.1).

4.3.3 Corpus of news articles

Our dataset of news articles comes from Factiva, a digital archive of global news content which

aggregates more than 33,000 news resources from 200 countries in 28 languages. Each news

article is tagged with geographic region codes, allowing us to ascertain its relevance to a speci�c

country. We collect the text of the 11.2 million articles in English tagged with at least one of

the 37 countries covered by FEWS NET (Fig. 4.2). While 60.5% of the articles were published by

news sources located in a fragile state, the remaining 39.5% come from news sources based in a

non-fragile state.

4.4 Feature selection

4.4.1 Frame-semantic parsing

We use a frame-semantic parser to extract from our corpus of news articles the text features which

are causally related to food insecurity [24]. The parser �rst splits each sentence into syntactic

constituents c1, c2, ..., ck , where each ci includes p ≥ 0 contiguous word tokens wj,wj+1, ...,wj+p

starting from position j. It then assigns to each syntactic constituent ci a semantic role ti . We

use a deep neural network model reaching state-of-the-art accuracy on the benchmark dataset

FrameNet to predict the semantic role of each syntactic constituent in our news corpus [394]. A

semantic frame f is a collection of syntactic constituents along with their semantic roles (ci, ti)i∈ f

. To select text features corresponding to causes of food insecurity, we restrict the set of semantic
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frames produced by the parser using the following �lters:

1. First, we exclude semantic frames whose constituents’ roles do not include at least one

“cause” and one “e�ect”. Note that there might more than one “cause” and one “e�ect” per

frame.

2. Next, we exclude semantic frames in which the “e�ect” constituents do not contain any of

our 13 target keywords related to food insecurity (Fig. 4.3A).

3. Next, we exclude semantic frames which do not contain any of the causal links included in

the FrameNet lexical database (Fig. 4.3B).

4. Finally, we select all the unigrams, bigrams, and trigrams mentioned either in a “cause” or

in an “e�ect” constituent of the previously selected frames (Fig. 4.3C).

This procedure allows us to elicit 1,062 text features from our corpus of news articles. To ensure

that our text features cover the causes of food insecurity established by experts, we also handpick

a list of 93 well-cited books and peer-reviewed studies on food insecurity from Google Scholar

using the following queries: “causes of famine”, “food insecurity causes”, “food insecurity Africa

causes”, “causes of food crisis”, “famine Africa”, “famine Africa causes” and “food crisis Africa

causes”. We then run the parser on the text of these books and studies which reveals 149 additional

text features (Fig. 4.3D).

4.4.2 Keyword expansion

While our semantic parser allows us to extract a seed list of 1,211 features causally linked to food

insecurity, it fails to capture words semantically close to a seed that are also relevant. For example,

the parser selects the word “terrorism” but not the equally relevant word “terrorist” which does

not appear in any of the causal frames that we considered. For this reason, we expand our seed

list of features with words and phrases semantically close to each seed. We do so by considering

59



as candidate features all the unigrams in our news corpus as well as all the bigrams and trigrams

occurring more than 1,000 times. We then convert the words of each feature into an embedding

vector such that words occurring in similar contexts end up close to one another in the embedding

space [289]. By computing the word mover’s distance between each seed and each candidate

feature, we keep the candidates whose distance to a seed is smaller than 6, obtaining 738 new

features [234]. We �nd that expanding to more distant candidates does not lead to additional

relevant features, which indicates that the features that we select cover a wide range of causes of

food insecurity (Fig. 4.3C and Fig. 4.4).

4.4.3 Dimensionality reduction

Having uncovered a set of 1,949 text features causally related to food insecurity, we now aim

to focus on those whose news mentions help predict the IPC phase. We �rst convert each text

feature w into a time series xw,d,t measuring the proportion of news articles mentioning w and

the district d during the month ending on date t (“news factor”). We then convert the IPC phase

into a monthly indicator by forward �lling the latest observation. We then estimate a panel

autoregressive distributed lag model of the IPC phase yd,t in district d during the month ending

on date t :

yd,t = a0 + a1yd,t−1 + a2yd,t−2 + ... + anyd,t−n + b1xw,d,t−1 + ... + bnxw,d,t−n, (4.1)

where the number of lags n is chosen based on the Akaike Information Criterion. This estimation

is done at the district level which is the smallest geographic unit for which the IPC phases are ob-

served. To determine whether a news factor predicts the IPC phase, we run a Granger-causality

test and we reject the null hypothesis that xw does not Granger-cause y if the news factor and

its lagged values whose coe�cients are statistically di�erent from zero add explanatory power to
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the regression according to an F-test at the 1% level. Since the Granger causality test assumes sta-

tionarity, we take the �rst di�erence of non-stationary time series until it passes the Augmented

Dickey-Fuller test. If a news factor is predictive of the IPC phase after di�erentiation, we keep

the transformed news factor for the rest of the analysis. Out of the 1,949 text features previously

selected, we retain the 167 text features which are predictive of the IPC phase (Fig. 4.3C).

4.5 Predicting food insecurity

4.5.1 Traditional risk indicators

To uncover the predictive value of our news factors, we compare them with traditional measures

of food insecurity risk factors obtained from recent studies on food insecurity [14, 423, 13]. Our

risk indicators include:

• a monthly count of violent con�ict events and the monthly average number of fatalities per

event

• a food prices index (monthly log nominal food price index and monthly year-on-year dif-

ference)

• an evapotranspiration index (monthly mean)

• a rainfall index (monthly mean and deviation from average seasonal value)

• a normalized di�erence vegetation index (monthly mean and deviation from average sea-

sonal value)

• a population count

• a terrain ruggedness index

• the district size
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• the share of cropland use

• the share of pasture use

In other words, we collect district-level data on 9 time-varying risk indicators describing 5 dif-

ferent types of risk, and 5 time-invariant risk indicators. The dataset covers 21 out of the 37

countries covered by FEWS NET – Afghanistan, Burkina Faso, Chad, Democratic Republic of the

Congo, Ethiopia, Guatemala, Haiti, Kenya, Malawi, Mali, Mauritania, Mozambique, Niger, Nige-

ria, Somalia, South Sudan, Sudan, Uganda, Republic of Yemen, Zambia, and Zimbabwe. To build

our predictive models, we focus on the subset of 15 countries experiencing more than 20 food

crises during the observation period – Afghanistan, Chad, Ethiopia, Guatemala, Haiti, Kenya,

Malawi, Mali, Niger, Nigeria, Somalia, South Sudan, Sudan, Republic of Yemen, and Zimbabwe.

This dataset contains 33,847 monthly observations across 915 districts between July 2009 and

February 2020 (Fig. 4.5).

4.5.2 Regression model

Let vk,d,t be the value of time-varying risk indicator k in district d during the month ending on

date t and let vl,d be the value of time-invariant risk indicator l in district d . In addition, let

xw,d,t be the news factor measuring the proportion of news articles mentioning text feature w

and district d during the month ending on date t . To account for news mentions of causes of

food insecurity co-occurring with the name of a province or a country, we also introduce xw,pd ,t

and xw,cd ,t where pd and cd respectively correspond to the province and the country that district

d belongs to. Finally, let yd,t be the IPC phase in district d during the quarter ending on date t ,

such that missing data are �lled forward using the latest available data. To predict the IPC phase,

we estimate the following panel autoregressive distributed lag (ADL) model:
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yd,t = ad +
6∑

m=1
ad,myd,t−3m +

9∑
k=1

6∑
n=1

bk,d,nvk,d,t−2−n +
5∑

l=1
bl,dvl,d (4.2)

+

167∑
w=1

6∑
n=1

bw,d,nxw,d,t−2−n + bw,pd ,nxw,pd ,t−2−n + bw,cd ,nxw,cd ,t−2−n .

We set: bw,d,n = bw,pd ,n = bw,cd ,n = 0 to estimate the baseline model and bk,d,n = bl,d = 0 to estimate

the news-based model. To measure each model’s predictive performance, we �rst partition the

observation period into 10 disjoint folds of equal length. We then successively train the model

using a leave-one-out cross-validation strategy, ensuring that observations from each training

set occur before those of the corresponding test set. We then report the average cross-validation

root-mean-square-error (RMSE) across the 10 folds, both for the full model as well as for each

country separately. A Lasso regularization worsens the predictions, increasing the out-of-sample

RMSE by 9.9%, 1.4%, and 4.4% for the baseline, news-based, and combined model respectively (Fig

4.5).

In these estimates, each news factor is computed independently of whether a target keyword

also appears in an article in which a text feature is mentioned (Fig. 4.3A and 4.3C). However, the

presence of a target keyword could indicate that the text is suggesting that a food crisis is already

unraveling. As a robustness check, we recompute our news factors after having excluded any

article containing a target keyword. The resulting reductions in RMSE of the news-based and

combined model relative to the baseline model are equal to 33.8% and 39.1% respectively, which

represents a small deterioration of the results compared to our preferred estimates presented in

Fig. 4.12.

Finally, we investigate whether the predictive performance of the model described in equation

4.2 changes by incorporating spatial averages of district-level terms accounting for the tendency

of food insecurity to be spatially correlated. Let ỹ.,d,. be the spatial average of y.,d,. computed
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using the 4 nearest neighbors of district d . x̃ .,d,., ṽ.,d,., and ṽ.,d are de�ned in a similar fashion. We

then estimate the following model:

yd,t = ad +
6∑

m=1
ad,myd,t−3m +

9∑
k=1

6∑
n=1

bk,d,nvk,d,t−2−n +
5∑

l=1
bl,dvl,d (4.3)

+

167∑
w=1

6∑
n=1

bw,d,nxw,d,t−2−n + bw,pd ,nxw,pd ,t−2−n + bw,cd ,nxw,cd ,t−2−n

+

6∑
m=1

ad,mỹd,t−3m +
9∑

k=1

6∑
n=1

bk,d,nṽk,d,t−2−n +
5∑

l=1
bl,dṽl,d

+

167∑
w=1

6∑
n=1

bw,d,nx̃w,d,t−2−n .

We obtain an out-of-sample RMSE equal to 15%, 9.5%, 8.8% for the baseline, news-based and

combined model respectively (Fig. 4.5), which corresponds to a reduction in RMSE of 1.6%, 5%

and 3.5% respectively. Since the predictive gains are modest, we choose to keep the model more

parsimonious by presenting estimates from equation 4.2 in Fig. 4.12.

4.5.3 Classification of food crisis outbreaks

We de�ne a food crisis outbreak as a sequence of two consecutive periods during which the IPC

phase raises to a value of 3 or more while the previous period’s phase is smaller or equal to 2. We

aim to predict an outcome variable which is equal to 1 when a food crisis outbreak occurs and

zero otherwise. We convert each previously estimated model of the IPC phase into a classi�er of

food crisis outbreaks by introducing a lower threshold l and an upper threshold u. An outbreak

is predicted to start in district d during the quarter ending on date t if and only if:
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yd,t+1 ≥ u (4.4)

yd,t ≥ u

yd,t−1 ≤ l .

Each model’s thresholds l and u determine its precision and its recall. By varying l and u from 1

to 5 in increments of size 0.1, we can estimate a model’s Pareto front. We then �x all the models’

precision to be equal to 80% and we compare their recall values measured on the Pareto front.

We obtain threshold values for (l,u) equal to (2.2, 3.1), (1.9, 2.7), and (2.1, 3.3) for the baseline,

news-based, and combined model respectively. While we are agnostic about how to balance type

I and type II errors, our results show an improvement along the Precision-Recall curves across

countries (Fig 4.8).

At the time of publishing the IPC phase, FEWS NET additionally provides a projection of next

period’s values (“expert model”). In line with our previous analysis, we binarize these expert

forecasts to produce a predictive model of food crisis outbreaks in which an outbreak occurs

when the IPC phase raises to 3 or more for at least least two consecutive periods. The expert

model’s precision and recall are equal to 70% and 66% respectively, which represents a degradation

compared to the combined model for which we obtained a precision and a recall respectively equal

to 80% and 86%.
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Materials and correspondence

Extended Data

4.6 Results

Next, we demonstrate that news factors help predict variations in food insecurity in fragile states

(Fig. 4.12). Following previous research on food insecurity early warning systems [243, 14], we

�rst estimate a panel autoregressive distributed lag (ADL) model to predict the IPC phase using

past values of the traditional factors described in Fig. 4.11 along with time-invariant risk factors

– population count, district size, terrain ruggedness and agricultural land use share (“baseline

model”). We then compare the baseline model’s predictive performance to that of the same ADL

model in which we substitute traditional factors with news factors (“news-based model”), �nding

that the news-based model leads to a reduction in out-of-sample root-mean-square error (RMSE)

[132] of 34.1% relative to the baseline model (Fig. 4.12A). These results suggest that news fac-

tors could serve as a proxy for food insecurity risk factors in regions in which other sources of

data are unavailable or outdated. Furthermore, when we incorporate both traditional factors and

news factors into the same ADL model (“combined model”), the reduction in RMSE relative to the

baseline model reaches 40%, proving that news-based indicators of food insecurity also serve as

a complement to traditional risk indicators (supplementary text 4.5.2). While these results show
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that news factors improve the prediction of variations in food security at the district level, we �nd

a substantial degree of heterogeneity in predictive gains across countries, ranging from 20.5% for

Malawi to 48.4% for Mali, which is in part explained by di�erences in news coverage (Fig. 4.7). To

put these results into perspective, we also demonstrate that news factors speci�cally help predict

the outbreak of a food crisis, which corresponds to the IPC phase raising to a value of 3 or more

for at least two consecutive periods, an event of utmost importance to disaster relief organiza-

tions deciding when and where to allocate emergency food assistance (supplementary text 4.5.3).

By converting each previously estimated model into a binary classi�er of a crisis outbreak and

�xing its precision at 80%, we �nd that the combined model’s out-of-sample recall reaches 86%,

compared to 66% for the news-based model and 54% for the baseline model (Fig. 4.12B). In other

words, while the baseline model is able to predict 962 out of the 1,797 food crises observed in

our validation set, incorporating news factors helps anticipate 581 additional crises which would

have otherwise been missed (Fig. 4.12C). In addition, the combined model predicts 47 out of the

48 crisis outbreaks in which the IPC phase escalated to a level 4 or 5, while the baseline and

news-based model only predict 26 and 33 of these outbreaks respectively, indicating that news

factors are especially valuable in anticipating the most severe outbreaks. Taken together, these

results show that news mentions of causes of food insecurity precede variations in district-level

IPC phases and could help dispatch emergency relief up to three months ahead of a food crisis.

4.7 Discussion

While machine learning is often criticized for its lack of transparency [250], our model’s pre-

dictions can easily be interpreted. Focusing on Somalia, South Sudan and Ethiopia, three of the

countries which experienced the highest level of food insecurity in recent decades, we zoom in

on speci�c crisis episodes in our validation set to elicit which news factors help predict the dete-

rioration of the situation. The �rst episode that we analyze happened in 2011 in Somalia, where

67



the combination of a drought, rising food prices, forced displacement and a sustained con�ict led

to the worst famine of the 21st century [278]. In particular, the district of Jamaame evolved from

an IPC phase 2 during the �rst half of 2011 to a phase 4 by July, following intensifying violence

in the Southern part of the country. While the proportion of news articles mentioning both Ja-

maame and terms included in the “con�ict and violence” cluster started raising 5 months prior

to the change in the IPC phase, the con�ict fatality count did not record any death in the district

until the summer of 2012, highlighting that news factors capture relevant dimensions of civil in-

security which are missing from traditional con�ict indicators (Fig. 4.12D and 4.12G). The second

episode that we focus on occurred in 2016 when a fall armyworm spread across 20 countries in

Africa, decimating large quantities of crops [145]. The worm was �rst reported in early 2016,

and by September, the proportion of news mentioning both the Yambio county in South Sudan

and text features included in the “pests and diseases” cluster had peaked, 4 months prior to the

inverted vegetation index peaking, and 5 months ahead of the IPC phase raising from 2 to 3 (Fig.

4.12E and 4.12H). Although pest infestations are indirectly measured through vegetation indices,

their damage on crops are typically only re�ected in vegetation greenness once the food security

of neighboring populations has begun to deteriorate, strengthening the importance of measuring

anticipatory signals from the news. Finally, the last episode of our study took place in 2009 in

Ethiopia when it experienced one of its driest years of the past 50 years, wreaking havoc on food

production [421]. Seasonality-adjusted levels of precipitation in the Majang district were 2.3 stan-

dard deviations below their historical average in September 2009 before reverting to their mean at

the beginning of 2010. While the prolonged e�ect of this extreme drought was not well captured

by a precipitation index, the proportion of news mentioning both Majang and terms contained

in the “weather conditions” cluster started increasing in late 2009 and remained close to its peak

until July of 2010 when the IPC phase increased from 1 to 3, suggesting that news indices are

also better suited to anticipate a drought-related food crisis (Fig. 4.12F and 4.12I). To quantify

the role played by news factors in driving our predictions during these episodes, we re-estimate
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the combined model after having removed the cluster of news factors containing terms related

to “con�icts and violence”, “pests and diseases”, and “weather conditions” respectively (“ablated

models”). For all 3 episodes, we �nd that the combined model is able to accurately anticipate the

change in the IPC phase whereas both the ablated model and the baseline model fail to predict

it (Fig. 4.12G-4.12I and 4.9). In other words, risk factors leading to a food crisis are better antici-

pated by news indicators than by traditional ones which can be incomplete, delayed or outdated,

and our model enables us to explicitly interpret predictions of food crisis outbreaks by linking

them to variations in news mentions of the underlying causes of an upcoming outbreak.

Although the drivers of food insecurity are well-known, early warning systems relying on

high-frequency measurements of these factors are still lacking. The data-driven approach de-

scribed in this paper could drastically improve the prediction of food crisis outbreaks up to three

months ahead of time using real-time news streams and a predictive model that is simple to inter-

pret and explain to policymakers. Development practitioners working for humanitarian organi-

zations such as the World Food Program could use the predictions of our model to help prioritize

the allocation of emergency food assistance across vulnerable regions in a principled way, al-

lowing for a more e�ective preparedness and a reduction in human su�ering when a crisis hits.

Early warnings cannot address all of the sources of delay in emergency responses, however it

can mitigate it by increasing the cost of inaction for governments and the international commu-

nity [84]. While our study only focuses on news articles in English, future work incorporating

local languages into our framework could potentially improve the predictive performance of our

model even further. In addition, development practitioners could extend our model to produce

estimates of the IPC phase during periods or in regions in which it is not currently being reported,

at a fraction of the cost. Beyond the context of food insecurity, our novel approach for selecting

causally grounded news indicators addresses the risk of over�tting when big data and machine

learning is being used to predict policy outcomes in data-scarce environments [426, 238, 225], and

could be extended to other domains, from disease surveillance to the impact of climate change.
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Figure 4.1: Food security dataset. (A) Integrated Phase Classification (IPC) of food security into 5 phases –
minimal, stressed, crisis, emergency, and famine – at the district level across the 37 countries covered by the FEWS
NET dataset. Each administrative unit is characterized by the maximum IPC phase measured over the period 2009-
2020, revealing that food insecurity is geographically clustered. (B) Heatmap showing the maximum value of the
IPC phase at the country level during each measurement period.

71



0M 0.2M 0.4M 0.6M 0.8M 1M 1.2M 1.4M 1.6M 1.8M 2M

0M 0.2M 0.4M 0.6M 0.8M 1M 1.2M 1.4M 1.6M 1.8M 2M

All Africa Global Media

The British Broadcasting Corporation

Dow Jones & Company, Inc.

Reuters Ltd.

Agence France-Presse

Nation Media Group Ltd.

Xinhua News Agency

News Bites Pty Ltd (Europe)

Vanguard Media Ltd.

Media Trust Ltd.

Press Association, Inc.

Punch Nigeria Ltd.

The Sun Publishing Ltd.

African Newspapers of Nigeria Ltd.

Radio Africa Group

Leaders & Company Ltd.

The Canadian Press

Independent Newspapers Ltd. (Nigeria)

Guardian Newspapers Ltd.

B

Number of Articles

1981 1983 1985 1987 1989 1991 1993 1995 1997 1999 2001 2003 2005 2007 2009 2011 2013 2015 2017 2019 2021

1981 1983 1985 1987 1989 1991 1993 1995 1997 1999 2001 2003 2005 2007 2009 2011 2013 2015 2017 2019 2021

Afghanistan
Angola

Burkina Faso
Burundi

Central African Republic
Cameroon

Chad
Congo

Djibouti
DRC

El Salvador
Ethiopia

Guatemala
Guinea

Haiti
Honduras

Kenya
Liberia
Malawi

Mali
Mauritania

Mozambique
Nigeria

Niger
Republic of Yemen

Rwanda
Senegal

Sierra Leone
Somalia

South Sudan
Sudan

Tajikistan
Tanzania
Uganda
Zambia

Zimbabwe

Afghanistan
Angola
Burkina Faso
Burundi
Central African Republic
Cameroon
Chad
Congo
Djibouti
DRC
El Salvador
Ethiopia
Guatemala
Guinea
Haiti
Honduras
Kenya
Liberia
Malawi
Mali
Mauritania
Mozambique
Nigeria
Niger
Republic of Yemen
Rwanda
Senegal
Sierra Leone
Somalia
South Sudan
Sudan
Tajikistan
Tanzania
Uganda
Zambia
Zimbabwe

A

Number of Articles per month
1 30 48515 1,000

Figure 4.2: Corpus of news articles. (A) The number of news articles grouped by publisher. (B) The number
of news articles grouped by month and by country. We use the classification provided by Factiva to establish that
an article focuses on a specific country.
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Figure 4.3: Semantic-frame parsing. (A) The 13 target keywords used to select semantic frames related to
food insecurity along with the number of news articles in which the selected frames appear. To account for possible
inflections, we use the Porter stemming algorithm on each word token and we select from our news corpus semantic
frames matching the root words. (B) The 41 causal links obtained from the FrameNet lexical database used to select
relevant semantic frames, along with the number of news articles in which the selected frames appear. (C) The 167
text features used in our predictive model along with the number of news articles in which they appear. (D) The 93
books and peer-reviewed studies on which we also run our semantic parser.
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Figure 4.4: Keyword expansion. Starting from the 101 seeds obtained by semantic-frame parsing and passing
the Granger causality test, we find the 738 candidate features mentioned in the news and with a word mover’s
distance to a seed smaller than 6. A�er ranking candidate features by increasing distance to a seed and partitioning
them into 50 groups of equal size, we report the proportion of candidate features within each group passing the
Granger causality test (y-axis) and the average distance to a seed within each group (x-axis). As the distance to
a seed gets close to 6, the proportion of candidate features predicting the IPC phase approaches zero, providing
support to our choice of exploring the space of semantic neighbors up to a distance of 6.
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Figure 4.5: Clustering text features. Pairwise correlation between news factors over the period 1980-2020,
showing an average correlation between news factors in the same cluster about twice as high as that of factors
belonging to di�erent clusters (69.9% versus 34.9%), which provides support to our choice of clustering of our text
features into 12 semantically distinct clusters.
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Figure 4.6: Alternative specifications. We first compare the OLS estimates of equation 4.2 shown in Fig.4.12A
with estimates of the same model using lasso regularization, showing that it leads to a degradation of the out-of-
sample RMSE. We then demonstrate that the model described by equation 4.3 which incorporates spatial averages
of district-level terms leads to a small reduction of the out-of-sample RMSE. Since the predictive gains are modest,
we choose equation 4.2 as our main specification to keep the model more parsimonious.
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Figure 4.7: News coverage and predictive performance. Distribution of the number of news articles
mentioning text features across administrative units of level 1 (“provinces”), separating between provinces in which
the combined model predicts all the crisis outbreaks (blue) from those in which it fails to predict at least one crisis
(orange), which reveals that provinces in which the combined model fails to predict some crisis outbreaks have
lower news coverage that those in which the model predicts all of them.
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Figure 4.8: Precision-Recall curves. We show the same precision-recall curves as the one described in
Fig.4.12B, a�er having split the evaluation set by country, which indicates that the combined model also outperforms
both the news-based and the baseline model at the country level.
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Figure 4.9: Ablated models. We re-estimate the combined model by removing each cluster of news factors (“ab-
lated model”). We report the district-level increase in RMSE of each ablated model relative to the combined model
(A-K), allowing us to identify the regions in which each cluster of news factors provides the highest contribution to
the prediction.
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Figure 4.10: Uncovering mentions of causes of food insecurity. Starting from a handcra�ed list of 13
target keywords related to food insecurity, we use a frame-semantic parser to extract from scientific (circles) and
news (hexagons) articles a seed list of causes of food insecurity (“text features”) mentioned in the same semantic
frame as a target keyword [24, 394]. Each box contains an example of a sentence in which the parser detects a
text feature (highlighted in color) mentioned in the same semantic frame as the target keyword “famine” (in bold)
and a causal link (underlined). We expand this seed list by collecting text features from news articles (diamond)
that are semantically similar to a seed according to their word mover’s distance [289, 234]. Text features for which
the proportion of monthly local news mentions fails to predict the IPC classification of food security are discarded,
leading to a final set of 167 features grouped into 12 clusters based on their semantic similarity and mapped onto a
network. A node’s size is proportional to its text feature’s frequency in news articles mentioning target keywords,
and an edge’s width encodes the semantic proximity between its end nodes text features. A force-directed algorithm
determines each node’s position, leading nodes representing semantically similar text features to appear close to
one another.
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Figure 4.11: Validating news-based indicators of food insecurity. We demonstrate that there exists a
strong cross-sectional relationship between news mentions (A-E) and traditional measures (F-J) of causes of food
insecurity. We use a comprehensive dataset of traditional measures of food insecurity risk factors (“traditional
factors”) across 21 fragile states during the period 2009-2020 – a conflict fatality count, the change in food prices,
an evapotranspiration index, a rainfall index, and an inverted vegetation index – summarizing each district by the
maximum monthly value of each traditional factor during the observation period. To uncover the text feature most
closely related to each traditional factor, we first summarize each district by the maximum monthly proportion of
local news articles mentioning each text feature (“news factor”). We then associate with each traditional factor the
news factor with which it has the highest Spearman correlation across district. (K-O) A sca�er plot of a traditional
factor (y-axis) and its associated news factor (x-axis) across districts reveals a high Spearman correlation (rS > 0.89).
All the values are reported in percentiles.
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Figure 4.12: Predicting food insecurity. (A) We show that the monthly proportion of local news articles
mentioning a text feature (“news factor”) helps predict the IPC classification of food security at the district level
across 15 fragile states during the period 2009-2020. We estimate a panel autoregressive distributed lag model of the
IPC phase on past values of traditional risk factors (“baseline model”, turquoise bars), news factors (“news-based
model”, yellow bars), and both sets of factors (“combined model”, pink bars). We report the average root-mean-
square error (y-axis) over 10 cross-validated periods, which reveals that including news factors leads to an average
reduction in prediction error of 40% relative to the baseline model, with gains ranging from 20.5% for Malawi to
48.4% for Mali. (B) We turn each previously estimated model into a classifier of the outbreak of a food crisis,
characterized by the IPC phase raising to a value of 3 or more for at least two consecutive periods. By varying the
classification threshold, we construct a series of classifiers (dots) with di�erent precision (y-axis) and recall (x-axis),
allowing us to uncover each model’s Pareto front (full lines). We then choose each model’s threshold such that its
precision is equal to 80% (black do�ed line), finding that the combined model’s recall reaches 86%, compared to
66% for the news-based model and 54% for the baseline model (colored do�ed lines). (C) Number of crisis outbreaks
observed in the validation set (white row) and predicted by the baseline (turquoise row), news-based (yellow row)
and combined (pink row) model at a fixed precision of 80%. (D-F) To elicit the role played by news factors in driving
our predictions, we zoom in on 3 crisis episodes in the validation set during which news mentions of causes of
food insecurity included in the “conflict and violence” (orange lines), “pests and diseases” (pink lines), and “weather
conditions” cluster (green lines) would have helped anticipate the deterioration of the situation. For each episode,
we report each text feature’s proportion of monthly local news mentions and the most closely related traditional
risk indicator (black line). All the values are reported in percentiles. (G-I) We also report the time series of the IPC
phase (blue line), and its predicted value using the baseline (turquoise line), ablated (khaki line), and combined (red
line) model. While risk factors measured with traditional data fail to provide a warning signal in a timely fashion,
news factors peak prior to each crisis outbreak (mauve shaded area), leading the combined model to accurately
predict the outbreak whereas the baseline and ablated models fail to predict it.
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5 | Heterogeneous Granger Causal

Factors from News Streams

5.1 Introduction

Contextual embedding models [86] have managed to produce e�ective representations of words,

achieving state-of-the-art performance on a range of NLP tasks. In this paper, we consider a

speci�c task of predicting variations in stock prices based on word relationships extracted from

news streams. Existing word embedding techniques are not suited to learn relationships between

words appearing in di�erent documents and contexts [239]. Existing work on stock price pre-

diction using news have typically relied on extracting features from �nancial news [108, 165],

or sentiments expressed on Twitter [272, 348, 34], or by focusing on features present in a sin-

gle document [204, 382]. However, relationships between events a�ecting stock prices can be

quite complex, and their mentions can be spread across multiple documents. For instance, mar-

ket volatility is known to be triggered by recessions; this relationship may be re�ected with a

spike in the frequency of the word "recession" followed by a spike in the frequency of the word

"volatility" a few weeks later. Existing methods are not well-equipped to deal with these cases.

This paper aims to uncover latent relationships between words describing events in news

streams, allowing us to unveil hidden links between events spread across time, and integrate them

into a news-based predictive model for stock prices. We propose the Predictive Causal Graphs
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(PCG), a framework allowing us to detect latent relationships between words when such rela-

tionships are not directly observed. PCG di�ers from existing relationship extraction [78] and

representational frameworks [290] across two dimensions. First, PCG identi�es unsupervised

causal relationships based on consistent time series prediction instead of association, allowing

us to uncover paths of in�uence between news items. Second, PCG �nds inter-topic in�uence

relationships outside the “context” or the con�nes of a single document. Construction of PCG

naturally leads to news-dependent predictive models for numerous variables, like stock prices.

We construct PCG by identifying Granger causal pairs of words [157] and combining them to

form a network of words using the Lasso Granger method [16]. A directed edge in the network

therefore represents a potential in�uence between words. While predictive causality is not true

causality [280], identi�cation of predictive causal factors which prove to be relevant predictors

over long periods of time provides guidance for future causal inference studies. We achieve this

consistency by proposing a framework for Longitudinal Predictive Causal Factor identi�cation

based on methods of honest estimation [21]. Here, we �rst estimate a universe of predictive causal

factors on a relatively long time series and then identify time-varying predictive causal factors

based on constrained estimation on multiple smaller time series. We also augment our model

with an orthogonal spike correction ARIMA [49] model, allowing us to overcome the drawback

of slow recovery in smaller time series.

We constructed PCG from news streams of around 700, 000 articles from Google News API

and New York Times spread across over 6 years and evaluated it to extract features for stock

price predictions. We obtained two orders lower prediction error compared to a similar semantic

causal graph-based method [208]. The longitudinal PCG provided insights into the variation

in importance of the predictive causal factors over time, while consistently maintaining a low

prediction error rate between 1.5-5% in predicting 10 stock prices. Using full text of more than

1.5 million articles of Times of India news archives for over 10 years, we performed a �ne-grained

qualitative analysis of PCG and validated that 67% of the semantic causation arguments found in
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the news text is connected by a direct edge in PCG while the rest were linked by a path of length

2. In summary, PCG provides a powerful framework for identifying predictive causal factors from

news streams to accurately predict and interpret price �uctuations.

5.2 Related Work

Online news articles are a popular source for mining real-world events, including extraction of

causal relationships. Radinsky and Horvitz [347] proposed a framework to �nd causal relation-

ships between events to predict future events from News but caters to a small number of events.

Causal relationships extracted from news using Granger causality have also been used for pre-

dicting variables, such as stock prices [208, 417, 77]. A similar causal relationship generation

model has been proposed by [172] to extract causal relationships from natural language text. A

similar approach can be observed in [228, 96], whereas CATENA system [293] used a hybrid ap-

proach consisting of a rule-based component and a supervised classi�er. PCG di�ers from these

approaches as it explores latent inter-topic causal relationships in an unsupervised manner from

the entire vocabulary of words and collocated N-grams.

Apart from using causality, there are many other methods explored to extract information

from news and are used in time series based forecasting. Amodeo et al. [12] proposed a hybrid

model consisting of time-series analysis, to predict future events using the New York Times cor-

pus. FBLG [62] focused on discovering temporal dependency from time series data and applied it

to a Twitter dataset mentioning the Haiti earthquake. Similar work by Luo et al. [262] showed cor-

relations between real-world events and time-series data for incident diagnosis in online services.

Other similar works like, Trend Analysis Model (TAM) [216] and Temporal-LDA (TM-LDA) [429]

model the temporal aspect of topics in social media streams like Twitter. Structured data extrac-

tion from news have also been used for stock price prediction using techniques of information

retrieval in [92, 444, 90, 58, 91]. Vaca et al. [411] used a collective matrix factorization method to
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track emerging, fading and evolving topics in news streams. PCG is inspired by such time series

models and leverages the Granger causality detection framework for the trend prediction task.

Deriving true causality from observational studies has been studied extensively. One of the

most widely used algorithm is to control for variables which satisfy the backdoor criterion [328].

This however, requires a knowledge of the causal graph and the unconfoundedness assumption

that there are no other unobserved confounding variables. While the unconfoundedness assump-

tion is to some extent valid when we analyze all news streams (under the assumption that all

signi�cant events are reported), it is still hard to get away from the causal graph requirement.

Propensity score based matching aims to control for most confounding variables by using an ex-

ternal method for estimating and controlling for the likelihood of outcomes [314]. More recently,

[428] showed that with multiple causal factors, it is possible to leverage the correlation of those

multiple causal factors and deconfound using a latent variable model. This setting is similar to

the one we consider, and is guaranteed to be truly causal if there is no confounder which links a

single cause and the outcome. This assumption is less strict than the unconfoundedness assump-

tion and makes the case for using predictive causality in such scenarios. Another approach taken

by [21] estimates heterogeneous treatment e�ects by honest estimation where the model selec-

tion and factor weight estimation is done on two sub-populations of data by extending regression

trees.

Our work is motivated by these works and applies methodologies for time series data ex-

tracted from news streams. PCG can o�er the following bene�ts for using news for predictive

analytics – (1) Detection of in�uence path, (2) Unsupervised feature extraction, (3) Hypothesis

testing for experiment design.
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5.3 Predictive Causal Graph

Predictive Causal Graph (PCG) addresses the discovery of in�uence between words that appear in

news text. The identi�cation of in�uence link between words is based on temporal co-variance,

that can help answer questions of the form: “Does the appearance of word x in�uence the ap-

pearance of word y after δ days?”. The in�uence of one word on another is determined based

on pairwise causal relationships and is computed using the Granger causality test. Following the

identi�cation of Granger causal pairs of words, such pairs are combined together to form a net-

work of words, where the directed edges depict potential in�uence between words. In the �nal

network, an edge or a path between a word pair represents a �ow of in�uence from the source

word to the �nal word and this in�uence depicts an increase in the appearance of the �nal words

when the source word was observed in news data.

Construction of PCG from the raw unstructured news data, �nding pairwise causal links

and eventually building the in�uence network involves numerous challenges. In the rest of the

section, we discuss the design methodologies used to overcome these challenges and describe

some properties of the PCG.

5.3.1 Selecting Informative Words:

Only a small percentage of the words appearing in news can be used for meaningful information

extraction and analysis [269, 184]. Speci�cally, we eliminated too frequent (at least once in more

than 50% of the days) or too rare (appearing in less than 100 articles) [manning_raghavan_sch\IeC {\"u}tze_2008].

Many common English nouns, adjectives and verbs, whose contribution to semantics is minimal

[114] were also removed from the vocabulary. However, named-entities were retained for their

newsworthiness and a set of “trigger” words were retained that depict events (e.g. �ood, election)

using an existing “event trigger” detection algorithm [4]. The vocabulary set was enhanced by

adding bigrams that are signi�cantly collocated in the corpus, such as, ‘fuel price’ and ‘prime
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minister’ etc.

5.3.2 Time-series Representation of Words:

Consider a corpus D of news articles indexed by time t , such that Dt is the collection of news

articles published at time t . Each article d ∈ D is a collection of words Wd , where ith word

wd,i ∈ Wd is drawn from a vocabulary V of size N . The set of articles published at time t can

be expressed in terms of the words appearing in the articles as {α t1,α
t
2, ...,α

t
N }, where α ti is the

sum of frequency of the word wi ∈ V across all articles published at time t . α ti corresponding

to wi ∈ V is de�ned as, α ti =
µti∑T
t=1 µ

t
i

where µti =
∑|Dt |

d=1 TF (wd,i). α ti is normalized by using the

frequency distribution of wi in the entire time period. T(wi) represents the time series of the

word wi , where i varies from 1 to N , the vocabulary size.

5.3.3 Measuring Influence between Words

Given two time-seriesX and Y , the Granger causality test checks whether theX is more e�ective

in predicting Y , than using just Y and if this holds then the test concludes X “Granger-causes”

Y [157]. However, if both X and Y are driven by a common third process with di�erent lags,

one might still fail to reject the alternative hypothesis of Granger causality. Hence, in PCG, we

explore the possibility of causal links between all word pairs and detect triangulated relations to

eliminate the risk of ignoring confounding variables, otherwise not considered in the Granger

causality test.

However, constructing PCG using an exhaustive set of word pairs does not scale, as even

after using a reduced set of words and including the collocated phrases, the vocabulary size is

around 39, 000. One solution to this problem is considering the Lasso Granger method [16] that

applies regression to the neighborhood selection problem for any word, given the fact that the

best regressor for that variable with the least squared error will have non-zero coe�cients only
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Figure 5.1: PCG highlighting the underlying cause

for the lagged variables in the neighborhood. The Lasso algorithm for linear regression is an

incremental algorithm that embodies a method of variable selection [404].

If we de�ne V to be the input vocabulary from the news dataset, N is the vocabulary size,

x is the list of all lagged variables (each word is multivariate with a maximum lag of 30 days

per word) of the vocabulary, w is the weight vector denoting the in�uence of each variable, y is

the predicted time series variable and λ is a sparsity constraint hyperparameter to be �ne-tuned,

then minimizing the regression loss below leads to weights that characterize the in�uential links

between words in x that predicts y,

w = arдmin
1
N
Σ(x,y)∈V |w.x − y |2 + λ | |w| | (5.1)

To set λ, we use the method based on consistent estimation used in [284]. We select the

variables that have non-zero co-e�cients and choose the best lag for a given variable based on

the maximum absolute value of a word’s co-e�cient. We then, draw an edge from all these words

to the predicted word with the annotations of the optimal time lag (in days) and incrementally

construct the graph as illustrated in Figure 5.1.

5.3.4 Topic Influence Compression

To arrive at a sparse graphical representation of PCG, we compress the graph based on topics (50

topics in our case). Topics are learned from the original news corpus using unsupervised Latent

Dirichlet Allocation (LDA)[41]. In�uence is generalized to topic level by calculating the weight

of inter-topic in�uence relationships as a total number of edges between vertices of two topics.

89



If we de�ne θu and θv to be two topics in our topic model and |θu | represents the size of topic θu ,

i.e. the number of words in the topic whose topic-probability is greater than a threshold (0.001),

then the strength of in�uence between topics θu and θv is de�ned as,

Φ(θu , θv ) =
# Edges between words in θu and θv

(|θu | × |θv |)
(5.2)

Φ(θu, θv) is termed as strong if its value is in the 99th percentile of Φ for all topics. Any edge in the

original PCG is removed if there are no strong topic edges between the corresponding word nodes.

This �ltered topic graph has only edges between topics which have high in�uence strength. This

combination of inter-document temporal and intra-document distributional similarity is critical

to obtaining temporally and semantically consistent predictive causal factors.

5.4 Prediction Models using PCG

In this section, we present three approaches for building prediction models using PCG namely

(1) direct estimation using PCG (2) longitudinal prediction which incorporates short term tem-

poral variations and (3) spike augumented prediction which estimates spikes over a longer time

window.

5.4.1 Direct Prediction from PCG

One straightforward way of using PCG for prediction modeling is to use the Lasso regression

equation used for identifying the predictive causal factors directly. We �rst adopt this approach

by restricting the construction of PCG to the nodes of concern, which signi�cantly speeds up the

computation. This inherently ignores any predictive causal factor which only has an indirect link

to the outcome node, as theorized by the Granger Causality framework. In this case, we split the

data into a contiguous training data, and evaluate on the remaining testing data. If y represents

the target stock time series variable and x represents a multivariate vector of all lagged feature
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variables, w represents the coe�cient weight vector indexed by the feature variable z ∈ x and

time lag m,p,q in days, a represent a bias constant and ϵt represents an i.i.d noise variable, then

we predict future values of y as follows.

yt = a +
m∑
i=1

wy,iyt−i +
∑
z∈x

q∑
j=p

wz, jzt−j + ϵt (5.3)

5.4.2 Longitudinal Prediction via Honest Estimation

In scenarios where heterogenous causal e�ects are to be estimated, it is important to adjust by

partitioning the time series into subpopulations which vary in the magnitude of the causal e�ects

[21]. In a news stream, this amounts to constructing the word in�uence networks given a context

speci�ed by a time window. This naive extension however can be quite computationally expen-

sive and can limit the speed of inference considerably. However, if the set of potential causal

factors are identi�ed over a larger time series, learning their time varying weights over a shorter

training period can signi�cantly decrease the computation required.

Hence, we do a two staged honest estimation approach similar to [21]. In the �rst stage,

multiple sets (instead of trees as in [21]) of predictive causal factors F (Trm), that provide overall

reduction in root mean squared error (RMSE), over training data Trm, are gathered for model

selection through repeated random initialization of regression weights. For any f ∈ F (Trm), we

de�ne f to be a set of predictive factors which when trained over dataTrm to predict future time

series values of the target y, achieves RMSE(Trm, f ) < δ , for a hyperparameter δ > 0.

F (Trm) =
⋃

f
{RMSE(Trm, f ) < δ } (5.4)

From these sets of predictive causal factors F (Trm), we choose the set of features fLPC(Trm,Tre),

which gives the least expected root mean squared error on time windows w of length W uni-

formly sampled from the unseen training data used for estimation Tre through cross validation.
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This model selection procedure depends on the size of the smaller time windowsW used to �ne-

tune the factors. The size of this time window is a hyperparameter to trade o� long-term stability

and short-term responsiveness of the predictive causal factors. We chose the time window based

of 30 days for our stock price prediction due to prior knowledge that many �nancial indicators

have a monthly cycle and hence responsiveness within that cycle is desired.

E(Tre , f ) =
√

E
w ∈T re , |w |=W

MSE(w, f ) (5.5)

fLPC (Trm,Tre ) =minf ∈F (T rm )

(
E(Tre , f )

)
(5.6)

We then evaluate the model on an unseen time series Te , where the learnt predictive causal

factors and their weights are used for inference.

5.4.3 Spike Prediction

One drawback of using a speci�c time window for estimating the weights of the predictive causal

factors is the lack of representative data in the window used for training. This could mean that

predicting abrupt drops or spikes in the data would be hard. To overcome this limitation, we train

a composite model to predict the residual error from honest estimation by training on di�erences

in consecutive values of the time series. Let (∆y = yt −yt−1,∆f = ft − ft−1) denote time series of

the di�erences of the consecutive values of the labels and the feature variables and let [∆y,∆f ]

denote the concatenated input variables of the model. We use a multivariate ARIMA model M of

order (p,d,q) [49] where p controls the number of time lags included in the model, q denotes the

number of times di�erences are taken between consecutive values and r denotes the time window

of the moving average taken to incorporate sudden spikes in values. Let the actual values of the

time series of label y be y∗, the predictions of the honest estimation model be ŷ, a training sample

of signi�cantly longer time windowTrs with |Trs | >>W , then the composite model is trained to
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predict the residuals, res = y∗ − ŷ = E(Trs, f ).

M = ARIMA(p,d,q) (5.7)

M . f it(E(Trs , f ), [∆y,∆f ]) (5.8)

ˆres = M .predict(Tre ) (5.9)

Augmenting this predicted residual ( ˆres) back to ŷTre gives us the spike-corrected estimate ŷs .

ŷs = ŷT re + ˆres (5.10)

5.5 Results

In this section, we present the results from direction prediction models from PCG, followed by im-

provement in stock price prediction due to longitudinal and spike prediction from news streams

and compare it to a manually tuned semantic causal graph method. We analyze the time varying

factors to explain the gains achieved via honest estimation.

5.5.1 Data and Metrics

The news dataset1 we used for stock price prediction contains news crawled from 2010 to 2013

using Google News APIs and New York Times data from 1989 to 2007. We construct PCG from the

time series representation of its 12,804 unigrams and 25,909 bigrams over the entire news corpora

of more than 23 years, as well as the 10 stock prices2 from 2010 to 2012 for training and 2013 as

test data for prediction. The prediction is done with varying step sizes (1,3,5), which indicates

the time lag between the news data and the day of the predicted stock price in days. The results
1https://github.com/dykang/cgraph
2https://�nance.yahoo.com
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shown in Table 5.1 is the root mean squared error (RMSE) in predicted stock value calculated on

a 30 day window averaged by moving it by 10 days over the period and directly comparable to

our baseline [208]. To evaluate the time-varying factors over a larger time window, we present

average monthly cross validation RMSE % sampled over a 4 year window of 2010-13 in Table

5.3. Please note that the results in Table 5.3 are not comparable with [208] as we report a cross

validation error over a longer time window.

5.5.2 Prediction Performance of PCG

To evaluate the causal links generated by PCG, we use it to extract features for predicting stock

prices using the exact data and prediction setting used in [208] as our baseline.

Baseline: [208] extract relevant variables based on a semantic parser - SEMAFOR [78] by

�ltering causation related frames from news corpora, topics and sentiments from tweets. To

overcome the problem of low recall, they adopt a topic-based knowledge base expansion. This ex-

panded dataset is then used to train a neural reasoning model which generates sequence of cause-

e�ect statements using an attention model where the words are represented using word2vec

vectors. [208]’s CGRAPH based forecasting model - Cbest model uses the top 10 such generated

cause features, given the stock name as the e�ect and apply a vector auto-regressive model on

the combined time series of text and historical stock values.

Comparisonwith the baseline: Compared to the baseline, note that our features and topics

were chosen purely based on distributional semantics of the word time series. Once the features

are extracted from PCG, we use the past values of stock prices and time series corresponding to the

incoming word edges of PCG to predict the future values of the stock prices using the multivariate

regression equation used to determine Granger Causality. As compared to their best error, PCG

from unigrams, bigrams or both obtain two orders lower error and signi�cantly outperforms

Cbest . The mean absolute error (MAE) for the same set of evaluations is within 0.003 of the RMSE,

which indicates that the variance of the errors is also low. We attribute this gain to the �exibility
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Table 5.1: 30 day windowed average of stock price prediction error using PCG

Step size Cbest PCGuni PCGbi PCGboth
1 1.96 0.022 0.023 0.020
3 3.78 0.022 0.023 0.022
5 5.25 0.022 0.023 0.021

Table 5.2: Stock price predictive factors for 2013 in PCG

Stock symbol Prediction indicators
AAPL workplace, shutter, music
AMZN healthcare, HBO, cloud
FB unfriended, troll, politician
GOOG advertisers, arti�cial intelligence, shake-up
HPQ China, inventions, Pittsburg
IBM 64 GB, redesign, outage
MSFT interactive, security, Broadcom
ORCL corporate, investing, multimedia
TSLA prices, testers, controversy
YHOO entertainment, leadership, investment

of PCG’s Lasso Granger method to produce sparse graphs as compared to CGRAPH’s Vector Auto

Regressive model which used a �xed number (10) of incoming edges per node already pre-�ltered

by a semantic parser. This imposes an arti�cial bound on sparsity thereby losing valuable latent

information. We overcome this in PCG using a suitable penalty term (λ) in the Lasso method.

Key PCG factors for 2013: The causal links in PCG are more generic (Table 5.2) than the

ones described in CGRAPH, supporting the hypothesis that latent word relationships do exist

that go beyond the scope of a single news article. The nodes of CGRAPH are tuples extracted

from a semantic parser (SEMAFOR [78]) based on evidence of causality in a sentence. PCG poses

no such restriction and derives topical (unfriended, FB) and inter-topical (healthcare, AMZN),

sparse, latent and semantic relationships.

Inspecting the links and paths of PCG gives us qualitative insights into the context in which

the word-word relationships were established. Since PCG is also capable of representing other

stock time series as potential in�uencers in the network, we can use this to model the propagation
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Figure 5.2: Inter-stock influencer links where one stock’s movement indicates future movement of other
stocks (time lag annotated edges)

of shocks in the market as shown in Figure 5.2. However, these links were not used for prediction

performance to maintain parity with our baseline.

5.5.3 Time Varying Causal Analysis

We quantitatively evaluate the time varying variant of PCG by using it to extract features for

stock price prediction for a longer time window.

We present average root mean squared errors in Table 5.3 for di�erent values of time windows

of sizeW (50,100). For model selection, we used 50% of the time series and then used multiple time

series of lengthW , disjoint from the ones used for time-varying factor selection and took average

of the test error on the next 30 data points using the weights learnt. We repeat this using K-fold

cross validation (K=10) for choosing the model selection data and present the average errors. The

variation in importance weights of predictive causal factors for stock prices (“podcast”, AAPL)

and (“unfollowers”, GOOG) is shown in Figure 5.3 which illustrates several peaks (for weeks)

when the factor in the news was particularly predictive of the company’s stock price and not

signi�cant during other weeks.

The time series and error graph shown for multiple stocks shows that the RMSE errors range

between 1.5% 5% for all the test time series as shown in Figure 5.4. However, sudden spikes tend

to display higher error rates due to the lack of training data which contain spikes. This issue

is mitigated when the time window for training is increased. Increasing the window more than

100 did not improve the RMSE and came at the cost of training time. But, incorporating the
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Figure 5.3: Temporal variation in importance weight of predictive causal factors

spike residual PCG model, which predicts the leftover price value from the �rst model, provides

signi�cant improvements over the model without spike correction as seen in the last column on

Table 5.3. Thus, we are able to achieve signi�cant gains with an unsupervised approach without

any domain speci�c feature engineering by estimating using an ARIMA model (p, d, q) = (30, 1,

10).

Table 5.3: Variation in stock price prediction error (RMSE) % with window size and spike correction

Stock W=50 W=100 W=100 + spike
AABA 2.87 2.07 1.61
AAPL 2.95 2.84 2.28
AMZN 3.03 2.99 2.41
GOOG 2.67 2.36 1.91
HPQ 6.77 3.34 2.44
IBM 2.19 2.07 1.65
MSFT 3.03 9.45 4.80
ORCL 2.94 2.21 1.65
TSLA 5.56 5.52 4.32
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Figure 5.4: RMSE of stocks for longitudinal causal factor prediction without spike correction. Spikes in
RMSE can be seen along with spikes in stock prices like HPQ.

5.6 Interpretation of Predictive Causal Factors

In order to qualitatively validate that the latent inter-topic edges learnt from the news stream is

also humanly interpretable, we constructed PCG from the online archives of Times of India (TOI)

3, the most circulated Indian English newspaper. We used this dataset as, unlike the previous

dataset which provided just the time series of words, we also have the raw text of the articles,

which allowed us to perform manual causal signature veri�cation. This dataset contains all the

articles published in their online edition between January 1, 2006 and December 31, 2015 con-

taining 1,538,932 articles.

5.6.1 Inter-topic edges of PCG

The in�uence network we constructed from the TOI dataset has 18,541 edges and 7,190 uni-

grams and bi-gram vertices. We were interested in the inter-topic non-associative relationships

that PCG is expected to capture. We observe that a few topics (5) in�uence or are in�uenced by a

large number of topics. Some of these highly in�uential topics are composed of words describing

“Agriculture”, “Politics”, “Crime”, etc. The ability of PCG to learn these edges between topical

word clusters purely based on temporal predictive causal prediction further validates its use for

design of extensive causal inference experiments.
3https://timeso�ndia.indiatimes.com/archive.cms
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5.6.2 Causal evidence in PCG

To validate the causal links in PCG, we extracted 56 causation semantic frame [25] arguments

which depict direct causal relationships in the news corpus. We narrowed down the search to

words surrounding verbs which depict the notion of causality like “caused”, “e�ect”, “due to” and

manually veri�ed that these word pairs were indeed causal. We then searched the shortest path

in PCG between these word pairs. For example, one of the news article mentioned that “Gujarat

government has set aside a suggestion for price hike in electricity due to the Mundra Ultra Mega

Power Project.” and these corresponding causation arguments were captured by a direct link in

PCG as shown in Table 5.4. 67% of the word pairs which were manually identi�ed to be causal

in the news text through causal indicator words such as “caused”, were linked in PCG through

direct edges, while the rest were linked through an intermediate relevant node. As seen in Table

5.4, the bi-gram involving the words and the intermediate words in the path provide the relevant

context under which the causality is established. The time lags in the path show that the in�uence

between events are at di�erent time lags. We also qualitatively veri�ed that two unrelated words

are either not connected or have a path length greater than 2, which makes the relationship weak.

The ability of PCG to validate such humanly understood causal pairs with temporal predictive

causality can be used for better hypothesis testing.

5.7 Conclusion

We presented PCG, a framework for building predictive causal graphs which capture hidden

relationships between words in text streams. PCG overcomes the limitations of contextual rep-

resentation approaches and provides the framework to capture inter-document word and topical

relationships spread across time to solve complex mining tasks from text streams. We demon-

strated the power of these graphs in providing insights to answer causal hypotheses and extract-
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Table 5.4: Comparison with manually identified influence from news articles

Pairs in news Relevant paths in PCG
price, project price-hike –(19)– power-project
land, budget allot-land –(22)– railway-budget
price, land price-hike –(12)– land
strike, law terror-strike –(25)– law ministry
land, bill land-reform –(25)– bill-pass
election, strike election –(21)– Kerala government –(10)– strike
election, strike election –(18)– Mumbai University –(14)– strike
election, strike election –(20)– Shiromani Akali –(13)– strike

ing features to provide consistent, interpretable and accurate stock price prediction from news

streams through honest estimation on unseen time series data.
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6 | Granger-Causal Link Discovery in

Large Temporal Networks

6.1 Introduction

Granger causality [156] in time series data is important in many real world applications in eco-

nomics [16], climate science [258] and biology [257]. The knowledge of the Granger-causal struc-

ture allows us to build prediction models to make �ne-grained time series forecasts conditioned

on speci�c covariate values. For instance, the knowledge that a speci�c set of genes interfere

with the expression of another gene allows us to build accurate gene regulatory networks, which

assist in generating hypotheses for drug discovery. In practice, interventions are often infeasible

because of the large dimensionality of data and making inference from real-time observations

becomes inevitable as placing controls are either impractical, or even unethical. As a result, the

inferences and forecasts must be done using only observational data. In this work, we assume

that the underlying Granger-causal structure is speci�ed to the extent that we know which co-

variates a�ect the outcome variable of interest. However, we lack information on how long the

e�ect lasts and if it holds under all covariate distributions. For example, in the DREAM3 gene

expression network task [342], where multiple genes can express and in�uence other genes, ex-

periments are carried out where as part of a treatment, certain catalyzing agents are introduced

over a time period and the corresponding gene expression time series are observed. Here, al-
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though we know that there are a speci�c set of 100 genes that potentially Granger-cause each

other, we do not know how the e�ect of “one gene regulating another” varies temporally. The

number of time-lagged parameters in such a time series model can quickly grow with the max-

imum allowed time-lag (Table 6.1). In other words, because each of the gene expression varies

over time, we need to know how the expression of one gene at one point in time regulates an-

other gene’s expression at a future time in a parameter e�cient manner. This issue is unique

to Granger-Causality over time series data in scenarios with limited data, relative to the high

dimensionality of permissible time-lagged covariate distributions.

A common way to address this issue has been to be conservative and train prediction models

over large time windows to capture any long-term e�ects of covariates. This approach often runs

into data sparsity issues and poor granger-causal link discovery accuracy [390]. To deal with

this issue, prior graphical granger methods [17] have arti�cially imposed sparsity constraints

on the model parameters forcing co-e�cients to collapse to zero, thereby reducing time-lagged

parameters to estimate (from 600− 700 to ≤ 100). However, Granger-Causality was not designed

for large temporal networks with millions of time-lagged parameters; in fact, economists have

often warned against blindly applying it over a large number of variables [332]. One of the issues

in applying Granger-causality directly to large temporal networks, is that large window sizes

also result in the increase in chances of a violation of the positivity assumption [361, 413] - a

condition necessary for consistency of the Graphical Granger methods, i.e certain time-lagged

covariate distributions have been rarely or never observed previously and hence extrapolating

the granger-causal links to such covariate distributions may be erroneous. In such scenarios, it

might be best to defer prediction rather than predicting by extrapolating incorrectly.

To deal with the above challenges, in this paper, we propose a methodology to improve the re-

call of Granger-causal links by conditionally allowing for prediction deferrals. Speci�cally, given

an outcome variable, a treatment variable, and a collection of covariates which are known to have

passed the bivariate Granger-causal test (all of which are time series), our method parametrizes
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each of the Granger-causal links with two parameters: (a) the maximum window size, δ , and

(b) the variance threshold, ρ. The maximum window size speci�es a bound on how long the

treatment e�ect lasts and the variance threshold speci�es when predictions are deferred. In par-

ticular, if the variance of our estimator for a given covariate value is above ρ, then we defer the

prediction, suggesting that we do not have su�cient con�dence in whether the treatment takes

e�ect under the given covariate value based on the observations. Our method chooses the values

of δ and ρ to optimize a Granger-causal link recall metric, which is computed using only those

covariate distributions whose variance is below the threshold ρ. A small value of δ will result in

fewer deferrals during training and thus a more reliable estimate of the recall metric, but might

miss several links with longer time lags yielding lower recall, and the model becomes too sensi-

tive to perturbations over smaller time windows. Very large values of δ also result in lower recall

because they result in a large number of deferrals during training and consequently less evidence

from data to support link discovery. Thus our formulation trades-o� the model’s temporal sen-

sitivity and overlap-based robustness, and learn predictive models that have high accuracy and

are consistent with the known Granger-causal links.

Prior work does not consider link recovery but instead focuses on optimizing prediction ac-

curacy using general purpose sparsity inducing techniques. In particular, multivariate Auto-

Regression linear models (VAR) are trained to optimize prediction accuracy while inducing spar-

sity in the time lag parameters through Group Lasso penalty [257] regularization; links are in-

cluded by comparing the prediction accuracy of the model with and without the treatment vari-

able [73] to test for signi�cance. The non-linear version of the above VAR Granger Causality

models have also been proposed [399] which could model additive e�ects of the past of each se-

ries in a decoupled manner. Sequence prediction models [454] and graph attention models [415]

which model the neighborhood of nodes to learn Granger-causal links have also been studied. We

build o� of these constraints and demonstrate that augmenting the condition of overlap violation

ensures that prediction models which learn to defer when speci�c covariate distributions have
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not been previously observed are better at discovering Granger-causal links.

Learning such robust time-lagged Granger-causal models can be of immense importance in

various real world scenarios of causal discovery. For example, in our running example of gene

expression networks, using time series data from multiple such experiments carried out in lab-

oratory settings along with our Granger-causal parametrization framework, we can extract op-

timal lag parameters between di�erent genes to understand when (time-lag) and how (covariate

overlap) they in�uence each other’s expression. Similarly, in the human motion capture Mo-

CAP task [69], we are able to improve the area under the precision-recall curve (AUC-PR) of

detecting Granger-causal links in the human activity recognition dataset than baseline Granger-

causality [154, 399] methods. Finally, given time series of Granger-causal news events, we im-

prove monthly forecasting accuracy of stock prices. Each of these three tasks have a large set of

time-lagged parameters (113K - 2.9M as per Table 6.1), but aim to predict a very small number of

target variables. In such scenarios, the problem of over-parameterization may lead to prediction

models that spuriously rely on multiple treatment time series variables. We overcome this limi-

tation of prior sparsity inducing methods, by directly optimizing for the recall of Granger-causal

links with su�cient covariate overlap.

The conditional temporal prediction models we have developed are applicable to a diverse set

of forecasting tasks. Speci�cally, our conditional covariate based training approach has

• Reduced the number of parameters to learn by 2-3 orders, and achieved 25% better AUC-PR

in discovering Granger-causal links than comparative baselines

• Improved prediction accuracy over held-out time series by 18-25% across three datasets in

MoCap activity recognition, DREAM3 gene regulatory networks detection and the New

York Times news-based stock price prediction tasks.

• Formalized the trade-o� between time-lag sensitivity and overlap-based robustness and

showed that arti�cially increasing the maximum time-lag leads to an over-speci�ed model
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with sub-optimal link recovery and prediction accuracy.

6.2 Granger Causal Link Recovery

6.2.1 Problem Setup

We consider a time-series forecasting problem where the goal is to predict the valuey(t+1) at time

t +1 of an outcome times series using the past observations X(t, δ ) = {x1(t, δ ), x2(t, δ ), ..xn(t, δ )},

the treatment time series v(t, δ ), the historical outcomes y(t, δ ), each of them a vector of values

evaluated up to δ discrete time steps back in time from timestamp t . We assume we are given

a predictive model m, which outputs the future values of the outcome time series from the past

observations:

ŷ(t + 1) =m (X(t, δ ), v(t, δ ), y(t, δ )) .

Each of the above variables {x1, x2, . . . , xn, v, y}(t, δ ) are time-lagged multivariate variables with

δ time-lagged values going back from time instant t . This means the predictive model has a total

of (n+2) ·δ variables as input to predict the value of the outcome at time t +1. We also assume we

are given non-parametric links of interest of the form v→ y. We now train this predictive model

on historical observational data and use it to make �ne-grained predictions for each covariate

value (x, v). Implementing this approach requires us to answer two questions:

1. How long does the treatment e�ect last?

2. Under what covariate values does the treatment take e�ect?

Answering the �rst question allows to set the correct value of δ . The second question is important

when dealing with observational data because the positivity assumption in covariate overlap

P(v(t, δ ) = v |X(t, δ ) = x) > 0 is often not met and blindly assuming it holds can lead to incorrect

extrapolation.
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Prior work has focused on answering the �rst question using sparsity inducing methods [17],

while we argue that the second question is of equal importance to learn a robust time-lagged

Granger-causal model and has implications on answering the �rst question. We formulate this

as a joint learning problem with the goal to learn a compact Granger-causality aware time se-

ries predictive model which also learns to deferfrom making over-con�dent predictions for time

periods with very few conditional treatment and covariate observations in the data [197].

6.2.2 Time-Lagged Granger-Causal Model Assumptions

Learning the time-lag parameters based on temporal predictions have been studied in the do-

main of Granger causality [154], where the links are established based on the lag parameter in

a time series of the causal variable that provide the highest reduction in regression error of pre-

dicting the e�ect variable in a multivariate setting. These models make assumptions of sparsity,

i.e for a given (v, y) only a small number of time-lagged variables of X, y, v are predictive of

future values of y(t + 1). Many sparsity enforcing methods have been proposed like the Lasso

regularization [17] which minimize the number of non-zero weights in a linear model [399, 26],

or propose an auxiliary task based regularization of jointly predicting the causal graph and op-

timal predictors [235] or propose a recall-based regularization method to model autocorrelated

time series with latent confounders [125]. One overlooked assumption in the above approaches in

overcoming the overparameterization issue is that of the positivity assumption in covariate over-

lap (P(v(t, δ ) = v |X(t, δ ) = x) > 0) [189], between treatment and outcome, given observational

data. We overcome the limitation of prior methods by addressing violations of the positivity

assumption explicitly through covariate conditional variance estimation.
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6.2.3 Covariate Conditional Variance Estimation

Under the ignorability (no unobserved confounders) assumption, we can either estimate the im-

portance of the treatment on the outcome variable from observed data by either slicing data based

on treatment [375] or incorporating the treatment variable as another covariate [135, 236, 197].

In Algorithm 3, we adopt the latter approach and learn a time-lagged prediction model that opti-

mizes the recall of Granger-causal links with the target variable y, using the covariates X and the

treatment variable v. Now we explain the Granger-causal link signi�cance test used, and how we

use a conditioned version of it to incorporate the covariate overlap assumption. Finally, we tie

all of these components into a Bayesian optimization algorithm that maximizes the recall of the

Granger-causal links.

Covariate Conditional Treatment Importance: To overcome the intractability of ensur-

ing the overlap assumption for large number of covariates, we use the approach used by [197].

We estimate the lack of overlap using the conditional variance - V̂ (x, δ ) of the predictive models

m̂,m̃, which predict ŷ(t + 1) (Eqn 6.5). We use a non-parametric Conover Squared Ranks (SR)

test-statistic used for testing for equality of variance in prediction errors [73], to approximate the

new information that helps in improving the prediction accuracy of models. Once the prediction

models are trained on certain splits of the data for a given outcome, we then estimate the variance

by the bootstrapping method and evaluating the covariate variance on numerous held-out devel-

opment splits. For a given threshold ρ, we adopt a trimming policy [180] with the rejection policy,

conditioning on covariates x, where the covariate variance Var [V̂ (x, δ )] is above a threshold ρ

[197], and then compute the Time-Lagged Conditional Treatment Importance - TCTI (δ , ρ).

TCTI (δ , ρ) = Ex:Var [V̂ (x,δ )]≤ρV̂ (x, δ ) (6.1)

This formulation outlines that when the predictive causality test statistic has high variance,
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we should not rely on those slices as they violate the overlap assumption. If the estimated value

of TCTI passes the SR test with α signi�cance (α = 0.05) under a F(1, (n + 2)δ + 1) distribution,

we then consider the treatment variable v to have an α-signi�cant Granger-causal link with y.

This process is then repeated for all treatment variables to give the recall w(δ , ρ):

w(δ , ρ) =
# links α-signi�cant with (δ , ρ) as per Eqn 6.1

# Granger-causal links
(6.2)

For a given time-sensitivity lag parameter, the trade-o� with overlap assumption to opti-

mize recall can be understood by varying the hyper-parameters together. We implemented 3

approaches to �ne-tune the hyper-parameters δ , ρ, including a grid search, random search and a

Bayesian optimization technique [387] outlined in Algorithm 3, that directly models the recall of

Granger-causal links as a utility function w(δ , ρ) (see detailed methods).

Algorithm 3 BayesOpt for Exploring the Time-Overlap Trade-o�s

1: (δ , ρ) ∼ U: uniform random distribution, δ̂ ← 0
2: M = {}, ŵ ← 0,ψ ←stopping criterion
3: while ŵ < 1 −ψ do
4: Update BayesOpt acquisition function
5: Acquire D = {k values of δ } from BayesOpt
6: Updatemaxδ ←maxδ∈D(δ ,maxδ )
7: Train m̂maxδ ,m̃maxδ and update δ̂ ←maxδ ifmaxδ > δ̂
8: Acquire R = {k values of ρ} from BayesOpt
9: Update f , δ ∗, ρ∗ over R to maximize w(δ , ρ): Eqn (6.2)

10: end while
11: Return δ ∗, ρ∗

Inference: Once we obtain the optimal δ ∗, ρ∗, for each outcome variable, we use the trained

models to make time-series predictions over unseen data. If the variance for a given covariate as

pre-computed by the test statistic in Eqn 6.5 is above the threshold ρ∗ at training time, we continue

to defer to make predictions on those covariates at inference time. The resulting time-lagged

prediction model then is used directly to infer the Granger-causal links based on the non-zero
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model parameters in the models (Sec 8.1).

6.3 Results

We now demonstrate the e�ciency of our approach in Granger-Causal link discovery, while

showing that our prediction deferrals do not reduce prediction accuracy. Also, we show choosing

the right set of temporal and covariate hyperparameters are critical for this improvement, as

compared to generic sparsity inducing baselines where the choice is adhoc.

6.3.1 Granger-Causal Link Discovery

We demonstrate that our proposed method by optimizing TCTI (δ , ρ) and hence the Granger-

causal link recall, we improve both the recall of Granger-causal links and the prediction accuracy

across 3 datasets and 4 baseline Granger causal models (see baselines Sec 8.1 in detailed meth-

ods). In Figure 6.1, we see that the prediction accuracy (y-axis) improves by 18-21% and the recall

of Granger-causal links (x-axis) improves by 25% across 3 datasets for each of the four predic-

tion models’ TCTI-{VAR, Neural Granger, Graph Generative, Graph Attention}, when the time

lag and overlap parameters are optimized with 25 random restarts. The baseline models base-

{VAR, Neural Granger, Graph Generative, Graph Attention} indicated as dots in the plot, have

the sparsity constraint enforced through Lasso regularization loss, and end up with a lower re-

call of Granger-causal links i.e more Granger-causal links are not used for prediction, with low

prediction accuracy. Further, to be comparable with baseline models which do not defer, we do

not defer predictions at inference time, but only while learning the optimal time-lag and overlap

parameters δ , ρ in Algorithm 3.
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6.3.2 Importance of Prediction Deferrals

To understand how deferring predictions on covariates with high variance as per TCTI (δ , ρ) has

helped learning better prediction models on the remaining covariates, we see that for each of

the 3 tasks and 4 models in Figure 6.3, that there is an increase in prediction accuracy for the

covariates we choose to predict as compared to the overall baseline model. Further, the increase

is greater when the number of covariate slices deferred is greater. Thus by deferring predictions

over covariates where overlap assumptions are violated, we improve the prediction accuracy and

rely on robust Granger-causal links for prediction.

6.3.3 Variation in Time-Lag and Overlap Parameters

To understand how setting time-lag and overlap parameters is critical for the high performance

of our approach, we plot the range of parameters required to achieve a �xed prediction accuracy

across the 4 prediction models with our approach. In each of the dataset, we see that the distribu-

tion of parameters for time-lag, overlap-constraint for the links for a given Granger-causal model

(the Graph Attention Model) has high variability as shown in Figure 6.4. Also, for a �xed predic-

tion accuracy of outcomes, we see that the links for the 4 modeling choices are clustered into 3

groups - (low δ , high ρ), (low δ , low ρ), (high δ , low ρ). The lack of links with relatively high δ

and high ρ further empirically a�rms the trade-o� between time-lag and overlap-constraints as

shown in Figure 6.5.

6.3.4 Hyperparameter Optimization Method

We also see that across the 3 datasets, and the 4 modeling techniques - the choice of the hyperpa-

rameter �ne-tuning methodology can impact the number of Granger-causal links we can recover

with signi�cantTCTI (δ , ρ) as shown in Figure 6.2. While grid search and random sampling pro-

vide good initial estimates of the maximum recall that can be achieved, we see that BayesOpt
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quickly outperforms these brute force search mechanisms for the same number of model re-

trainings. This drastically reduces the time and cost required to identify the temporal and overlap

characteristics of the Granger-causal links.

6.4 Materials and Methods

6.4.1 Datasets

DREAM3The DREAM3 gene expression network inference challenge [342] consists of 5 datasets,

2 for E.Coli and 3 for Yeast, with each dataset containing 100 time series. Each of the time se-

ries has 46 variables, each of them gene expression replicates observed at 21 time instants. For

each of these 46 variables, we consider in a round-robin version that one of those variables is the

outcome, one is the treatment, and the rest as covariates. This allows us to estimate TCTI (δ , ρ)

for a total of 2070 combinations of treatment and outcomes, given the covariates. The ground

truth contains directed Granger-causal links between 46 replicates, and through our prediction

models, we parametrize each of the Granger-causal links by sweeping over values of δ , ρ with

the maximum signi�cant value of TCTI (δ , ρ). In parallel, we also report the AUROC (Area un-

der the Receiver-Operator Curve) and AUC-PR (Area under the precision recall curve) for the

classi�cation task of detecting the binary gene expression.

MoCAP The CMU MoCAP dataset [69] consists of motion sensor data, for 54 joints, collected

from two subjects for a total of 2024 time points. Here, we are given the Granger-causal links

of the human skeleton and we learn the time lag and overlap parameters for the classi�cation of

each of the activities - jumping jacks, side twists, arm circles, etc. Here, we report the AUC-PR

(Area under the Precision-Recall curve) for detecting the human activity based on the movements

in the human joints, along with the recall of the Granger-causal links in the human skeleton.

Stock Price Prediction In the stock prediction task, the outcomes are each of the 10 stock
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prices from 2010-13 (with 2013 as the test split), and for the treatment variable, we are given the

top 10 �nancial news based Granger-causal factors and a further 100 covariates extracted from

NY Times by [26]. Here too, we measure the Root Mean-Squared Errors (RMSE) of the predicted

values and the fraction of time instants where we had to defer the prediction.

6.4.2 Methods

We now present the framework of our methodology to compute the trade-o� parameters for the

assumptions of temporal sensitivity and overlap-based robustness. By �ne-tuning these param-

eters at development time to maximize recall of Granger-causal links, we learn the parameters

that provide the best possible supporting evidence for the links in each of the domains. Note that

sparsity inducing regularization constraints like Lasso, might lead to zero coe�cient values for

certain variables, and hence the recall of Granger-causal links, that measures whether all known

Granger-causal links are used in the prediction model, may drop when optimizing for prediction

accuracy.

Time-Lagged Predictive Causality

Under the ignorability (no unobserved confounders) assumption, we can either estimate the

importance of the treatment on the outcome variable from observed data by either slicing data

based on treatment [375] or incorporating the treatment variable as another covariate [135, 236,

197]. In this paper, we adopt the latter approach and learn a prediction model with high accu-

racy of the target variable y, using the covariates X and the treatment variable v. To overcome

the intractability of ensuring the overlap assumption for large number of covariates, we use the

approach used by [197] to estimate the lack of overlap using the conditional variance of the pre-

dictive modelm, which predicts ŷ(t + 1). (Section 8.1).

Since the values of importance weights can vary depending on the choice of models, for exam-

ple in the case of linear regression - they are coe�cients, whereas in non-linear network models,

there are attention weights, activation vector alignment - similar to Granger methods [157], we

112



use a non-parametric Conover Squared Ranks (SR) test for equality of variance [73], to test if

the treatment variable provides any new information that helps with the prediction accuracy of

models: m̂ with and m̃ without the treatment variable as input. The test is run on the prediction

errors ϵ(ŷ(x,δ )(t + 1)), ϵ(ỹ(x,δ )(t + 1)) produced by prediction models m̂,m̃ respectively on held-out

temporally disjoint test data.

ŷ(x,δ )(t + 1) = m̂(X(t, δ ) = x, v(t, δ ), y(t, δ )) (6.3)

ỹ(x,δ )(t + 1) = m̃(X(t, δ ) = x, y(t, δ )) (6.4)

V̂ (x, δ ) = SR(ϵ(ŷ(x,δ )(t + 1)), ϵ(ỹ(x,δ )(t + 1))) (6.5)

The SR test we use, is the non-parametric alternative of the Levene’s test [50], which itself

is the robust alternative for non-normal distributions to the 1-way between-groups analysis of

variance (ANOVA) [113] test to detect equality of population means. We use this test over the

parametric ones as we do not make any assumption of the distribution of variance (normal), as

our test of overlap violation cannot work if we already assume that there is an underlying normal

distribution. The input for the prediction model are δ lagged time series of covariates, treatments

and outcomes, and we will control the length of this time series as part of our methodology. We

vary the δ and train jointly - warm starting hidden model parameters as the time lag δ increases,

instead of training a separate model from random initialization per value of δ . Thus, we are able

to compute the temporal lag that maximizes the prediction accuracy of the target variable that is

Granger-causally linked to covariates. We characterize that a Granger-causal link to be supported

by the observed data (or to be recalled), if adding a Granger-causal variable’s temporal lag causes

an increase in the prediction accuracy of the outcome conditioned on the covariate X(t, δ ) = x,

as show by a test statistic with a p-value below the statistical signi�cance threshold (α = 0.05)

under a F(1,n + 1) distribution, as compared to not incorporating the Granger-causal variable
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at all. Otherwise, we characterize that Granger-causal link as not yet observed in the data. To

convert the time-sensitivity into a variance based estimate, we compare the prediction errors ϵ

and characterize it by the inequality of variance V̂ (x, δ ) given by the test statistic of the Squared

Ranks (SR) test. Models m̂,m̃ are trained and tested (Eqn 6.5) on temporally disjoint time series

data.

Overlap-based Conditional Treatment Importance We now have to overcome the in-

tractability of conditioning on the large number of covariates. Here too, we use the previously

trained models: m̂,m̃ to predict the target variable, but use the variance of the treatment impor-

tance estimate [197]. Once the prediction models m̂,m̃ are trained on certain splits of the data for

a given outcome, we can then estimate the variance by a bootstrapping method and evaluating

V̂ (x, δ ) on numerous held-out development splits.

Var [V̂ (x, δ )] = Var [SR(ϵ(ŷ(x,δ )(t + 1)), ϵ(ỹ(x,δ )(t + 1)))] (6.6)

For a given threshold ρ, we adopt a trimming policy [180] with the rejection policy, condition-

ing on covariates where the variance ofVar [V̂ (x, δ )] is above a threshold ρ [197], and then com-

pute the Time-Lagged Conditional Treatment Importance - TCTI (δ , ρ). While the models trained

are dependent on δ , the computation ofTCTI (δ , ρ) is done after the training is completed, rather

than at training time.

This formulation clearly outlines that when the predictive causality test statistic has high

variance, we should not rely on those slices as they violate the overlap assumption. For a given

time-sensitivity lag parameter, this trade-o� with overlap assumption can be understood by vary-

ing the hyper-parameters together. The utility function w(δ , ρ) is given by the fraction of the

Granger-causal links in the given set that passes the di�erence in means t-test (with signi�cance

level α ) thatTCTI is di�erent as compared to the null distribution. We see that for thresholds: ρ,

114



such that the overlap condition x : Var [V̂ (x, δ )] ≤ ρ is satis�ed for all covariates x, then there

would be no deferral, and such aTCTI (δ , ρ) would directly evaluate the Granger-causality of the

links, and hence w(δ , ρ) would be equal to 1.

We now outline the 3 approaches we undertake to �ne-tune the hyper-parameters δ , ρ.

Grid Search: By using a grid search for values of δ ∈ {1, 2, . . .T }, ρ ∈ {η, 2η, . . .kη}, for each

Granger-causal link in the dataset, we search for the value δ ∗, ρ∗ that maximizes thew(δ , ρ). This

way, we search among all Granger-causal links, the sensitivity and robustness parameters that is

best supported by the observed data. This can be time-consuming to be done for each model and

we can upper-bound the time lag parameter T to train the model.

Random Search: Instead of an exhaustive grid search, in this approach, we sample values of

δ , ρ from a uniform distribution and choose the parameters that maximizes thew(δ , ρ). Here, we

were able to heuristically choose a bound larger than T ,kη respectively and can search among

values not explored by the grid search. Although we can control the number of hyper-parameters

to train and evaluate the models against, the computational cost in training the models remain.

BayesianOptimization: To learn which hyper-parametersδ , ρ result in high recall of Granger-

causal links as per the signi�cance level α = 0.05, we used Bayesian optimization with the proba-

bility prior f parameterized by θ to be drawn from Gaussian processes. Speci�cally, we maximize

the fraction of links w validated with a signi�cance level for a given value of (δ , ρ). The covari-

ance kernel chosen is the ARD Matern 5/2 Kernel [387], which has been demonstrated to capture

realistic hyper-parameter distributions in neural networks, while resulting in sampling functions

that are twice di�erentiable. We choose hyper-parameters in parallel using the Bayesian roll out

method, where the acquisition function is optimized the utility of expected improvement per trial.

As noted in Section 6.4.2, δ requires a higher cost and time as it requires re-training of the

model, while ρ can be �ne-tuned post-training. These costs are modeled independent of the

hyper-parameter distributions by calculating the expected inverse duration of computation and

incorporating it in the expected improvement per second utility.
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Inference: Once we obtain the optimal δ ∗, ρ∗, for each outcome variable, we use the trained

models m̂δ ∗ to make time-series predictions over unseen data. If the variance V̂ (x, δ ∗) > ρ∗ for a

given covariate x as pre-computed by the test statistic in Eqn 6.5 using m̃δ ∗ at training time, we

defer to make predictions on those covariates at inference time. Thus, we can now compare the

predictions made by our overlap-aware Granger-causal model with baselines on the data slices

where we do not defer.

6.4.3 Baselines

We would like to present a few comparable baseline prediction models built to incorporate Granger-

causality for time series and discuss how compact time-lagged versions of these models have been

learnt. These models form the baselines on which we evaluate in Section 6.3.

Multivariate linear auto-regressive models: Multivariate Auto-Regression linear models

(VAR) take the time series of the treatment, covariates and the lagged values of the target variable

as input to predict the target variable for future time instants. Here, we compare the prediction

accuracy of the model with and without the treatment variable using the non-parametric Squared

Rank test [73] to test the signi�cance of a non-zero coe�cient in matrix C. Additionally, we

also add the Group Lasso penalty [257] that has been shown to overcome the need of precisely

estimating the time lag by applying the Lasso regularization.

y(t + 1) = A · y(t, δ ) + B · X(t, δ ) +C · v(t, δ ) + D (6.7)

Neural Granger causality: The non-linear version of the above VAR Granger Causality

models have also been proposed [399] which could model additive e�ects of the past of each series

in a decoupled manner. Here, by modeling the task of Granger causality using componentwise

multilayer perceptrons and recurrent neural networks, all time series are captured in an input

116



layer of the neural network having a total of δ · n2 ·W parameters, where W is the number

of hidden units in the input layer. In order to model long time lags in Granger causality, they

use component-wise recurrent neural networks (RNN) for each time series. Similar to the linear

model, to enforce sparsity, Lasso penalty and the hierarchical group Lasso penalty have been

proposed, which chooses a suitable lag for each of the time series - but ignores the covariate

overlap violation.

Generative Graph Neural Networks: Another approach proposed in [454], is to model this

as a sequence prediction by reducing the graph to Breadth-First-Search (BFS) based determinis-

tic sequence. They use a hierarchical graph RNN structure to �rst model the node prediction

problem. In our case, although we know all the nodes of the network ahead of time, we can use

the edge prediction model and predict edges in a BFS sequence. While this is comparable to the

Neural Granger Causality model, the number of parameters to be learnt is lesser: δ · n ·W .

Graph Attention Model: Also recently, with the success of attention models in natural

language tasks like machine translation, attending over the neighborhood of nodes, instead of

recurrent architectures has been shown to be speci�cally relevant for graphical causal modeling

[415]. This approach requires only the neighborhood of nodes and scales better than spectral

representations of the graph, which need to be aware of the entire graph structure.

Other Related Work: We aim to understand the assumptions required to identify the op-

timal time sensitivity parameters of Granger-causal links in time series data, once the direction

and presence of the Granger-causal links have already been de�ned. Prior work in this space has

focused on methodologies to increase recall of the causal links in auto-correlated time series [137]

or regularize over unseen parts of the causal graph [235]. However, such methods fail to quantify

when it might be even possible to recover the optimal time lag parameters in an observed data

distribution. The covariate relationship in time series have been explored in Granger causality

with group boosting methods [257] or Markov random �eld regression [254] which capture the

non-linear group information between variables in a time series. Prior methods [358] that main-
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tain a set of probabilistic causal models and perform model selection can also bene�t from the

quanti�cation of the trade-o� between overlap and temporal parameters in longitudinal data.

6.5 Discussion

This paper provides a new framework for learning temporal and overlap parameters in Granger

causal models for time series modeling tasks. These time-lagged models demonstrate signi�cant

gains compared to alternative formulations across three completely disparate time series tasks:

news-based stock price prediction, the DREAM3 gene expression network analysis and MoCAP

human motion recognition. The DREAM3 datasets and the associated inference research chal-

lenges have signi�cant broader implications to the systems biology research community. Given

our observed AUROC and AUC-PR gains, we hope that the systems biology community can

bene�t from our code base and model results (which we will release to the public). Similarly,

the MoCAP dataset is widely used within the motion capture community. Here, we are able to

demonstrate AUC-PR gains for detecting human activity and improve the recall on connecting

these movements to Granger-causal links in the human skeletal structure. Our results on the

stock market dataset would be highly relevant for the �nance community and we believe this

line of work can be extended to build causally-aware predictive models for socio-economic appli-

cations. Across all these open data sets, we believe our research conforms to the ethical guidelines

outlined in these communities.

We have demonstrated the need to parameterize causal links with their associated temporal

sensitivity with awareness of overlap assumption violations. In time series data, we show that

there exists a trade-o� between how temporally sensitive any prediction model incorporating the

causal links can be while not compromising on the covariate overlap assumption. This allows us

to further build better prediction models while not relying on data that lacks overlap while at-

tempting to capture long term e�ects. Speci�cally, in the MoCap activity recognition task, we see
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Dataset n δ # Variables # Targets
MoCAP 54 2,024 113,344 12
DREAM3 46 10,500 504,000 5
Stocks 100 29,200 2,978,400 10

Table 6.1: Problem of Over-parameterization in Time-Series Granger-Causal Models
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Figure 6.1: Recall of Granger-Causal Links vs Prediction Accuracy (a) DREAM3: Across each of
the 5 outcomes in the DREAM3 dataset, we see that as the recall of the Granger-causal links in the gene
expression network increases, the AUROC of the time series of the gene expression level also increases.
(b) MoCAP: As the recall of the Granger-causal links of the human skeleton network increases, the AUC-
PR in the human activity recognition task increases. (c) Stock: As the recall of the Granger-causal links
of the financial news factors increases, the prediction accuracy of 10 stock prices increases.

that an inaccurate time-lag incorporated into the model can lead to inaccurate activity predicted

which may have implications on applications in augmented and virtual reality. These errors em-

anate from incorrectly reconstructing the skeleton of the human body from the sensor data. In the

DREAM3 gene regulatory network, if the expression of one gene if is incorrectly predicted, then

we misinterpret one gene interacts with another - which may lead to ine�ective drug candidates

that target the gene regulatory networks. Finally, in the stock price prediction task, an incorrect

time-lag can be catastrophic for any algorithmic trading application that relies on news based in-

dicators - such crashes in the stock market have been anecdotally reported as �ash crashes. Hence

in all these scenarios, using the correct time-lagged model has implications in downstream ap-

plications, and if left unaddressed can lead to spurious Granger-causal links being incorporated.

Further, since the size of such temporal networks are quite large with millions of parameters of

estimate, a principled way of addressing covariate uncertainty through prediction deferrals can

further improve the trust in practitioners.
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Figure 6.2: Sampling e�iciency among hyperparameter search methods The number of re-trainings
required to fine-tune the time sensitivity and robustness overlap parameters to improve the recall of
Granger-causal links in the DREAM gene expression dataset
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Figure 6.3: Prediction Deferrals e�ect on Accuracy Choosing δ based on an overlap based constraint,
the prediction accuracy increases on the remaining test samples on (a) DREAM3 (b) MoCAP (c) Stock
datasets for 4 Granger causal models. As the prediction models choose to defer on larger fractions of the
covariate data splits, the increase in accuracy is higher.
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Figure 6.4: Variation between time lag and overlap parameters for the Graph A�ention Model on 3
datasets shows the need to learn them jointly
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Figure 6.5: Trade-o� for a fixed prediction accuracy Time sensitivity and robustness overlap among
the fine-tuned Neural Granger Causal prediction models across Granger-causal links that provide the
highest TCTI (δ , ρ) for (a) DREAM3, (b) MoCAP and (c) Stock Price prediction datasets
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Part III

Counterfactual Domain Reasoning
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7 | Enhancing Domain Specific

Concordance in Neural

Recommenders

In this thesis, we focus on the design of Domain Faithful Deep Learning Systems, that trans-

late expert-understandable domain knowledge and constraints to be faithfully incorporated into

learning deep learning models. In high-stakes domains like health, socio-economic inference

and content moderation, a fundamental roadblock for developing deep learning systems is that

machine learning models’ predictions diverge from established causal domain knowledge when

deployed in the real world and fail to faithfully incorporate domain speci�c structure in coun-

terfactual data distributions. Prior work in this space have formulated this problem as that of

model generalization [298], data and label distribution change [251], domain adaptation [131],

or adversarial robustness [70]. By doing so, they argue about model under-speci�cation in the

in�nite data regime and data representativeness [75] over data distributions that are not realisti-

cally observed. While improving robustness of machine learning models is the core objective of

all these approaches, they still fail to meet the expectations of domain experts on how machine

learning models should behave when deployed in the real world.

Currently, domains where machine learning is being applied can be broadly distinguished

based on the amount of prevalent enforceable domain knowledge in that domain. For example,
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causal models [328] are robust and compact representations of domain knowledge which have

implications of the conditional probabilities of the e�ect given the treatment and covariate dis-

tributions. Such an abstraction is common and well understood in industrial settings where the

data generating procedure is well documented. Causal knowledge is often expressed in various

forms - graphical causal models, semantic causal roles in sentences, theoretical model parame-

ters. For example, causality based question answering lies at the core of customer support tools

like chatbots. Prior ML models fail to capture the directed nature of causality, for example rain

causes tra�c delay, and not vice versa. Hence, learning asymmetric causal embeddings faithful

to causal graphs can improve accuracy. Causal knowledge is also useful in data sparse conditions

where interventions are often infeasible. For example, the task of forecasting famine is critical for

the mobilization of aid to millions of people, but hard to solve due to data scarcity in fragile and

poorer countries. By building a news-based causal-aware forecasting framework that extracts

causal features from 11.2 million news articles across 2 decades in 15 fragile countries, we can

improve forecasting accuracy compared to state-of-the-art predictive models.

On the other hand, even in domains where causal models are not established, certain coun-

terfactual behavior of the machine learning models are expected. For example, trustworthy ML

models in health recommendations need to be robust to medical concepts over unseen patient

data, while traditional ML models focus only on optimizing accuracy over the observed but lim-

ited test data. By incorporating trust through doctor-speci�ed mapping rules between diagnoses

and medications through data augmentation, we can improve accuracy of state-of-the-art end-

to-end neural models. Automated detection of online toxic comments improves the quality of

interaction in social media. However, the variations in the context of comments make it hard to

protect speci�c demographic groups from disparate impact. By explicitly modeling such nuances

through counterfactual data augmentation, we can bridge the gap and improve the accuracy of

detecting toxicity by 6%.

To overcome these limitations, I have developed domain faithful deep learning systems that
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directly incorporate domain knowledge in various stages of the machine learning pipeline - model

design, constrained optimization, data augmentation and feature selection. This has led to de-

ployments of domain faithful ML systems for consequential socio-technical and natural language

understanding tasks by collaborating with domain experts. Speci�cally, we address critical re-

search questions such as “What data distributions do domain practitioners care about?”, “How

to faithfully convert domain knowledge into model constraints for better generalization?” and

�nally “How to evaluate whether the ML models we learn are grounded in the domain knowl-

edge and in what ways do they deviate?”. In doing so, we enable ML to be used towards positive

socio-economic development, by tackling real-world societal problems in computational social

science and NLP, and simultaneously addressing the fundamental ML research questions under-

lying these problems. Throughout this thesis, we adopt a research philosophy that strongly em-

phasizes “end-to-end system design”, where algorithmic contributions are evaluated and deployed

in the real world with the aim to adopt them at scale. For instance, the causal-aware and robust

prediction models developed in collaboration with the World Bank and Google, have shown that

relying on data alone can lead to incorporating spurious correlations, and low accuracy in data

sparse or counterfactual scenarios, and hence, domain-speci�c structure is necessary for building

robust predictive models. Overall, the research in the thesis has been focused on applying domain

faithful deep learning to build causally faithful and heterogeneously robust predictive models in

the domains of socio-economic inference, causal-aware deep learning, health, and toxicity de-

tection. Each of these domains pose unique challenges on how to incorporate structure and the

diverse techniques required to execute them. Now, we present the outline of the 4 sections of the

thesis:

Domain Faithful Causal Models: Question Answering tasks power technologies like chatbots

for customer support in businesses. Recent advances in machine learning for processing natu-

ral language text have broadly relied on large neural language models like Transformers which
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capture the relationships between the word tokens in long sequences. The �ne-tuning of these

language models for multiple tasks have demonstrated state-of-the-art performance on bench-

marks like GLUE. However, these �ne-tuned models perform poorly on counterfactual sentences

or inconsistently on downstream tasks which have speci�c structure like graphical causal models

or domain-speci�c theory. In the causal-QA dataset [5], questions of the form “What causes X?”

are posed, where X can be a disease, phenomenon and a real-world event. Neural Network mod-

els have been modi�ed to predict causal links, but lack the consistency required, i.e undirected

paths in a graph are still considered causal, whereas causal graphs are strictly directional. On the

other hand, traditional Information Retrieval (IR) techniques that mine such causal information

from knowledge graphs are limited in their generalizability to new and related terms mentioned

in questions, i.e “�ood” and “deluge” may have similar causes, but if “deluge” is not in the graph,

then we have no way of estimating its cause. To overcome the limitations of using either an end-

to-end model or domain knowledge as-is in its limited scale, we provide a way to incorporate the

constraints imposed by the domain-speci�c structure - causal graphs in this case into BERT-like

transformer based models. We demonstrate that when proximity between the embeddings of two

nodes is modeled using a pseudo-quasi-metric, we are able to capture the directedness of causal

graphs. Speci�cally, we measure three properties of faithfulness namely the uniformity of the

embeddings, the correlation between distances of any two random nodes in the graph, and link

prediction accuracy. In each of these graph-speci�c indicators, by imposing a regularization loss

which penalizes inconsistencies in how the embeddings satisfy these two properties over two

large causal graphs with 800K nodes, we obtain a �ne-tuned embedding that not only achieves

causal faithfulness better, but also improves the area under the Precision-Recall curve over the

Yahoo! Answers causal-QA dataset by 21%.

Domain Faithful Feature Extraction: In socio-economic inference, the motivation is to

have a broader positive societal impact using data-driven machine learning tools. Many applica-
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tions which relied purely on data have faced issues as they did not incorporate domain-speci�c

causal structure. For example, in the Flu prediction model based on Google Search Trends, it was

shown that the model deviates over-time as compared to a one that incorporates signals derived

from the Center for Disease Control (CDC). In the problem of predicting food insecurity task,

we overcome the challenge of data sparsity in fragile states which are often encumbered with

infrastructural and con�ict-based issues that makes the task of data collection harder. As tra-

ditional indicators like rainfall, vegetation index, etc are often delayed, we aim to use the news

streams published by reputed sources like BBC, Reuters, AP, etc. to automatically extract and

construct causally grounded indicators. Our contributions extend beyond the methodologies and

have implications on the ethical and operational trade-o�s a domain practitioner needs to make

in a socio-technical system. In the famine prediction task, by extracting causes from scienti�c lit-

erature using Semantic Frame Parsing and then constructing time-series indicators by expanding

to tokens with low Word-Mover distances, we are able to reduce the food insecurity forecasting

errors by 32%. Additionally, alignment of models to domain expertise provides an additional in-

centive to practitioners - counterfactual reasoning: Not all episodes of famine are the same, and

our methodology allows us to model what is the implication of each of the causes in improving

the prediction accuracy at a �ne-grained level of districts in 15 of the most fragile countries in

the world over two decades.

Domain Speci�c Concordance and Counterfactual Robustness: Recent advances in ap-

plying AI for healthcare have often relied purely on data, but fail categorically when patients

with di�erent characteristics than the ones present in training data are presented. Speci�cally,

in the medication recommendation task, learning end-to-end neural models based on historical

electronic health records might prove to be accurate, but may not inculcate trust in doctors, un-

less the ontologies of medicine that are used as standards by trusted medical associations are

incorporated. In the medication recommendation task, since all possible diagnoses that may be
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relevant might not be present in the training data, we improve the neural network model - G-

BERT’s domain-speci�c concordance based on expert-speci�ed medical ontologies like medication

and diagnostic code hierarchies and the mapping rules between them. By incorporating causal

structure into machine learning models through categorical counterfactual data augmentation

and regularization, we guard against predictions that violate the domain knowledge over cate-

gories and improve the categorical robustness of prediction models by 1.2x and accuracy by 12% on

the MIMIC-III dataset, as we rely less on spurious correlations in the data.

Further, in the domain of toxicity detection in online social media comments, social-science

experts have long advocated for incorporating how speci�c demographic groups are susceptible

to speci�c types of toxic comments. It is important to model secondary attributes that are relevant

to the toxicity of a sentence explicitly when we aim to be fair based on demographic groups. In

this scenario, one needs to be aware of group-speci�c language, idioms, quirks, and background

history to ascertain the toxicity of a comment. But this nuance was never captured explicitly in

BERT-based neural network models. We incorporated this domain knowledge through counter-

factual data augmentation that model secondary variables and were able to improve the ability to

detect toxic comments for all demographic groups, speci�cally black women, who were suscepti-

ble to more directed toxic comments. By augmenting examples of directed toxicity in a weighted

manner to demographic groups that are more exposed to such comments, we are able to classify

toxicity better on all demographic groups. Without this nuance of how toxic comments vary,

and just optimizing for overall absolute error, the toxicity detection model would disparately

perform poorer on speci�c demographic groups unintentionally. Through intervention on sec-

ondary attributes through counterfactual data augmentation, we not only improved the model’s

understanding of what constitutes toxicity, but also improved the accuracy on all demographic

groups by 7%. This application clearly demonstrates that as a text classi�cation model is scaled to

be applicable to all demographic groups in a society, the secondary e�ects of covariates and how

they impact the performance of a ML system depends on domain knowledge, and needs carefully
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expert supervision. Such business decisions and design choices have the capacity to in�uence the

product experience for billions of users.

Domain Faithful Evaluation: Domain practitioners have often minimal guidance on the

choice of parameters that AI tools in healthcare operate over. For example, in the angiographic

disease status prediction task, the variability of diagnostic features in di�erent demographic

groups is well studied. Here, practitioners need to carefully evaluate the trade-o�s between the

per-group accuracy across demographic groups, when an end-to-end jointly trained model is

used. When we analyze the performance of ML models on speci�c demographic groups, we out-

line the choice of parameters of fairness and accuracy trade-o�s that practitioners have based on

Pareto E�ciency. For example, how accurate an ML model should be over patients with darker

skin tone than lighter skin tone in a heart disease status prediction model is a choice that cannot

be made blindly, but with careful consideration of the medical diagnostic equipment’s character-

istics and the Pareto optimality of the model’s performance across demographic groups. Through

the principle of Pareto E�ciency, we can potentially improve group-level accuracies by 9.6% on UCI

datasets. Acting blindly based on the neural model’s decisions in high-stakes scenarios might be

sub-optimal and using our methodology, experts can now justify their choice, in case they were

to be contested.

7.1 Related Work

The notion of a model following a set of expert de�ned rules is prevalent in multiple domains of

machine learning (ML) research. Below, we present a brief overview of these perspectives and

how our approach aligns with them.

Hybrid Systems: Many approaches have been proposed to aid the domain expert in inter-

preting the machine learning model’s predictions [136, 419]. Tools to guide the underlying deep
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learning model through interactive feedback [53] and inductive logic [439] that increases diver-

sity and aligns the model’s predictions to expert knowledge have been proposed in the medical

domain [300]. Applying data mining to extract association rules using Bayesian methods between

input and output categories are also well studied [240], but they are typically not validated with

rules by experts.

Interpretability: Mapping human interpretable rules with ML models has also been done

to understand the inner workings of a black box machine learning model. For a broad review

of the various notions of interpretability, we refer to [97]. Our work closely relates to the “task

related latent dimensions of interpretability”. Here, we care about the hypothesis of local inter-

pretability[355], with incomplete coverage of domain expertise [462]. By restricting to this type

of interpretability over expert-de�ned rules on subsets of the data, we seek that our models obey

those rules.

Adversarial Robustness: To make machine learning models robust to perturbations, prior

work has proposed defenses so that the model does not change it’s output prediction for a small

(ϵ), but humanly imperceptible change in the input [70, 54]. However, such adversarial robustness

may either increase [188] or decrease [459] the overall accuracy of the models depending on the

human speci�ed notion of robustness. Hence, in the �eld of computer vision, robust models over

concept based perturbations [445] and in natural language processing [185], robustness over word

substitutions with synonyms are desired [344]. This indicates that the range of perturbations over

which the robustness is de�ned, is equally important and going beyond geometrical de�nitions

of robust boundaries is valuable [248, 346]. Hence, we choose to ground our models in expert

de�ned relationships between inputs and outputs, which we would expect the non-observed data

to generalize over.

Robustness in Recommenders: Recently, there has been a lot of interest in making rec-

ommender systems robust to avoid extremely undesired recommendations (e.g. horror �lms to

children) [424, 448]. Robust models that explicitly guard against multiple attack models [187] like
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pro�le injection [82], noisy ratings [311] and implicit issues like outliers [397], data not missing

at random [230] have been proposed. Our de�nition is complementary to prior work in robust

recommender models which propose simpler models like decision trees [227], fairness guarantees

to avoid unintended bias [35, 83, 384, 40], temporal coherence to avoid catastrophic forgetting

[424], defence against adversarial attacks of imperceptible changes [66, 174], and uncertainty

based model calibration [448]. However, such approaches implicitly assume the presence of em-

beddings of items on which a similarity function (e.g cosine similarity) can be applied and assign a

penalty if the recommender predicts items with low similarity. Instead, we explicitly use domain

speci�c rules de�ned over categories of items and expect that the recommendations do not devi-

ate categorically from those rules. Additionally, such approaches focus primarily on training-time

attacks and do not address counterfactual scenarios that might arise during inference.

Substitutability: In recommender systems, the notion of substitutable items comes closest

to the approach we take to create perturbations based on expert de�ned rules [281]. Such sub-

stitutable items have been inferred through browsing patterns like "users who viewed X bought

Y" and co-purchasing logs [430]. Prior work incorporating categories through hierarchical au-

toencoders [93], multi-tasking [466], categorical embeddings [209] in recommender systems have

improved accuracy. We combine these two insights and use expert provided rules to create cate-

gory based substitutable counterfactual data to augment the existing training dataset.

7.2 Problem Formulation

We now present a formal description of our problem formulation and our goal to enhance neural

recommender models through domain-speci�c concordance.
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7.2.1 Notations

As illustrated in Figure ??, in canonical recommender systems, each user has a discrete subset

of historical items X ⊆ X (e.g., movies, diseases, etc.), which are then used to recommend to

the user another subset of items Y ⊆ Y, which may be of a di�erent type (e.g., another movie,

medicine). The recommendation problem is to train a model h : P(X) → P(Y) given a dataset

D : P(X) × P(Y) (P denotes the power set). Our problem formulation works closely with the

de�nition of categories of items that we can use to group recommended and historical items. This

categorization based on individual item’s characteristics is a choice in favor of discrete �nite sets

to describe the domain knowledge, and has been made in prior work [162] for easier reasoning

by human experts. We assume the availability of such coarse-grained categories in our problem

de�nition. Let’s consider a �nite number of discrete categories based on characteristics of the

input items to be j1, j2, ..jn ∈ CI (e.g., genres or part of the body). Each input item x ∈ X can be

mapped to a subset of categories in CI by applying the function fI : X → P(CI ). Similarly, let’s

consider �nite discrete output categories k1,k2, ..,km ∈ CO and an output category set mapping

function fO : Y → P(CO ). We consider applications where there are priors between individual

categories j ∈ CI and k ∈ CO , that have been given by experts as domain knowledge. That is,

we have knowledge of high level relationships between inputs and outputs that we expect the

model to be mostly stable over. We represent these priors between individual categories using a

mapping p : CI → CO . This formalizes the expectation that for an input in a speci�c category

j ∈ CI , an output in a speci�c category k ∈ CO is recommended. We also consider that a distance

metric dc exists between any two categories, both over inputs: dc(j, j′) and outputs: dc(k,k′).

7.2.2 Medicine Domain Example

We illustrate the formulation of our problem with an example from the medical domain, where

domain speci�c criteria are prevalent. In the MIMIC-III dataset, patient health data and their
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corresponding visits to the hospital and medication are stored in electronic health records. The

task of medication recommendation is to predict the set of medications prescribed by doctors by

taking into account the patient’s diagnostic codes, previous medication and other information.

In this example, we consider the diagnostic ICD-9 codes (International Classi�cation of Diseases)

for a patient as input X . Each of the ICD-9 codes, x ∈ X belong to an ontology of diagnostic

codes, de�ned by a tree structure [318]. For example, consider the ICD-9 code “110.2" which

describes “Dermatophytosis of hand”, which belongs to the parent category “Dermatophytosis”:

j in the ICD tree. In our example, fI is given by the parent function over the ICD-9 ontology

tree. Also, let y ∈ Y correspond to a recommended ATC (Anatomical Therapeutic Chemical

Classi�cation System) medication code [316], for example “J02AA” which describes “Antibiotics

for systemic use”. Similarly, fO is the parent function in the ATC ontology which maps to the

parent category k , which in our example is “Antimycotics”. For the mapping between categories

of diagnoses and medicine, there are expert-validated priors extracted from medical studies; for

example in [atc-icd], the disease category “Dermatophytosis” j is mapped to the medicine cate-

gory “Antimycotics” k . Each of these categories encapsulate a total of 10 ICD-9 codes and 3 ATC

codes within them respectively. So, for instance, if the input ICD-9 code was: “Dermatophytosis

of foot” (also in category j) instead of “Dermatophytosis of hand”, then we, using the mappings

from [atc-icd] as priors, we expect that one of the 3 medicines in category “Antimycotics” k

would likely still be recommended.

7.2.3 Domain-Specific Concordance

Based on this understanding of examples and categories, we de�ne now a set of perturbations

and the concordance we expect over it.

De�nition 7.1. Within-Category Perturbation: For an example X ⊆ X and a given input

category j, we de�ne a set δj(X ) which contains perturbations of X by replacing a single item
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x ∈ X from category j ∈ fI (x) with another item also in category j:

δj(X ) = {x
′ ∪ X \ x |x ∈ X , x′ < X , j ∈ fI (x), ∈ fI (x

′)} (7.1)

As de�ned, δj(X ) o�ers a set of examples that, at least according to category j, are fairly similar

to X . We now formally de�ne concordance where such perturbations are done on a subset of the

dataset Dp ⊆ D, which are covered by the domain-speci�c rules p.

De�nition 7.2. Domain-Speci�c Concordance: For all examples (X ,Y ) ∈ Dp ⊆ D, such that

∃x ∈ X , ∃y ∈ Y that matches a speci�ed rule p(j) = k , i.e. j ∈ fI (x) and k ∈ fO (y), then we

consider a model h to obey domain-speci�c concordance if for all within-category perturbations

X ′ ∈ δj(X ), we observe that ∃y′ ∈ h(X ′) such that k ∈ fO (y
′).

Stated more colloquially, whenever there is an example for which we see a relationship be-

tween the input and output that matches one of the domain expert rules p, we expect the model

to be stable and continue to obey that rule over small changes that do not change the category

of the input. Hence, we focus on changing one item at a time, and check if the outputs that had

initially followed the category mapping continue to do so after the perturbation. This allows do-

main practitioners to reason about counterfactual changes in the inputs that do not modify input

categories that are mapped by domain speci�c priors, and check for safe exploration within the

boundaries speci�ed by domain speci�c rules. However, we do not cover the scenarios when the

input’s categories do change, or when the example does not match an existing rule. Thus, we

restrictively guard against sudden changes in a recommender model’s output categories due to

minor changes in the input whose categories remain unchanged. As motivated in the Introduc-

tion, in a movie recommender model, changing one “animation” movie to another in the user

history, should not drastically change the category of all movies recommended from “animation”

to say, “documentary”. Speci�cally, we expect that at least one of the movies recommended still is

an “animation” movie. Hence, our proposal is a hybrid framework where mappings between hu-
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man interpretable categories can co-exist with neural recommender models. Having introduced

the domain-speci�c category mappings, we now present recommender models that follow these

category mappings.

7.3 Methods

Below, we present the methodology to optimize for robustness over the within-category pertur-

bation dataset.

7.3.1 Rule-based Augmentation

In order to improve model robustness by reducing category misclassi�cation, we de�ne the cate-

gory misclassi�cation loss over within-category perturbations of examples in the observed dataset

D as follows:

De�nition 7.3. Category Misclassi�cation Loss: For all examples (X ,Y ) ∈ Dp ⊆ D, such that

∃x ∈ X , ∃y ∈ Y with p(j) = k, j ∈ fI (x) ∧ k ∈ fO (y) and the indicator loss I, the loss Lv due to

misclassifying the output category k while the input changes fromX toX ′ ∼ δj(X ) can be written

as

Lv(Dp) = E(X ,Y )∈Dp E
(j,k):p(j)=k
X ′∼δ j (X )

I(k <
⋃

y ′∈h(X ′)

fO (y
′)) (7.2)

We now have a loss over categories: Lv where we expect the output category to remain un-

changed on counterfactual examples X ′ (Note that the above loss is non-di�erentiable and an

approximation is provided in the following section). But, we still expect the exact label Y to be

right for the original example X using the multi-label cross-entropy loss L, measured using Lc
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as follows.

Lc(D) = E(X ,Y )∈DL(h(X ),Y ) (7.3)

Attempting to write a loss similar to (2), but on the actual counterfactual outputsY ′, is di�cult

as we essentially do not observe them [329] and the changes are not imperceptible. However, by

focusing on higher-level categories in (13.1), we expect that the categorical mappingp generalizes

over unobserved counterfactual data (X ′,Y ′). Expecting that models follow rules over categories

of recommended items instead of speci�c counterfactual recommendations is what makes our

framework easy to reason about, but also enforceable while training without having to explain

away [437] all the counterfactual outputs by introducing more Bayesian priors. So, in order to

improve robustness by training over Rule-based Augmented data (RA), while ensuring accuracy

on the observational data, we combine the objectives using a α-weighted Lagrangian term to

learn a new regularized model hRA:

hRA = arдminh(αLv(Dp) + (1 − α)Lc(D)) (7.4)

7.3.2 Within-Category Regularization

While hRA minimizes the category misclassi�cation loss over the rule-based augmented data,

minimizing over all counterfactual perturbations X ′ ∈ δj(X ) for a given rule p(j) = k can be

computationally expensive. However, minimizing the misclassi�cation loss over a random sample

of δj(X ) can be less e�ective. To optimize for robustness in a principled sample e�cient manner,

we propose to regularize by minimizing, for each sample X ′, the upper bound of the di�erence

between within-category output logits z(X ′,y) and the observed output y logit which belonged

to category k . By lowering this upper bound of di�erence between within-category logits and

the observed output, we train the model to treat all items within a category as more likely than

135



items outside the category. We now formally de�ne this Within-Category Regularization (WCR)

loss.

De�nition 7.4. Within-Category Regularization Loss: For an example (X ,Y ) ∈ Dp , follow-

ing a rule p(j) = k , such that ∃x ∈ X : j ∈ fI (x) and ∃y ∈ Y : k ∈ fO (y) and X ′ ∈ δj(X ); if

z(X ,y) denotes the logits of h(X ) for y, and Yk = {y′ ∈ Y|k ∈ fO (y
′)}, then the within-category

regularization loss is given by

Lr (X ,X
′,y) =max(0,maxy ′∈Yk (z(X ,y) − z(X ′,y ′))) (7.5)

The expectation of Lr over all examples (X ,Y ) ∈ Dp and all rules of the form p(j) = k with X ′

sampled from δj(X ) and y sampled from Y ∩Yk , give us the Rule-based Augmentation - Within-

Category Regularization loss (RA-WCR)

Lar (Dp) = E
(X ,Y )∈Dp ,(j,k):p(j)=k
X ′∼δ j (X ),y∼Y∩Yk

Lr (X ,X
′,y) (7.6)

Our approach is related to multiple lines of prior work. For example, interval bounded propa-

gation [152] minimizes the upper bound of the output logits for inputs perturbed within ϵ distance

in a l∞ norm-bounded neighborhood. In our case, instead of perturbations de�ned in the l∞ norm

bounded neighborhood, we consider the set of within-category output classes. This also bares

some similarity to the intuition behind distillation [183], logit pairing [210] and multi-task mod-

eling [164] techniques. We adopt this technique as it smoothens the loss over a neighborhood of

items within an output category instead of a strict cross-entropy category loss. A summary of

the steps in RA-WCR is shown in Algorithm 5.
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Algorithm 4 Rule-based Augmentation and Within-Category Regularization (RA-WCR)
1: Input: Dataset D, categories of recommended items (CO ) and input items CI , and domain

speci�c mapping p : CI → CO

2: for all (X ,Y ) ∈ D do
3: if (X ,Y ) ∈ Dp : p(j) = k then
4: Sample perturbations X ′ ∼ δj(X ), y ∼ Y ∩ Yk
5: Backpropagate αLar over samples of (X ′,y)
6: end if
7: Back-propagate (1 − α)Lc

8: end for

7.3.3 Metrics

To build the neural recommender models that follow domain rules, we regularize the model such

that within-category loss (13.2) is minimized. We evaluate improvement in robustness using the

following distance metric between inputs.

De�nition 7.5. Robustness Distance: Given all rules of the form p(j) = k , and the subset of the

dataset D covered by them: Dp , robustness distance is measured as the average of the minimum

categorical distance dc between input categories j and j′, where x : j ∈ fI (x) and a single item

perturbation x′ ∈ Sk(X ) : j′ ∈ fI (x
′) that leads to k being removed from the set of perturbed

output categories O(X ′).

O(X ′) = { fO (y
′) : ∀y′ ∈ h(X ′)} (7.7)

Sk(X ) = {x
′|X ′ = x′ ∪ X \ x ∧ x ∈ X ∧ k < O(X ′)} (7.8)

drobust = E(X ,Y )∈Dp [ min
j∈ fI (x),j

′∈ fI (x
′)

x∈X ,p(j)=k,x ′∈Sk (X )

(dc(j, j
′))] (7.9)

Using this, we can essentially answer the question, “Does the model follow the domain speci�c

mapping between input and output categories?”. For instance, consider the medical recommenda-

tion task where categorical distancedc between inputs is de�ned as the distance between nodes of
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the ICD-9 diagnostic ontology tree. Here, if the robustness distancedrobust ≥ 2 for a recommender

model, then we know that for the output category k to change, we need to perturb to an input

x′ in a di�erent category, j < fI (x
′) (sibling nodes in a tree are at a distance of 2). Additionally,

we continue to evaluate the change in the Jaccard similarity metric, F1 score and Precision-Recall

Area under the curve (AUC) metric, Normalized Discounted Cumulative Gain on 100 relevant

items (NDCG) [345] on the output classi�cation task on the original held-out test data and also

the new category classi�cation task for the augmented within-category perturbation test data.

In the next section, we will instantiate the categories: CI ,CO , mappings: fI ,p, fO for 3 domains

of recommender systems. The ability to instantiate these �nite category mappings based on the

domain is one of the advantages of our hybrid framework.

7.4 Domain-Specific Instantiation

In this section, we will explain how the methodology described can be mapped to each of the

three domains. All examples are intended to test the usefulness of our framework, but the method

should be adapted by practitioners and tested by domain experts for their needs. As shown in Table

7.1, for the domains and rules we consider (Table 7.2), the rules do not su�er from low coverage

(|Dp | � |D |) and can be used to augment and regularize.

Dataset Total Rules Applicable Rules Violated
MIMIC-III 15,016 14,807 2,530
MovieLens 162,541 162,541 0
Last.fm 584,897 505,216 167

Table 7.1: Summary of total number of samples, samples where categorical rules are applicable and where
they are violated in the observational datasets

For each of these domains, we de�ne the current state-of-the-art model as Baseline. As our

framework incorporates more information through robust domain speci�c mappings through

counterfactual augmented data, we also developed additional baselines that used these priors

as input features. Speci�cally, we augmented categorical embeddings of each input to form the
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Dataset x y CI CO p dc
MIMIC-III ICD ATC ICD-Tree Parent Nodes ATC-Tree Parent Nodes Expert-De�ned Tree Node Distance
MovieLens Movie Movie Movie Tag Movie Tag Identity Tag Score Di�erence
Last.fm Song Song Genre, artist type, era Genre, artist type, era Identity Hamming Distance

Table 7.2: Instantiations of recommender systems into our hybrid framework

Baseline+Cat model. In this baseline, no expert validation information is provided, but the cate-

gory embedding is explicitly provided. We also augmented the embeddings of the applicable rule-

based output category k : p(j) = k as an input to the model to form the Baseline+Mapped model.

This trains the model to pay attention to the mapped output category and minimize category mis-

classi�cation. Finally, we instantiate our models Baseline RA, which modi�es the baseline with

Rule-based Augmentation (Eq. 13.1) and Baseline RA-WCR, which uses Rule-based Augmenta-

tion and Within-Category Regularization (Eq. 13.2). We set α = 0.2 after cross-validation.

7.4.1 Medication Recommendation

We follow the MIMIC-III medication recommendation task as per [376], and the domain spe-

ci�c mappings p are obtained from [atc-icd] where medical experts validated a statistical table

based on pairwise mutual information scores of co-occurrences between diagnostic x (ICD-9)

and medication y (ATC) codes. These validated tables are segmented based on the age and gen-

der of Austrian patients. Note that this dataset is di�erent from the MIMIC-III dataset used in

our evaluation. Hence, we use only the pairs of ICD-9: j, ATC categories: k that are expert val-

idated p, but not any other statistical information from this study. A total of unique 349 pairs

of ATC and ICD-9 Level 2 codes were deemed to be valid by the experts; 958 unique pairs if we

break down by age and gender forms our domain speci�c mapping p. Age is bracketed into 3

ranges based on year of birth (1949-68, 1969-88, 1989-2008) and gender is considered to be binary

(male, female). The categorical distance dc used to de�ne the robustness distance is given by the

path distance between ICD-9 codes in the ICD-9 ontology tree. We use these validated pairs to

generate perturbations in our existing dataset as shown in Algorithm 5.
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7.4.1.1 Baseline

We use the current state-of-the-art for the medication recommendation task on MIMIC-III dataset

as the Baseline - G-BERT [376]. This model uses graph embeddings based on the ontology of the

ATC and ICD-9 codes. The model initially pre-trains the embeddings on the single-visit data

using self-supervised learning, similar to BERT [85]. The graph embeddings are learnt using the

Graph Attention technique [416], so as to learn hierarchical embeddings for each of the diagnostic

and medication codes.

7.4.2 Movie Recommendation

In the MovieLens dataset [171], each movie x is tagged with user generated tags j ∈ fI (x), which

illustrate di�erent aspects like violence, thought-provoking, realistic, etc. We demonstrate the

utility of our framework using an identity mapping p(j) = k, j = k between movie tags in our

analysis as shown in Algorithm 5. Colloquially, this means that if we see a user who has a history

X of watching a speci�c category of movies, perturbing their history to a movie within the same

categoryX ′ ∈ δj(X ), should not completely drift the category of movies recommended away from

that said category j. We measure categorical distance dc using the absolute di�erence of movie

tag relevance scores.

We would like to point out that the identity mapping p we have used is illustrative and more

speci�c categorical rules could potentially help solve nuanced problems in recommendations,

e.g., violent movies to children [173] or polarizing content with feedback loops [349]. To cir-

cumvent these pitfalls, lists of non-recommendable movies and simple human written rules are

often applied. However, such rule-based post-processing approaches are often limited and there

is an opportunity for these rules to be generalized over counterfactual data. Alternately, imposing

rules on larger genres of movies like Romance, Crime is plausible using our methodology.
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7.4.2.1 Baseline

As is common in MovieLens recommendation tasks, we consider the movies where the user has

given a star rating of 4 or 5 to be positives, while the rest are negative. In addition to the movie’s

id and category, we use the historical ratings provided by the user on movies and their categories

to predict whether the given movie should be recommended or not (star rating of 4 or 5). We

use the baseline that is currently high-ranking for the MovieLens recommendation task, Deep

Interest Networks (DIN) [471].

7.4.3 Music Recommendation

The music recommendation task is taken up on the Million Song dataset from Last.fm [msd].

Here too, the task is to predict the recommendation scores of songs Y based on the user history

X . For each of the 502,216 songs, genres and tags associated to them are publicly available in

semantic ontology databases. We speci�cally cross reference the songs and artists in the Last.fm

dataset with DBPedia [22] to extract the tuple of the artist’s genre, song type and date of release

as the category of the song j. Similar to the movie tag space, we generate perturbations in the

songs that belong to the same song type, era (in decades) and artist’s genre in each of the user

history logs. We expect that such perturbations will not have an impact on the 〈song type, era

and genre of the artist〉: k recommended as shown in Algorithm 5. Here too, the domain speci�c

mapping p is an identity mapping. To evaluate the categorical distance dc required to measure

robustness, we use the hamming distance between the songs’ tuples of 〈song type, era, artist

genre〉.

7.4.3.1 Baseline

The baseline used is the current state-of-the-art, EASE, which uses shallow autoencoders [392]

over the user history. By enforcing that the diagonal of the weight matrix to be zero, to avoid
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Model Jaccard F1 PR-AUC
O

rig
in

al
G-Bert 0.3679 ±0.01 0.5281 ±0.03 0.6212 ±0.03
G-Bert+Cat 0.3564 ±0.02 0.5203 ±0.04 0.6146 ±0.03
G-Bert+Mapped 0.3680 ±0.01 0.5299 ±0.03 0.6230 ±0.02
G-Bert RA 0.3883 ±0.02 0.5788 ±0.02 0.6541 ±0.01
G-Bert RA-WCR 0.4300 ±0.01 0.5967 ±0.01 0.6775 ±0.02

A
ug

m
en

te
d G-Bert 0.3677 ±0.03 0.5281 ±0.02 0.6199 ±0.00

G-Bert+Cat 0.3301 ±0.03 0.5102 ±0.01 0.5952 ±0.01
G-Bert+Mapped 0.3573 ±0.01 0.5249 ±0.02 0.6084 ±0.02
G-Bert RA 0.3723 ±0.02 0.5483 ±0.02 0.6343 ±0.01
G-Bert RA-WCR 0.4033 ±0.01 0.5699 ±0.02 0.6596 ±0.02

Table 7.3: Our RA-WCR model improves accuracy metrics of G-BERT on the MIMIC-III medication rec-
ommendation task for the Original dataset and the category classification task for the within-category
Augmented dataset
collapse to the trivial identity function, they learn the weights that capture the similarity between

songs.

7.5 Evaluation

In this section, we evaluate our methodology on all three domains and �ve model structures from

Section 7.4. For each domain, we study the impact of our method along multiple dimensions to

con�rm our hypothesis of whether it can improve accuracy (§13.8.1) and within-category con-

cordance (§7.5.2). We further perform �ne-grained evaluations to understand the source of the

changes in accuracy and robustness by coverage, types of rules and popularity (§7.5.3). We use

leave-one-out train/test splits for 10-fold cross-validation and report mean and standard devia-

tion of accuracy and robustness, where the folds are generated based on equal partitioning of

user IDs.

142



Model AUC (original) AUC (augmented)
DIN 0.7348 ±0.0034 0.7044 ±0.0021
DIN+Cat 0.7136 ±0.0017 0.6960 ±0.0076
DIN+Mapped 0.7236 ±0.0005 0.7057 ±0.0035
DIN RA 0.7349 ±0.0002 0.7112 ±0.0025
DIN RA-WCR 0.7351 ±0.0002 0.7205 ±0.0028

Table 7.4: Our regularized version of DIN with Dice [471] improves the AUC for the movie recommenda-
tion task on the original MovieLens 20M dataset and the movie tag classification task on the augmented
dataset)
Model NDCG (original) NDCG (augmented)
EASE 0.389 ±0.002 0.312 ±0.003
EASE+Cat 0.382 ±0.003 0.309 ±0.001
EASE+Mapped 0.389 ±0.002 0.312 ±0.003
EASE RA 0.389 ±0.001 0.314 ±0.001
EASE RA-WCR 0.394 ±0.002 0.317 ±0.002

Table 7.5: Our regularized version of EASE for the Last.fm million song dataset improves the (Normalized
Discounted Cumulative Gain) NDCG on 100 most relevant songs for both the original test data and the
augmented test dataset.

7.5.1 Accuracy

To test if we improve accuracy on the original dataset, we evaluate overall accuracy metrics in

Tables 3, 4 and 5. For the medication recommendation task as shown in Table 13.2, in the MIMIC-

III diagnostic code classi�cation task we improve F1-score by 12.9% with similar gains in Jaccard

coe�cient and PR-AUC and we improve F1-score by 7.9% on the medicine category classi�cation

task over the augmented dataset which contains counterfactual scenarios of in-category diagnos-

tic codes, thereby increasing adherence to diagnostic-medication category mappings. As shown

in Table 7.4, in the MovieLens dataset, we improve AUC by 0.04% in the movie recommenda-

tion task and improve AUC by 2.2% for movie tag classi�cation on the augmented dataset. In the

Last.fm dataset, we improve NDCG@100 by 1.3% and 1.6% on both the song and category classi-

�cation tasks on the original and augmented datasets respectively. Across all three domains we

observe clear improvements in accuracy not just on category classi�cation for augmented data

but also on recommendations in the original data distribution. Further, these improvements do
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not merely come from making the category information available, but how they are used through

rule-based augmentation. This suggests both that the domain speci�c rules are valuable and reg-

ularizing models for robustness aligned with these rules is an e�ective means to generalize over

both observational and counterfactual scenarios.

7.5.2 Model Sensitivity

We now test: “Does our method e�ectively increase adherence to the domain experts’ map-

pings?” To measure if neural recommender models follow domain-speci�c rules, we evaluate

the robustness distance as de�ned in De�nition 13.1, limited to the subset of the data speci�ed

by the mappings. To continue the ICD-9 code based medication recommendation example, the

changes would be quanti�ed by the edge distance in the ICD-9 code ontology required to change

the output ATC medication code. As shown in Table 13.3, our G-BERT RA-WCR model achieves

a robustness distance drobust = 2.4 ≥ 2, suggesting that the model on average follows the expert-

de�ned rules for counterfactuals near observed examples. Having a robustness distance greater

than or equal to 2, implies that on average for any change in the recommended medication cate-

gory, the model expects that the input diagnostic code category should have also changed.

In the MovieLens dataset (Table 13.3), this distance is quanti�ed by the minimum change

in the tag relevance score of the perturbed movie, before which the recommended movie has

no relevance to the aforementioned tag. The relevance scores range from 0 to 1 and a higher

robustness distance indicates invariance to changes within a movie tag (violence, drama, etc).

Our model DIN RA-WCR improves the robustness distance by 2.1× as compared to the baseline

DIN. It shows that on average, the relevance of a movie’s tag in the user history has to decrease

by 0.35 before we �nd that the recommended movie does not have that tag (relevance = 0). This

indicates our model is less prone to spurious changes in recommendation tags with small changes

in the movie’s tag relevance.

In the Last.fm Million Songs dataset, the robustness distance is speci�ed by the average of
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Model Version Baseline: G-BERT (MIMIC-III) Baseline=DIN (MovieLens) Baseline=EASE (Last.fm MSD)
drobust (ICD-9 tree distance) drobust (Tag Score Di�erence) drobust (Hamming Distance)

Baseline 1.3 (1.0, 1.6) 0.11 (0.10, 0.12) 0.20 (0.12, 0.28)
Baseline+Cat 1.1 (1.0, 1.2) 0.13 (0.10, 0.16) 0.28 (0.23, 0.33)
Baseline+Mapped 1.2 (1.0, 1.4) 0.15 (0.11, 0.19) 0.31 (0.29, 0.33)
RA 1.7 (1.5, 1.9) 0.21 (0.18, 0.24) 0.42 (0.35, 0.49)
RA-WCR 2.4 (2.1, 2.7) 0.35 (0.32, 0.38) 1.20 (1.11, 1.29)

Table 7.6: Our method considerably increases the mean robustness distance (± standard deviation in
brackets - see Def. 13.1) in medication, movie and song domains.

minimum Hamming distance between the tuples mentioning the era, song type and artist genre

between observed songs and their within-category substitutes, for which there is a change in the

output’s tuple. Our model EASE (RA-WCR) increases robustness distance to drobust = 1.2 which

more signi�cantly, crosses the threshold of 1. This implies that for a change in the recommended

song’s tuple of <era, song type, artist genre>, there needs to be on average one change (drobust > 1)

in the input tuple parameters, thus avoiding spurious output category changes.

7.5.3 Dissecting the gains

To understand where the gains in accuracy and robustness originate, we analyze slices of data

and understand the source of the increase.

Coverage: In Figure 7.1, we slice the datasets into 2 subsets (Dp and D \Dp) based on whether

they are covered by the expert mappings or not. This separation is obtained in the medical

dataset by augmenting data using 30% of the diagnostic code categories covered by the rules

p. In the Movie and songs datasets too, we augmented the training dataset with counterfactual

with-category perturbations on 30% of the categories and split the original test set into two sub-

sets, one containing the augmented categories denoted as “covered” and the rest as “uncovered”.

We show in Figure 7.1 that the improvement in accuracy of the covered subset is higher than the

uncovered subset. Still, for the uncovered subset, there is no degradation in accuracy. The change

in accuracy and robustness is measured with respect to each of the unmodi�ed state-of-the-art

baselines. Further, as the coverage of the rules increases, there is a corresponding increase in accu-
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Figure 7.1: Our method improves robustness (bars are mean, with error bars showing one standard
deviation) without degrading accuracy, and improves accuracy the most for subset of data covered by the
domain specific mappings.

racy and robustness as shown in Figure 7.2. The numbers presented are averaged over 10 random

samples of rules that cover a given coverage bracket for the medical recommendation task.

Domain Speci�c Rules vs Co-occurrence In this analysis, we explore which domain spe-

ci�c rules contribute to the highest gain in accuracy and robustness. This is to test our hy-

pothesis that domain speci�c categorical rules that are not evident in the observed data are crit-

ical if we expect the model to generalize on counterfactual inputs. We bucketize the rules p

based on a measure of co-occurrence: Normalized Mutual Information (NMI) score ρ between

(j,k) : j ∈ CI ,k ∈ CO ∧ p(j) = k as observed in the dataset D. This allows us to di�erentiate

between rules which are already supported by the observed data through sampling biases ver-

sus rules which are not. We bucketize the categorical mappings into �ve quintiles based on the

NMI score in Figure 7.3, and show that robustness gains obtained through rules which have low

co-occurrence is higher than through rules which already have high co-occurrence in the observed
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Figure 7.2: Our G-BERT (RA-WCR) model steadily improves F1 score and robustness distance as and
when new medical rules are used to augment the dataset.

dataset.

Speci�cally, in the MIMIC-III dataset, we see signi�cant gains in accuracy in addition to ro-

bustness when augmenting data using rules de�ned over medication and diagnosis categories

with low NMI scores. This matches our hypothesis that there is value in obeying these expert-

de�ned categorical rules. In the movie dataset, we bucketize based on the movie tag we augment

the dataset by. We see in Figure 7.3, that augmenting data for rules based on movie tags with high

co-occurrence increases accuracy, whereas movie tags with low co-occurrence increases robustness

on the original dataset. This means that we improve robustness for niche movie tags with low

co-occurrence like “sci-� animation”. A similar trend is observed with co-occurrence over music

categorical rules in the Last.fm dataset.

E�ect on Popular Items: In the MovieLens and Last.fm datasets, by following categorical

rules, our robust models also tend to recommend popular items less frequently than the unmodi-
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Figure 7.3: Our RA-WCR approach demonstrates more gain in sliced accuracy and robustness when aug-
mentation is done through rules which have lower normalized mutual information score in the observed
data across 3 domains
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�ed baselines, and rely more on the relevance to the tags than popularity in the observed dataset.

In MovieLens, popular items (top-10 percentile) recommended decreased by 32.3% in DIN (RA-

WCR) as compared to DIN. Similarly, in Last.fm, the number of times one of the songs from top-10

percentile were recommended decreased by 23.8% in EASE (RA-WCR) as compared to EASE.

7.6 Conclusion

In this paper we have laid out a novel framework for robustness and domain-speci�c concordance

in recommender systems, based on within-category perturbations and expert-de�ned relations.

We have proposed regularization based methods for using these expert-de�ned rules during train-

ing and demonstrated across three di�erent domains that this improves not only the robustness

of the recommenders, but also their accuracy. We believe this provides a solid foundation for

further work in the community on how to enable domain experts to encode their expertise and

de�ne robustness based on that expertise in neural recommender models.
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8 | Improving Model Robustness

through Secondary Attribute

Counterfactuals

8.1 Introduction

How can we build NLP models that perform well over many slices, albeit sometimes small slices,

of our data? Developing models that are robust in their performance is important for trusting

these models to work well in diverse, unexpected settings. As a concrete running example in this

paper, we will consider the task of toxicity detection: using a model to predict if a comment is

toxic or not [95]. In this application, for example, it is often important to ensure that models are

accurate over slices of data referring to di�erent demographic groups, as has been raised across

machine learning fairness research [170, 42].

One signi�cant focus of research on how to improve model robustness has been addressing

spurious correlations and improving counterfactual robustness. That is, researchers have found

that models often rely on features or attributes that are only spuriously correlated with the task

and accuracy often drops when models are evaluated on counterfactual data that perturbs those

attributes [200]. To return to our example of toxicity detection, a model may learn that cer-

tain identity tokens are correlated with toxicity, but that could decrease accuracy for non-toxic
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comments with those terms [95, 129]. Recent work has explored how counterfactual generation

techniques can be used to form general checklists to test for model biases [357, 31], often compos-

ing many sub-problems which are hard to solve formally. Similarly, a wide breadth of research

has studied how to train models to be more robust. We focus on one such mitigation technique—

counterfactual data augmentation (CDA), where the supervised training data is augmented and

balanced by replacing in-place words or phrases in the input sentence, which should not lead to

a change in the output label Y [259, 475]. These counterfactual data generation approaches have

been built on, as well as coupled with regularization, to improve counterfactual fairness [233],

such as preventing models from being overly sensitive to identity terms [129, 337, 232, 326].

Although these approaches have been e�ective in reducing spurious correlations, in this pa-

per we observe and study how such approaches often fail to signi�cantly improve core model

accuracy and can still perform worse on subsets of the dataset due to the primary variable over

which counterfactual are generated being correlated with (many) secondary variables that are not

swapped or balanced. Returning to our example task of toxicity classi�cation over comments, the

primary attributes (e.g., demographic identity terms) may be correlated with secondary attributes

(intent of the comment—directed or descriptive) in the training data distribution. That is, for some

demographic groups we may observe more directed comments and for others we may observe

more directed comments:
Toxic: Seeking transgender rights is extreme (Di-

rected) Non-Toxic: Transgender rights activists

are labeled extremists (Descriptive)

In the toxicity classi�cation example shown above, while the former is labeled as toxic by human

annotators as it is directed towards a demographic group, the latter is only describing the toxi-

city and is considered as non-toxic. Nonetheless, both these sentences are classi�ed as toxic by

the Jigsaw Perspective API [95], thus leading to high false positive rates. So, to remove spurious

correlations for the word “transgender” with toxicity, it may not be enough to improve model

accuracy over comments with the word “transgender” if the model is more accurate for directed
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comments than descriptive ones. Therefore we ask: can explicitly considering counterfactuals over

both primary and secondary attributes better improve robustness?

To answer this question and improve model’s robustness, i.e., accuracy on slices of the data,

we propose a new approach, RDI, that learns from counterfactual data generated through inter-

ventions on both the primary and secondary attributes. RDI applies regularization techniques to

train the model to disentangle the impact of the primary and secondary attribute and to explic-

itly optimize for the classi�er’s predictions to be sensitive or insensitive to each attribute. The

approach also builds on recent reweighting approaches [219, 63] to further address distributional

skews in the data.

Our approach to studying this problem builds on works that argue for a case-by-case anal-

ysis of variables and aims to provide a framework for incorporating secondary variables when

we discuss the robustness of natural language models [141, 5]. Speci�cally, we have focused on

the toxicity detection model which prior work has shown to su�er from unintended bias [95]

based on protected identity terms mentioned in the sentence. We analyze how existing robust-

ness techniques fail to capture a secondary attribute, namely the intent of the sentence while

performing counterfactual data augmentation. We further show that this intent, that is descrip-

tive or directed, is signi�cantly correlated with speci�c protected identity groups in the dataset.

By disentangling this correlation in the real world data via the counterfactual data, we obtain a

model that does not disparately have high false positive rates on speci�c demographic groups,

while being sensitive to the intent of the sentence. We achieve this improvement in robustness,

while improving the sliced accuracy across multiple protected identity subgroups of the data.

Our key contributions are:

• We demonstrate how to disentangle the impact of protected and secondary attributes in

NLP tasks like toxicity detection.

• We show how existing models perform poorly on counterfactual datasets that modify the

secondary attributes, and train robust models that sensitize the model towards the sec-
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ondary variables in a context-aware manner.

• Empirically, we demonstrate that our RDI method improves overall accuracy and sliced

accuracy by 2-7% on all identity groups for both the toxicity detection task and generalizes

on the coreference resolution task, while reducing spurious correlations through secondary

attributes.

8.2 Related Work

Counterfactual Data Augmentation We build on prior work that performs counterfactual

data augmentation [354, 44, 268]. Counterfactual data augmentation (CDA) has been used to

create more balanced datasets to mitigate bias [260, 463, 474, 129] towards protected identity

groups or improve accuracy [213]. Our work extends this literature by including a secondary

variable that is correlated to the standard primary variable on which CDA is performed. This

extension is motivated by works like [147] which demonstrate that there are secondary variables

that need to be addressed for robustness.

Adversarial Robustness Making NLP models robust to adversarial perturbations has recently

been explored extensively [472]. Work in this space de�ne adversarial attacks through word or

character perturbations [343, 104, 10] and certi�able defences [356, 201] following early work

in adversarial training [148]. One of the challenges in applying adversarial techniques to the

discrete domain of NLP is the lack of an ϵ-boundary in the input space. Hence, we consider only

those interpretable perturbations that explicitly modify the primary and secondary attributes, as

mentioned in a sentence.

Bias Mitigation Our work draws on recent works that aim to mitigate unintentional bias to-

wards protected attributes in NLP tasks [45]. The approach of counterfactual token fairness which

performs bias mitigation of template based [95] augmented data has been shown to improve
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model performance over speci�c subgroups [129]. Debiasing techniques can be broadly catego-

rized into in-processing: which changes training methodology [36, 203, 458] and post-processing:

which operate post hoc on trained models [229]. While debiasing in unsupervised language mod-

els have also improved downstream tasks [433], we take the in-processing approach of debiasing

in a supervised setting. Speci�cally, in the domain of coreference resolution, we closely relate to

the work from [366, 112] to identify secondary variables; and in the domain of toxicity detection,

we draw on qualitative error analysis [5, 115, 29] and domain expertise [431, 141, 368, 377] to

derive our understanding of the secondary variable (intent of the comment) and how it relates to

the label (toxicity); see Appendix 1. Another related perspective is that of distributional robust-

ness where a machine learning model trained on one data distribution is evaluated on a modi�ed

data distribution [245, 263, 292, 252, 123, 15]. Following this body of work, our objective is to

ensure that the model relies on invariances that generalize when the model is tested on slices of

data, a type of distributional shift.

8.3 Problem Definition

8.3.1 Setup

Given a dataset, D, we will generate an augmented dataset, D̃ by adding synthetic, balanced and

counterfactually augmented sentences.

Given an NLP classi�cation task that operates on individual sentences s ∈ D, consider a

primary variable X , which could be one of group based identities (say race, gender, etc) that

is spuriously correlated with a secondary variable Z (e.g., intent of the comment—directed or

descriptive) and the label Y that is to be predicted (say toxicity). In our setting, the values (x, z )

of the primary and secondary variables X ,Z are contained within an individual sentence s . We

use the intent of the comment as our running example for Z in the toxicity detection task, but
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our approach can be easily generalized to other factors like dialect, in-group language, �gure of

speech, etc. Note that since we are building prediction models that output Ŷ , we are interested

in checking if a given model’s predictions perform accurately on counterfactual inputs.

Our problem de�nition relies on the following assumptions about the primary and secondary

variables prevalent in recent works on counterfactual robustness [200, 474, 219]. Firstly, given

a sentence, the primary and secondary variables contained within it can be pre-speci�ed. We

also assume that counterfactual sentences that modify both the primary and secondary variables

independently can be generated. Hence, we follow template based counterfactual data generation

which speci�es the primary and secondary variables in each sentence, as outlined in Section 8.5.2.

8.3.2 Objectives

Before we present our problem de�nition, we de�ne the objectives that we will use from the

robustness and fairness literature. Finally, we position these objectives within our context-aware

counterfactual robustness problem formulation. For sake of simplicity here and in the following

sections, we consider that the label, primary and secondary variables are binary with values

{0, 1}; {x0, x1}; {z0, z1} respectively. However, similar de�nitions for multivariate settings can be

inferred.

8.3.2.1 Metrics

Original Dataset: In the original dataset D, as in most NLP tasks, we de�ne the evaluation

accuracy metric A over a set of sampled sentences s . Further, to evaluate the accuracy of the held

out dataset conditional on the primary variableX , we compute the sliced accuracyA(x) over that

subset.

A = Es∼D1(Ŷs = Ys) (8.1)

A(x) = Es∼D1(Ŷs = Ys |X = x) (8.2)
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Counterfactual Dataset: To improve counterfactual robustness, we aim to improve accu-

racy Ã on the counterfactual dataset, by enumerating all possibilities of the values assigned to X

and Z . We generate counterfactual sentences t(s, x, z) by setting values of X = x,Z = z in a sen-

tence s ∈ D̃ using templates. Similar to overall accuracy, we can de�ne sliced accuracy, Ã(x) on

the counterfactual dataset D̃ while enumerating all possible value assignments of the secondary

variable. Note that the dataset D̃ represents a less biased dataset, one which might not actually

be observed, but represents all possible values of the primary and secondary variables X ,Z in D̃,

and allows us to measure the toxicity detection model’s counterfactual robustness around both

the primary and secondary attributes.

Ã = E s∼D̃:
x∈{x0,x1},
z∈{z0,z1}

1(Ŷt(s,x,z) = Yt(s,x,z)) (8.3)

Ã(x) = E s∼D̃:
z∈{z0,z1}

1(Ŷz = Yz |X = x) (8.4)

8.3.3 Goal:

Our robustness goal is to improve a model’s robustnessA(x) - i.e accuracy on the original dataset

sliced by the primary sensitive variableX . As secondary variables likeZ are spuriously correlated

with primary variables X in the original dataset D, we need to disentangle the impact of primary

and secondary variables by optimizing on the generated counterfactual dataset D̃. In our paper,

we achieve this goal by optimizing Ã, Ã(x) over the dataset D̃, generated through interventions on

both the primary and secondary variables, such that this improvement generalizes to the original

dataset D.
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8.4 Methodology

Since the goal of robustness is in addition to that of increasing overall accuracy on the original

dataset, we use constrained optimization techniques over augmented counterfactual data. Be-

fore we present our proposed constraints, we present existing baseline constraints de�ned in the

fairness and robustness literature. We discuss why these baseline constraints do not explicitly

address the goal of improving counterfactual robustness on primary and secondary variables,

and hence necessitate our additional proposed constraints on the counterfactual dataset D̃.

8.4.1 Baseline Constraints

Eqality of Opportunity (EO): The Equality of Opportunity [169] constraint imposes statis-

tical equality on the false positive errors, when conditioned on di�erent values of the primary

variable X . Such a constraint enforces that the primary variable X has no impact on the false

positive rate of the model. We approximate this constraint over with the synthetic, balanced

counterfactually augmented data D̃ (CDA) by minimizing the EO gap [464] with respect to the

primary variable (Eqn 8.5) and denote it by the baseline “EO+CDA”.

min(| Es∼D̃(Ŷs = 1|Ys = 0,X = x0)−

Es∼D̃(Ŷs = 1|Ys = 0,X = x1)|) (8.5)

Counterfactual Token Fairness (CTF): In [129], the logits are equalized across counterfac-

tual examples s ∼ D̃ for di�erent values of the primary variableX , but not the secondary variable

Z . If f (s) denotes the logit of the model’s prediction, and t(s, x) denotes the sentence generated

by swapping the primary variable with x as per the template, then CTF minimizes the following
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logit pairing gap:

minEs∼D̃ |X=x0 |(f (s) − f (t(s, x1))| (8.6)

Since X and Z are spuriously correlated, both CTF and EO+CDA constrained models, which

solely focus on X , are susceptible to performing poorly on examples when value of Z is altered

explicitly. For example in the Jigsaw toxicity detection dataset, consider when Y is denoting

“toxicity”, X represents gender and Z the intent of the comment - descriptive or directed. If, for

example, we observe in the real world that most directed comments are towards women, and

not men (spurious correlation between X and Z ), then just intervening on the gender X of the

sentence and changing it from female to male, might unintentionally remove the impact of the

secondary variable - the intent of the sentence, on the toxicity detection taskY . This is undesirable

because the intent of the sentence is genuinely correlated with Y and its impact should not be

removed.

8.4.2 Proposed Constraints

We overcome the limitation of not including secondary variable impact in baseline constraints, by

explicitly modeling to Maximize Secondary Sensitivity in tasks like toxicity detection, where the

label Y is sensitive to changing values of the secondary variable Z in the counterfactual dataset.

We later discuss how this can be generalized to tasks where the secondary variable Z does not

impact the label Y in Section 8.7.

Maximize Secondary Sensitivity: In some cases involving secondary variables, a character-

istic that is often desired in a robust model is that it should be sensitive towards a change in a

speci�c variable. For example in the Jigsaw toxicity (Y ) dataset, even though more directed com-

ments on online forums are towards females, and more descriptive comments are used for males,
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the model should be sensitive to the intent of comment in determining the toxicity. If we blindly

optimize for just CTF, the model may be less robust to changes in the intent of comments from

descriptive to directed (Z ). To overcome this issue, we propose a constraint that retains model

sensitivity to changes in the secondary variable Z , while conditioning on the primary variableX .

If t ′(s, x, z) is the template-generated sentence by swapping out values of x, z in a sentence s such

that the label y assigned to the sentence changes to ¬y, and fy(s) denotes the logit of the model’s

prediction of y for s , then we propose to maximize the following conditional logit pairing gap.

max
∑

x∈{x0,x1}
y∈{0,1}

Es∼D̃ |Ys=y,X=x,Z=z0
s ′=t ′(s,x,z1)

(fy(s) − f¬y(s
′)) (8.7)

Reweighting Samples All of the above constraints still do not enforce the independence be-

tween X and Z in the counterfactual dataset, D̃, if there is a sampling bias which prefers highly

correlated samples ofX ,Z in D. This is because the real world dataset might su�er from selection

bias, task annotator di�culty bias [151], etc, which cannot be easily o�set through data augmen-

tation alone. Therefore in addition to augmenting counterfactual data, we seek to reweight the

augmented samples in such a way that the probability of Z conditional on X is equalized. Hence,

a sentence s ∈ D̃ withX = x0,Z = z is weighted byws using an inverse-propensity based weight-

ing [313] based on the prevalence of Z conditional on X . However, since we are �ne-tuning

over the counterfactual dataset to also generalize over the original dataset, we are concerned

about improving residual accuracy. We, thus apply this weighting on only those samples in the

original validation dataset which our unconstrained model has incorrectly predicted. This boost-

ing inspired technique [371] emphasizes the need to equalize the prevalence conditioned on our

worst-case examples [315] where our initial model Ŷbase has made an incorrect prediction. For

example, we reweight based on the error rates, a sentence s ∈ D̃ with X = x0,Z = z,Y = y.
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ws =
PD(Z =z |X =x1,Y =y, Ŷbase =¬y)

PD(Z =z |X =x0,Y =y, Ŷbase =¬y)
(8.8)

Context-Aware Counterfactual Robustness Based on the relationship of the secondary

variable with the label, we incorporate our proposed constraints on the counterfactually aug-

mented dataset D̃ as a �ne-tuning step. Thus, the methods we propose can be used on any NLP

model as a �ne-tuning task. We summarize our proposed RDI methodology based on the context

of the secondary variable in Algorithm 1.

Algorithm 5 RDI (Reweight-Direct-Indirect)

1: Input: Trained NLP model -M’s predictions Ŷbase , primary variable X , secondary variable Z ,
label Y

2: for each batch do
3: Augment template based samples for all (X ,Z ) pairs to form D̃
4: Reweight samples based on (8.8)
5: L = Es∼D̃ CrossEnt(Ŷs,Ys)
6: LRDI ← (8.6) + (8.7)
7: Back-propagate αL + (1 − α)LRDI in M
8: end for

8.5 Evaluation

8.5.1 Data

The Jigsaw Kaggle toxicity dataset 1 contains sentences from the Civil Comment platform. We

narrow down our focus to the comments that have the referenced identity in the comment, as well

as the binary label: toxic or non-toxic. In total, 1,804,874 comments are annotated for toxicity, out

of which ∼50% of them have identities annotated too. Note that the identities are crowd sourced

and not self-identi�ed. We use a randomized 80-20 train-test split in our evaluation.

Some comments refer to certain protected identity groups, which we refer to as the primary
1https://www.kaggle.com/c/jigsaw-unintended-bias-in-toxicity-classi�cation

160



variable. Based on the qualitative study of toxic comments [431], we can broadly categorize the

intent of comments as either directed or descriptive. Directed comments are speech towards

a speci�c individual or group, whereas descriptive comments are more factual and do not hint

towards a group or individual. Di�erent identity groups are exposed to di�erent intended com-

ments, thus making the intent of the comment (descriptive or directed) our secondary variable Z .

In this domain, our goal is to mitigate the impact of the primary variable on the prediction (Eqn

8.6), while retaining the sensitivity of the secondary variable on the predicted label (Eqn 8.7).

8.5.2 Augmentation Templates

The above dataset is the basis on which we evaluate the accuracy of the original dataset using

our RDI algorithm. However, this dataset is not amenable for counterfactual data augmentation.

Hence, we rely on a set of template based datasets to generate the counterfactual data on which

we will �ne-tune our models. [95] released a set of madlibs templates to generate toxic and non-

toxic comments based on hierarchies of intersectional identities. We extend this framework to

incorporate templates for intent of the comment - directed and descriptive based on the de�nition

of toxicity provided in [431]. We provide an example of the 130,721 such counterfactual examples

generated below (see appendix 1 for the full set of templates). Note that in addition to using

templates, we can also utilize unsupervised learning based techniques to identify directed and

descriptive comments.

8.5.3 Metrics

We evaluate the AUC for each identity group and the overall dataset in the Jigsaw Toxicity dataset.

Since the secondary variable in the Toxicity dataset is not available for the Jigsaw dataset, we also

present sliced AUCs based on the descriptive/directed intent of the comment as labeled by a model

trained to predict solely the intent of comments with accuracy of 94.3% (details in Appendix 3).
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Since we are comparing sliced accuracy across 9 identity groups in the toxicity dataset, we also

compute the standard error bars in the measurement of each metric. We also perform a two

sample independent t-test over n = 10 random restarts for each of the slices with 2n − 2 degrees

of freedom, and a signi�cance threshold of α
m , where α = 0.05, m = 9, 5 (Bonferroni correction)

for the two datasets respectively when we compare against the baselines.

8.5.4 Baselines

We present a brief description of the various baselines, each optimizing a baseline objective as

discussed in Section 3.

Baseline Model Objectives
Vanilla Fine-tuned large uncased BERT model
EO+CDA BERT+EO over balanced D̃ [464]
CTF+CDA BERT+CTF controlled on the primary

variable [129] over D̃
RDI BERT + RDI algorithm

Table 8.1: Summarized description of baselines

Figure 8.1: Accuracy of Jigsaw Perspective API model when sliced by the context (directed or descriptive)
of the comments on our counterfactual dataset.
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Figure 8.2: Area under the Curve (AUC) for toxicity detection across various demographic groups in the
Jigsaw dataset

8.6 Results

8.6.1 Sliced Accuracy

In Figure 8.1, sliced accuracy of the vanilla model on the template based counterfactually aug-

mented data highlights the need for improving sensitivity towards descriptive comments. In

Figure 8.2, we show the impact on the AUC of identity groups as identi�ed in the original Jig-

saw toxicity dataset. Speci�cally, RDI performs 0.52% better in overall AUC with p-value =

0.001 ≤ 0.005 (signi�cance level = α
m ), while increasing the sliced AUC for black identity by

6.98% (p-value=0.002). We see a general trend of improvement in AUC over the baseline vanilla

model by 1.98–6.98%, with statistically signi�cant improvement for groups of male, jewish, mus-

lim, and black identities by making the model sensitive to the secondary variable – “comment

intent”. We subsequently �ne-tuned a BERT model to predict the intent of the comment (de-
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scriptive/directed) on the Kaggle dataset and sliced the change in accuracy as compared to the

best performing CTF+CDA baseline. The resulting changes in Figure 8.3 demonstrate that for

the slices where our model underperforms, it is due to a degradation in assessing directed com-

ments for female, LGBT and disability groups. As expected, for the descriptive comments, we see

consistent improvement across the board.

8.6.2 Ablation Studies

In order to understand the impact of the 3 objectives of the RDI algorithm, we conducted ablation

studies by using the leave-one-out strategy (Figure 8.4). We note that, while removing the con-

straint based on counterfactual fairness (Eqn 8.6) has the highest impact, reweighting samples

(Eqn 8.8) and controlling for secondary variables (Eqn 8.7) also have signi�cant impact on both

overall and sliced accuracy in the Jigsaw Toxicity evaluation dataset.

% change in sliced AUC of RDI as compared to CTF+CDA

Overall *
male * (8916)

female (10733)
lgbt (2233)

jewish * (1500)
christian (8080)
muslim * (4117)

black * (2970)
white (5029)

disability * 

-4.00 -2.00 0.00 2.00 4.00 6.00

Directed Descriptive

Figure 8.3: Change in Area under the Curve (AUC) for toxicity detection when sliced by the context
(directed or descriptive) of the comments with slices with statistical significant change in asterisk.
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8.6.3 �alitative Analysis

We note that there is signi�cant improvement in descriptive comments in most of the identity

groups as shown in Figure 8.3. For example, in the black identity group, we see that the improve-

ment in AUC is better in descriptive sentences 4.1% than directed ones 3.1%. While analyzing the

errors of our model, we see that they occur often beyond the scope of our problem formulation

[273] (Appendix 4).

8.7 Pronoun Coreference Resolution

We have demonstrated the utility of modeling secondary attributes to improve robustness of

the toxicity detection models. However, we note that not all tasks have secondary attributes

whose impact on the label needs to be maximized. Each task and their corresponding secondary
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Metric BERT-large-uncased CDA Dropout CTF+CDA RDI
F1-Score 0.93 ± 0.00 0.92 ± 0.01 0.88 ± 0.02∗ 0.94 ± 0.01∗ 0.95 ±0.01∗
Gendered Correlation 0.37 ± 0.03 0.25 ± 0.04∗ 0.10 ± 0.02∗ 0.23 ± 0.02∗ 0.11 ±0.03∗
Gendered Profession Quintiles Mean Gendered Pronoun Resolution % Female - % Male by Profession
0-20 −25.2 ± 0.4 −23.8 ± 1.2 −17.1 ± 1.1∗ −21.2 ± 0.5∗ −12.7 ± 0.8∗
20-40 −18.5 ± 0.6 −12.8 ± 0.3∗ −9.1 ± 0.3∗ −14.5 ± 0.7∗ −8.8 ± 0.6∗
40-60 −11.5 ± 0.9 −10.5 ± 0.8 −8.0 ± 0.4∗ −12.7 ± 0.7 −5.9 ± 0.4∗
60-80 0.8 ± 0.4 0.5 ± 0.4 0.4 ± 0.5 1.6 ± 0.4 0.4 ± 0.6
80-100 8.9 ± 0.2 7.0 ± 0.4∗ 5.4 ± 0.5∗ 9.3 ± 0.6 6.2 ± 0.4∗

Table 8.2: Mitigating gendered correlation in coreference resolution as well increasing accuracy in the
OntoNotes and Winogender datasets with statistical significant change denoted by *

attributes are unique in their relationship and their di�culty in data gathering, and we need

careful understanding of the context while enforcing constraints between them. In this section,

we show how our RDI framework can be extended to a task - “pronoun coreference resolution”,

where the label is invariant to the secondary attribute - gender. Between these two use cases, we

have exhaustively covered the types of constraints that can be incorporated towards secondary

attributes and encourage researchers to undertake a contextual treatment of secondary attributes

in their tasks. We provide an example below, where the pronoun resolution should not change

based on the gender of the pronoun.
Female: The nurse noti�ed the patient that her

shift would be ending in an hour. (her→ nurse)

Male : The nurse noti�ed the patient that his

shift would be ending in an hour. (his→ nurse)

Datasets and Augmentation Templates: For the pronoun coreference resolution task, we use

the OntoNotes dataset shared as part of the CONLL 2011 and 2012 shared task [339, 338]. Each

of the nouns referenced back from the pronouns also have their associated gender (binary) [32].

In the OntoNotes coreference dataset, we evaluate the F1-score, the gendered correlation coef-

�cient [366] which measures the correlation between gender and the professions they resolve
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to. The Winogender coreference resolution dataset provides templates with placeholders for the

gendered-pronoun, and two antecedent professions which the pronoun could potentially be ref-

erencing. We refer to [366] for the full set of templates.

Label invariance to secondary variable In the gender bias Winograd dataset [366], the label is

the coreference of the pronouns towards one of the two antecedents mentioned in the sentence.

The pronouns are gendered (primary variable) binary - male and female; and the antecedents

denote professions (secondary attribute) which the pronouns might get coreferenced to. Here, our

goal is to minimize the unintended correlation of certain professions towards a speci�c gender.

A systemic imbalance in the real world (see US Bureau of Labor Stats), is then re�ected as a

sampling bias in the text. For example, among the people with the profession “engineer”, only

10.72% of them are females as per the labor statistics and a similar correlation is recorded in the

text corpus, but an ethical ML practitioner would ideally want their robust model tonot propagate

these correlates by using the constraint in Eqn 8.9.

Minimize Secondary Impact: If we denote the logit of the model’s prediction for a sentence

s by f (s), and the sentence generated by swapping out values of x, z in a sentence s without

changing the label to be t(s, x, z), then we propose to minimize the following conditional logit

pairing gap, inspired by counterfactual indirect e�ects de�ned in [460] instead of Eqn 8.7.

min
∑

x∈{x0,x1}

Es∼D̃ |Ys=0,X=x,Z=z0
s ′=t(s,x,z1)

| f (s) − f (s′)|

+ Es∼D̃ |Ys=1,X=x,Z=z0
s ′=t(s,x,z1)

| f (s) − f (s′)| (8.9)

Note that here, we explicitly focus on the change in error rates due to the change in the secondary

variable Z , previously ignored by the baseline constraints. In the pronoun coreference resolution

task, this amounts to equalized error rates on all professions, while conditioning on the gender

of the pronoun X : male, female.
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Robustness Gains: We see a similar trend in the overall accuracy for the coreference resolution

task in Table 8.2. Here, we compare against one other baseline - dropout [433] where the base-

line BERT model’s dropout hyperparameters have been optimally �netuned for robustness. RDI

outperforms existing baselines on both the F1-accuracy (higher is better) and the gendered corre-

lation (lower is better). The lower gendered correlation also translates to a more even distribution

of gendered pronoun resolution across the 5 quantiles of gendered professions [366].

8.8 Conclusion

We have demonstrated the value of incorporating the impact of secondary variables in the objec-

tives for learning robust natural language processing models. We have shown that incorporating

context-aware counterfactual robustness through the RDI algorithm, we improve performance

on the counterfactual augmented data, but also improve the overall and sliced accuracy on the

original dataset by 2–7%.

8.9 Broader Impact Statement

As we are dealing with the toxicity detection task, the concern of dual use for generating more

toxic content on social media has to be considered. That being said, the identi�cation of directed

toxic comments towards minority communities can greatly improve the experience of members,

often targeted due to their membership in protected classes in these online social communities.

More so, when these same members describe the toxicity they experience on those social online

forums, the possibility of them being �agged as toxic, can be harmful. We show that, without

considering secondary variables, such errors, particularly in groups which are the target of toxic

comments, can further exacerbate this divide. By developing an approach for controlling for

known proxies, we hope this can enable practitioners to incorporate more domain knowledge,
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particularly from users in under-served communities, to improve these systems. The template

based counterfactual augmentation in capturing such nuances of secondary variables is a small

step towards enabling more user participation and control in the design of these systems.
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9 | Improving Robustness through

Pairwise Generative

Counterfactual Data Augmentation

9.1 Introduction

Counterfactual data augmentation (CDA) has been used to make models robust to distribution

shift and mitigate biases towards spuriously correlated attributes. Often, counterfactuals are gen-

erated as labeled examples through pre-speci�ed templates [94, 166] or crowd-sourcing [214].

While natural text templates codify a speci�c number of assumptions of how counterfactual sen-

tences and labels might vary, crowd-sourcing which can cover various types of counterfactuals,

can be expensive. On the other hand, many existing methods [449, 468, 202, 10] simply rely on

a label-invariance assumption: the label of the generated counterfactual example and the corre-

sponding original example are the same. However, this simple label-invariance assumption does

not always hold true [406, 306] and thus greatly increases the risk of using incorrect labels for

counterfactual examples during training. For example, for many NLP tasks a small perturbation

can easily change the ground-truth label [214, 128], e.g., changing the input from This movie is

great to This movie is supposed to be great for sentiment classi�cation, or changing the hypothesis

from The lady has three children to The lady has many children for natural language inference.
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Therefore, “how can we automatically learn the labels for counterfactual examples, given a diverse

counterfactual text generator?” remains a challenging research problem.

Beyond costly human annotation or simplifying assumptions of label invariance, researchers

have explored how to make use of a classi�er f that has learnt to predict the label on the orig-

inal dataset (X ,Y ). Such a classi�er has been used to directly label generated examples (our

“trust” baseline; [214]) or to weight generated examples based on the model uncertainty (our

weighted-trust baseline; [323]). However, we see that using such simplistic labeling assumptions

for counterfactual data augmentation have limited bene�ts for improving robustness, where we

de�ne robustness to be accuracy over a counterfactual test set of interest.

In this paper we propose an alternative approach to this problem: we leverage the sample

e�ciency of generative models to generate a large number of diverse counterfactuals, and train

an auxiliary classi�er which learn the di�erence between the original and counterfactual labels to

annotate the generated counterfactual data. Speci�cally, we propose to learn the patterns of how

counterfactual labels vary by using the pair of original and counterfactual sentences (x, cs(x)) and

the original label y as input to our pairwise classi�er h and learn to predict the counterfactual

labely′. The pipeline of our method is shown in Figure 9.1. We should note that only a very small

set of human-annotated counterfactual examples are used to train the pairwise counterfactual

classi�er. Then in the inference stage, the pairwise counterfactual classi�er is used to predict the

labels for a large set of counterfactual examples. By using counterfactual generators and auxiliary

pairwise counterfactual classi�ers, we can greatly reduce the number of counterfactual examples

for which we need human annotation, while providing similar gains in robustness comparable to

a fully human annotated counterfactual dataset.

Our proposed approach addresses some of the challenges outlined in recent work like Check-

lists [357] in scaling the di�erent types of counterfactual robustness desired in models beyond

accuracy. We also show that each one of the counterfactual templates that the counterfactual

generator produces contribute to a di�erent type of robustness not previously captured by our
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Counterfactual 
Generator (c)

Original 
Dataset: X, Y

x: “This movie is full of grace”
y: Positive Sentiment

x1’: “This movie is full of mistakes”
x2’: “This movie is full of finesse”

Human 
Annotations for 

Training

Pair-wise 
Counterfactual 

Classifier (h) Classifier
Inferred 

Counterfactual
Dataset: X’, Y’

y1’: Negative Sentiment
y2’: Positive Sentiment

((x,x’), y) y’

Figure 9.1: Overview of proposed approach: We propose a Pairwise Counterfactual Classifier to label
generated counterfactuals (could be either label-invariant or label-modifying) at scale. We use the labeled
counterfactuals as data augmentation and show it significantly improves robustness.

model, and hence further emphasizes the need to diversify the type of counterfactuals and gen-

eralize our performance against them for natural language classi�ers. Thus, our paper provides

a framework for incorporating diverse counterfactuals based on templates, by using generative

models to scale the dataset and an auxiliary classi�er to learn the label variance of the counter-

factuals. Our core contributions in this work include:

• We propose a novel pairwise counterfactual classi�er that labels counterfactually gener-

ated examples at scale based on a small set of annotated counterfactuals, improving sample

e�ciency of counterfactual data augmentation.

• We model both label-invariant and label-modifying counterfactuals for the sentiment clas-

si�cation task on Stanford Sentiment Treebank (SST-2) dataset, and the question paraphrase

task on Quora Question Pair (QQP) dataset, and show robustness improvements using just

10% of human-annotated labels.

• The generated augmented dataset when used for �ne-tuning produces an improvement in

counterfactual robustness of 18-20%, comparable to a fully human annotated dataset, and a

reduction in errors by 14-21% on IMDB, Amazon and Yelp reviews out-of-domain datasets

that were not used during training.
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9.2 Related Work

Our work is built on advances from various domains as outlined below:

Adversarial Text Generation Training against adversarial examples which perturb inputs

in the vicinity of the existing training data by making geometric assumptions [306, 457] on a

lower dimensionality of the data to improve robustness has been extensively studied recently.

Natural examples which are syntactically and semantically similar to the original sentence, but

produce di�erent model predictions have been produced [10]. Similarly, defenses against adver-

sarial attacks on self-attentive models have shown improvement in robustness to label invariant

examples [185]. In FairGAN [449], they showed it is possible for a discriminator to achieve statis-

tical parity on the real dataset, while performing the auxiliary task of detecting real and generated

examples. Such controlled adversarial generative approaches [425] have demonstrated the e�ec-

tiveness of automating data augmentation in text-based tasks. Generative models which optimize

for �uency have passed human annotation checks where the model generated text is almost in-

distinguishable from human generated ones [265, 362]. We build on this body of work and utilize

a generative model [442] that captures template-based counterfactuals to improve robustness.

Generic adversarial notions of robustness however applicable, fail to incorporate speci�c coun-

terfactuals directly in their training and orthogonal to our scope of study. Through carefully

disentangling speci�c attributes and the rest of the latent variables in text, we generate counter-

factuals across all possibilities, and utilize human-annotated templates to label a small fraction

of the generated examples to train a pairwise counterfactual classi�er.

Semi-Supervised and Self-Supervised Learning Labeling functions which provide crude

estimates of the label have been used in semi-supervised methods [350], and are further used

to learn a generative model to generalize over them. Further, utilizing unlabeled data [54] to

improve adversarial robustness leverages geometric smoothing-based techniques to bridge the

sample complexity gap between accuracy and robustness [451]. Thus, semi-supervised learn-
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ing approaches aim to generate examples where the discriminator is least con�dent about [323].

Language models with very large number of parameters have also shown to be few-shot learners

with minimal supervision [51]. Similarly, reinforcement learning based approaches with minimal

labels have been proposed to combine the objectives of accuracy and counterfactual robustness

[334]. Generalization against counterfactual examples by making models not to rely on salient

features (easy examples) have been extensively studied by modeling biases in corpora [67, 68, 211,

299, 410, 139]. While the goal in these works have been building ensembles or end-to-end bias

mitigation models, our goal is to minimize the number of human labels required to achieve an

equivalent improvement in robustness. In this spirit of e�ciently capturing the patterns already

prevalent in the original dataset, and learning only the new ones introduced in the counterfactual

templates, we learn the pairwise counterfactual classi�er on a small number of samples, and use

it to capture the label variations in the remaining counterfactual dataset.

Counterfactual Applications The counterfactual datasets we use throughout this paper

were intended to highlight the shortcomings of existing models at the time. Improving robust-

ness through training on the augmented data has been extensively explored [130, 443]. Learning

how counterfactuals di�er have been explored by comparing against gradient supervision [403]

and the generalizability between original and counterfactuals [214]. The generated counterfac-

tuals have also been used for explanations [418], highlighting biases [94] and debiasing through

statistical methods [260]. This rich set of contrast sets [128], checklists [357], paraphrases [461,

438], adversarial schemes [367] and lexical diagnostic datasets [282] form the foundation of our

method, which re-purposes them to build a counterfactual generative model and improve coun-

terfactual robustness.
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9.3 Methodology

9.3.1 Our Problem Framing

Let x , y be the input sentence and its associated label in the original dataset, respectively. We

assume y ∈ {0, 1} throughout the paper (i.e., we focus on binary classi�cation tasks), but our

framework can be extended to multi-class tasks as well.

Our core challenge is what is the true label y′ for a generated counterfactual x′? Although

we can further obtain human annotations, this can quickly become time consuming and budget

intensive to do at scale. If we make the simpli�ed assumption of label invariance throughout the

counterfactual inputs x′ generated, which is a common assumption in adversarial literature [149,

202, 10], we could end up with an incorrect counterfactual dataset which might hurt robustness

and accuracy. Our goal is thus, to generate a counterfactual augmentation dataset that produces

a comparable improvement in accuracy and robustness as that of human-annotated counterfactuals

with minimal supervision.

We frame this problem as how to learn when the labels �ip, i.e., identifying when the label of

the counterfactual is di�erent from the label of the original sentence: P(y , y′) = δ , (0 < δ < 1),

in the counterfactual distribution x′ ∈ X ′. Given a generation model c , we denote cs(x) as the

generated counterfactual over x by changing an attribute s in x . We also assume that a classi�er

f : X → Y has been learnt on the original dataset (X ,Y ) by optimizing for accuracy A. Since the

counterfactual cs(x) can either contribute to a label �ip or not, it is important for us to understand

the patterns in the counterfactuals that vary the labels.

A =E(x,y)∈(X ,Y )I(f (x) = y) (9.1)

In our paper, the objective is to use the counterfactual data to train a model f ′ that improves
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robustness, i.e., to make sure the models we trained generalize to unseen scenarios. We measure

this by the counterfactual accuracy Ã of f on a held-out counterfactual dataset (X ′,Y ′):

Ã =E(x ′,y ′)∈(X ′,Y ′)I(f
′(x′) = y′) (9.2)

To achieve this goal, we generate our training counterfactual inputs cs(x) ∈ X ′t (here the

subscript t denotes the training set) that modi�es original input x ∈ X based on the attribute s . In

natural language tasks, the attribute s cannot be directly inferred from the sentence x and hence

we rely on templates to de�ne the types of counterfactual (e.g., negation, insertion, deletion) as

commonly used in [357, 442] to infer the attribute s . Lety ∈ Y ,y′ ∈ Y ′t be the label for the original

and counterfactual sentences in our counterfactual training dataset. The training objective of

robustness is to minimize the error Et of the model f aggregated by attribute s on the training

counterfactuals (X ′t ,Y ′t ), where CE refers to the cross-entropy loss, as follows:

Ẽt (s) = Ex∈X ,(cs (x),y ′)∈(X ′t ,Y ′t )CE(f (cs(x)),y
′) (9.3)

Ẽt = Es∈S Ẽt (s) (9.4)

Since y′ is not readily available for counterfactual generated sentences cs(x) in our training

dataset and gathering them for all examples can be expensive, our goal is to minimize the number

of human-annotations of counterfactualsy′ in the training datasetY ′t , while achieving comparable

improvement in robustness (Eqn 9.2). Hence, the training sentence and label set (X ′t ,Y ′t ) can be

decomposed into two sets, one whose labels are human-annotated: (X ′a,Y ′a) and the other with

model generated labels: (X ′д,Y ′д), such thatX ′t = X ′a∪X
′
д,Y
′
t = Y

′
a∪Y

′
д. Our goal is to automatically

learn the labels for counterfactual examples X ′д with an access to a limited human-annotated

counterfactual data (X ′a,Y ′a), where |Y ′a | � |Y ′д |, while achievable counterfactual robustness Ã

(Eqn 9.2) comparable to the scenario when all the training labels are human-annotated.
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9.3.2 Pairwise-Counterfactual (PC)

In order to generate labels for the counterfactuals, we construct a novel auxiliary pairwise clas-

si�er h, which takes in as input both the original dataset (x,y) ∈ (X ,Y ), and a corresponding

counterfactual cs(x) ∈ X ′t and the human-annotated labels y′ ∈ Y ′a . The classi�er h is trained on

pairs of input sentences x, cs(x) and the original label y to predict y′ ∈ Y ′a .

Speci�cally, the classi�er h takes in the original input sentence x and its associated label y, as

well as its corresponding counterfactual example cs(x). The output of the classi�er h(x, cs(x),y)

is the predicted label of the counterfactual example cs(x). In the training stage, the classi�er h is

optimized on the counterfactual examples with human-annotated labels (cs(x),y′) ∈ (X ′a,Y ′a) via

minimizing the loss function:

`h = E (x,y)∈(X ,Y )
(cs (x),y

′)∈(X ′a,Y
′
a )

CE(h(x, cs(x),y),y
′) (9.5)

With the well-trained classi�er h, we can generate the labels for any counterfactual example

cs(x) ∈ X
′
д (the counterfactual set without human annotation) according to:

y′ = h(x, cs(x),y) : (x,y) ∈ (X ,Y ), cs(x) ∈ X ′д (9.6)

9.3.3 Classifier-Aware Pairwise-Counterfactual (CAPC)

Additionally, since we know that f is already optimized to predict the label accurately on the

original dataset, the auxiliary classi�er h could potentially leverage f in its pairwise prediction

through transfer learning. Speci�cally, if we decompose the counterfactual distribution (X ′,Y ′)

as a mixture of samples from the original distribution (X ,Y ) and those that are independent

of the original distribution, we would bene�t by training h to identify samples from the latter

distribution. In addition, assuming the correspondence between f (x) and f (cs(x)) is easier to
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learn (e.g., with a lower model complexity), we could also bene�t from learning a classi�er-aware

function to better capture this correspondence. Thus, we propose to augment the predictions of

the original classi�er f (x), f (cs(x)) as input to h as follows:

y′ ∈ Y ′д = h(x, cs(x),y, f (x), f (cs(x))) : (9.7)

(x,y) ∈ (X ,Y ), cs(x) ∈ X
′
д

Any uncertainty that f has on the counterfactual samples P(f (cs(x)) , y′) can be mitigated by

the auxiliary classi�er h by identifying patterns in cs(x) when f predicts incorrectly. As a simple

example, without any human annotation, the original model f might make incorrect assumptions

on cs(x) that lead to incorrect predictions f (cs(x)) , y
′, e.g., a sentiment analysis model might

give “positive” sentiment predictions due to the presence of quali�ers like “terri�c”, “amazing”

(this movie was amazing) even when the counterfactual input cs(x) alters aspects of a sentence that

changes the label (this movie was supposed to be amazing). But, this can be corrected using Eqn 9.7

after h has observed some data over the correct correlation between x, cs(x),y, f (x), f (cs(x)) and

y′, especially if there exists a lower-complexity function mapping between them - for instance,

adding the phrase “supposed to be" may alter the label of a review.

This is similar to boosting [119] related methods where the original classi�er f ’s errors on

the counterfactuals is being learnt by the auxiliary classi�er h. This helps us understand why

the pairwise counterfactual classi�cation task might be easier and perform better than simply

annotating the counterfactual example cs(x) using the original classi�er f . We can draw parallels

to boosting [119] and draw insights as to why the number of samples required might be less. We

now proceed to how our methodology compares to baselines (including using f for annotation)

on held-out counterfactual robustness and the impact it has on the original accuracy.
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9.4 Evaluation

We evaluate on two NLP tasks, sentiment classi�cation and question paraphrase, using two

datasets namely the Stanford Sentiment Treebank (SST-2) [388] and the Quora Question Pair

(QQP) [191, 422]. Below, we brie�y explain the problem set up in both datasets, how the coun-

terfactuals are generated in each and the corresponding counterfactual datasets across which we

evaluate counterfactual robustness.

9.4.1 Counterfactual Generator: Polyjuice

We use a general purpose counterfactual text generator called Polyjuice [442], which extends

CheckList [357], that has shown promise by improving diversity, �uency and grammatical cor-

rectness as evaluated by user studies. It covers a wide variety of commonly used counterfac-

tual types including patterns of negation [214], adding or changing quanti�ers [128], shu�e key

phrases [461], word or phrase swaps which do not alter POS tags [367] or parse trees [438], along

with insertions or deletion of constraints that do not alter the parse tree [282]. Speci�cally, we

use 8 prompts or types of counterfactuals - negation, quanti�er, lexical, resemantic, insert, delete,

restructure, shu�e; in Polyjuice to generate the augmented dataset. Other text generative mod-

els like [468, 214, 202] that improve adversarial robustness or like [220, 79] that allow controlled

generation could be used as well.

9.4.2 Tasks and Datasets

Stanford Sentiment Treebank: We use the sentiment analysis dataset SST-2 [388] which as-

signs a binary sentiment (negative/positive) to a sentence mined from RottenTomatoes movie

reviews. The corresponding counterfactuals are generated using the Polyjuice generator [442].

The original dataset contained 4,000 samples, while the counterfactual dataset had 2,000 samples

179



with human labels against which we evaluate. We show a sample of the dataset in the following:

Positive: A dog is embraced by the dog

Negative: A dog is not embraced by the dog

Quora Question Pair: In the QQP dataset [191, 422], given a pair of questions, the task is to pre-

dict if they are semantically equivalent, hence marked as duplicate. Here, again the second ques-

tion is modi�ed by Polyjuice [442] as per the templates used for the SST-2 dataset including nega-

tion, insertion, deletion, rephrasing, etc, out of which 1,911 samples were human annotated for

evaluation. The original dataset had 20,000 samples.

Duplicate: How can I help a friend experiencing serious depression?; How can I help a friend

who is in depression?

Non-duplicate: How can I help a friend experiencing serious depression?; How can I play with

a friend who is in depression?

9.4.3 Baselines

We now brie�y describe �ve di�erent baselines used to generate the labels of counterfactual

augmented data (Y ′д), given access to a small number of annotated labels Y ′a .

• No-cda: f without any counterfactual data used for robustness.

• Label-invariant (invariant) : the labels of the counterfactual examples are assumed to be

the same as the corresponding original sentence: y′ = y.

• Trust: we trust the classi�er f to annotate the counterfactual labels y′ = f (cs(x)) - a form

of semi-supervision based on the existing base classi�er.

• Weighted-trust (w-trust): the label of the counterfactual example is computed via the

maximum score weighted by the con�dence score of the classi�er f on the pair for a label

l : pl (x) such that y′ = argmaxl pl (x) · pl (cs(x)).

• Random: In order to understand the importance of the counterfactual sentences used in

the pairwise classi�er, we also evaluate against a classi�er which takes two randomly paired
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sentences from the original dataset as input and predicts the second label given the label

of one sentence.

• Training: we only use those counterfactual examples with human-annotated labels (X ′a,Y ′a)

and drop all other counterfactual examples.

For all these baselines as well as our proposed methods, we use the RoBERTa [255] �ne-tuned

model as the choice of classi�er f , and a corresponding pairwise �ne-tuning task using RoBERTa

1 for the auxiliary pairwise counterfactual classi�er h.

9.4.4 Experiment Setup

In both datasets, we have a small number of counterfactual human annotations available (SST-2:

2,000; QQP: 1,911) [442]. We divide these examples into two sets, one for training and annotating

using h, and another held-out test dataset used to compute counterfactual robustness of f . The

former dataset is used for �ne-tuning f for counterfactual robustness, while the latter is used only

as a held-out test set. In the SST-2 dataset, this means we split out 1,000 samples for training/an-

notation and 1,000 as the test set, while in the QQP dataset, we use 1,000 samples for training/an-

notation and the remaining 911 samples for testing counterfactual robustness. However, our aim

is to use a minimal subset of the 1,000 samples available for training the base classi�er directly.

Instead, we use a smaller training dataset (say 100) to train our pairwise classi�er which in-turn

can then arti�cally annotate the remaining (say 900) samples. The combination of these (sum to

1000) will then be used to train the base classi�er. Thus, in all our experiments, the number of

counterfactual samples available to the base classi�er to train on remains the same, although at

di�erent levels of human labeling costs.

The classi�er f is �rst trained on the original classi�er and then �ne-tuned on the counter-

factual dataset. We also perform 10 random initializations of the model f and h and a 10-fold
1huggingface.co/roberta-large-mnli, textattack/roberta-base-SST-2, ji-xin/roberta_base-QQP-two_stage
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cross-validation split on the training/annotation data, thus report the mean and standard error

boundsσ/
√
n overn = 1000 runs for each model-based annotation and training for counterfactual

robustness. We used the standard hyperparameters provided 1 for training f on (X ,Y ) and the

hyperparameters for �ne-tuning f on (X ′t ,Y ′t ) include learning rate of 5e − 5, batch size of 16 and

a sequence length of 120 for 20 epochs. The pairwise counterfactual classi�er’s hyperparameters

were chosen after a grid search to have a learning rate of 5e − 4, batch size of 32 for 50 epochs,

sequence length of 240 including the original label and classi�er predictions with special marker

characters. While the base classi�er f is trained on contextual embeddings of the sentence(s), h

is trained by further augmenting the original and counterfactual sentence embeddings as input

to RoBERTa followed by the base classi�er’s predictions separated by special delimiters [DEL].

To test the methodology on out-of-domain datasets, we test on sentiment analysis tasks in 3

class-balanced reviews datasets - IMDB movie reviews, Amazon reviews, and Yelp reviews [215].

The IMDB reviews (1,700) were collected by [214] through careful human elicitation to produce

label varying counterfactuals of existing IMDB reviews. In the Yelp reviews [19], the task is to

predict the ratings of 115,907 reviews on a scale of 1-5, and in the Amazon reviews [307], we

evaluate on the 57,947 reviews in the clothing product category. Each one of these datasets were

not used for training either the base classi�er or the pairwise classi�er, and the training relies

solely on the SST-2 dataset. So, we can measure the generalizability of the pairwise classi�er

based data augmentation methodology.

9.5 Results

9.5.1 Improving Counterfactual Robustness

To demonstrate the e�ectiveness of our proposed methods: pairwise-counterfactual (PC) and

classi�er-aware pairwise-counterfactual (CAPC), we perform counterfactual data augmentation
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using 10% counterfactual examples with human-annotated labels as well as 90% counterfactual

examples (a total of 1,000 samples), whose labels are predicted using each method. The error rate

on the hold-out counterfactual examples (referred as robustness) as well as on the original test

set are shown in Figure 9.2.
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Figure 9.2: (a) Robustness: (first row) Training on 10% of human-annotated counterfactuals, and anno-
tating the rest using the auxiliary classifier, we achieve a comparable improvement in robustness (lower
error rate) for both Stanford Sentiment and �ora �estion Pair datasets; (b) Accuracy: This improve-
ment in robustness does not sacrifice the accuracy on the original held-out dataset.

We can clearly see that (1) the error rate of our proposed methods: PC and CAPC both signif-

icantly outperform other �ve baselines on models’ robustness. (2) Comparing PC and CAPC, we

can see thatCAPC performs slightly better thanPC. This indicates that the prediction of the orig-

inal classi�er f (x), f (cs(x)) does provide additional information to help with labels prediction. (3)
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In addition, we also compare our methods with the extreme case that all the counterfactual exam-

ples (100%) are provided human-annotated labels, denoted as (human-labels). Surprisingly, our

methods, which only use 10% human-annotated labels and predict the labels for the other 90%

counterfactual data, achieve comparable performance in improving models’ robustness. This suf-

�ciently supports that our proposed methods can e�ectively predict the labels for counterfactual

examples. (4) Looking at the error rate on the hold-out original test set, all the methods share a

similar performance on SST-2 and our methods are better than other baselines and comparable

to human-labels on QQP.

9.5.2 How much human-annotated data do we need?

To understand the impact of the training data provided to the auxiliary classi�er h, we increased

the % of data Y ′a provided to the classi�er. While this increases costs of annotation, it is impor-

tant to understand the headroom improvement in counterfactual robustness one would get had

they opted for complete human-annotation. Figure 9.3 shows that across both datasets, the im-

provement in accuracy and robustness in providing more human annotations to train h : CAPC

and subsequently training the model f : RoBERTa-{SST-2, QQP} is not signi�cant and hence fur-

ther demonstrates that, with just 10% of the augmentation dataset, we can already achieve an

improvement comparable to a fully human annotated dataset. This further con�rms our method

can achieve high sample e�ciency in improving models’ robustness.

9.5.3 Generalization across Counterfactual Types

We evaluate the generalization of our pairwise counterfactual classi�er h by ablating one coun-

terfactual type (e.g negation, quanti�er, etc) at a time during training h, but still annotate them

to generate the augmented training data for f . The results are shown in Table 9.1 (rows 2-7). We

see that our approach outperforms existing baselines on counterfactual robustness. This further

184



60

80

100

Co
un

te
rfa

ct
ua

l
Ac

cu
ra

cy
 (%

)

SST-2 QQP

0 20 40 60 80 100
Training Labels for h : |Y ′a|/|Y ′t| (%)

60

80

100

Or
ig

in
al

Ac
cu

ra
cy

 (%
)

0 20 40 60 80 100
Training Labels for h : |Y ′a|/|Y ′t| (%)

Figure 9.3: Impact of training size: As the number of samples |Y ′a | increases more than 10%, there is
not much headroom in counterfactual accuracy, and does not significantly impact the accuracy on the
held-out original test dataset on both SST-2 and QQP datasets (overlapping error bounds).

185



Sliced Error when Counterfactual Type is Ablated %
Model negation quanti�er lexical resemantic insert delete restructure shu�le
CAPC-no-ablation 3.20 2.01 1.94 2.00 2.10 2.45 3.32 4.03

Generalization when counterfactual type is ablated from training h

invariant 14.62 4.82 4.32 3.10 7.72 7.83 6.48 9.24
trust 12.96 4.15 4.73 3.00 4.95 12.49 3.74 9.02
w-trust 5.09 3.55 8.91 10.60 7.72 5.57 10.51 10.60
random 4.74 4.04 6.92 2.22 7.42 5.55 5.72 4.96
PC 4.50 5.35 2.73 3.20 2.12 2.13 5.30 5.10
CAPC 4.04 2.20 4.76 2.10 4.56 4.67 3.56 4.50

Generalization when counterfactual type is ablated from training h and f

PC 7.02 7.40 4.63 5.35 2.42 2.54 6.85 9.34
CAPC 11.17 13.02 7.55 13.33 4.98 5.76 10.77 9.01

Table 9.1: Generalization of Counterfactual Types: Increase in error rates (%) of di�erent counter-
factual sentence types shows that our approaches CAPC and PC generalize be�er when those types are
held out during training h. However, when we ablate the counterfactual type both while training f and
h, our approaches perform comparably to the baselines. This shows that h does not just memorize the
templates, but training on diverse counterfactual types is important for robustness

indicates the importance of learning a counterfactual classi�er which captures patterns of label

invariance that generalizes across counterfactual templates. Finally, we evaluate if our generated

augmentation dataset can be used to improve unseen counterfactual types - ablated while train-

ing both h and f . While this is not the goal of our paper, it is useful to understand what types of

counterfactuals are captured by our generator and if any overlap between the types of counter-

factuals is leveraged. Table 9.1 (rows 8-9) shows that our approach is comparable with baselines

(rows 2-5 in Table 9.1) when a speci�c counterfactual type is ablated completely from the data

augmentation pipeline. This is consistent with existing work [198, 186] and further highlights

the need to incorporate diverse types of counterfactuals to perform data augmentation.

9.5.4 Checklist Evaluation

To further validate that the generated labels by our auxiliary model can be used for other tasks, we

evaluate it against the labels in CheckList [357] which capture other types of counterfactuals. We

measure the Absolute Failure Gap: |ϵ−ϵa | computed as the di�erence between the true error rate ϵ

and the error rate as reported by using our augmented dataset ϵa while evaluating the models and
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Test error rate %
Model IMDB Yelp Amazon

no-CDA 9.2 15.7 20.0
invariant 11.3 15.9 21.5

trust 9.3 15.8 20.5
w-trust 9.2 15.5 20.2
random 10.4 16.3 23.8

PC 8.0 14.3 18.1
CAPC 7.2 13.1 17.2

domain-trained 6.7 13.0 16.7

Table 9.2: Out-of-domain reviews: Using data augmentation with SST-2 counterfactuals from the
Polyjuice generator and classified using CAPC performs comparable to a model trained on within-domain
data.
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tasks in the CheckList dataset. In Figure 9.4, we see that even when the training data provided

to the auxiliary classi�er is synthetically made explicitly label-invariant (90%), evaluating against

counterfactuals with minimal label-invariance (10%), our model generalizes with a lower failure

gap than other augmentation approaches. However, on the original Checklist dataset there is no

signi�cant improvement in failure gap compared to reporting the failure gap just on the training

data alone.
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Figure 9.4: Checklist Evaluation - (a) Out of distribution data: Our methods perform well over
di�erent label-invariant distributions with 90% counterfactual label flips (y , y ′) in the Checklist dataset
even when the training distribution has only 10% counterfactual label flips; (b) Model Comparison:
However, on the original Checklist dataset [357], we achieve a comparable failure gap with the golden
error rate to other model-based annotations
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9.5.5 Out-of-Domain Reviews

To validate that the counterfactuals we augment through our pairwise classi�er’s annotations has

generalizability to out-of-domain datasets, we evaluate the reduction in error rates of the base

RoBERTa model when they are trained on the pairwise classi�er’s data augmentation in Table

9.2. In the IMDB reviews dataset, we see an improvement in error rates from 9.2% without data

augmentation to 7.2% through CAPC. This out-of-domain error rate is comparable to the error

rate obtained by the model trained by [214] after incorporating samples from the counterfactuals

drawn from the same distribution as part of the training (6.7%). In the Yelp reviews too, we see

a reduction from 15.7% to 13.1% whereas other baseline approaches lead to an increase in error

rates. Finally, in the Amazon reviews, the CAPC approach (17.2%) outperforms the baselines and

is comparable to the augmentation from the training split from the Amazon reviews (16.7%). Each

of these improvements have to be viewed with the context that it was achieved in a more sample

e�cient manner (1,000 counterfactuals generated from the original SST-2 dataset by Polyjuice) as

compared to the in-distribution training approach, where the training data has 3,400 samples from

their own respective datasets. This further con�rms that training on augmented counterfactuals

using a generator and pairwise classi�er approach is comparable to human-annotated samples

from other domains, while providing us the ability to scale both in terms of domain generalization

as well as labeling e�ciency.

9.5.6 Discussion

The need to ensure that natural language models predict reliably when sentences are perturbed

in speci�c syntactic and semantically meaningful ways, beyond the observed training dataset is

well established. Even though a checklist based framework introduces many constraints at once,

it is important to ensure that enforcing one does not counter another counterfactual behavior. We

now discuss how future work can build on top of our framework to overcome these limitations.
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Importance of diverse templates While we show generalization across label variance in

templates, we cannot guarantee that by learning solely on label invariant counterfactuals, our

classi�er can generalize over label modifying counterfactuals. Here, it is important to analyze

counterfactual generators as to what type of sentences they generate and how it might be relevant

to downstream tasks. While generators like Polyjuice [442] have been evaluated for �uency,

diversity, etc., there is a need to evaluate them within the context of a task and its labels.

We improve what we measure One thing to note is that the set of counterfactuals we im-

proved robustness over is limited. Our analysis indicates the need for more diverse counterfactual

types that require a case-by-case contextual understanding. We show that adding more counter-

factual types can be done in a sample e�cient manner by using a generator trained to produce

counterfactuals and a classi�er which labels them by training on a small set of human annota-

tions. Having more automated ways to improve robustness of natural language classi�er would

be an interesting future direction.

Using crowdsourcing e�ciently The gains in robustness shown in Figure 3 and Table 2

further illustrate the need to dataset generation in an e�cient manner. As future work, one

can also look towards an e�cient crowdsourcing strategy that minimizes the gain provided by

the pairwise classi�ers as each sample in the annotated dataset provide a unique and diverse

counterfactual or a combination of counterfactual patterns that are not immediately evident from

the previous set of samples. This can include prompts such as this sentence is similar to the ones

already in the dataset and could encourage the human annotator to provide a sample di�erent

than already available.

Model Cards and Datasheets Each of the individual augmented counterfactuals generated

from Polyjuice need to be incorporated in the Model Cards [295] under training sections, along

with the intended use of such a dataset in the datasheet [134]. However, with such a generated

dataset and an auxiliary classi�er working in combination to produce the labels, the intended use

of this combination is expected to be restricted for improving robustness.
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9.6 Conclusion

Counterfactual Data Augmentation approaches have been extensively used to train for counter-

factual robustness. As the types of counterfactuals - both label-invariant and label-modifying,

over which to evaluate natural language models increase, there is a need to adopt a methodology

that can scale with increasing types of counterfactuals. We overcome a signi�cant challenge in

doing so, by learning an auxiliary pairwise counterfactual classi�er that leverages the patterns

of counterfactuals produced by vairous generative models. Using only a small amount of human

annotated counterfactual samples, we demonstrate that our method can produce a dataset that

improves counterfactual robustness comparable to that of a fully human-annotated dataset.
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Part IV

Domain Faithful Evaluation
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10 | Transparent demographic group

trade-offs in Credit Risk and

Income Classification

10.1 Introduction

In recent discussions of ethical ML algorithms, evaluating fairness has been frequently predicated

on de�ning constraints based on speci�c protected attributes, such as race or gender [412, 39].

These attributes should not demonstrate conditionally discriminative behavior while learning

classi�cation targets. If care is not taken in the construction of an ML model, works such as [465]

and [105] have shown that inequalities in underlying data distributions can be ampli�ed in the

predicted output, leading to runaway feedback loops. Recent works [217] have argued that ex-

amining the intersectionality of multiple protected attributes is crucial for establishing coherent

standards of fairness. However, real-world data sub-populations often display varying under-

lying sampling distributions, bias and noise. We argue that principles towards fair ML should

encourage transparency in the trade-o�s between demographic group accuracy in a classi�ca-

tion task and at a minimum be able to re�ect their true underlying population distributions. At

a �xed sample size, as the number of protected attributes increases, the intersectional subgroup

populations tend to decrease in size. In these scenarios, it is evident that any classi�er which
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does not perform worse on all groups can never be fair [288]. Hence, in this paper we aim to

understand the research question of how the trade-o�s between demographic groups a�ect the

evaluation of di�erent methodologies proposed that are aimed to improve classi�cation accuracy.

To quantify this, we look to the rich literature of “individual fairness” which de�nes fairness with

respect to a similarity metric between two individuals and enforces that similar individuals are

treated similarly, within an error bound [100, 99, 217]. We �nd this de�nition to be useful in

allowing us to continue to ensure that minority demographic group populations perform at their

best accuracy while ensuring that majority demographic groups do not su�er a large decrease in

group-level accuracy.

Using this transparent Pareto-principle of E�ciency [144], popular in social welfare and eco-

nomics, we argue that trade-o�s between demographic group accuracy undertaken by ML algo-

rithms in high-stakes applications like credit risk and income classi�cation [88] should be made

transparent in order to be examined against socio-technical norms in that application domain

[373, 158, 266]. We have been motivated by the insight that many fairness problems in exist-

ing classi�cation tasks for speci�c subpopulations can be remedied by controlled data collection,

subject to ethical considerations [52, 59]. As such, we suggest that in the spirit of achieving

fair outcomes, when learning on datasets with varying demographic group sample sizes, how

we weigh the loss su�ered by each demographic group can be a critical choice and should be

transparent.

In the domain of credit risk assessment, the trade-o� between the accuracy of demographic

groups has implications on �nancial justice across demographic groups. For example, older mar-

ried male individuals have better accuracy than younger single female individuals for credit risk

assessment. This means that even a seemingly group-blind ML algorithm can have signi�cantly

di�erent accuracy across demographic groups. Similarly, in the income classi�cation task, Cau-

casian male individuals have much better baseline accuracy than non-Caucasian female individ-

uals in the United States. Therefore, to build transparent and fair ML systems, we show that
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the trade-o�s between these demographic groups cannot be avoided, but rather should be an in-

tegral part of the transparent design of any socio-technical ML system. We illustrate one such

transparent trade-o� mechanism by arguing for e�ciency based on the Pareto principle, where

degradation in the accuracy of one group should not occur without improving another group’s

accuracy. In this paper, we compare our transparent Pareto-principle based trade-o� with several

other strict equality-based constraints and demonstrate an increase in 9.5% and 9.6% overall and

group-level accuracy respectively on both the credit risk and income classi�cation tasks.

10.2 Motivation: Trade-offs in the real world

10.2.0.1 COMPAS

A ML model (COMPAS tool) was used for determining the risk of recidivism in Broward County,

Florida, USA. ProPublica [propublica] found in an independent investigation involving 18,610

people over 2 years that black males were twice as likely to be misclassi�ed by the model as high

risk as compared to white males. This scenario highlights the critical need for auditing existing

decision-making systems (including the ones based on human experts) and understanding the

trade-o�s made in their design. In such a high stakes scenario, ideally, a decision-making system

that achieves the highest group level metrics (such as accuracy) is required. By incorporating

inductive biases based on racial and social justice, one could hope to achieve the end objective of

improving the Pareto front transparently. If we do not attempt to evaluate and discover Pareto

e�cient classi�ers, a domain expert choosing a classi�er might end up making trade-o�s of ac-

curacy and fairness among ine�cient classi�ers.

10.2.0.2 Gender Shades

Certain image recognition models were discovered to have lower accuracy for one particular

group (darker females) than other groups in the Gender Shades project [116]. The intervention

195



undertaken to resolve this discrepancy involved collecting better data for the poor performing

group (females with darker skin tone). The progress from such interventions amounts to discov-

ering better group accuracies on the Pareto frontier, as opposed to restricting the models to strict

equality among groups. Here too, the authors of the project, Buolamwini and Gebru, advocate

for a complete ban of ML models for facial recognition tasks since these models are not advanced

enough to perform with high accuracy on all groups independent of skin tone and gender, with-

out encoding spurious correlations. Hence, a ML model needs to be transparent in the trade-o�s

that it implicitly makes to gain socio-technical acceptance in the real world.

10.3 Transparent Trade-offs

The Pareto frontier has been used to characterize the trade-o�s between more than one dimension

in multiple objective learning [7, 353]. It characterizes solutions such that no point on the Pareto

curve dominates another point on all the dimensions across which we measure an objective.

Evaluating the Pareto curve for any ML classi�er can be critical in making transparent trade-o�s

between demographic groups [3].

10.3.1 Pareto front in ML based models

In our analysis of the German Credit and Adult Census Datasets, we take an example of a feedfor-

ward neural network model with up to 3 layers with each layer containing 256, 128 and 64 hidden

units respectively. We then perform a sweep of the hyperparameters by varying the depth of the

neural network, learning rates and L1 and L2 regularization parameters [304], and the training

data made available to train the network (speci�c demographic groups versus the entire dataset).

Each network was trained multiple times with randomized seeds for initializing the parameters

of the network. This gives us a wide range of group-level accuracies along each of the demo-

graphic groups we slice the accuracy of the model. We then constructed the Pareto front of these
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Figure 10.1: An illustration of a two group-se�ing plo�ing group-level accuracy and its corresponding
Pareto front (in blue) shows that demographic group trade-o�s are implicit and unavoidable in ML systems

group-level accuracies after varying the hyper-parameters, with each group corresponding to a

dimension of the Pareto front. Note that visualization of the Pareto front can be tricky, given

that in most real-world applications, the demographic groups are more than three. Hence, we

need a principled approach using which a domain practitioner can argue about their choice of

a speci�c classi�er on the Pareto front. In �gure 10.1, we see that in simulated data with two

demographic groups, a domain expert can trade-o� one group’s performance with another by

choosing di�erent points on the Pareto front. Also, we can see that a trade-o� is inevitable unless

we assume that the Pareto front exactly intersects with the hyperplane where all demographic

groups perform equally (x=y in case of two dimensions).
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10.3.2 Pareto Trade-offs

Having established that a trade-o� between group-level accuracy should be conducted on the

Pareto front, we now provide an example where such a trade-o� is transparent and based on a

Pareto E�cient and fair principle. In this principle, a domain expert might choose a classi�er

where each group’s performance sacri�ces accuracy equally. For example, in the German Credit

risk assessment task, older male individuals can achieve their best accuracy of 91% among all the

points on the Pareto front, whereas younger female individuals can achieve only 73%. In this

case, the Pareto-based trade-o� would advocate for a classi�er that achieves 89% and 71.4% on

the two groups respectively, each of them about 2.2% below (Pareto Loss) their respective optimal

choices on the Pareto front. This choice is di�erent than the one a domain expert would choose

based on the principle of strict equality or Demographic Parity [168] between the groups (both

groups at 73%, i.e. zero Parity Loss). We acknowledge that both of these choices might be valid in

di�erent contexts based on the principles the corresponding algorithmic decision-making system

prescribes. But, the choice needs to be transparent and cannot be masked behind the objective of

minimizing overall classi�cation error. This transparency allows people who apply for credit to

contend the trade-o�s and the corresponding principles in automated decision-making systems.

Hence, with transparency, the people who were previously left out of the decision-making sys-

tems’ design can be involved and provide them the ability to appeal the trade-o�s made by such

ML models.

10.4 Evaluation

10.4.1 Baselines

We compare our transparent trade-o� approach with optimization techniques that use fairness

constraints such as Equality Constraint [465], Adversarial [37], and Min-Max fairness [275]. Zhao
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Figure 10.2: Comparison for 2 UCI datasets showing that the pareto-based transparent trade-o� achieves
be�er overall accuracy than other fairness constrained classifiers.

et al. [465] aim to lower the sum of absolute discrepancy of all group accuracy from the overall

accuracy (Parity loss), while Beutel et al. [37] adversarially attempt to nudge the classi�er such

that it cannot predict the protected attributes. Martinez et al. [275] aim to maximize the accuracy

of the least performing demographic group.

10.4.2 UCI Adult Dataset

The UCI Census Adult dataset focuses on the prediction of income as a binary variable (> $50K, <=

$50K) based on demographic information. Protected attributes selected are gender and race and

are denoted as binary categorical variables. We consider the 4 groups at the intersection of the

protected attributes, to overcome the limitations of group fairness as outlined in [218]. The

dataset has 48,842 instances out of which 20% is held out as test data, while the remaining is
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Figure 10.3: Group accuracy comparison shows that we achieve Pareto dominating group level accuracy
for all groups in UCI Adult dataset.

used for training and cross-validation. There are 14 attributes out of which 6 are continuous and

8 variables are categorical. Table 11.2 shows the Pareto loss, i.e how much each group deviates

from the pseudo-optimal of the respective group for the UCI Census Adult dataset. Based on the

Pareto principle, we were able to choose an optimal point on the Pareto front that ensured that

each of the demographic groups perform optimally. In our transparent trade-o� on the Pareto

front, each of the groups has better individual accuracy than the other approaches and thus bet-

ter overall accuracy as shown in Fig 10.2. Fig 10.3 demonstrates that our approach arrives at

a better classi�er on all demographic groups. Some groups even exceed the baseline accuracy

(computed using the average of all unconstrained optimization results) due to an extensive swap

of the hyperparameters and transparently choosing the Pareto optimal classi�er.
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Model FPR FNR Parity Loss Pareto Loss
Baseline (no bias loss) 0.253 0.747 0.199 0.016
Equality Constraint[465] 0.283 0.712 0.167 0.133
Adversarial [37] 0.224 0.769 0.226 0.077
Min-max [275] 0.202 0.773 0.218 0.075
Pareto E�cient 0.165 0.830 0.250 0.000

Table 10.1: Comparison of test losses in UCI Adult dataset - False Positive Rate (FPR), False Negative
Rate (FNR), Parity and Pareto Losses. Our Pareto-based trade-o� has no di�erence as compared to the
Pareto optimal group-accuracy, while [465] minimizes Parity loss.

10.4.3 UCI German Credit Dataset

The UCI German Credit risk assessment dataset involves predicting credit type as a binary label

(good or bad) from demographic information where the protected attributes selected are age,

gender and personal status. Each of these protected attributes is binarized and the intersection of

these 3 attributes is considered as the groups in our study. There are 1000 instances in the dataset

with a total of 20 categorical attributes. We hold out a random 20 % as test data over which we

present the results. The evaluation of this dataset is determined by a cost matrix where the false

positives are considered 5 times more costly than a false negative. The �nal accuracy reported

takes this into account. Similar to the UCI Adult Dataset, in Figure 10.4, we see that choosing a

point based on our Pareto principle, we increase the group-level accuracies as compared to the

equality constraints [168], adversarial loss [37] and minimax [275] optimization techniques. The

5 groups (out of the total 8) are shown in the UCI German Credit Dataset, as the rest of the groups

do not have enough samples (< 100).

10.4.4 Sample Size Inconsistencies

The use of explicit demographic attributes in real-world scenarios is sometimes a hard constraint.

One example is legislation enforcing fairness around disparate impact [409, 111]. In simpli�ed

examples, exploring the intersectionality of protected attributes may be appropriate. For example,
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Figure 10.4: Group accuracy comparison showing we achieve optimal group level accuracy for all groups
in UCI German Credit dataset among constrained classifiers.

in this paper, we explore two gender and two race subgroups in the evaluation of the UCI Adult

dataset, which translates to four separate groups. It is conceivable that in a real-world application,

the intersection of gender and race subgroups could extend into many di�erent groups. As the

intersectionality of groups grows, a group’s sample size will likely be insu�cient. In the case of

the UCI German credit risk assessment dataset, the attribute - marriage status, with �ve possible

values, is treated as a protected attribute along with gender and age. However, in the dataset,

there were no samples containing both the attributes of young, female and being married.

Despite the impossibility results of achieving fairness in the extreme case of subgroup sized

one, there is still a need to highlight cases where simple (linear) models are inadequately applied

in datasets with complex underlying subgroup distributions [propublica, 64]. The ability to

transparently argue about the trade-o�s made in designing the required model along with the
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Table 10.2: Comparison of sample complexity ranking for Probably Approximately Metric Fairness with
actual subgroup sizes of subgroups

# Group Complexity Rank Sample Size (Rank)
UCI Adult Dataset

1 Male/White 1 2,129 (1)
2 Male/Non-white 3 8,642 (3)
3 Female/White 4 2,616 (2)
4 Female/Non-white 2 19,174 (4)

UCI German Credit Dataset
1 Old/Male 3 50 (1)
2 Old/Female 4 310 (3)
3 Young/Male 2 548 (4)
4 Young/Female 1 92 (2)

limitations of small sample sizes for certain demographic groups will guide the choices made by

practitioners and ML researchers. Through our work, we see that even an ML model that does

not explicitly perform a trade-o� between demographic groups has already decided the trade-o�

implicitly.

Using the theory of sample complexity based on Rademacher complexity [297, 380], if we

assume all the hypotheses are linear with VC Dimension d , we can rank the hardness of learning

the target for each demographic group, and order them (Table 10.2 - higher numbered rank has

higher complexity values). The sample complexity to learn a PAC algorithm which achieves error

of less than ϵ with probability δ in all k subgroups is lower bounded bym:

m = O(
ln2(k)

ϵ
((d + k)ln(

1
ϵ
) + kln(

1
δ
)) (10.1)

In the UCI Adult Census dataset, the ordering of the actual subgroup sample sizes (4 > 2 > 3 > 1)

reveals that new samples are needed to match the desired sample complexity ordering (3 > 2 >

4 > 1). Speci�cally, more samples for subgroup 3 (Female/White) need to be gathered than for

subgroup 2 (Male/Non-white) to ensure the ordering of actual sample sizes aligns with that of

the sample complexities. Similarly, in the German Credit Dataset, Table 10.2 shows disparity in
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the order of the actual sample sizes (3 > 2 > 4 > 1) as compared to desired sample complexity

(2 > 1 > 3 > 4). This implies that in the UCI German Credit dataset, more new samples from

group 2 (Old/Female) than from group 3 (Young/Male) should be drawn for us to make a balanced

and transparent choice while performing trade-o�s. Similarly, more samples from subgroup 1

(Old/Male) need to be collected than from subgroup 4 (Young/Female) to remove any inversion

in the ranking of complexities and actual group sample sizes to ensure that the trade-o�s are not

performed ine�ciently due to insu�cient sample sizes.

10.5 Conclusion

We advocate for transparency in the demographic group accuracy trade-o�s in high-stakes real-

world applications like credit risk and income classi�cation tasks. We demonstrate that trans-

parency in how we balance group-level accuracies can lead to better classi�ers being explored on

the Pareto front while improving overall accuracy too by 9.5%. Further, we caveat that trade-o�s

on demographic groups with smaller sample sizes should be taken into account and appropriate

data collection exercises should be conducted. We argue that for the development of an ethical AI

framework for policy and decision-makers, transparency in the group-level accuracy trade-o�s

is critical. Future work to extend this analysis to more complex ML models may provide prin-

cipled standards for transparent trade-o�s between groups in other application domains along

with mechanisms to contest them.
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11 | Predicting Angiographic Disease

Status: Drawing the line between

demographically decoupled and

jointly trained models

11.1 Introduction

Societal inequities have the real risk of being vastly exacerbated if machine learning algorithms

do not take explicitly address issues of demographic inequity [412, 39, 465, 176, 46]. In the context

of diagnosis of angiographic disease status, age and gender based demographic groups have been

known to have prognostic di�erences in CT coronary angiography, with females below 60 years

of age have the least predictive value [452]. Prior work have also shown that women have higher

mortality from myocardial infarction, mostly at younger ages [386, 267, 341]. Given that di�erent

demographic groups based on age and gender have di�erent pro�les of heart disease, the problem

of improving the predictive accuracy of diagnostics across such demographic groups has not been

explicitly tackled as the primary objective. Instead, there is an emphasis on overall accuracy of

patients when using Machine Learning (ML) based predictive models. In this paper, we de�ne

the notion of “Demographic Pareto E�ciency” (interchangeably referred to as pareto e�ciency)
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as a guiding principle for domain experts to choose diagnostic models that improve predictive

accuracy of angiographic disease status across demographic groups based on age and gender; and

provide a methodology that discovers a larger set of ML models that consistently improve upon

the predictive accuracy for all demographic groups. Speci�cally, our methodology makes the

choice between learning separate decoupled models, one for each of the group, and a joint model

trained on all groups based the main outcome measure of demographic group-level accuracies.

Improving equity in health is well studied and various philosophical notions of fairness ex-

ist (distributive, procedural, etc.) [373, 158, 363, 266] and the appropriateness of each de�nition

depends on the ethical context in which they are applied. Theoretically, in an equitable world

of perfect data, a classi�er with perfect diagnostic accuracy across all subgroup populations may

be created. Due to a variety of reasons including historical injustices [159], sampling bias [56],

selection bias [389], label noise, among others, group populations are often not fully represented

in commonly used real-world health datasets [8]. With such skewed data, [288] has shown that

an unavoidable trade-o� exists between group fairness and accuracy. With this trade-o�, domain

experts have to choose between coupled (jointly-trained on all groups) and decoupled (one model

per group) models based on how well they balance the demographic group accuracies. While the

bene�ts of decoupled models are known theoretically when we have large and diverse datasets

[101], the impact of such models on group-level accuracy in diagnosing the angiographic disease

status in patients remains unexplored. We investigate the role of decoupled training across de-

mographic groups based on age and gender in the UCI Heart Disease dataset. Inspired by social

science and welfare economics literature [325, 81, 276] (see S.I for detailed related work), we pro-

pose a novel methodology that combines decoupled group-wise models and use them to guide a

jointly trained model to achieve demographic pareto e�ciency [144]. .

Demographic Pareto E�ciency [144] is achieved when no single group performance can be im-

proved without the degradation in performance of another group. The set of all such group level

performances when plotted in a multi-dimensional graph (one group’s performance per dimen-
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Optimization Objective Operating Point
Overall Accuracy optb = (0.63, 0.77)
Strict Accuracy Equality[465] (0.60, 0.60)
Adversarial [37] (0.73, 0.56)
Mini-max [275] (0.68, 0.63)
Pareto E�ciency (Ours) PE = (0.71, 0.63)

Table 11.1: Preferred classifiers and their demographic group-level accuracy based on di�erent objectives
in Fig 11.1.

sion), forms the Pareto frontier (like blue dots illustrated in a simulation shown in Figure 11.1).

Ensuring that classi�ers achieve Demographic Pareto E�ciency while balancing fairness con-

straints and accuracy has critical implications to the discussion about the unavoidable accuracy-

fairness trade-o�s in the real world [288]. For example, if domain practitioners are required to

make a choice between two classi�ers based on the demographic accuracy-fairness trade-o� in

predicting the Angiographic disease status, the comparison would be meaningful only if both

those classi�ers were on the Pareto frontier. Otherwise, the discussion of demographic accuracy

and fairness trade-o�s would be premature as there exists a third classi�er which can achieve

better group level accuracy and better medical outcomes. (e.g.: “Pareto E�cient Fairness” should

be preferred over “Strict Accuracy Equality” in Table 11.1). Through our approach, we discover

such Pareto e�cient predictive models to be considered as candidates in determining the angio-

graphic disease status of patients, and avoid unnecessary concessions in group level accuracy

without signi�cant degradation in fairness (demographic parity).

11.2 Background

Problem De�nition: The angiographic disease status is de�ned as a binary label (diseased or

not) based on the fact if there is more than 50% diameter narrowing in any of the major blood

vessels in a patient (lmt, ladprox, laddist, diag, cxmain, ramus, om1, om2, rcaprox, rcadist). To
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predict this angiographic disease status, we use 13 input attributes of the patient such as age,

gender, chest pain type (typical angina, atypical angina, non-anginal and asymptomatic), resting

blood pressure (mm Hg on admission to hospital), serum cholestrol (mg/dl), fasting blood sugar

(binary >120 mg/dl), resting electrocardiographic results (normal, having ST-T wave abonormal-

ity, probable or de�nite left ventricular hypertrophy), maximum heart rate achieved, exercise

induced angina (yes/no), ST depression induced by exercise relative to rest, slope of the peak ex-

ercise ST segment, number of major vessels colored by �uoroscopy, and detection of thalassemia

(none, major or reversible defect). For this heart disease dataset, di�erent machine learning al-

gorithms may be trained on the same training dataset of patients, and may obtain di�erent test

accuracies on demographic groups as illustrated in Figure 11.1. For example, when we plot each

ML algorithm as a separate point, where the value along the x and y axis indicate the test ac-

curacy over demographic groups A and B respectively, we see that some algorithms perform

poorly on both groups (annotated as alg-1..5 in grey) as compared to other algorithms (annotated

as optb , overall, PE, opta in blue). The blue line indicates the Pareto frontier of the demographic

group test accuracies, which de�nes the set of optimal choices a domain expert would have if

they were to optimize for demographic group test accuracies. Note that each algorithm on the

Pareto frontier when compared with another algorithm on the Pareto frontier, performs better

on one demographic group and poorly on the other, but never poorly on both the demographic

groups. Hence any choice the domain expert would make among these ML algorithms would

need to trade-o� one demographic group’s accuracy for the other. While this choice depends on

the domain expert and the context in which they operate (other remedial or diagnostic measures

incorporated for speci�c demographic groups), the key takeaway from this illustration is that

optimizing for overall accuracy without consideration of the demographic groups may lead us to

one of the points on the Pareto frontier, but may not always be the one that the domain expert

would choose given all options on the Pareto frontier. Hence, our primary goal in this paper is

to discover all the machine algorithms on the Pareto frontier, so that the domain expert is given a
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rich set of algorithms with Pareto optimal demographic group accuracies to choose from. However,

discovering the Pareto frontier is non-trivial as their discovery is driven by optimizing speci�c

demographic group accuracies, while keeping the accuracy of other algorithms constant. Fur-

ther, this problem is exacerbated by disparate sampling bias, epistemic, and aleatoric uncertainty

about how angiographic disease status presents itself in di�erent demographic groups. Thus, it

is not known that a simplistic training objective such as improving overall accuracy is su�cient

for discovering the full Pareto frontier. Thus, in order to discover the full Pareto frontier in a

systematic approach, we present an iterative training methodology.

11.3 Methodology

We now formally de�ne Demographic Pareto E�ciency and explain how to train a joint model

that leverages the bene�ts of decoupled classi�ers in discovering Pareto e�cient classi�ers on

the Pareto frontier.

De�nition 11.1. Demographic Pareto E�ciency: We introduce Demographic Pareto E�-

ciency as a set of classi�ers with respect to groups (de�ned by sensitive attributes). Demographic

Pareto E�cient classi�ers are de�ned as the set of classi�ers where there does not exist another

classi�er which has better performance (for a de�ned performance metric such as accuracy, TPR,

etc ) across all groups.

For groupsд ∈ |G |, we denote (f1, f2... f |G |) as the tuple of group performance metrics achieved

by any Demographic Pareto E�cient classi�er. The f1, f2, .. f |G | are group performance metric

values that are to be maximized (e.g. accuracy, TPR). Formally, Demographic Pareto E�ciency

states that no other classi�er exists with performance metrics (q1,q2...q |G |) such that f1 ≤ q1 and

f2 ≤ q2 and .. f |G | ≤ q |G | .

De�nition 11.2. Pareto Loss: Pareto Loss, ϵд, for a group д, is de�ned as the relative di�erence

between the performance of a classi�er for that group fд and the optimal performance for the
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group fopt−д across all discovered classi�ers.

ϵд = 1 −
fд

fopt−д
(11.1)

While the above formulation of optimizing the Pareto loss can lead to multiple Pareto e�cient

decoupled and jointly trained diagnostic models of angiographic disease, the domain expert has to

choose a single classi�er among them post-training. Ideally, choosing the most desirable classi�er

is left to the end, once the complete Pareto front has been discovered. As discovering the Pareto

frontier itself is our problem statement, this can lead to a deadlock condition, where an e�ective

choice between decoupled and jointly trained models cannot be made without making choices

that lead to better exploration at training time.

De�nition 11.3. Pareto E�cient Fairness: We de�ne a classi�er as Pareto E�cient Fair (PEF)

if it is Pareto E�cient and minimizes a weighted average of variance and absolute sum of the

Pareto loss across groups.

The de�nition of Pareto loss requires us to know the true optimal performance per group

fopt−д a priori, which may not be possible. Hence, we use a decoupled classi�er to estimate these

optimal values at each iteration of training.

Pareto E�cient Algorithm: A heuristic pseudo-optimal group accuracy fopt−д for each

group д is formulated by training a decoupled classi�er Mд to minimize the cross-entropy loss

Lce on samples in groupд from datasetD [324]. We then iteratively update fopt−д if a better group

accuracy is evaluated by a jointly trained model M on a held-out test set using the eval function.

A summary of the Pareto E�cient bias mitigation algorithm is presented in Algorithm 6, and the

corresponding components are explained in detail below. This is an in-processing algorithm (as

opposed to post-processing [440]) which trains a joint model M on all subgroups to minimize the

Pareto E�cient fairness loss Lp in every batch by stochastic gradient descent. We strictly ensure

that the mini-batch is representative of the group distributions by sampling group-wise batch

210



samples proportionately. Our algorithm explicitly achieves potentially optimal performance for

each of the groups by explicitly recognizing these di�erences [249] as opposed to ones which do

so implicitly [221]. Now, we formally de�ne our fairness based Pareto loss function Lp used in

each iteration of our algorithm.

Algorithm 6 Iterative Pareto E�cient Bias Mitigation
G: set of sensitive groups, D: dataset, Dд: data of group д ∈ G
for д ∈ G do
Mд = arg min Lce(Dд)

fopt−д = eval(Mд,Dд)

fд = ∅
end for
while ∃д ∈ G, fд = ∅ ∨ fд > fopt−д do

fopt−д = max(fд, fopt−д),∀д ∈ G
train(M,Lp(D))
fд = eval(M , Dд), ∀д ∈ G

end while
return M

Consider a set of Demographic Pareto E�cient classi�ers TPE , with each classi�er t ∈ TPE

containing a tuple of Pareto losses Et,G = (ϵt,1, ϵt,2, ...ϵt,|G |). The sample variance of Pareto loss

across groups is denoted byσ 2
t,G(Et,G). The goal is to �nd the Pareto E�cient Fair classi�er tPE−f air

that minimizes the variance of Pareto losses among all groups. Since it is empirically di�cult to

�nd all the Demographic Pareto E�cient classi�ers TPE at each iteration of our algorithm, we

relax this by approximating the Pareto classi�ers as ones that have a low absolute sum of group

Pareto losses (‖Et,G ‖1) among all classi�ers t ∈ T . Since the classi�er with the lowest absolute

Pareto loss may not equate to the classi�er that minimizes the variance of the Pareto loss across

groups and vice-versa, we trade-o� these two minimization criterion using a Lagrangian factor

α in the Group Pareto Loss as follows:
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tPE−f air = arg min
t∈TPE

σ 2
t,G(Et,G) (11.2)

≈ arg min
t∈T

α ‖Et,G ‖1 + (1 − α)σ 2
t,G(Et,G) (11.3)

When α = 0, the variance of Pareto loss is minimized, whereas, when α = 1, we minimize the

absolute Pareto loss. In all our experiments, we chose α = 0.5 after cross-validation, however

the domain expert in the angiographic disease diagnoses might chose another value based on the

trade-o� between variance and absolute sum of Pareto losses. By making this choice explicit, we

can demand transparency from practitioners deploying diagnostic ML models about the trade-

o�s they made. A high α would force that each demographic group be as close as possible to it’s

optimal performance, whereas a low α would enforce that each group su�er similar Pareto losses

as compared to their optimal group performance.

Augmented Pareto Loss: We now generalize our de�nitions for any binary diagnostic

model. Here, the minimization criterion of the Group Pareto Loss, but we minimize the group

Pareto Loss over the parameters of the binary classi�cation model using stochastic batch gradient

descent. The Group Pareto Loss is augmented with an appropriate loss weight (λ) via the La-

grangian dual formulation similar to [103]. As an example, the standard cross-entropy classi�ca-

tion loss: Lce [271] can be augmented to yield the Pareto E�cient Fairness Loss: Lp . The penalty

term weighted by λ is used to ensure that maximum overall accuracy can be achieved while min-

imizing a combination of the absolute Pareto loss and its variance. After cross-validation, we set

λ = 0.1, but here too the domain expert might choose based on external factors that impact the

relative weight of overall as compared to group-level accuracy. (see S.I for detailed methods)

Lp = Lce + λ(α ‖EG ‖1 + (1 − α)σ 2
G(EG)) (11.4)
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11.4 Results

Here, we predict health status as binary label (presence or absence of Heart Disease) using medical

and demographic information, where we consider age (>60, <=60) and gender (male, female) to be

the strati�cation variables. The intersection of these 2 variables are considered sensitive groups

in our study.

The dataset consists of 920 patients from four hospitals of Cleveland Clinic Foundation; Hun-

garian Institute of Cardiology, Budapest, V.A. Medical Center, Long Beach, CA; and University

Hospital, Zurich, Switzerland with a total of 75 attributes, out of which 13 attributes are used for

predicting the binary label of angiographic disease status (0: <50% diameter narrowing, 1: >50%

diameter narrowing). The number of samples in each of the four demographic groups Young/-

Male, Young/Female, Old/Male, Old/Female are 550, 149, 176 and 45 respectively. We split the

dataset into a 10-fold train/test random strati�ed splits (train on 9 splits, and test on the remain-

ing split, repeated 10 times) based on the demographic groups to ensure that the training and test

data are sampled from the same distribution and that all demographic groups are represented as

per the dataset. We compare our approach with the scaled versions of group fairness [465] and

[37] for groups. In [465], the authors optimize for overall accuracy in the constrained setting of

ensuring equal false positive rates. The method is generally applicable to other measures of per-

formance. For comparison, we implement an objective to maximize overall accuracy along with a

Lagrangian relaxation which adds a penalty for parity loss (deviation from the overall accuracy)

for each group.

This baseline scenario is equivalent to optimizing for balanced accuracy across sub-groups or

assuming that perfect group-level performance can be achieved (accuracy of 100%). Instead, in

our iterative approach, we use a per-group decoupled classi�er’s pareto optimal performance as

a training signal. In [37], the authors implement bias mitigation as a way of erasing the sensitive

group membership by back-propagating negative gradients in a multi-headed feedforward neural
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Model Accuracy FPR FNR Parity Loss Pareto Loss
Baseline (no bias loss) 0.879 0.348 0.701 0.192 0.018
Equality Constraint[465] 0.870 0.381 0.684 0.132 0.123
Adversarial [37] 0.837 0.327 0.723 0.253 0.087
Min-max [275] 0.839 0.306 0.765 0.231 0.055
Pareto E�cient Fair Loss 0.939 0.266 0.690 0.198 0.000

Table 11.2: Comparison of test losses in UCI Heart Disease dataset. PEF optimizes Pareto loss, while
[465] minimizes Parity loss. The higher parity loss for PEF does not mean degrading group performances,
but instead improves each group. Also, PEF and [465] achieve best False Positive Rate (FPR) and False
Negative Rate (FNR) respectively as a side-e�ect [335], despite not optimizing for it.

network. In [275], they adopt a minimax objective that ensures that the least performing group

has the highest accuracy possible. We evaluate by comparing these 4 techniques on the UCI Heart

disease dataset. We perform a 10-fold cross validation and report the average accuracy across the

10 splits.

11.4.1 Preprocessing

Each entry in the dataset has been pre-processed using the one-hot encoding for categorical

features and the Tensor�ow bucketization library into 10 buckets for numeric features. The re-

sulting embedding is concatenated and used as input to a 3-layer feedforward neural network

with 256, 128 and 64 hidden units respectively. We trained each of the models for 100 epochs

and noticed that training and dev error plateaued. The test metric reported is the average of 10-

fold demographic group strati�ed cross validation accuracy along with the corresponding error

bars denoting one standard deviation. The group identi�ers present in the datasets were used to

aggregate group Pareto loss during training.
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11.4.2 Demographic Group Performance

The UCI Heart Disease dataset predicts angiographic disease status as a binary label (presence

or absence of Heart Disease) using medical and demographic information. Age is binarized at

a threshold of 40 years between young and old individuals, and gender is given to be binary

(male/female) and are assigned as sensitive variables. The intersection of these 2 variables are

considered sensitive demographic groups in our study. In Figure 11.2, we present group level per-

formances for the UCI Heart Disease Dataset. Our approach of incorporating pareto e�ciency

leads to improvements in group level accuracies for all groups of the data by an average of 9.6%.

We see improvements in the accuracy of predicting the presence of Heart disease in Table 11.2

by an average of 9.7% and that the relaxation of the demographic parity loss performs better than

strict fairness constraints (Figure 11.3). This implies that improving based on demographic pareto

e�ciency obtains a better overall accuracy than even the baseline which explicitly optimizes over-

all accuracy on a held-out test set. This non-trivial result is due to the fact that when optimizing

for overall accuracy on a training dataset, predictive models may incorrectly assume that the

patterns in the majority group (Young/Male) might generalize to other demographic groups. We

overcome this issue, and ensure that the demographic groups’ accuracies are improved in an it-

erative manner as outlined in Algorithm 1. Since we use the decoupled classi�ers’ accuracies

to measure the Pareto losses, and ensure that we incrementally train the joint model in such a

way as to improve the accuracies of each of the groups (the training will terminate if individual

group accuracies cannot be improved). This in turn has improved the overall test accuracy by

overcoming issues of over�tting to the majority demographic group.

11.4.3 Trade-off Parameters

The choice to optimize overall accuracy as opposed to group-speci�c pareto e�ciency cannot be

made blindly. Hence, it is important to understand the impact of λ,α on the group-level accuracy-
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fairness trade-o�. In Figure 11.4, we do a parameter sweep across values from 0 to 1 in increments

of 0.1 and notice the changes in the overall accuracy, and the group-speci�c accuracies, along

with the corresponding Parity and Pareto losses associated with the test evaluation. Based on

this grid, the optimal choice of parameters (λ,α) based on overall accuracy is (0, 0), whereas

for each of the four demographic groups are (0.6, 0.1), (0.1, 0.4), (0, 0), (0.3, 0.2); whereas the

choice for optimizing parity loss is (0.4, 0.4) and the one for pareto loss is (0.9, 0.5). These trade-

o�s further illustrate the choice required to be made by domain practitioners when adopting a

classi�er for predicting angiographic disease status. Table 11.2 and Figure 11.2 values are plotted

with these parameters into account. We see that in some groups (e.g. Young/Male), the baseline

without fairness based bias loss is comparable to a solution that maximizes that group’s accuracy.

Such baselines although pareto e�cient, lie outside the region of relaxation in fairness weight

permitted (Fairness Weight = 1-Parity Loss) and are hence not desirable.

11.5 Discussion and Significance

Jointly Trained vsDecoupledModels: The choice of decoupled models in healthcare diagnosis

needs to be made with careful consideration of the strati�cation dimensions. Decoupled models

may be applicable when membership in a demographic group has been shown to have clinical

signi�cance. If the objective as presented is to maximize individual group level accuracies, one

might be tempted to train a model for each strata separately. Our paper demonstrates the need

for joint training across demographic strata to achieve pareto e�cient fairness. Purely decoupled

classi�ers are optimal only under certain conditions of distributional uniformity and availability

of data [101]. However, our approach works under a real-world skewed data setting where the

data for all demographic groups might not be available uniformly, thereby rendering decoupled

classi�ers to be sub-optimal. When strati�ed by the chosen set of demographic group attributes,

if there is no predictive model in the desired fairness region, our approach performs no worse
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Figure 11.1: Illustration of Demographic Pareto E�iciency on synthetic data. Each point in the sca�er plot
corresponds to the group level accuracies of machine learning (ML) algorithms (alg-[1-5] indicated in grey)
over groups A and B. The best performing ML algorithm with Demographic Parity yields accuracy metrics
of (0.60, 0.60) on groups a,b respectively. If accuracy for each of the groups is separately maximized, we
would select points opta = (0.83, 0.55), and optb = (0.63, 0.77). Discovering all the Demographic Pareto
E�icient classifiers gives us the Pareto front (dots in blue). Among these Demographic Pareto E�icient
classifiers, we could choose PE = (0.71, 0.63) (in blue and green), if our objective was to improve the
accuracy metrics of both groups, with minimal deviation from optimal per-group accuracies (pareto loss).
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Figure 11.2: Group accuracy comparison showing we achieve Demographic Pareto E�icient group level
accuracy for all groups in UCI Heart Disease dataset among constrained classifiers.

than existing equality based constraints as our Pareto loss will be dominated by the high variance

in loss between groups. In this scenario, our model would hence chose a low absolute Pareto loss,

provided that α , the hyperparameter to trade-o� between variance and total value of the Pareto

loss is appropriately �ne-tuned. Hence, to leverage the bene�ts of transfer learning, as shown in

our evaluation it might be bene�cial to bootstrap with decoupled classi�ers and train jointly.

Demographic group strati�cation: The strati�cation we choose to optimize performance

by, depends on what domain experts believe is clinically signi�cant for the disease status diag-

noses. For example, age and gender are known to be signi�cant in angiographic disease status

in patients, and hence there is a possibility for us to learn di�erent decoupled models. Other

possible demographic group strati�cation can be done based on race and geographical location,

as coronary artery disease has been shown to be harder to diagnose in black populations [383],
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constraint, wherease a fairness weight of 0.0 is unconstrained and allows higher model performances.
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and that there is a di�erence in angiographic pro�les across patients from di�erent geographical

locations in Asia and South America [370, 142, 296, 340].

Other de�nitions of Fairness and Individual Accountability: Notions of pareto e�-

ciency are compatible with assumptions of individual fairness. Utilizing our methodology, the

domain expert can make an informed choice among di�erent Pareto e�cient models. We have

demonstrated that achieving Demographic Pareto E�ciency has bene�ts and yields classi�ers

that outperform the baselines for overall and all group accuracy. Individual instance based fair-

ness de�nitions often compare diagnosis and outcomes of one patient with similar patients in

a dataset or counterfactual scenarios. However, de�ning the dimensions of similarity between

individuals can be quite challenging for a speci�c disease type, and should consider the vari-
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Figure 11.4: Trade-o�s between choosing parameters λ and α depends on the group-level versus overall
measures chosen by the domain practitioner. Given the prior work that advocates for improving each of
the demographic group’s accuracy on the Pareto front, we chose our model to optimize Pareto E�icient
Fairness (h)
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ations of disease prognosis along the same dimensions such as demographic information and

co-morbidities. In the event where multiple demographically Pareto Fair operating points are

discovered on the Pareto frontier [456], domain experts should choose the right operating point

among them by incorporating other procedural steps to mitigate the discriminatory outcomes

earlier in the process. Further, pareto e�ciency improves the accuracy of minority and under-

represented protected demographic groups when compared to unconstrained classi�ers, which

may implicitly allow the dominance of majority demographic groups when overall accuracy is

optimized. While our methodology does not completely eliminate discriminatory biases, Demo-

graphic Pareto E�ciency and the choices around it can provide more transparency and under-

standing of the structural and socio-technical causes behind unfairly distributed datasets and

models, which can improve the contestability of ML predictive models.

Other Heart Diseases: In addition to the diagnostic task of angiographic disease status,

we see this choice between decoupled and jointly trained models emerge in other heart disease

tasks too. In a cardiology study of over 4000 ER patients with cardiac event symptoms [8], no

symptoms were found to be predictive of a heart attack in white women. In black males, only an

unrelated symptom (diaphoresis) was found to be indicative of a future cardiac event with 95 per-

cent con�dence, while in white males, relevant features (left arm radiation, pressure, tightness)

were detected as indicators with high accuracy.

11.6 Conclusion

The choice between decoupled and jointly trained diagnostic models for angiographic disease

status is critical for positive health outcomes in demographic groups. We have shown that by

optimizing for Demographic Pareto E�ciency, the choice between decoupled and jointly trained

models can be further broken down to choice of classi�ers that have Pareto optimal performance

across the demographic groups. As the Pareto front is unknown, we show that by incorporating
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a heuristic based on Pareto E�cient Fairness in training a combination of decoupled and jointly

trained models, we achieve better overall and individual demographic group level accuracy as

compared to other constraints in decoupled and jointly trained models. We demonstrate em-

pirically that our approach achieves Demographic Pareto E�ciency by improving overall and

subgroup accuracy by up to 9.7% and 9.6% respectively in the UCI Heart Disease dataset.
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12 | Targeted Policy Recommendations

using Outcome-aware Clustering

12.1 Introduction

Policymakers and development practitioners aim at implementing policies designed to improve

a population’s outcomes. However, they often rely on little to no data on what impact the pol-

icy recommendations would have at the population level. In the scenarios when observational

data is available, econometric models have allowed to determine which input variables have the

strongest association with an outcome of interest and have provided guidance on policy recom-

mendations aimed at changing the value of these inputs variables. A fundamental drawback of

this approach is that the model would typically prescribe the same set of actions for each individ-

ual in a population. In reality, a policy which may appear as the optimal policy on average may

not be the best �t at an individual or sub-population-level.

This paper speci�cally addresses the problem of determining targeted agricultural policy in-

terventions for di�erent sub-groups of the farmer population in Sub-Saharan Africa (SSA) to

enhance agricultural outcomes with the ultimate goal of enhancing the livelihoods of the popu-

lation in the region. The SSA region accounts for more than 950 million people, approximately

13% of the global population. By 2050, this share is projected to increase to almost 22% or 2.1 bil-

lion. Agriculture accounts for about 25% of Growth Domestic Product in SSA, and farming is the
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primary employment for about 60% of the population. Although that percentage is down from

80% a decade ago, it will remain a major component of economic activity in the SSA region in

the coming decade. Given the key role of agriculture will continue to play, it is crucial to design

policies aiming at promoting growth and sustainability in that sector.

In this paper, we propose outcome-aware clustering, a new methodology to segment a popu-

lation into clusters that closely match the cluster feature variations with the outcome variations.

Given a speci�c outcome of interest, the primary goal of outcome aware clustering is to segment

the population into meaningful and related sub-groups. These clusters provide a framework to the

development practitioners on the �eld, who can then personalize and choose the best outcome-

speci�c predictive policy recommendation and customized support at a cluster-level granular-

ity. This further bridges the gap between the econometric population level modeling, and the

practical applicability on the �eld, where serving the development needs of individual clients is

paramount.

Outcome-aware clustering fundamentally di�ers from the broad array of research on cluster-

ing and segmentation. Segmentation of a population, in general, focuses on grouping people into

non-overlapping segments such that all the users in the same segment have similar needs and

preferences. From a policy perspective, segmentation allows e�ective customization of policy

recommendations to the particular preferences of each segment.

In outcome-aware clustering, the primary objective of clustering is centered on the outcome

variable of interest. Conventionally, clustering algorithms have primarily centered around unsu-

pervised learning. The populark-means (and its variantsk-medians,k-medoids, etc.), hierarchical

clustering [360], and spectral clustering [381, 305] are notable examples. All these clustering ap-

proaches specify a distance/similarity measure between data points and determine the segments

by optimizing a merit function that captures the quality of any given clustering. However, the

distance function used in these clustering algorithms is independent of any outcome variable.

Outcome-aware clustering performs two key steps to directly tie the outcome variable with
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the clustering process. First, given a speci�c outcome of interest, outcome-aware clustering seg-

ments the population based on selecting a small set of features that closely relate with the outcome

variable. Outcome-aware clustering measures distance between two users in the population in

the reduced feature space. This step essentially makes the clustering process partially supervised.

Second, the cluster generation algorithm aims to generate near-homogeneous clusters based on a

combination of cluster size-balancing constraints, inter and intra-cluster distances in the reduced

feature space.

While outcome-aware clustering normalizes each feature in the reduced space, it speci�cally

does not tie the distance function used in the clustering algorithm to variations in the outcome

variable. This is speci�cally to avoid any speci�c distance biases that the outcome variable may

introduce with respect to speci�c features in the reduced space. Outcome-aware clustering is also

designed for highly noisy contexts where the reduced features may only be weakly correlated

with the outcome variable and may only provide limited information about the user with regards

to the outcome of interest. Across many survey-based observational studies, especially with

missing and noisy entries, we often encounter very few features (sometimes even zero) variables

that may exhibit strong correlation with a given outcome variable. Outcome-based clustering is

speci�cally designed to be robust in the face of the observational data having missing values or

noisy features or the absence of any features that strongly correlate with an outcome variable.

Outcome-aware clusters can enable �eld sta� to provide customized support based on cluster-

level policy recommendations. The basic approach we use to generate targeted policy recom-

mendations for each outcome-aware cluster is a standard multivariate regression based on a con-

densed set of actionable policy features that are regressed with the outcome variable. These

condensed set of variables need to satisfy three properties: (a) Every variable from a policy per-

spective, needs to be actionable, where the policy recommendation is possible on the variable;

(b) Every variable should have at least weak correlation with the outcome variable at the cluster

level; (c) If a group of two or more variables, exhibit strong co-linearity among themselves, we
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reduce these set of variables to the most appropriate variable for the regression analysis.

We demonstrate how the outcome-aware clustering method can be used to the address the

problem of improving farmers outcomes in several countries in sub-Saharan Africa (SSA), us-

ing data from the World Bank’s Living Standards Measurement Study - Integrated Surveys on

Agriculture (LSMS-ISA). Based on a detailed analysis of the LSMS-ISA, we derive outcome-aware

clusters of farmer populations across three sub-Saharan African countries and show that the tar-

geted policy recommendations at the cluster level signi�cantly di�er from the policies that are

generated at the population level. Based on multiple years of LSMS-ISA surveys, we then demon-

strate early evidence of movement of populations across clusters for the dominant cluster-speci�c

policy recommendations.

12.2 Related Work

The terms clustering and segmentation have typically been used interchabeably across a broad

array of literature spanning multiple disciplines including statistics, machine learning and econo-

metrics. We outline some of the key works that closely relate in spirit to our work. We refer the

reader to [450] and [193] for a detailed review of the literature.

The most popular class of clustering algorithms is similarity based clustering, where each al-

gorithm uses a speci�c distance/similarity measure between data points and determine the seg-

ments by optimizing a merit function that captures the “quality” of any given clustering. The

popular k-means (and its variants k-medians, k-medoids, etc.), hierarchical clustering [360], and

spectral clustering [381, 305] are notable examples. Another class of clustering algorithms is

model-based clustering techniques [117, 469] which assume that each cluster is associated with

an underlying probabilistic model and di�erent clusters di�er on the parameters describing the

model. They estimate a �nite mixture model [283] to the data and classify customers based on

the posterior membership probabilities. However, as mentioned earlier, outcome-aware clus-
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tering fundamentally di�ers from these algorithms in that all these algorithms are completely

unsupervised and are not tied to any speci�c outcome variable or objective.

Outcome-aware clustering also closely relates to customer segmentation literature in oper-

ations and statistics. One traditional method for predictive clustering is automatic interaction

detection (AID), which splits the population into non-overlapping groups that di�er maximally

according to a dependent variable, such as purchase behavior, on the basis of a set of indepen-

dent variables, like socioeconomic and demographic characteristics [20, 264]. [205] proposed

hierarchical segmentation techniques tailored to conjoint analysis, which group users such that

the accuracy with which preferences/choices are predicted from product attributes or pro�les is

maximized. Cluster-wise regression methods [435, 436] cluster users in a population such that

the regression �t is optimized within each cluster.

Latent class (or mixture) methods o�er a statistical approach to the segmentation problem.

Mixture regression models [434] simultaneously group subjects into unobserved segments and

estimate a regression model within each segment, and were pioneered by [207] who propose

a clusterwise logit model to segment households based on brand preferences and price sensi-

tivities. This was extended by [163] who incorporated demographic variables and [206] who

incorporated di�erences in customer choice-making processes, resulting in models that produce

identi�able and actionable segments. Existing deep learning based clustering approaches use the

dimensionality reduction capabilities of neural networks [181, 446] and learn clustering assign-

ments from the resulting representation [55], but they lack interpretability with respect to the

desired outcome. While outcome-aware clustering makes no speci�c assumptions about the fea-

tures or the characteristics of the population, many of these latent approaches implicitly assume

a mixture distribution characterization that describes the population.

Agriculture policy experts have often relied on demographic attributes to cluster popula-

tions [18] or spatial characteristics that also cluster socio-economic indicators like food secu-

rity, poverty, etc. [11]. However, recent methodologies have advocated for case-by-case analysis
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by using decision trees over categorical attributes. Further, policy making frameworks such as

FSSIM-Dev (Farming System Simulator for Developing Countries) model the households to un-

derstand ex-ante the impact due to roll out of agricultural, technology policies, price changes

and market shocks. FSSIM-Dev models each household using mathematical models of risk aver-

sion, capital and crop rotation constraints [256, 175] under assumptions of costs of fertilizers,

seeds, water, electricity, etc along with market participation models of individual households

using domain-speci�c polynomial and/or di�erential equations. The parameters of these math-

ematical models are then estimated from the observed survey data such as the LSMS-ISA farm

household survey which provide priors over parameters, and allow cross-sectional validation and

calibration of the model parameters. While our approach shares the common goal of increasing

household income, it di�ers from such a modeling approach by clustering households based on

the observed dataset in an outcome-aware manner without access to prior knowledge and pro-

vides policy recommendations to improve the outcome that are best supported by the longitudinal

survey data tracking farm households over multiple waves of the survey.

12.3 Achieving Agricultural Transformation in

Sub-Saharan Africa

12.3.1 Dataset

To understand the factors improving farmers’ standards of living, we use data from the LSMS-ISA

survey. This survey consists in a nationally representative household panel data with a strong

focus on agriculture and rural development. It was designed to improve the understanding of de-

velopment in the SSA region, in particular of the linkages between farm and non-farm activities.

This survey has been implemented in eight countries in multiple waves. Most of our analysis

will focus on the 2015 survey for Ethiopia. In section 12.5, we also show how our results can be
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extended to Tanzania and Uganda, comparing our main policy results across countries.

Before delving into the analysis, it is important to understand some of the limitations asso-

ciated with using the LSMS-ISA dataset to conduct this analysis. First, a signi�cant number of

zeros and missing values limits the ability to draw inferences at a subpopulation level. We choose

to discard survey answers with more than 30% of missing values. Second, we also drop variables

which are not observed across multiple waves.

12.3.2 Relevant Outcomes and Inputs

A policy maker aiming at improving the living conditions of farmers in sub-Saharan Africa could

choose to focus on a variety of outcomes: their revenue, level of expenditure, food expenditure

diversi�cation, whether they receive medical assistance when they are ill, whether they face

food de�ciency, etc. We �nd that among these outcomes of interest, the correlation is only 9%

on average (Fig. 12.1a). This suggests that each outcome follows its own path, hence policy

recommendations should be independently evaluated for each outcome.

In addition, while a large number of inputs could in principle play a role in farmers’ living

conditions, inputs with high correlation with outcomes are good candidates to consider when

looking to improve farmers’ outcomes. For the purpose of deriving policy recommendations, we

distinguish between inputs that can be modi�ed through short-term policy actions ("actionable")

from those that cannot ("non-actionable").

We �nd that for inputs with high correlation with outcomes variables, while these correlations

typically have the same sign across outcome variables, their magnitude tend to vary substantially

(Fig. 12.1b and c). As correlation between outcomes are low, it is not surprising that the e�ect of

a given input will vary across outcomes, reinforcing the conclusion that policy recommendations

need to be outcome speci�c. We also �nd that even the most impactful input variables only have

a 10% correlation with outcome variables on average, leading to a set of less than 10 actionable

inputs likely to have an substantial impact on a given outcome.
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b c

Figure 12.1: Relationship Between Farmers’ Outcomes and Inputs: (a) Spearman correlations be-
tween farmers’ outcomes, showing a low average correlation equal to 0.09, and suggesting that policy
recommendations should be derived for each outcome separately. We also show the Spearman correla-
tions between farmers’ outcomes and inputs, separating (b) non-actionable from (c) actionable inputs,
and ranking inputs by their average correlation across outcomes. These subplots indicate that for inputs
with the high correlations with outcome variables, correlations across outcomes are of similar sign but
vary in strength, reinforcing that separate analyses should be conducted for each outcome of interest. For
inputs with low average correlations with outcome variables, correlations across outcomes tend to vary
both in sign and in strength.
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12.4 Methodology

Generating policy recommendations can be thought of as a problem of extracting features which

are predictive of an outcome intended by the policy. Given a set of n features F in an input

variable matrix X, an outcome variable y, we intend to identify the best set of features P which

would predict the outcome variable. We now describe our approach in the rest of the section.

First, we cluster the features using a novel outcome-aware clustering algorithm. We then learn a

regression model for each of these clusters separately to identify important actionable variables

which signi�cantly predict the outcome variable.

12.4.1 Outcome aware clustering

We de�ne outcome aware clustering as the problem of choosing a subset of features C such that

the unsupervised clusters on these features e�ectively separate both the input features and the

outcome variable across these clusters.

Prior to doing any clustering, it is essential to ensure that we don’t incorporate features with a

large fraction of missing values. Since most features in our study are categorical in nature, using

any form of imputation or matrix completion techniques on these would not be sound. Hence, a

simple threshold based �ltering is used. Normalization of the features used for clustering is done

by applying the z-score method.

In addition to �nding the features to cluster on, we need to �x on the number of clusters to

learn in a commonly used k-means clustering. During each step of making the choices of features

to cluster on, we identi�ed k using the elbow method and the average euclidean distance from

the centroids across a range of k ∈ [1,10].

As explained in Algorithm 7, we initialize C as an empty set and iteratively add features from

the full set of non-actionable and actionable features (F) to C in a greedy fashion. In each iteration,

we choose a feature which maximizes a weighted silhouette coe�cient for the k-means clustering

231



obtained by including the feature in the clustering set C. This weighted silhouette coe�cient (sc)

combines the sc as measured in the clustering feature space as well as the single dimensional

outcome space. The outcome awareness is controlled by a parameter α ∈ [0, 1]. We can see that

α = 0 is equivalent to traditional unsupervised clustering on the input feature space, whereas

α = 1 is equivalent to bucketization based only on the outcome variable. With α between 0 and

1, the clustering achieves two objectives. First, we identify a clustering (l f ) which can separate

the clusters based on the outcome variable, allowing to design policy recommendations at various

outcome levels. Second, it separates the input features space which is critical to identifying these

clusters when the outcome variable is not observed in an unsupervised manner.

Algorithm 7 Feature choice for clustering
F := { f1, f2, f3, .., fn}, input features
y := output feature
α ∈ [0, 1], Output awareness parameter
C := ∅
ϵ := Threshold of k-means silhouette coe�cient (sc) improvement
while ∆sc > ϵ do
for f in F\C do
l f = Kmeans(f ∪C)
scy,f ∪C = α ∗ scy(l f ) + (1 − α) ∗ sc f ∪C(l f )

end for
fopt = argmax

f ∈F\C

scy,f ∪C

∆sc = scy,fopt∪C − scy,C
C := fopt∪ C

end while
return C

A bene�t of choosing the features iteratively is that we don’t end up with redundant features

which explain the same feature space and outcome level. This ensures that the �nal set of features

can distinguish between any pair of clusters using only a subset of these features. This can

be thought of increasing the information criterion of the clusters iteratively. Hence, some of

the features chosen during the iterative steps could have low outcome correlation values at the

population level, but are instrumental in distinguishing certain speci�c outcome clusters. In each
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step, the k-means also enforces that each cluster is of a certain minimum size to avoid learning

behavior of statistical outliers, and guarantee that we have enough observation to derive cluster-

level policy recommendations.

The stopping condition of iterations is based on the improvement in the silhouette coe�cient

over the iterations, and the threshold (ϵ) can be chosen in a problem speci�c manner. Once the

feature set C is chosen, we have also jointly learnt the corresponding k-means clusters. It can be

noted that our algorithm is generic and can accommodate any unsupervised clustering method

and operates as a layer above it.

12.4.2 Policy recommendations through regression

The fundamental contribution of our approach is that we learn di�erent policy recommendations

for di�erent clusters of households. These variations in policy recommendations across clusters

are not evident if done at a population level.

As shown in Algorithm 8, choosing features for regression is done in a principled two step

approach. First, we used highly correlated features with the outcome, where a threshold (β)

on the spearman correlation coe�cient (ρ) was used for �ltering. Second, in order to eliminate

multi-collinearity in the correlated features, we iteratively eliminated the feature with the highest

variance in�ation factor (VIF) above a certain threshold (γ ). These thresholds were identi�ed

using an appropriate grid search to ensure that a reasonable set of policy recommendations were

identi�ed. The �ltered features are then used in a linear regression model to predict the outcome

variable for each cluster. Statistically signi�cant coe�cients of this model are then used to derive

policy recommendations for each cluster.
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Algorithm 8 Regression based Policy Recommendations
C := {c1, c2, .., ck }, the set of clusters
F := { f1, f2, f3, .., fn}, set of actionable features
y := (obs, 1) output matrix
X := (obs,n) input matrix
β := Output correlation threshold
γ := Input multi-collinearity threshold
Fcorr = { fi |ρ(y,X [fi]) > β}
repeat

fmax = argmax
f ∈Fcorr

V IF (X [Fcorr ],X [f ])

Fcorr .remove(fmax )

until (V IF (X [Fcorr ],X [fmax ]) < γ )
for c in C do
coe f f c = OLS(Xc[Fcorr ],yc)
Pc := stat-signi�cant coe f f c

end for
return ∪

c∈C
Pc

12.5 Results

12.5.1 Clustering Farm Households

Next, we experiment the clustering method that we have developed on the 2015 LSMS-ISA sur-

vey of Ethiopia. We focused on farmers’ crop sales as our outcome of interest. Our algorithm

suggested to cluster farm households based on the following inputs: their total land surface,

household size, the number of oxen they own, the number of ploughs they own, whether or not

they participate in an extension program, the quantity of chemical fertilizers they use, and their

number of hired workers. These inputs are indeed among those having the highest correlation

with crop sales. We then allocate households into four clusters as suggested by the Elbow method

(Fig. 12.2c).

We �nd that our clustering method indeed allows to construct clusters in which households

crop sales are similar within each cluster and di�erent across clusters (Fig. 12.2a). On average,
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crop sales increases monotonically across clusters, ranging from 711 Birr to 2,424 Birr. Projecting

our clustering inputs on their �rst two principal components, we also �nd that our method allows

to construct clusters in which clustering inputs are similar within each cluster and di�erent across

clusters (Fig. 12.2b).

Compared to all of the richer clusters, households in the �rst cluster only own 0.24 Ha of land

on average, which is 6.8 times less than households in the second cluster (Fig. 12.2d). They are

comprised of �ve members on average, compared to six for the other clusters (Fig. 12.2e). They

are �ve times less likely to own an ox (Fig. 12.2f) and 2.4 times less likely to own a plough (Table

12.1) compared to households in the second clusters. 28% of them are female-headed households

(Table 12.1), which is 1.8 times more than in the other clusters, and they are predominantly located

in the SNNP region (Fig. 12.3). These are the poorest households in our sample; they do not have

the means to own large properties nor the ability to purchase basic tools required to harvest

e�ciently.

Households in the second clusters generate 1.8 times more revenue and are better equipped

than those of the �rst cluster. Yet, they still do not use signi�cant amounts of fertilizers (Fig. 12.2g)

or improved seeds (Table 12.1) to increase their productivity compared to those in the third or

fourth cluster. Only about 13% of households in the �rst two clusters participate in an extension

program, and only about 13% of them use damaged prevention techniques, compared to about

respectively 76% and 22% of those in the last two clusters (Fig. 12.2h and Table 12.1). Only about

12% of households in the �rst two clusters use credit services, compared to about 27% of those in

the third or the fourth cluster (Fig. 12.2i).

The richest households are located in the fourth cluster, with a average income 60% larger

than those of the third cluster. They are mainly characterized by their ability to hire workers

(Fig. 12.2j). 22% of them save money, compared to less than 15% of households in third clusters

and below. They also tend to acquire more sophisticated or more expensive tools. They are 2.1

times more likely to own a pick ax (Table 12.1), and 1.5 times more likely to own an ax (Table
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12.1) compared to those in the third cluster or below.

Taken together, these results show that the clusters derived from our outcome-aware clustering

are robust and correspond to interpretable subpopulations of households.

12.5.2 Policy Recommendations

Having constructed robust and interpretable clusters, we now ask whether we can derive pol-

icy recommendations at the cluster level, and whether these recommendations di�er from those

obtained at the population level.

As our analysis is conducted on a relatively small dataset, we choose to estimate a multivariate

regression model of crop sales using a restricted set of policy variables. We apply algorithm 8

choosing the two following parameters: (a) we remove any policy variable that has a correlation

with crop sales of less than β = 0.05, and (b) we iteratively remove policy variables until the VIF

scores of the remaining variables is less than γ = 1.5. This guarantees that the selected variables

will have a substantial impact on the outcomes, and will remove collinear policy variables from

the model. In a robustness check, we found that our results hold for a wide range of values

for β and γ , other speci�cations typically leading to a larger set of insigni�cant variables being

included in the model.

The number of hired workers has the strongest coe�cient in the full sample regression (Fig.

12.4a). As the standard deviation of crop sales is equal to 1,169 Birr, hiring one additional worker

is associated with an increase in income of 0.25 × 1, 169 = 292 Birr. The e�ect of hiring workers

on crop sales is U-shaped, with the largest e�ect concentrated in the �rst cluster where the co-

e�cient is equal to 0.7. It indicates that policies should primarily focus on encouraging farmers

to hire workers, especially in the �rst and the fourth cluster. Possible implementations could be

to subsidize workers hiring costs, develop or improve systems providing information on labor

market conditions, etc. It is important to note that our analysis does not account for the costs

of implementing such policies. Hiring workers could be quite costly, especially for low income
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households. []

The second most impactful factor corresponds to the use irrigation techniques (Fig. 12.4b).

Households using irrigation have an average revenue that is 128 Birr higher than those who do

not. Here, the e�ect is also U-shaped: it is positive and signi�cant for households in the �rst and

the fourth clusters, but it is insigni�cant for those in the second and third cluster.

An increase in the quantity of chemical fertilizers used by one standard deviation or in the

number of axes owned by one unit are associated with a small increase in income of 105 Birr

and 47 Birr respectively (Fig. 12.4c and f). This e�ect is concentrated on households in the �rst

cluster, the e�ect being insigni�cant for the remaining clusters. This suggests that policy aiming

at improving the income prospects of households in the �rst and second clusters speci�cally

could be targeted towards reducing the costs of acquiring additional tools or fertilizers through

subsidies or conditional cash transfers.

Finally, households using damage prevention techniques or saving money generate on aver-

age 94 Birr and 82 Birr respectively more than those who do not (Fig. 12.4d and e). The e�ect is

concentrated on households in the third and fourth cluster and is insigni�cant for households in

the �rst and second cluster. This suggests that policies targeted towards the third or the fourth

cluster could focus on raising awareness on the bene�ts of damage prevention techniques, or

incentivize farmers to save money using their mobile phone.

Taken together, these results show that outcome-aware clustering allowed us to derive policy

recommendations at the cluster level, showing that they often di�er from those that would be

optimal at the population level.

12.5.3 Cross-country Comparison

Next, we compare the results that we obtained in Ethiopia to other countries included in the

LSMS-ISA survey. We apply outcome-aware clustering on the 2014 survey for Tanzania and

the 2013 survey for Uganda, deriving policy recommendations at the cluster level. Although
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cross-country comparisons are limited by a lack of homogeneity in how key policy variables are

measured across countries, it is nonetheless interesting to test whether some consistent patterns

emerge.

The amount of pesticides used has the strongest association with crop sales, both for Tanzania

and for Ethiopia. In both cases, the e�ect is slightly decreasing across clusters (Fig. 12.4g and l).

The next variable with the strongest association with crop sales both for Tanzania and for

Uganda is the amount of fertilizers used (Fig. 12.4h and l). The strength of the e�ect is U-shaped

across cluster for Tanzania, and has an inverted U-shaped for Uganda, which di�er from the

pattern observed for Ethiopia. These di�erences could be explained by variations in the variety

of crops that are being grown, the relative returns to using fertilizers, or the types of fertilizers

being used.

For Tanzania, owning a plough has an e�ect on crop sales that is mostly concentrated in the

�rst cluster (Fig. 12.4i). This is consistent with the e�ect of owning an axe being concentrated in

the �rst cluster in the case of Ethiopia.

In the case of Uganda, the e�ect of hiring workers is not as predominant as in the case of

Ethiopia (Fig. 12.4m), yet we observe a similar U-shape behavior.

Finally, having a bank account in Tanzania is only associated with generating more revenue

for households in the third and fourth cluster, which is similar to the e�ect of saving observed

for Ethiopia. Similarly, borrowing is associated with a reduction in income only for households

in the fourth cluster in the case of Uganda.

12.5.4 Validating Predictions Over Time

To validate our policy recommendations, we do a longitudinal evaluation tracking households

across 3 waves of surveys done in Ethiopia, with a gap of 2 years between each wave.

For a majority of households, the value of key inputs remain constant between surveys, lim-

iting the ability to test the validity of our predictions over time. We focused on households’
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“number of hired workers", as it is most impactful input coming out of the model predictions, the

other inputs being associated with insigni�cant evidence of movement between waves.

We found evidence of a lift in the increase crop sales associated with hiring an additional

worker being equal to 0.39, 0.23, 0.26 and 0.57 across clusters of increasing income (Fig 12.5).

This indicates that households in the �rst cluster who hired an additional worker between two

consecutive wave are 39% more likely to have had an increase in crop sales during the same period

that those who did not, similar conclusion being drawn for the other clusters. Interestingly, we

�nd a U-shape in the value of the lift factor associated with hiring an additional worker, which

mimics the variations in coe�cient strengths obtained in the multivariate regression. Although

additional data would be needed to provide further evidence, this gives some initial validation for

our approach. The average lift evidenced from unsupervised clustering (α = 0) and bucketed crop

sale buckets (α = 1) are 0.21 and 0.16 across 4 clusters respectively, as compared to the average

overall longitudinal lift of 0.36 (from Fig 5) we observed over 3 waves of surveys in Ethiopia.

12.6 Discussion

12.6.1 Domain Knowledge based Clustering

Our choice of features to cluster works under the assumption that the policy variables can be

intervened upon directly rather than through unobserved underlying factors not in the model.

We acknowledge that there might be several such factors in the world, and it might be untestable

to validate that no such factor exists in the wild [329]. Compared to other policy targeting

procedures based on domain expertise, we provide a framework to group samples into clusters

and select policy factors in such a way that attempts to maximize correlation over a set of factors

over clusters in the observed dataset. Further, our framework can be used to augment existing

policies based on domain expertise, by using the domain-expertise based segmentation features
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as an initial set of selected features (C) and then searching for any additional features based on

Algorithm 1. This would further build upon the domain expertise and leverage the outcome-

feature correlations to optimize clustering. If the domain knowledge-based clustering is robust

enough and no new additional features improve the silhouette coe�cient of the clustering, then

our framework would terminate and provide empirical validation of the choice of the features

provided by the domain expert.

However, the chosen feature set might lead to misinterpretation when additional domain

knowledge of underlying factors exists. For example, our policy recommendation of improving

hired labor, might be controlled by an underlying factor such as overall household wealth for

which we do not have a good estimate from the survey. Further, the interpretation of how these

policy variables can be intervened upon depends on contextual information such as cost, oper-

ability, infrastructure issues that impact the intervention, which goes beyond the scope of what

was observed in the dataset. Given such contextual constraints, it is plausible that the various

policy recommendations we provide might translate to a few actionable initiatives such as cash

vouchers or credit programs that can be operationalized in the �eld [6].

12.6.2 Evidence based Policymaking

Randomized control trials and contextual bandits have produced desirable and robust treatment

assignments, and allow policymakers to accurately estimate the impact of intervening on speci�c

policy variables [27, 89, 432]. However, they incur the cost of experimentation which may be

infeasible if we are given access to an observational survey dataset alone. We agree that such

methods are superior, but absent the additional cost of setting up a large experimental study

across thousands of households in fragile countries, our approach provides additional guidance

based on observational data for policymakers in choosing outcome-aware clusters over survey

data. Since our method is focused on providing policy guidance under observational data set-

tings without the identi�cation of control and treatment groups, we report the lift observed in

240



crop sales when the corresponding input features which were identi�ed as possible policy inter-

ventions also increased in subsequent waves of survey data in Figure 5. Based on such evidence,

the policymaker may then choose to invest in an experimental study to con�rm the impact of

an actual intervention through randomized control trials in the �eld. This step may be useful to

further eliminate confounding factors that might impact the generalizability and validity of the

policy recommendations.

12.6.3 Ethical Considerations

As compared to an experimental study where data is gathered with a known outcome in mind,

using observational studies to derive policy recommendations can raise concerns of misuse of the

data gathered, especially if used to derive private information of households. For these concerns,

we refer to the data management plan in the LSMS-ISA framework 1 which con�rms that “For

purposes of maintaining the con�dentiality of the data all names and addresses including contact

addresses and �eld descriptions in the post planting agriculture questionnaire have been removed

from the datasets. In addition, the GPS coordinates have also been removed as these could be used to

locate households and �elds with accuracy.”. Further, using the data gathered for improving out-

comes of the farmers might lead to inconsistencies in how the data collecting questionnaire was

presented to the household members. For example, we assume that the propensity of participat-

ing and providing information in an informational survey is the same as when certain incentive

structure is associated with the survey, which needs to be further validated by documenting the

purpose of data collection for all features. [133]
1https://www.worldbank.org/en/programs/lsms/initiatives/lsms-ISA
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12.7 Conclusions

This paper presents outcome-aware clustering, a new clustering methodology to segment a pop-

ulation into meaningful clusters corresponding to a speci�c outcome of interest. Unlike tra-

ditional unsupersived clustering and mixture modeling approaches for population segmenta-

tion, outcome-aware clustering relies on choosing a set of clustering features closely related to

an outcome of interest, while minimizing intra-cluster and maximizing inter-cluster distances.

We demonstrate the utility of this outcome-aware clustering methodology to enable �eld prac-

titioners to provide personalized and customized cluster-level policy recommendations. Using

data from the LSMS-ISA survey across three countries in Sub-Saharan Africa, we found that our

method provides actionable and highly predictive cluster-level policy recommendations which

signi�cantly di�er from those obtained at the population level.
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Figure 12.2: Clustering Results: (a) Average crop sales across clusters, indicating that our method allows
to construct clusters such that households outcomes are similar within each cluster and di�erent across
clusters. (b) The two principal components of our clustering features across households, indicating that
our method allows to construct clusters such that households clustering inputs are similar within each
cluster and di�erent across clusters. (c) Sum of square errors of K-means clustering, showing that the
error is stable across survey waves. The elbow method indicates that the optimal number of clusters is 4.
To understand the composition of the resulting clusters, we then show the average value across clusters of
the three features with the highest relative change occurring between cluster one and two (d-f), between
cluster two and three (g-i), and between cluster three and four (j-k).
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Figure 12.3: Geography of Clusters: Each dot corresponds to a household colored by its cluster.
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Figure 12.4: Policy Recommendations: Regression coe�icients of a multivariate regression of crop
sales on a set of selected policy variables, for the entire sample (black), and per cluster of increasing crop
sales. Coe�icients are ranked by decreasing value on the entire sample. The first two rows corresponds
to the 2015 survey for Ethiopia, the third row corresponds to the 2014 survey for Tanzania, and the fourth
row corresponds to the 2013 survey for Uganda. This plot shows that the e�ect of the most impact-
ful variables vary significantly across clusters, indicating that policy recommendations should indeed be
cluster-specific.
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Figure 12.5: Evidence of Movement Between Clusters: For each cluster, the li� factor associated
with a given input measures the fraction of households whose income increases beyond a given threshold
during two consecutive survey wave when the value of that input also increased, relative the fraction of
households whose crop sales increased beyond the same threshold. We pick the threshold to correspond
to the 25%ile of the distribution of changes in crop sales for each cluster and each wave. We only show the
li� associated with hiring additional workers, the li� associated with less impactful policy inputs being
insignificant.
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Cluster 1 Cluster 2 Cluster 3 Cluster 4
Avg. Stdev. Avg. Stdev. Avg. Stdev. Avg. Stdev.

Amount Of Assistance Received 51.036 228.505 84.745 356.512 51.177 248.418 57.666 381.920
Attended School 0.320 0.389 0.295 0.384 0.290 0.379 0.363 0.427
Average Precipitation 1271.081 277.231 1210.551 354.563 1228.689 303.100 1260.963 326.223
Average Temperature 181.735 24.328 190.300 32.059 175.884 25.541 192.661 30.492
Children Education 0.696 0.331 0.700 0.343 0.740 0.310 0.719 0.326
Number of Crops Planted 3.638 2.642 2.948 3.184 2.831 3.332 2.778 3.754
Crop Sales (in Birr 2010) 711.440 1170.191 1277.643 1768.510 1524.358 2373.700 2427.224 3195.684
Distance To Market 63.565 42.324 72.449 48.111 60.292 42.312 67.126 46.472
Distance To Population Center 27.208 20.145 40.966 26.594 32.082 19.888 40.130 32.136
Distance To Road 11.713 12.511 17.654 20.798 12.230 11.732 11.940 13.820
Elevation 1998.337 411.404 1910.413 501.948 2138.493 412.222 1850.324 472.553
Non-food Expenditure (in Birr 2010) 1065.626 1460.336 1231.502 1287.209 1775.106 1358.489 2397.284 2195.733
Food Expenditure Diversi�cation 0.840 0.169 0.846 0.147 0.871 0.120 0.875 0.106
Fraction of Households With A Bank Account 0.045 0.207 0.020 0.142 0.049 0.216 0.077 0.267
Has Borrowed 0.227 0.419 0.271 0.444 0.309 0.462 0.253 0.435
Fraction of Households Using Medical Assistance 0.198 0.291 0.210 0.249 0.231 0.268 0.272 0.273
Fraction of Households Who Saved 0.116 0.320 0.144 0.351 0.146 0.354 0.208 0.406
Heavy Rains Preventing Work 0.041 0.219 0.035 0.199 0.039 0.252 0.031 0.413
Household Head Age 47.068 16.779 48.417 15.360 47.426 13.861 46.572 13.659
Fraction of Divorced 0.073 0.261 0.030 0.168 0.016 0.123 0.005 0.072
Fraction of Female-headed Households 0.278 0.448 0.094 0.292 0.147 0.354 0.114 0.318
Fraction of Male-headed Households 0.722 0.448 0.906 0.292 0.853 0.354 0.886 0.318
Household Head Is Monogamous 0.718 0.450 0.854 0.351 0.845 0.361 0.825 0.379
Household Head Is Polygamous 0.024 0.152 0.038 0.191 0.023 0.149 0.067 0.250
Household Head Is Separated 0.003 0.057 0.002 0.042 0.002 0.047 0.008 0.091
Fraction of Widow 0.174 0.379 0.076 0.263 0.103 0.303 0.091 0.287
Household Head Never Married 0.007 0.085 0.000 0.020 0.012 0.109 0.003 0.053
Number of Household Members 4.637 2.087 5.773 2.196 5.754 2.085 5.621 2.158
Illness Of Household Member 0.300 1.032 0.389 1.223 0.294 0.817 0.345 0.864
Increase In Price Of Inputs 0.172 0.474 0.172 0.514 0.265 0.519 0.363 0.553
Land Surface (in Ha) 0.239 0.144 1.638 3.249 2.066 1.400 2.953 2.595
Latitude 7.879 2.021 9.057 2.320 9.361 1.880 9.076 2.058
Literacy Rate 0.325 0.381 0.318 0.369 0.335 0.372 0.405 0.392
Lives In Afar 0.000 0.015 0.001 0.036 0.000 0.015 0.000 0.000
Lives In Amhara 0.126 0.332 0.303 0.460 0.310 0.462 0.235 0.424
Lives In Benishangul Gumuz 0.014 0.119 0.030 0.171 0.004 0.064 0.035 0.183
Lives In Dire Dawa 0.001 0.038 0.007 0.086 0.000 0.009 0.000 0.000
Lives In Gambella 0.006 0.076 0.009 0.095 0.000 0.000 0.001 0.036
Lives In Harari 0.002 0.047 0.002 0.048 0.001 0.033 0.003 0.052
Fraction of Households Living in Oromiya 0.169 0.374 0.352 0.478 0.517 0.500 0.507 0.500
Lives In Snnp 0.650 0.477 0.266 0.442 0.121 0.327 0.161 0.367
Lives In Somalie 0.001 0.025 0.017 0.129 0.000 0.000 0.005 0.069
Lives In Tigray 0.031 0.173 0.011 0.106 0.046 0.210 0.054 0.225
Longitude 38.128 1.198 38.102 1.807 38.190 1.411 37.767 1.521
Fraction of Households Without Food De�ciencies 0.466 0.499 0.689 0.463 0.773 0.419 0.836 0.368
Number Of Axe Owned 0.651 0.695 0.682 0.851 0.545 0.848 0.888 1.065
Number Of Droughts 0.283 0.604 0.434 1.134 0.207 0.567 0.259 0.509
Number Of Hired Workers 0.317 1.075 0.170 0.589 0.177 0.574 17.680 19.054
Number Of Oxen Owned 0.157 0.648 0.950 1.124 1.759 1.449 2.058 1.461
Number Of Pick Axe Owned 0.581 0.720 0.776 0.861 0.831 1.121 1.715 4.761
Number Of Plough Owned 0.315 0.540 0.770 0.634 1.220 0.885 1.239 1.046
Number Of Sickle Owned 1.016 1.011 1.576 1.325 2.155 1.703 2.067 1.766
Number Of Water Storage Pit Owned 0.055 0.306 0.090 0.395 0.192 0.773 0.349 1.081
Fraction of Households Who Own A Land Certi�cate 0.429 0.486 0.541 0.478 0.665 0.443 0.622 0.447
Percentage Of Damaged Crop 12.551 16.531 21.273 23.839 17.784 20.482 17.693 19.463
Prevent Damage 0.133 0.310 0.124 0.241 0.236 0.288 0.205 0.264
Price Rise Of Food Item 0.304 1.204 0.372 1.365 0.155 0.446 0.158 0.610
Yield (in BIRR per Acre) 5626.935 29955.749 1264.107 1960.196 859.062 1066.618 1278.399 2122.692
Quantity Of Chemical Fertilizers Used (in Kg) 22.925 229.296 7.733 19.063 378.077 1093.361 343.620 1103.675
Quantity Of Improved Seeds Used (In Kg) 2.104 4.641 0.916 5.102 11.835 48.431 12.767 54.739
Rooting Conditions : Mainly Non-Soil 0.003 0.056 0.004 0.064 0.004 0.065 0.000 0.013
Rooting Conditions : Moderate Constraint 0.324 0.468 0.138 0.345 0.184 0.388 0.193 0.395
Rooting Conditions : No Or Slight Constraint 0.466 0.499 0.503 0.500 0.541 0.498 0.618 0.486
Rooting Conditions : Severe Constraint 0.084 0.278 0.202 0.401 0.146 0.353 0.059 0.236
Rooting Conditions : Very Severe Constraint 0.123 0.329 0.153 0.360 0.125 0.330 0.130 0.337
Rural Household 0.960 0.197 0.970 0.171 0.997 0.053 0.985 0.120
Fraction of Households Using Credit Services 0.112 0.315 0.131 0.336 0.280 0.444 0.259 0.434
Fraction of Households Using Extension Programs 0.251 0.433 0.063 0.242 0.800 0.392 0.714 0.448
Uses Irrigation 0.025 0.136 0.029 0.142 0.027 0.105 0.026 0.099
Variations In Greenness 45.215 7.021 45.538 10.094 48.546 8.266 48.560 9.903

Table 12.1: Clusters’ Descriptive Statistics247



13 | Specification Framework for

Domain Faithful Deep Learning

Systems

13.1 Introduction

Black box deep learning models trained on only observed historical data can make costly errors,

which limit their widespread deployment in scenarios that require domain knowledge [310, 385,

448]. Domain experts in these scenarios are particularly skeptical as black-box machine learn-

ing (ML) models often contradict rules derived from domain knowledge that has been validated

through intervention-based studies like randomized control trials. Even if a model is accurate on

historical data, not making use of domain knowledge can limit usefulness [405]. Hence, we pro-

pose to build Domain Faithful Deep Learning systems, that translate expert-understandable

domain knowledge and constraints to be faithfully incorporated into learning deep learning mod-

els. In high-stakes domains like health, socio-economic inference and content moderation, a fun-

damental roadblock for developing deep learning systems is that machine learning models’ pre-

dictions diverge from established causal domain knowledge when deployed in the real world and

fail to faithfully incorporate domain speci�c structure in counterfactual data distributions. Our

framing of domain faithfulness builds on existing robustness research, and aims to build these
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ML systems by collaborating with domain experts and addressing critical research questions such

as “What data distributions do domain practitioners care about?”, “How to faithfully convert do-

main knowledge into formal constraints expressing the safety, correctness, and fairness of deep

learning models?”, “How to exploit such model constraints for better generalization?” and �nally

“How to formally verify that the ML models we learn are grounded in the domain knowledge and

in what ways do they deviate?”.

In this paper, we provide a framework for domain experts to specify their domain knowledge

in a way it can be directly incorporated into training deep learning models. By doing so, we

enable the domain experts to answer the above questions by providing implementations of the

loss functions through approximations of strict constraints so that they can be used in an auto-

matic gradient (autograd) and compilation optimization framework like JAX [122]. Prior work

in these e�orts have focused on specifying priors over models using a family of functions, and

�ne-tuning the function’s parameters. Attempts to learn soft-labels through labeling functions

are also hindered the roadblock of explicitly writing the labeling functions, which domain ex-

perts are not quite familiar with. Hence, a no-code or low-code framework which can provide

the domain experts with the necessary speci�cation capabilities which can then be translated

into implementations under-the-hood are necessary for ease of adoption. Further, we implement

evaluation modules which provide feedback to the domain experts in �ne-tuning the parame-

ters of their speci�cations towards a more robust and domain faithful deep learning system. Our

framework, when evaluated on synthetic discontinuous and non-di�erential constraints perform

equivalent to Bayesian modeling techniques [401], while outperforming Bayesian approximation

methods on a real MIMIC-III medication recommendation task by 19.1% and a corresponding

manually augmented and regularized baseline by 5.3% in Area under the precision-recall graph.

We also provide instances of several commonly used constraints, augmentation modules, and

also provide an evaluation framework which has shown to be instrumental in achieving the 5.3%

improvement in performance by continuously tuning the parameters of the constraints and aug-
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mented data distributions.

13.2 Motivation

Since the adoption of the Occam’s razor principle, domain knowledge has been known to sig-

ni�cantly impact the speci�cations of a machine learning model, with less features and model

capacity required if we have a good prior that positively in�uences domain generalization. How-

ever, arriving at the right domain knowledge to incorporate can be tricky even for the domain

experts working with machine learning. For example, consider the medication recommenda-

tion task where doctors use patient symptoms as input and recommend a medication as output.

Here, although medical ontologies provide guidance on how medications should be prescribed

conditional on the patient symptoms, but are not considered to be exhaustive. In fact, doctors

use several unstructured sources of priors that are not e�ectively captured in medical ontologies

directly that in�uence their prescriptions. Hence, it is important to use the medical ontologies

as priors when it’s available, and rely on data driven patterns when they are not. However, the

dichotomy is not trivial as within a patient there might be symptoms which are covered by the on-

tologies, and some which are not - leading to interactions between these sub-spaces and tackling

them requires another level of probabilistic modeling. Hence, whether to incorporate ontologies

as priors of models by constraining to a certain family of functions or by adding a regularization

penalty over counterfactual augmented data is a choice that domain experts make based on their

con�dence in those priors. The ability to seamlessly shift between these two choices for instance,

is not trivial from an ML engineering persepctive as the current state of the art requires adopt-

ing two di�erent modeling perspectives. For the �rst choice, we would have to use a Bayesian

deep learning modeling framework [401] where the constraints can be thought of as predicates

that hold true in the data and correspondingly sampling from distributions using MCMC tech-

niques. For the second choice, we would need to manually augment data by de�ning the way
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counterfactuals are generated using labeling functions [351]. Comparing the evaluations of these

two approaches are not trivial for domain experts without working with an extensive machine

learning engineering team.

Our motivation is thus to enable a future of no-code or low-code abstractions for domain ex-

perts to incorporate their domain knowledge in the machine learning pipeline. To this end, we

develop a speci�cation language for domain experts to articulate how their domain knowledge

can be mapped to several components like regualarization, data augmentation, model priors. To

continue the running example of the medication recommendation task, using our framework,

a doctor would be able to crisply de�ne their domain knowledge in terms of the concepts they

understand, and e�ectively map out which parts of the machine learning pipeline the said knowl-

edge impact either in terms of loss functions, data distributions or model hypothesis space. For

example, if the doctor had certain preferred medications for patients presenting with dermato-

logical conditions on the hand, they could specify that using a mapping rule, and within the prop-

erties of that rule mention that this rule should hold over data augmentations performed on the

�y using a custom loss function for concept-based regualarization loss. Each of the modules for

data augmentation and regularization is readily available to the doctor with parameters they can

choose to tweak as and when their data distributions and priors continue to evolve. Our frame-

work then translates their speci�cation into a control-�ow graph of a standard machine learning

framework like TensorFlow, by using just-in-time compilation optimizations to include the con-

straints speci�ed, and approximating them where relevant (for e.g. non-di�erentiable functions,

etc). Additionally, once these constraints are speci�ed, our framework provides feedback to the

domain expert as to the extent to which the constraints they speci�ed are being satis�ed during

training and if any changes to the parameters are suggested based on sensitivity analysis. Thus,

our framework provides domain experts visibility into the entire machine learning pipeline with

the ability to intervene on each of the modules of the pipeline through programmatic speci�ca-

tions.

251



13.3 Related Work

Trustworthy ML: In classi�ers, trust has been developed through enabling counterfactual ex-

planations [140, 302, 327] and improving robustness in output predictions when inputs have

imperceptible and label-invariant perturbations [199, 476, 212]. However, in real-world applica-

tions, making input changes that are imperceptible and label-invariant is di�cult. While making

models robust against these adversarial failure modes is important, they are orthogonal in scope

for the use-cases domain experts care about. On the other hand, strictly enforcing �ne-grained

behaviors such as individual user-interaction safety guarantees [226], trust modeling [277] can

be hard to achieve and further exacerbated by cold-start problems [33].

Hybrid Systems: Many approaches have been proposed to aid the domain expert in inter-

preting the machine learning model’s predictions [136, 419]. Tools to guide the underlying deep

learning model through interactive feedback [53] and inductive logic [439] that increases diver-

sity and aligns the model’s predictions to expert knowledge have been proposed in the medical

domain [300]. Applying data mining to extract association rules using Bayesian methods between

input and output categories are also well studied [240], but they are typically not validated with

rules by experts.

Interpretability: Mapping human interpretable rules with ML models has also been done

to understand the inner workings of a black box machine learning model. For a broad review

of the various notions of interpretability, we refer to [97]. Our work closely relates to the “task

related latent dimensions of interpretability”. Here, we care about the hypothesis of local inter-

pretability[355], with incomplete coverage of domain expertise [462]. By restricting to this type

of interpretability over expert-de�ned rules on subsets of the data, we seek that our models obey

those rules.

Adversarial Robustness: To make ML models robust to perturbations, prior work has pro-

posed defenses so that the model does not change it’s output prediction for a small (ϵ), but hu-
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manly imperceptible change in the input [70, 54]. However, such adversarial robustness may ei-

ther increase [188] or decrease [459] the overall accuracy of the models depending on the human

speci�ed notion of robustness. Hence, in the �eld of computer vision, robust models over concept

based perturbations [445] and in natural language processing [185], robustness over word sub-

stitutions with synonyms are desired [344]. This indicates that the range of perturbations over

which the robustness is de�ned, is equally important and going beyond geometrical de�nitions

of robust boundaries is valuable [248, 346]. Hence, we choose to ground our models in expert de-

�ned relationships between inputs and outputs, which we would expect the non-observed data

to generalize over.

Robustness in ML: Recently, there has been a lot of interest in making ML systems robust

to avoid extremely undesired outcomes (e.g. horror �lms to children) [424, 448]. Robust ML

models that explicitly guard against multiple attack models [187] like pro�le injection [82], noisy

ratings [311] and implicit issues like outliers [397], data not missing at random [230] have been

proposed. Our de�nition is complementary to prior work in robust recommender models which

propose simpler models like decision trees [227], fairness guarantees to avoid unintended bias [35,

83, 384, 40], temporal coherence to avoid catastrophic forgetting [424], defense against adversar-

ial attacks of imperceptible changes [66, 174], and uncertainty based model calibration [448].

However, such approaches implicitly assume the presence of embeddings of items on which a

similarity function (e.g cosine similarity) can be applied and assign a penalty if the recommender

predicts items with low similarity. Instead, we explicitly use domain speci�c rules de�ned over

categories of items and expect that the recommendations do not deviate categorically from those

rules. Additionally, such approaches focus primarily on training-time attacks and do not address

counterfactual scenarios that might arise during inference.

Bayesian methods: Often domain knowledge imposes hard constraints on a model in the

sense that the constraints exclude parts of the sample space altogether rather than only make

them less likely. This means the target distribution may have isolated modes and sharp deriva-
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tives, causing poor sampler exploration and instability in gradient-based methods. In these chal-

lenging cases, approximate inferences can be applied to approximate models. For instance, simu-

lated annealing [224] can be used to bring the posterior closer to a uniform density, potentially

connecting isolated modes. Parallel tempering samples from a collection of exact and approx-

imate models (replicas at increasing temperatures) in parallel [395, 138, 102, 9, 396]. Predicate

Exchange [401] applies parallel tempering to cases where sets are de�ned by hard predicates

expressing arithmetic constraints, e.g. the square of one parameter is less than another param-

eter. To accomplish this, a set of atomic predicates (e.g. equality, inequality) are relaxed at each

temperature to a function in [0, 1], called a soft predicate, measuring the extent to which the con-

straint is satis�ed. Complex soft constraints are then obtained recursively using relaxations of

propositional connectives. However, the resulting speci�cation language remains limited both in

terms of expressivity and its one-choice-�ts-all relaxation policy.

13.4 Domain Faithful Specifications

We build on this body of work to allow for abstract functional forms of constraints which al-

lows domain experts to include free-form relationships between inputs and outputs. Speci�-

cally, we build on top of the just-in-time compilation and acceleration frameworks such as JAX

[122] to encode robustness constraints as customized di�erentiable abstractions which can be

added to traditional deep learning frameworks built in Tensor�ow. This way, our expressivity is

strictly better than relaxation based frameworks and can encode conditionals, loops, and other

custom di�erentiable array operators. This choice of abstraction allows us to directly encode

the constraints the domain experts wish to see in the model as additional augmentation and

regularization losses, instead of a conditional sampling of model parameters. Further, by using

decomposed reverse-mode automatic di�erentiation, we overcome the complexity of performing

reverse-mode automatic di�erentiation of sampling algorithms like Hamiltonian Monte Carlo
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and Metropolis Hastings over proposals on pre-de�ned proposals on elements in the dictionary.

Instead of using �ne-tuning temperature to swap between soft predicate proposals, we directly

encode the underlying declarative knowledge in the form of constraints approximated by regu-

larization penalties which allows to be backpropagated seamlessly. The di�culties brought on by

the discontinuities in conditionals imposed by domain knowledge can be implemented directly

using primitives such as “switch”, “cond”, “where”, which allows for tracing of functions to track

the shapes of the inputs and outputs, while still allowing for custom derivative rules over user-

de�ned functions with discontinuities and non-di�erentiable points, leveraging the bene�ts of

combining forward-mode residuals in reverse-mode automatic di�erentiation.

For example, given a constraint f , which is a functional mapping f : C → C between concepts

C = {c1, c2, ..cn} that should be satis�ed for any instance in the data x for which f is applicable.

This can be represented as a lambda expression using a satis�ability function over the machine

learning model M. If we assume that the membership of an instance x and it’s output in the

desired concepts is determined by functions i and o respectively, the domain set of concepts in

f : D, and the correspondingly mapped concept set: v , then the functional speci�cation can be

written as follows:

Listing 13.1: Constraint functional specification

d e f s a t i s f y (M, x ) :

v a l = True

i f i ( x ) i n D :

v a l = o (M( x ) ) i n v ( x )

r e t u r n v a l

f = lambda x : s a t i s f y (M, x )

Such a satis�ability constraint when speci�ed can be incorporated into a framework like JAX

as outlined in Section 13.5. One of the restrictions placed however is that the constraint needs to
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be self-contained and not rely on any side-inputs which might change during execution. Hence,

this supports a rich set of constraints beyond predicate �rst-order logic and enable higher-order

logics over sets of data. This is speci�cally useful when constraints like statistical group fairness

which operates over sets of data are required in a domain. However, in terms of expressability, we

cannot specify a complete Turing machine as a constraint, due to our limitation on accessing side-

inputs. However, the framework allows us to build new core primitives which allow calls into

other functions, simulators, to be incorporated as long as the shapes and types of the inputs and

outputs are statically determinable. By allowing each of these dynamic functions to be converted

to core primitives and by allowing for abstract evaluation to determine the shapes and types of

the arguments, we can e�ciently run these functions over batches of data during training or

“vectorize” them for just-in-time compilation and asynchronous dispatch. Conditionals whose

shape and type are dynamic and based on the inputs are not amenable to this formulation and

needs to be converted into statically analyzable primitives.

No-code speci�cation library: To enable domain practitioners with little-to-no experience

in coding, we also provide a JSON like speci�cation interface for each of the above functions (see

listing ??). By tying this interface to the python speci�cation and the primitive implementations

of the constraints in the deep learning system, we provide an interpretable mechanism for the

domain expert to evaluate the machine learning model with respect to their domain constraints.

13.5 System Design

In this section we describe the implementation of domain faithful deep learning system. Our

implementation extends on JAX [122], and allows domain experts to leverage the bene�ts of

just-in-time compilation which allows the execution of functional programs as part of the con-

trol �ow graph. To allow for the full expressivity of domain declarative knowledge, we extend

on the primitives built into JAX like tuples, dictionaries, along with nested data structures whose
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gradients can be custom de�ned. Each deterministic constraint expressed functionally is then

translated into a lambda JAX expression, which takes one or more input typed parameters with

one or more typed results. Currently, JAX expressions do not support free variables within en-

closing scopes. Further, the translation ignores any functional code, that is not translatable to a

JAX expression. This allows that each of the modules can be written to capture domain speci�c

knowledge in Python-level control �ow, but only the relevant constraints that operate over in-

puts and outputs get translated into JAX Expressions. Each JAX Expression follows the below

template:

Listing 13.2: JAX expression template

j a x p r : : = { lambda Var ∗ ; Var + .

l e t Eqn ∗

i n [ Expr +] }

Here, the �rst variables Var∗ are dedicated for constant variables, Var+ denotes input vari-

ables, Eqn∗ denotes a list of lambda expressions, which �nally return the output variables.

13.5.1 Regularization

For example, the functional speci�cation of a constraint that enforces that if one of the input

is negative, then the output should be False which is expressed in a functional form, is then

translated into a JAX expression (see Appendix, listing 13.6). Since the JIT compilations of JAX

expressions are such that they can added onto a control graph of a traditional deep learning

system and allows batching, we can then directly augment the constraint code to an existing loss

function as follows:

Listing 13.3: Regularization Loss in DFS
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d e f l o s s (W, b ) :

p r e d s = p r e d i c t (W, b , i n p u t s )

s a t i s f y = c o n s t r a i n t ( i n p u t s , p r e d s )

l a b e l _ p r o b s = p r e d s ∗ t a r g e t s + ( 1 − p r e d s ) ∗ ( 1 − t a r g e t s )

r e t u r n − jnp . sum ( jnp . l o g ( l a b e l _ p r o b s ) ) + jnp . sum ( s a t i s f y )

This allows for �exibility in how we de�ne our constraints, the way in which the correspond-

ing penalty terms are added to the base loss function (e.g log loss likelihood). Each of these

choices have been parameterized for ease of speci�cation by the domain expert.

13.5.2 Data Augmentation

Similar to regularization, data augmentation primitives can also be compiled JIT based on guid-

ance from domain expert. For example, if augmentation transformations on structured data in

the medication recommendation task is to replace one symptom with another symptom from the

same category using our library “aug”, we can simply write a batched augmentation pipeline to

the existing batch of patient data as follows:

Listing 13.4: Data Augmentation in DFS

impor t j a x

impor t d f s

t r a n s f o r m = d f s . Chain (

d f s . RandomCategoryChoice ( ) ,

d f s . SwapInput ( ) ,

d f s . P o p u l a t e C a t e g o r y L a b e l ( ) ,

)
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rng = j a x . random . PRNGKey ( 4 2 )

sub_rngs = j a x . random . s p l i t ( rng , p a t i e n t s . shape [ 0 ] )

a u g _ p a t i e n t s = j a x . j i t ( j a x . vmap ( t r a n s f o r m ) ) ( sub_rngs , p a t i e n t s )

By doing this transformation, we can generate augmented data just-in-time, and also incor-

porate expert domain knowledge in doing so. For example, if experts want to peform data aug-

mentation which allows only certain types of input swaps, we encode that logic in the function

“SwapInput”. Here, too we provide a library of commonly data augmentation techniques for the

domain expert to choose between.

13.6 Properties of Domain Faithful Deep Learning

13.6.1 Evaluating Safety

Each of the JAX expressions can be custom evaluated as part of the compilation to allow for

domain-speci�c interpretation of the model’s performance. For example, in order to evaluate

how often the above example constraint is violated, we write a custom interpreter for the above

JAX expression, which evaluates and reports the number of violations of the constraint using

an auxiliary reporting output variable. This wrapping mechanism has further been automated

using custom decorators called “@domaineval”, which correspondingly reports such behaviors

using wrapper libraries like “�ax”. Here too, we have built a library of relevant mappings and the

corresponding metrics that would be useful for the domain expert based on prior user studies.

@cons ( name = ' n e g a t i v e I n p u t ' )

c l a s s S t r i c t M o d u l e ( nn . Module )

@domaineval ( a l l o w e d R a t e )

d e f _ _ c a l l _ _ ( i n p u t s , p r e d s ) :
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s a t i s f y = c o n s t r a i n t ( i n p u t s , p r e d s )

s e l f . sow ( ' i n t e r m e d i a t e s ' , ' c o n s t r a i n t R a t e ' , s a t i s f y )

r e t u r n j a x . nn . c e l u ( s a t i s f y , 1 / a l l o w e d R a t e )

13.6.2 Parameter Optimization

The speci�cation of the domain speci�cation library encapsulates all parameters relevant to a

constraint in a dictionary. This allows the domain experts to train domain faithful end-to-end

neural networks by simply specifying the parameters of their constraints.

Listing 13.5: Functional specification for category concordance

exp = {

c o n s t r a i n t s = [

c o n s t r a i n t {

name = ' n e g a t i v e I n p u t '

a l l o w e d R a t e = 0 . 1

o n F a i l u r e = None

e v a l R e p o r t = True

}

] ,

p r e p r o c e s s i n g = [

augment {

name = ' categorySwap '

t r a i n i n g R a t i o = 0 . 2

}

] ,
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i n p u t = ' . / pa th / t o / input ' ,

o u t p u t = ' . / pa th / t o / output ' ,

c l a s s i f i c a t i o n = ' c r o s s E n t r o p y ' ,

l o s s = ' l ogLos s ' ,

epochs = 1 0 ,

}

Since improving model robustness as de�ned by the domain constraints is the primary ob-

jective of DFS, we assume that the values of the constraint parameters need to be continuously

�ne-tuned. In DFS, we have also implemented a mechanism to provide feedback on the numeri-

cal values, using techniques of Bayesian optimization [274] which models the prior of the values

based on the domain expert assigned values and evaluates based on an additive semiparametric

error ϵ(x) to compute the posterior of the surrogate model P(f |D) given an initial distribution

of functions P(f ) (a Gaussian process) and a criterion to acquire new values. In our empirical

Bayes implementation, we use the acqusition function based on a combination of global and lo-

cal derivate-free method - BOBYQA [336]. This feature can be simply enabled by mentioning

two parameters in the above speci�cation - the start and stop epoch number when the constraint

parameters will be optimized.

13.7 Evaluation

13.7.1 Discontinuous Constraints

We use the histograms of samples from a uniform prior [−1, 1]2 used in [401], conditioned on

a variety of predicates. These examples are simple yet challenging to simple feedforward neu-

ral networks to learn due to discontinuities in the approximate posterior. Speci�cally, the true

distribution is from x,y ∼ Uni f (−1, 1) with conditions of x = y, |x | ≥ |y |, x2 = y2 and
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Model Version RMSE to ground truth
Baseline 0.84 (0.80, 0.88)
Baseline+Mapped 0.75 (0.74, 0.76)
Baseline+Predicate 0.72 (0.68, 0.76)
RA 0.65 (0.63, 0.68)
RA-WCR 0.42 (0.41, 0.43)
RA-WCR [dfdl] 0.28 (0.21, 0.35)

Table 13.1: Our method considerably reduces the RMSE to the ground truth on average over the 4 syn-
thetic conditioned models.

sin(kx).cos(kx) ≥ 0.9999. In each of these cases, we are given a partial domain knowledge in

the space of x,y ∼ Uni f (−0.1, 0.1) where each of the conditions and the corresponding con-

straints are known to be true. By adding an augmentation module to each of these distributions,

our models are expected to generalize beyond the space where the constraints are known to be

true. Further, the continuous re�nement of the thresholds of the constraints, further indicate the

growing boundaries within which the constraints hold true. This further indicates to the domain

expert to incrementally increase the boundaries and �nally end up in a much more generalized

model as shown in Table 13.1. Baseline is a feedforward network model with two layers with 10

hidden units with non-linear units (RELU) run for 100 epochs.

13.7.2 Medication Recommendation Case Study

With the advent of Electronic Health Record(EHR), doctors are able to make signi�cantly better

clinical decision with the help of rule based recommendation systems.

Given a set of mappings between categories of diagnoses CX and categories of medication

CY , we want to learn a neural network model f which consistently maps diagnoses x : cx ∈ CX

to their corresponding medications y : cy ∈ CY as per the mapping, such that ŷ = f (x). Let us

de�ne a function p which maps the diagnoses categories to medication categories i.e p : CX → CY

∀x : cx ∈ CX , cŷ = p(cx ).

We follow the MIMIC-III medication recommendation task as per [376], and the domain spe-

ci�c mappings p are obtained from [atc-icd] where medical experts validated a statistical table
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based on pairwise mutual information scores of co-occurrences between diagnostic x (ICD-9) and

medication y (ATC) codes. These validated tables are segmented based on the age and gender of

Austrian patients. Note that this dataset is di�erent from the MIMIC-III dataset used in our eval-

uation. Hence, we use only the pairs of ICD-9: j, ATC categories: k that are expert validated p,

but not any other statistical information from this study. A total of unique 349 pairs of ATC and

ICD-9 Level 2 codes were deemed to be valid by the experts; 958 unique pairs if we break down

by age and gender forms our domain speci�c mapping p. Age is bracketed into 3 ranges based on

year of birth (1949-68, 1969-88, 1989-2008) and gender is considered to be binary (male, female).

The categorical distance dc used to de�ne the robustness distance is given by the path distance

between ICD-9 codes in the ICD-9 ontology tree. We use these validated pairs to generate pertur-

bations in our existing dataset. The constraints used are category misclassi�cation loss Lv(Dp)

and the within-category regularization loss Lar (Dp) in this domain:

Lv(Dp) = E(X ,Y )∈Dp E
(j,k):p(j)=k
X ′∼δ j (X )

I(k <
⋃

y ′∈h(X ′)

fO (y
′)) (13.1)

Lar (Dp) = E
(X ,Y )∈Dp ,(j,k):p(j)=k
X ′∼δ j (X ),y∼Y∩Yk

Lr (X ,X
′,y) (13.2)

13.7.3 Baseline Models

We use the current state-of-the-art for the medication recommendation task on MIMIC-III dataset

as the Baseline - G-BERT [376]. This model uses graph embeddings based on the ontology of the

ATC and ICD-9 codes. The model initially pre-trains the embeddings on the single-visit data

using self-supervised learning, similar to BERT [85]. The graph embeddings are learnt using the
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Graph Attention technique [416], so as to learn hierarchical embeddings for each of the diagnostic

and medication codes.

For each of these domains, we de�ne the current state-of-the-art model as Baseline. As our

framework incorporates more information through robust domain speci�c mappings through

counterfactual augmented data, we also developed additional baselines that used these priors

as input features. Speci�cally, we augmented categorical embeddings of each input to form the

Baseline+Cat model. In this baseline, no expert validation information is provided, but the cat-

egory embedding is explicitly provided. We also augmented the embeddings of the applicable

rule-based output category k : p(j) = k as an input to the model to form the Baseline+Mapped

model. This trains the model to pay attention to the mapped output category and minimize cate-

gory misclassi�cation. We also incorporate the predicate exchange algorithm [401] to incorporate

the categorical rules as stochastic approximations which is then �ne-tuned using a temperature-

scaled MCMC to draw posterior samples for a probabilistic program execution. Finally, we in-

stantiate our models Baseline RA, which modi�es the baseline with Rule-based Augmentation

(Eq. 13.1) and Baseline RA-WCR, which uses Rule-based Augmentation and Within-Category

Regularization (Eq. 13.2). Our domain faithful deep learning version implemented in JAX is called

We set α = 0.2 after cross-validation.

13.7.4 Metrics

To build the neural models that follow domain rules, we regularize the model such that within-

category loss (13.2) is minimized. We evaluate improvement in robustness using the following

distance metric between inputs.

De�nition 13.1. Robustness Distance: Given all rules of the form p(j) = k , and the subset of

the datasetD covered by them: Dp , robustness distance is measured as the average of the minimum

categorical distance dc between input categories j and j′, where x : j ∈ fI (x) and a single item
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perturbation x′ ∈ Sk(X ) : j′ ∈ fI (x
′) that leads to k being removed from the set of perturbed

output categories O(X ′).

O(X ′) = { fO (y
′) : ∀y′ ∈ h(X ′)} (13.3)

Sk(X ) = {x
′|X ′ = x′ ∪ X \ x ∧ x ∈ X ∧ k < O(X ′)} (13.4)

drobust = E(X ,Y )∈Dp [ min
j∈ fI (x),j

′∈ fI (x
′)

x∈X ,p(j)=k,x ′∈Sk (X )

(dc(j, j
′))] (13.5)

13.8 Results

13.8.1 Accuracy

To test if we improve accuracy on the original dataset, we evaluate overall accuracy metrics. For

the medication recommendation task as shown in Table 13.2, in the MIMIC-III diagnostic code

classi�cation task through domain faithful deep learning parameter re�nements, we improve F1-

score by 5.3%with similar gains in Jaccard coe�cient and PR-AUC and we improve F1-score by 3.3%

on the medicine category classi�cation task over the augmented dataset which contains coun-

terfactual scenarios of in-category diagnostic codes, thereby increasing adherence to diagnostic-

medication category mappings.

13.8.2 Domain Robustness

We now test: “Does our method e�ectively increase adherence to the domain experts’ map-

pings?” To measure if neural recommender models follow domain-speci�c rules, we evaluate

the robustness distance as de�ned in De�nition 13.1, limited to the subset of the data speci�ed

by the mappings. To continue the ICD-9 code based medication recommendation example, the
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Model Jaccard F1 PR-AUC
O

rig
in

al
G-Bert 0.3679 ±0.01 0.5281 ±0.03 0.6212 ±0.03
G-Bert+Cat 0.3564 ±0.02 0.5203 ±0.04 0.6146 ±0.03
G-Bert+Mapped 0.3680 ±0.01 0.5299 ±0.03 0.6230 ±0.02
G-Bert+Predicate 0.3470 ±0.01 0.5149 ±0.03 0.6291 ±0.02
G-Bert RA 0.3883 ±0.02 0.5788 ±0.02 0.6541 ±0.01
G-Bert RA-WCR 0.4300 ±0.01 0.5967 ±0.01 0.6775 ±0.02
G-Bert RA-WCR [dfdl] 0.4530 ±0.01 0.6132 ±0.01 0.6802 ±0.02

A
ug

m
en

te
d G-Bert 0.3677 ±0.03 0.5281 ±0.02 0.6199 ±0.00

G-Bert+Cat 0.3301 ±0.03 0.5102 ±0.01 0.5952 ±0.01
G-Bert+Mapped 0.3573 ±0.01 0.5249 ±0.02 0.6084 ±0.02
G-Bert+Predicate 0.3564 ±0.01 0.5223 ±0.02 0.6051 ±0.02
G-Bert RA 0.3723 ±0.02 0.5483 ±0.02 0.6343 ±0.01
G-Bert RA-WCR 0.4033 ±0.01 0.5699 ±0.02 0.6596 ±0.02
G-Bert RA-WCR [dfdl] 0.4127 ±0.01 0.5742 ±0.02 0.6621 ±0.02

Table 13.2: Our RA-WCR model improves accuracy metrics of G-BERT on the MIMIC-III medication
recommendation task a�er fine-tuning the parameters of the constraints for the Original dataset and the
category classification task for the within-category Augmented dataset
changes would be quanti�ed by the edge distance in the ICD-9 code ontology required to change

the output ATC medication code. As shown in Table 13.3, our G-BERT RA-WCR model achieves

a robustness distance drobust = 2.8 > 2.4 > 2, suggesting that the model on average follows the

expert-de�ned rules for counterfactuals near observed examples as compared to doing the aug-

mentation and robustness regularization manually. Having a robustness distance greater than or

equal to 2, implies that on average for any change in the recommended medication category, the

model expects that the input diagnostic code category should have also changed.

13.9 Conclusion

In this paper, we have outlined a domain faithful deep learning framework based on the just-in-

time compilation and abstract evaluation and tracing of the control �ow of deep learning systems.

We leverage the bene�ts of this decoupling between functional speci�cations and batched exe-
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Model Version Baseline: G-BERT (MIMIC-III)
drobust (ICD-9 tree distance)

Baseline 1.3 (1.0, 1.6)
Baseline+Cat 1.1 (1.0, 1.2)
Baseline+Mapped 1.2 (1.0, 1.4)
Baseline+Predicate 1.2 (1.0, 1.4)
RA 1.7 (1.5, 1.9)
RA-WCR 2.4 (2.1, 2.7)
RA-WCR [dfdl] 2.8 (2.7, 2.9)

Table 13.3: Our method considerably increases the mean robustness distance (± standard deviation in
brackets - see Def. 13.1) in the medication domain.

cution a�orded by our framework, to enable continuous re�nement of parameters by domain

experts, including hints to change hyperparameters of the constrains and augmentation mod-

ules to optimize for overall accuracy and robustness in both synthetic and MIMIC-III medication

recommendation tasks.

13.10 Appendix

impor t j a x . numpy as jnp

d e f c o n s t r a i n t ( i n p u t s , p r e d s ) :

r e t u r n jnp . where (

jnp . t a k e ( i n p u t s , 2 , 1 ) < 0 ,

preds , jnp . a r r a y ( [ 0 ] ∗ l e n ( p r e d s ) ) )

Listing 13.6: JAX Expression for Functional Specification

i n v a r s : [ b , c ]

o u t v a r s : [ f ]

c o n s t v a r s : [ a ]

e q u a t i o n : [ b , 2 ] x l a _ c a l l [ d ] { ' de v i ce ' : None , ' backend ' : None , ' name ' : ' _take ' , ' d o n a t e d _ i n v a r s ' : ( F a l s e , F a l s e ) , ' i n l i n e ' : F a l s e , ' c a l l _ j a x p r ' : { lambda ; a : f 3 2 [ 4 , 3 ] b : i 3 2 [ ] . l e t
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c : b o o l [ ] = l t b 0

d : i 3 2 [ ] = add b 3

e : i 3 2 [ ] = x l a _ c a l l [

c a l l _ j a x p r = { lambda ; f : b o o l [ ] g : i 3 2 [ ] h : i 3 2 [ ] . l e t

i : i 3 2 [ ] = s e l e c t _ n f h g

i n ( i , ) }

name=_where

] c d b

j : i 3 2 [ 1 ] = b r o a d c a s t _ i n _ d i m [ b r o a d c a s t _ d i m e n s i o n s = ( ) shape = ( 1 , ) ] e

k : f 3 2 [ 4 ] = g a t h e r [

dimension_numbers =GatherDimensionNumbers ( o f f s e t _ d i m s = ( 0 , ) , c o l l a p s e d _ s l i c e _ d i m s = ( 1 , ) , s t a r t _ i n d e x _ m a p = ( 1 , ) )

f i l l _ v a l u e =None

i n d i c e s _ a r e _ s o r t e d = F a l s e

mode= G a t h e r S c a t t e r M o d e . CLIP

s l i c e _ s i z e s = ( 4 , 1 )

u n i q u e _ i n d i c e s = F a l s e

] a j

i n ( k , ) } }

e q u a t i o n : [ d , 0 . 0 ] l t [ e ] { }

e q u a t i o n : [ e , c , a ] x l a _ c a l l [ f ] { ' d ev i c e ' : None , ' backend ' : None , ' name ' : ' _where ' , ' d o n a t e d _ i n v a r s ' : ( F a l s e , F a l s e , F a l s e ) , ' i n l i n e ' : F a l s e , ' c a l l _ j a x p r ' : { lambda ; a : b o o l [ 4 ] b : b o o l [ 4 ] c : i 3 2 [ 4 ] . l e t

d : i 3 2 [ 4 ] = c o n v e r t _ e l e m e n t _ t y p e [ new_dtype= i n t 3 2 weak_type= F a l s e ] b

e : i 3 2 [ 4 ] = s e l e c t _ n a c d

i n ( e , ) } }
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14 | Conclusion

Through this research, we have established several foundational implications for various applica-

tion domains. Through incorporating causal models in natural language processing models, we

have seen that causal graph faithfulness can lead to better generalization across domains, incor-

porating indicative causal features in time series predictive models can lead to better modeling

of heterogeneous e�ects in spatio-temporal structured prediction social science tasks, generat-

ing data that models nuanced counterfactual behavior can provide robustness guarantees when

evaluated against medical ontological mappings, identifying when covariate overlap assumptions

are invalid can better eliminate spurious temporal correlations, interpreting and improving sliced

accuracy across demographic groups can improve the pareto frontier of machine learning mod-

els, and �nally it is possible for domain experts to specify their domain knowledge in a manner

which is both easy to represent but also optimized for training large scale deep learning models.

Through each of these insights, our work also opens up a wide area of research to explore in the

future.

Speci�cally, developing a framework where domain experts and ML practitioners can collab-

orate on mutually bene�cial abstractions for fairness, concordance, causal models, etc. that is

interpretable for the practitioners and operable for the ML researchers is an area that can be ex-

tensively studied. Such Domain Faithful Deep Learning systems will be �exible to various types

of domain knowledge including but not limited to categorical mappings, logical formulations

over concepts, algebraic constraints over groups of data. With this framework, we have explored
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building Domain Faithful Deep Learning Systems with applications in the realm of healthcare,

sustainability, responsible computational social science and privacy by addressing the following

core challenges.

• Domain speci�cation language: One of the hurdles to enable such systems is the lack

of a common speci�cation language for practitioners and researchers to collaborate. For

example, in the medication recommendation task, have automated the process of data aug-

mentation, regularization, into a speci�cation language for medical domain experts. This

not only improves the transparency of ML design, but allows researchers more �exibility

in choosing among techniques applicable for the health domain.

• Domain structure for global properties: Incorporating global properties over large

groups of data instances into ML models needs to be an integral part of design choices in

trustworthy socio-technical systems. Our work on improving pareto e�ciency and sliced

accuracy through secondary proxy variables has shown that we can build robust models

for all demographic groups while improving overall accuracy.

• Scienti�c Hypotheses Discovery: Further, in many domains where domain knowledge

is still in its nascent phase, our research has been used to analyze the performance of the

ML models while keeping domain speci�c constraints in mind, which can pave the way for

generating hypotheses for scienti�c discovery. Causal model discovery and extraction as

evidenced in the famine forecasting work, has shown that accurate and robust models can

be built with existing scienti�c hypotheses in mind.

• Translating natural language for logical applications: Similarly, domains which have

complex unstructured data can bene�t from using ML to incorporate domain structure to

be checked by experts. For example, in the domain of question answering, we have shown

that by using causally faithful representations, we can directly deploy logically motivated

graphs in information retrieval systems.
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• Ethical translation of domain knowledge: How domain expertise gets translated into

statistical constraints and concepts can have ethical implications. The questions such as

what data distribution and for what purpose is the model trained intended for, are closely

related and is precisely the type of cross-disciplinary analysis we need to engage domain

experts with, for building responsible data-driven systems. For example, in the coronary an-

giographic disease status prediction task and outcome-aware agricultural household clus-

tering, how we balance the error rates across demographic groups can unearth historical

biases in the measurements and calibrations of the data. This way, we have incorporated

socio-economic inference models as part of participatory policy making and algorithmic

decision making.

Through our research, we have enabled domain experts and ML researchers to work together

and converge to a common understanding of how the ML models operate. The challenges of

the future like climate change, pollution, health and toxicity in social media need our concerted

e�orts. Through this research on incorporating domain structure into end-to-end ML models, we

have opened the doors for domain experts like economists, doctors, physicists, gene biologists,

earth scientists, linguists, lawyers and social scientists to provide inputs based on their domain

knowledge to help build robust ML models in their �elds for safe decision making.
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