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Abstract. Domain decomposition methods provide powerful preconditioners for the iterative
solution of the large systems of algebraic equations that arise in finite element or finite difference
approximations of partial differential equations. The preconditioners are constructed from exact or
approximate solvers for the same partial differential equation restricted to a set of subregions into
which the given region has been divided. In addition, the preconditioner is often augmented by a
coarse, second level approximation, that provides additional, global exchange of information, and
which can enhance the rate of convergence considerably. The iterative substructuring methods, based
on decompositions of the region into non-overlapping subregions, form one of the main families of such
algorithms.

Many domain decomposition algorithms can conveniently be described and analyzed as Schwarz
methods. These algorithms are fully defined in terms of a set of subspaces and auxiliary bilinear forms.
A general theoretical framework has previously been developed and, in this paper, these techniques
are used in an analysis of iterative substructuring methods for elliptic problems in three dimensions.
A special emphasis is placed on the difficult problem of designing good coarse models and obtaining
robust methods for which the rate of convergence is insensitive to large variations in the coefficients of
the differential equation.

Domain decomposition algorithms can conveniently be built from modules, which represent local
and global components of the preconditioner. In this paper, a number of such possibilities is explored
and it is demonstrated how a great variety of fast algorithms can be designed and analyzed.
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1. Introduction. Domain decomposition algorithms are preconditioned itera-
tive methods where the preconditioners are constructed from exact or approximate
solvers for the given partial differential equation restricted to subregions, also called
substructures, into which the given region is subdivided or from which it originally
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has been assembled. Each of these subregions can naturally be associated with a
set of nodes and a finite element subspace. All algorithms of this kind known to us,
which have satisfactory convergence properties for the case of many subregions, have
one feature in common. In addition to subspaces and subproblems directly related to
individual or small groups of adjacent substructures, there is a global, coarse subspace.
Only a few global degrees of freedom per subregion are associated with this special
subspace. As demonstrated in Widlund [60], using only simple arguments, the ab-
sence of such a subspace always results in slow convergence. This effect is also clearly
evident in numerical experiments; cf. e.g. Smith [57]. We note that it is also quite
natural to include additional levels; cf. e.g. Dryja and Widlund [25], Xu [63], and
Zhang [64]. However, in this paper, we will focus exclusively on two level algorithms.

The design, analysis, and implementation of the coarse space problem pose the
most challenging technical problems in work of this kind. In this paper, we demon-
strate that it is profitable to view any coarse space as the range of an interpolation
operator, often of a quite unconventional type, and that many questions in the anal-
ysis reduce to providing an estimate of the norm of this operator. In the study of the
local components of the preconditioners, we can draw on the extensive knowledge of
substructuring methods for a few subdomains; cf. e.g. Bjgrstad and Widlund [3].

Throughout, we regard our methods as Schwarz methods, generalizations of the
alternating method of Schwarz [52] discovered more than 120 years ago. Historically
Schwarz methods have primarily been associated with a division of the region into
overlapping subregions. In recent years, research on this classical method and its
additive variants has been quite active; cf. e.g. Dryja and Widlund [23], [24], [61],
Matsokin and Nepomnyaschikh [44], Nepomnyaschikh [45], [46]. It has been known for
about five years that the iterative substructuring methods, based on a decomposition
into nonoverlapping subregions, also fit well into a common Schwarz framework, see
Dryja and Widlund [23], and this will be our point of view in this paper.

The idea behind the Schwarz methods is straightforward; the solution space V' is
divided into subspaces V; and the solution in V' of the given problem is determined
in an iteration by projecting the current error onto these subspaces. We can use
projections P;, which are orthogonal with respect to the bilinear form a(-, -) naturally
associated with the elliptic problem, or operators T; defined in terms of alternative
bilinear forms b;(-,-) defined on V; x V;. A particular choice of the subspaces and
bilinear forms provides a complete mathematical description of a Schwarz algorithm.
For recent work, in which such a framework is developed and used, see Bramble,
Pasciak, Wang, and Xu [8], Cai [10], Cai and Widlund [12], [13], Dryja and Widlund
(23], [24], [26], [27], [28], [29], Lions [35], Mathew [42], [43], Nepomnyaschikh [45],
Pavarino [47], [48], Pavarino and Widlund [49], Sarkis [51], Smith [54], [55], [56],
[57], Widlund [61], Xu [63], and Zhang [64], [66]. In Section 2, we will demonstrate
that rapid convergence of the iterative methods occurs if and only if all u € V can
be decomposed into components in V;, i.e. u = 3, u;,u; € Vi, in such a way that
> bi(us, u;) can be bounded uniformly by a relatively small multiple of a(u, u).

In this paper, we use the abstract Schwarz theory to develop a unified method for
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the design and analysis of a variety of fast iterative substructuring methods for prob-
lems in three dimensions. These methods form one of the major families of domain
decomposition algorithms. For these methods, the communication of information be-
tween neighboring subdomains is confined to the exchange of values of the variables
directly associated with the interfaces.

The global coarse problem, of any two-level Schwarz method, is completely defined
by selecting the subspace Vj and the associated bilinear form bo(-, ). It would appear
that a natural candidate for Vj would be V¥, the space of continuous, piecewise
linear functions using the substructures as elements. This approach is successful
in the case of two dimensions but for the three dimensional problems considered
in this paper quite unsatisfactory algorithms can result; cf. Bramble, Pasciak, and
Schatz [6], [7], Smith [54], [55], and Section 6 for a discussion. In certain cases when
the decomposition of the functions into subspaces is unique, i.e. when V' is a direct
sum of the subspaces V;, we necessarily obtain a poor bound on by(ug, ug) and, as
a consequence, a poor convergence rate. However, by introducing sufficient overlap
between the local subspaces, successful, rapidly convergent methods can be designed
that use the VH space; cf. Dryja and Widlund [22], [23], [27], [61], Smith [56], and
Section 6. A problem still remains for these algorithms, which use the V# space; it is
not known if bounds for the condition number can be obtained that are independent
of jumps in the coefficients of the differential operator.

An element of the space V# is defined completely by its values at the substructure
vertices with the values elsewhere obtained by linear interpolation; we therefore call
such an algorithm wvertex based. The alternative coarse spaces, considered in this
paper, can also conveniently be characterized in terms of an interpolation and/or
extension process. Some of them are defined by the values at the nodes shared by
more than two subdomains, i.e. by the values on the wire baskets of the substructures;
we call such algorithms wire basket based. These spaces can also straightforwardly be
extended to more complicated substructures, which are not necessarily conventional
large elements. We note that the first algorithms of this class were introduced in an
important paper of Bramble, Pasciak, and Schatz [7]. Others can be called face based;
the values on the different faces of the substructures are essential in determining
the values of the interpolant. There are also many opportunities to create hybrid
algorithms.

As we have already noted, it is crucial to have a satisfactory almost uniform
bound on the energy of the coarse space interpolant. For rapid convergence, the coarse
space interpolating operator should also reproduce the null space of the given elliptic
operator; cf. Mandel [37], [38], or Smith [54]. For the case of scalar elliptic problems
considered here, the null space only contains constants; for the three dimensional
linear elasticity operator it is the six dimensional space of rigid body motions. Several
examples of iterative substructuring algorithms, which satisfy both these requirements
for problems in three dimensions, are given in the last section.

In this paper, we focus on scalar, self-adjoint, second order elliptic problems
including those with large variations in the coefficients. The basic analysis is carried
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out for problems without a zero order term; it is quite easy to extend the results to
more general self adjoint positive definite problems. We are also confident that much
of the theory can be carried over to systems of elliptic equations, such as those of
linear elasticity.

This paper is organized as follows. In the next section, we summarize an abstract
theory for the Schwarz methods that has been developed in earlier work; see in par-
ticular Dryja and Widlund [28] for a recent overview of the theory. In Section 3, we
introduce the elliptic problems and the finite element methods. We also introduce
matrix notations, which are quite important in any discussion of the implementation
of the algorithms. When analyzing the algorithms, we will work almost exclusively
with the bilinear forms b;(-,-), but in an implementation, the matrix representations
of the operators play the major role; we believe that both points of view are essential
for a complete description of a Schwarz algorithm. In section 4, we develop and col-
lect the technical tools needed in the analysis of iterative substructuring algorithms in
three dimensions. In Section 5, we discuss how various local solvers can be designed.
Finally, in the last section, a variety of coarse solvers are introduced and the resulting
algorithms are analyzed.

2. Abstract Theory for Schwarz Methods. A Schwarz algorithm defines an
iterative method for the solution of linear systems of algebraic equations arising in
the discretization of partial differential equations. The solution space is decomposed
into subspaces and the approximation of the solution is updated by using corrections
obtained by projecting the error onto these subspaces. In practice, the basic iterative
schemes are normally accelerated by a Krylov space method, the conjugate gradient
method for symmetric problems, or, for instance, GMRES for problems with non-
symmetric operators, cf. Hestenes [33] and Saad and Schultz [50], respectively. For a
recent survey on Krylov space methods, see Freund, Golub, and Nachtigal [30].

2.1. Additive and Multiplicative Schwarz Methods. In this subsection, we
outline an abstract convergence theory for the Schwarz methods. We have written on
this topic before, most recently in Dryja and Widlund [28], where detailed proofs can
be found.

Consider the following abstract variational problem: Find u* € V such that
a(u,v) = f(v), Yo e V.

The bilinear form a(-,-) is symmetric, positive definite. We assume that there is a
decomposition of the space V,

V=Vot Vit + Vi,

and that we are willing and can afford to solve problems of the form: Given an inner
product b;(-,-) defined on V; x V;, and an element w € V, find T;w such that

b/(Tiw,v) = a(w,v), Yo e V.
4



We note that when b;(-,-) = a(-,-) then T;w is the projection of w onto V; that is
orthogonal with respect to the energy inner product a(-,-). We will generally refer to
the T; as approximate projections.

If v is an approximation to the solution u* then the approximate projection of
the error, u* — u, onto the subspace V; can be calculated by using the fact that

bi(Ti(u* —u),v) = a(u*—u,v), Yo eV,
= f(v)—a(u,v), Yo e V.

Thus, we can approximately project the error onto the subspaces, without knowing
the true solution.

There are several simple iterative methods that can be built using the operators
T;. (Without limiting the generality of the methods, we assume that we are starting
from a zero initial approximation.) The first method is the Multiplicative Schwarz
method:

u® 0

For : = 0 until convergence,
w — u'
For y =0to N,
w— w+ Tj(u* —w)
End j
utl — w

End

We note that we can regard the algorithm as a simple iterative method for solving
the equation

TmSU* = 9ms
where the operator T,,, satisfies
Tons=1—(I-Ty)...(I —Tp).

This, generally nonsymmetric operator equation, can be solved with GMRES or a
similar iterative method.

Since we are interested in using the conjugate gradient method, we will also
consider the Symmetrized Multiplicative Schwarz method:

u® 0

For ¢ = 0 until convergence,
w — u'
For y =0to N,
w — w+ Tj(u* —w)
End j
For y = N to 0,



w — w+ Tj(u* —w)
End j
witl e w

End -

If we use this scheme to define a preconditioner for the conjugate gradient method,
then the preconditioned operator is given by

Toms = I —(I—=Ty)- (I —=Tna)I—Tn)I—TN)I —Tn_y)...(I—Tp)
= I-(I-T,,)'I~-T,,) =T, + T, - TL.T,

ms—Mms:

We can simplify the algorithm by removing one of the factors (I — Ty ). If the exact
projection Py onto Vi is used, the algorithm remains exactly the same. In the general
case, we can still obtain a, somewhat weaker, bound on the rate of convergence of the
resulting algorithm by interpreting it as a multiplicative Schwarz method using the
spaces,

‘/07‘/17'"7VN—17VN7VN—17"'7‘/17%'

The second main iterative scheme is the Additive Schwarz Method:

u® 0

For : = 0 until convergence,
utt = w73 T (ut — )
End ¢

Here 7 is a scalar parameter chosen to assure a good rate of convergence.
If we use this method to define a preconditioner for the conjugate gradient method,
then the preconditioned operator is

T,=3T.

We note that there are other interesting algorithms, based on the 7, besides
the multiplicative and additive Schwarz methods. Thus, with a balancing parameter
v > 0, Cai [11] advocates the use of the polynomial

VT +1—(I—Ty) - (I —Ty).

This choice makes it possible to take advantage of the intrinsically more rapid con-
vergence of a multiplicative method, while solving the special coarse problem at the
same time as the local problems. In this way, one, or several, processors can work on
the coarse problem while the rest of the processors are assigned to the local problems.
We note that in the standard multiplicative algorithms, there is a potential bottle
neck with many processors idly waiting for the solution of the coarse problem.

Still another interesting possibility is to replace Tj,,s by the polynomial

Ts +TT..
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This operator, which is symmetric, has a larger smallest eigenvalue than 7§, s and
an upper spectral bound of 2, while T},,; < I. In comparison with the symmetric
multiplicative Schwarz method, this new algorithm involves only about half as many
fractional steps per iteration if different processors can be assigned to the two parts
of the operator.

There is a remarkably simple formula for T);!, cf. Zhang [64], [65], which plays an
important role in the understanding and systematic development of the theory.

LEMMA 2.1.

(1) a(T; ' uyu) = min Z bi(wi, ug).
u; €V,

Su;=1u

We note that if bo(ug,uo) is very large in comparison with a(u, ) for some u then
there must exist a quite small eigenvalue of T, and the convergence of the conjugate
gradient method can then suffer.

The abstract convergence theory centers around three parameters which measure
the interactions of the subspaces V; and the bilinear forms b;(-, -), and their suitability
in the construction of preconditioners.

We first consider the partitioning of the elements of V' and the first parameter.

o Let Cy be the minimum constant such that for all w € V there exists a repre-
sentation u = Y u;, u; € Vi, with

(2) sz(uz,ul) < Cla(u,u).

We note that it is sometimes natural to make a distinction between the case when
the decomposition is a direct sum, i.e. when each element of u € V' always is uniquely
represented by components in the V;, and the case where there is some freedom in the
choice of the decomposition of u.

The second parameter is given in terms of strengthened Cauchy-Schwarz inequal-
ities. They measure the angles between the different subspaces. The space Vj, nor-
mally a global coarse space that intersects all the other spaces, is not included in these
bounds.

o Let £ be the matriz of strengthened Cauchy-Schwarz coefficients, defined by

(3) |CL(’UZ',‘Uj)| < eija(vi7vi)1/2a(vjv'01)1/27 Vvi € Vviv V’U]‘ € ijv Lv.] = 17 s Na

and let p(E) be its spectral radius.
The third parameter provides a bound on the norm of the operators T;.
o Let w be the minimum constant such that

(4) a(u,u) < wbi(u,u), VueV, i=0,---,N.

It is easy to see that we can choose w = max ||T;||.. We note that it is always possible
to scale b;(+,-) so that w € [1,2). Such a scaling will, of course, also affect the value of

Co.



Basic convergence results for additive and multiplicative variants of the Schwarz
method can now be given. Results for the additive form are due primarily to Dryja and
Widlund [22], and Nepomnyaschikh [45], while the result for multiplicative Schwarz
methods is a variant of results of Bramble, Pasciak, Wang, and Xu [8] and Xu [63];
see also Lions [35] for early work on the case of two subspaces. A proof of Theorem
2.2 is given in Dryja and Widlund [28] and a proof of Theorem 2.1 can also be derived
directly from the results of the same paper.

THEOREM 2.1. The abstract symmetric multiplicative Schwarz method satisfies
(1+20%(E)C

2—-w

/Q(Tsms) S

Here © = max(1,w).
THEOREM 2.2. The abstract additive Schwarz method satisfies
W(T.) < w(p(€) + 1)

In particular, 1/CZ 1s a sharp lower bound on the smallest eigenvalue of T, = 3. T,
and w(p(E) + 1) an upper bound on the largest eigenvalue.

2.2. Local Analysis. An example of the problems considered in detail in this
paper is provided by

(5) a(u,v) = Z/Q p; Vu-Vudz,

where p; > 0 1is a constant €2;, but with possibly large jumps between subdomains. We
will develop our theory for the piecewise constant case, but all our results are equally
valid for the case when the coefficients vary moderately in each subdomain. In the
case when p; = 1,Vy, we have the special case of Poisson’s equation. In order to be
successful with problems that have large variations in the coefficients, it is important
to be able to carry out a local analysis. This can sometimes be done in a Schwarz
framework.

Let V1) be the restriction of the functions in the solution space V' to the subdo-
main ;. We can decompose V) into subspaces V;-(j) and introduce bilinear forms
bgj)(-, -) on VZ-(j) X Vl-(j) creating an additive Schwarz preconditioner for the local problem
defined by the bilinear form,

a9 (u,v) = / p; Vu-Vodz.
QJ

It is sometimes possible to view each of these subspaces as the restriction of a subspace
V; C V to the subregion in question. These local subspaces and their related bilinear
forms then define an Schwarz preconditioner which can be represented by a local
bilinear form 5U(-,-). The b()(.,-) can be assembled and provide the bilinear form of
a preconditioner for the original variational problem. We obtain,

bu,v) = Z b9 (u,v).
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The case when the space V) is a direct sum of the local subspaces VZ-(j) was

considered by Mandel [37], [38]. He showed that if, for each €2;, one of the local
subspaces contains the null space of al)(-,-), then bounds on the condition number of
the global preconditioned problem can be obtained from bounds for each subdomain.
These local bounds can be obtained by using the techniques outlined earlier in this
section. We formulate a similar result as

LEMMA 2.2. If the three assumptions, of the previous subsection, are satisfied for
all subdomains, with a common set of parameters, then,

b(u,u)
o

< afu,u) < w(p(€) + )b(u, u).

independently of the values of p;, and the number of subdomains.
Proof. Tt follows from Theorem 2.2, applied to the individual subdomains, that

B (. /
# < / pi V- Vode < w(p(€) + 1) (u, u).
0 €

Summing over all subdomains, we obtain

b(u,u)
Cs

< Z/Q pi Vu-Voder <w(p(€)+ 1)b(u,u).

We note that an algorithm of Smith [55] (Algorithm 6.4) and the standard iter-
ative substructuring method (Algorithm 6.1) can be analyzed either as a global or
a local Schwarz method. The overlapping additive Schwarz algorithms of Dryja and
Widlund [22], [23], [24], [29], [61], and another algorithm by Smith [56] (Algorithm

6.3) are global Schwarz methods but cannot be analyzed by using a local analysis.

3. The Elliptic Problem and Its Discretization. In this paper, we will only
consider scalar, second-order, self adjoint, coercive, bilinear forms a(u,v) on Q C R*, a
Lipschitz region of diameter 1; in fact to simplify matters, we assume, without limiting
the generality of our theory, that the region is polyhedral. We impose a homogeneous
Dirichlet condition on I'y C 92 and Neumann boundary conditions on I'y = 9Q \ T.
We denote the subspace of H'(2) with zero trace on Ty by Hf (). We assume that
the set I'g is of non-zero measure and that the underlying elliptic operator has no zero
order terms. The variational problem is then: Find u* € Hf () such that,

a(u®,v) = (f,v), Yve H%O(Q)

An example of such a problem, (5), which will serve as our model problem, has already
been introduced in the previous section.

The Sobolev space H'() is closely related to our family of elliptic problems.
This space is defined by the seminorm

(6) % gy = /Q Vu - Vudz
9



and norm

”uH%Il(Q) = |’“|12111(9) + ||u||%2(9)'

In the case of a region of diameter H, such as a substructure 2;, we use a norm with
different relative weights,

(7) ||u||§11(9]) = |u|%11(9]) + EHUH%Q(QJ)-

We introduce a discretization, which satisfies the usual rules for finite element
triangulations such as shape regularity of the elements; cf. Ciarlet [16]. Let V"(Q)
be the space of continuous, piecewise linear functions on this triangulation, which
vanish on I'g. For the construction of the preconditioner, we assume that the set of
elements is partitioned into subsets forming disjoint substructures €2;. For many of
the algorithms, considered in this paper, the shapes of the substructures can be quite
arbitrary. However, to simplify the analysis, we restrict our attention to the case
where the §2; are shape regular finite elements with a characteristic diameter H. We
denote the interface between the subdomains by I' = U0S2; \ T'g. We also assume that
the I'g is the union of the closures of faces of some, or all, of the substructures.

The discrete problem is then of the form: Find u" € V() such that

(8) a(uh,vh) = (f, vh), Vol e Vh(Q).

If we expand u” in the standard nodal basis, u” = ¥, upér, the variational problem
(8) can be written as the linear system

Ku=f.
The elements of the stiffness matrix K are given by,
Kij = a(¢i, 65)
and those of the right hand side f by
fi=(f. ¢i).

The local contributions to the stiffness matrix and the right hand side can be formed
one subdomain at a time. The stiffness matrix is then obtained by subassembly of
these parts. We order the nodes interior to the subdomains first followed by those on
the interface I'. All the matrices and vectors are expanded by zeros giving them each
the same dimension as the global stiffness matrix and the vector of unknowns. We
can then write the linear system as,

K Kis U _ oy Ix}]I)T Ix}]B) (IJ) _y i({])
Ky Ksp up KW KUl u) —\ f9 )

j u
10
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Thus to multiply K by the vector u, we first restrict the vectors u; and ug to the
substructures, then multiply them by the stiffness matrices of the individual sub-
structures and, finally, obtain the product Ku by padding with zeros and adding the
resulting vectors.

In most discussions of Schwarz methods, there are, technically, two spaces, the
space of finite element functions V", and the space of coefficients of the finite element
functions. We will, denote functions in V* by u" while the coefficient vectors of the
finite element functions will be denoted by w.

In a first step of many iterative substructuring algorithms, the unknowns in the
interior of the subdomains are eliminated. In this step, the Schur complements, with
respect to the variables associated with the boundaries of the individual substructures,
are calculated. The resulting linear system can be written as

K I K IB ur IX—}]I) I(}j) U (I]) i(])
A R DY i 0 ) =2 0 g0 o o
upg F 0 Sgg ug F 1y —Kig Kifo [

where
S = gl — g g @™ k)

and the reduced system is given by

SMB:fB'

Thus, the matrix S is obtained from the S) by subassembly. In practice, the matrix S
is often not formed explicitly, since this is a potentially expensive operation. Instead,

(4) (7)

a sparse representation of the K;j; and the sparse, triangular factors of the K} are
stored and the action of S on a vector is calculated as needed.

The space of discrete harmonic functions, V® C V", is an important subspace,
which is directly related to the Schur complements and to the values at the nodes
on I'. These functions satisfy the linear relation Kju; + Kijpug = 0. It is easy
to see that they are completely defined by their values on the interfaces and that
they are orthogonal, in the a(-,-) inner product, to the spaces V" N H}(2;). In the
analysis to be given, the important inner product is the one induced by §; we will
define our preconditioners with respect to the inner product s(u”,v") = u} Svg where
uh, v" € V" are discrete harmonic functions. We note that it is an elementary
algebraic result that

s(u™,u") = min a(v”,v").
vhp=uh

Thus the discrete harmonic extension is the extension which minimizes the energy.

We need to introduce notations related to certain geometrical objects, since the
iterative substructuring algorithms are based on subspaces directly related to the
substructures, faces, etc. Let {2;; be the union of two substructures §2; and ; which
share a common face, and denote that face by F*. Let E represent an edge, V™ a

11
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FiG. 1. Faces, edges and wire baskets.

vertex of a substructure, and let W7 denote the wire basket of the subdomain ;;
see Fig. 1. We note that a face in the interior of the region {2 is common to exactly
two substructures, an edge is shared by more than two, and a vertex is common to
still more substructures. All the substructures, faces, and edges are regarded as open
sets. The sets of nodes in §;, F* E‘ and W7 are denoted by Q,,, Ff, E;, and W]f,
respectively.

The matrix S can be represented as a block matrix with a block for each face,
edge, and vertex. We often combine all the edge and all the vertex blocks of €2; into
single blocks. We can also merge them all into a single block corresponding to the
wire basket. We then obtain

| 5}% iy Si
(9) SU = spp SEy SH |
SH SEv SW

and
0 o)
(10) 5 = ( S S ),
SFZI'V SH{'W

respectively. Here 51(,21)7 is constructed from the blocks which correspond to the indi-
vidual faces, and to pairs of faces, of €2, etc. We will use both block structures in the
description of different algorithms, as appropriate.

All of the algorithms considered in this paper can be formulated using inexact
interior solvers. We explain briefly how this can be done. The exact inverse K ! can

be written as

o (I KK \ (K70 I 0
0 I 0 S )\ —Kp K7} I)°

If we have a good preconditioner for S, B5', and a good preconditioner for Ky, i.e.
an approximate solver B;' for the interior problems, we can create a preconditioner
12



for K of the form

gt (1 —B;'K;p Br' 0 I 0
K 0 I 0 B3 —KgiB7' I )°

We note that an application of Bx' to a vector needs only involve Bj' twice, and
B3! once. It is also possible to use different approximate interior solvers in the three
factors of Bx' and to construct nonsymmetric preconditioners of a similar form.

In the analysis presented in this paper, we will always require exact interior sub-
domain solvers. Progress has been made in analyzing algorithms that use approximate
interior solvers; cf. Borgers [4], Haase, Langer, and Meyer [32]. Since it is important
to first fully understand the case when exact interior solvers are used, we will focus
on that case. We can then exclusively work with the space of discrete harmonic func-
tions V" and the bilinear form s(+, ). Numerical experiments, cf. Borgers [4], Haase,
Langer, and Meyer [32], Skogen [53], and Smith [57], indicate that a good rate of con-
vergence can be maintained when one multigrid V-cycle is used, instead of an exact
solver, to solve the interior problems.

4. Technical Tools. A small number of auxiliary results are needed for the
Schwarz analysis of the iterative substructuring algorithms. The relevant norms and
seminorms have been introduced in the previous section; some of them contain a large
multiple of the Ly norm; cf. (7).

The first lemma illustrates the limitations of the interpolation operator I : V* —
VH. IHy" is the result of piecewise linear interpolation of the finite element function
u” onto the coarse space V. The lemma follows easily from the inequality

w17,y < CQA/R) " Hq,),

cf. Lemma 2.3 of Bramble and Xu [9], and by using Poincaré’s inequality. The given
bounds are sharp.
LEMMA 4.1. In three dimensions,

[u" =TT [}2 0,y < C(H/R)H? [u" g,
and

| TH7"

o, < CH/R) Ui q,)-

The next lemma concerns an operator for which the bounds are much improved.
We note that the norms are now given in terms of the entire region 2. In fact, it is
not possible to provide the same estimates for the H' and L? norms, weighted by the
values p; of the coefficient of the elliptic problem, if we require that the constants in
the estimates be independent of the p;; cf. Xu [62]. For a proof of Lemma 4.2 and a
general discussion, see Bramble and Xu [9].

LEMMA 4.2. Let Q7u" be the L? projection of the finite element function u” onto
the coarse space V. Then, in three dimensions,

lu" — QT w72y < CHu" [} (),
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and

Qw31 q) < Clu"|hi g

Results very similar to those of the next lemma can be found in Bramble, Pasciak,
and Schatz [7], Bramble and Xu [9], Dryja [21], and Dryja and Widlund [28].

LEMMA 4.3. Let uly, be the average value of u" on Wj, the modes of the wire
basket of the subdomain ;. Then

%Q(WJ) <C(1+ log(H/h))Huh

[Ju”

2
H(Q;)>
and

||u® — @ |72 w0y < C(1 + log(H/h))|u" |} g, ).

Similar bounds also hold for an individual substructure edge.

Fia. 2. Construction of the Partition Function in a Tetrahedron.

When we estimate the parameter CZ, introduced in the abstract convergence
theory, we must demonstrate that all functions in the finite element space can be
decomposed into components in the subspaces in such a way that the sum of the
resulting energies are uniformly, or almost uniformly, bounded with respect to the
parameters h, H, etc. The main technique for deriving such decompositions is the use
of suitable partitions of unity. In the next two lemmas, we explicitly construct such
a partition.

LEMMA 4.4. Let Oz« be the finite element function which is equal one on Ff,
where F* is the face common to Q; and §;, zero on (0Q;, U0 ,) \ FF, and discrete
harmonic in Q; and ;. Then

|0+ |20,y < C(1 4 log(H/h))H,
and

105472 (q,) < CH”.
14



The same bounds also hold for the other subregion ;.

Proof. We begin with a proof of the first inequality. We prove this result by
constructing a function Jzx, with the same boundary values as 6px, for which we can
establish this bound. The proof is then completed by noting that a discrete harmonic
function has at least as small an energy as any other function with the same boundary
values. We consider in detail only the case of a tetrahedral substructure. The four
functions, which correspond to the four faces of the tetrahedron, also form a partition
of unity at all nodes of the closure of the substructure except those on the wire basket;
this property will be used in the proof of Lemma 4.5.

We divide the substructure into four tetrahedra by connecting its centroid C,
by line segments, to the four vertices of the tetrahedron. Similarly, we divide each
triangular face of the substructure into three triangles by extending the bisectors of
the three vertices of the triangle until they meet. Denote the resulting points on the
faces by C}, see Fig. 2. By connecting the C} with C, we obtain the wire baskets of
twelve tetrahedra.

We construct the function ¥px, associated with the face F*, as follows: At C the
value is 1/4. We interpolate linearly between the value 1/4 and 1 or 0, whichever is
appropriate, along the line segments connecting C' to the C. The values elsewhere are
constant on the intersection of any plane, through the unique substructure edge which
belongs to a specific subtetrahedron, and that same subtetrahedron. This constant
value is determined by the value, already known, at the point on the appropriate line
segment, which is one of the edges of the same subtetrahedron. Finally, we modify
the function by changing its values in the elements which have at least one vertex
on an edge of the substructure. We make the function zero on the wire basket and
continuous, by piecewise linear interpolation, using the previously constructed values
at the nodes which are not on, but next to, the edge.

Any two planes associated with two different substructure edges, which intersect
at a point on the appropriate line segment, are given the same value. The partition
functions are therefore continuous across the boundaries of the subtetrahedra. Explicit
formulas for the gradient and estimates thereof can, at least in principle, be given.
The most important observation is that |Vipx| < C/r, where r is the distance to the
nearest edge of the original tetrahedron.

It is also easy to show that {¥px} form a partition of unity on the special line
segments, and everywhere else, except in the special elements next to the edges of the
original substructure.

To complete the proof of the first inequality, we first note that the contribution
to the energy from the union of the elements with at least one vertex on an edge
of the substructure can be bounded from above by C'H. This follows by considering
their combined volume, the fact that Jpx vanishes at the edges, and the estimate
|Vipr| < C/h.

To estimate the contribution to the energy from the rest of the substructure, we
consider one subtetrahedron at a time and introduce cylindrical coordinates using the
appropriate substructure edge as the z-axis. The bound now follows from the bound

15



on the gradient and elementary considerations. (We note that a similar argument, in
a somewhat more complicated situation, is given in the proof of the next lemma.)

We now turn to the proof of the second inequality. To avoid irrelevant scaling
factors, we consider the special case of H = 1 and we also denote the region by 2. In
this case, we only have to prove that ||6px|[12(q) is bounded. We introduce an auxiliary
function u by solving

—Au =0, €Q, u=0, z € .
Since {2 is convex, a standard regularity result shows that

By Green’s formula,

ou

Since px is discrete harmonic, we find that
/ Vu - Vpde = / V(u — w"\Vlpde, Yo' € VE(Q) N HY(Q).
Q Q

The right hand side can be estimated from above by,

inf lu — wh

wheVAnH(Q) w1 @) |0k a1 (a) < Chlulm) |0 |mio) < Ch|0px]|12 ) |0rx a1 ().

Here we have used a standard error bound and the regularity result. By using the
bound for [0« |m1(q), we see that the first term originating from the Green’s formula
is o(|[0px | L2(e))-

For the second term, the line integral, we use Schwarz’s inequality, a standard
trace theorem, and the regularity result. We obtain

Ou
|/an 6_nedeS| < C|6p | 22105 22 (20)-

The argument can now easily be concluded by observing that ||6px| 12a0) < C. O

The following lemma is an extension of an earlier result of Dryja and Widlund
[23]. The present approach makes it possible to prove nontrivial bounds for iterative
substructuring algorithms without the use of an extension theorem; cf. Widlund [59].
Here, we can always work in subspaces of the original finite element spaces and we
never need to use trace and extension theorems.

LEMMA 4.5. Let Opx(z) be the functions introduced in the proof of Lemma 4.4,
let F* be a face of the substructure Q;, and let I" denote the interpolation operator
associated with the finite element space V. Then,

S I'"(Wpu) (@) = ut(2), Vae Q\ WY,
k
16



and

T4 (9 )

o, < C(1+log(H/R)) |[u"(| 5 q,):

Proof. We only provide a proof for the case of a tetrahedral substructure. The
first formula follows immediately from the proof of the previous lemma. To prove
the other, we first consider the contributions to the energy from the elements that
touch the wire basket. By definition, ¥+ vanishes on the wire basket. It is then
easy to show that the energy contributed from this subregion can be bounded by
kY, |u"(z)]?, where the sum is taken over all the nodal points which are within a
mesh width of the wire basket. As in Lemma 4.3, this sum can be bounded by
C(1 + log(H/M)|[u"|}1q,)-

By using elementary considerations, we obtain,

|Ih(19Fkuh)|§Il(Qj) <2 Z |1§Fkuh|12m(1() + 2 Z |Ih(19Fk - ng)’Uhhqu(K)-
KCQ, KCQ;

Here 0 < Uy < 1 is the average of ¥z« over the element K. When we estimate these
sums, we can ignore the elements that touch the wire basket, since they have already
been accounted for.

The bound for the first term is trivial but that of the second term is more com-
plicated. We first use an inverse inequality and obtain

%11(1{) < Ch_2||fh((19Fk - lng)uh)H%?(K)'

By using the bound on the gradient of ¥z, we can bound ¥z« —Vpx by Ch/r, where
r is the distance to the wire basket. Hence,

YA (I — Vs )" ) G ey < C Yo r 2l
K

K

2
L2(K)-"

We partition the elements of 2; into groups, in accordance to the closest edge of £2;;
the exact rule for the assignment of the elements which are halfway between is of no
importance. For each edge of the wire basket, we use a local cylindrical coordinate
system with the 2z axis coinciding with, and the radial direction, r, normal to the edge.
In cylindrical coordinates, we estimate the sum by an integral

H
-2 h||2 N2 T
W 0 1o
The integral with respect to z can be bounded using Lemma 4.3. We obtain

Z T_2||uh

KcQ,

H
by < C(L+ log(H/M)lu lna,y [ r7'dr

and thus

Yo (e — 1§F’“)uh|12111(K) <C(1+ 10g(H/h))2||uh||12ql(Qj)-

KCQ,
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We also need some more trivial results.
LEMMA 4.6. Let u”,, ﬂgﬂk, Ul o, s, and uly, be the average of the nodal values
of u" on F* 0y, OF*, E*, and W*, respectively. Then,

2

(ufe )’ < O lJu” L2(Fk)

Lok

('agﬁk)z < C—HU :

L2(99%)"

1
() < CﬁHuh

2
L2(3FF)s

2

_ 1.
(ufhEk)Q < CEHM L2(EX)»

_ 1
(u{ﬁvk)2 S CEHU} %2(”/%).

The proofs are direct consequences of the Schwarz inequality.
LEMMA 4.7. Let u" be zero on the faces of Q; and discrete harmonic in Q;. Then

" [H1a,) < Cllu"|[72 0wy

This result follows by estimating the energy norm of the trivial, zero, extension of
the boundary values and by noting that the harmonic extension has a smaller energy.
We note that we will use both h||g||122(Ei)

is appropriate when defining bilinear forms on a subspace related to the edge E°, the

and ||'uh||%2(E¢). While the first expression

two are, for all theoretical purposes, interchangeable since the mass matrix related to
the second expression is uniformly well conditioned.

5. Local Solvers. Iterative substructuring algorithms with good convergence
properties are constructed from two types of components: many local solvers and a
coarse grid solver. In this section, we describe two basic methods of constructing the
local solvers.

The first approach can essentially be viewed as a classical splitting of the Schur
complement matrix. For simplicity, we only write down the preconditioners for the
additive algorithms; similar, but more complicated, formulas can be given for the
multiplicative Schwarz methods.

We first recall that the Schur complement for the entire problem is obtained
through subassembly of the matrices given in equation (9). This results in the formula

SFF SFE SFV
(11) S=| SL, Ser Sgv
SE, Sty Svv
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As in the classical theory for iterative methods, cf. Varga [58], a preconditioner for
S can be obtained by a splitting, i.e. by dropping certain blocks, or elements. Here
we eliminate not only the off-diagonal blocks of (11) but also the sub-blocks repre-
senting the coupling between all pairs of faces, edges, and vertices. The resulting
preconditioner has the form

1 S 701 0
B'=| 0 Sz 0
0 0 Syv

The matrix Spp is block diagonal with a block for each face, Spg has a block for each
edge, and Syy is diagonal. This is a block-Jacobi preconditioner. We note that each
block corresponds to a set of adjacent variables on the interface I'.

We need to introduce some additional notations. Let Spip: be the submatrix
of S associated with the face F* and let Sgig: be that of the edge E'. Similarly,
Sy is the diagonal element of S associated with the vertex V. Let Ry be the
rectangular restriction matrix which only returns the components of a global vector
which are associated with the face F'. Similar restriction matrices, Ry and Rys,
are introduced for the edges and individual vertices, respectively. We note that, for
instance, Spipi = RFiSRgi.

The preconditioner B~! can now be rewritten as

=Y RL:SpliRee + > RESH R + > RSy Ry,
and we also find that
B'S=> RL:S:RriS+ Y RLiSyLRpS+ Y Ry:iS, !, RyiS.

This preconditioned matrix is the same as that obtained from an additive Schwarz
method with the spaces Vi = {u € VFu(z) = 0,Vz € T,\F}}, Vi = {u € VHu(z) =
0,V € Ty \ Ej}, and Vi = {u € V*u(z) = 0,Vz € T, \ V?}.

To decrease the cost and to avoid computing the elements of the Schur com-
plements, we make some further simplifications. We note that the matrices Sgigi
are quite well conditioned; it follows from Lemmas 4.3 and 4.7 that their condition
numbers are O(1 + log(H/k)). We therefore replace Sz, in the preconditioner, by
1/(hpg:)I. Here I is an identity matrix and pgi = Yog amizgpj- In the Schwarz
framework, this corresponds to replacing the bilinear form s(-,-) on the spaces Vi
by bgi(u",u") = hpp:
hpyvi = I3 sq,nvizs pj- The modified preconditioner can then be written as

M||122(E¢)- We can also replace the diagonal element Syiy: by

B =Y RLS;L.Rei +Y > L BT R, +3Y ——RL.Ry:.
El

hpvz

We note that the second and third sums could be combined into one. An individual
term in the sum would then corresponds to the wire basket W and

1
— R}y (D) 'Rw.

(12) =Y RL:Spln Ry + .
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Here the elements of the diagonal matrix Dy, equal pg: and py: for the components
corresponding to edge and vertex nodes, respectively.

We should also provide a relatively inexpensive algorithm for calculating the ac-
tion of each SJ;;Fk We do so by solving a linear system associated with the two
domains §2; and ; that share the face F*. Let KU denote the submatrix of K
associated with Q;; = Q, U Q; U F*. Then

K& g\ g

om0 ) ()

Here the subscripts I and B represent the nodes of Q;U(Q2; and F*, respectively. Hence
the action of S;;Fk can be calculated by solving a homogeneous Dirichlet problem on
;; with a right hand side that differs from zero only on FJ. In this construction,
we could also replace (2;; by any shape regular region that contains the face F*
in its interior. We stress that the solution of the local problems never requires the
explicit construction of elements of S. Instead, in each iteration, independent Dirichlet
boundary value problems are solved for regions enclosing the individual faces.

Sprpx can also be replaced by the J operator introduced in Dryja [20], or another
of many other preconditioners that are known to be effective for problems on the
union of two substructures; cf. Bjgrstad and Widlund [3].

In the splittings just considered, we eliminate the coupling between all pairs of
faces. In our second main approach, we attempt to maintain this coupling. In order
to keep the problems local, we instead eliminate the coupling between neighboring
subdomains working with the full Schur complements of the individual substructures.

The preconditioner is given by

B~ = (3 AISUAD,

where the A; are diagonal matrices with nonzero elements only for the components of
0%; 1. The diagonal element of A;, which corresponds to x € 9€;, is given by

(14) M) =Y pi",

where the sum is taken over all 7 such that @ € 9€);. We work with pseudo inverses,
since the Neumann problems for interior substructures are singular and all the ele-
ments of the diagonal matrix A; are set to zero for z € T'j, \ 0€;.

The following formula has much in common with (13). However, the subscripts
I and B now represent the nodes of ; and 0€2;, respectively.

. D &9\ /o
ST=(0 1)\ Jor :
K3 Kpy I
Again, there is no need to compute the Schur complements. Instead, in each iteration
step, we can solve a Neumann problem for each subdomain in order to calculate the

action of SO on a vector.
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This second approach, with a different scaling, originates in the work of Bourgat,
Glowinski, Le Tallec, and Vidrascu [5]. Their algorithms have later been modified,
extended, and analyzed by Cowsar, Mandel, and Wheeler [17], De Roeck [18], De
Roeck and Le Tallec [19], Dryja and Widlund [24], [26], [28], Le Tallec, De Roeck,
and Vidrascu [34], and Mandel and Brezina [39], [40], [41].

For these methods, the Schwarz subspaces are given by
(15) V= {u" e Viul(z) =0, Ve € T\ 0%},
and the bilinear forms, on these subspaces, can be given by
(16) bi(u", o) = s(i)(Ih(/\Z-uh),Ih(/\ivh)).

For an interior subdomain, or a boundary substructure which does not touch the
Dirichlet part of the boundary, 'y, the local Neumann problem is singular. There
are several ways of dealing with this. Instead of working with the pseudo inverses of
the Schur complements, which can be a computationally expensive, we can solve a
Neumann problem for a different elliptic operator. This is the main approach taken

in Dryja and Widlund [28]. The local bilinear form
(17) bi(uh, vh) = §(i)(Ih(/\2-'uh), Ih(/\l-vh))

is used, where §()(-,.) is the Schur complement of the bilinear form

(18) d(i)(u,v) = /91 Vu - Vodz + Hif/z uvdz.

We will refer to this as the standard Neumann-Neumann local solver. We note that
Dryja and Widlund [28] contains a detailed discussion on the choice of bilinear forms
for the boundary substructures that touch I'g only at a point or along an edge. The
former are treated as if they were interior substructures, i.e. (17) is used, and the
latter in the same way as a substructure which shares an entire face with I'g, i.e. (16)
is used.

An alternative approach to avoiding singular problems is to impose zero Dirichlet

boundary conditions on the wire basket while Neumann boundary conditions are
maintained on the faces. In this case the local subspace associated with the individual
substructures are given by
(19) V6w = {u" € V' [ul(z) =0, Vo € W}}.
We will refer to these as the mized Neumann-Neumann subspaces. We can use the
bilinear forms given by (16). We refer to the resulting problem as a mixed Neumann-
Neumann local solver. When no coarse problem is used, this preconditioner must be
augmented by terms related to wire basket. We can e.g. add the operator

1 _
Z ER{V(D%/) 1RW

previously introduced; see also the last section of Dryja and Widlund [28] for further
details.
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6. Coarse Grid Algorithms and Condition Numbers. In addition to the
local solvers, discussed in the previous section, any successful domain decomposition
preconditioner must also contain a global space component. We can either add a
coarse solver to a preconditioner based only on local solvers or replace part of the
preconditioner. In this section, we will discuss a large number of coarse spaces. The
first of them is based on the space VH of continuous, piecewise linear functions using
the substructures as elements. Conceptually this is clearly the simplest, but as will
be shown, it can be inadequate in three dimensions, basically because of Lemma 4.1.
In the remaining subsections, we discuss wire basket based and face based coarse
problems.

6.1. Vertex Based Methods. To incorporate a global component of the pre-
conditioner, we first represent S in a partially hierarchical basis. The face and edge
nodal basis functions are not changed but those associated with the vertices are re-
placed by piecewise linear functions on the coarse triangulation. The basis change
from the partial hierarchical to the nodal basis is represented by

I 0 RL
0 I RL |,
00 I

where the operators RE and RL represent coarse space linear interpolation from the
values on the vertices to the faces and edges, respectively.
The Schur complement can be rewritten as

I 0 0 Srr Sre Skv I 0 —REL
(20) S = 0 I 0 Stz Ses Sev 0 I —RE
- RF - RE I S}I;V ng SVV' 0 0 I

As in the previous section, we now drop the coupling between the faces, edges, and
vertices but we keep those between the vertices. We obtain

I 0 0 Srr 0 0 I 0 —RE
B = 0 I 0 0 Sgrg O 0 I —RL
~Rr —Rp I 0 0 Syy 00 I

The preconditioner can now be written as

I 0 RE Sir 0 0 I 0 0
B'=|0 1 RL 0 Sz O 0o I 0],
00 I 0 0 Syv Rr Rp I

and
B7'S =Y R5:S;hRrS+ Y RSyl RpS + R SyvRuS,

where Ry = (Rp Rg I). Thus, we obtain an additive Schwarz preconditioner with the
same face and edge spaces as before but with a coarse space, V| in place of the set
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of individual, local vertex spaces. For the case of piecewise linear finite elements, the
matrix Syy is equal to Ky, the stiffness matrix obtained by treating the substructures
as elements. We can therefore replace the two last terms in the preconditioner and
obtain

1
B =Y RL:SpaRe + Y %Rg,.REi + RLKZ' Ry,
As before, there is no need to form the matrix S explicitly.

ALGORITHM 6.1. Use a Schwarz method with the subspaces V f/;“” and f/b@]
For all the V% spaces, use the bilinear forms associated with hpp;

E||122(EJ)-
THEOREM 6.1. Algorithm 6.1, given above, satisfies the three assumptions with
C3 < C(H/h)(1 +1og(H/R))?,  pl€)<C, w<C

The constants are independent of the jumps in the coefficient, p;.
Proof. We estimate the first parameter, Cy. We note that we are only going to
work with discrete harmonic functions for which s(u”, u") = a(u®, u"). Let ul = IHu".
We use Lemma 4.1 and find, by adding over the substructures, that

H
a(ug, ug) < CZPHIHUH%IJ(QQ < Cza(uhauh)-

We next bound the energy for the parts of the decomposition of the function u”

that are associated with the faces. This requires the use of Lemmas 4.1 and 4.5.
Let w" = u/ — I'u", let u%k = H(Iprw"). Here Hv" denotes the discrete harmonic
extension of the function v* given on the interface I'. Then,

a(ufgk,ufw) < C(Pz‘||u%k||12ql(9¢)‘|‘Pj||u%k||12ql(nj))

< CO(1+log(H/R)) (pillw™||Fraqny + pillw™ i a,)
H
< C%(l + log(H/h))*(pilu” 12111(91') + pjlu” 12111(9]))-

Therefore,

Xk: a(ult, ulr) < C%(l + log(H/R))a(u”,u™).

Let u%i be the restriction of (u* — I'u") to E'. Then, by Lemmas 4.1 and 4.3,

> rE Loy < C(L+log(H/R)Y . > pillu” = M|,
: i 80,NEi£0

H
< O (1+log(H/R) X pilufina,)
J

h
U g

< C%(l +log(H/h))a(u®, u™).
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To obtain a bound for w, we only have to consider the edge spaces. The constant
upper bound follows directly from Lemma 4.7.

It is easy to obtain a bound on p(&). We only have to note that the subdomains
associated with the local subspaces form an overlapping cover of the domain, and
that every point in the domain is covered by a finite, uniformly bounded number of
such subregions. The subregions can be grouped into sets, with elements that do not
overlap, and the subspaces related to these sets can be merged. The value of N is
then reduced to a constant and a uniform upper bound for p(€) is obtained. This
argument is valid for all of the proofs in this section and it will not be repeated. O

It is clear that the H/h term is directly attributable to the large energy of the
coarse mesh interpolant. In the proof given above, we must use I7u” because all
functions in the other subspaces vanish at the vertices. In the next algorithm, we
add the one dimensional spaces associated with each vertex and its standard nodal
basis function. After doing so, we obtain a much stronger result but the bounds are
no longer independent of the variation of the coefficient of (5) across the interface I'.

The additive Schwarz preconditioner is now given by

=Y RL:Sil.iRei + E RT,RE, +RLKG' Ry + Y > RT,RW
‘/’z

We note that, as in (12), we can combine the edge and vertex spaces into a single
wire basket space, Vj}, with a corresponding restriction operator, Ry. We obtain

_ 1 _
=Y RyipiSy'Rpi + R K Ry + ER{V(DfV) 'Ry

Here Dy, is the global diagonal matrix constructed from the weights ppi and py: as
in formula (12).

ALGORITHM 6.2. Use a Schwarz method with the subspaces VE, f/ﬁ, and Vv?/ In
addition, on the spaces VW, use the bilinear form given by hu® Dju.

THEOREM 6.2. Algorithm 6.2, given above, satisfies the three assumptions with
C2<CO+log(H/MP,  p€)<C,  w<C.

Here we cannot guarantee that the estimate of CZ is independent of the jumps in the
coefficients of (5).

Proof. The proof is almost identical to that given above except that we use
ul = Q”u" and Lemma 4.2 rather than [v" and Lemma 4.1. 0O

We can increase the overlap between the subspaces and obtain methods with
condition numbers that are uniformly bounded and independent of H and h. Such a
method was given in Smith [56]. This algorithm, known as the Vertex Space or Copper
Mountain algorithm, has much in common with the original additive Schwarz method

of Dryja and Widlund [23]; cf. also Dryja and Widlund [27] and Nepomnyaschikh [45].

To define this algorithm, we first define edge spaces associated with a set I'g; that
includes all parts of the faces adjacent to the edge E’ that are within a distance cH
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Fia. 3. Face, edge, and vertex spaces.

from the edge, see Fig. 3. We also define the vertex region I'y; as the part of I that is
at a distance less than ¢H from the jth vertex of the substructure. The space related
to this set is

Vrhvj = {uh eVt Uh(x) =0, Ve eI\ Tv}

with a similar definition for VFhE]

Therefore the algorithm is completely defined by its subspaces.

For this algorithm, we first use exact projections.

~ ALGORITHM 6.3. Use a Schwarz method with the subspaces given by VH, f/Fhi,
V. and V"

B pvie

In [56], Smith proved the following result.

THEOREM 6.3. Algorithm 6.3 given above, satisfies the three assumptions with
Cy < C, p(€) <C, w=1.

Here we cannot guarantee that the estimate of C3 is independent of the jumps in the

coefficient of (5).
Using the definitions given above, we find that
B™' = RLKy'Ru+ Z RL:S7 i Rps +

E RFEJ SFEJ TE FE] + Z RFVk rvkrvk RFVk

We note that the first term essentially involves solving a system associated with a

block of S, represented in the partial hierarchical basis, while the other terms involve

systems given by blocks of S in the usual nodal basis. In practical implementations,

the Spipi, Sppipei, and Spvepye need not be formed explicitly. Instead we can solve

problems such as (13). Another approach to cutting costs is to use probing to obtain
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approximations of the blocks of the Schur complement; cf. e.g. Chan and Mathew [14]
and Chan, Mathew, and Shao [15].

In the analysis given in [56], Smith only considered the case when the overlap was
generous, i.e. on the order of H. However, numerical experiments in two dimensions,
suggest that good convergence can also be obtained with minimal overlap. Thus
motivated, Dryja and Widlund [27] showed that if the overlap is uniformly on the
order of 6, then Algorithm 6.3 satisfies,

Cy < C(1 +1log(H/6)) .

In the same paper, they also demonstrated that for the standard overlapping Schwarz
method with small overlap,

Co < C(1+ HJ/$).

Numerical experiments, cf. Bjgrstad et al [1], [2], and Gropp and Smith [31] confirm
that the rate of convergence of this algorithm is very satisfactory.

6.2. Wire Basket Based Algorithms. We now consider another class of coarse
problems based on averages and the wire basket. Methods of this class use a different
approach to overcome the difficulties associated with the piecewise linear interpola-
tion over the coarse triangulation, which led to the poor result of Theorem 6.1 or to
estimates, which are not known to be valid uniformly for all values of the coefficient of
(5). Instead, we now essentially interpolate using averages of u” over the wire basket.
These algorithms work extremely well for problems with large jumps in the coefficients
pi; cf. Smith [57]. We note that Bramble, Pasciak, and Schatz [7] pioneered the use
of similar ideas. Here, we begin by describing a method introduced in Smith, [54]; cf.
also [55].

For the wire basket based methods, we work with the block matrix (10) rather
than (9). Let TT be the operator which maps the values on the wire basket onto the
faces by assigning, to each node on a face, the average value of the nodal values on
the boundary of the face. This represents an alternative change of basis of the space.
S can now be written as

. I 0 Srr Srw I -717
- -1 I SIJ;W Sww 0 I '
We note the similarity with (20), but we are now using piecewise constant interpolation
onto the faces rather than piecewise linear interpolation onto the faces and edges. We

proceed as in the previous subsection and drop the coupling between pairs of faces,
and the faces and the wire basket, and obtain

s ()T (50
0 I 0 Sty J\T I

B™'S = RI'S; A RoS + Z RE:SplmiRyi S,

and
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where Ry = (T I). This is also an additive Schwarz scheme that uses the same face
spaces V[ as the vertex based algorithms. The coarse space, Vjl, can conveniently
be defined as the range of an interpolation operator I, : V* — Vik defined by,

I{%,uh = Z uh(wk)gok + ZangHFk
k

€W

Here, ¢} 1s the discrete harmonic extension of the standard nodal basis functions ¢.
The resulting finite element function is continuous across all substructure boundaries.
Therefore TN/{{, is a conforming subspace of V.

We use the bilinear form given by

by (u",u") = (1 +log(H/h)h Y pimin||u — iz [f )

for this subspace. Here all the components of the vector z() are equal to one. The
introduction of this bilinear form corresponds to replacing Syw by a matrix which,
locally on each substructure, is a simple rank-one perturbation of a multiple of the
identity matrix. To solve the corresponding linear system, we can use a fast technique
suggested by Mandel [36]; cf. also Smith [54], [55].

Letting BY = h(1 + log(H/h))p:I, we rewrite the problem as

1 . . . . .
minZ min 5(!(2) _ @iz(Z))TB(Z)(E(Z) _ @ié(l)) —ulr,

We then take derivatives with respect to w; and u and obtain the linear system

207 BO() — 05,y = 0, Vi,
(21) Bu—Y B0, =r.

Here, B is the diagonal matrix obtained by subassembling the B(%). We then eliminate
u and get the following system for the w; :

(297 B0z, — 07 BOB1 Y B0, = 07 BB,
J

Once the w; are known, u can be found by solving (21).

ALGORITHM 6.4. Use a Schwarz method with the subspaces given by VV’{, and f/ﬁﬁk
and the bilinear form given by by (u”,u") for the space Vi.

THEOREM 6.4. Algorithm 6.4 satisfies the three assumptions with
Ci <C(A+log(H/N)?,  p(6)<C,  w<C.

The constants in the bounds are independent not only of the mesh size and the number
of substructures, but also of the values p; of the coefficient of (5).
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Proof. We begin by estimating w. For the spaces f/Fhk, w = 1, trivially, since we
use exact projections. Let ul € f/W and let ué‘) " be the restriction of ul to ;. Let
w(()j)’h = uéj)’h — 'ﬁéj)’h, Whele u( LT the average of ué I over the wire basket. We
split 'w(()j)’h into two parts, w =Y w kGFk + w%,v) h, with constant values on the
faces and a part which vanishes on the faces. Then, using Lemmas 4.4, 4.6, and 4.7,

we obtain
a(ug,ug) = 3 pilub” " e,
= ZPi|’w(()i)’h|12ql(Q
CZ/% Z |9Fk|H19)+|wW

< C(1+log(H/h)) zpi||wé“*h||%z<wi)

2

IN

@)

< Chy (ug, up).

We now estimate C2. We bound b}/ (ult, u%), using the interpolation operator and
Lemma 4.3, by

by (ug,ug) < (1+log(H/h)) ZP%H“O

(W )
< C(1+log(H/R)) Zp2|u |H1
< C(1+1log(H/h))? a(u ,u)
Let uy = (s (o — u})) — ibubin, where iy, is defined in Lemma 4.6 and

ul is the finite element function that equals u” on the wire basket nodes, vanishes on
the faces, and is discrete harmonic in the interior of the subdomains.

Noting that the values of ul are irrelevant since ¥z« vanishes on the wire basket,
we then find that

a(u%hu%k) < C{pi(|1TM(Ipr(u — uo))|H1 ant (“aFk) |9Fk|H1 ))
+pi ([ 1M (O pr (u — uo))|H1 Q)T (ufm)? |07 [71(0,))}
< C(1 +log(H/h))*(pilu" 3 g, + pilu” ()

Here, we use Lemmas 4.3—4.6. The full H' norm on the right hand side can be reduced
to the seminorm by noting that u”, is invariant under the addition of a constant to
u". We then sum over the subregions to obtain the necessary bound. [

We next consider two Neumann-Neumann algorithms.

ALGORITHM 6.5. Use a Schwarz method with the subspaces given by f/{{, and f/f
The bilinear form for the global space is given by by (u*, u), and those for the local
spaces by the bilinear forms given by (16) and (17), as described in Section 5.
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ALGORITHM 6.6. Use a Schwarz method obtained from Algorithm 6.5 by replacing
the local spaces V' by Viiniz For all these local subspaces, the bilinear forms are given
by (16).

THEOREM 6.5. Algorithms 6.5 and 6.6 given above, satisfy the three assumptions

with
Co < C(1+1log(H/R))?, p(€) <, w < C(1 +log(H/h))*.

The constants in the bounds are independent not only of the mesh size and the number
of substructures, but also of the values p; of the coefficient of (5).

A proof of these results can be given using the techniques of Dryja and Widlund
[26]. Details will not be provided since these results are of relatively limited interest.

We conclude this subsection by discussing two earlier wire basket based algorithms
due to Bramble, Pasciak, and Schatz [7]. Their work has influenced much of the later
work in the field. One of their coarse spaces is given in terms of the averages of
the nodal values over the entire substructure boundaries 0€2;. The other space is
defined by extending the wire basket values as a two dimensional discrete harmonic
function onto the faces, and then as discrete harmonic function into the interiors of
the subdomains. For both methods, Bramble, Pasciak, and Schatz proved, cf. [7],

THEOREM 6.6. The condition number of the preconditioned problem is bounded
by C(1+log(H/h))* where the constant is independent not only of the mesh size and
the number of substructures, but also of the values p; of the coefficient of (5).

6.3. Face Based Algorithms. We know from the previous subsection that the
vertex space method, Algorithm 6.3, has a condition number which is independent
of the parameters h and H but that this bound might not be independent of the
variations of the coefficients across the interface I'. We could explore the possibility of
replacing the coarse space VH by the wire basket space f/v}{, as in Algorithm 6.4 and
the use of the bilinear form b} (-, ). The local spaces could be chosen as in Algorithm
6.3. This leads to an algorithm for which we can prove the same type of bounds as
in Theorem 6.4, i.e. the condition number is bounded by C(1 + log(H/k))?*. We can
also show that a bound of C(1 + log(H/h)) holds if we allow the constant to depend
on the variation of the p;.

However, we have recently discovered two alternative coarse spaces for which it
is possible to derive bounds on the condition number which are independent of the
values of p; and which are linear in (1+1log(H/h)). The main ideas behind the first of
these new algorithms is to expand the coarse space by allowing an additional degree
of freedom for each face, rather than specifying the values on the face in terms of
values on all or part of the wire basket. Later in this subsection, we will explore two
more spaces which all have in common that the average values over the faces, or entire
substructure boundaries, are important in the interpolation formulas which define the
coarse space component and the coarse space as a whole.

29



The first coarse space of this kind, f/ﬁ, can be viewed as the range of the following
interpolation operator:

Iyu'(z) = E u(zp)er(z) + D upkbp ().

The bilinear form is given by

B (') = S min il — @iz sy + L+ log(B/R) 3 (e — 1)),

FkCaQ;

ALGORITHM 6.7. Use a Schwarz method with the subspaces given by f/ﬁ, f/Fhi,
V. and V" . and the bilinear form just given by bM(uh, uh).

e pvio

THEOREM 6.7. Algorithm 6.7, given above, satisfies the three assumptions with
C2 < C(1+log(H/H)), p(€) < C, w < C.

The constants in the bounds are independent of the values p; of the coefficient of (5).

Proof. The proof of the first assumption is almost identical to that given for

Theorem 6.3 in Smith [56] except that we now use ug = I};u". Instead of Lemma 4.2,
we use the following estimates

(22) ||uh - IJ}\LJU}L”%?(QQ < CH2|Uh|§11(Q
and
(23) |17 u” ) <C(1+ log(H/h))|u" |

Inequality (22) follows from Lemmas 4.4 and 4.6.

The second inequality, (23), is established by using Lemmas 4.3, 4.4, 4.6, 4.7 and
Poincaré’s inequality.

The estimate,

béw(uo,uo) <C(l1+ log(H/h))a(uh,uh),

follows from Lemmas 4.3, 4.4, 4.6 and Poincaré’s inequality.
Finally, we use Lemma 4.4 and an inverse inequality to establish that

a(u”,u") < COM(u",u"), Vu" e Vi

We again consider two algorithms based on Neumann-Neumann solvers.

ALGORITHM 6.8. Use a Schwarz method obtained from Algorithm 6.5 by replacing
the coarse space Vij by Vi and the bilinear form b} (-,-) by b} (-,-).
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THEOREM 6.8. Algorithm 6.8 satisfies the three assumptions with
C2<C o€ <C w< O+ los(H/M)Y.

The constants in the bounds are independent not only of the mesh size and the number
of substructures, but also of the values p; of the coefficient of (5).

A proof of this and the next result is given in Dryja and Widlund [28].

ALGORITHM 6.9. Use a Schwarz method obtained from Algorithm 6.6 by replacing
the coarse space Viy by Vi and the bilinear form b}V (-,-) by b} (-,-).

THEOREM 6.9. Algorithm 6.9 satisfies the three assumptions with
C2<C(1+1og(H/D),  p(€)<C,  w<C1+log(H/h)Y.

The constants in the bounds are independent not only of the mesh size and the number
of substructures, but also of the values p; of the coefficient of (5).

We can decrease the dimension of the global space just considered. Rather than
using the coarse subspace, involving all of the nodes on the edges, only one degree of
freedom per edge, an average value, can be used. The resulting space, denoted by ‘N/Bh,
is the range of the interpolation operator

Iguh(:r;) = E uh(Vk)apk(:l:)—l— E E%ZGEz(x)—I— E ﬁ%keFk($)

Vkel Eicw Fkcr
Here ﬁ%z is the average of the values of u” on E} and 6 the discrete harmonic function

which equals 1 on that set and vanishes elsewhere on I',. We define the bilinear form

for this space by

boB(uha ‘Uh) =>ipi min@i{h Evkeaﬂi (uh(vk) - @)2 +
H Y picoq, (U — @) + H(1 4 log(H/h)) X prcag, (W — @)}

ALGORITHM 6.10. Use a Schwarz method with the subspaces given by f/];b, VF}L

and ffrhw, and the bilinear form associated with boB(uhauh)-

Vh

rE
THEOREM 6.10. Algorithm 6.10 satisfies the three assumptions with
Cs < C(1+log(H/R),  p(€)<C,  w<C

The constants in the bounds are independent not only of the mesh size and the number
of substructures, but also of the values p; of the coefficient of (5).

Proof. Except for an upper bound on b%(u",u") the estimate of CZ is almost the
same as in the proofs of Theorems 6.3 and 6.7. We use the interpolant I%u” to define
the coarse space component ug. Using similar techniques as before, we can establish
the estimates

lu" = Igu" Lo,y < H(1 +log(H/h))u" iy,
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and

h h|2
[T5u

iy < C(1+log(H/R))|u"F g,
The upper bound
boB(uo, up) < C(1+ log(H/h))a(uh’ uh)

now follows from these inequalities, and that of Poincaré, choosing w; = ul.
Finally, we use the same bounds and an inverse inequality to establish that
a(uh, u") < CHB(u",w"). O
We can also use the Neumann-Neumann solvers for the local components of the
preconditioner.

ALGORITHM 6.11. Use a Schwarz method obtained from Algorithm 6.5 by replac-
ing the coarse space Vil by Vi and the bilinear form b}V (-,-) by bE(-,-).

THEOREM 6.11. Algorithm 6.11 satisfies the three assumptions with
C2<C o6 <C w< O+ los(H/M)Y.

The constants in the bounds are independent not only of the mesh size and the number
of substructures, but also of the values p; of the coefficient of (5).

A proof of this, and the next result is given in Dryja and Widlund [28].

ALGORITHM 6.12. Use a Schwarz method obtained from Algorithm 6.6 by replac-
ing the coarse space Vil by Vi and the bilinear form b}V (-,-) by bE(-,-).

THEOREM 6.12. Algorithm 6.12 satisfies the three assumptions with
Co <C(1+log(H/R)),  p€) <C,  w<C(1+log(H/h)).

The constants in the bounds are independent not only of the mesh size and the number
of substructures, but also of the values p; of the coefficient of (5).

Our last coarse space, which has much in common with one developed and an-
alyzed recently by Mandel and Brezina [41], has only one degree of freedom per
substructure. This space, V%, is defined as the range of the interpolation operator

Iguh Z UaQ ,021/2

The summation is over all substructures that do not intersect I'y in more than one or
few points. /\ZT(.TE) is the pseudo inverse of the function defined in formula (14) except
that it is also set to be zero at single points of T’y if 0€); intersects I'y in just one or a
few points. uf, is the average value of u” over the 9 ;.

32



The bilinear form is chosen as

by (u",v") = (1 +log(H/R))* D st o).

K3

ALGORITHM 6.13. Use a Schwarz method with the global space V% and the bilinear
form b5 (-, ) and the local subspaces V", chosing the bilinear forms as in formulas (16)

K3

and (17) according to the rule given in Section 5.

THEOREM 6.13. Algorithm 6.18 satisfies the three assumptions with
C2<C o€ <C w< O+ log(H/M)Y.

The constants in the bounds are independent not only of the mesh size and the number
of substructures, but also of the values p; of the coefficients of (5).

A proof of this result is given in Dryja and Widlund [28].
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