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ABSTRACT

Refinement types utilize logical predicate for capturing run-time properties of programs

which can be used for program verification. Traditionally, SMT-based checking tools of

refinement types such as the implementation of Liquid Types [1] require either heuristics

or random sampling logical qualifiers to find the relevant logical predicates.

In this thesis, we describe the implementation of a novel algorithm proposed in Zvon-

imir Pavlinovic’s PhD thesis "Leveraging Program Analysis for Type Inference" [2], based

on the framework of abstract interpretation for inferring refinement types in functional

programs. The analysis generalizes Liquid type inference and is parametric with the

abstract domain used to express type refinements. The main contribution of this thesis

is to achieve the process of instantiating our parametric type analysis and to evaluate the

algorithm’s precision and efficiency. Moreover, we describe a tool, called DRIFT
2
, which

allows users to select an abstract domain for expressing type refinements and to control

the degree to which context-sensitive information is being tracked by the analysis.

Finally, our work compares the precision and efficiency of DRIFT
2
for different con-

figurations of numerical abstract domains and widening operations [3]. In addition, we

compare DRIFT
2
with existing refinement type inference tools. The experimental results

show that our method is both effective and efficient in automatically inferring refinement

types.
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Chapter One

Introduction & Background

To guarantee the reliability and re-usability of software systems, researchers have devel-

oped many formal methods techniques such as program analysis [4] and verification [5].

Building reliable software, however, still faces many challenges. For example, writing

too much data into system memory yields data outside of the intended structure, which

encounters the difficulty of maintenance. Reasoning about such errors requires software

engineers with comprehensive knowledge of the syntax and semantics of programming

languages, standard/third-party libraries, and development environments. It is impossi-

ble to expect all programmers to be experts on the study of the meaning of programming

languages, but it brings an opportunity for researchers to deploy automated verification

methods. In order to support efficient and expressive reasoning, one direction is using a

type system [6]which gives a set of rules that assign a type to each program construct, such

as variables, expressions, or functions. Typically, a type system provides primitive types

such as int representing integer values and type constructors such as array representing

more complex composite data structures. These types guide programmers to correctly

manipulate data in their programs. This feature ultimately provides programmers with a

syntax-directed way of reasoning about program behaviors. Though programmers may

be unwilling to provide type information manually. This raises the question of how to

omit type annotations in a program but still enable the compiler to do type checking.
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Fortunately, researchers have developed a technique, called type inference, which gives

us this opportunity. Type inference is a feature of programming languages that computes

the type of an expression without type annotations. Particularly, Hindley-Milner type

inference [7] is one of the type inference algorithms that is in common use. In fact, it is

not just an algorithm that determines type of an expression at compile time, but it always

infers themost general type of the expression1. When combinedwith static type inference,

a type system allows a compiler to verify the type correctness based on the analysis of a

program’s text. This component enables the compiler to guarantee program correctness

properties without replying on extensive type annotations provided by the programmer.

However, the declaration of types like int array is not enough for expressing either

index checking or range checking. For example, consider the following OCaml program:

1 let x: int array = Array.make 100 0 in

2 for i = 1 to 100 do

3 x.(i) <- read_int ()

4 done

The program initializes a zero-valued integer array xwith a length of 100, and uses a for-

loop to repeatedly replace each element number in x with a user-provided integer value.

If the program always requires an array to store non-zero values, such type systems like

OCaml type system could not indicate those important program invariants. Thus, to

extend the layer of precision during program analysis and be able to reason about the

program’s run-time behaviors more accurately, we need to put additional information

into type systems.

Refinement type systems [8] are able to express andverify richerproperties of thevalues

computed by the program. A refinement type enriches a simple type with a predicate (i.e.

refinement predicate) that conveys additional constraints about the represented values

1Although the feature of parametric polymorphism is more important, we will not discuss it in this

thesis.
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in terms of a Boolean-valued expression. In particular, the refinement predicates can

precisely express dependencies between inputs and outputs of functions.

For instance, in OCaml, we can include refinement type systems to capture constraints

on arrays manipulated by a program that are sufficient to verify the absence of out-of-

bounds access:

1 let ra = Array.make 4 0 in (* ra: {�: Int Array | length � = 4} *)

2 let x = 3 in (* x: {�: Int | � = 3} *)

3 Array.set ra 5 x (* Run-time Error! Array index out of bounds *)

The example firstly creates an array ra of length 4 with all elements initialized to 0, and

then aims to update that array with value x at index 5. The above program fails during

execution because it attempts to set an element with an index that exceeds the allowed

length (i.e. length of ra is 4 which is less than the requested index, 5). However, the

refinement type system can be used to catch the error at compile time. As we presented

in the comments, each refinement type of a term (array ra) combines a base type (Int

Array) with a predicate ({� : Int Array | length � = 4}) over the special "value variable" �

which is used to describe the value of the term. The predicate specifies a set of values

that captures a more expressive program invariant. Particularly, the refinement type of ra

captures the set of indices that can be used for safely interacting with the array returned

by Array.make 4 0.

At line 3, the refinement type of the function Array.set in the above example can be

expressed as:

Array.set :: (0 :  array) → (8 : {� : Int | 0 ≤ � < length 0}) → (4 : {� : Int | true}) → unit

The type (8 : {� : int | 0 ≤ � < length 0}) of array index parameter 8 augments a simple

type Int with a predicate indicating that the index of the given array 0must be in the range

0 to the length of the array (which is 4 for array ra).

Thus, the refinement type provides a static method to capture more fine-grained infor-
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mation about the concrete values observed during program execution, instead of relying

on expensive run-time checks. Although these advantages come at a cost of automatic

inference, a refinement type that encodes details about execution time behavior, which

allows program analysis to infer how loops and components behave for the verification in

practice.

For now, the question is how to infer such refinement types automatically in practice.

In this thesis, we focus our attention on the Liquid type family [8, 9, 10, 1] of refinement

type inference algorithms.

1.1 Liquid Type Inference

We start our discussion with an overview of the Liquid type inference algorithm and the

challenges of inferring precise Liquid types with existing approaches. We then present an

overview of our approach by developing Liquid type system as abstract interpretation.

To motivate our technical development, consider the following illustrative OCaml

program:

1 let rec sum n =

2 if n <= 0 then 0

3 else n + sum (n - 1)

The program defines a function sum which computes the sum of all natural numbers up

to the given bound n.

We briefly discuss how Liquid type inference works on the above example. At first,

the algorithm calls for Hindley-Milner Type Inference [7] to infer the basic shape of the

refinement type for every subexpression of the program. For instance, the inferred type

for the function sum is int → int. Next, the algorithm replaces inferred ML types with

templates of refinement types. Each base type � (e.g. int) is replaced by a refinement type

of the form {� : � | )(�, ®G)}, where � is a value variable with type �, and )(�, ®G) is a
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placeholder refinement predicate. The form expresses a constraint relation between the

value variable � and other variables ®G in scope of the type. Liquid type inference also

encodes a dependent type relation for each function (written as G : �1→�2). Concretely,

the function type includes a fresh dependency variable G which stands for the function’s

parameter, an input type �1 of the function, and a result type �2 of the function. The

scope of G is the result type �2, i.e., refinement predicates inferred for �2 can express

dependencies on the input value of type �1 by referring to G. For example, Liquid type

inference infers the augmented type for function sum as:

= : {� : int | )1(�)} → {� : int | )2(�, =)}.

Next, the algorithm generates a system of Horn clauses that specifies the subtyping

relationships imposed on the refinement predicates by the program data flow. For instance,

the bodyof sum induces the followingHorn clauses over the refinement predicates in sum’s

type:

= > 0 ∧ � = = − 1⇒ )1(E) | value flows to the recursive call

= ≤ 0 ∧ � = 0⇒ )2(�, =) | stipulates the "then" expression

= > 0 ∧ )2(�1, = − 1) ∧ � = �1 + = ⇒ )2(�, =) | stipulates the "else" expression

� ≥ 0⇒ )1(E) | no constraint applies to the initial input

The first clause models the data flow from the parameter = to the recursive call in the

else branch of the conditional. The second and third clause capture the constraints on

the result value returned by sum in the then and else branch. The final one catches the

constraint on the input value which we impose on the external calls to sum.

The original algorithm for Liquid type inference solves the obtained Horn clauses

using a fixpoint computation based on predicate abstraction [11, 12] to derive each re-

finement predicate )8 . That is, the analysis assumes a given set of atomic predicates

& = {?1(�, ®G), . . . , ?=(�, ®G)}, which are either provided by the programmer or derived
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from the program using heuristics, and then infers an assignment for each )8 to a conjunc-

tion over& such that all Horn clauses are valid. This can be done effectively and efficiently

using the Houdini algorithm [13, 14]. For instance, the implementation of liquid type in-

ference in the tool DSolve [15] solves flow constraints by given & = {0 ≤ �,★ ≤ �, � < ★}

where ★ is a placeholder variable that can be instantiated with program variables. The

final type for function sum obtained this way is:

= : {� : int | � ≥ 0} → {� : int | 0 ≤ � ∧ = ≤ �}

where true in the predicate means function sum takes any integers = which evaluates to

true as input.

1.1.1 Challenges in Inferring Precise Liquid Types

Now, assume we set the goal of the analysis higher than before, where we wish to infer a

refinement constraints for the return type of the function sum which applies the output is

no less than 2 ∗ = − 1. However, the liquid type inference fails to conclude this inductive

constraint. Typically, one problem of using predicate abstraction to describe program

invariants is that the analysis needs to guess supplemental predicates like 2 ∗ = − 1 ≤ � in

advance.

Generally, if the goal is to improve precision, one may of course ask why it is necessary

to develop a new refinement type inference analysis from scratch. Is it not sufficient

to improve the deployed Horn clause solvers, e.g. by using better abstract domains?

Unfortunately, the answer is “no”. The derived Horn clause system already signifies an

abstraction of the program’s semantics and, hence, entails an inherent loss of precision for

any subsequent analysis. To motivate this issue, consider the following program:

1 let apply f x = f x

2 let g y = 2 * y

3 let h y = - (2 * y)

6



4 let main z =

5 let v = if 0 <= z then apply g z else apply h z in

6 assert (0 <= v)

Note that the assert statement in the last line is safe. The templates for the refinement

types of the top-level functions are as follows:

apply :: (H : {� : int | )1(�)} → {� : int | )2(�, H)}) → G : {� : int | )3(�)} → {� : int | )4(�, G)}

g :: H : {� : int | )5(�)} → {� : int | )6(�, H)}

h :: H : {� : int | )7(�)} → {� : int | )8(�, H)}

and the key Horn clauses are:

0 ≤ I ∧ � = I ⇒ )3(�) )5(H) ∧ � = 2H ⇒ )6(�, H)

0 ≤ I ∧ )1(�) ⇒ )5(�) 0 ≤ I ∧ )6(�, H) ⇒ )2(�, H)

0 > I ∧ � = I ⇒ )3(�) )7(H) ∧ � = −(2H) ⇒ )8(�, H)

0 > I ∧ )1(�) ⇒ )7(�) 0 ≤ I ∧ )8(�, H) ⇒ )2(�, H)

)3(G) ⇒ )1(�) )2(�, G) ⇒ )4(�, G)

Note that the least solution of this system ofHorn clauses satisfies )1(�) = )3(�) = )5(�) =

)7(�) = true and )2(�, G) = )4(�, G) = (� = 2G ∨ � = −(2G)). The solution for )4(�, G) also

represents the most precise type refinement that can be inferred for the type of v declared

on line 5. Hence, any analysis based on deriving a solution to this Horn clause system

will fail to infer refinement predicates that are sufficiently strong to entail the safety of

the assertion in main. The problem is that the generated Horn clauses do not distinguish

which of the two functions g and h will be called in apply. All existing refinement type

inference tools based on inferring standard Liquid types therefore fail to verify the above

example.
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1.1.2 Design Space of Liquid Type Inference

With refinement type system and the limitation of liquid type inference, in our draft pa-

per [16], we present a newview on liquid type inference in terms of abstract interpretation.

In particular, we constructed a data flow refinement type analysis by forming a sequence of

Galois abstractions of new concrete higher-order program semantics [17, 18]. Our new

semantics captures refinement properties for every program location. Especially for a

function with several call sites, the semantics makes explicit how input data propagates

backwards from the call sites of a function to the function definition and, conversely, how

output data flows from the definition back to the call sites. Furthermore, the analysis is

parametric with (1) the abstract domain used to express type refinements, (2) the choice

of the widening operator used to enforce the sound termination of the analysis, and (3)

the degree to which context-sensitive control flow information is being tracked.

1.2 Contribution

In this thesis, we have implemented a prototype of the parametric data flow refinement

type analysis in a tool called DRIFT
2
(written in OCaml). Here is a brief overview of the

contributions, as well as the main features of DRIFT
2
.

• Our model moves away from particular representations of type refinements, which

leads DRIFT
2
to support various abstract domains for expressing refinement types

such as Octagons [19] and Polyhedra [20].

• Our tool allows its user to specify various widening strategies, used by the abstract

interpretation, to ensure the termination of the analysis.

• We have implemented two versions of the analysis: a context-insensitive version in

which all entries in functions are collapsed to a single one (as in liquid type inference)

8



and a 1-context-sensitive analysis that infers intersection function types, allowing

each call site location to be checked against a different type.

Acknowledgement. This thesis is part of jointworkwithZvonimir Pavlinovic andThomas

Wies [16].

1.3 Thesis Organization

Chapter 2 gives an overview of the tool, and contains technical details of our program

semantics and abstract transformer. We also present a subset of OCaml program we

analyzed as example. Chapter 3 shows the experiment process and results in detail.

Chapter 4 describes some related tools for refinement type inference. Finally, Chapter 5

discusses the limitations of DRIFT
2
and potential future work.
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Chapter Two

Design & Theory

In this chapter, we firstly present detailed overview of the design of DRIFT
2
, a composite

verifier for a subset of OCaml that computes a valuemap recording an inferred refinement

type for each program’s execution point. In order to enable the tool to be parametric with

the abstract domain of type refinements, DRIFT
2
builds on the Apron library [21] which

provides numerical abstract domains for program analysis: users of DRIFT
2
can select an

abstract domain to verify a given OCaml program.

After that, we delineate our parametric data flow refinement type semantics, originally

from our draft paper [16]. Next, we give the details of our abstract transformer and

propagation in Section2.2. Finally, we show how our system infers refinement types for a

given OCaml program.

The chapter is organized as follows: Section 2.1 introduces the components of DRIFT
2
,

including verification workflow and the target language of the refinement type inference

method. Section 2.2 gives a program semantics used for our data flow refinement type

analysis, as well as an example that describes how the analysis works.

10



Figure 2.1 DRIFT
2
verification workflow.

2.1 Design

In this section, we briefly summarize the high-level design of DRIFT
2
. For the analysis

front end, we used a self-designed lexer and parser for parsing the input programs. We

chose a subset of OCaml as target language. In the back ends of DRIFT
2
, we designed two

modules that provide interfaces for the various abstract domains and the implementation

of the semantics domain. Finally, we implemented our transformer based on the input

expressions and followed by the pseudo algorithms described from Fig. 2.4.

2.1.1 DRIFT2 Verification Workflow

We start with a short interpretation of DRIFT
2
verification workflow, shown in Figure 2.1.

Generally, DRIFT
2
takes an OCaml file and verifies the correctness of the program by

preferring the analysis for a user-selected abstract domain and widening operator. For

example, analyzing Program 1 (depicted in Fig. 2.6) yields a success message "The input

program is safe".

11



Encoding

DRIFT
2
encodes (untyped) OCaml programs into the �-calculus (defined in Sect.2.1.2).

In particular, DRIFT
2
parses a conditional expression if 40 then 41 else 42 as 40 ? 41 : 42.

The let binding expression let G = 41 in 42 evaluates into (�G.42) 41, and we use let rec

5 G = 41 in 42 as let 5 = � 5 .�G. 41 in 42. An assert expression assert(0) is represented as

0 ? () : (). If users specify any predicates for the input function (usually main function), the

parser also generates predefined nodes (definition see Section 2.2.1) and corresponding

functions call as an entry of the analysis. Moreover, we encapsulate each intermediate

point of a program’s execution as a node and bundle the abstract value into that node.

Transformer

Our transformer are doing as follows. At first, we implicitly model the paths of the

run-time values’ flow as an execution map (definition on Section 2.2.1). The refinement

information stored in the undetermined nodes are obtained by using a procedure to

propagate the inferred types betweennodes. Finally, our transformer repeatedly calculates

the inputs - outputs relations until a fix-point is reached. In the end, DRIFT
2
checks the

flow information inside the computed execution map, whether each assertion is safe

according to the computed types.

Propagation

As a data-flow analysis tool, DRIFT
2
implements flow propagation for updating node’s

constraints. During the analysis, any abstract value stored at each node is predicted as data

propagation between values at consecutive nodes in the execution paths. For example,

the Figure. 2.2 describes how the abstract data is propagated between a function call-site

and relative definition. Details about this process are discussed in Section 2.2.3.
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Figure 2.2 Data value propagation

Widening

As a program analysis based on abstract interpretation [17], we use widening and nar-

rowing [22] for enforcing the convergence of the analysis in a finite number of iterations.

We currently give four options to the user: widening with/without narrowing, and delay

wideningwith/without narrowing. In particular, if the narrowing approach is permitted,

DRIFT
2
will start it right after the widening steps reached the fixpoint. Both procedures

ensure termination of the analysis.

Semantic Interface

We present an interface for the program semantics, introduced in Section 2.2.1, which

includes several procedures associated with a semantics object. Concretely, the interface

matches a set of operators over abstract values, including the most frequently used op-

erators like inclusion v and equality test, join t and meet u, and widening ∇ operators.

Furthermore, we introduce operations for strengthening the refinement predicates with

inferred refinement types of variables in the current environment, as well as for projecting

13



variables out of scope (details provided in Section 2.2.2).

APRON Interface

This part of design serves as module interface which is composed of a sequence of defini-

tions above relational abstract lattices 〈A- , va ,⊥a ,>a ,ta ,ua〉 (defined in Section 2.2.1).

In addition, we construct several methods for testing arithmetic constraints and projecting

variables from refinement predicates.

2.1.2 Target Language �D

Our target language �D is a call-by-value, higher-order functional variant of the �-calculus

with recursion. Here is the summary of the language syntax:

4 ∈ Exp ::= 2 | G | 41 op 42 | � 5 .�G.4 | 41 42 | 40 ? 41 : 42

G, 5 ∈ Var 2 ∈ Const ::= 0, . . . , CAD4, 5 0;B4 , () op ∈ Operator ::= {+, ∗, ≤,&&,mod, . . .}

Basically, �D expressions include constants (integers, Booleans, and void value), variables,

arithmetic expressions, if-then-else expressions, (recursive) �-abstractions, and function

applications.

2.2 Theory

In this section, we present a parametric generalization of Liquid types, which we refer to

as the data flow refinement type semantics. We also describe how the data flow refinement type

semantics of an expression 4 can be obtained as a widening sequence of a generic abstract

transformer.
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2.2.1 Parametric Data Flow Refinement Type Semantics

The details about abstract domain on this semantics is formalized in [16]. Here, we briefly

summarize the semantics as follows:

=̂ ∈ N̂ def

= N̂4 ∪ N̂G ℰ̂ def

= Var ⇀fin N̂G

N̂4
def

= Loc × ℰ̂ N̂G
def

= ℰ̂ × Var × Ŝ

C ∈ V t
- ::= ⊥t | >t | ℛ t

- | T
t
- 't

- ∈ ℛ
t
-

def

= B ×A-

I : ) t
- ∈ T

t
-

def

= ΣI ∈ Var. Ŝ → V t
-\{I} ×V

t
-∪{I} " t ∈ ℳ t def

= Π=̂ ∈ N̂ . V t
-=̂

Semantics Domains

Abstract nodes, stacks, and environments We label (represented as Loc) each point of a

program’s execution, and associate it with an abstract (execution) node, =̂ ∈ N̂ , which we

redesign by using the concept from [23]. We propose two types of the abstract nodes -

expression nodes N̂4 and variable nodes N̂G . Here, an expression node is a pair of a label ℓ

and an abstract environment �̂, denoted ℓ��̂, which encodes the execution information

from a subexpression 4ℓ evaluated under the environment �̂. An abstract environment �̂,

one collection kept a set of all bindings of variables in the scope, is a (finite) partial map

association between variables and variable nodes. A variable node, a tuple of a variable G,

an environment �̂ and abstract stack (̂, denoted G��̂�(̂, is created at each execution point

where an argument value is bound to a formal parameter G of a function at a call site.

The environment �̂ attached in the variable node is the environment at the point where

the variable/function is defined, and the stack (̂ is the call site stack that may capture the

sequence of call site locations before this variable node was created. We write ℓ ·̂ (̂ to

denote the stack obtained from (̂ by prepending ℓ . The purpose of using call site stacks

is to disambiguate various calls to a function based on the function’s arguments. We

intuitively treat (̂ as a parametric construction which allows programmer to define what

kinds of information that need to store. For instance, if we select non-sensitive analysis
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of a program, the stack (̂ will be empty. If we choose 1-context-sensitive to obtain the

most recent calling context information, the stack on the variable nodes will only store the

call site location. More details about how we abstract stacks in DRIFT
2
can be found in

Section 3.1.1.

Abstract values and execution maps There are four classes of abstract (data flow)

values C ∈ V t
-
. First, the value ⊥t

stands for nontermination or unreachability of a node,

and the value >t
models every possible abstract value. Second, every base refinement ℛ t

-

is a pair of a base type b and an abstract refinement relation a (drawn from a family of

relational abstract domain 〈A- , va ,⊥a ,>a ,ta ,ua〉 parameterized by abstract scopes -),

denoted {� : b | a}. That is, it describes the refinement type that contains a base type

augmented with a concrete representation of refinement relations. Finally, we represent

functions as tables. A table) t
-
maintains an input/output value dependency) t((̂) = 〈C8 , C>〉

for each abstract call site stack (̂. We denote C8 by �1() t((̂)) and C> by �2() t((̂)). We use

square bracket notation for tables andwrite (̂ : C1→ C2 for a table entry thatmaps call stack

(̂ to the value pair 〈C1, C2〉. We denote by ) t
⊥t the empty table that maps every call site stack

to the pair 〈⊥t,⊥t〉. Hence, we use [(̂ : C1 → C2] as shorthand for the table ) t
⊥t[(̂ : C1 → C2].

We say that a table ) t
has been called at a node inducing call site stack (̂, denoted (̂ ∈ ) t

,

if the associated input value is not ⊥: �1() t((̂)) ≠ ⊥t
.

At last, the parametric data flow refinement type semantics computes execution maps

" t ∈ ℳ t
, which map nodes to values. An execution map is the primary structure on

which the semantics operates. As we show in Fig.2.6, the analysis of a program evaluates

program expressions in given environments and stores the corresponding nodes with the

resulting values. We write " t
⊥ (" t

>t) for the execution map that assigns ⊥t
(>t

) to every

node.
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2.2.2 Abstract Domain Specification

In order to express each refinement predicate in refinement type 't
-
, we briefly introduce

several relational numerical abstract domains that are implemented in Apron:

• Octagons [19]: Octagon is a lightweight numerical domain for static analysis over

abstract interpretation. Concretely, given a finite set of variables +1, +2, . . . , += , the

octagon domain is a conjunction of constraints that only allows atmost two variables

to express. That is, the expressed constraints take the form ±+8 ± +9 ≤ 28 9 for some

+8 , +9 .

• Convex Polyhedra and Linear Equalities [20]: Polyhedra form an expressive nu-

merical domain, which effectively capture precise relations over a set of variables

+1, +2, . . . , += . To express program properties, polyhedra use the following linear

constraints: ∀9 ·∑8 08 9 ±+8 ≤ 1 9 .

We note that the analysis of function calls critically relies on the abstract domain’s

ability to handle equality constraints precisely. We therefore do not consider the interval

domain as it cannot express such relational constraints.

By parametric representing refinement predicate, users could easily adjust numerical

domains according to the different types of programs for analysis.

Domain Operators

In this part, we briefly describe the most important operators that we used for our trans-

former. We define:

• strengthening: Liquid type inference introduced an environment strengthened op-

eration that replaces all occurrences of the value variable � embedded from the

environment with the actual variable being refined [1], thereby we structurally de-

fine a strengthening operations over refinement types for our semantics. For in-

17



stance, given refinement values C , C′ ∈ V t
-
and a program variable G, the operation

C[G ← C′] = C ut C′[G/�] is used for strengthening the refinement type C with re-

spect to the replacement of � by the value G in C′. Besides, we use the operation

C[�=G] = C ut {� = G} to strengthen C with an equality constraint � = G.

• projection: This operator is used frequently after each propagation is performed.

This process ensures that variable scoping in a refinement constraint should not

messed up the others, and it guarantees that the types inferred by our analysis to

strictly follow the scoping rules of OCaml. In the following section, we use proj- C to

denote this rescoping operation, which removes all constraints of variables that not

belong to the given environment set �̂. Note that we replace �̂ by a set of variables

- here (i.e. - = 3><(�̂)).

2.2.3 Value Propagation

The propagation process (shown in Fig. 2.3) is the key feature of our transformer. Function

propt
takes two abstract values as input and propagates information between them. On

the upper level, operation nt
computes the new abstract values over the least common

scopes by extending the scope of an abstract value if necessary. Then it calls propt
for the

value propagation. Finally, it uses projection operator to restore the scope of each result,

which ensures the scopes of a value remain compatible.

The most interesting case is the propagation between two function types I : ) t
1
and

I : ) t
2
. At the top level, I : ) t

2
usually represents a function’s call-site, and I : ) t

1
relative

to the definition of that function. In this occasion, we use the strengthening operator to

capture the dependency of the output values C1> on the input value C28 during propagation.

Note that the notation of -C refers to the set of variables (scope) over which t ranges.

Procedure lc_env calculates the least common scope of the two input abstract values.

Function ext extends the scope of each abstract value to the given least common scope -.

18



propt(I : ) t
1
, I : ) t

2
) def

=

let) t = Λ(̂.

let 〈C18 , C1>〉 = ) t
1
((̂); 〈C28 , C2>〉 = ) t

2
((̂) propt() t ,⊥t) def

= 〈) t , ) t
⊥〉

〈C′
28
, C′

18
〉 = propt(C28 , C18) propt() t ,>t) def

= 〈>t ,>t〉

〈C′
1>
, C′

2>
〉 = propt(C1>[I ← C28], C2>[I ← C28]) propt(C1 , C2)

def

= 〈C1 , C1 tt C2〉

in 〈〈C′
18
, C1> tt C′

1>
〉, 〈C′

28
, C2> tt C′

2>
〉〉 (otherwise)

in 〈I : Λ(̂. �1() t((̂)), I : Λ(̂. �2() t((̂))〉

C1 nt C2
def

=

let- = lc_env(-C1 , -C2) in

let C′
1
, C′

2
= ext-(C1 , C2) in

let 〈C′′
1
, C′′

2
〉 = propt(C′

1
, C′

2
) in

〈proj-C
1

C′′
1
, proj-C

2

C′′
2
〉

Figure 2.3 Abstract value propagation in the refinement type semantics

2.2.4 Abstract Transformer

The (monadic) abstract transformer of the parametric data flow refinement type semantics

is shown in Fig. 2.4 (the syntax of monad is given in Figure 2.5). The signature of our

transformer is as follows:

stept
: Exp→ ℰ t → Ŝ → V t

- →ℳ
t →ℳ t

Concretely, when the parser interpreted the input program into the syntax of our target

language �D. stept
takes that expression as 4 along with an initial environment �̂, an

empty abstract stack (̂, an unconstrained abstract value Cæ, and an initial execution map

" t
. After the analysis completes one iteration, stept

returns an (updated) execution map

" t
. The definition of our transformer is formalized inductively over the structure of 4.

The analysis takes into account the control flow of the analyzed program by strength-

ening refinement predicates with information obtained from tests in conditional branches.
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For this purpose, we introduce an abstract data value Cæ as an additional parameters of

the transformer, initialized to >t
. This parameter accumulates the information collected

along the current control flow path to strengthen each refinement predicate on that path.

For instance, after evaluating the conditional tests in the if-then-else expression, the results

should be strengthened to each branch path so that the analysis takes all possible paths

into account to over-approximate the behavior of the program. If a path is infeasible, all

abstract values associated with nodes on that path are set to ⊥t
.

2.2.5 Transformer Notation and Explanation

To reduce notational clutter when presenting the abstract transformer, we use a state

monad to compose the abstract transformer from simpler functions of type " t → " t × C.

The definitions of the relevant monad transformers are found in Figure 2.5 using syntax

inspired by Haskell’s monad syntax.

We introduce several notations that we use in the abstract transformer. We denote

the current binding of =̂ in " t
(which is the abstract value C) by notation C = " t(=̂) and

" t[=̂ ↦→ C] as an updates of execution map " t
at node =̂ with a new value C. We write

I : [(̂ : C → C′] for a temporary table that maps abstract call stack (̂ to the abstract value

pair 〈C , C′〉, where I is a dependency variable to express relations between input C and

output C′. We also denote �>>;C as an unconstrained base refinement type over a Boolean

base type. Other domain operators could be referred from the Section 2.2.2.

We now explain the abstract transformer in detail:

Constant 4 = 2ℓ . At this step, we firstly create an constraint [� = 2]t, abbreviated to

{� : CH?4(2) | � = 2} where CH?4(2)means the base type of the constant 2, and strengthen

that constraint with the flowed path information. Thenwe join the result with the original

stored abstract value in the current node.

Variable 4 = Gℓ . Here, our transformer computes the value propagation between the
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stept~2ℓ �(�̂, (̂, Cæ)
def

=

do =̂ = ℓ��̂ ; C′← =̂ := [�= 2]t ut Cæ

return C′

stept~Gℓ �(�̂, (̂, Cæ)
def

=

do =̂ = ℓ��̂ ; =̂G = �̂(G) ; C ← !=̂; Γ← env(�̂)

CG = Γ(G)[�=G]t ut Cæ ; C = C[�=G]t ut Cæ

C′← =̂G , =̂ := CG nt C

return C′

stept~(48 4 9)ℓ �(�̂, (̂, Cæ)
def

=

do =̂ = ℓ��̂ ; =̂8 = 8��̂ ; =̂ 9 = 9��̂ ; C ← !=̂

C8 ← stept~48�(�̂, (̂, Cæ) ; assert(C8 ∈ T t)

C 9 ← stept~4 9�(�̂, (̂, Cæ)

C′
8
, I : [8 ·̂ (̂ : C′

9
→ C′] = C8 nt I : [8 ·̂ (̂ : C 9 → C]

C′′← =̂8 , =̂ 9 , =̂ := C′
8
, C′

9
, C′

return C′′

stept~(48 ? 4 9 : 4:)ℓ �(�̂, (̂, Cæ)
def

=

do =̂ = ℓ��̂ ; =̂8 = 8��̂ ; =̂ 9 = 9��̂ ; =̂: = :��̂ ; C ← !=̂

C8 ← stept~48�(�̂, (̂, Cæ) ; assert(C8 vC �>>;C)

Ctrue, Cfalse = C0[truet] ut Cæ, C0[falset] ut Cæ

C 9 ← stept~4 9�(�̂, (̂, Ctrue)

C: ← stept~4:�(�̂, (̂, Cfalse)

C′
9
, C′ = C 9 nt C; C′

:
, C′′ = C: nt C in

C′′′← =̂8 , =̂ 9 , =̂: , =̂ := C′
8
, C′

9
, C′

:
, C′ tt C′′

return C′′′

stept~(48 >? 4 9)ℓ �(�̂, (̂, Cæ)
def

=

do =̂ = ℓ��̂ ; =̂8 = 8��̂ ; =̂ 9 = 9��̂ ; C ← !=̂

C8 ← stept~48�(�̂, (̂, Cæ)

C 9 ← stept~4 9�(�̂, (̂, Cæ)

Cop = C
t
>[� = =̂8 op =̂ 9][=̂8 ← C8][=̂ 9 ← C 9]

_, C′ = Cop nt C

C′′← =̂ := C′ ut Cæ

return C′′

stept~(� 5 .�G.48)ℓ �(�̂, (̂, Cæ)
def

=

do =̂ = ℓ��̂ ; C ← =̂ := G : ) t
⊥

C′← for (̂′ ∈ C do bodyt( 5 , G, 48 , =̂ , �̂, Cæ, C)

C′′← =̂ := C′

return C′′

bodyt( 5 , G, 48 , =̂ , �̂, Cæ, C)((̂′)
def

=

do =̂G = G��̂�(̂′ ; =̂ 5 = 5��̂�(̂′

�̂8 = �̂.G : =̂G , 5 : =̂ 5 ; =̂8 = 8��̂8

CG ← !=̂G ; C 5 ← !=̂ 5

C′
æ
= Cæ[G ← CG] ; C8 ← stept~48�(�̂8 , (̂′, C′æ)

G : [(̂′ : C′G → C′
8
], C′ = G : [(̂′ : CG → C8] nt C((̂′)

C′′, C′
5
= C((̂′) nt C 5

_← =̂G , =̂ 5 =̂8 := C′G , C
′
5
, C′

8

return C′ tt C′′

Figure 2.4 Abstract transformer for data flow refinement semantics
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!=̂
def

= Λ" t. 〈" t, " t(=̂)〉

=̂ := C
def

= Λ" t. let C′ = " t(=̂) tt C in 〈" t[=̂ ↦→ C′], C′〉

env(�̂) def

= Λ" t. 〈" t, " t ◦ �̂〉

for (̂ ∈ ) t do � def

= Λ" t.
¤⊔t

(̂∈) t�((̂)("
t)

~do []return C� def

= Λ" t. 〈" t, C〉

~do E ← �; bs in C� def

= Λ" t. let 〈" t′, D〉 = �(" t)in

if" t′ = " t
> then 〈" t

>,>t〉 else ~do bs return C[D/E]�(" t′)

~do E = �; bs return C� def

= Λ" t. let 〈" t′, D〉 = � in ~do bs return C[D/E]�(" t)

~do assert(%); bs in C� def

= Λ" t. if % then ~do bs return C�(" t) else 〈" t
>,>t〉

Figure 2.5Monad transformers for abstract state machine

abstract variable node =̂G binding G and the current expression node =̂ where G is used.

The values C and CG represent binding of those nodes respectively. The computation is

achieved by using propagation procedure defined in Fig. 2.3. The function nt
takes these

values as input and propagates information between them. After propagation, we update

the bindings to the new values C′G and C
′
into " t

.

Concretely, if CG is a base refinement type contained refinement constraints and C is still

⊥t
, then we simply unions CG with C and remains CG unchanged. Of greater significance

here is that when the variable G represents a function. The propagationwill performs data

flow under tables. Thus, we follows the idea from figure 2.2 where input information in

the table C flow backward to CG , together with outputs depended on these inputs flowing

forward from CG to C. In case that C is still ⊥t
because no inputs accumulated here, we

initialize that value as an empty table ) t
⊥t and leave CG unchanged. Otherwise, for the

condition that both CG and C are tables, we propagate inputs and outputs by calling nt
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recursively for every call site (̂cs ∈ C. The recursive call for the propagation of the inputs

inverts the direction because we require to update the information at CG .

Function application 4 = (48 4 9)ℓ . In this case of the expression, we firstly take a transi-

tion BC4? for evaluating 48 and extract the binding value C8 stored at the corresponding

expression node =̂8 from the updated map " t
8
. If C8 is not a table, which means the base

type of 48 is not a function, then we return the error map " t
$ for this unsafe call. If C8 is a

table, we then evaluate 4 9 to obtain the newmap" t
9
and abstract value C 9 at the associated

expression node =̂ 9 . We omitted conditions for checking whether C 9 is neither ⊥t
nor >t

on the transformer. However, if so, we returns " t
9
if C 9 is ⊥t

, and updates " t
9
for C to >t

if C 9 is >t
. Otherwise, we need to propagate the information between C , C 9 and C8 , where

input value for the call is C 9 and return value is C. To do this, we construct a temporary

table as I : [8 ·̂ (̂ : C 9 → C], where 8 ·̂ (̂ is the concatenation of the parameter (̂, whereby the

extended stack will be the representation of function call. Then we propagate information

between this table and call site value C8 . Clearly, we propagate the input information C 9

backward to the input of C8 and the output of C 9 forward to C. That is, after the propagation,

C′
8
encloses the information the information flowed from the input argument. Once the call

site =̂8 stores the evaluated outputs from the function definition, the result information

will finally propagate advance to the result expression node which is =̂.

If-then-else 4 = (48 ? 4 9 : 4:)ℓ . We compute to get the updated map " t
8
which stores the

value C8 associated with the expression node =̂8 . If C8 is unreachable for now (C8 = ⊥t
), we

return" t
8
. We return an error map" t

>t if C8 is not a Boolean refinement typewhere we use

�>>;C for representing supremum over Boolean refinement type. Then we evaluate the

then-branch to obtain the value C 9 over expression node =̂ 9 by strengthening the path of

floweddata Cæwith true part of constraints over C8 . The else branch is handled analogously.

For Cæ, the strengthening process flows path constraints along with the execution path,

so the extracted values Ctrue and Cfalse are based on which branch we evaluate. Finally, we

respectively propagate the information between the expression node =̂ and each branch
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node. The result value over if-then-else expression node =̂ is the join of the propagated

values C′, C′′ from the above two computations.

Binary operation 4 = (48 >? 4 9)ℓ . Here, we evaluate each operand to obtain the latest value

C8 and C 9 at the corresponding expression node =̂8 and =̂ 9 . Next, we aggregate the values

C8 , C 9 from the two operands node =̂8 , =̂ 9 , plus a constraints for operation, which establishes

the mathematical relation between two operands. Finally, we propagate the accumulated

value (represented as Cop) forward to the abstract value C associated with the expression

node =̂. C′ contains the abstract value obtained by abstractly evaluating >? on C8 and C 9 .

(Recursive) function 4 = (� 5 .�G.48)ℓ . For the function expression node =̂, we first look up

the stored table ) t
, denoted by an abstract value C in the abstract transformer, representing

the current approximation of the function represented by 4, and then walk through each

abstract call stack (̂′ where an input has already been back-propagated to ) t
(if the input

part of the table is ⊥t
, return" t

). Here, for each call site over table ) t
, we perform several

computations as follows. At first, we still report " t
>t if the stored call site information

of the table ) t((̂) is >t
. Otherwise, based on the call site (̂′, we first create a variable

node =G for storing parameter value CG and another variable node = 5 for storing recursive

information C 5 if the function is recursive. Note that, the value bound to the node =G

might be a table if 4 is a high-order function. In addition, we add bindings for parameter

variable G and the variable 5 for recursive call to 4 into the given environment �̂. We also

updates the path information Cæ by pushing the value CG over the variable node =G , unless

the value is a base refinement type. Note those defined nodes are unique in reference to

(̂′.

After those preliminaries, we propagate information between the values, combined by

creating a singleton table over call site (̂′, stored at the node =G for the input parameter

and at the node =̂8 for the body 48 , and the table ) t
. Concretely, if the input value, which is

bound to the argument of the expression node = at (̂′, contains information, we propagate

that backward to the corresponding environment node =G . This captures how a function
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receives a parameter from its caller. At the same time, if the body value C8 = "
t(=̂8) exists,

we propagate that value forward to the output of ) t
at (̂′. We also computes C8 by calling

stept
with an updated environment �̂8 , an abstract call site stack (̂′, and a augmented flow

value C′
æ
, which represents the abstract value of the body 48 .

Furthermore, the final propagation performs interchange of information between the

table ) t
and the table stored at recursive call site node =̂ 5 . Concretely, the information of

recursive call propagates backward to the input of ) t
, whereas the output of ) t

at (̂cs flows

forward to the recursive call. The last propagation allows ) t
to pick up inputs coming

from recursive calls to =̂ 5 and evaluate them in the next iterations. This step is omitted if

the function is non-recursive.

After these two propagation steps, we store each updated value back to the given map

" t
and obtain a new map " t

1
. Particularly, we obtained two values C , C′ for the table ) t

,

which ultimately performs a relational join over these two new values before updating

the binding. Overall, the updated maps obtained for all call sites are then joined into a

single map.

2.2.6 Widening and Abstract Semantics

Widening To establish the convergence of the fix-point iteration for the type analysis, we

need a widening operator for the domain of refinement typesV t
-
. We construct such an

operator from the widening operator Oa
-
on the domains of refinement relations and a

shape widening operator. In order to define the latter, we first define the shape of a type

using the function sh :V t
-
→V t

-

sh(⊥t) def

= ⊥t sh(>t) def

= >t sh('t) def

= ⊥t sh(I : ) t) def

= I : Λ(̂. 〈sh(�1() t((̂))), sh(�2() t((̂)))〉

A shape widening operator is a function Osh
-

: V t
-
×V t

-
→ V t

-
such that (1) Osh

-
is an

upper bound operator and (2) for every infinite ascending chain C0 vt
-
C0 vt

-
. . . , the chain

sh(C′
0
) vt

-
sh(C′

1
) vt

-
. . . stabilizes, where C′

0

def

= C0 and C′
8

def

= C′
8−1
Osh
-
C8 for 8 > 0. In what
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follows, let Osh
-
be a shape widening operator. First, we lift Oa

-
to an upper bound operator

Ora
-
onV t

-
:

C Ora
- C
′ def

=



{� : b | aOa
-

a′} if C = {� : b | a} ∧ C′ = {� : b | a′}

I : Λ(̂. let 〈C8 , C>〉 = ) t((̂); 〈C′
8
, C′>〉 = ) t′((̂)

in 〈C8 Ora
-\{I} C

′
8
, C> Ora

-∪{I} C
′
>〉

if C = I : ) t ∧ C′ = I : ) t′

C tt
-
C′ otherwise

We then define the operator Ot
-

: V t
-
×V t

-
→V t

-
as the composition of Osh

-
and Ora

-
, that

is, C Ot
-
C′

def

= C Ora
-
(C Osh

-
C′).

Abstract semantics We nowdefine the abstract semantics St~4� of a program 4 as the least

fixpoint of the widened iterates of stept
over the complete lattice of execution maps:

St~4�
def

= lfp ¤v
t

" t
⊥
Λ" t. (" t ¤Ot stept~4�(�̂&)((̂&)(>t)(" t))

Here, �̂& is the empty environment and (̂& denotes the empty abstract stack.

2.2.7 Example

We now explain the analysis through an example. Consider the program in Fig. 2.6. Our

data flow refinement type analysis infers data flow invariants represented by execution

maps. During the program execution, we inherently know that function id takes two

individual data flow paths. Therefore, at each call-site, our semantics may trace the

context information by storing input and output values separately. Recording the calling

context can be parameterized as an abstract stack (̂ inbuilt in the table semantics, which

improves precision of the analysis.

In particular, for context-insensitive version, we integrate call-site information into a

single function node. The resulting table for function id is shown on the left-hand side

of Fig. 2.6. The information from two calls at location 0 and 3 has been collapsed. In this

version, the tables only contain a single entry for all call sites. For the 1-context-sensitive

26



1 let id x = x in

2 let _ = assert((id0 11)2 = 1) in

3 assert((id3 24) 5 = 2)

context-insensitive 1-context-sensitive

id ↦→ [I : {� : �=C | � ≥ 1; � ≤ 2}

→ {� : �=C | � = I; � ≥ 1; � ≤ 2}]

0 ↦→ [I : {� : �=C | � = 1}

→ {� : �=C | � = I; � = 1}]

3 ↦→ [I : {� : �=C | � = 2}

→ {� : �=C | � = I; � = 2}]

1, 2 ↦→ {� : �=C | � = 1}

4 , 5 ↦→ {� : �=C | � = 2}

id ↦→ [I0 : {� : �=C | � = 1}

→ {� : �=C | � = I0 ; � = 1};

I3 : {� : �=C | � = 2}

→ {� : �=C | � = I3; � = 2}]

0 ↦→ [I0 : {� : �=C | � = 1}

→ {� : �=C | � = I0 ; � = 1}]

3 ↦→ [I3 : {� : �=C | � = 2}

→ {� : �=C | � = I3; � = 2}]

1, 2 ↦→ {� : �=C | � = 1}

4 , 5 ↦→ {� : �=C | � = 2}

Figure 2.6Program1andportionof its executionmapobtainedwith thePolyhedra

domain for a context-insensitive and 1-context-sensitive analysis.

version (see the right-hand side of Fig. 2.6), the table of function id captures input-output

data based on each of these two paths. At this time, the tables store flow information

separately for each the call site location. Like the example we given, the table of function

id stored at locations 0 and 3 now contains information for each of the two call sites id0

and id1 in the program.
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Chapter Three

DRIFT2 & Experiments

In this chapter, we firstly discuss important aspect of DRIFT
2
’s implementation. We

present the specific instantiations of our parametric data flow refinement type semantics

that we implemented in DRIFT
2
. In particular, we consider two specific choices for the

representation of abstract stacks (̂ which control the level of context sensitivity. The first

choice yields a context-insensitive analysis that works similarly to Liquid type inference.

The second choice tracks the most recent call site in (̂, yielding a 1-context-sensitive

analysis. Section 3.1.1 gives implementation-level details about these choices.

Next, we present performance evaluation by testing DRIFT
2
on OCaml programs. Our

evaluation consists of two parts. The first part shows the results of an experiment that

compares different configurations of DRIFT
2
in terms of the selecting abstract domains

of type refinements, choices of widening/narrowing strategies, and levels of context

sensitivities. In the second part, we compare DRIFT
2
with four state-of-the-art verification

tools for OCaml programs: R_Type, DOrder, DSolve and MoCHI.

3.1 Implementation Details

Our implementation is composed of two parts. First, we utilized the Apron library [21]

to implement various abstract domains for expressing basic refinement types, and pro-
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vided utilities for the type semantics to manipulate and filter the propagated type in-

formation. Second, we implemented two versions of the abstract transformer for the

context-insensitive and 1-context-sensitive analysis.

3.1.1 Syntax and Semantics Over Implementation

Wefirst introduce how DRIFT
2
represents the set of constants of �D. We also give a special

base type that encodes an integer array in �D.

In the remaining parts, we show how we act for the abstract stack (̂ during the im-

plementation of the data flow refinement type semantics. For now, we only give two

well-defined semantics over implementation stage. Note that, the most notations (see

Section 2.2.1) are inherited from the parametric data flow refinement type semantics.

Constants Built Into �D

On the implementation stage, we include three basic types of constants: integers, Boolean

and unit values, and several predefined functions which encode several array operations.

The semantics of each constant 2 belonging to a unique base type should be captured
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precisely. In �D, we gives a set of constants as:

1 : {� : �=C | � = 1}

true : {� : �>>; | TRUE:� = 1 , FALSE:⊥a}

false : {� : �>>; | TRUE:⊥a , FALSE:� = 0}

() : *=8C

Array.make : I< : {� : �=C | � ≥ 0} → 4G : {� : �=C | CAD4}

→ {� : �=C �AA0H (;) | ; ≥ 0 ; I< = ;; }

Array.length : I; : {� : �=C �AA0H (;) | ; ≥ 0; } → {� : �=C | � = ;}

Array.get : I6 : {� : �=C �AA0H (;) | ; ≥ 0; } → I8 : {� : �=C | � ≥ 0 ; � < ;}

→ {� : �=C | CAD4}

Array.set : IB : {� : �=C �AA0H (;) | ; ≥ 0; } → I8 : {� : �=C | � ≥ 0 ; � < ;}

→ 4G : {� : �=C | CAD4} → *=8C

Note that, we present Boolean constant as an overappoximation of true and false parts

because not all abstract domains allow the analysis to perform a negation operation over

linear constraints precisely. Besides, we construct an array by using Array.make operation

which takes a positive value I< as the length of that array and an initial value 4G for each

element of the array. Array.length requires an input array I; and returns the length of

the given array. To access the elements of the array, we use Array.get and Array.set.

Both operations require the query index I8 to be within the bounds of the array.

Context-insensitive Semantic Domains

For the context insensitive program analysis, the function types do not differentiate be-

tween calling context, which means different call sites calling the same function refer to

the same dataflow fact. Based on our semantics, the table only contains a single entry.
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Thus, the semantic domains are simplified as follows:

• We remove the representation of abstract stack (̂ and related constructions because

all call-sites for a function (including recursive calls) will be collapsed into a single

table entry. That is, the table type of the revised semantics is

I : ) t
- ∈ T

t
-

def

= ΣI ∈ Var.V t
-\{I} ×V

t
-∪{I}

• We simplify expression nodes to =̂B ∈ N̂B
def

= Loc and execution maps to " t ∈ ℳ t def

=

Π=̂B ∈ N̂B . V t
-=̂B

. Note that, during the analysis, we pass an environment map �̂

as a parameter (see Sect. 2.2.4), so the concise representation of a node =̂B on the

execution map" t
is equivalent to the node =̂ regardless of the environment map �̂.

1-Context-Sensitive Semantic Domains

For the 1-context-sensitive program analysis, the abstract stacks Ŝ only record the most

recent call-site. That is, we define Ŝ def

= Loc. The table type is now containing the calling

context by recording the most recent call-site location. This is a significant changes that

improves precision of the analysis. In the actual implementation, we further simplified

the representation of nodes =̂ by omitting environment �̂ in a similar way as for the

context-insensitive analysis.

Summary

Based on the two semantics we instantiated, the abstract nodes (N̂ & N̂B) and the abstract

values V t
-
are defined by appropriate OCaml datatype. Both execution maps ℳ t

and

environment maps ℰ̂ are implemented using OCaml’s map data structure. The reason we

used the express representation of nodes (i.e. N̂B) is to reduce the cost of key comparison

on the map operations.
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3.1.2 Transformer and Widening Over Implementation

We build our abstract value propagation and abstract transformer over the definition of

data flow refinement type semantics. The implementation strictly follows the definition in

Fig.2.3 andFig.2.4. On the top level, we add a function that iterates the abstract transformer

until a fix point is reached, and apply widening and/or narrowing at each iteration.

Moreover, to apply widening operation Ot
-
at each iteration of stept

, we directly use

domain widening operator Oa
-

through the Apron library which includes a common

interface over different abstract numeric domains. However, we do not implement the

shapewideningoperatorOsh
-
explicitly becauseweperformHindley-MilnerType Inference

upfront. Only if Hindley-Milner Type Inference succeeds dowe proceedwith the analysis.

This guarantees that the analysis will terminate.

3.2 Experiments

In this section, we experimentally compare the efficiency and practicability of refinement

type tools by analyzing refinement type checking with a collection of benchmarks for

OCaml. To evaluateDRIFT
2
we conduct two experiments that aim to answer the following

questions:

1. What is the trade-off between efficiency and precision for different instantiations of

our parametric analysis framework?

2. How does our new analysis compare with other state-of-the-art automated verifica-

tion tools for higher-order programs?

Our first experiment includes the comparison of the precision and performance of DRIFT
2

for different configurations of the abstract domains. The second experiment compares

DRIFT
2
with other refinement type inference tools. All our experiments were conducted

on a personal laptop with Intel(R) Core(TM) i9-9800H and 32 GBmemory running Linux.
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3.2.1 Benchmarks

To find a sufficient amount of untyped high-order OCaml programs, we generates the

benchmarks for DRIFT
2
by integrating the benchmarks from DOrder [24] and the test

cases from R_Type [25] that were previously proved and tested safe for analysis. We

excluded any programs related to algebraic data types (ADTs), because DRIFT
2
currently

does not support ADTs. Moreover, we added some erroneous benchmarks. The details

are as follows:

• Array Programs (A) include several functions showing analysis to infer refinement

types over bounds of elements/length in array;

• First Order Programs (FO) include numerous functions performing first-order be-

haviors;

• High Order Programs (HO) contain more compound high-order functions that

either contain more of less functions as parameter or return a function as its output;

• Erroneous Programs (E) either contain implementation bugs or faulty specifications,

including implementation errors and assertion errors.

Particularly, R_Type does not consider any analysis related to array, the representation

of an array from its benchmarks is a function with indexed assertion check. For the

following experiments, we created several logic-equivalent array benchmarks based on

the format of R_Type given.

Moreover, DRIFT
2
is designed and implemented based on data flow analysiswhere the

information gathered from the input program is about to calculate possible set of values

at various program locations. The trigger of this analysis typically given by an entry of

the function call. However, we apply numerical abstract domain (consists of the relational

lattices) as part of analysis, which supports type refinements over abstract scope (i.e. use

{E : �=C | >a} to express arbitrary integer input). We also examined those comparison
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tools which introduced our test benchmarks. More details about this discussion could be

found in Chapter 4. Based on these observations, we revised and dispatched benchmarks

as two suites, instead of using those kinds of benchmarks directly.

Benchmark Suite A - Unconstrained Test Inputs

In this category, for all benchmarks, we ignore to present any main function calls as an

entry of analysis in the code. Taken program 1 from Fig. 2.6 as an example:

1 let id x = x

2 let main (n:int(*-:{v:Int | true}*)) =

3 assert(id n = n)

Note that, CAD4 predicate is uninformative, which means function main accepts any in-

teger n as input. DRIFT
2
use the input refinement predicates, comment right after each

parameter of the main function, as unconstrained inputs.

Benchmark Suite B - Concrete Test Inputs

For each test case, we keep the program logic as the same as benchmark suite A, except

we now introduce several call site within the main function. For instance, here is how we

re-construct program 1 (see Fig. 2.6) over the benchmark suite B:

1 let id x = x

2 let main_p (n:int) = assert(id n = n)

3 let main (w:unit) =

4 let _ = main_p 1 in

5 let _ = main_p 2 in

6 ()

7 let _ = main ()
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3.2.2 Experiment one: comparing different configurations of DRIFT2

We use the two versions of our tool (context-insensitive and 1-context-sensitive) intro-

duced on Section 2.2.1. and instantiate eachwith two different relational abstract domains

implemented in Apron: Octagons (Oct), and Convex Polyhedra and Linear Equalities

(Polka). For each abstract domain, we further consider three different widening config-

urations: widening without narrowing (w), widening with narrowing (wn), and delay

widening with narrowing (dwn). For delay widening we use a fixed delay bound of 300

iterations, except for polyhedra where widening may kick in earlier if a certain threshold

on the number of constraints per refinement is exceeded.

Benchmark Suite A

Table 3.1 summarizes the results of the experiment. First, note that all configurations

successfully flag all erroneous benchmarks (as one should expect from a sound analysis).

Moreover, the context-sensitive version of the analysis is in general more precise than the

context-insensitive one. The extra precision comes at the cost of an increase in the analysis

time by a factor of 2-3. The results further indicate that there is no clear winner among the

different numerical abstract domains for type refinements. This highlights the benefit of a

parametric analysis that allows one to easily swap out one refinement domain for another.

One could combine the best-performing domains via a reduced product construction to

obtain a domain that performs strictly better than any individual domain. However, we

have not yet implemented this.

Benchmark Suite B

By using the benchmark suite B, as shown in Table 3.2, DRIFT
2
remains sound analysis on

the erroneous benchmarks. In addition to context sensitivity, our analysis also remains the

experimental phenomena as the first part. For timing, DRIFT
2
would require additional
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Benchmark

category

Configuration

Version context-insensitive 1-context-sensitive

Domain Oct Polka strict Polka loose Oct Polka strict Polka loose

Widening w wn dwn w wn dwn w wn dwn w wn dwn w wn dwn w wn dwn

succ 21 21 27(1) 32 32 31 32 32 31 25 25 29 36 36 32 36 36 31

total 4.08 4.68 12.70 7.27 9.20 21.91 6.68 7.93 20.09 9.95 12.37 29.82 15.85 19.33 35.31(2) 16.15 17.97 35.92(2)

HO (38) avg. 0.11 0.12 0.33 0.19 0.24 0.58 0.18 0.21 0.53 0.26 0.33 0.78 0.42 0.51 0.93 0.42 0.47 0.95

loc: 8 mean 0.22 0.24 0.62 0.34 0.47 1.55 0.30 0.36 1.49 0.55 0.69 1.46 0.81 0.98 2.26 0.84 0.89 2.00

succ 25 25 43(6) 42 42 44 42 42 47(2) 33 33 50(7) 46 46 48 46 46 49

total 18.10 20.51 58.37 24.44 29.27 52.99(1) 22.50 27.04 50.59(1) 49.44 57.67 120.27 54.77 69.06 97.59(3) 61.17 66.88 109.78(4)

FO (70) avg. 0.26 0.29 0.83 0.35 0.42 0.76 0.32 0.39 0.72 0.71 0.82 1.72 0.78 0.99 1.39 0.87 0.96 1.57

loc: 11 mean 3.33 3.58 6.43 4.49 5.00 6.18 4.00 4.42 4.43 10.78 11.84 12.11 10.15 11.95 12.06 11.94 12.08 12.63

succ 8 8 8 11 11 11 11 11 11 8 8 8 11 11 11 11 11 11

total 7.74 8.55 23.41 9.95 11.43 17.60 9.33 10.81 14.25 20.67 23.64 42.42 23.63 31.34 31.67 22.90 26.10 32.59

A (13) avg. 0.60 0.66 1.80 0.77 0.88 1.35 0.72 0.83 1.10 1.59 1.82 3.26 1.82 2.41 2.44 1.76 2.01 2.51

loc: 17 mean 0.96 1.08 2.11 1.15 1.27 1.75 1.09 1.23 1.31 3.34 3.53 4.04 3.39 4.32 4.37 3.47 3.68 4.17

succ 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15

total 23.97 25.36 27.57 17.68 20.07 27.26 16.80 17.88 21.41 41.49 45.45 54.78 30.11 33.74 40.69 30.74 32.47 43.69

E (15) avg. 1.60 1.69 1.84 1.18 1.34 1.82 1.12 1.19 1.43 2.77 3.03 3.65 2.01 2.25 2.71 2.05 2.16 2.91

loc: 16 mean 4.26 4.62 4.24 3.36 3.72 4.12 3.18 3.24 3.18 7.03 7.47 7.39 6.29 6.35 6.45 6.26 6.45 6.79

Table 3.1 Summary of Experiment 1 over Benchmark Suite A. For each benchmark

category, we provide the number of programswithin that category in parenthesis.

For each benchmark category and configuration, we list: the number of programs

successfully analyzed (succ), the total accumulated running time across all bench-

marks (total), the average running time per benchmark (avg.), and the mean run-

ning time per benchmark (mean). All running times are in seconds. The numbers

given in parentheses after (total) indicate the number of benchmarks we failed

due to runtime error. The running time for these benchmarks is not included

in the total. For the successfully verified benchmarks, we additionally provide

in parentheses the number of benchmarks that were only solved by that specific

configuration across all configurations of the same version of the tool. We omit

these two values in case they are 0.

times if a program code contains a various amount of main procedure calls, because our

analysis would need more iterations to update the constraints based on those arguments.

For the array’s benchmarks, our analysis failed more test cases than the previous experi-

ment. The reason is that we did not apply a dependency between the bounds of an array

and a requested length during the array construction.
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Benchmark

category

Configuration

Version context-insensitive 1-context-sensitive

Domain Oct Polka strict Polka loose Oct Polka strict Polka loose

Widening w wn dwn w wn dwn w wn dwn w wn dwn w wn dwn w wn dwn

succ 24 24 28(1) 33 33 31 33 33 31 28 28 32 33 33 33 32 32 33

total 4.19 3.99 8.39 6.68 7.80 15.83(1) 6.45 7.79 14.36(1) 12.45 13.77 27.19 20.40 20.71 38.53(1) 16.09(1) 18.26(1) 34.85(1)

HO (38) avg. 0.11 0.11 0.22 0.18 0.21 0.42 0.17 0.20 0.38 0.33 0.36 0.72 0.54 0.55 1.01 0.42 0.48 0.92

loc: 12 mean 0.31 0.17 0.50 0.29 0.33 1.22 0.27 0.31 1.03 0.71 0.75 1.73 1.10 1.07 2.73 0.89 0.97 2.51

succ 22 22 39(2) 40 40 47 40 40 49(1) 27 27 49(7) 45 45 50 45 45 53

total 12.81 15.25 34.42 24.19 28.74 44.46(4) 24.63 27.57 45.72(4) 55.66 61.33 102.44 79.55(1) 81.64(1) 112.51(5) 65.93(1) 75.50(1) 109.30(4)

FO (70) avg. 0.18 0.22 0.49 0.35 0.41 0.64 0.35 0.39 0.65 0.80 0.88 1.46 1.14 1.17 1.61 0.94 1.08 1.56

loc: 16 mean 1.89 2.13 2.30 4.54 4.98 5.68 4.64 4.73 5.72 8.90 9.44 7.83 12.64 11.68 14.45 10.21 10.87 11.74

succ 6 6 6 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7

total 5.94 6.77 15.14 8.91 10.38 14.03 9.07 9.91 10.38 20.79 23.29 36.35 30.27 30.51 33.96 26.53 27.97 28.83

A (13) avg. 0.46 0.52 1.16 0.69 0.80 1.08 0.70 0.76 0.80 1.60 1.79 2.80 2.33 2.35 2.61 2.04 2.15 2.22

loc: 22 mean 0.97 1.05 2.08 1.17 1.34 1.58 1.21 1.27 1.29 3.35 3.56 4.01 3.94 3.83 4.25 3.65 3.58 3.63

succ 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15

total 22.87 24.11 22.48 18.90 20.25 23.92 19.32 19.35 21.30 47.23 51.58 56.19 47.32 43.69 53.40 41.21 41.19 48.23

E (15) avg. 1.52 1.61 1.50 1.26 1.35 1.59 1.29 1.29 1.42 3.15 3.44 3.75 3.15 2.91 3.56 2.75 2.75 3.22

loc: 20 mean 3.84 3.98 3.38 3.35 3.46 3.43 3.41 3.32 3.15 9.62 10.65 8.89 12.04 10.34 11.30 10.02 9.89 9.85

Table 3.2 Summary of Experiment 1 for Benchmark Suite B.

Summary

Compared with the widening configurations, delayed to set widening improved the re-

sults, but the choice to set delay bound is a trade-off between the complexity of the analysis

and the precision of the result. The additional defeated cases shows that our tested ab-

stract domains were unable to infer non-convex properties or to express any non-linear

constraints. Notwithstanding the configuration, applying widening after each step may

cause precision loss , especially when the tool analyzes and holds the prove property

(i.e. loop invariant). We believe the precision could be boosted if we use widening with

thresholds or apply a more ’recoverable’ narrowing process to enforce convergence. Test

cases related to examining elements inside an array also failed in our analysis because

we disregard for an extension of the refinement type system, although this inference is

achievable by introducing parametric on refinement predicate variables [26].

We further conducted a more detailed analysis of the running times by profiling

the execution of the tool. This analysis determined that in both versions, most of the

time is spent in the projection operation of the underlying numerical abstract domain.
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This operation is called when type refinements are rescoped after a call to propt
. This

happens particularly often when analyzing programs that involve applications of curried

functions, which are currently handled rather naively. We believe that the running times

can be improved notably by avoiding unnecessary rescoping and handling applications

of fully applied curried functions as if they took all of their arguments at once.

3.2.3 Experiment 2: Comparing with other Tools

Overall, the results of Experiment 1 suggest that the 1-context-sensitive version of DRIFT
2

instantiated with the Polka domain and undelayed widening provides a good balance

between precision and efficiency. In our second experiment, we compare this configu-

ration with several other existing tools. We consider four other automated verification

tools: DSolve, DOrder, R_Type, andMoCHi. DSolve is the original implementation of the

Liquid type inference algorithm proposed in [14]. DOrder [24] builds on the same basic

algorithm as DSolve but augments the simple syntactic heuristics for guessing candidate

refinement predicates with amachine learning algorithm that learns such predicates from

concrete program executions. R_Type improves upon this further with a more sophis-

ticated ICE-style learning algorithm [27] and additionally replaces the Houdini-based

fixpoint algorithm of [14] with a general Horn clause solver. In our experiments, we

instantiate R_Type with the interpolation-based Horn clause solver Spacer [28], which is

part ofZ3 [29]. Finally, MoCHi [30] is amodel checker for higher-order programs based on

higher-order recursion schemes. We note that MoCHi is not limited to simple refinement

types but can also infer intersection types.

Benchmark Suite A

Table 3.3 summarizes the results of our comparison. DRIFT
2
solves significantly more

benchmarks than all other tools in the important category of higher-order programs.
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Bench-

mark cat.

DRIFT
2

R_Type DOrder DSolve MoCHi

succ full avg mean succ full avg mean succ full avg mean succ full avg mean succ full avg mean

HO (38) 36 15.85 0.42 0.81 28 2.91(3) 0.08 0.09 1 5.07 0.13 0.13 29 14.53 0.38 0.42 32 57.53(6) 1.51 3.93

FO (70) 46(3) 54.77 0.78 10.15 46(1) 7.38(13) 0.11 0.85 0 8.30 0.12 0.17 48(1) 30.80 0.44 1.33 53 170.59(15) 2.44 7.12

A (13) 11 23.63 1.82 3.39 4 1.57(2) 0.12 0.17 1 2.18 0.17 0.20 8 10.32 0.79 1.08 9(1) 4.50 0.35 0.80

E (15) 15 30.11 2.01 6.29 15 1.93 0.13 0.18 3 1.77 0.12 0.12 14 10.77 0.72 1.28 11 7.84(4) 0.52 1.72

Table 3.3 Summary of Experiment 2 on Benchmark Suite A.

Although DRIFT
2
does not surpass the hits of other tools in the first order category, we

are still comparable to the other tools if we postponed widening before several iterations.

In the remaining two categories, DRIFT
2
performs equally well as the best tool in each

category in terms of solved benchmarks, though requiring more time. Notably, DOrder

could not perform correctly if the input program does not contain the call entries.

Benchmark Suite B

The result by using Benchmark B has been summarized on Table 3.4. For the second half

comparison of experiment 2, DRIFT
2
keeps the advantage of context-sensitive analysis.

Althoughwepresented this suite of benchmarkswhich includes some concrete test inputs,

DOrder failed to parse some of them for analysis. Some error cases during experiment

are caused by interpretation error. To the best of our knowledge, we allows DOrder to

conduct test runs of the programs as much as possible, but the result we collected is not

our expected. Overall, the comparison results indicate that our approach guarantees the

termination of analysis by applying widening/narrowing process.

Bench-

mark cat.

DRIFT
2

R_Type DOrder DSolve MoCHi

succ full avg mean succ full avg mean succ full avg mean succ full avg mean succ full avg mean

HO (38) 33(1) 20.67 0.54 1.11 27 18.52(4) 0.49 5.67 9 59.38(2) 1.56 9.46 31(1) 17.88 0.47 0.56 32(2) 69.67(6) 1.83 9.70

FO (70) 45(2) 90.71(1) 1.30 15.54 50(3) 47.23(10) 0.67 4.61 39(1) 40.01(6) 0.57 2.23 50 42.33 0.60 1.75 46(2) 157.28(24) 2.25 7.53

A (13) 7 35.24 2.71 4.62 5(1) 19.35(7) 1.49 3.21 4 11.91(1) 0.92 3.17 8(2) 12.87 0.99 1.04 9(2) 4.71 0.36 0.64

E (15) 15(1) 49.27 3.28 11.79 13 2.72(2) 0.18 0.27 4 12.14 0.81 2.35 14 14.14 0.94 1.64 5 2.53(10) 0.17 0.50

Table 3.4 Summary of Experiment 2 on Benchmark Suite B.
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Summary

One disadvantage of widening/narrowing revealed by the comparison is that DRIFT
2

cannot check for assertion violations until the analysis reaches its final fixpoint. This is

because widening may overshoot, causing an assertion to be spuriously violated until

the analysis recovers from this precision loss during narrowing. In contrast, tools based

on abstract refinement techniques such as Spacer used in R_Type can often detect unsafe

programs more quickly. This is reflected by the lower running times of R_Type in the E

category. We further note that none of the tools produced unsound results in this category.

The failing benchmarks for DSolve and MoCHi are due to timeouts, respectively, a run-

time error in the analysis. The considered timeout was 5 minutes per benchmarks for all

tools. In contrast, DRIFT
2
always terminated before the timeout. We attribute this to the

use of widening/narrowing.
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Chapter Four

Related Work

There is a large literature on refinement type based verification tools. Here, we only

discuss the two most relevant approaches.

DSolve [15] is a verification tool that performs liquid type inference [1], and it builds refine-

ment predicates over conjunctions of qualifiers. The logical qualifiers are user-specified

shapes of predicates which the analysis the algorithm then instantiates. Generally, after

performing type inference over the input program, DSolve generates qualified constraints

by liquid subtyping relations, and then solves them through a theorem prover inspired by

predicate abstraction [11, 12]. Although DSolve is an automated verification tool as it can

use default qualifiers as hints, this mechanism is inadequate to meet all kinds of proofs of

safety, especially for inferring refinement types of high order programs.

DOrder [24] is one of older tool that uses a random sampling approach to infer refine-

ment predicates. This technique allows them to automatically infer refinement types for

high-order fuctional programs. During learning invariant process, it uses a binary clas-

sification strategy and builds a classifier to determine invariants based on examples from

program input and conuterexamples obtained from SMT solver, which finally synthesize

the invariants from samples into refinement predicate. However, DOrder still requires

the user to provide good test inputs for the input program. Compared with our analy-

sis, DRIFT
2
directly allows its users to specify refinement properties of input parameters
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through dedicated comments. In addition, DOrder lacks inferring inductive invariants

of recursive functions with different calling contexts. DRIFT
2
avoids this problem by

using the abstract call site stack (̂ which preserves context information to prevent loss of

precision.

R_Type [25] is a tool proposed after DOrder, which works by using implication con-

straints to discover inductive invariants and combining negative examples from the ICE

framework [27, 31]. R_Type is also a machine learning based verification tool that use

sampling-based approaches to infer type refinement. As a result, R_Type performs better

than DOrder in our experiment. Additionally, R_Type infers arbitrary Boolean combina-

tions of qualifiers as refinement predicates, this allows it to express constraints such as

non-convex relations. While the approach is successful in revealing the above situations,

it does no longer guarantee the termination of the analysis. Instead, DRIFT
2
utilizes

widening and narrowing [22] approaches to obtain a safe approximation of the program

semantics in finite time.

MoCHI [30] is a high-order model checker based on the model checking of higher-order

recursion schemes [32]. To verify higher-order functional programs with infinite data

domains (e.g. integers), MoCHI reduces such programs to higher-order Boolean pro-

grams by using predicate abstraction [12]. In addition, MoCHI uses a technique, called

Counterexample-Guided Abstraction Refinement (CEGAR) [33], which attempts to dis-

cover new predicates refined from predicate abstraction if previous predicates are not

sufficient to verify the program. One disadvantage of this approach is the discovered

counterexamples for inferring an invariant may never be strong enough to prove pro-

gram safety, which ultimately leads to infinitely many abstraction refinement steps; thus,

MoCHI does not guarantee the termination of the analysis.
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Chapter Five

Conclusions & Future Work

5.1 Limitations and Future Work

We now discuss some limitations to our current implementation. First, for the polyhedra

domain, we start widening once any length of the inferred constraints exceeds 15 because

Apron gave undefined behavior. This solution is not ideal, but the run time behavior of

our analysis is not robust otherwise. We have manually analyzed several benchmarks

that caused this problem, and the error is related to using meet and join operations. One

reason could be that the calculation of matrix constraints leads to numerical overflows if

the coefficients are extremely large.

As of now, the tool does not yet support lists or user-defined algebraic data types. More-

over, whileDRIFT
2
automatically checkswhether all array accesses arewithin bounds, it is

unable to capture quantified constraints about array elements. However, the benchmarks

include assertions that check bounds of element stored in arrays. Therefore, our next goal

is to add support for these datatypes and more expressive assertions.

Additionally, we plan to implement several general improvements to the current ver-

sion of the tool. In particular, we plan to improve the running times by avoiding unnec-

essary variable projections, by applying curried functions in an "uncurried" way. Second,

to make DRIFT
2
more expressive, we plan to extend our system to support recursive
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datatypes such as lists. Third, we wish to avoid using delay widening as a configuration

because it is difficult to guess appropriate delay bounds. One approach for widening

configuration is using widening with thresholds [34, 35], which helps us to capture upper

bounds of iterations during the analysis of recursive functions.

5.2 Conclusions

In this thesis, we presented an implementation of a new parametric data flow refinement

type inference analysis. Our experimental evaluation indicates that our approach guar-

antees the termination of the analysis by applying widening. The parametric modeling

abstract stack Ŝ also permits programmers to design and implement the degree of approx-

imations by calling contexts. Overall, we conclude that DRIFT
2
compares very well to the

state of the art, demonstrating that our approach promises to provide a solid foundation

for implementing robust refinement type inference algorithms.
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