The average case complexity of multilevel
syllogistic

Jim Cox, Lars Ericson, and Bud Mishra

Abstract

An approach to the problem of developing provably correct programs
has been to enrich a theorem prover for Hoare logic with decision pro-
cedures for a number of decidable sublanguages of set theory (EMLS,
MLS, and extensions) and arithmetic (F'PILP) [Sch77]. Citing results of
Goldberg [Gol79] on average case behavior of algorithms for SAT), it was
hoped that these decision procedures would perform well on average.

So far, it has been fairly difficult to prove average case NP-hardness un-
der the various definitions ([Lev86], [BDCGLS89], [BG91], [Gur91], [VR92],
[SY92], [RS93]). We should note that the definitions in the literature
haven’t yet been standardized. We survey some of the results of the av-
erage case analysis of NP-complete problems, and compare the results of
Goldberg with more pessimistic results. We prove that FPILP, EMLS
and related fragments of set theory are NP-average complete, and show
that there are simple distributions that will frustrate any algorithm for
these decision problems.

1 Introduction

One goal of computer science has been to develop a tool T to aid a programmer
in building a program P that satisfies a specification S by helping the pro-
grammer build a proof in some logic of programs L that shows that P satisfies
S. S typically is a pair of propositions (¢,) such that, for an input z to P,
é(z) = Y (P(z)) when P is defined on z. ¢ is called the precondition or assump-
tion, and v is called the postcondition or assertion. The problem of finding a
suitable logic L of programs and specifications and verification tool 7" may be
generically referred to as the “Floyd-Hoare problem”, formulated around 1967
[Flo67, Hoa69].

Around 1977, Davis and Schwartz proposed an extension of the Floyd-Hoare
problem in which there are multiple assumptions and assertions, referring to
the state of a program as execution passes through different places m in the
program [DS77, Sch77]. A placed proposition is then a pair (¢,), where 7 is
either a line of a program or the name of a function. A placed proposition

(¢, m) holds when, if execution reaches 7 and the value of the variables X in P
is V, then ¢(V) is valid. A program with assumptions and assertions or praa
is then a triple R = (P, E, F') where the assumptions £ and assertions F' are
sets of placed propositions. The pair (E, F) is the specification for P, and R is
correct when, for every (¢, w) in F, if every assumption in E holds, then (¢,)
holds. Davis and Schwartz proposed a logic of programs L for establishing the
correctness of praas. Deak in her 1980 PhD thesis showed how this logic could be
applied to derive several variants of searching algorithms from a common root
algorithm [Dea77, Dea80]. The Davis-Schwartz vision of the ideal verification
tool T" was one in which the inference rules I of L could be extended by decision
procedures for commonly occurring programming language constructs, subject
to the restriction that the set R of correct praas verifiable in L would not change
under any extension to /. That is, assuming that L is sound, any extension of
L is stable and consequently also sound. This approach is called the “correct
program technology problem” [Sch7§].

Davis and Schwartz proposed that a series of decision procedures be dis-
covered for sublanguages of Zermelo-Frankel set theory corresponding to pro-
gramming constructs commonly used in the high-level set-oriented programming
language SETL [Sny90a, Sny90b]. Two key assumptions were that

1. By replacing long proofs with trivial steps by short proofs with complex
steps, it would be cognitively easier for a programmer to assist the verifi-
cation tool in finding a correctness proof for a praa, and the average time
cost of verifying a praa would be reduced.

2. The cost Th,1 of verifying the correctness of the composition of two praas
R, and Rs would often be significantly less than the costs T, T4 of verifying
the correctness of R; and Rj individually.

One can construct cases in which this latter assumption does not hold. There-
fore the hope that composition is cheap must be accompanied by a far more
detailed context than the one that says it is easier to write an application when
a library of correct programs is available than when one is not. Depending on
how well suited the library is to the task at hand, it can be cheaper to start from
scratch, because adherence to a specification and adequacy of the specification to
express a given intent are separate issues. While these issues certainly impact
the feasibility of correct program technology, in this paper we will focus on the
complexity of the decision problems associated with the technology.

In the 1980’s, many approaches to the Floyd-Hoare problem and the correct
program technology problem were explored, including some alternatives to the
Davis-Schwartz approach such as the RAPTS system of Cai and Paige [CP89],
and the Calculus of Constructions of Huet, Coquand and Paulin-Mohring (the lit-
erature includes [CH85],[Coq86],[Moh86], [PM88],[Hue88a],[Hue88b],[Hue89]).
In all three cases we see a reliance on decision procedures for establishing equiv-
alence of values constructible by composition from some class of functions, rela-

tions and types. It is then natural to focus on the problem of improving on the
average cost of decision problems that are in general intractable.

In this paper we examine two sublanguages, fragments of set theory [FOS80,
Pol87], and integer linear programming [Dav57, Coo71, Coo72, Sho77, CZ93]
used in the Davis-Schwartz approach to correct program technology. Several
ways of dealing with the seeming intractability of these languages have been
explored. For example, we can search for tiny sublanguages whose decision
problem has polynomial time complexity in the worst case [Pra77, Sho81]. Al-
ternatively we can show that the average case time complexity of some selection
of the instances of the decision problem is of a lower order of magnitude than
the worst case for all instances [DP60, Gol79, Fra86, Fra91, PT92]. In particu-
lar, the good performance of both the Davis-Putnam procedure and resolution
based methods for SAT on random inputs, has been cited as a hopeful sign for
deciding sublanguages of set theory.

While some NP-complete problems seem to possess good average case algo-
rithms, there has recently been an attempt to identify languages for which this is
not the case. One approach is to show that the decision problem for a given NP-
Complete language is also average case hard in the sense of Levin [Lev86]. We
will use this approach to analyze the average case complexity of the languages
considered in this paper.

In addition to proving the NP-average completeness of EM LS and related
fragments of set theory, we will prove the somewhat stronger result that these
languages are NP-distributional complete for infinitely many simple (linear time
rankable) probability distributions. This implies that such distributions will
cause any decision algorithm to have poor (super-polynomial) average case be-
havior, unless nondeterminism and determinism are equally powerful with re-
spect to exponential time.

The paper is organized as follows: section 2 introduces the languages consid-
ered in this paper, section 3 reviews some results on the average behavior of the
Davis-Putnam procedure and resolution for SAT, section 4 reviews the theory
of average case complexity relevant to our analysis, and section 5 presents our
results on the average case complexity of the sublanguages of set theory perti-
nent to correct program technology. A preliminary version of this work appears
in Ericson’s thesis [Eri94, chapter 5], which the reader may wish to consult for
more details on the other issues raised above.

2 Some key intractable sublanguages

We review some of the key sublanguages relied upon by the decidable sublan-
guages of set theory approach [FOS80, CFOS8T] to correct program technology.
The languages are in the domains of set theory and integer linear programming.

2.1 Set theory

A key decidable sublanguage in set theory is multi-level syllogistic (M LS), or
sets with =, #,€,¢,U, N and \ (set difference).

Ferro, et al. [FOS80] define the language M LS (multi-level syllogistic) as
follows:

SetVariable + wvgl|vi|vy...
Symbol + B|SetVariable
Set BinaryOperator <+ U]\ |N
SetTerm < Symbol|SetTerm SetBinaryOperator SetTerm
SetBinaryRelator <+ €& |=|#
SetRelation < SetTerm SetBinaryRelator SetTerm
Prop + SetRelation|—Prop|Prop A Prop
|

PropV Prop|Prop = Prop|Prop = Prop
They define a literal to be
Literal + SetRelation|-Set Relation

We call these M LS literals. Further, if the only set theoretic operator or relation
allowed is membership, we call the subset language of M LS so obtained M LSe¢.
Let p be a Prop. They note:

Our aim is to solve the validity problem. That is, we seek an algo-
rithm to determine whether p is valid or not. This problem easily
reduces to the one of testing a conjunction ¢ of literals for satisfia-
bility. In fact, p is valid if and only if —=p is unsatisfiable; moreover,
—p can be brought into disjunctive normal form ¢ V - - -V ¢, and is
satisfiable if and only if at least one of the ¢; 1s satisfiable.

They show how to transform any SetRelation into a member of the follow-
ing language of conjuncts of elementary literals, called elementary multi-level
syllogisticor EMLS:

SetVariable + wvglvi|vy...
Symbol + B|SetVariable
ElementaryLiteral <+ Symbol = SetV ariable U SetVariable
| Symbol = SetVariable \ SetVariable
Symbol = SetVariable N SetVariable
Symbol € SetVariable
SetVariable ¢ SetVariable
Symbol = SetV ariable

| Symbol # SetVariable
SetRelation <« ElementaryLiteral|ElementaryLiteral A SetRelation

If an elementary literal does not use #, \, and ¢ we shall call it an elementary
posttive literal.

The primary algorithm proposed to decide EM LS has been the model graph
algorithm, and the hopes were that, augmented with suitable heuristics, it would
perform well on average. In the worst case, an upper bound on the number of
model graphs that need to be checked is 247" where n is the number of vari-
ables in the sentence. Coincidentally, the number of distinct EM LS conjuncts
is 222°+47° whose exponent is of the same order of magnitude. Policriti [Pol87]
originally proves the NP-completeness of M LS. The problem of finding a satis-
fying assignment for sentences in M LS¢ is NP-complete [COP90)].

In this paper, in addition to proving the NP-average completeness of M LS
(and related languages), we prove the stronger result that deciding a subset of
EMLS, that is, conjuncts of elementary positive literals, is both NP-complete
and NP-average complete.

2.2 Presburger arithmetic and the feasibility problem for
integer linear programming

A key decidable sublanguage within number theory is Presburger arithmetic and
its purely existentially quantified subcase, the feasibility problem for integer lin-
ear programming (call this FPTLP). Let the base language of literals be called
ILP. Presburger arithmetic is ILP with unrestricted use of existential and uni-
versal quantifiers over integer-valued variables. FPILP is ILP with just univer-
sal or just existential quantifiers. The grammar of ILP is as follows:

ILP « id=0]id=1]0<id |
id=id+id | id = id —id |
ILP A ILP

According to Oppen [Opp75], by algorithms of Hilbert-Bernays [HB68, pp.
366-375] and Cooper [Coo71, Coo72], it is known that satisfiability of Presburger
arithmetic can be solved in no worse than

92"

time steps for inputs of size n for mixed quantifiers. According to Shostak
[ShoT77], Cooper’s algorithm rarely exhibits the worst case. Oppen has observed
that the satisfiability problem for FPILP is NP-complete. The problem of decid-
ing the satisfiability of purely existentially quantified conjuncts ¢ of literals of
the form 2 < y — ¢, < c or = y is, on the other hand, solvable in time O(n?)
where n is the number of distinct integer variables occurring in ¢ [Pra77, Sho81].

3 Complexity of SAT algorithms under different
sampling distributions

A number of researchers, including [Gol79], [PT92], and [Fra86], have reported
good average case performance of algorithms for deciding conjunctive normal
form sentences in propositional logic (SAT) on randomly generated formulae.
This has been cited as providing the hope for the good average performance of
the model-graph algorithm, augmented with suitable heuristics. Here we consider
Goldberg’s analysis of the average case of both the Davis-Putnam procedure and
resolution based methods for SAT [Gol79], as the other results are similar.

In Goldberg’s work on random instances of SAT, a formula with n clauses
over r variables is selected by randomly constructing clauses. To construct a
clause we flip an unbiased three-sided coin once for each of the r variables. Based
on the result of the coin toss, we include the variable in the clause, we include
its complement, or it doesn’t occur at all. Under this distribution and simi-
lar distributions, usually referred to collectively as the constant density model,
Goldberg et.al. show that the Davis-Putnam procedure (DPP) has polynomial
average time behavior. The results are extended to resolution based methods
by showing that a polynomial running time for DPP on an unsatisfiable formula
implies a polynomial length resolution refutation.

Chvatal and Szemeredi’s paper [CS87] suggests why DPP and resolution have
good performance under the constant density model. In their terms, the constant
density model sampling distributions select dense formulee with high likelihood;
sparse instances of SAT are hard for DPP and resolution based methods.

Let C(r, k) be the set of clauses (disjuncts of literals) containing k literals over
r variables. Let C’(r, k) be the set of clauses in which ¢ and —¢ never appear
simultaneously in a clause. Let K(n,r, k) be the n-fold Cartesian product of
C'(r, k). The size of C'(r, k) is (1:) 2% We build a random sentence in K(n, r, k)
by choosing n times from C'(r, k) with equal likelihood.

The resolution complexity of an unsatisfiable formula is the length of the
shortest sequence of clauses constituting a resolution refutation of the formula.
Consider the following theorem of Chvatal and Szemeredi [CS87, p. 2]:

Theorem 3.1 For every choice of positive integers ¢ and k such that k > 3
and ¢27F > 0.7 there is a positive number ¢ such that, with probability tending
to one as n tends to infinity, the random family of en clauses of size k over n
variables is unsatisfiable and its resolution complezity is at least (14 €)".

An immediate consequence of this theorem is that:

Theorem 3.2 The average resolution complerity (and hence a lower bound on
the average complezity of both DPP and resolution based algorithms) of random
sentences in

K(er,r k)

with

o~

>3
£ >0.7

92k

is Q((1+ €)") where ¢ > 0.

This contrasts with Golberg’s result. In the Chvatal-Szemeredi result, we
are constructing sentences consisting of a large set of small fixed-size clauses,
where the number of variables appearing in the sentence is proportionally less
than the number of clauses of the sentence, e.g. 3-SAT with at least 6 times as
many variables as clauses. On the other hand, Goldberg constructs sentences
with large clauses, each variable having a 2/3 probability of appearing in any
given clause. Chvatal and Szemeredi are fixing the size of the clauses as the
length of the sentences and the number of variables grow (referred to as the
constant component size model). In other words, sparse sentences are those
where a large number of distinct variables appear in the sentence, yet each
clause contains only a small proportion of the total number of variables. While
other researchers have constructed infinite families of hard instances that are
rare under Goldberg’s distribution, Chvatal and Szemeredi have constructed a
reasonable sampling distribution where almost all instances are hard.

In conclusion, the way Goldberg, Franco and Policriti-Tetali do their sam-
pling essentially avoids the infinite set of hard instances constructed by Chvatal
and Szemeredi. Sparse formulae with bounded-length clauses are hard for reso-
lution and DPP, dense formule are easy. Mitchell et al. (1992) [DML92] point
out that the distributions for which known algorithms have average case poly-
nomial time behavior for SAT are somewhat artificial and not the distributions
one encounters in Artificial Intelligence applications (e.g. in truth maintenance
systems). This brings us to the problem of understanding the average case com-
plexity of SAT.

4 The theory of average case complexity

SAT is, by Cook’s Theorem, the canonical NP-complete problem [GJ79]. Tt
also happens to be a problem around which a theory of average case complex-
ity of considerable subtlety has grown ([Lev86], [BDCGL89], [BGI1], [Gur9l],
[VRI2], [SY92], [RS93]). This theory, originated around 1984 by the Russian
mathematician Leonid Levin, arises from the study of complexity classes. While
the work of Goldberg, Franco, Policriti and Tetali, and Chvatal and Szemeredi
on the Davis-Putnam procedure has concentrated on the particular algorithm
and the effect of a given distribution on that algorithm, the Levin-inspired work
focuses on the inherent average case complexity of the problem.
In this section, we:

e Review the rationale for the somewhat non-intuitive definitions of the new
theory of average case complexity.

e Give the structure of the theory, sufficient to state results concerning the
average case complexity of SAT. In particular, we define distributional
problems, average case complexity classes and NP-average completeness.

e State the result that SAT is NP-average complete and give the conse-
quences of this result.

e Give the conditions on reductions needed to prove the NP-average com-
pleteness of the languages studied in this paper.

4.1 Rationale for the new theory

The traditional notion of the average case complexity of a machine M on a
problem is the average of the time cost of the procedure on all instances of a
given size n, weighted by the probability u,(z) of each instance z. We write
this as

Timeh, (n) = Z Hn () timeps ()

|z|=n

where timeps(z) is the actual number of steps needed for M to halt on input
z. It turns out that this definition of average case complexity is inadequate.

Ben-David et al. [BDCGL89] note:

.. .naive formulations of these definitions suffer from serious problems
such as not being closed under functional composition of algorithms,
being model dependent, encoding dependent etc.

Regarding the functional composition and model-dependence criticism, Gurevich
[Gur91] observes that it is easy to find M such that Time’;(n) is polynomial
in n, but where, if M computes f(z), and M? computes f(f(z)), Timel,.(n)
is no longer polynomial in n. Reischuk et.al. pointed out that there is also a
possibility that, since p is subscripted by n, it could be piecewise-defined so that
qualitatively different measures are used for inputs of different sizes.

Such considerations have resulted in a more evolved definition of average-
case complexity of a machine. Let u(z) be a distribution function defined over
the space of all inputs z of any size. Let T (n) be such that Timef, (n) < Tar(n)
for all n > 0. Then M is called Levin-p-average Tas-time bounded if

1/,)

ZH(Z‘)TM (timeps (z)) <1
a]

Example 4.1 Reischuk et.al. find that there are still problems with this defi-

nition, namely that the functional growth of p(z) influences the time bound T'

[RS93]:

If, for example, one takes the “standard” uniform probability distri-
bution, which assigns probability puniform (%) := 6/7T2~|33|_2~2_|’7| to a
string € {0, 1}* a machine using n? steps on every input of length n
would already be average O(n!*¢)-time bounded for arbitrary ¢ > 0.

So instead of Levin-p-average Thr-time boundedness, they propose a hierar-
chy of average case complexity classes whose members are distributional prob-
lems (L, p) where I is a language and p is a distribution upon which is im-
posed, in addition, a restriction on monotone transformations of . We will give
the more restricted definition and define some of these classes as we proceed.

However, the price for this more accurate theory will be a considerable loss in
“intuitiveness” over the original, simple definitions.

The intuition underlying Reischuk et.al.’s theory of average case complexity
is as follows:

For the space of all inputs, we attach a much higher weight to the inputs
we expect to see. This gives us the notion of a distribution function on
the set of inputs. We can now define a distributional problem to be a
decision problem together with the probability distribution function on
the instances of that problem, and seek algorithms that have good average
case behavior with respect to this distribution function.

The initial work in average case complexity sought to bound the compu-
tational complexity of the distribution function in various ways because
distribution functions that were computed using a lot of computational
resources could artificially select the hard instances of a problem as be-
ing most likely, thereby frustrating a given algorithm. So the idea was
to use distribution functions that weren’t too complex, either in terms of
computing the distribution function or computationally sampling from it.

The functional growth of the distribution function still affected and led to
poor estimates of the average case running time of a given algorithm (see
Example 4.1 above). By poor we mean that our average case complexity
determination is not of the same order as the actual performance of our
algorithm on the given distribution of inputs.

In order that the functional growth of the distribution function not influ-
ence the upper bound estimate on the average time complexity of a given
Turing machine, Reischuk and Schindelhauer bound the complexity of the
machine with respect to all monotone transformations on the distribution
function. That is, the actual probability assigned to a given input is not
primarily important, but only the fact that the input is more (or less) likely
than another input. Thus one should be able to “scale” the distribution
function while, for each pair of inputs @ and b, retaining the fact that a is
more likely than b (or vice-versa). This is shown to be equivalent to the

notion of the rankability of the distribution function. In particular, let the
rank of an input be the number of elements in the input space of higher
probability than a given input, according to the distribution function. One
can thus characterize a distribution function based on the amount of re-
sources needed to compute the rank of any given input. Then one defines
the average running time of a machine to be total running time averaged
over the k& most likely inputs (the k inputs of smallest rank). It is this
notion that seems to be the “right” one for developing a robust theory of
average case complexity.

4.2 Average case complexity classes

Let ¥ = {0,1}. Let ¥* = U,>oX" be the set of all strings. A language is a
subset of ¥*. Let bin : A/ — I* be a standard mapping from natural numbers
to a self-delimiting binary encoding that obeys lexicographic order.

In the following, let DTM (respectively, NTM) stand for deterministic (ve-
spectively, nondeterministic) Turing machine.

Let p: ¥* — [0, 1] be a probability distribution on strings. Then:

e The rank of a problem instance x is the number of problem instances with

probability greater than z according to probability measure y, i.e.

rank, (z) = [{z € % : p(2) > u(z)}|

This number is always finite, if p(z) > 0, since if a given instance has
probability p > 0, then the number of instances that have probability
q > p is bounded by |(1 — p)/p|.

A complexity bound is a function T : N — N. We assume that any such T'
is monotone increasing and time-constructible. Time-constructible means
that there is a DTM M that on input z runs exactly 7'(]z|) steps for all
x € N. T is not necessarily injective. We define T~ as it is used below
to mean

T7Y(m) = min{n : T(n) > m}

The rankability of a distribution is the amount of effort needed to compute
the rank of an input z. Let T-rankable be the set of all distributions y
for which there exists a DTM M that on input 2 computes bin(rank,(z))
in time T'(|z]).

Let POL be the set of complexity bounds

and

POL= [] O(N*)
keN

POL-rankable = U T-rankable
TePOL

10

Hence POL-rankable is the class of distributions rankable in polynomial time.

A distributional problem is a pair (L, u) with L C X* a language and p :
¥* — [0, 1] a probability distribution.

The class of languages N P are those languages for which membership is
decidable in polynomial time on an NTM.

Let NP9st = {(L,u): L € NP Ap € POL-rankable}.

A real-valued function m : [0, 1] — [0, 1] is called monotone if z < y implies
that m(z) < m(y). A real-valued monotone function m : [0, 1] — [0, 1] is called
a monotone transformation of distribution p if >~ m(u(z)) < 1.

Define Av(T) to be the set of pairs (f, u) such that

f =N
o X —=[0,1]

and for all monotone transformations m,

This definition makes reference to all monotone transformations of a distri-
bution function, and is therefore unnecessarily complex. However, by a result of
[RS93], a simple alternative definition is that Av(7T") consists of all (f,) which
have the property that if we choose any integer £,

T—l
$ (f(=) _,
|z~
rank,(z)<t
In this way, each rank function represents a whole set of distributions. Thus a
machine runs in average time 7T if, for each k, its total running time on the &

most likely inputs is no more than k7.
Define Dist DTime(T) to be the set of pairs (I,) such that

(ADTM M) L(M) = L A (timeyr, pi) € Av(T)
Define AvDTime(T,C) to be the set of L such that
(V€ C) (L, p) € DistDTime(T)

Define AvP as
AvDTime(POL, PO L-rankable)

An injective function f : ¥* — X* is a polynomial time reduction from
language Ly to language Lo if f can be computed in deterministic polynomial
time and z € Ly if and only if f(z) € Ls.

An injective function f : X* — ¥* is a distributional reduction from the
distributional problem (L1, p1) to the distributional problem (Lz, pa) if:

11

1. f is a polynomial time reduction from L; to Ls.

2. Domination Condition:

(Feo,e1 >0) (V2 €X) rank,,(f(z)) < colz|rank,, (z)

Remark: The purpose of the domination condition is to preserve polyno-
mial average time computability. Thus if L, has an average polynomial time
algorithm under distribution ps, this immediately gives an average polynomial
time algorithm for (L1, p1) under the definition of average time given above.

A distributional problem (I, p) is NP-distributional complete if (L,p) €
N P%st and if for all distributional problems in N P#*! there exists a distri-
butional reduction to (L, p).

A language L is NP-average complete if L € NP and for all L’ € NP and
p' € POL-rankable there exists a distribution p € POL-rankable such that
(L', p') has a distributional reduction to (L, p). One immediately obtains the
following important result of [RS93]:

Theorem 4.1 If (L,p) is NP-distributional complete then L is NP-average
complete.

Reischuk et.al. draw the picture, shown in Figure 1, of languages L; whose
recognition problem lies within the worst case complexity class NP and the
average case complexity class AvDTime(T, V-rankable), for varying recognition
problem worst-case time complexities T' and ranking-function worst-case time
complexities V. h(T) is an upper bound on the complexity of ranking functions
so that the problem still has an efficient average case algorithm and is called the
nose. This we may define formally as

nose(L) = {(T,V) € (POL,POL) : L € AvDTime(T,V-rankable)}

4.3 The average case complexity of SAT

In the following deterministic (respectively nondeterministic) exponential time
refers to the class of languages such that for any language in the class membership
can be decided by a DTM (respectively NTM) in time O(2”k), for some constant
k (in time exponential to a polynomial).

Reischuk and Schindelhauer (1993) prove that [RS93]:

Theorem 4.2 There exists a ranking rank,(z) of linear time complexity, to
which there correspond infinitely many probability distributions u, such that the
distributional problem (SAT, p) is NP-distributional complete. Therefore SAT
1s NP-average complete.

12

Pol

h(T)

N Pol

Figure 1: Average Case Complexity of N P-complete Languages.

Proof. (Proof Sketch) Adapting a proof of Levin for the case of computable
distributions, the nondeterministic bounded halting problem, NBH = {z10¢1% :
machine i halts in less than ¢ steps on input z} is shown to be NP-distributional
complete for a distribution with linear time ranking. The ranking is finite
only on well-formed instances of NBH and is given by rankNBH(:bloilt) =
bin~!(xzbin(t)bin(i)). One can then adapt the standard (Cook’s) reduction f of
NBH to SAT so that it is linear time invertible. (A technical detail here is to
use a low complexity Godel numbering scheme to map propositional variables
with quadruple subscripts to the propositional variables vy to v,.) Then f is a
distributional reduction of NBH to SAT with any distribution p obeying the
linear time ranking rank(z) = rankypm(f~'(z)). For example, if the finite
ranks of strings are unique, then any distribution p that assigns probability
proportional to 1/p(rank(z)+ 1), where p is a polynomial, will suffice. O

Note that while this ranking of SAT' instances may seem somewhat artifi-
cial, any ranking such that the rank of an instance z is polynomially related to
rankypr(f~1(z)), where f is defined, will do. Under Cook’s reduction f, the
lengths of z and f(z) are polynomially related, so that it may be possible (but

13

beyond the scope of this paper) to show that SAT is N P-distributional complete
for a distribution similar to Chvatal’s [CS87].

Reischuk and Schindelhauer note that their results have the following impli-
cations:

Theorem 4.3 If for every linear time rankable distribution there exists an av-
erage polynomual time algorithm for SAT then

e NP C AvP.

e Fvery problem in NP can be solved efficiently on average for every poly-
nomial time rankable distribution.

o Nondeterministic and deterministic exponential time are equal.

Proof. The first two consequences are immediate from the previous theorem, i.e.,
the fact that (SAT, p) is NP-distributional complete for a linear time rankable
distribution p. The third consequence was originally demonstrated by Ben-
David and Luby (see [Gur91]), and the proof uses the standard technique of
“padding”. That is, given a language L on a binary alphabet in nondeterministic
exponential time, one constructs the padded (tally) language L' = el . 2 e
L}, where 11"l is the unary string of length n, and where 1z is the binary string
obtained by concatenating 1 with z, regarded as the binary encoding of a natural
number. Then I/ is in NP. If NP C AvP, then there exists an average
polynomial time algorithm A for the padded L’ with the specific polynomial time
rankable distribution g, which assigns the probability 6n=2?/7% to (the unary
encoding of) each natural number n, so that the probability is proportional to
n~2. Direct calculation shows that the average time and worst case time for this
distribution are polynomially related (by a factor of O(n?)), so that algorithm
A is a deterministic polynomial time algorithm for L’. This in turn gives a
deterministic exponential time algorithm for the original unpadded language L.
O

According to Goldberg [Gol79], SAT is decidable in O(n?) time on average
under a very simple distribution. What these results indicate is that there are
infinitely many simple (linearly rankable) distributions that will frustrate any
algorithm for SAT (e.g. Davis-Putnam), i.e. cause it to have superpolynomial
average case behavior. In terms of Figure 1, SAT can have no non-trivial nose.

4.4 Proving NP-average completeness

A polynomial time invertible injective function f is honest if |f=(y)| < r(|y|)
for some polynomial . Then the following theorem from [RS93] will enable us
to prove the NP-average completeness of the languages studied in this paper:

Theorem 4.4 Let f be an injective, polynomial time invertible, and honest
polynomual time reduction from Ly to Ls. Then if Ly is NP-average complete,
then so is Lo.

14

Proof. (Proof Sketch) Let (L1,) be the distributional problem corresponding
to a polynomial time rankable distribution pg. The fact that the reduction f is
polynomial time invertible and honest means that the ranking of L, given by
rank,(f~!(z)), for each z in the range of f, is a polynomial time computable
ranking. One can construct a (polynomial time computable) distribution g/, so
that rank, (f~'(z)) = rank, (z) (one can construct an infinite number of such
distributions, for example, any distribution where the probability of z 1s propor-
tional to 1/p(rank(z)+1), for p a polynomial). Thus f provides a distributional
reduction from (L1, p) to a corresponding (Ls, p'). Since the choice of polyno-
mial time rankable distribution g was arbitrary, it follows from the definition
that f witnesses the NP-average completeness of Ly. O

5 Average case complexity of correct program
technology

5.1 The average case complexity of KM LS and fragments
of set theory

With respect to proving the following theorem, we recall reduction f of SAT to
MLS¢ [COP90]. Let ¢ = ¢1 A --- A ¢, where each of the ¢; is a disjunction
of literals (i.e., ¢ is in conjunctive normal form). Let v;, ¢ = 1,...,m be the
distinct propositional variables occurring in ¢. For each propositional variable
we include a corresponding set variable v;. We also include an additional set
variable z. The formula f(¢) is obtained by substituting the literal z € v; for
each occurrence of the literal v; in ¢, and z & v; for each occurrence of the literal
—y; In @.

Theorem 5.1 The satisfiability problem for M LSc is NP-average complete.

Proof. In order to demonstrate that M LS¢ is NP-average complete, we must
show that reduction f of SAT to M LS¢ satisfies the conditions of Theorem 4.4,
1.e. that the reduction is injective, polynomial time invertible and honest. Exam-
ination of the construction shows that each propositional formula is mapped to a
unique M LS¢ formula and that the mapping can be easily inverted. That is, we
may determine if the M LS formula is in the range of f by a syntactic check, and
if so we output the corresponding propositional formula. Moreover, the length of
the M LS¢ instance f(z) is proportional to the length of the original instance of
SAT, x. Therefore the reduction is honest, that is, |z] = |f~1(y)| < |y| = | f(z)].
Since SAT i1s NP-average complete by Theorem 4.2, by the conditions of Theo-
rem 4.4, M LSc is NP-average complete. O

15

Here we define an extension of M LS. The (V)5—simple prener formulee ¢
[COP90, Definition 5] are given by the grammar:

o « N &
1<i<n
é;i — (Yzu, Eyn,) - (thm, S yhml)(Lé V.V LZ,)

Lg < FElementaryLiteral

with the additional constraints that:
e m; >0 or m; = 0 and ¢; is unquantified.

e The marimum nesting level of each variable in every ¢; is 1, i.e., in any
¢; no xp, is a yp, for any s,t.

e The length of the quantifier prefixes in all of the conjuncts ¢; does not
exceed /£.

From the fact that each M LS¢ formulais an instance of of M LS and a quan-
tifier free instance of (V)§—simple prener, we obtain the following corollaries:

Corollary 5.1 The satisfiability problem for M LS s NP-average complete.

Corollary 5.2 The satisfiability problem for (V)5 —simple prenex is NP-average
complete.

Proof. The reduction f again suffices. The membership of (V)é—simple prenex
in NP is demonstrated in [COP90]. O

Each of the previous results requires the use of logical disjunction. The
following theorem shows that deciding satisfiability of conjunctions of elementary
positive literals is equally difficult.

Theorem 5.2 The satisfiability problem for EMLS is NP-complete and NP-
average complete.

Proof. We first give the reduction f of SAT to a conjunction of M LS literals.
We then show how to transform (in linear time) each of the M LS literals into a
conjunction of elementary positive literals.

Let ¢ = ¢1A- - -A¢y, where, as above, each of the ¢; is a disjunction of literals.
Let m be the number of distinct propositional variables v; occurring in ¢, and
write the literals 1, ..., £s,,. Construct 2m variables z1,...,Z9, in M LS, and
define an association of propositional literals with M LS variables given by the

16

mapping g(#;) such that g(v;) = z; and g(—v;) = Zj4m. Define £ = f(4) to be
the M LS formula & A &3, where

&= N we Y 9y

1<i<n ey
& = /\ (@ =x; N :Ei-l—m)
1<i<m

The idea 1s that y will be a member of each set that corresponds to a literal
assigned “true” in a satisfying assignment. §; says that each clause must have
a set containing y, i.e., a literal assigned “true”. s says that complementary
literals correspond to disjoint sets so that both a literal and its complement
cannot be assigned “true”. The formal proof that ¢ has a model if and only
if ¢ is satisfiable is thus straightforward and follows [Pol87]. In particular, a
satisfying assignment a for ¢ corresponds to the model M for &, where the set
My =0, and My = 0 if a(f) = false, else My = {0} (in case a(f) = true).
Conversely, any model M for ¢ provides a satisfying assignment «, where a(f) =
true if and only if My, € M.

We can reduce each M LS literal in £; into a conjunct of elementary literals
by the introduction of a linear number of new variables, in the usual way. For
example, the M LS literal

Yy e U 17

1<i<n

becomes

(yES1)/\(/\ Si:Si+1 Uvi)/\(Sn:Un)
1<i<n—1

The mapping f thus obtained, is an honest, injective, and polynomial time
invertible reduction of SAT to EMLS. Applying Theorem 4.4, we have that
EMLS is NP-average complete (and, of course, NP-complete). O

We can obtain a sharper result.

Corollary 5.3 There exist infinitely many linear-time rankable probability dis-
tributions ' for which (EM LS, p') is NP-distributional complete.

Proof. Observe that the reduction f from SAT to EMLS is linear time in-
vertible. Thus f provides a distributional reduction from the N P-distributional
complete problem (SAT), y) given in Theorem 4.2, to (EMLS, i), where p is
any probability distribution corresponding to the ranking on EM LS instances
y (in the range of f) given by rank,(f~'(y)). Since rank,(z) is a linear time

17

ranking, then the linear time invertibility of f implies rank, () is also linear
time computable. O
As in the case of SAT, a consequence of this proof and Theorem 4.3 is:

Corollary 5.4 There are infinitely many linear-time rankable probability dis-
tributions that will frustrate (cause super-polynomial average time) the model
graph algorithm and any other algorithm for EM LS, provided that determinis-
tic exponential time is not equal to nondeterministic exponential time.

Whether these simple distribution functions correspond to the distribution of
instances one gets from correct program technology is an open question, although
the observations of Section 3 strongly indicate that this is indeed the case.

5.2 The average case complexity of FPILP

Theorem 5.3 FPILP is NP-average complete.

Proof. Recall the standard reduction of SAT to FPILP [GJ79]. Suppose as
above the instance of SAT consists of ¢ = ¢1 A--- A ¢, where each of the ¢; is

a disjunction of literals, over m propositional variables z;. The corresponding
FPILP instance consists of the constraints

1.0<z; <1, for1 <i:<m.

2. Each ¢; is represented by the constraint

Zl‘i + Zl—l‘z’ >1

Ti€EP; T €Q;

The reduction is injective, invertible by inspection, and honest, since the lengths
of the two problems instances are proportional. Thus, FPILP is NP-average
complete. O

From the fact that the above reduction is invertible in linear time, we obtain:

Corollary 5.5 There exist infinitely many linear-time rankable probability dis-
tributions p for which (FPILP, p) is NP-distributional complete.
6 Conclusion

The decidability of many sublanguages of set theory has been extensively in-
vestigated. All of these sublanguages are at least NP-complete, which leads us
naturally to consider their average-case complexity. We have shown that there
are infinitely many simple distributions for which no decision algorithm for these

18

problems can have polynomial time average behavior (unless unlikely complexity
theoretic consequences hold).

The natural question to next investigate is what type of distributions of
inputs would actually arise in correct program technology practice. One can
then examine whether the problems are NP-distributional complete under these
distributions. If this turns out to be the case, as we expect, then the results
are quite pessimistic, in the sense that theorem provers claiming to decide such
languages reasonably fast “on the average” will turn out to be “tuned” with
heuristics which, in effect, pre-decide the theorems of interest to the user. That
is, whenever such a prover makes recourse to the general algorithm for deciding
a sublanguage, it is likely that the prover will run for an unreasonable amount
of time. In any case, this research would shed more light on the feasibility of
the correct program technology problem.

References

[BDCGL89] Shai Ben-David, Benny Chor, Oded Goldreich, and Michael Luby.
On the theory of average case complexity. In Proceedings of the
Twenty First Annual ACM Symposium on Theory of Computing,
pages 204-216. ACM, 1989.

[BGI1] Andreas Blass and Yuri Gurevich. Randomizing reductions of
search problems. In Foundations of Software Technology and The-
oretical Computer Science, pages 10-24. Springer-Verlag Lecture
Notes in Computer Science #560, 1991.

[CFOS87] Domenico Cantone, Alfredo Ferro, Eugenio G. Omodeo, and J.T.
Schwartz. Decision algorithms for some fragments of anaysis and
related areas. Communications on Pure and Applied Mathematics,

XL:281-300, 1987.

[CH85] Thierry Coquand and Gerard Huet. Constructions: A higher or-
der proof system for mechanizing mathematics. In EUROCAL ’85.
Springer-Verlag Lectures Notes in CS 203, 1985.

[CooT1] D.C. Cooper. Programs for mechanical program verification. In

[MM71], pages 43-59, 1971.

[Coo72] D.C. Cooper. Theorem proving in arithmetic without multiplica-
tion. In [MM72], pages 91-99, 1972.

[COPI0] Domenico Cantone, Eugenio Omodeo, and Alberto Policriti. The
automation of syllogistic. IT. Optimization and complexity issues.

Journal of Automated Reasoning, 6(2):173-188, June 1990.

19

[Coq86]

[CP8Y]

[CS8T]

[C793)]

[DavhT]

[DeaTlT]

[Deal0]

[DML92]

[DP60]

[DS77]

[DS79]

Thierry Coquand. On the analogy between propositions and types.
Translation by Walt Hill, HP Labs, of: Sur [l’analogie entre les
propositions et les types, in: Combinators and Functional Pro-
gramming Languages, edited by Guy Cousineau, Pierre-Louis
Curien and B. Robinet, Springer-Verlag Lecture Notes in Computer
Science 242, 1986.

Jiazhen Cai and Robert Paige. Program derivation by fixed point
computation. Science of Computer Programming, 11:197-261,
1988-1989.

Vasek Chvatal and Endre Szemeredi. Many hard examples for res-
olution. CS Dept, Rutgers University, April 1987.

Edmund Clarke and Xudong Zhao. Analytica: A theorem prover
for mathematica. The Mathematica Journal, 3(1):56-71, Winter
1993.

Martin D. Davis. A program for Presburger’s algorithm. In Sum-
mer Institute for Symbolic Logic, pages 215-233, Cornell Univer-
sity, Ithaca, NY, 1957.

Edith Gail Deak. Derivation of a related group of searching praas.
Technical Report Courant Computer Science Report 12, NYU CS
Dept, 1977.

Edith Gail Deak. A Transformational Approach to the Develop-
ment and Verification of Programs in a Very High Level Language.
PhD thesis, Computer Science Dept, NYU, June 1980.

B. Selman D. Mitchell and H. Levesque. Hard and easy distribu-
tions of SAT problems. In Proceedings of the 10th National Con-
ference on Artificial Intelligence, pages 459-465, 1992.

Martin D. Davis and Hilary Putnam. A computing procedure for
quantification theory. Journal of the Association for Computing

Machinery, 7(3):201-215, 1960.

Martin Davis and Jacob Theodore Schwartz. Metamathematical
extensibility for theorem verifiers. Technical Report Courant Com-
puter Science Report 12. Reprinted as [DS79]., NYU CS Dept,
1977.

Martin Davis and Jacob Theodore Schwartz. Metamathematical
extensibility for theorem verifiers. Computer and Mathematics with

Applications, 5:217-230, 1979.

20

[Eri94]

[Flo67]

[FOSS0]

[Fra86]

[Frad1]

[GIT9]

[Gol79)]

[Gur91]

[B68]

[Hoa69]

[Hue88a]

[Hue88b)

[Hue89]

Lars Warren Ericson. Gedanken: A tool for pondering the tractabil-
ity of correct program technology. PhD thesis, New York University
Computer Science Department, 1994.

R. Floyd. Assigning meanings to programs. Proc. Symp. Appl.
Math., 19, 1967.

Alfredo Ferro, Eugenio G. Omodeo, and Jacob T. Schwartz. Deci-
sion procedures for elementary sublanguages of set theory, 1. Multi-
level syllogistic and some extensions. Communications on Pure and

Applied Mathematics, XXXII1:599-608, 1980.

John Franco. On the probabilistic performance of algorithms for the
satisfiability problem. Information Processing Letters, 23:103-106,
1986.

John Franco. Elimination of infrequent variables improves aver-
age case performance of satisfiability algorithms. SIAM Journal of
Computing, 20(6):1119-1127, December 1991.

Michael R. Garey and Davis S. Johnson. Computers and In-
tractability: A Guide to the Theory of NP-Completeness. W.H.
Freeman and Co., 1979.

Allen T. Goldberg. On the complexity of the satisfiability problem.
PhD thesis, CS Dept, New York University, October 1979. Courant
Institute of Mathematical Sciences Report No. NSO-16.

Yuri Gurevich. Average case completeness. Journal of Computer

and System Sciences, 42:346-398, 1991.

D. Hilbert and P. Bernays. Grundlagen der Mathematik 1.
Springer-Verlag, Berlin, 1968.

C.A.R. Hoare. An axiomatic basis for computer programming.

Communications of the ACM, 12:576-583, 1969.

Gérard Huet. The constructive engine, version 4.5. Projet
FORMEL, INRIA, B.P. 105-78153, Le Chesnay Cedex, France,
1988.

Gérard Huet. Induction principles formalized in the calculus of
constructions. In Programming of Future Generation Computers,

pages 205-215. North-Holland, 1988.

Gérard Huet. The Calculus of Constructions: Documentation and
user’s guide version 4.10, July 1989.

21

[Lev86]

[MM71]

[MM72]

[Moh86]

[Opp75]

[PM8S]

[Pol87]

[Pra77]

[PT92]

[RS93]

[Sch77]

[SchT78]

[Sho77]

L. Levin. Average case complete problems. SIAM J. Comput.,
15:285-286, 1986.

B. Meltzer and D. Michie, editors. Machine Intelligence, volume 6.
American Elsevier, 1971.

B. Meltzer and D. Michie, editors. Machine Intelligence, volume 7.
American Elsevier, 1972.

Christine Mohring. Algorithm development in the calculus of con-
structions. In Symposium on Logic in Computer Science. IEEE
Computer Society Press, Cambridge, Massachusetts, 1986.

D. Oppen. A 92" upper bound on the complexity of Presburger
arithmetic. PhD thesis, U. of Toronto, Ontario, 1975.

Christine Paulin-Mohring. Extracting f,’s programs from proofs
in the calculus of constructions. Laboratoire d’Informatique, Ecole
Normal Supérieure, 45 Rue d’Ulm, 75230 Paris Cedex 05, France,
April 28 1988.

Alberto Policriti. The NP-Completeness of MLS. Computer Science
Department, New York University, November 1987.

V.R. Pratt. Two easy theories whose combination is hard. Mas-
sachusetts Institute of Technology, 1977.

Alberto Policriti and Presad Tetali. On the satisfiability problem
for the ground case of first order theories. Technical Report Techni-
cal Report DIMACS-92-38, Computer Science, Rutgers University,
1992.

Ridiger Reischuk and Christian Schindelhauer. Precise average
case complexity. In 10th Annual Symposium on Theoretical Aspects
of Computer Science, pages 650-661, 1993.

Jacob Theodore Schwartz. On correct-program technology. Tech-
nical Report Courant Computer Science Report 12, NYU CS Dept,
1977.

Jacob Theodore Schwartz. Program proof technology. Technical
Report Technical Survey No. 1, NYU CS Dept, 1978.

Robert E. Shostak. On the SUP-INF method for proving Presbuger
formulas. Journal of the Association for Computing Machinery,

24(4):529-543, October 1977.

22

[Sho81]

[Sny90a)

[Sny90b]

[SY92]

[VR92]

R. Shostak. Deciding linear inequalities by computing loop
residues. Journal of the Association for Computing Machinery,

28(4):769-779, 1981.

W. Kirk Snyder. The SETL2 programming language. Department
of Computer Science, New York University, September 1990.

W. Kirk Snyder. The SETL2 programming language: Update on
current developments. Department of Computer Science, New York
University, September 1990.

Rainer Schuler and Tomoyuki Yamakami. Structural average case
complexity. In Foundations of Software Technology and Theoretical
Computer Science, pages 128-139. Springer-Verlag Lecture Notes
in Computer Science #652, 1992.

R. Venkatesan and S. Rajagopalan. Average case intractability of
matrix and Diophantine problems. In 24th Annual ACM STOC,
pages 632-642, May 1992.

23

