CoRReT: A Constraint Based Environment f{
Rapid Prototyping Real Time Programs

Krishna V. Palem
Courant Institute of Mathematical Sciences, NYU

Abstract

The information revolution that we are in the midst of has led to the use of computers
controlling applications ranging from automobiles and games, to video-pumps in the
information highway. These applications are distinguished by the fact that they use
programs with special timing relationships between their constituent elements. For
example, a program running in the microprocessor controlling an ABS system in a modern
automobile must sense and react to the friction coefficient between the brake pads and the
wheel at well-defined intervals of time; failure to do so will result in a systemic failure of the
brakes. Referred to typically as embedded systems, these applications constitute a
significant portion of the potential growth in the computer industry. However, this growth
opportunity is being hampered by a lack of adequate support via software development
tools, to aid the easy, rapid and correct prototyping of embedded applications.

In this report, we outline CoRReT, a constraint based environment for the rapid
prototyping of real time programs. The report outlines the overall system architecture as
well as the key modules in this environment that are being currently developed. CoRReT is

*Supported in part by an award from Hewlett-Packard Corporation, from IBM
corporation, and a NYU research challenge grant.

a scheduling centric system in that a suite of algorithms for instruction scheduling programs
instrumented with real-time constraints, are at its core . These algorithms are an integral
part of an (optimizing) compiler which will compile these programs automatically while
attempting to ensure that the timing constraints are met; when the constraints are met,
the resulting schedule for the instructions is referred to be feasible. If a feasible schedule is
found, it will be fed automatically into a code-generator in the back-end of the compiler.
Our envisioned scheduler can — in addition to traditional control- and data-dependence
constraints in the source program — also cope with a variety of timing constraints specified
by the programmer.

Our focus is on computational platforms that embody parallelism at two levels of
granularity. At the highest level, we envision a tightly-coupled parallel machine offering
large-scale parallelism. In this setting, a single embedded application can be distributed
across the individual processors of the cluster. Furthermore, each processor in this parallel
machine can embody Instruction Level Parallelism (ILP) at a fine-grained level.

Unfortunately, due to a lack of automatic tools and technology that can provide
compilation support for real-time constraints ubiquitous to embedded applications, parallel
computing platforms have not proliferated in this setting. Considering the fine-grained case
first, RISC processors with ILP have not yet found a niche in this domain; currently,
developers of embedded systems are reluctant to embrace ILP technologies due to the
onerous task of ensuring timing relationships in the program by hand — a difficulty
compounded by parallelism (at a fine-grained level) in the processor. Clearly, providing
support through automation that frees the programmer of these difficulties, is a means of
overcoming this challenge.

Our response to this challenge via CoRReT is to develop scheduling methodologies and
tools for automatically harnessing very high performance from these platforms, in the
context of embedded systems. In the absence of time-constraints, major progress has been
achieved in this direction at the coarse-grained level. The situation is even better at the
fine-grained level where scheduling technology is being used routinely in product-quality
compilers for RISC processors.

The methodology on which CoRReT is based is independent of any particular target
processor, and is applicable to third and fourth generation languages. Furthermore, we
propose to use the same scheduling engines during the static analysis of the program as
well as during compilation. We anticipate this “confluence” in the scheduling algorithms to
aid in shorter prototyping cycles, since identical schedules will be used by the analysis tools
and the back-end of the compiler to generate code. We envision that the algorithms and
tools that go into CoRReT will naturally form an integral part of a full-fledged
programming environment for prototyping real-time programs on parallel platforms.

CoRRet: A CONSTRAINT Based
Environment for Rapid Prototyping Real
Time Programs

Krishna Palem

Courant Institute of Mathematical Sciences

Target Domains for Real-time Applications

1. Hard Real-Time: Avionics, medical life-support, ...

2. Soft Real-Time: Entertainment (set-top boxes, games),
utilities (microwaves, wrist-watches), ...

Building These Systems

An example from my experience for real time processing of
Electroencephalographic data in a doctor’s office

Top of skull O O
— OG0

()

M-68K
System

e Data is arriving at about 10 KHz.
e Processor clocking about 10 MHz.

e Functions included data acquisition, analysis and real-time display to
the neuro-physician.

The High Level Approach

BUF-1 BUF-2

New Input |/
/v Process

Display Buffer

PHASE-1

I

PHASE-2

e Collect data in one buffer.
e Process in the other.

e When one of the buffers is full, switch input buffer and processing
buffer.

Some Simple Time-constraints

e Processing software has to move ahead by one data point
every 0.1 m-sec.

e [he switching of buffers has to occur in the same interval.

T he Difficulty

e All the coding for the signal-processing had to be done in
assembly.

e Had to “hand-tune” it to fit the constraints stated above.

e Other constraints involved interrupts from the board
updating the display which was running a dedicated M6800
(8-bit) microprocessor to transfer the processed data over
for displaying.

Real-time Software Development in Industry

e Programmers spend a lot of time designing pieces of code.

e Estimate timing behavior via
— synthetic analysis, possibly with some tools, and
— actual measurement where code is produced and

executed.

o If timing “expectations’” — informally specified — are not
met, programs are returned till feasible.

Spurred by the RISC Processor
Revolution

Opportunity in Superscalars

e High degree of Instruction Level Parallelism (ILP) via
multiple Functional Units (FUs), each pipelined: Essential
to harness promised performance.

e Clean simple model and Instruction Set makes compile time
optimizations feasible.

e [herefore, performance advantages can be harnessed
automatically.

Superscalar (RISC) Processors

Pipelined Functional Unit

D D D e.g. Floating Point,
D D D Fixed-Point, Branch

Predication, etc.
][] []

Register Bank

]
]

Canonical Instruction set
e Load and store to/from memory (multiple cycles).

e Register-Register Instructions (single cycle).
A few notable exceptions of course.

Eg., IBM Power & RS6K, DEC Alpha, Sun Sparc.

10

Example Of Instruction Level Parallelism

Processor has

e 5 functional units: 2 fixed point units, 2 floating point units
and 1 branch unit.

e Pipeline depth: floating point unit is 3 deep, and the others
are 1 deep.

At peak rates, with a 71.5 MHz clock, 357.5 MIPs with 9
instructions being processed simultaneously.

11

Returning To Real-Time Computing

The technological trend enabling new applications:

e Rapid evolution of processor technology in terms of
performance.

e Substantially lower $$ per MIPs.

e Makes much more ambitious real-time applications feasible.

e Hand-held games with 32-bit (embedded)
microprocessors— Video-pumps in the information highway.

12

The Overall Challenge

~----~ RETUNE ~_ -

e Error-prone and tedious as the complexity of the system grows.

e Hence substantially superlinear growth in software development cost as
the scale grows.

e Limits the scale of the explosion and does not harness hardware
potential.

e Further compounded by the need to schedule instructions in the
context of modern processors with ILP.

13

An Important Gap

Currently

e Even with some automatic support.

e Methods and algorithms used in analysis are not related to
those aimed at compilation.

e Gap between prediction and compiled code’s feasibility is
large.

e Leads to long prototyping cycles.

14

The “Big Picture”

To
Programmer

Annotated

- - - - = Program Graph

Constraints

Generator
and

Measurement

Front
End
»° INFEASIBLE
- oS
- Feasible | i
. . oarse-grain
Fine-grain - | _ o - o wosmac_%
Scheduler Schedules
'
\
Temporal
Behavior

15

The Platform

P1

UN

Pm

@ @

Virtual Memory

||||||||||||||||||||||||

Q Tightly Couple

ﬁ Parallel Machine

@ _

Virtual Machine

16

Our Envisioned Response

17

The Proposed Environment

To
Programmer

e

Annotated

Front - - - - Pooﬁmh: Graph

End
Constraints

A #»° INFEASIBLE
- - A .
- Feasible To Code
Scheduler -+ e
Schedules Generator

l
1

3
A

Temporal
Behavior

18

In Thinking of Solutions

The language growth curve:
A

Fourth generation
C++

Third generation
C

80-95 1995 1996 2000

e Programmers are slow to migrate away from their favorite and stable
languages.

e Radical proposals will not succeed.

e Think of technologies that enhance existing languages in providing
automatic support.

e Consequently, we do not propose a new language.

19

The Technology

Provide Support for

e Easily expressing “timing-relationships’ between parts of
the program.

e Analyze the program to determine feasibility on the target
platform.

e Generate code automatically if feasible.

20

The Programming Model

= A
7 N\
§ 1
\ /
Synchronization
Barrier o -
\
\
A
4 AN
Coarse- K A
grained instruction .
> N
\
\
\
\
o N
| \
|
|
|
|
|
|
|
|
! ”
Finge-grained ” / ”
. e N
Instruction N |
|
| P
| O} |
|
| .
|
S
|
|
|

21

The Proposed Expressive Framework

e Enhance the user program with zero-time executable
markers shown by thick lines.

e Write timing relationships between markers are a distinct
constraint system.

22

The Timing Relationship

Markers

s(i), (i) i

s(), f() j

s(k), f(k) K

s(l), :_f _

%.ﬂ
< s(m), f(m)
ALARM
Given that s, f and d respectively denote the start, finish and the durations
associated with markers as shown, example design specifications — all
integers are m-sec — might be

1. d(4,5) +d(5,k) + d(k,1) <20
2. d(l,m) =50

3. f(I) — s(i) < 100 23

A Simple Example

Cardiac Arrhythmia Detector

Must be
<= 30,msec

.

Gather Data

Analyze

e

Diagnose

Normal Exception

\
ALARM

Constraints As Time Specifications

e ADbstract representations.

e specifications are decoupled from program’s control flow
and syntax.

e Clean and minimal mechanism for expressing relationships.

e Integer-linear constraints are rich in their expressive power.

e [ypically, abstract representations — Expensive
compilation and analysis cost.

25

Feasibility via Analysis

e Constraint Satisfaction.

e In general, satisfiability of Integer Linear Programs — A
hard problem.

o A key observations makes the difference.

26

All the Integer Linear Programs are
Scheduling Problem!

27

More on Classical Scheduling

Integer Linear
Programs

Scheduling
Problems are
“Easy” to solve

e Scheduling problems are extremely “well-solved” .
e Fast algorithms produce very good solutions.

e Productions codes in industry run very well.

28

The Scheduling Model

In a program dependence graph representation

e Data- and control-dependences encode ‘‘precedence
constraints’.

e Instructions are the nodes.

e Pipelines delays on the target processor are latencies on the
edges.

e A number and types of processor in the target processor are
specified.

29

Traditional Well-solved Settings

e Acyclic control-flow structures.

e [he goal is to minimize

— completion time to improve performance of code on the
RISC processor,

— absolute deadlines to model limited form of hard
real-time applications.

30

The Core Research Question

Reduced to solving a Precedence-constrained Scheduling
problem with

e cycles in the graph,

e relative deadlines and start-times. As opposed to the
absolute variants that have been addressed.

The entire problem is thereby reduced to a well-defined
combinatorial optimization question.

31

Significance of Reduction

e A single well-parameterized combinatorial optimization question
captures the essence of:

— Analysis and

— Code generation (to be seen)

e Amenable to
— Powerful technical methods and

— Software engineering approaches

Instruction Scheduling

Combinatorial Industrial Strength
Optimization Software

32

The Plug

\\

Scheduling
Engine

Register
Allocation

e Same scheduling engine for code generation (as for analysis).

e Corresponds to a closer relationship between the analysis and the code

generation phases.

e Hence, the feasibility of compiled code is only and intimately dependent
on the quality of the library describing the objects.

e Very good libraries are available in the field — very small gap between
the two phases — tight design cycles.

33

T he Bonus

e In addition to aiding in the rapid-prototyping of real-time
software, we are enabling the proliferation of RISC
processors in the embedded system market.

34

Estimating Execution Times

Coarse- /

/

grained instruction

Fine-grained
Instruction

To coarse-grained
scheduler

Time-estimate of Coarse-grained

Instruction

~ Coarse-grained
p \ N Estimator

\ , i SCHEDULE |

Fine-grained
-~ | Estimator

35

Milestones

1995 1996 1997 1998

Prototyping Framework and Scheduling Engine Definition
(Done)

. Fine-grained Scheduling Algorithm Design and Evaluation

. Develop Constraints Front-end and Integrate Scheduing Engine
into Compiler, validate and Develop GUI (with N. Nachiappan)

36

