Then, the effective value density (i.e, the value achieved divided by the period’s length) obtained
by the clairvoyant scheduler between t; and ;41 is at least %Un(k% — 1) times bigger than the
effective value densily obtained by the on-line scheduler for the same period.

PROOF.
Suppose 11,15, - - - T, are the tasks scheduled at ¢; with value densities iy < i3 < -+ -¢,, < select(t;).

Denote select(t;) by ig.
The clairvoyant algorithm schedules n tasks of level ¢g, there are no more tasks releases until the
end of i7g’s period. Hence the ratio between the effective value densities is at least:

i
nkn

(k%{—k%{----—l—k%—k(n—m)e)

But, if we replace the value density of a task 7" by f(7') (f as in lemma B.2) then the denominator
does not decrease hence the ratio does not increase.

(k%-l-k%-l----—l-k%—l-(n—m)e)
nk%o
2 o i@ 7w
(k7n + k™% +---+k"n +(n—m)e)
nk%o

v

(kw4 kw44 k% + (n—m)e)

We saw, in lemma 3.1 above, that the above ratio is not smaller than

k
k-1

n(kw — 1)

and the lemma is proved.

O

xiii

O

Lemma B.2 At time t, let 11,15, --T,, be the tasks of levels 0 to select(t) — 1 scheduled by the
on-line scheduler. Then, there is a one to one correspondence [from these tasks to all the density
levels from 0 to select(t) — 1 so that f(T') is greater than or equal to the value density of T. In
other words, we can promote all tasks with level density below select(t) to a higher (or equal) value
density (but still below select(t) — 1) so that after the promotion, only one task corresponds to any
given value densily level.

PROOF.

Assume that the tasks Ty, 715, - - -, T, are ordered by non-decreasing order of value densities. Define
[as follows,

f()y=r-1

(That is, f(1) is the position in the list starting from zero)
We know that,

1 = ®(select(t))
select(t)—1

= select(t)+1— Z present(7)

7=0
select(t)+1—m

Therefore, select(t) = m. Hence, f is a one to one function onto [0..(select(t) — 1)].

We still have to show that for every 7)., f(1)) is at least the value density level of 7). If the level
of T, is 0 then there is nothing to prove since f > 0, so assume that 7T,’s level is ¢ + 1 for some 1.

0 > ®@)=14+1- Zp'resent(j)

=0

Therefore, Z;‘:o present(j) > i+ 1. Hence, there are at least 7 + 1 tasks with value densities
below T),’s value density. This means that T).’s position in the ordered list is not before the 7 +2’th
place, so f(T,) > (i+2)—1> ¢+ 1.

]

Now we are ready to state and prove the version of lemma 3.1 for the general case (i.e., when
more than one level is missing).

Lemma B.3 Suppose the on-line scheduler gets partial value for tasks thalt were execuled but nol

to completion. In particular, for a task that executed for o (0 < a < 1) of its computation time the
scheduler will get o times the task’s value.

xii

B APPENDIX: The Complexity Bound; Few Lemmas

In section 3 we proved the complexity result in the special case that only one value density level
is missing from the on-line schedule. But what will happen if more than one level is missing? In
this appendix, we will show that this can not benefit the on-line scheduler Hence, the complexity
bound holds in the general case.

Definition B.1 PRESENT(?), ®(¢), select(t)
For any time {, look at the tasks that are currently being executed by the on-line scheduler. For
each density level 7,0 > ¢ > n:
Define present(i) to be the number of tasks from level ¢ that are executing at time ¢.
Define the following potential function ®:
[
O(e)=(i+1) - Zpresent(j)

7=0
Define select(t) to be the minimal index ¢ for which ®(7) > 1 (Note that, ®(0) < 1 and ®(n) > 1).
O

We will start by proving two properties of ® and select.

Lemma B.1 For all t,

1. present(select(t)) = 0 (i.e., No task of level selecl(t) is executing at time t).

2. ®(select(t)) =1 (i.e, equals one rather then greater than 1).

PROOF.
There are two cases: select(t) = 0 and select(t) > 0.

o selecl(t) = 0.
From the definition of ®, ®(0) < 1. But, select(t) = 0 hence ®(0) > 1. We conclude that
®(0) = 1 which implies that present(0) = 0.

e select(t) > 0.
Let select(t) = ¢4 1 (for ¢ > 0). Note that by definition,
Q(i4+1)=@(i)+ 1 — present(i+ 1) (6)

Assume, in order to get a contradiction, that present(¢ 4+ 1) > 1 then ®(¢) > ®(: 4+ 1) > 1.
Therefore, ®(¢) > 1. This is a contradiction to the fact that select(¢) is the minimal index i
with ®(i) > 1. We conclude that present(i + 1) = 0.

Substituting present(i + 1) = 0 in (6) above gives 1 < ®(z + 1) = @®(7) + 1. Since ®(¢) < 0
(otherwise ¢ + 1 is not minimal), ®(: + 1) = 1.

xi

PROOF.

All tasks that were abandoned by the Safe-Risky-(fixed) were diverted to RP. Let d be the maxi-
mal deadline among all tasks of F' 2!, The best the clairvoyant can do, with tasks of F, is to schedule
both processors continuously to get a value of 2d. Lemma A.2 shows that the Safe-Risky-(fixed)
gets a value of at least d.

O

Theorem A.9 For any interval I the competitive multiplier of the Safe-Risky-(fixed) algorithm
is less than or equal to 3. Le,

C(I) < 3V(I)

PROOF.
This follows from the Lost Value Lemma (4.1) and lemma A.8.

O

217f there is no such maximal deadline. Then the supremum is either finite or infinity. If it is finite a similar proof
will work. if it is infinity, then the interval is infinitely long, in which case the value obtained by the on-line algorithm
is infinity.

A.3 When Task Migration is Not Allowed

By task migration, we mean moving a task that has already partially executed from one processor
to another. In the case that task migration is not allowed, we can use a simple variant of the
Safe-Risky algorithm to get a competitive multiplier of 3 for tasks with slack time?°. We call this
variant the Safe-Risky-(fixed).

A.3.1 The Safe-Risky-(fixed) Algorithm

The only place that the Safe-Risky algorithm used the possibility of task migration is in the task
completion routine. For that reason, the Safe-Risky-(fixed) differs from the Safe-Risky algorithm
only in this routine.

42 Task Completion :
(x on SP; There is no special event when a task completes on RP x)

43 let T be the task with earliest deadline in Q_waiting;
44 if (7" has earlier deadline than the current task on SP
and can be scheduled with all other privileged tasks) then
45 remove T from Q_waiting;
46 add T to Q_privileged;
47 (* which amounts to scheduling T on SP)
48 endif (x1" can not be added to Q_privileged)
49 schedule on SP the privileged task with earliest deadline (if any);
50 if (SP is idle) then
51 switch roles between the SP and RP processors;
52 endif (xSP is idle *)

53 end (xtask completion *)

A.3.2 Analysis

We define latest_affected and all the other definitions as before. Observe that lemmas A.1 and A.2
hold for the new algorithm as well.

Recall, that F' denotes the set of tasks abandoned by the on-line algorithm

Lemma A.8 For every interval, I,

C(F) < 2v(I)

2When tasks have no slack time an optimal algorithm with competitive multiplier of 2 is known [12,3].

X

Lemma A.6 For any interval I, the Safe-Risky algorithm guarantees that the compelilive mulli-
plier can not be greater than 2. lLe,

C(I)<2v(I)
PROOF.
The proof is by induction on the structure of the interval.

Basis: If the interval is atomic_interval then lemma A.4 ensures that the induction hypothesis
holds.

Induction step: Suppose the induction hypothesis is known for all the sub-intervals Iy, I, -+, I,
of I (after removing the tasks of uncovered(I)). By the induction hypothesis, C'(I;) < 2V (I;) for
all j.

But!?,

Q
—~

~
SN—

[l

C(IUly;U---Ul, Uuncovered(l))
C(h)+C(3)+ -+ C(I) U C(uncovered(I))
2V(I) + 2V (1) - -+ 2V (I,,) + C(uncovered(1))
2V(I) + 2V (1y) - - -+ 2V (1) + value(uncovered([))

[VANVAN

Lemma A.5 shows that the tasks of uncovered(!) do not affect the scheduling of tasks in the
sub-intervals (by the Safe-Risky algorithm). Hence,

VII)=V()+ V(1) -+ V(1) + value(uncovered(I))

This shows that the induction hypothesis holds for I, hence the theorem is proved.
]

Theorem A.7 For a system of uniform value density and 2 processors, the Safe-Risky algorithm
achieves the best possible competitive multiplier of 2 (when migration of tasks is permitted).

PROOF.
The intervals partition the entire set of tasks I' into disjoint subsets I'y,I'g, - - -

CT) < Oy +C(T2) + -
2V(T1)+ V(T2) +)
2V(I")

[VANVAN

The last equality is due the fact that tasks of one interval do not influence the scheduling decisions
(of the Safe-Risky algorithm) in another interval. This might not be the case for the clairvoyant
algorithm, that is why the first inequality is not an equality.

]

1%Recall that all the tasks of uncovered(l) are scheduled to completion by the Safe-Risky algorithm. Hence,
C(uncovered(I)) = value(uncovered(I)) = V(uncovered(I)).

viii

o Suppose the tasks of uncovered were never released (i.e, only the tasks of covered were re-

leased). Then, the tasks of covered will be scheduled (on SP or RP), preempted, and completed
or abandoned at exactly the same times as if the tasks of both covered and uncovered were
released.

e Removing uncovered from the original set of tasks will break the interval into one or more

sub-intervals separated by idle time.

PROOF.

O

o A task 7' is diverted to RP (and possibly abandoned) only if it is involved in a conflict with the

tasks of Q_privileged. A task T" of uncovered can not be involved in any conflict (otherwise,
max_cover will be at least deadline(1") which contradicts the fact that 7" is in uncovered). We
conclude that 7" was scheduled on SP (hence also completed).

Suppose that 7)., is executing on RP. T}, was scheduled at its latest start time. Let 7" be
the first task of uncovered to be executed (on SP) concurrently with 7),. Note that all the
tasks in Q_privileged (at that point) must be of uncovered because these tasks are scheduled
on SP according to deadline order and the tasks of covered have earlier deadlines.

When was 71" scheduled? It could not be before LST(1),,) because this means that (at its
latest start time) 7}, had a conflict with tasks of uncovered. So, T must have been scheduled
after LST(T,,) as a consequence of a task completion event!®. But, if this is the case, all
the tasks of Q_privileged could be scheduled on one processor along with 7,,. Hence the
Safe-Risky algorithm (in the Task-Completion routine) would have scheduled 7}, and then
all the privileged tasks on SP, a contradiction.

The execution of a task of covered on SP can be delayed or interrupted (i.e, preempted) only
by tasks of covered (because all the tasks of uncovered have later deadlines). Hence, the
execution of covered tasks on SP is not affected by uncovered tasks.

A task of covered can not be diverted to RP as a consequence of a conflict with a task of
uncovered (because the tasks of uncovered had no conflicts). Also, no task of uncovered will
be scheduled on RP. This implies that the execution of covered tasks on RP is not at all
affected by uncovered tasks.

We saw above that removing the tasks of uncovered will not change the execution history
of all other tasks. Also, when a task of uncovered is executing on SP, RP is idle. Hence,
periods in which only tasks of uncovered execute in the execution of (coveredU uncovered)
will correspond to idle periods in the execution of covered.

18Tt can not be a consequence of a task release event because a task of uncovered can preempt only tasks of
uncovered, in which case the task that precede 7', on SP, is the first task of uncovered to coincide with 15,.

vii

later added to Q_privileged). The length of the interval is at least {4ctyqi. Lemma A.1 shows
that the value obtained on SP is at least this length.

As mentioned before, the value obtained by the Safe-Risky algorithm on RP is at least
value(T'). Hence,

V(I)

VSP(I)+ VRP(I)

tactual + computation_time(T")

(AVARLV/

deadline(1,f fected)
latest _affected(T)

The second inequality restates the definition of latest_affected('T).

]
Corollary A.3 The value oblained by the Safe-Risky algorithm during an interval is al least

max{the interval length, max_cover}

O

Definition A.6 COVERED, UNCOVERED, ATOMIC_INTERVAL

For any interval I, let uncovered = uncovered(l) be the set of tasks (released in I') with dead-

lines after max_cover(l). Denote the remaining tasks by covered = covered(l). I is called an
atomic_interval if uncovered(I) = () (the empty set).
U

Lemma A.4 For an atomic_interval I, the Safe-Risky algorithm achieves a competitive factor of
2. Thal is,

C(I) < 2v(I)

PROOF.

All tasks have deadlines before max_cover. So the best the clairvoyant algorithm can do is to sched-
ule tasks on both processors from time 0 to max_cover to get a value of 2- max_cover. Corollary A.3
ensure that the Safe-Risky algorithm gets a value of max_cover at least. [J

Lemma A.5 For every non atomic_interval, I,

o All the tasks of uncovered are executed lo completion on SP.

o When a task of uncovered is executing on SP, RP is idle.

vi

Definition A.5 CONFLICTED TASK, MAX_COVER

We say that 7" is a conflicted task if it conflicted with the tasks of Q_privileged (when it was
released or when considered to execution at its latest start time) and hence was diverted to RP
(and later was either scheduled to execution or was abandoned)

Define max _cover as,

def

max_cover = max_cover(l) = cover_end(T)

max
T is a conflicted task

If there is no conflicted task this max equals 0.

O

Lemma A.2 For every task T, if T is a conflicted task (i.e, was diverted to RP by the Safe-Risky
algorithm) then!”, the total value obtained by the Safe-Risky algorithm is at least cover_end(T)

PROOF.
Recall that,

cover_end(T') = max{deadline(T"), latest_affected(T")}

e First, let us show that V(I) > deadline(T).

T is diverted to RP at its latest start time which is at deadline(1’) — computation_time(1’).
This means that the interval length is at least deadline(T")— computation_time(T") (recall that
the interval starts at time 0). Lemma A.1l says that the value obtained by the Safe-Risky
algorithm on SP is at least deadline(1') — computation_time(T').

If T does not complete, it can be abandoned only in favor of a bigger valued task (scheduled
on RP), hence the value obtained on RP is at least value(T"). Hence,

V(1) VSP(I)+ VRP(I)
(deadline(T) — computation_time(T')) + value(T)
(deadline(1) — computation_time(1")) + computation_time(1")

= deadline(T)

v

e Now, we are going to show that V(I) > latest_affected(T’).
By definition, latest_affected(T) is the deadline of some task T,ffected. Let lqotuar be the
time when T fecteq completed (according to the Safe-Risky algorithm). {4.44q can not be
any earlier than the estimated completion time of 7' computed when 17" was considered for
execution (the actual time can be, in fact, later than the estimated time if some tasks were

1"Recall that the interval starts at time 0.

By definition the tasks of Q_privileged constitute an underloaded subsystem (i.e, all these tasks
can complete on one processor).

Now, let us consider one additional task, 7', which has a deadline earlier than all the tasks in
Q_privileged. Suppose that the system comprised of Q_privileged plus T is overloaded. We want
to know which of the tasks of Q_privileged conflict with 7.

Compute the earliness of all the tasks in Q_privileged. That is, suppose the tasks are scheduled
according to earliest-deadline-first scheduling algorithm, the earliness of a task is how much before
its deadline it completes (i.e, its deadline minus its completion time). Any task with earliness
smaller than T’s computation time in Q_privileged prevents T from being added to Q_privileged.

Define latest_affected(1’) to be the latest deadline of any such task (i.e, a tasks whose earliness
is smaller than 7’s computation time) and define cover_end(T") to be,

cover_end(T) def max{deadline(T), latest_affected(T)}
OJ

Definition A.3 INTERVAL

An interval starts when a task is released to an idle system (the system becomes non-idle) and
ends when the system becomes idle again (both processors are idle).

O

In the following, we are going to analyze the Safe-Risky algorithm interval by interval. For
the sake of notational convenience let us assume that there was only one interval (call it I) and it
started at time 0.

Lemma A.1 The value obtained by the Safe-Risky algorithm from lasks execuled on SP during
an interval is at least the interval length (duration).

PROOF.

From the beginning of the interval to its end SP is never idle (when SP is idle so is RP which means
that the interval ends). A task that was scheduled on SP is guaranteed to complete. We conclude
that at any given moment at least one processor is working on a task that will eventually complete.
This proves the lemma.

O

Notation A.4 C(I), V(I), VSP(I), VRP(I)

For an interval I, let C'(/) and V(I) denote the value obtained by the clairvoyant algorithm
and the Safe-Risky algorithm (respectively) from tasks released during /. Similarly, let VSP
and VRP(I) denote the portion of V(I) obtained by the Safe-Risky algorithm on SP and RP
respectively.

O

v

27 Task Completion :
(x on SP; There is no special event when a task completes on RP x)

28 let T be the task with earliest deadline in Q_waiting;

29 if (T" has earlier deadline than the current task on SP
and can be scheduled with all other privileged tasks) then

30 remove T from Q_waiting;

31 add T to Q_privileged;

32 (* which amounts to scheduling T on SP)

33 endif (x1" can not be added to Q_privileged)

34 if (all the privileged tasks can complete with the
task currently executing RP) then

35 preempt the current task on RP;

36 add it to Q_privileged;

(this task will be scheduled on SP by the following piece of code. This

37 is the only place where migration is used)
38 endif
39 schedule on SP the task with earliest deadline in Q_privileged (if any);

40 end (xtask completion x)
41 end {loop}

Remark A.1 Note an important difference between the above algorithm (and for that matter also
Dover [7]) and the version of the Cascading Multi-Band Algorithm presented earlier. In the task
release routine a newly arrived tasks will be added to Q_privileged only if its deadline is earlier than
the currently executing task and also, it can be added to Q_privileged without creating overload
(we call that a local schedulabilty test. This stands in contrast to the global schedulabilty task used
by the Cascading Multi-Band Algorithm. That is: a new task enters Q_privileged if and only if it
does not create overload irrespectively of its deadline.

A.2 The Competitive Multiplier of the Safe-Risky algorithm

In this section we show that the Cascading Multi-Band Algorithm has a competitive multiplier of
2. Our approach is to partition the execution into disjoint intervals, the Cascading Multi-Band
Algorithm gets at least half the optimal value in each interval. This is proved by means of “cover-
ing”. We show that all intervals are covered; if a period is covered then the Cascading Multi- Band
Algorithm uses at least one processor effectively during all that period. The clairvoyant scheduler
could gain a factor of two by utilizing both processors.

Definition A.2 EARLINESS, LATEST_AFFECTED, COVER_END

iii

4 loop :

5 Task Release : (* T is released)

6 if (SP is idle) then

7 schedule T" on SP;

8 else if (7" has earlier deadline than the current task on SP
and can be scheduled to completion with the current task
as well as with all other privileged tasks) then

9 preempt current task;
10 add the current task to Q_privileged;
11 schedule T" on SP;
else (*SP is not idle and T can not be scheduled on SP)
12 add T to Q_waiting;
endif

13 end (xtask release *)

14 LST:
(x T reached its LST; LST denotes the latest start time of T, i.e., the
moment when the computation time remaining for T equals the time
to its deadline
Note that scheduling T on SP will cause overload (with all the other

privileged tasks) *)
15 if (RP is idle) then
16 schedule T on RP;
17 else (*xRP is not idle and T' can not be scheduled on SP)
18 let Trp be the current task on RP;
19 if (value(1') > value(Trp)) then
20 abandon Tgrp;
21 schedule 7" on RP;
22 else
23 abandon T
24 endif (xcomparing values)
25 endif (+RP is not idle *)

26 end (xLST x)

ii

A APPENDIX: Two Processor Systems

This section deals with systems having only two processors. We assume uniform value densily
(i.e., k = 1). With out loss of generality we can assume that the value density is normalized to 1.
We consider two possible models of multiprocessor systems. In the first model, tasks can migrate
cheaply (and quickly) from one processor to another. Hence, if a task started to execute on one
processor it can later continue on any other processor (and migration takes no time). We present a
scheduling algorithm called the Safe-Risky algorithm for this model. In the second model (the fized
model), once a task starts to execute on one processor it can not execute on any other processor.
An on-line scheduler can do better when migration is possible.

A.1 The Safe-Risky Algorithm

In this algorithm, one processor is designated as the Safe Processor (SP) and the other as the Risky
Processor (RP). A task that started to execute on SP is called “privileged” because it is guaranteed
to complete (Q_privileged is a queue containing these tasks).

Ready tasks that are not privileged wait in Q_waiting until they become privileged or they reach
their LST, at that point the LST task tries to be scheduled on RP. It will be scheduled if it has a
bigger value than the task currently executing on RP. A task that started to execute on RP can
be preempted and then resume on SP (i.e., migrate to SP). In this version of the algorithm the
designation as safe or risky processor is fixed. In the no-migration version (the Safe-Risky-(fixed))
the processors may switch roles.

The following few boxes depict the code of the Safe-Risky algorithm:

(x the Safe-Risky algorithm: a competitive scheduling algorithm for two
processors systems in the uniform value density case %)

1 Initilzation :
(x Q_waitingand Q_privileged are initialized to the emply queue. One

processor is designated as the safe processor (SP) and the other one is
designated as the risky processor (RP).
In the beginning both processors are idle. %)

2 Q_privileged := ¢;
3 Q_waiting := ¢;

[11] D. SLEATOR AND R. TARJAN, Amortized Efficiency of List Update and Paging Rules, CACM 28,
February 1985, pages 202-208.

[12] F. WANG AND D. Mao, Worst Case Analysis for On-Line Scheduling in Real-Time Systems. Techni-

cal Report 91-54, Department of Computer and Information Science, University of Massachusetts at
Ambherst, 1991.

[13] HoNGYI ZHOU, KARSTEN SCHWAN AND IAN F. AKYILDIZ Performance Effects of Information Shar-
ing in a Distributed Multiprocessor Real-Time Scheduler, In Proc. of 1992 IEEE Real-Time Systems
Symposium , Phoenix, Arizona, pp. 46-55, December 1992.

21

An important issue is how to account for migration overhead in such a system. For example, we
modeled NUMA architectures by forbidding migration but that is clearly too strong a restriction.
Permitting migration, but at a cost, would have been much more reasonable.

There are many other open issues that must be addressed for overloaded systems in a fault-
tolerant context. An important issue is how to reallocate processors when a failure occurs. The
fact that the algorithms here execute competitively for any number of processors does not mean
they will execute competitively if the number of processors changes during the computation. Han-
dling such changes in an environment where failures can occur with high frequency is still to be
done.

8 Acknowledgments

We would like to thank Bud Mishra for helpful discussions and insights and Doug Locke for practical
enlightenment.

References

[1] A. BArR-Noy, Y. MANSOUR AND B. ScHIEBER, I.B.M T.J. Watson Research Center private commu-
nication, 1992

[2] S. BarRuAH, G. KoREN, B. MisHRA, A. RAGHUNATHAN, L. RosiER AND D. SHASHA. On-line
Scheduling in the Presence of Overload,. Proc. of IEEE Foundations of Computer Science Conference,
pp. 101-110, San Juan, Puerto Rico, October 1991.

[3] S. BaArRuaH, G. KorEN, D. Mao, B. MisHrRA, A. RAGHUNATHAN, L. ROSIER, D. SHASHA AND
F. WanG. On The competitiveness of On-line Task Real-Time Task Scheduling,. The Journal of
Real-Time Systems, 4, 124-144, 1992. Also, in Proc. of 1991 IEEE Real-Time Systems Symposium |
San Antonio, Texas, pp. 106-115 December 1991.

[4] M. DEertouzos AND A. Mok. Multiprocessor Scheduling in a Hard Real-Time Environment. In
Proc. Tth IEEE, Conference on Computing Systems, Tezas ,1978.

[5] M. R. GArRey AND D. S. JounsoN. Computers and Intractability: a guide to the theory of NP-
Completeness. W. H. Freeman and Company, New York, 1979

[6] A. KArRLIN, M. MaNAsSE, L. RuboLpH, AND D. SLEATOR, Competitive Snoopy Caching, Algo-
rithmica 3, (1988), pages 79-119.

[7] G. KoreN, D. SHasHA. D-over: An Optimal On-Line Scheduling Algorithm for Overloaded Real-
Time Systems, In Proc. of 1992 IEEE Real-Time Systems Symposium , Phoenix, Arizona, pp. 290-299,
December 1992.

[8] G. KorEN, D. SHASHA. An Optimal Scheduling Algorithm with a Competitive Factor for Real-Time
Systems,. Technical report no. 572, Courant Institute, NYU , July 1991.

[9] C. DoucLAss LockE. Best-Effort Decision Making for Real-Time Scheduling. Doctoral Dissertation,
Computer Science Department, Carnegie-Mellon University, 1986.

[10] WEI-KUAN SHIH private communication, 1993

20

k=2 k=8

6
15("
g 000\\\~~ 1 a__')
§_ "*00000000oo000000000000000000000000000 §_ X
s 47 1 S 10l % _
g g 10
23 = e —
g2 ‘ g s |
S £
S 1t] 8
0 ' ' ' ' 0 ' ' ' '
0 20 40 60 80 100 0 20 40 60 80 100
number of processors (2 to 100) number of processors (2 to 100)
k = 64 k =256
50 - - 120 - -
| X
8 40} 2 100
= =
= = 80t
£ 30 x =
2 2
= 20t] = X
= 20r “x 5 40l
Qo S§§§§§§§§E 2 X
S 10 : S
8 R 8 20f %Wmmmm
0 ST LA LT O OO T TN LTV VTS T N TO TN TOT LI TOT Al 0
0 20 40 60 80 100 0 20 40 60 80 100
number of processors (2 to 100) number of processors (2 to 100)

Figure 2: COMPARISON OF COMPETITIVE MULTIPLIERS OF COMPLEXITY (X’S) AND ALGORITHMIC
BOUNDS (0’S) FOR FIX k'S AND VARYING NUMBER OF PROCESSORS.

19

7 Conclusion

number of | importance bounds
processors ratio complexity | algorithmic comments
1 cany k> 1 (14 Vk)? tight tight bound achieved by D°v¢" [7].
2 1 2 tight tasks have no slack time and may not
migrate between processors [3,12].
2 1 2 31 tasks may have slack time but may not
migrate between processors.
2 1 2 tight I tasks may have slack time and may mi-
grate between processors.
T
n o k>1 (kfl)n(klﬁ -1) Flo1+ n(k¥ —1) i general algorithmic guarantee can be
i where ¢ = 2 1+nh]; f_l seen in theorem 6.2
n>> 2 kE>1 (1:1) Ink + 2lnk + 3+ asymptotic behavior

The above table summarizes the current state of the art of competitive real time scheduling.
Here, n is the number of processors in the system; k is the importance ratio, that is the highest
possible value per unit of computation time that any task can possibly obtain (normalizing the

lowest to 1). The bounds are expressed in terms of competitive multipliers. Results marked with i
are part of this paper.

A gap remains between the guarantees achieved by the Cascading Multi-Band Algorithm and
the complexity bounds we have proved. The algorithmic guarantee is within a multiplicative factor
of 2 from the complexity bound for large enough n and k (the graphs on the next page show that
the asymptotic behavior is attained even for small values of n). When the importance ratio of a
system (i.e., k) is close to 1, a different treatment is needed. Some work in this direction has been
done by Bar-Noy et. al. [1].

It is possible that a better choice of ¢ will lead to a better exact expression of the algorithmic
guarantee for our algorithm. But it seems that, asymptotically we can not do better without chang-
ing our algorithmic techniques. The reason is that our basic block, the scheduling algorithm for a
2-processor band concentrates its efforts on one processor at a time (SP); the other processor RP,
is essentially left idle. Hence, the Cascading Multi-Band Algorithm automatically loses a factor of
2 compared to a clairvoyant scheduling algorithm that utilizes all the processors concurrently. Of
course, one can suggest heuristics that will use a processor whenever possible!®, the true challenge
is to show that such a heuristic achieves a better worst case performance guarantee. Another way
to improve the algorithmic guarantee will be to come up with a better algorithm for an m-processor
band (for some m > 2).

6 Heuristic improvements can be obtained by looking ahead in the waiting and privileged queues and by scheduling
tasks on the Risky Processor before tasks arrive at their latest start times.

18

6.3 The Cascading Multi-Band Algorithm Scheduling Overhead

In the previous sections we analyzed the performance of our algorithms in the sense of their competi-
tive multipliers. In this section we study the cost of executing the scheduling algorithms themselves.

What is the cost of testing whether a newly arriving task can be added to Q_privileged containing
N tasks with out causing overload? This can be done in O(log N') operations using a 2-3 tree that
holds slack times with sums of the slack times from left siblings held in interior nodes. If the task
is to be added to Q_privileged the updating of the 2-3 trees involved takes also O(log N) time.

Let M be a bound on the the total number of ready tasks at any given moment in Q_waiting
and any of the local queues.

When a task is released it may have to be checked against all bands (suppose the task cascades
from the highest band all the way to the lowest) with a total cost of O(nlog M).

A task in Q_waiting awaits its LST. Hence, Q_waiting is a 2-3 tree organized according to Latest
Start Time. Inserting and removing a task from this queue costs O(logM) operations.

A task during its lifetime causes exactly one task release event and at most one LST interrupt.
Hence, the scheduling overhead per task is O(nlogM).

6.4 Two Processor Systems

In this section we discuss the case of uniform value density (i.e., & = 1). Wang and Mao [3,12]
showed a lower bound of 2 (on the competitive multiplier) and presented an algorithm that achieved
this bound, assuming tasks have no slack time. Building on this work we have developed an al-
gorithm, the Safe-Risky algorithm that achieves a competitive multiplier of 2 even when tasks
may have slack time but migration is allowed. Hence, the Safe-Risky algorithm is optimal. For
the “No-Migration” model, a variant of the Safe-Risky algorithm, called the Safe-Risky-(fixed),
achieves a competitive multiplier!® of 3. We do not know whether the second algorithm is optimal.
For reasons of space we omit here the details of these algorithms and their analysis, these can be
found in appendix A at the end of this paper.

1Tasks may have slack time.

17

1
Recall that 1/;(]{:1/’ — 1) tends to In k as ¢ approaches infinity. Hence, when the number of proces-
sors tends to infinity, equation (4) above tends to

nk+1, + Ink + 1
142 Tim gt P ¥ _ =g 42t

Y—o0 In k

Ink=1+2(Ink+1) (5)

In

Corollary 6.4 The ratio between the complexity bound and the algorithmic guarantee is at most

When k is held fized and n tends to infinily this ralio lends lo k%l (2 + %) Which, when k tends
to infinity tends to a constant of 2.

PROOF.
Recall our complexity bound of Qn%(k% — 1). This bound tends to %ln k when n tends to
infinity. The limit of the ratio is the ratio of the limits which is:

14+2(Ink+1) k-1 3
A Y2
gk n

Which gives the desired result.

L
Remark 6.5 In the discussion above we have chosen to ignore the fact that w and ¥ must be
integers. We can take care of that by setting ¢ as the nearest integer to lnh;cil

6.2 Distributed vs. Centralized Scheduler

We discuss here architectures with large number of processors. Hence, it is necessary to see which
portions of the scheduler are centralized and which are distributed. The Cascading Mulli-Band
Algorithm uses a central scheduler in order to assign a task to a band (at task release time and
LST). This means that the centralized scheduler has all the information regarding tasks assigned
to each band and their parameters!?. Once a task is assigned to a band it is left in the hands of

the local scheduler (which basically employs Earliest-Deadline-First).

It is desirable for reasons of fault-tolerant and efficiency ([13]) to distribute the functionality of
the centralized scheduler among the processors. This is an interesting and important extension to
the work presented here.

Gince all the tasks go through the central scheduler this is not difficult to do.

16

Remark 6.2 Note that the Cascading Multi-Band Algorithm does not use migration, hence the
previous result holds both whether migration is allowed or not.

Remark 6.3 When k£ = 1, there is no need for the bands’ structure, hence the central pool consists
of all the processors (w = n and ¢ = 0). This leads to a competitive multiplier of 2 + 1.

Remark 6.4 When the number of processor is odd, a similar result can be obtained.

6.1 Setting v

In the following, we will estimate the upper bound in theorem 6.2 by setting!? ¢ = nlnh;gil (hence

1 _ l)

“ ="kl T Ik
The bound in (2) above becomes:

<

k |
T i

1
2n max ————— = 2n(k¥ — 1) max -

1<i<1) %4— i 1<i<e) %(kw — 1)+ (k¥ —1)

<~

—

Eal
=]~
—

1
The left hand side is obtained by multiplying both numerator and denominator by (k:1/’ - 1).
Define f,(z) to be aTe—n)- When @ > 1, this function is monotone increasing with z (z > 0). For

1
a = %(kﬂb — 1), a is bigger than'® 1. This means that the maximum above is attained at ¢ = ¢

and the upper bound (equation 2) is:

2n(k¥ —1) T i <ok — 1) ok ¥

LY - 1)+ (k- 1)

We have just proved the following lemma:

Lemma 6.3 The Cascading Multi-Band Algorithm has a compelilive multiplier of at most

- In k
[, =
14 2n(k 1), where o

(recall that the complexity bound is bigger than Qn(k% -1)) O

2]n is the natural logarithm
1

13 Because 1/}% is a monotone decreasing function of i tending to 1 when % goes to infinity.

15

The facts that a task of level high(t) was abandoned and that ¢ is in its executable interval imply
that at time ¢, all bands up to (and including) high(t) were productive. This means that the on-line
scheduler has a cumulative value density of at least!!:

high(t)
1 2 high(t)—1 L 1/) -1

WA T+ EY L kY 1ok ¥ :“+(L7)
(k¥ —1)

This leads to the following theorem.

Theorem 6.2 For a system with 2n processors and maximal value density of k > 1 the Cascading
Multi-Band Algorithm has a compeltitive multiplier of at most

1Y
14 2n min max —————— (1)
(O<v<nn=wv) |1<i<h g
w+
(k¥ 1)
PROOF.
The discussion above demonstrated that,
F 20k K0
‘C/((F)) < ma); " - =2n ma@ - (2)
1<i< " 1<i< v
o+ =) o+ =)
(k¥ -1) (k¥ -1)

CF) . s
- <2n min max .
V() (0<Y<nsn=w+1P) | 1<i<y (ka_l)
wt T
(k¥ -1)

Using the Lost Value lemma we get the desired result.

O

HF¥or the case k = 1, the uniform value density case, see remark 6.3 below.

14

PROOF.

If SP does not become idle before time d then by definition the band is productive between ¢ and
d. Otherwise, suppose SP becomes idle at time s, { < s < d, then there must be a task executing
on RP at time s (because a task on RP can be abandoned only in favor of another task with a later
deadline and no slack time). So, at time s RP becomes SP and it would not become idle before
time d because the deadline of the current task is at least d (and it has no slack time).

O

Here are a few things to notice about the Cascading Multi-Band Algorithm:

1. At any band ¢, only tasks of level 7 or higher can be executed.

2. If a task T of level ¢ is abandoned then band ¢ and all lower bands (including the central
pool) are productive during the entire executable period of 7.

PROOF.

Let T be T(r,c,d)!°. Upon T’s release it was not accepted by any of the levels on or below
i. This means that for each of these bands, the tasks currently in (the local) Q_privileged
will execute at least until d — ¢ (otherwise 1" could become privileged). This proved that all
bands are productive between r and d — c.

However, d — cis the LST of T'. At its LST', T would not be scheduled only if every band (on
or below the 7’th) has a task currently executing on its RP with deadline after d. This means
that all bands are productive between d — ¢ and d (lemma 6.1) Combining the two gives the
desired result.

O

3. Once a task starts to execute on some processor, it will never migrate to another processor.

At any given time ¢, consider all the tasks of F for which ¢ is in their executable period. Let
high(t) be the value density level corresponding to the task with the highest value density among
all these tasks.

Suppose the clairvoyant scheduler has to schedule only the tasks of F, and suppose it had chosen
some optimal schedule for these tasks. At time ¢, the best the clairvoyant scheduler can hope for

(looking only at time t) is to have all 2n processors executing tasks of level high(t), i.e, with value
high(t)
density not greater than k ¥ . We conclude that the cumulative value density of the clairvoyant
high(t
schedule at time ¢ is bounded by 2nk ¥

19T e., released at time r with deadline d and computation time c.

13

second band, but at time 4 it is abandoned in favor of T7 which arrived to its LST and has a later
deadline.

At time 5, the SP of the first band becomes idle, which creates a switch of the roles between the
SP and RP of that band. Later at time 6, Tg is released; it can not be scheduled on its own band’s
SP but after cascading it is scheduled on the (new) SP of the first band.

All in all, the Cascading Multi-Band Algorithm completed all the tasks but T5 and Ty. A clair-
voyant scheduler could schedule all the tasks (75 can be scheduled on the idle SP and Ty can be
scheduled before its LST on the same processor). Figure 1 shows the schedule created by the
Cascading Mulli-Band Algorithm.

6 The Algorithm’s Competitive Multiplier

In this section we would like to study the behavior of the Cascading Mulli-Band Algorithm and to
compute its competitive multiplier. The final result is stated in theorem 6.2.

Recall that I' is the entire set of tasks to be scheduled. We partition the tasks of I' according to
the behavior of the Cascading Multi-Band Algorithm: tasks that never completed (F') and tasks
that completed successfully (5). Denote by V(I') and C(I') the value achieved by the Cascading
Multi-Band Algorithm and the clairvoyant scheduler from scheduling I', respectively. We will show
that C'(F) < aC(I') (for some constant alpha), using the Lost Value Lemma (4.1) we will get a
competitive multiplier of o + 1.

Before we start we must introduce some notation and definitions.

Definition 6.1

e ProDUCTIVE BAND: A band is said to be productive at time ¢ if at that time, its SP is not
idle.

e EXECUTABLE PERIOD: The ezecutable period, of a task is the interval between its release
time and its deadline.

By definition, a task may be scheduled only during its executable period.

e CuMULATIVE VALUE DENsSITY (CVD): Suppose some schedule is chosen, the cumulative
value densily at time ¢ is the sum of the value densities of all tasks executing at time ¢. °

O

Lemma 6.1 If al time { a task with deadline d is executing on RP of a band (i.e this lask was
scheduled by an LST interrupt) then that band will be productive between t and d.

®For example, for a system with 2n processors, if all processors are idle at time ¢ then CV D(t) = 0. If half of
the processors (i.e, n) execute tasks with unit value density and the others execute tasks of value density k then the
cumulative value density is n + kn. In no case can CV D(t) be bigger than 2nk.

12

» [T6] T8 | 716 |
2'nd band
RP | T9] T7 | -
s 11 |
1'st band =
RP | 13 | T10|
Central Pool
sp T2 |
=
RP | T4 | -
time axes | |
0 2 4 6 8

legend

SP, RP

initial assignment as safe or risky in each band
atask on SP
atask on RP

Figure 1: The Cascading Multi-Band Algorithm Scheduling

11

(i.e., with no central pool) can be crippled when the task set consists of mostly low value density
tasks since all the higher bands will be left idle. In order to minimize the loss of such cases we add
the central pool to the bands structure. If all the tasks are of low value density then all high bands
would still be left idle but the bands in the central pool would be utilized.

A big enough central pool will offset the damage caused by higher idle bands. However, mak-
ing the central pool too big can cause another problem—weakening the advantages of the higher
value density tasks. We conclude that choosing the right size of the central pool is a delicate and
important aspect of the the Cascading Multi-Band Algorithm.

The following is a small example of the Cascading Multi-Band Algorithm's scheduling.

Example 5.1

Assume that the highest possible value density is 16 (k = 16), number of processors is 6 from
which 2 are allocated as a central pool and the rest constitute 2 bands. The first band will be for
tasks with value density below 4 and the second for tasks with value density of 4 and above. For
this example, consider the tasks depicted in the following table:

H Task ‘ Release Time | Computation Time | Slack Time | Deadline | Value Density

1) 0 5 0 5 1
15 0 5 0 5 2
15 1 5 0 6 3
Ty 1 5 0 6 3
T 1 1 0 2 3
Te 2 4 2 8 16
17 2 3 2 7 10
Ty 3 2 1 6 10
Ty 3 2 0 5 10
Tio 6 1 1 8 16

The first two tasks to be released are scheduled on the SP of the first band and the central pool
(175 cascades into the central pool). When T3 is released it can not be scheduled on an SP, so it is
inserted into Q_waiting only to create an LST interrupt immediately. Then, it is scheduled on the
RP of the first band. In the same way T} is scheduled on the RP of the central pool. But when T3
arrives it can be scheduled neither on any of the SPs nor on any of the RPs, hence is abandoned
(in the LST routine). Note that T is abandoned even though the second band is idle (a task can
cascade only downwards).

All the remaining tasks have value density high enough to be scheduled on the second band. 7§ is
scheduled on the SP. 77 can not be scheduled on any of the SPs and it enters Q_waiting (with LST
at 4). Ts can be added to the SP of the second band preempting Tg (which has a latter deadline).
Ty can not be scheduled on any of the SPs; it reaches its LST and is scheduled on the RP of the

10

2. At LST (of a non-privileged task), decide whether and where a task should be scheduled or
maybe abandoned.

3. The method used in scheduling each band (and the central pool).

Different choices for these three components would create different variants of the algorithm. In
this paper we describe one specific variant that we call the Cascading Multi-Band Algorithm. In
this variant, the central pool is also broken into bands of two processors each®. All the pairs (i.e,
bands) execute the same two processor scheduling algorithm.

At each moment, every band has one of its processors designated as the Safe Processor (SP) and
the other as the Risky Processor (RP). Each band has its own queue called Q_privileged, the tasks
in Q_privileged are guaranteed to complete. In addition to the local Q_privileged queues there is
one global queue called Q_waiting. This queue includes all the ready tasks that are not privileged.

When a new task 7' is released, it is assigned to a band as follows:

1. It is added to the Q_privileged of its own band if this does not create overload (i.e, all tasks
including the new task can complete on SP). Otherwise, T cascades downward as described
above.

2. If T was not accepted by any band (including all the bands in the central pool) it enters the
Q_waiting where it waits until its LST occurs.

So, at release time only the SPs are examined. A task might not be scheduled even if an RP is
idle. A task T that reached its LST is assigned to a processor as follows:

1. If there is any idle RP among all the lower level bands (including 7”°s own level) then schedule

T on one of these processors’.

2. If there is no idle RP among lower level bands, we might abandon a task executing on one of
these RPs in order to schedule T, depending on the following rule:

Let T be the task with earliest deadline among all the tasks executing on these RPs.
Abandon the task with earlier deadline among T and T™*.

If, at task completion event, SP of a band becomes idle while RP is not then the two processors
should switch roles; the safe-processor becomes the risky-processor and vice versa. This does not
require task migration.

Using idle RPs and scheduling tasks of Q_waiting before they reach their LST are heuristics for
improving the average case behavior of the scheduler.

The bands structure as described above prioritize high value density tasks over low value density
tasks. Higher value density tasks start their cascading at a higher point and cascading is possible
in only one direction - downwards®. However, an algorithm that uses the “pure” bands structure

5The bands of the central pool are ordered so that a task that reaches the pool start with the first band in the
pool and if not accepted it cascades to the second band and onwards. If the task is not accepted by the last band in
the pool (“end-of-the-world”) it enters Q)_waiting.

"Heuristics can be used to choose the processor in case that there are more than one idle RP. Examples might be
the one of the lowest band, or maybe the highest.

8Hence, higher value density tasks have more bands that can possibly accommodate them.

C() < (e + V(D)
PROOF.
) = C(FUS)<C(F)+0(8)
= C(F)+V(8)=C(F)+V(I)
< (e+ V(D)
0

5 The Cascading Multi-Band Algorithm

Suppose a system has 2n processors. We break the processors into two disjoint groups: 2¢ proces-
sors will constitute a “band structure” and the other 2w processors will constitute a “central pool”
as described below (n = ¢ + w;and n > w > 0).
1 1z)
We consider ¢ intervals (levels) of value density [1.kY), (kY. k¥)y, [k ¥ k], call these levels
1,---, 4 respectively. The 2’th band is said to be “lower” than the ¢ + 1’st band.

Suppose the entire set of tasks to be scheduled is I'. We partition this set according to the value
density of the tasks: ' = I'y UTy---U F1/) where I'; contains all tasks with value density in the

=1z
range * [k ¥ kY.
We allocate 2 processors (a band) for each of the ¢ value density levels. In addition, the remaining
2w processors are allocated as a central pool, that will be used by tasks of all levels.

The main idea of the algorithm is to assign a task, upon its release, to the band corresponding
to its value density. However, if the band is already overloaded and can not accommodate the new
task this task will “try” the band one below. If the band below can not accept the new task, the
task will continue to cascade downwards. If a task cascades to the lowest band but still can not be
scheduled there it can go into the central pool.

If a newly released task is accepted by one of the bands or by the central pool it is guaranteed
to complete before its deadline (these tasks are called “privileged”). If it is not, it awaits its LST?
(Latest Start Time). at which time it tries again to be scheduled (details to follow). The algorithm
has three major components:

1. Upon task release, assign a task to a band (possibly after cascading).

-1
£All but the last interval is half open half closed. The last level corresponds to the closed interval [k ¥ k).
*Definition: LST = (deadline - remaining computation time). If a task is not scheduled at its LST, it will not
complete.

(k—ﬁl)n(k% - DV(t,)

>

N V(tlo) + €V(tlo)
k(W —1

e -1

- 1+ ¢

This holds for every positive € hence the Theorem is proved.

O

Corollary 3.3 As the number of processors n tends to infinity, no on-line algorithm can have a
competitive multiplier smaller than In k& (natural logarithm).

4 Algorithmic Guarantees

We consider two possible models of multiprocessor systems. In the first model, tasks can migrate
cheaply (and quickly) from one processor to another. Hence, if a task started to execute on one
processor it can later continue on any other processor (and migration takes no time). In the second
model (the fized model), once a task starts to execute on one processor it can not execute on any
other processor. An on-line scheduler can do better when migration is possible.

4.1 The Lost Value Lemma

Let A be an on-line scheduler and T" a set of tasks to be scheduled. We can partition the tasks of
I' according to the behavior of A

1. Tasks that never completed (F"), the “lost” ones.

2. Tasks that completed successfully (.59)

I'=Frus

Denote by V(I') and C'(I') the value achieved by A and the clairvoyant scheduler from the tasks
of I.

Lemma 4.1 The Lost Value Lemma

If for some multiplier ¢ and every set of tasks I,

C(F) < cV(T)

Then,

The above term monotonically decreases when g increases, hence the minimum is obtained when
1o = n and its value is

nk
T+ kn+ ko4 o+ k5
The sum of the geometric sequence in the denominator is k£1 hence the smallest possible ratio
w1

is,

and the lemma is proved. []

The preceding lemma dealt with the special case that only one value density level is missing from
the on-line schedule. But what will happen if more than one level is missing? In appendix B we
show that this can not benefit the on-line scheduler (for a “good” choice of ig). Hence, we get the
following theorem.

Theorem 3.2 For a system with n processors and mazximal value density of k, there is no on-line

scheduling algorithm with competitive multiplier smaller than ﬁn(k‘% -1).

PROOF.

Fix an on-line scheduling algorithm. Denote by V({;) the value obtained by the on-line scheduler
until tim(]e t;. Lemma B.3 shows that the value obtained by the clairvoyant algorithm is at least
wyrks = DV (1)

Note that #; tends to infinity as [goes to infinity. If V(#;) does not tend to infinity as ! goes
to infinity then the competitive multiplier of the on-line algorithm is not bounded (because the
clairvoyant algorithm gets a value of at least n{; — o0). Otherwise, V({;) tends to infinity, hence
for arbitrarily small € > 0 there is a big enough [y such that

1
Vi) > an = kn < eV (1)

Suppose the game ends at {;, (i.e., no more task releases). The total value obtained by the
on-line scheduler is not greater than V() + kn (because all the tasks not yet completed has
length at most 1 and value density at most k). The clairvoyant scheduler gets a value of at least

—(kfl)n(k% — DV (1y,).

Hence,

value obtained by the clairvoyant scheduler

value obtained by the on-line scheduler

ks = DV ()

o V(tlo) + kn

at least one level is not chosen by the on-line scheduler. Let iy be an index of some level (to be
specified later) that is not chosen. Then, #;41 is set to be the end of the current iy’th level period
(this means that up to that time there will be no new task releases). We will say that ¢; is associated
with level ig.

Suppose that ¢; is associated with level ¢y, then what can the clairvoyant scheduler do? It can
execute n tasks of level iy to completion between ¢; to {;41. In this scheme, the clairvoyant scheduler
schedules all the processors in the same way, no processor is ever idle and all current tasks complete
immediately before a new set is released.

At least one but possibly several value densities could be missing from the on-line schedule. We
will start by proving results assuming that only one level is missing. Later, we will produce a
general scheme to choose ig among all absent density levels.

Lemma 3.1 Suppose the on-line scheduler gels partial value for tasks that were executed but nol
to completion. In particular, for a task that executed for o (0 < a < 1) of its computation time the
scheduler will get o times the task’s value.

If only one density level is missing from the schedule at time t;, then the effective value density
(i.e, the value achieved divided by the period’s length) obtained by the clairvoyant scheduler between
t; and 141 is at least ﬁn(k/‘% — 1) times bigger than the effective value density obtained by the
on-line scheduler for the same period.

PROOF.
Let ig be the level associated with the period in question. The clairvoyant algorithm schedules to
completion n tasks of level ¢y and gets an effective value density of k> on all processors.

We know that during this period the on-line scheduler did not execute any task of level ig. In-
stead, it scheduled tasks of lower and higher levels. The effective value density of any tasks of
higher level is much smaller than its value density because of their short period. In fact all these
tasks have effective value density of at most ¢. Hence, the effective value density achieved by the
on-line scheduler is at most

L4 k% + k% 4+ B+ et ete
——

n—ig times

1 2 =1 .
= 1+4+kn+kn+---+kn +(n—1ge

We are looking for the smallest possible ratio between the effective value densities of the clair-
voyant and the on-line scheduler. That is,

20

] nkn
min

05i0§n(1+k%+k%+...+kzo

n 4 (n —ip)e)

2. We present an algorithm called the Cascading Multi-Band Algorithm. For a system with 2n
processors and importance ratio of k£ > 1, this algorithm has an algorithmic guarantee of at
most

1+ 2n min max —————
(0<w<nn=w+y) | 1<i<y } (kw—n

When n tends to infinity this bound is at most 2lnk 4 3, which is within a multiplicative
factor of 2 from the complexity bound for the same system.

3. We present an algorithm called the Safe-Risky algorithm, for two-processor systems with
uniform value density that achieves the best possible competitive multiplier of 2 even when
tasks may have slack time but migration is allowed ®. For the “No-Migration” model, a
variant of this algorithm, called the Safe-Risky-(fixed), achieves a competitive multiplier of

3.

3 The Complexity Bounds

We would ﬁrst1 like to show that no on-line algorithm can have a competitive multiplier smaller
than (k%n(kﬁ —1). As usual in proofs of this kind, we assume that an adversary can choose a
set of tasks. The set depends upon the on-line algorithm’s behavior.

We consider n+ 1 possible levels of value density 1, fen , k%, - kn =k, call them levels 0,1, - - -, n.

With each level we associate a period. A task of some level of value density will have a com-
putation time and deadline equal to the corresponding period. Hence, the value of a task of level
t equals the length of the ¢’th period times the ¢’th value density. The length of the 0’th level’s
period is set to 1. We choose all other periods in such a way that the value of an ¢ + 1’'th level
task is only a small fraction of the ¢’th level task’s value. In fact, we choose it so the 7+ 1’th task’s
“effective value density” taken over the i’th period is arbitrarily small (say € for some small positive
€).

A collection of tasks that has n identical tasks for each level is called a complete set. In this game,
the adversary release tasks only in complete sets. The behavior of the on-line scheduler dictates
when the next complete set is to be released.

Let ¢; be the time when the [I’th set was released (hence, always t; = 0). At time ¢; (in particular
at time 0), the on-line algorithm has to schedule a complete set. The number of possible scheduling
decisions is vast. However, since the number of processors is smaller than the number of levels,

#This was already known when tasks have no slack-time [3,12].

Zhou et. al. presented an on-line algorithm [13]? for distributed real-time systems. Their model
resembles ours but our goal is to give worst case guarantees for value obtained (even for overloaded
systems) while their goal is to generate a schedule efficiently when the system is underloaded (i.e,
all tasks can be scheduled).

Wang and Mao [3,12] showed a lower bound of 2 (on the competitive multiplier) and presented an
algorithm that achieved this bound for an arbitrary even number of processors, assuming uniform
value density and no slack time.

We present here algorithms and complexity results for tasks having slack time, executing on
an arbitrary number of processors, and with arbitrary importance ratios. The gap between the
performance guarantees of our algorithms and the complexity results shows that there is still work
to be done. Our adversary arguments and algorithms offer, however, three useful insights:

1. A parallel on-line scheduling algorithm improves its competitive multiplier by devoting some
of its processing resources to every possible value density.

2. The lower bound on the best possible competitive multiplier (as measured by our adversary
arguments) converges to In k as the number of processors approaches infinity. Our current al-
gorithm gives a guarantee that converges to 21n k 4+ 3 as the number of processors approaches
infinity.

3. It should be easier to design a competitive on-line scheduler when tasks are assumed to have
no slack time. However, in all the multi-processors scheduling algorithms that we studied,
the introduction of slack time entails only a fixed deterioration of the competitive multiplier.
The same fixed deterioration is observed when comparing systems with cheap migration vs.
systems where migration is impossible.

This paper is organized as follows: Section 2 summarize the main results. In section 3, we
present our complexity results using a novel adversary argument. From section 4 onwards, we
describe our algorithmic results. Section 4.1 states the Lost Value Lemma that we use frequently
to relate results in the case where migration is both permitted and cheap to the case where it is
not possible. In sections 5 and 6 we describe and analyze the Cascading Multi-Band Algorithm.
Our results for two-processors systems are presented in appendix A. The paper ends with a brief
conclusion and a discussion of some salient open problems.

2 Summary of Results

We present algorithms and complexity results for multiprocessor scheduling of overloaded real-time
systems.

1. For a system with n processors and maximal value density of & > 1, there is no on-line

scheduling algorithm with competitive multiplier smaller than ﬁn(k% -1).

When n tends to infinity this lower bound tends to ﬁ In k.

2And additional references within.

failures of some computational resources or as a transient condition (e.g., in telecommunications
and multimedia). In a parallel setting, it is possible to tolerate failures and still meet the deadlines
of many high-value tasks. To do this, we must have algorithms that can adapt to the number of
processors available and give performance guarantees.

Recently, several groups of researchers (including us) have presented complexity results and al-
gorithms that give guarantees for overloaded real-time systems. The current paper extends our
previous uniprocessor results to parallel architectures. We discuss both uniform shared memory
models (where thread migration is cheap and scheduling is global) and non-uniform shared memory
models (where thread migration is impractical but scheduling is still global). By “migration” we
mean the ability to move a thread that has already begun execution from one processor to an-
other. For both models, we assume that preemption within a processor takes no time (a reasonable
assumption for real-time kernels).

In our work-flow model, the scheduler is given no information about a task before its release time.
When a task is released, its value, computation time and deadline are known precisely. If a task
completes before its deadline, then the system acquires its value. Otherwise, the system acquires
no value for that task. This is known as a firm on-line real-time model. The goal of the scheduler
is to obtain as much value as possible.

The value density of a task is its value divided by its computation time. The importance ratio
of a collection of tasks is the ratio of the largest value density to the smallest value density. For
convenience, we normalize the smallest value density to be 1. When the importance ratio is 1, the
collection is said to have uniform value density, i.e., a task’s value equals its computation time. We
will denote the importance ratio of a collection by k.

We choose to quantify the performance guarantee of an on-line scheduler by comparing it with a
clairvoyant (also called off-line) scheduling algorithm. A clairvoyant scheduler has complete a priori
knowledge of all the parameters of all the tasks. A clairvoyant scheduler can choose a “scheduling
sequence” that will obtain the maximum possible value achievable by any scheduler *.

As in [2,6,11] we say that an on-line algorithm has a competitive factor r, 0 < r < 1, if and
only if it is guaranteed to achieve a cumulative value of at least r times the cumulative value
achievable by a clairvoyant algorithm on any set of tasks. For convenience of notation, we use
compelilive multiplier as the figure of merit. The competitive multiplier is defined to be “one over
the competitive factor”. The smaller the competitive multiplier is the better the guarantee is. Our
goal is to devise on-line algorithms with worst case performance guarantee.

For uniprocessor environments with an importance ratio k, Baruah et. al. [2,3] showed a lower
bound of (1 + \/E)2 Wang and Mao [12] first reported an algorithm that achieves this bound when
k is 1. Having independently developed an algorithm for the £ = 1 case, we were able to generalize
this to an algorithm called D°”®" that meets the Baruah et al. bound for all & [7].

For multi processor environments, Mok and Dertouzos [4] showed that no optimal algorithm ex-
ists even when the system is underloaded. Locke ([9] pp. 124-134) presented heuristics for this case.

!Finding the maximum achievable value for such a scheduler, even in the uniprocessor case, is reducible from the
knapsack problem [5]; hence is NP-hard.

Competitive Algorithms and Lower Bounds
for On-Line Scheduling

of Multiprocessor Real-Time Systems *

Gilad Koren Dennis Shasha

Courant Institute, New York University

New York, NY 10012.

June 23, 1993

Abstract

We study competitive on-line scheduling in multi-processor real-time environments. In our
model, every task has a deadline and a value that it obtains only if it completes by its deadline.
A task can be assigned to any processor, all of which are equally powerful. The problem is to
design an on-line scheduling algorithm (i.e.,the scheduler has no knowledge of a task until it is
released) with worst case guarantees as to the total value obtained by the system.

We study systems with two or more processors and with uniform or non-uniform value den-
sity. We present an inherent limit on the best competitive guarantee that any on-line parallel
real-time scheduler can give. Then we present a competitive algorithm that achieves a worst
case guarantee which is only within a factor of 2 from the best possible guarantee in many cases.
These are the most general results yet known for parallel overloaded real-time scheduling.

1 Introduction

In modern life, real-time computer systems are gaining importance at a rapid pace. Once limited
to exotic applications, real-time applications now can be found in many civilian and military prod-
ucts. These range from multi-million dollar gadgets like (the proposed) space stations to relatively
mundane products like cars and airplanes. Real-time systems control the production and safety in
power plants, factories, labs and perhaps soon in our home alarm systems.

A firm overloaded real-time system is one for which even a clairvoyant scheduler cannot meet
all deadlines with the available computational resources. Overload can arise either as the result of

*Supported by U.S. Office of Naval Research #N00014-91-J-1472 and #N00014-92-J-1719, U.S. National Science
Foundation grant #CCR-9103953.
Authors’ e-mail addresses : koren@cs.nyu.edu and shasha@cs.nyu.edu

