
DietVision : An App for Image-based Food

Identification, Volume, and Nutrition Estimation

Michael Hofmann
MSc student

Télécom Strasbourg
misoko.hofmann@gmail.com

Léopold Maillard
MSc student
INSA Rouen

leopold.ma@hotmail.fr

Jessica Ramaux
MSc student

Télécom Strasbourg
jessica.ramaux13@gmail.com

Dennis Shasha
Professor

New York University
shasha@cims.nyu.edu

New York University Computer Science Technical Report 998
August 2021

Keywords— Food volume estimation, image segmentation, deep learning, stereo vision, fidu-
cial marker, user feedback, Flutter app.

Hofmann, Maillard, Ramaux, Shasha DietVision

Contents

1 Abstract 3

2 Example of Use 3
2.1 Taking the First Picture . 3
2.2 Taking the Second Picture . 4
2.3 Using Feedback to improve accuracy . 4
2.4 Meal nutritional values assessment . 5
2.5 User’s profile . 5
2.6 Beverage in a meal . 5

3 Architecture 7
3.1 Overview . 7
3.2 Project file structure . 7
3.3 Flutter Layered Architecture . 8
3.4 Configuration and Flutter packages requirement . 8
3.5 Local databases : nutritional values and fiducial markers 9

4 Algorithms for food detection, classification and volume estimation 11
4.1 Food segmentation . 11
4.2 Surface estimation . 12

4.2.1 Retrieve segmentation results . 12
4.2.2 Fiducial marker . 12
4.2.3 Food classes distance . 12

4.3 Volume estimation . 13
4.3.1 Fiducial marker with a known angle . 14
4.3.2 Thickness computing . 14
4.3.3 Accurate & scaled thickness considering perspective 17
4.3.4 User-friendly Feedback . 18

4.4 Dietary Assessment . 18
4.5 Known issues and potential improvements . 18

4.5.1 Segmentation model . 18
4.5.2 Beverage volume estimation . 18

5 Results 19

6 Conclusion 21

7 Installation 21

Page 2

Hofmann, Maillard, Ramaux, Shasha DietVision

1 Abstract

DietVision is a mobile app that provides an estimate of the nutritional content of a meal from
images. The software provides the following functions: (i) food detection that performs classifi-
cation and assigns it to a major food group; (ii) volume estimation using two images at different
angles of a plate along with a coin as a fiducial marker; and (iii) user feedback to correct errors in
steps (i) and (ii). The app also provides features such as a detailed meal history, dietary habits
statistics and personalized user preferences. It works on various smartphones using the Flutter
Framework.

2 Example of Use

After launching the app, the user traverses menu pages until asked to take two pictures of the
presented food along with a fiducial marker such as a two Euro coin. (The marker can be changed
in the preferences tab.)

2.1 Taking the First Picture

The first picture is a top-view one and is used to detect food as well as to compute the surface
it occupies, as on Figure 9. The fiducial marker is used as a reference object to get the right scale.
Specifically, a coin is used since it has a fixed size which eliminates the issue of potential variations
in size that other reference objects have, such as a plate or a glass.

Figure 1: Top view of a meal to get the surface and the coin-food distance estimation for each
detected class.

The coin is placed right in front of the dish (between the user and the dish) and the smartphone
must be directly above it, in order to get the most correct top-view. The user has to make the coin
match as closely as possible with the purple circle displayed at the bottom of the camera preview
screen. This may seem laborious at first glance, but is in practice a fun challenge. Once the phone
position is adjusted, the user takes the picture. After a few seconds, a list of detected food items
is displayed along with their associated surface in square centimeters.

Page 3

Hofmann, Maillard, Ramaux, Shasha DietVision

2.2 Taking the Second Picture

The purpose of the second picture is to estimate the volume of each food class detected in the
first picture, as on Figure 2. The thickness of each food item must be obtained and to do so, the
picture must be taken at a 45° angle. The coin should not be moved. This time, the user will
match the coin with a purple ellipse (that corresponds to a circle viewed at an angle of 45°).

(a) 45 degree picture (b) Example of taking a second picture with a 45 degree
angle

Figure 2: The user may change the position of the phone between the first/second picture

After this second picture has been taken, the food items list will be displayed again, with this
time their volume estimation in cubic centimeters.

2.3 Using Feedback to improve accuracy

(a) Original picture of a side view salad (b) Best accuracy on a side view salad

Figure 3: User’s feedback to improve the accuracy of the thickness detection.

When the volume estimation results are displayed, the user is given the possibility to adjust
them. Two categories of feedback can thus be performed to manually improve the final results :

Page 4

Hofmann, Maillard, Ramaux, Shasha DietVision

• Food item classification : in the event that the machine learning model misclassifies a food
item, the user is able to adjust the selection by tapping on it and selecting the appropriate
class. A food class can also be deleted from the selection. Note that there is currently no
option to manually add a missing item.

• Food item thickness : the estimated thickness of each food item can be visually adjusted
thanks to a slider which moves on the picture the points that correspond to the ’minimum’
and the ’maximum’ position of the thickness. Note that we aim here at estimating the mean
thickness of a food. If an item does not have a consistent thickness (e.g. a mashed potatoes
portion), the system will ask the user to determine a mean value that will lead to an accurate
volume estimation.

As we can see on Figure 3, the thickness is overestimated and so the volume will be incorrect.
In this example, there are 21 grams in the plate. On Figure 3(a) a volume of 471 cm³ corresponds
to 28.26 grams of salad according to our database. However, with the user’s feedback, we have a
new volume of 337 cm³ on the Figure 3(b) which corresponds to 20.8 grams. We can see that a
little adjustment results in a difference of 5 grams. This feedback improves the accuracy of the
app.

2.4 Meal nutritional values assessment

Figure 4: Saved meal entry

2.5 User’s profile

To customize the experience, the user can add useful information to track the user’s eating habits
: name, size, weight, etc. These data can be filled on the Profile tab, as we can see on Figure
16(a). In addition, the country in which the user is located is displayed as well as a collection of
coins 16(b) related to its currency.

2.6 Beverage in a meal

In order to take drinks into account, we added a dropdown button with a predefined list of drinks
(Figure 6(a)). By selecting a drink, the user gets the nutritional information of the meal (Figure
6(c)) plus the values associated with the drink, as on Figure 6(b). To calculate these nutritional
values, we consider a fixed volume (25 cl) which corresponds to an average glass of liquids. In an
upcoming iteration of the app, the user should be able to adjust the drink volume.

Page 5

Hofmann, Maillard, Ramaux, Shasha DietVision

(a) Overview of the user’s
profile.

(b) List of coins of a local currency
(Here in France, the currency is euro)

Figure 5: User’s preferences tab.

(a) List of Drink with a 25 cl
volume

(b) Selected drink (c) List of Meal in History screen
for a beverage of 25 cl

Figure 6: Example of the drink button display and the drink history.

Page 6

Hofmann, Maillard, Ramaux, Shasha DietVision

3 Architecture

3.1 Overview

Figure 7: Flutter Flow Chart of the App.

GitHub repository : https://github.com/leopoldmaillard/diet-vision-flutter

The app was organized following the architectural pattern shown on the above diagram. Each
of its components can be described as follow :

1. UI Widget : All the possible UI screens or ”views” of the user interface will be handled in
this part and be provided by the bloc.

2. BLoC : Deals with events every time the user interacts with the app, responds by computing
the associated task and finally refreshes the updated screen. Its main goal is to keep the meal
history database updated when a new one just has been recorded, as well as the tab where it is
displayed.

3. Repository : Handles local databases used in the app and their storage.

3.2 Project file structure

A Flutter project has the ability to generate a cross-platform app from a single codebase. Our
file structure reflects this implementation choice, its relevant components are described below and
some of them will be detailed in the following parts of this report :

Page 7

https://github.com/leopoldmaillard/diet-vision-flutter

Hofmann, Maillard, Ramaux, Shasha DietVision

diet-vision-flutter

android

assets

images

labels.txt

segmenter.tflite

ios

lib

bloc

events

model

pages

services

source

home.dart

main.dart

test

web

pubspec.lock

pubspec.yaml

3.3 Flutter Layered Architecture

Focusing on developing a scalable app, we decided to structure the project using a layered archi-
tecture, as described below :

• bloc : Deals with the Stream of events and States.

• events : A collection of events corresponding to the different user interactions.

• model : Data Structure stored in the database that corresponds to a single meal.

• pages : Regroups all UI screens/views of the App.

• services : Database definition and manipulation.

• sources : Storage repository (mainly JSON files for drinks, nutritional values etc.).

The main.dart file is the starting point for the app execution and will invoke the other components.

3.4 Configuration and Flutter packages requirement

The Dart programming language offers a great variety of packages and some of them are extensively
used in the DietVision app. An exhaustive list of these dependencies can be found within the
project’s pubspec.yaml file and includes, in particular :

• TensorFlow Lite plugin : A plugin for accessing TensorFlow Lite API that supports lightweight
image segmentation models.

• Flutter Camera Plugin : A plugin for accessing the device cameras, getting a real-time
camera preview and taking pictures.

Page 8

https://pub.dev/packages/tflite
https://pub.dev/packages/camera

Hofmann, Maillard, Ramaux, Shasha DietVision

• Geolocator plugin : A plugin for accessing user’s location. It is used here to pre-select user
preferences based on the current location.

• Shared Preferences : A plugin to save key-value data on disk in order to persist user prefer-
ences.

• SQFLite : A plugin for a relational database management system embedded into the end
program.

When running the app for the first time, the user will have to grant it camera and location access.
Optionally, image gallery access should be granted to use the app on pictures that are already
stored on the device. The project’s ios/Runner/Info.plist file has been modified to reflect these
requirements.

3.5 Local databases : nutritional values and fiducial markers

During the development of this project, various databases have been created to communicate with
the app during runtime. They are stored in JSON files, in particular :

• A food nutrition database

Each food class that can be identified by the app has an associated entry in the database, here
is an example for the ”Poultry” class :

1 {
2 "id": '7',
3 "name": "Protein | Poultry",

4 "cal": 271,

5 "fat": 13.95,

6 "protein": 19.22,

7 "carbohydrates": 17.25,

8 "sugar": 0.4,

9 "glucide": "N/A",

10 "vm": 0.90

11 },

A food group has associated nutritional values such as its kilo-calories (Calories), carbohy-
drate, lipid, and protein per 100g. It also has a density value (g/ml) that is required to compute
nutritional values of a given meal after its volume estimation. To get these values, we’ve simply
averaged the nutritional values of a few food items in each group.[6]. More precisely, we used the
table of [4] which contains more than 14 000 food meals. For each entry, we get all the nutritional
information for 100g, along with the name of the food category such as ”Meats”, ”Vegetables” or
”Sweets” which can match the output categories of our segmentation model. We first tested our
nutritional database with an average of a few ingredients per category to obtain a single value for
each category.

• A drink nutrition database

Similarly, nutritional values have been gathered for liquids. Here is a sample of the resulting
database.

1 {"name": "Coffee", "cal": "1", "mv": "1"},
2 {"name": "Coke", "cal": "42", "mv": "1.02"},
3 {"name": "IcedTea", "cal": "27", "mv": "1.03"},
4 {"name": "Water", "cal": "0", "mv": "1"},
5 {"name": "Beer", "cal": "43", "mv": "1"},
6 {"name": "Wine", "cal": "83", "mv": "0.99"},

Page 9

https://pub.dev/packages/geolocator
https://pub.dev/packages/shared_preferences
https://pub.dev/packages/sqflite

Hofmann, Maillard, Ramaux, Shasha DietVision

• Access to a coin used in a country derived from its geolocation

When the user connects to the application, he/she can choose to allow geolocation to obtain
his/her position, and therefore the country he/she is in. In the database we stored the name,
the code of the Country which follow the ISO 3166-1 alpha-2 norm, and the money used in the
country. We made this list of country for the American dollar, Canadian dollar, Euro and English
pound. The list can be completed as needed.

1 {"id": '9', "coin": "euro", "country": "France", "code": "FR"},
2 {"id": '37', "coin": "american_dollar", "country": "United States",

"code": "US"},},

• A fiducial marker database

To make sure the app is convenient and accessible to as many people as possible, the user is
able to select the fiducial marker among an extensive collection of coins of the user’s geographical
area. Each coin has an entry that indicates its diameter and the currency to which it belongs.

1 {
2 "id": '29',
3 "coin": "euro",

4 "value": "2 Euro",

5 "diameter_inch": 1.01,

6 "diameter_mm": 25.75,

7 },

• A History Meal database

To enable the user to track his or her food habits, a Meal History database records every meal
the user has validated while using the app. These entries can be deleted by the user.

1 {
2 int id;

3 String nameFood;

4 String nutriscore;

5 int volEstim;

6 double volumicMass;

7 double mass;

8 double kal;

9 double protein;

10 double carbohydrates;

11 double sugar;

12 double fat ;

13 },

Page 10

Hofmann, Maillard, Ramaux, Shasha DietVision

4 Algorithms for food detection, classification and volume
estimation

To estimate volume from pictures in a few seconds on a smartphone, our system computes the
area of each food item from a top-level picture and then the thickness (and therefore the volume)
from an angled picture. The volume is calculated from the simple formula :

V olume = Surface× Thickness (1)

4.1 Food segmentation

The first key component of the DietVision app is its semantic food segmentation model, whose
goal is to separate the different food items on a plate by classifying each pixel in one of 26 major
food groups.

The integrated model is the Seefood Mobile Segmenter that has been released by a Google Team.
It adopts a DeepLab-V3 architecture[1] with a MobileNet-V2 backbone[5] that offers state-of-the-
art performance on mobile semantic segmentation. It takes as input a 3-channel RGB image of
size 513×513 scaled to [0−1] and returns the associated 513×513 segmentation mask where each
pixel takes a class index of the following labelmap :

1 id,name

2 0,background

3 1,vegetables | leafy_greens

4 2,vegetables | stem_vegetables

5 3,vegetables | non -starchy_roots

6 4,vegetables | other

7 5,fruits

8 6,protein | meat

9 7,protein | poultry

10 8,protein | seafood

11 9,protein | eggs

12 10,protein | beans/nuts

13 11,starches/grains | baked_goods

14 12,starches/grains | rice/grains/cereals

15 13,starches/grains | noodles/pasta

16 14,starches/grains | starchy_vegetables

17 15,starches/grains | other

18 16,soups/stews

19 17,herbs/spices

20 18,dairy

21 19,snacks

22 20,sweets/desserts

23 21,beverages

24 22,fats/oils/sauces

25 23,food_containers

26 24,dining_tools

27 25,other_food

The model’s authors specify that it has been trained on a Google-internal food ingredient pars-
ing dataset and that the labelmap was constructed based on USDA guidelines and lists of popular
dishes on Google Lens.

The TensorFlow Lite version of this model is used and its .tflite file can be found in the project’s
assets/ directory along with the labelmap.txt file. It can be directly downloaded from a dedicated
page on the TensorFlow Hub repository[2].

Page 11

https://tfhub.dev/google/seefood/segmenter/mobile_food_segmenter_V1/1
http://usda.gov

Hofmann, Maillard, Ramaux, Shasha DietVision

4.2 Surface estimation

The segmentation model yields an estimate of the surface area of each food type.

4.2.1 Retrieve segmentation results

In Dart, the output of the segmenter is a raw list of ARGB pixels that corresponds to the
segmentation mask. Each class of the labelmap has an associated ARGB value that must be
defined in a data structure mapping a class name to its custom colour.

Then, by iterating on each pixel value of the output, the system derives the identified food items
of the input picture as well as their associated number of pixels.

4.2.2 Fiducial marker

After obtaining the number of pixels per food group, the system computes the actual area thanks
to the fiducial marker. The calculation is simple:

class surface(cm2) =
class pixels× coin surface

coin pixels
(2)

The output is a data structure mapping each represented food class with its surface.

4.2.3 Food classes distance

The top-view picture allows us to know precisely the relative position of each food in the plate
and its distance to the coin.

Algorithm 1: Get the distance between the coin and each food item

Input : List of all pixels (pixelsList) of the detected class
Output: Distance (in cm) between the middle of the coin and the lowest pixel detected

for the class.
length← length of the pixels list of the selected class;
1) Non-empty list verification
if length == null then

return 0;
end
2) Get useful values to make the calculation
listY ← new list of pixels of the selected class;
3) Complete a list of pixels with row index
for i← 0 to length do

listY ← add index row of the pixel;
end
xMax← maximum of the list listY which correspond to the lowest segmented pixel of the
selected class;
distanceP ixels← (513− 513/16− xMax): distance (in pixels) between the middle of the
coin and the lowest pixel of the class;
distanceCoinFood← value of distancePixels converted (in cm);
return (distanceCoinFood);

We use a simple cross product to obtain the distance (in cm) from a distance (in pixels):

class distance(cm) =
class distance pixels× coin diameter

coin diameter pixels
(3)

This distance value will be useful when estimating the volume using a second picture (see section
4.3.3).

Page 12

Hofmann, Maillard, Ramaux, Shasha DietVision

Figure 8: Measurement of distance between each food item and the fiducial coin.

4.3 Volume estimation

Once the surface of each food item is computed, the next step is to get each item’s average
thickness. One obvious option would be to take a second picture with a 90° angle with the fiducial
marker placed vertically.

Figure 9: Graph with 90°

However, this is inconvenient because the user would have to hold the coin and take a picture
while matching a 90° angle which does not feel natural at all. In addition, the food segmentation
model doesn’t work well on pictures of food with such extreme angles so accuracy was poor.

Instead, the system asks the user to take a picture with the coin on the able at a 45° angle from
the table plane. The main challenge for the user is to ensure that the angle is correct.

Page 13

Hofmann, Maillard, Ramaux, Shasha DietVision

Figure 10: 45 degree point of view picture

4.3.1 Fiducial marker with a known angle

When we take a picture with an angle between the camera and the object of interest, rounded
items like a coin will have an elliptical shape instead of a circular one. Moreover, items in the
foreground will appear to be bigger than those in the background etc.

To address these distortions, we considered the elliptical shape that corresponds to a coin viewed
from a known angle of 45°. To match this area while taking the second picture, the user will be
obliged to get this exact camera angle. Such an ellipse can be obtained from the following formula:

minor axis = (major axis)× sin(
π

4
) (4)

4.3.2 Thickness computing

Considering a picture with a known angle, we determined how to compute the thickness of the
different food items. The major concern is that, in the second picture where we see the segmen-
tation mask of a 45° point of view, the visible pixels represent both pixels from the surface of the
first picture as well as ”new” pixels that correspond to the thickness. The challenge was to isolate
these item’s thickness pixels from the pixels that have already been seen on the top-view picture.

Overview with a Graph

Page 14

Hofmann, Maillard, Ramaux, Shasha DietVision

Figure 11: Thickness Estimation

To differentiate pixels that represent the thickness from those that represent the top surface, we
consider the food as parallelepiped. When we take a picture of a three dimensional item, it has
a vanishing point (that is commonly used by designers to indicate the depth of a parallelepiped).
Finding the bottom point of the parallelepiped is easy since we have segmentation of the food.

However finding the top pixel of the food thickness is more of a challenge since the food on a
plate is obviously not a perfect parallelepiped. By considering the food as a parallelepiped, we
considered finding one of those pixels at the top left corner because this is where the depth edges
and the height edges converge (we could have considered the top right corner as well).
Looking at it in another way, this point must be in the y-axis, upside the bottom on the lowest
point, and not too far from the y coordinates of the left-most food pixel, δ at most. Otherwise, it
is certainly a pixel of the top view picture.

At this point we have an estimation in pixels of the thickness. This algorithm is quite robust
but is unfortunately not precise all the time. It also must take into account the scale, since an
object far in the picture will look smaller than it actually is. These issues are discussed below.

Page 15

Hofmann, Maillard, Ramaux, Shasha DietVision

Algorithm 2: Algorithm to get the thickness precise estimation

Input : List of all pixels (pixelsList) recognized for each class, Name of the class (name).
Output: Thickness in pixel calculated for the chosen class, and register the points (Ymin

and Ymax) chosen for this calculation.
length← length of list of pixel in the selected class;
1) Verification of non-empty list
if length == null then

return 0;
end
2) Obtain useful variable to make the calculation
listX ← new list of pixels in the selected class;
listY ← new list of pixels in the selected class;
listPossibleP ixels← new list of possible pixels on top of the food bottom thickness in
the selected class;
limitDownPlate← give the lower limit of the plate in the picture (above the ellipsoid
shape for the coin);
3) Complete a list of pixels with index of column/row
for i← 0 to length 1 do

listX ← add index column of the pixel;
listY ← add index row of the pixel;

end
4) Algorithm of thickness
Y BottomThickness← the lowest pixel in the plate for the chosen class;
Xmin← the minmium column of the list of pixel in the plate i.e the pixel the most at left
for this selected class on the picture;
4.1) Find the best pixel for the top of the item food
for i← 0 to length 1 do

δ ← distance between the column at the pixel chosen and the column of the leftmost
pixel defined before: (listX[i]-Xmin).abs);

if (listY [i] < Y BottomThickness) and (delta < 5) then
listPossibleP ixels← add this pixel in the possible list of pixel for the y top of the
thickness;

end

end
5) Find the precise thickness
length2← length of list of possible pixels for the top pixel of the thickness;
if length2 6= null then

Y TopThickness← the pixel corresponding to the top of the food to obtain an
estimate of the thickness i.e the minimum Dennis asks: should this be maximum? of
the list of possible pixels;

end
6) Create a list of the index (X/Y)
minMaxList←keep min and max pixel index used for the thickness calculation;
return (YTopThickness−YBottomThickness);

Page 16

Hofmann, Maillard, Ramaux, Shasha DietVision

4.3.3 Accurate & scaled thickness considering perspective

One of the challenges related to the parallax effect that appears on the side-view picture was
the scale variation of a food item. If we take the same item placed in the background (respectively,
in the foreground) of a scene, it will appear smaller (respectively, larger). Indeed, its thickness
will represent fewer (respectively, more) pixels for a same item, as we can see on Figure 12(b)
(respectively 12(a)).

(a) Bread in foreground (b) Bread in background

Figure 12: A given item will fill more pixels if it is in the foreground.

In order to solve this problem, we used an empirical approach to see how the the number of
pixels of an item’s thickness evolve with its distance to the camera. We did an experiment with
an iPhone Xr : the same food item (3 slices of break stacked) was taken with a 45° angle and
at several known distances to the fiducial marker. Each time, we took note of the number of
pixels that corresponded to the thickness of the item in order to find out how it changes with dis-
tance. We were able to plot the thickness in pixels as a function of the food/coin distance (Figure
13(b)) and fitted a logarithmic curve to the resulting points. This results in the following function :

realThickness = thickness× 1

1.54− 0.39× log(0.94× distance+ 4.00)
(5)

Where thickness is the thickness (in pixels) estimated by the thickness algorithm detailed earlier
(Algorithm2) and distance is the distance in centimeters between the coin and the detected food
item. This function returns the corresponding thickness in pixels for a given distance between the
coin and the food item on the plate.

In principle, this function could more or less depend on the camera’s focal length, but we ob-
tained similar results after further testing with other phones such as a Xiaomi Redmi Note 8 Pro
and a Samsung A20s. The thickness calculation depends on the distance calculation between the
coin and the different food classes described in section 4.2.3.

(a) Set-up to measure the number of pixels of the
thickness at different distances.

(b) The resulting law.

Figure 13: How to create an empirical law to resolve the issue of back/fore-ground

Page 17

Hofmann, Maillard, Ramaux, Shasha DietVision

4.3.4 User-friendly Feedback

As stated in the example of usage, the user is able to visually adjust the result of the thickness
algorithm. Indeed, it has been determined that it would be hard to rely on a end-to-end computer
vision solution that would be robust to all shapes of food items, while fast and easy-to-set feedback
could significantly improve the results.

A range slider is used to make the adjustment, and the screen is dynamically updated to re-
flect the changes in real time.

Algorithm 3: Adjust the thickness value of a food item

Input : List of the coordinates of the minimum and maximum points of the thickness of
all detected classes (minMax), the currently selected class (selectedClass), the
new min & max values (newValues) from the Range Slider

Output: minMax list with updated coordinates
Simply assign new slider values to the corresponding minMax indices
minMax[selectedClass][0]← new y-coordinate min value of the thickness;
minMax[selectedClass][2]← new y-coordinate max value of the thickness;
return (minMax);

Note that minMax is a global variable, change in its values will be reflected to other variables
such as the volume of the selected food item.

4.4 Dietary Assessment

As stated in part 3.5, a local database has been built and each food group has its detailed nutritional
values (calories, fat, protein, etc.) given per 100g portion. Since we have a volume estimation, the
major entry of the database is the density value of a food class, from which we will be able to get
all the other nutritional values of a meal, for example :

portion calories =
volume(cm3)× density(g/cm3)

100
× food group calories(kcal/100g) (6)

4.5 Known issues and potential improvements

4.5.1 Segmentation model

The food semantic segmentation model is at the heart of the app’s mechanism. However, foods
can be very diverse in terms of shapes, colors, textures, and the way they are cooked. Classifying
them can thus be tricky and we believe that an improvement of the model (less segmentation
artifacts, more detailed food classes) would enhance our results, especially when the angle of
view is uncommon. We also noticed that segmentation results may vary depending on the light
conditions. Because the model has been trained on a Google-internal dataset, it is not fine-tunable
at the moment.

4.5.2 Beverage volume estimation

As stated in the Example of Use part (Beverage in a meal), we can add a beverage into a meal
thanks to a list of drinks that the user can select. This system can give the nutrients precisely
for a given volume (by default, 25 cl), but there is no computer vision based volume estimation
built in the app at the moment, which means that all the drink information should be filled by the
user. One improvement could be to allow the user to modify the volume of the drink according
to what the user knows about the meal. Another option would be to use our pipeline on drinks.
The segmentation model has a ”Beverages” category that detects drinks that have a fairly high
opacity such as orange juice or beer, however it does not work on drinks that are too clear, such
as lemonade or water. A future iteration of the app could allow the user to choose the type of
beverage and then perform volume estimation by taking two more pictures of the drink container.

Page 18

Hofmann, Maillard, Ramaux, Shasha DietVision

(a) TOP View: Segmentation
of an Orange juice in a glass

(b) SIDE View: Segmenta-
tion of an Orange juice in a
glass

Figure 14: How to use the drink/beverage segmentation.

5 Results

DietVision has been tested on real meals in order to evaluate its accuracy. We present here a
few of these results, but please note that the app should be applied on a wider variety of food
in order to get a complete sense of its performance and limitations (results could be significantly
more accurate en some types of food than others).

First meal : rice and a slice of ham

(a) Camera preview of the meal. (b) Top-view surface results. (c) 45° view volume results.

Figure 15: App screenshots for rice and ham.

We can see that the segmentation result of the top-view picture is visually nearly perfect (Figure
15(b)). Thus, the surface estimation should be great as long as the fiducial coin has been precisely

Page 19

Hofmann, Maillard, Ramaux, Shasha DietVision

matched with the purple area (Figure 15(a)). However, we can see that the segmentation of the
45° view isn’t as clean, especially for the ham. Fortunately, the detected thickness can be adjusted.
The nutritional values of this meal after it’s been validated are given in the following table :

Ground truth DietVision estimation
Calories 97.2 kcal 153.46 kcal
Protein 7.79g 10.45g
Carbohydrates 14.20g 12.93g
Sugar 0.2g 0.02g
Fat 0.83g 6.2g

We can see that most of the estimated nutritional values are on the same range as the tar-
get ones. This is the case for proteins, carbohydrates, and the sugar value that is close to zero.
However, the fat value is greatly overestimated by the app. This can be explained by the fact
that DietVision has a single Meat class that is assigned to any kind of meat (beef, pork, veal,
etc.) and thus has a single fat/100g value. However, some of the most commonly consumed meats
have a high fat value (beef steak, pork chops), while our ham seems to have a particularly low
fat value according to the ground truth. This trend also greatly affects the calories value. This
could be adjusted by setting a fat value that fit better all the meat types or by adding the possi-
bility to the user to refine the prediction by precising the type of meat in a future version of the app.

Second meal : chicken and red beans

(a) Camera preview of the meal. (b) Top-view surface results. (c) 45° view volume results.

Figure 16: App screenshots for chicken and red beans.

We can see that the segmentation was more challenging for this meal. Most of the piece of
chicken has been correctly identified as poultry on the top picture, however, a large portion of
the beans is labeled as fruits instead of other vegetables so the resulting surface is underestimated
(Figure 16(b)). The second picture is worse, but again the thickness for each class can be adjusted
to match what is actually on the plate (Figure 16(c)). The resulting nutritional values are given
in the following table :

Page 20

Hofmann, Maillard, Ramaux, Shasha DietVision

Ground truth DietVision estimation
Calories 203.13 kcal 241.34 kcal
Protein 26.11g 17.75g
Carbohydrates 9.88g 3.3g
Sugar 0.76g 0.78g
Fat 5.41g 17.72g

Once again, there is a certain consistency in the results : sugar value is low while protein one is
high. Proteins and carbohydrates seem however significantly underestimated, while the fat value
is again overestimated (chicken is a lean meat).

These results suggest that accuracy could be improved with a more robust segmentation model,
adjusted nutritional values for each class, or the ability for the user to specify foods, while keeping
the same pipeline.

6 Conclusion

DietVision is a cross-platform app that estimates nutritional values of a meal from images. Its
approach relies on machine learning, stereo-vision and intuitive user feedback. It has been designed
to be accessible to the largest number of users and to easily accommodate new features in the future.

7 Installation

We are targeting a release on the Apple App Store and the Google Play Store in order to ease
the installation process and reach a larger audience. However, for now the app can be compiled
and installed from the source code by following these few steps :

1. Follow the official Flutter Documentation to properly set up the Flutter SDK on your system.

2. Clone the DietVision’s GitHub Repository.

$ git clone https://github.com/leopoldmaillard/diet-vision-flutter.git

3. Navigate to the project’s root directory and run

$ flutter run --no-sound-null-safety --release

Note that Apple’s Xcode is required to run the app on an iOS device as well as trusting the app
in the device’s settings.

Alternatively, Android users can directly download and install the app via the Release section
of the GitHub repository.

Page 21

https://flutter.dev/docs/get-started/install
https://github.com/leopoldmaillard/diet-vision-flutter

Hofmann, Maillard, Ramaux, Shasha DietVision

Acknowledgement

We thank Éric Reynaud (math teacher, CPGE Alphonse Daudet) for his insights on solid geometry
and parallax. We also thank Ikram Ziani (MSc student, Université de Montpellier) for helping
on the thickness estimation algorithm. Finally, our warmest thanks to Shaun Maher (Columbia
University) for his weekly guidance throughout the project.

References

[1] Liang-Chieh Chen, George Papandreou, Florian Schroff, and Hartwig Adam. Rethinking atrous
convolution for semantic image segmentation. CoRR, abs/1706.05587, 2017.

[2] Google. Seefood mobile segmenter. https://tfhub.dev/google/seefood/segmenter/

mobile_food_segmenter_V1/1.

[3] Frank Po Wen Lo, Yingnan Sun, Jianing Qiu, and Benny Lo. Image-based food classification
and volume estimation for dietary assessment: A review. IEEE Journal of Biomedical and
Health Informatics, 24(7):1926–1939, 2020.

[4] MyFoodData.com. MyFoodData Nutrition Facts SpreadSheet Release 1.4.

[5] Mark Sandler, Andrew G. Howard, Menglong Zhu, Andrey Zhmoginov, and Liang-Chieh Chen.
Inverted residuals and linear bottlenecks: Mobile networks for classification, detection and
segmentation. CoRR, abs/1801.04381, 2018.

[6] David Haytowitz U. Ruth Charrondiere and Barbara Stadlmayr. FAO/INFOODS Density
Database Version 2.0, 2012.

Page 22

https://tfhub.dev/google/seefood/segmenter/mobile_food_segmenter_V1/1
https://tfhub.dev/google/seefood/segmenter/mobile_food_segmenter_V1/1

	Abstract
	Example of Use
	Taking the First Picture
	Taking the Second Picture
	Using Feedback to improve accuracy
	Meal nutritional values assessment
	User's profile
	Beverage in a meal

	Architecture
	Overview
	Project file structure
	Flutter Layered Architecture
	Configuration and Flutter packages requirement
	Local databases : nutritional values and fiducial markers

	Algorithms for food detection, classification and volume estimation
	Food segmentation
	Surface estimation
	Retrieve segmentation results
	Fiducial marker
	Food classes distance

	Volume estimation
	Fiducial marker with a known angle
	Thickness computing
	Accurate & scaled thickness considering perspective
	User-friendly Feedback

	Dietary Assessment
	Known issues and potential improvements
	Segmentation model
	Beverage volume estimation

	Results
	Conclusion
	Installation

