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The goal of this paper is twofold. First, it is to present a general scheme
within which information is supposed to turn into the computer-represented
knowledge and, second, to define two natural kinds of transfomers of this
knowledge which this scheme thrusts us into considering.

We start with the question: What kind of relationship takes place in
presenting knowledge into the computer? The word “knowledge” probably
sounds somewhat ambiguous and “information” would be better. However,
information comes as the computer’s input, becoming the computer’s knowl-
edge (belief or experience) in the computer’s memory. Thus, on the one
hand, we have information outside of the computer as being the content of
a piece of information flow. On the other hand, we see this information rep-
resented in the computer as its knowledge. What turns out information into
the computer’s knowledge? And if a piece of information is a message about
a fact, then what makes a description of the fact informative?

The relation of naming, occurring in natural language proposes some
hints, since the language can be regarded as reflecting the outer world. Al-
though, Frege’s description of the relation of naming which can be pictured
by the scheme:

[WORD| —b> [SENSE| —1> [OBJECT|




will hardly do for characterizing the representation process. First of all, we
realize in doing it the relation of “OBJECT-WORD?” rather than the inverse
one. Nevertheless, the Frege’s scheme is helpful. We ask the question: What
does “sense” mean in it? We think that it is not just “a third realm, a realm
neither of ideas nor of worldly events” [BP 83], but a function®, probably,
partial, because some words may not have any references. Therefore, we
prefer to rewrite the Frege’s scheme as follows:

[WORD| #¢2%€> [OBJECT

And for our purposes in clarifying the process of knowledge representation,
we will set out from the following functional scheme:

[OBJECT] presentation,, (1)

Had the last scheme been satisfied, it would have been suitable only for
the representation of references of proper names. However, proper names
only carry information insofar as they occur within propositions. 2 According
to Freger’s approach, the reference of a declarative proposition is its truth
value. What forces the scheme (1) to work in the case of a proposition? The
proposition is not informative until we have taken into account its content,
i.e its “linguistic meaning” [BP 83]. What is the content of a proposition?
Is it possible to talk about the content in a formal language not making it
explicable via other notions?

Bertrand Russell says in [Rus 18] that propositions are used with con-
nection with facts; they do not name facts, but facts confirm or disprove
propositions. Thus, we arrive at the scheme:

%» [PROPOSITION | (2)

It is this connection that makes the proposition informative or uninformative.
To admit the thought containing in a proposition, iz.e. its content, in
other words, to make the proposition informative, “the step from the level

! Frege says: “...also what I should like to call the sense of the sign, wherein the mode

of presentation is contained” [Fre 892].

2A parallel suggests itself with Russell’s denoting phrases: “...denoting phrases never
have any meaning in themselves, but ... every proposition in whose verbal expression they
occur has a meaning” [Rus 05].



of thoughts to the level of reference”, [Fre 892] that is to say, from content
to truth value has to be taken. ® We do it every time when we are saying
about proposition A “it is true that A”, symbolically A : ¢, or “it is false
that A”, symbolically A : f, or else “it is unknown that A”, symbolically
A : 1, as meaning in the last case that we do not know about the truth
value of proposition A. On the other hand, placing the proposition A into an
indirect context we deal with its content taking into account some unnamed
facts that either confirm A or disprove it or else say nothing at all about it.

Recall that we are interested in the informativity of propositions not
as a property of natural language, but a property of knowledge processing.
Therefore, though, as Frege noted, the propositions A and “it is true that
A” have the same content, provided A is really true, the computer appears
to have much more to do with A : ¢ than with A. For the sake of simplicity,
we leave with no attention here to the analysis of information flow, being
attempted in length in situation theory (see [BP 83, Bar 92, Dev 91]) where
the efficiency of language is taken into consideration. We formalize below this
notion in the mode of many-valued logic. In comparison with the situational
approach, we consider ourselves as being more interested in investigation of
the computer’s strategies with respect to the structure of information flow.
While the situational approach studies the logical structure of information
facts, we would like to understand how this structure is reflected on the
computer’s activity in knowledge representation processing. Although, we
begin with quite simplified notion of information flow. We wish, however, to
remark that we do not maintain “the highly extensional view whereby the
value of a proposition is a truth value” [Sco 71al; we simply use the mode of
many-valued logic to provide an operational interpretation of the information
that the propositions of information flow carry.

First of all, in order for a piece of information to be accessible to process-
ing by the computer, it must be a datum of some type. As we are limited
by nature itself in data processing with computable operations, i.e. with the
class of functions to which it is possible, in virtue of Church’s Thesis, to give
an precise mathematical sense, we appear to be faced here with some kind of
structural limitations to be a data type, that is, in particular with some kind

3Compare with: “We can never be concerned only with the references of a sentence;
but again the mere thought alone yields no knowledge, but only thought together with its
reference, i.e. its true value” [Fre 892].



of an arrangement of the states of knowledge that may be involved. Taking
into account the functional character of the scheme (1), we will consider the
representation of knowledge functionally as follows:

Representation: Information — Data Type.

However, we cannot (and do not want to) avoid the notion of situation at
all. We just move it from the outer world into the world of the computer’s
memory. As a matter of fact, when information enters the computer, it is in
a certain state of the data type of knowledge. Therefore, the previous scheme
turns out into the following one:

Representation: Information x Data Type — Data Type

which articulates that a particular representation strategy is a set of two-sort
computable partial functions taking into account both the structure of infor-
mation flow and the structure of computer-represented data of knowledge.

Let us denote the data type of computer’s knowledge via D with elements
g, €, ... (probably with subscripts) and let & be a set of all the truth values
of propositions carrying information about the outer world. * Notice that
the scheme (2) may be thought in the sense that facts just partially confirms
propositions. That is to say, it is possible the case when the proposition A
is comfirmed with two different truth values 7; and 7 according to the two
groups of facts, i.e. both A : 7 and A : 7, hold. Thus, we might admit even
the computer to tolerate contradictory information allowing A : ¢ and A : f.
In general, we will admit the computable partial operation [A : 7| on D for
any proposition A of a fixed formal language and 7 € &. The operations
of that kind we call infons, borrowing the name, but not the notion, from
situation theory,” because the information content of A : 7 is thought to be
a connection of proposition A with unnamed facts that confirm it with the
truth value .

To define the notion of infon more precisely, we have to understand what
data type is. Recall that data types occur in programming languages, mostly
as notions that originate from other mathematical notions such as, for exam-
ple, as numbers. There are two main approaches to the notion of data type

“We intentionally do not propose here any structure imposed on &, as it was done
in [Mur 95a, Mur 95b].

% According to situation theory at least in its informal account, the notion of infon is
to express items of information that characterize happening facts (cf. [Dev 91]).

4



in computer science. First, algebraic, approach emphasises the treatment of
data as being elements of a many-sort algebra (cf. [Wir 90]). Second, az-
iomatic, approach initiated by Dana Scott in [Sco 71b]| and undergone some
changes since then aims to grasp the notion of approximation of data in
changing environment. The last may be thought as the changing flow of
information or that of state of the computer’s knowledge. ¢ In this paper we
are interested in the latter aspect of the second approach. The approxima-
tion of knowledge data in the computer is thought, in turn, as giving more
precise information about something rather than enlarging it.

Recall (cf. [DB 90, GS 90]) that a partially ordered set P is called com-
plete if it has a bottom element ¢y and the least upper bound LID exists for
each directed subset D C P. An element z € P is said to be compact, if for
any directed subset D C P,

z <UD = z < d for some d € D.

The bottom element is certainly compact.

A complete partially ordered set is a complete semailattice, if each of its
non-empty subsets has a greatest lower bound. And finally, a complete semi-
lattice P is a domain if for each z € P,

z=1{y|y € P, yis compact }. (3)

A complete partially ordered set P is called a Scott domain, if equation (3)
is satisfied and if, in addition, the set

{z |z < zg,z is compact }

is directed for each element o € P. Notice that every domain is also a Scott
domain. This fact is implicitly stated in [DB 90], Lemmas 3.20 and 3.22,
as well as the fact that the domain is a Scott-Ershov domain in the sense
of [SLG 94].

We consider Dy as “real” elements of knowledge that can be represented in
the computer, whereas D includes also “ideal” elements of knowledge that we
need for adequate description of the outer world. As the equation (3) sets up,
each ideal element can be approached with real elements. The exactness of
the approach can be articulated in Scott topology on the domain D. We refer

A brief comparison of the two approaches is contained in [LS 77].



the interested reader to [Sco 72, GHKLMS 80]. From now on, we assume
Dy to be finitary objects, i.e. those which are capable to be used as the
computer’s input. Also, recall that ¢ € Dy. The interested reader can find
in [Mur 95a, Mur 95b| examples of domains as being the knowledge carrier.

In accordance with the idea of approximation, we would want to limit
ourselves with continuous function as potential knowledge transformers on a
domain. We call a partial function ¥ : D— D Scott — continuous, or simply
continuous, in ¢ € D if F(z) is defined, symbolically F(z) |, and for every
directed set {z;|i € I} C D,

z =U{z;|i € I} implies F(z) = U{F(z;)|i € I},

provided that U{F(z;)|i € I} exists.

One way to define [A : 7] is as follows. For every formula A and truth
value 7 € &, we pick an element €Y in Dy. We conceive €’y as a minimal
piece of information, according to which we can conclude, not depending on
a current situation, that A has a truth value equal at least to 7 and define”

[A:7|(e) xeliey
for every € € Dy and then define
[A:7](z) ~U{[A:7](¢)|e € Do,e <z}

for every © € D, where ~ is Kleene’s identity symbol for partially de-
fined functions from [Kle 52]. Notice that {[A : 7](¢)|e € Do,e < x } is never
empty, because ¢ L €Y =¢€Yy-

Theorem 1 For every x € D, the following conditions are equivalent:

1) [A:7)(2) ;
1) {[A:7](¢)|e € Do,e < z} has an upper bound;
1) {[A:7|(e)|e € Do,e <z} is directed.

Proof. The equivalence (i2) <= (ii1) is an immediate consequence of
the Lemma 3.20 in [DB 90] and a definition above.

The implication (¢i¢) = (¢) is obvious.

"Compare this definition with the Theorem 4 in [Mur 94]; also see Section 7 in [KM 93].



Let us prove the implication (¢) = (¢37). Assume
zo = LU{[A:7](e)|e € Dy,e < z}.

Let €1, €2 be in Dy such that both [A : 7](e1) | and [A4 : 7](e2) | hold. Thus, =
is an upper bound for {e;, €5} and zo for {ey, s, 61-4}, respectively. In virtue
of the Lemma 3.22 in [DB 90], ¢; Ll exists and belongs to Dy. It follows that
zo is an upper bound for {e; U 62,6‘:4}. According to definitions, ¢; Uey < z
and [A:7](e1Uey) e Uey Y- Consequently, [A : 7](e; U €2) is defined.
Thus, the set {[A : 7](¢)|e € Do,e < z} is directed.

Lemma 1 If[A:7|(z) | andz = U{z; |¢ € I} for some directed set {z; |1 € I},
then U{[A : 7|(z;) |t € 1} eaists.

Proof. Indeed, we have the equation
[A:7](z) =U{[A:7](e)|e € Do,(Fi € I)(e < ;) }. (4)
Denote
o = U{[A:7](e) |e € Do, (Tt € I)(e < z;)}.

Thus, for every i € I,if € € Dy, ¢ < z; and [A : 7(¢) |, then [A : 7](¢) < zo.
Therefore, in view of the Lemma 3.20 in [DB 90|, LI{[A : 7|(z;) |t € I} exists.

The following theorem establishes a necessary and sufficient condition,
when [A : 7] is continuous in a point.

Theorem 2 The function [A : 7| is continuous in = if and only if [A: 7] is
defined in © and there is no directed set {z; |t € I} such that z = U{z;|i € I}
and

(Vi € I)([A : 7](z;) is not defined). (5)

Proof. In the case z = &g, the statement is obvious: both parts of the
equivalence are true.

Let now z # £9. Suppose [A : 7] is continuous in z and, hence, defined in
that point. Assume for some directed set {z;|i € I}, ¢ = U{z;|i € I} and
the condition (5) is satisfied. Then

U{[A : 7](z;)|s € I} = LD = .
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We know that the set {[A : 7](¢) |e € Dy,e < z} is non-empty. For instance,
assume there is ¢’ € Dy such that ¢/ <z and [4:7|(¢') |. If €y = ¢o, then
[A:7|(z) =z # 0. I €7y # €0, then g9 < [A:7](¢') < [A:7](z). That is,
[A : 7] is not continuous in z, that contradicts to the premise.

Suppose [A : 7](z) is defined, though [A : 7] is not continuous in z. That
is to say, there is a directed set {z; |¢ € I } such that, though z = U{z; |t € '}
and in virtue of the Lemma 1, U{[A : 7|(z;) |t € I} exists,

[A:7](z) # U{[A:7|(z:) |t € I}. (6)
Furthermore, suppose that the following correlation holds:
(Ve € Do)e <z = (e l)e <az&[A:7](z;) ). (7)

Then
[A:7](z) <U{[A:7)(=;) |t € T}.

The converse inequality is obvious. Thus, we receive a contradiction to (6).
Consequently, (7) is not true. It follows that there is &; € Dy such that
g1 <z and

(Vie I)(e;r <z; = not [A:7|(z;) |).

Denote J = {i|i € I,e; < @; }. Notice that the set {z; |7 € J} is non-empty
and directed. Indeed, the former follows from the correlation

er<z=U{z; i €I},

that &; is compact and the premise of that {z;|i € I} is directed. That
premise also implies the latter. Thus, U{z;|j € J } exists and is less or equal
to z. On the other hand, for every ¢ € I thereis 3 € J such that z; < z;.
Consequently,

e <U{z; i eI} <U{z;|j € J}.

Going over to the definition of another kind of knowledge transformers,
constraints, we recall that in situation theory, where we borrow the term,
they are to regulate relationship between information types [Bar 92]. On our
part, we consider first the conditions of sort A : 7, — B : 7, for any formulas
A and B and 7,,7 € &, that a knowledge maintenance builder may want to
impose, proposing that the system moves to a state satisfying B : 7, as soon
as a current state satisfies A : 7,. We also suppose that move to be performed



in a minimal way, that is to say, with minimal “distortion”. ® Accordingly,
we link with a condition A : 7, — B : 7, a partial operation [A : 7, — B : 73]
on Dy, being then extended to the entire D, getting a proper constraint.

To satisfy the idea of minimal way, we suppose to be able for every formula
A, value 7 € & and element ¢ € Dy, to have two “refinements” of the last in
Dy — d;i"(e) and d;l_(s). The former carries all information contained in ¢
about A : 7 and the latter carries the complementation to that information
so that both “exhaust” . Let us go to precise definitions.

If a domain D does not have already a greatest element, add it denoted by
1 to D for the sake of convenience. Fix two (computable) functions, denoted
d;‘f and d;‘i_ for any formula A and 7, € S, from Dy into DyU{1}, satisfying
the following conditions:

o d5*(eo) € {e0,1);

¢ c= d;‘f(a) nd% (e);

Tat {7\ _ 7 Ta— {7} _ 4.
° dA <€A>—6AanddA <€A)—1,
o dGf(e)=¢ = d7 (e) = 15

o di(e)=¢ — d;‘f’(s) = 1;
) d;‘i"'(al Uey) < d;‘i"'(sl) L d;‘i"'(sz), providing Ll-sums exist.
Define® for every € € Dy,

[A:7a— B :n)(e) = d(e) N[B : n](dH(e)).

Notice that for every € € Dy, [A: 7,— B : 1)(¢) never receives the value 1.
Also, note:
if d7 =
[A:71,— B :7n)(eo) = i(,), 1 4_(60) °0
ep if d% " (e0) = 1.
It implies that the set {[A:7,— B : n)(¢) |¢ € Do,e < z} is non-empty for
every z € D.

8That idea is due to N. Belnap (cf. [Bel 75]).
9Compare with the proof of the Theorem 4 in [Mur 94].



Furthermore, define for every = € D,
[A:r,— B :n)(z) ~ U{[A:7a— B :n)(e) e € Do,e < z}.
Write out the following property:
[B:m)(e1) | &[B :ml(e2) |= 1 Uex U 6% exists (8)
for every €1,e3 € Dy.

Theorem 3 Providing the property (8), for every ¢ € D, the following con-
ditions are equivalent:

1) [A:71a— B:n(z) |;
1) {[A:7a— B :7n)(e)|e € Do,e <z} has an upper bound;
1) {[A:7a— B:7](e)|e € Do,e <z} is directed.

Proof. All implications, except () = (ii1), are proved in the same manner
as corresponding implications in the Theorem 1 above. Prove the implication

First of all, recall that the set {[A: 7, — B : ](¢) |e € Dy,e < z} is non-
empty.

Furthermore, assume for ¢;,e5 € Dy and such that e;,e5 < z, both
[A:7,— B :7)(e1) | and [A:7,— B :7m)(e2) | hold. Then, first, in virtue
of the Lemma 3.22 in [DB 90], ¢; Ll &, exists, belongs to Dy and less or equal
to z, and, second, both [B : 7] (d;‘f(el)) | and [B : 7] (d;‘i"'(ez)) | hold,

either. According to (8), we receive that
AT (e1) U (e2) U eh

exists. Consequently, d;‘i"'(el)l_lcl;‘i"'(@)ue% is an upper bound for {d;‘i+(61 Ll e3), 6%}

Therefore, [A : 7, — B : 1)(e1 U €3) is defined.

Write out the following property:

(Ve € Do)(e <az&|A:1,—B:nl(e) = [A:7a— B :7l(e) =eo) = z = (agj
9
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Theorem 4 Let (9) hold for z. Then [A:1,— B : 7] is continuous in
z if and only if [A:7,— B :n)(z) is defined and there is no directed set
{z;|t € I} such that x = U{z;|i € I} and

(Vi€ I)([A : 7o — B : 1)(:) is not defined). (10)

Proof. Let * = ¢o. Then both parts of the equivalence in the theorem’s
statement are true.

Assume z # €q. Let [A : 7, — B : 7] be continuous in z, the set {z; |1 € I}
be directed, satisfying (10), and z = U{z; |¢ € I}. Then

U{[A:7a— B :n)(z:) |t € I} = LD = &.

It implies that the premise of (9) is true. Consequently, z = 9. A contra-
diction.
The proof of the “if” part is the same as that in the Theorem 2.

We aim to consider the issues of computability of infons and constraints
elsewhere. It is clear as of this moment that we have to go over to a more
specific structure of domain. And if we want to define the domain structure
within the mode of many-valued logic, we have to specify a structure of &
in some way as well, for example, as it was done in [Mur 95a, Mur 95b].
Also, we need to find a “justification” for the use of conditions (8) and (9),

respectively, in the Theorems 3 and 4 above.
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