
Sekitei: An AI planner for Constrained Component Deployment
in Wide-Area Networks

Technical report TR2004-851

Tatiana Kichkaylo, Anca Ivan, and Vijay Karamcheti
Department of Computer Science

Courant Institute of Mathematical Sciences
New York University, New York, NY 10012

{kichkay,ivan,vijayk}@cs.nyu.edu

March 1, 2004

Abstract

Wide-area network applications are increasingly being
built using component-based models, enabling integration
of diverse functionality in modules distributed across the
network. In such models, dynamic component selection
and deployment enables an application to flexibly adapt to
changing client and network characteristics, achieve load-
balancing, and satisfy QoS requirements. Unfortunately,
the problem of finding a valid component deployment is
hard because one needs to decide on the set of compo-
nents while satisfying various constraints resulting from
application semantic requirements, network resource lim-
itations, and interactions between the two.

In this paper, we describe a general model for the com-
ponent placement problem and present an algorithm for
it, which is based on AI planning algorithms. We vali-
date the effectiveness of our algorithm by demonstrating
its scalability with respect to network size and number of
components in the context of deployments generated for
two example applications – a security-sensitive mail ser-
vice, and a webcast service – in a variety of network envi-
ronments.

1 Introduction

The explosive growth of the Internet and the develop-
ment of new networking technologies has been accom-
panied by a trend favoring the use of component-based
models for construction of wide-area network applica-
tions. This trend, exemplified in grid frameworks such
as Globus [10] and more recently OGSA [11], as well as
component frameworks such as CORBA [31], J2EE [37],
and .NET [29], enables the construction of applications by

integrating functionality embodied in components possi-
bly running across multiple administrative domains. Al-
though most such frameworks have traditionally relied
upon a static model of component linkages, a grow-
ing number of approaches (e.g., Active Frames [27],
Eager Handlers [39], Active Streams [6], Ninja [36],
CANS [15], Smock [17], Conductor [35], and recent work
on Globus [12]) have advocated a more dynamic model,
where the selection of components that make up the ap-
plication and their location in the network (“deployment”)
are decisions that are deferred to run time.

Dynamic component-based frameworks allow dis-
tributed applications to flexibly and dynamically adapt to
variations in both resource availability and client demand.
For example, a security-sensitive application may wish
to trade-off concerns of security and efficiency depend-
ing on whether or not its execution environment consists
of trusted nodes and links. Similarly, an application that
relies on high-bandwidth interactions between its com-
ponents may wish to change the quality of service pro-
vided to the client when the available bandwidth on a link
drops or the application is accessed by a resource-limited
client. Dynamic frameworks enable adaptation to the
above changes by deploying application-aware compo-
nents that can achieve load-balancing, satisfy client QoS
requirements (e.g., by transcoding), and enable higher
throughput (by replicating appropriate components), in
essence customizing the application to its resource and us-
age conditions.

The benefits of dynamic component frameworks are
fully realizable only if components are automatically de-
ployed in response to dynamic changes in network con-
ditions. To enable this, most such approaches rely on
three elements: (i) adeclarative specificationof the ap-
plication, (ii) atrigger module, and (iii) aplanningmod-

ule. The trigger module monitors application behavior
and network conditions and chooses the momentswhen
adaptation is required. Theplanningmodule makes deci-
sions onhow to adapt, by selecting and deploying com-
ponents in the network to best satisfy application require-
ments as dictated by thedeclarative specification. This
paper focuses on the planning aspect.

In general, the planning problem in dynamic frame-
works is complicated by the fact that to compute a valid
deployment, one needs to (i) decide on a set of compo-
nents, and (ii) place these components on network nodes
in the presence of application (type) constraints (e.g.,
linked components should consume each other’s outputs),
resource constraints (e.g. node CPU capacity and link
bandwidth), and interactions between the two (e.g., an in-
secure link might affect the security characteristics of ap-
plication data). The need to simultaneously achieve both
these goals makes the planning problem computationally
harder than traditional mapping and optimization prob-
lems in parallel and distributed systems, which tend to fo-
cus on a subset of the concerns of requirement (ii) above.
This complexity is also the reason that existing dynamic
frameworks have either completely ignored the planning
problem [27, 39, 6], or have addressed only a very limited
case [36, 15, 17, 35, 12].

This paper addresses this shortcoming by presenting a
model for the general planning problem, referred to as the
Component Placement Problem (CPP), and describing an
algorithm for solving it. The model aims for expressive-
ness: component behavior is modeled in terms of imple-
mented and required interfaces [17], and application, re-
source, and their interaction constraints are all represented
using arbitrary monotonic functions. Our algorithm for
solving the CPP, called Sekitei, leverages several decades
of research on planning techniques developed by the Ar-
tificial Intelligence (AI) community. Sekitei overcomes
the scalability restrictions of state-of-the-art AI planning
techniques (e.g., RIPP [24]) by exploiting the specific
characteristics of CPP. The Sekitei planner has been im-
plemented in Java as a pluggable module to allow its use
in several component-based frameworks. We report on its
use to generate deployments for two example applications
– a security-sensitive mail service, and a webcast service –
in a variety of network environments. Our results validate
the scalability of the algorithm, both with respect to the
network size and the number of application components.

The rest of this paper is structured as follows. Section 2
discusses existing approaches to the component place-
ment problem and overviews AI planning techniques. In
Section 3 we introduce two example applications that are
used to illustrate our techniques. Section 4 describes our
model of the CPP. Section 5 gives details on compilation
of the CPP into a planning problem. Section 6 describes

the Sekitei algorithm and its extensions. Section 7 evalu-
ates the performance of the algorithm. We conclude with
a discussion of future work.

2 Related work

2.1 Component-based frameworks

From a planning point of view, there are two classes
of dynamic component-based frameworks: (i) systems
that assume the existence of an external planner (Active
Frames [27], Eager Handlers [39], Active Streams [6]),
and (ii) systems that implement their own planner
(GARA [12], Ninja [36], CANS [15], PSF [17], and Con-
ductor [35]).

The second class can be further divided into two sub-
classes. The first subclass includes systems such as
GARA (Globus Architecture for Reservation and Allo-
cation) [12], the planning module in the Globus [10] ar-
chitecture, which assumes a pre-established relationship
between application tasks to deploy them to minimize re-
source consumption. GARA supports resource discovery
and selection (based on attribute matches), and allows ad-
vance reservation for resources like CPU, memory, and
bandwidth. However, it does not consider application spe-
cific properties, such as that some interactions need to be
secure.1

The second subclass of planners both select and de-
ploy a subset of components, while satisfying applica-
tion and network constraints. Systems such as Ninja [36],
CANS [15], and Conductor [35], all of which enable the
deployment of appropriate transcoding components along
the network path between weak clients and servers, sim-
plify the assumptions of the planning problem to per-
form directed search. The Ninja planning module fo-
cuses on choosing already existing instances of multiple
input/output components in the network so as to satisfy
functional and resource requirements on component de-
ployment. Conductor restricts itself to single input, sin-
gle output components, focusing on satisfying resource
constraints. CANS adopts similar component restrictions,
but can handle constraints imposed by the interactions
between application components and network resources,
and additionally can efficiently plan for a range of opti-
mization criteria. For example, the CANS planner [14]
can ensure that node and link capacities along the path are
not exceeded by deployed components, while simultane-
ously optimizing an application metric of interest (e.g.,
response time).

1Globus sets up secure connections between application components,
thereby satisfying this particular constraint. However, there is no gen-
eral mechanism to specify component properties that are affected by the
environment.

2

More general are systems such as Partitionable Services
Framework (PSF) [17], which permit network services
to be constructed as a flexible assembly of smaller com-
ponents, permitting customization and adaptation to net-
work and usage situations. The PSF planner works with
very general component and network descriptions: com-
ponents can implement and require multiple interfaces
(these define “ports” for linkages), can specify resource
restrictions, and additionally impose deployment limita-
tions based on application-dependent properties (e.g. pri-
vacy of an interface). This generality comes at a cost:
the orginal PSF planning module performed exhaustive
search to infer a valid deployment. The work described in
this paper grew out a desire to remedy this situation.

2.2 Planning and scheduling

The component placement problem closely resembles
problems studied in the AI planning and scheduling com-
munity. It requires performing dependency-driven choice,
which is the focus of planning, and satisfying resource
constraints, which is closely related to scheduling. This
section provides an overview of the most relevant efforts.

In classic AI planning, the world is represented by a
set of boolean variables, and a world state is a truth as-
signment to these variables. The system is described by
a set of possibleoperators, i.e., atomic actions that can
change the world state. Each operator has a precondi-
tion expressed by a logical formula and a set of effects
(new truth assignments to variables of the world state).
An operator is applicable in a world state if its precondi-
tion evaluates to true in that state. The result of an oper-
ator application is to change the world state as described
by the operator’s effects. A planning problem is defined
by a description of the operator set, an initial state (com-
plete truth assignment to all variables), and a goal (logical
formula). The planner finds a sequence of applicable op-
erators that, when executed from the initial state, brings
the system to a state in which the goal formula evaluates
to true.

Classic planners perform directed search in the space
of situations or partial plans and can be divided into
four classes based on their search method: regres-
sion planners (e.g., Unpop [28], HSPr [5]) search from
the goals, progression planners (e.g., GraphPlan [2],
IPP [25]) start from the initial state, causal-link planners
(e.g., UCPOP [34]) perform means-ends analysis, and
compilation-based planners (e.g., SATPLAN [18], ILP-
PLAN [20], BlackBox [19], GP-CSP [9]) reduce the plan-
ning problem to a satisfiability or optimization problem,
e.g. integer linear programming. Some planners, e.g.
BlackBox, use a combination of the above techniques
to improve performance. McDermott [28] suggests ex-

tending regression planners using progression techniques;
however, we are not aware of any implementation of this
idea.

Adding resource constraints to a planning or scheduling
problem tremendously increases its complexity [16]. For
this reason, most planning systems have restricted them-
selves to only simple resource expressions. Most exist-
ing resource planners (e.g., RIPP [24], LPSAT [38], ILP-
PLAN [20]) limit themselves to linear expressions in pre-
conditions and effects. Zeno [33] can accept more compli-
cated expressions, but delays their processing until vari-
able bindings linearize the expressions.

Scheduling solutions have accommodated more general
resource expressions, given their focus on finding the best
(according to some metric) sequence of actions subject
to various constraints. Note that although the problems
of planning and scheduling are nominally different (the
planning focuses on thechoiceof actions, while schedul-
ing focuses onordering), one can extend the tradeoffs and
techniques for dealing with resource constraints from one
domain into the other.

The algorithms in [26] and [30] describe computation
of resource envelopesfor scheduling problems with con-
stant changes of resource levels. Both resource envelopes
and temporal networks [8] use graph-theoretic algorithms
to prune the search space, and are able to produce gener-
alized optimal schedules.

Scheduling systems that need to support complex re-
source functions discretize resources to decrease the
search space and use heuristic search to find agood(sub-
optimal) solution. For example, the algorithm described
in [13] uses forward chaining to cope with sequence-
dependent (i.e. non-reversible) resource functions. Pega-
sus [4] relies on external modules for resource-dependent
decisions.

Sekitei, the algorithm described in this paper, builds
upon several of the planning an scheduling techniques de-
scribed above, particularly to deal with the presence of
non-reversible resource functions. However, a challenge
it needs to overcome is the scalability limitations of clas-
sical planning approaches. Sekitei addresses the latter is-
sue by exploiting the structured nature of the component
placement problem to introduce optimizations not possi-
ble in a general AI planner.

3 Example applications

From the perspective of Sekitei, applications are viewed
as sets of components interacting with each other by send-
ing data streams (referred to as interfaces) over network
links. Components specify their logical and resource re-
quirements. These requirements effectively represent the

3

(possibly infinite) set of possible application configura-
tions. The purpose of the planner is to choose a (mini-
mal) application configuration that satisfies resource con-
straints.

In this paper we use two component-based applications
to illustrate our algorithm.

3.1 Mail application

The first application is a component-based security-
sensitive mail service, originally introduced in [17]. The
mail service provides expected functionality — user ac-
counts, folders, contact lists, and the ability to send and
receive e-mail. In addition, it allows a user to asso-
ciate a trust level with each message depending on its
sender or recipient. A message is encrypted according
to the sender’s sensitivity and sent to the mail server,
which transforms the ciphertext into a valid encryption
corresponding to the receiver’s sensitivity and saves the
new ciphertext into the receiver’s account. The encryp-
tion/decryption keys are generated when the user first sub-
scribes to the service.

The mail service is constructed by flexibly assem-
bling the following components: (i) aMailServer that
manages e-mail accounts, (ii)MailClient components
of differing capabilities, (iii)ViewMailServer compo-
nents that replicate theMailServer as desired, and (iv)
Encryptor /Decryptor components that ensure confi-
dentiality of interactions between the other components.
These components allow the mail application to be de-
ployed in different environments. If the environment is se-
cure and has high available bandwidth, theMailClient

can be directly linked to theMailServer . The existence
of insecure links and nodes triggers deployment of an
Encryptor /Decryptor pair to protect message privacy.
Similarly, theViewMailServer can serve as a cache to
overcome links with low available bandwidth.

Figure 1 shows the abstract structure of the mail appli-
cation, which describes all possible configurations of the
application. Rectangles correspond to component types,
ovals represent interfaces (types of data streams). Since
each component consumes at most one data stream, all
legitimate configurations of this application are chains.
However, it is possible to have more than one instance
of the same component type in such a chain.

Figure 2 illustrates a simple scenario where the
MailClient can be deployed on node0 only if connected
to aMailServer through aViewMailServer . Directly
linking theMailClient to theMailServer is not possi-
ble because the link between them does not have enough
available bandwidth to satisfy theMailClient require-
ments. Satisfying the requirements implicit in this sce-
nario automatically needs both a better specification of

MailServer

EncrI

MailClient

Encryptor

MSI

Decryptor

ViewMailServer

Figure 1: Abstract structure of the mail application. Rect-
angles represent components, and ovals represent inter-
faces.

MSI

0

1

2

High−bandwidth link

Low−bandwidth link

MailClient MailServer

ViewMailServer

MSI

Figure 2: Component deployment of the mail application

application requirements and a planning module to gen-
erate the deployment.

3.2 Webcast application

The second application models a webcast scenario (Fig-
ure 3), where the server provides a combined media
stream consisting of images and text, which needs to be
delivered to the client. The client issues requests at a
particular rate, which translates into a minimum band-
width requirement. If the network between the client and
the server has stable high bandwidth, a direct connec-
tion is made. However, in more resource-restricted sit-
uations additional components might be injected into the
network: Figure 3 shows an example of such injection
involving Splitter , Merger , and compression compo-
nents (Zip andUnzip). Similarly, aFilter component
may be injected to change parameters of the image stream,
such as the color depth. In the example shown in the fig-
ure, the network consists of two high-bandwidth LANs
with a low bandwidth link between them. TheServer lo-
cated on node 7 produces a media stream, and theClient

on node 0 wants to consume this stream with a particular
request rate. This goal is achieved by splitting the media
stream (M) into text (T) and image (I) components, zip-
ping the text portion of the stream, so that the combined
I+Z bandwidth is less than that of the original M stream,
sending the I and Z streams to the client LAN, and per-
forming the reverse transformations there.

Figure 4 describes the abstract structure of the webcast
application. Since the splitter component produces and
the merger component requires two interfaces, some con-
figurations of the webcast application might have a DAG

4

Z

0

1

2

6

7

4
5

3

ZI
ZI

Client

Merger

Unzip

M

T Z

Splitter

Zip

Server
M

T
I

Figure 3: The webcast application

M

SplitterMerger

I

T
Unzip Zip

Z

ServerClient

Filter

Figure 4: Abstract structure of the webcast application.
Rectangles represent components, and ovals represent in-
terfaces.

structure.

4 Model of the CPP

Many systems solve the Component Placement Problem
(CPP) in one form or another. However, the specific for-
mulation differs along one or more of the following di-
mensions: mobility (fixed locations in Ninja [36] vs. ar-
bitrary deployments), arity (single input - single output
components in CANS [15] vs. arbitrary arity), support for
resource constraints, etc. As one of the contributions of
this paper, we present a general model for the CPP that
unifies different variations of this problem and enables
use of the same planning algorithm in various component-
based frameworks.

Formally, the CPP is defined by the following five el-
ements: (i) the network topology, (ii) the application
framework, (iii) the component deployment behavior, (iv)
the link crossing behavior, and (v) the goal of the CPP.

4.1 Network topology

The network topology is described by a set of nodes and
a set of links. Each node and link has tuples of static and
dynamic properties associated with it. The dynamic prop-
erties are non-negative real values that can be changed,
e.g. node CPU, link bandwidth. The static properties are
assumed fixed during the life time of an application. Static

properties might be represented by boolean values or real
intervals, e.g. security of a link or trust level of a node.

4.2 Application framework

The application is defined by sets of interface types
and component types, similar to the Corba Component
Model [32] and object-oriented languages such as Java.
Each component type specifies sets ofimplementedand
requiredinterfaces:2 the former describe component func-
tionality, while the latter indicate services needed by the
component for correct execution. In addition, each inter-
face is characterized by a set of component-specificprop-
erties. From the planning point of view, properties are
defined as functions of other properties and have no se-
mantics attached to them.

In general, applications can propagate properties either
(i) from required to implemented interfaces –publish-
subscribeapplications, or (ii) from implemented to re-
quired interfaces –request-replyapplications. Inpublish-
subscribe applications, servers send data streams to
clients. In request-replyapplications, clients make re-
quests to servers and servers send back replies. Although
the planner can work with both types of applications, our
description of the planning algorithm focuses on request-
reply applications.

Figure 5 shows a partial specification of the
ViewMailServer component of the mail appli-
cation described in Section 3.1. This component
implements and requiresMailServerInterface .
MailServerInterface is associated with both
application-specific and application-independent proper-
ties. Application-specific properties include the trust level
(Trust) and message security (Sec), which indicate,
respectively, the maximum message sensitivity level and
whether or not the interface preserves message confiden-
tiality. Application-independent properties include the
number of incoming requests (NumReq), the maximum
response size for a request (ReqSize), the request
reduction factor (RRF), the amount of CPU consumed
to process each incoming request (ReqCPU), and the
maximum number of requests that can be processed by
the component (MaxReq). The RRF attribute gives the
ratio of requests sent to required interfaces in response to
requests on the implemented interfaces. The use of these
application-independent properties is described below.

2The counterpart for these concepts in a statically-linked Java/RMI
application is as follows: implemented interfaces are identical to their
namesake, while required interfaces correspond to remote references.

5

<Componentname =V MS >
<Linkages>

<Implements>
<Interface name =MSIi >

<Properties>
MSIi.T rust− derived
MSIi.Sec− derived
MSIi.NumReq − derived
MSIi.ReqSize− derived
MSIi.RRF := 10
MSIi.ReqCPU := 2
MSIi.MaxReq := 100

<Requires>
<Interface name =MSIr >

<Conditions>
Node.NodeCPU ≥ (MSIi.NumReq ∗MSIi.ReqCPU)
MSIr.NumReq ≥ (MSIi.NumReq ∗MSIi.RRF)
MSIi.NumReq ≤ MSIi.MaxReq
MSIr.Sec = True
MSIr.T rust ≥ 5

<Effects>
MSIi.Sec := True
MSIi.T rust := Node.Trust
MSIi.ReqSize := 1000
MSIi.NumReq := MIN(MSIr.NumReq/MSIi.RRF,

MSIi.MaxReq, Node.NodeCPU/MSIi.ReqCPU)
Node.NodeCPU := Node.NodeCPU−

MSIi.NumReq ∗MSIi.ReqCPU
——————————————————————————
<Interface name =MSI >

<Crosslink>

MSId.Sec := MSIo.Sec AND Link.Sec
Link.BW := Link.BW−

MIN(Link.BW, MSIo.NumReq ∗MSIo.ReqSize)

MSId.NumReq :=
MIN(MSIo.NumReq, Link.BW/MSIo.ReqSize)

MSId.ReqSize := MSIo.ReqSize
——————————————————————————

V MS = ViewMailServer ,
MSI = MailServerInterface
Superscriptsr andi indicate required and implemented
interfaces,o andd correspond to interfaces at link origin
and destination.

Figure 5: Component/Interface descriptions.

4.3 Component deployment behavior

A component can be deployed on a node only if the re-
quired interfaces are present on the node, and the resource
and property constraints of component deployment are
satisfied on that node (e.g., that there is sufficient available
memory or that the node has an appropriate version of the

operating system). After deployment, the implemented
interfaces become available on the node and the dynamic
properties of the node are altered. The Sekitei planner can
find a plan that satisfies both the application-specific and
application-independent constraints. The former are ex-
pected to be supplied by the programmer. To simplify
the task of writing application-independent constraints,
we have introduced a small set of properties:NumReq,
MaxReq, RRF, ReqCPU, described in the previous section.
Figure 5 shows how these properties can be used to cap-
ture component resource consumption. The conditions as-
sociated withViewMailServer specify that (i) the node
should have enough capacity to serve incoming requests,
(ii) the number of incoming requests should not exceed a
certain maximum, and (iii) the component should be able
to forward theRRFportion of requests to the required in-
terfaces. The effects of deploying theViewMailServer

component are to decrease the node’s CPU capacity and
constrain the number of requests to the implemented in-
terface.

4.4 Link crossing behavior

The link crossing behavior is described by interface spe-
cific functions. For each interface type, these functions
describe how the interface properties are affected by the
link properties when crossing the link, and how dynamic
properties of the link are changed as a result of this op-
eration. For example (see Figure 5), the security (used
here to denote privacy attributes) of an interface after link
crossing can be computed as a conjunction of the security
of the interface at the source and the security of the link;
the link bandwidth after the link crossing is the original
bandwidth minus the consumed bandwidth, which is the
smaller of the original bandwidth and the total bandwidth
requirement of processed requests.

4.5 CPP goal

In the simplest case, the goal is to put a component of a
given type onto a given node. For example, the goal in
Figure 2 is to placeMailClient on node0. Other goals
can include, for example, delivering a particular set of in-
terfaces to a given node; this can be useful for repairing
deployments when network resource availability changes.

The above model of the CPP is very flexible and allows
the expression of a variety of application properties and
requirements. In particular, most models we have found
in literature can be captured in our formalism.

6

5 CPP as a planning problem

The CPP can be viewed as an AI planning problem with
resource constraints:

• The state of the system is described by the availabil-
ity of interfaces on nodes and placement of compo-
nents on nodes. This information is described by a
set of propositional (boolean) variables.

• Properties of nodes, links, and interfaces on nodes
are described by real-valued resource variables.

• Operators correspond to placing a component on a
node and sending an interface over a link.

• The CPP goal is translated into a propositional goal
of having a component placed on a node.

Figure 6 describes the general structure of the system.
The compiler module transforms a framework-specific
representation of the CPP into an AI-style planning prob-
lem, which can be solved by the planner. The decompiler
performs the reverse transformation, converting the AI-
style solution into a framework specific deployment plan.

problem

component
placement
problem

plan
deployment

plan

framework

decompiler

planner

planning
compiler

Figure 6: Process flow graph for solving CPP.

The rest of this section describes compilation and de-
compilation modules.

5.1 Compiling CPP into a planning prob-
lem

The state of the world in CPP is described by the net-
work topology, the existence of interfaces on nodes, and
the availability of resources. This information is mapped
by the compiler into propositional and resource variables.
For example, the fact thatMailServerInterface is
available on node 0 is represented by proposition
avMSI(0) , and the amount of available CPU on node
1 by a real-valued resource variablecpu(1) .

Compilation of the CPP into a planning problem gener-
ates two operators:pl <component>(?n) 3 places a com-
ponent on a node, andcr <interface>(?n1,?n2) sends
an interface across a link.

3Identifiers prefixed with a question mark denote variables.

An operator schema (parameterized operator) has the
following sections (line numbers refer to the code frag-
ment below):

• logical precondition of the operator, i.e., a set of
propositions (boolean variables) that need to be true
for the operator to be applicable (line 2);

• resource preconditions described by arbitrary func-
tions that return boolean values (line 3-6);4

• logical effects, i.e., a set of propositions made true
by an application of the operator (line 7);

• resource effects represented by a set of assignments
to resource variables (lines 8-16).4

For example, the following schema describes the place-
ment of theViewMailServer (VMS) component on a
node. The preconditions result from the conditions in Fig-
ure 5 and the fact thatMailServerInterface (MSI) is a
required interface. The effects come from the effects sec-
tion of Figure 5, withMaxReq providing the upper bound
on theNumReqparameter of the implemented interface.

1 plVMS(?n: node)
2 PRE: avMSI (?n)
3 cpu(?n) > MSIMaxReq*MSIReqCPU
4 numReq(MSI,?n)>MSIMaxReq*MSIRRF
5 sec(MSI, ?n) = True
6 trust(MSI, ?n) > 5
7 EFF: avMSI (?n), plVMS(?n)
8 numReq(MSI, ?n):=
9 MIN(numReq(MSI, ?n) / MSIRRF,
10 MSIMaxReq,
11 cpu(?n) / MSIReqCPU)
12 cpu(?n):=cpu(?n) -
13 numReq(MSI, ?n)*MSIRRF/MSIReqCPU
14 sec(MSI, ?n):=True
15 trust(MSI, ?n):=ntrust(?n)
16 reqSize(MSI, ?n):=1000

Given the operator definition above, the compilation of
the CPP into a planning problem is straightforward. For
each of the component types, the compiler generates an
operator schema for a placement operator. In addition, an
operator for link crossing is generated for each interface
type. The initial state is created based on the properties
of the network. The goal of the CPP is translated into a
boolean goal of the planning problem.

5.2 Decompilation

The plan is a sequence of grounded (variable-
free) instances ofpl <component> (<node>) and
cr <interface> (<from>,<to>) operators. In ad-
dition, information about logical support is easily

4Sekitei currently does not support formulae involving parameters of
implemented interfaces, and instead generates a conservative solution by
using upper bounds on the values of such parameters.

7

extractable from the plan. For example, the fact
that operatorcrMSI(1,0) depends on proposition
avMSI(1) produced by operatorplVMS(1) means
that aViewMailServer component needs to be placed
on node 1 to produce theMailServerInterface

before this interface is sent over the link to node 0
(Figure 2). This information can also be represented as
a framework-specific deployment plan, which consists
of (component, node) pairs and linkage directives, e.g.
(VMS,1,MSI,MC,0) (send theMailServerInterface

implemented by the ViewMailServer component
located on node1 to the MailClient component on
node0).

6 The Sekitei algorithm

Sekitei needs to deal with two problems not traditionally
addressed by AI planning algorithms: the scale of the
problem specification and non-reversibility of resource
functions. These two problems are closely related, be-
cause the existence of resource preconditions and effects
is the reason why existing preprocessing methods popular
in state-of-the-art AI planning are unable to remove irrel-
evant operators from the problem specification.

Sekitei addresses these problems by combining regres-
sion and progression techniques and using layers of re-
laxed problems to prune the search space.

Section 6.1 describes the core algorithm as a sequence
of layers solving relaxed versions of the original problem.
Since it is easier to find a solution to a relaxed problem
than to the original one, the layers of relaxed problems are
used to prune the search space. Each new layer takes into
account more restrictions present in the original problem,
but needs to consider smaller sets of operators and vari-
ables.

Section 6.2 introduces a notion of resource maps. Re-
source maps are used to represent possibly achievable
values of resource variables (resource envelopes). Sec-
tion 6.3 discusses issues involved in implementation of
resource maps, and presents a version of the algorithm
which improves performance of the basic algorithm on
the CPP.

6.1 The core algorithm

The first issue that an efficient planner for the CPP needs
to address is the size of the problem. A problem in-
stance can include hundreds of nodes and dozens of com-
ponent types, which translate into component placement
and link crossing operators. However, most of these op-
erators will not be used in the shortest plan that achieves
the goal. Standard preprocessing techniques [2], which

rely on reachability analysis, do not remove these opera-
tors, because an operator can be included in some (long)
sequence leading from the initial to the goal state. For ex-
ample, when sending a data stream between two nodes in
the same LAN, the operator for crossing a network link on
the other side of the globe cannot be statically eliminated.
Since we do not expect practical problems to require use
of all possible operators, what distinguishes a good CPP
solution is its ability to scale well in the presence of large
amounts of irrelevant information. Our solution combines
multiple AI planning techniques and exploits the problem
structure to drastically reduce the search space.

The algorithm uses two data structures: aregression
graph (RG) and aprogression graph(PG). RG contains
operators relevant for the goal. An operator isrelevant
if it can participate in a sequence of actions reaching the
goal, and is calledpossibleif it belongs to a subgraph of
RG rooted in the initial state. PG describes all world states
reachablefrom the initial state in a given number of steps.
Only possible operators of the RG are used in construction
of the PG.

The Sekitei algorithm consists of four phases shown in
Figure 7 and described in detail below. Each of the phases
solves a relaxed problem. A solution to the relaxed prob-
lem is an argument of a new subproblem, which is passed
to the next phase of the algorithm. Thus, the regression
phase of the algorithm finds a smallest set of possible
operators for the original problem with all resource re-
quirements ignored. This set of operators is then used by
the progression phase to determine if the goal is reachable
given this set of operators and an aggregated version of re-
source constraints. If it is not, the algorithm backtracks to
the regression phase to obtain a bigger set of possible op-
erators. If the goal is reachable, the PG, which contains an
aggregated representation of all plans reaching the goal, is
passed to the third phase of the algorithm, plan extraction.
The plan extraction phase performs a search in the PG,
and all candidate plans are passed to the last phase of the
algorithm for symbolic execution. Success of the fourth
stage guarantees that the found plan is correct.

6.1.1 Regression phase

The regression phase considers only logical preconditions
and effects of operators in building the RG, an optimistic
representation of all operators that might be useful for
achieving the goal. RG contains interleaving fact and op-
erator levels, starting and ending with a fact level, and is
constructed as follows.

• Fact level 0 is filled in with the goal.

• Operator leveli contains all operators that achieve
some of the facts of leveli − 1.

8

replay succeeded

goal possible

create RG for goal

add layer to RG

build PG

return plan

NO

YES

NO

NO

YES

YES

extract plan

plan found

YES

NO

REGRESSION PROGRESSION SYMBOLIC EXECUTION

replay plan

PLAN EXTRACTION

goal reachable

Figure 7: The algorithm. RG stands for “regression graph”, PG for “progression graph”

• Fact leveli contains all logical preconditions of the
operators of the operator leveli.

RG is initially constructed until the goal becomes pos-
sible, but may be extended if required. Figure 8 shows the
RG for the problem presented in Section 3.1. Bold, solid,
and dashed lines correspond to possible subgraphs with 3,
4, and 5 steps respectively.

6.1.2 Progression phase

RG provides a basis for the second phase of the algo-
rithm, the construction of the progression graph. PG also
contains interleaving operator and fact levels, starting and
ending in a fact level. In addition, this graph contains in-
formation about mutual exclusion (mutex) relations [24],
e.g., that the placement of a component on a node might
exclude placement of another component on the same
node (because of CPU capacity restrictions). Because of
this, the PG is less optimistic than the RG. Figure 8(right)
shows the PG corresponding to the RG in Figure 8(left),
which is constructed as described below. Straight lines
show relations between propositions and operators, the
dotted arc corresponds to a mutex relation.

• Fact level 0 contains facts true in the initial state.
• For each of the propositions of leveli − 1 a no-op

(frame) operator is added to leveli that has that fact
as its precondition and effect, and consumes no re-
sources (marked with square brackets in the figure).

• For each of the possible operators contained in the
corresponding layer of the RG, an operator node is
added to the PG if none of the operator’s precondi-
tions is mutex at the previous proposition level.

• The union of logical effects of the operators of the
level i forms theith fact level of the graph.

• Two operators of the same level are marked as mu-
tex if (i) some of their preconditions are mutex, (ii)
one operator changes a resource variable used in an

expression for preconditions or effects of the other
operator, or (iii) their total resource consumption ex-
ceeds the available value.

• Two facts of the same level are marked mutex if all
operators that can produce these preconditions are
pairwise mutex.

In addition to purely logical structure, construction of
the PG takes into account resource preconditions and ef-
fects. For each propositional layer of PG, anoptimistic
resource mapis computed as described in Section 6.2. An
optimistic resource map describes possible levels of re-
sources achievable at a given stage of plan execution, and
may contain false positives, but no false negatives. Given
the assumption about monotonicity of resource functions,
this means that, if an execution of an operator fails in the
optimistic resource map for some layer of the PG, no valid
plan can contain that operator at the position correspond-
ing to the layer. However, success of an operator execu-
tion in the optimistic map does not guarantee existence of
a valid plan containing that operator. Operators whose ex-
ecution fails in the optimistic map of the preceding propo-
sitional layer, are not added to the PG.

Because of this resources-based pruning, it is possible
that the last level of the PG does not contain the goal, or
some of the goal propositions are mutually exclusive. In
this case, a new step is added to the RG, and the PG is
reconstructed.

6.1.3 Plan extraction phase

If the PG contains the goal and the goal is not mutex, then
the plan extraction phase is started. This phase exhaus-
tively searches the PG [2], using a memoization technique
to prevent reexploration of bad sets of facts in subsequent
iterations. The extracted plan is marked in bold lines in
Figure 8(right).

9

placedMC(0)

plMC(0)

avMSI(0)

crMSI(2,0) crMSI(1,0)

avMSI(2) avMSI(1)

[avMSI(2)] [avMSI(1)] crMSI(1,2) plVMS(1)

placedMC(0)

crMSI(2,1)

Level 2avMSI(2) avMSI(1)

plVMS(2) [avMSI(2)] crMSI(2,1)

avMSI(2)
plMS(2)

Level 1

Level 5

Level 4

Level 3

avMSI(2) avMSI(1)

plVMS(1) crMSI(2,1)plVMS(2)

avMSI(2) avMSI(1)

plMS(2) crMSI(1,2)

plMS(2) plVMS(2) crMSI(2,1)

avMSI(2)

plMS(2)

crMSI(2,0) crMSI(1,0)

avMSI(0)

plMC(0)

Level 3

Level 2

Level 0

Level 1

Level 4

Level 5

PGRG

Figure 8: Regression and progression graphs.

6.1.4 Symbolic execution

As mentioned above, optimistic resource maps con-
structed at the second phase of the algorithm can produce
false positives. It is also impossible to propagate goal
intervals backwards during the plan extraction phase as
done in [24] due to non-reversible nature of the resource
functions. Therefore, symbolic execution is the only way
to ensure soundness of a solution. It is implemented in a
straightforward way: a copy of the initial state is made,
and then all operators of the plan are applied in sequence,
their preconditions evaluated at the current state, and the
state modified according to the effect assignments. Note
that correctness of the logical part of the plan is guaran-
teed by the previous phases; here, only resource condi-
tions need to be checked.

6.2 Reasoning about resources

The layered structure of the Sekitei algorithm allows it
to prune the search space and thus deal with the scale
of the CPP. The other important feature of this problem
is that the world state contains real-valued resource vari-
ables and operators have resource preconditions and ef-
fects. We assume that all resource functions are mono-
tonic. For example, if bandwidth of a data stream at the
source increases, the bandwidth at the destination will not
decrease, and if a component can be deployed on a node
with less resources, it still can be deployed on that node if
more resources become available. These assumptions are
true for the applications we are addressing. This section
introduces a notion of resource maps and shows how they
are used in Sekitei to reason about resources.

6.2.1 Optimistic resource maps

Execution of an operator changes values of resource vari-
ables as described by the operator’s resource effects. Let
V = {v1, ..., vn} be the set of all resource variables. A

stateis described by a set of name-value pairs for all vari-
ables:

S = {(v1, ci), ..., (vn, cn)},where ∀i ci ∈ R
Execution of an operatorop in a state produces a new

state where values of some variables are changed:

exec(op, S) = S′

A resource mapis a mapping of each variable inV to a
minimum and maximum value.

An optimistic resource maplmap(l) for a given layer
l of the planning graph is defined recursively as follows.
lmap(0) maps each variable into its minimum and maxi-
mum value in the initial state. Forl > 0, lmap(l) maps
resourcev to the minimum and maximum value ofv over
all states that result from applying any operator of layer
l of the progression graph to any state consistent with
lmap(l − 1).

According to this definition, to compute a map result-
ing from execution of an operator in an optimistic map
map, we need to execute the operator in a (possibly in-
finite) set of states consistent with themap. However,
since all resource functions are monotonic, it is sufficient
to construct states using only boundaries of the intervals.
Let single(map) be a set of all such states for the map
map:

single(map) = {Sj}
where

map = {(v1, cm1, cM1), ..., (vn, cmn, cMn)}
Sj = {(v1, c1), ..., (vn, cn)},∀i ci ∈ {cmi, cMi}

Now the optimistic resource map can be computed as
follows.

1. lmap(0) = {(vi, cmi, cMi)|vi ∈ V }, wherecmi

andcMi are minimum and maximum values for re-
sourcevi in the initial state.

2. Letops(l) be the set of operators, including no-ops,
of layerl > 0 of the planning graph. Then

10

lmap(l) = {(vi, cmi, cMi)|
cmi = min c, cMi = max c,
(vi, c) ∈ exec(op, S), op ∈ ops(l),
S ∈ single(lmap(l − 1))}

6.2.2 Example

To illustrate how resource maps are constructed, consider
the following simple example of the mail application (Fig-
ure 9). The network consists of three nodes connected in
a chain. There is an instance of theMailServer running
on node 2 able to serve up to 10 requests per second, i.e.,
MailServerInterface is available on that node with
MailServerInterface .NumReq=10. The link between
nodes 1 and 2 has low bandwidth as shown in the fig-
ure. We want to place aMailClient on node 0, and
the client needs to be able to issue 7 requests per sec-
ond with request size 10. Suppose now that we can place
a ViewMailServer component on any of the nodes,
andViewMailServer reduces the number of client re-
quests by a factor of two. Therefore, a good deployment
plan would include two link crossing operations, placing
MailClient on node 0, and placingViewMailServer

on node 0 or 1.

Figure 10 shows the regression graph for this prob-
lem. Figure 11 shows the corresponding progression
graph with resource maps built for each proposition
layer. The initial map contains intervals for each re-
source variable corresponding to values of those vari-
ables in the initial state. The second map is a union of
maps resulting from execution of each of the three op-
erators of the first operator layer in the initial resource
map. For example, the number of requests supported by
MailServerInterface on node 1 (MSI.NumReq(1))
can be between 0 (ifplVMS(2) or [avMSI(2)] are ex-
ecuted) and 4 (ifcrMSI(2,1) is executed). As can be
seen from the graph, even though logical precondition
of placement of theClient on node 0 (availability of
MailServerInterface) can be achieved in two link
crossing operations, at least three plan steps are required
to satisfy its resource preconditionMSI.NumReq(0) >7.

6.3 Improving performance of resource
reasoning

The fact that symbolic execution is performed after plan
extraction leads to poor performance of the planner in sce-
narios where steps are added to the plan solely because of
resource restrictions (see Section 7.3.1 for experimental
results). In such cases, many resource conflicts are de-
tected very late. If the operator that fails during the sym-
bolic execution is close to the end of the plan, then the
same plan prefixes are evaluated many times. For exam-

MSI.NumReq=10

0 1 2

MSI.NumReq>7
MSI.ReqSize=10

Link.BW=100 Link.BW=40

MailClient MailServer
Produces:Requires:

Figure 9: A simple example of a mail application.

crMSI(1,2)

plVMS(0) crMSI(1,0)

crMSI(0,1) plVMS(1) crMSI(2,1)crMSI(1,0)plVMS(0)

avMSI(0)

crMSI(2,1)plVMS(1)crMSI(0,1)crMSI(1,0)plVMS(0)

avMSI(0) avMSI(1)

plMC(0)

avMSI(1)avMSI(0)

avMSI(1) avMSI(2)

avMSI(2)

avMSI(0)

placedMC(0)

plVMS(2)

Figure 10: The regression graph for the problem shown in
Figure 9. Possible subgraph is shown in bold font.

ple, in both of our applications, all plan prefixes succeed
up to the placement of the client. The version of the algo-
rithm presented so far evaluates these plan prefixes for all
possible plan tails, which leads to a worst case exponen-
tial time spent in the third phase of the algorithm before
the problem can be detected.

In this section we present two modifications to the re-
source processing algorithm that drastically improve per-
formance of Sekitei in such scenarios. The first tech-
nique, referred to as positive memoization, takes advan-
tage of saving intermediate results during the search. It
does not add any restrictions to the model of the problem,
but has high memory requirements. The second modifi-
cation shows good performance without memory explo-
sion, but assumes absence of negative logical precondi-
tions. The latter, however, is true for all instances of the
CPP we have encountered.

6.3.1 Positive memoization

One solution to the late resource conflict detection prob-
lem is to save intermediate results. GraphPlan-based al-
gorithms use a technique called memoization: for each of
the layers of the planning graph, sets of propositions not
achievable together are memoized, so that they do not get
checked more than once. Similar to this, we usepositive
memoizationto save good sets of propositions along with
corresponding resource maps.

The high-level goal of positive memoization is to detect
resource conflicts earlier during the plan extraction phase
by executing plan tails in the optimistic resource maps. In

11

placedMC(0)

(100, 100)
(40, 40)
(0, 0)
(0, 0)
(10, 10)

(100, 100)
(0, 40)
(0, 0)
(0, 4)
(10, 20)

Link.BW(1,2)
MSI.NumReq(0)
MSI.NumReq(1)
MSI.NumReq(2)

Link.BW(0,1)
Legend

(60, 100)
(0, 40)
(0, 4)
(0, 8)
(10, 20)

(0, 100)
(0, 40)
(0, 8)
(0, 8)
(10, 20)

(0, 100)
(0, 40)
(0, 8)
(0, 8)
(10, 20)

crMSI(2,1)

plVMS(2)

[avMSI(2)] avMSI(2)

avMSI(1)avMSI(2) plVMS(1)

crMSI(1,0)

[avMSI(1)]

crMSI(2,1)

avMSI(0)

avMSI(1)
crMSI(1,0)

plVMS(0)

[avMSI(0)]

avMSI(0) plMC(0)

Figure 11: The progression graph with per-layer resource maps for the problem shown in Figure 9.[avMSI(2)] is
a no-op operator for propositionavMSI(2) .

the Sekitei algorithm described above, the maps are built
per layer. To make resource conflict detection more effec-
tive, we need to calculate resource maps at finer granular-
ity.

Similar to the optimistic resource map for the whole
layer, we define an optimistic resource mapsmap(q, l) for
a subset of propositionsq at layerl of a planning graph:

1. smap(q, 0) = lmap(0) for all q.

2. Letops(q, l) be a set of smallest subsets of operators,
including no-ops, at layerl that together achieveq.

Let precs(o, l) be a set of preconditions (proposi-
tions at levell − 1) of the set of operatorso at level
l.

Then the optimistic resource mapsmap(q, l) for l >
0 is defined as follows:

smap(q, l) = {(vi, cmi, cMi)|
cmi = min c, cMi = max c,
(vi, c) ∈ exec(op, S), op ∈ O, O ∈ ops(q, l),
S ∈ single(smap(precs(O, l), l − 1))}

In words, each subset of operators achievingq is ex-
ecuted in the optimistic resource map for the union
of preconditions of these operators, and then the map
for q is computed as a union of the resulting maps.

After the optimistic map is computed for the goal state,
the plan extraction phase proceeds as usual, except every
time a subset of operatorso is chosen at some levell, the
plan tail includingo is replayed in the optimistic map of
o’s preconditionssmap(precs(o, l), l − 1). For example,
three operators of the second layer of the PG shown on
Figure 11,crMSI(1,0) , plVMS(1) , and [avMSI(1)] ,
have the same logical preconditionavMSI(1). An op-
timistic resource map for the singleton set containing
this precondition is computed only once, and then reused
when other two operators are considered by the plan ex-
traction procedure.

Intuitively, the use of positive memoization in planning
with resources is similar to the use of binary mutex rela-
tions in planning graph-based algorithms. Whenever a set
of propositional preconditions is constructed during the
plan extraction phase of the algorithm, it is first looked up
in a table. The table contains information about whether
the set is not achievable (the standard memoization) or,
if the set is achievable, then what is the optimistic map
for this set (positive memoization). The recursive call is
performed only when the table contains no information.
A new table entry is created upon exit from the recursive
call.

Adding positive memoization to Sekitei resulted in
huge (orders of magnitude) speedup on some instances
of the webcast problem and a small increase of running
time on simple problems (see Section 7.3.1 for results).
Note that the use of positive memoization does not put
any additional restrictions on the form of resource func-
tions; only monotonicity is required. Unfortunately, pos-
itive memoization has high memory requirements. Hav-
ing resource maps for all sets of propositions (essentially,
most of the subsets of sets of propositions for each layer
of the planning graph) leads to a worst case exponential
memory explosion.

6.3.2 Per-proposition resource maps

One way to improve memory behavior of positive mem-
oization is to save resource maps per proposition rather
than per set of propositions. We implemented this idea in
a version of Sekitei referred to as SekiteiNG.

In the presence of arbitrary resource functions mutex
relations based on resource interference between opera-
tors do not provide sufficient pruning, and therefore can
be omitted. Note that, since the CPP does not have neg-
ative logical preconditions or effects (component place-
ment does not require or result inabsenceof an interface
on a node), resource interference is the only source of mu-
tex relations.

Recall that the purpose of the PG in the Sekitei algo-

12

2

avMSI(1)2

avMSI(0)2

crMSI(2,1)2

avMSI(1)1

avMSI(2)1 plVMS(2)1

crMSI(2,1)1

plMC(0) 3

plVMS(0)3

crMSI(1,0)3

avMSI(0)3

placedMC(0)3

plMC(0) 4placedMC(0)4AndGoal4

AndGoal3

avMSI(2)0

(100, 100)
(40, 40)
(0, 0)
(0, 0)
(10, 10)

(100, 100)
(0, 0)
(0, 0)
(4, 4)
(10, 10)

(100, 100)
(40, 40)
(0, 0)
(0, 0)
(20, 20)

Link.BW(1,2)
MSI.NumReq(0)
MSI.NumReq(1)
MSI.NumReq(2)

Link.BW(0,1)
Legend

(20, 60)
(0, 40)
(4, 8)
(4, 8)
(10, 20)

(100, 100)
(0, 40)
(0, 0)
(4, 8)
(10, 20)

(60, 60)
(0, 0)
(4, 4)
(4, 4)
(10, 10)

crMSI(1,0)

GOAL

2

plVMS(1)

Figure 12: Regression graph of SekiteiNG. Proposition nodes are shown in italics, operator nodes in normal font.
Subscripts correspond to the cost of a node. Execution of operator plMC(0) fails in the resource map foravMSI(0)2.
Therefore nodesplMC(0)3, placedMC(0)3, andAndGOAL3 are dead.

rithm is to compute mutex relations and to provide basis
for computation of the memoization table. Without mu-
tex relations in SekiteiNG there is no need to explicitly
store the PG. All information contained in the PG can be
merged into the RG. The regression graph still needs to
be constructed, because the resource maps built using the
memoization table are optimistic, and exhaustive search
and symbolic execution still need to be performed. The
version of the core Sekitei algorithm used in SekiteiNG is
the following:

1. Build a regression graph RG until the initial state is
reached.

2. Propagate resource maps in the RG starting from the
initial state. This step has the same purpose as the PG
construction of the original version, and is described
in detail below.

3. Extract a plan from the RG (see below).

4. Perform symbolic execution.

As before, each next step of the algorithm is invoked only
if the previous step succeeds, and uses the results of the
previous step as its input.

The regression graph of SekiteiNG contains three types
of nodes: AND nodes correspond to operators, OR nodes
to propositions, and aggregate nodes to collections of
propositions. Each of the nodes also has acost, which
is the number of operators performed to reach the node
from the initial state. The cost of the node in the RG of
SekiteiNG corresponds to the layer number of the PG of
the original algorithm. A node is considereddead if it
cannot be achieved in the given number of steps (its op-
erator/proposition does not belong to the corresponding
layer of the PG). Otherwise the node is considered alive
and has an optimistic resource map associated with it. A
goal node is a special kind of an AND node with all goal
propositions being its preconditions.

The nodes of the RG are expanded as follows (the first
step of the algorithm). An OR (proposition) node with
costn > 0 has a child AND node with costn for each op-
erator that can achieve this proposition. An OR node with
cost0 is achieved by a special INIT node if the proposi-
tion is true in the initial state. The map of such a node
is equal to the initial map. An OR node is dead if all of
its children are dead. Otherwise the map of the node is
computed as a union of the maps of its alive children.

An AND node with costn and a set of preconditions
S is expanded as follows. A set of aggregate nodes is
created such that

• An aggregate node has|S| child nodes, one for each
of the propositions inS.

• The cost of each proposition node is betweenn − 1
and minimum cost of that proposition (see below).

• At least one of the children of an aggregate node has
costn − 1.

• An aggregate node is dead if at least one of its chil-
dren is dead. Otherwise the map of the node is com-
puted as a union of maps of its children.

An AND node is dead if all of its children are dead, or if
the operator fails in the map computed as a union of maps
of the node’s alive children. The map resulting from a
successful execution is taken as a map of the AND node.

Figure 12 shows the regression graph for the example
from Section 6.2.2. In this example all operators have ex-
actly one precondition. Therefore, all AND nodes have
exactly one aggregate node, which are not shown in the
figure.

The above algorithm can work even if the minimum
cost of each proposition is assumed to be0. However, ad-
ditional pruning can be achieved if the minimum cost of a
proposition is computed using a regression graph for the

13

initial state

plMC(0)=3plVMS(0)=3

avMSI(0)=2

crMSI(1,0)=2 crMSI(1,0)=2plVMS(1)=2crMSI(1,2)=2

crMSI(2,1)=1plVMS(2)=1

avMSI(2)=0

placedMC(0)=3

avMSI(1)=1

Figure 13: Relaxed graph of SekiteiNG

relaxed (without resources) problem. Initially, this graph
is constructed for the minimum number of steps necessary
to reach the initial state, and then extended when neces-
sary. Figure 13 shows the relaxed graph for the example
from Section 6.2.2. The arrows go from preconditions to
operators and from operators to their effects. The cost of
an operator node is computed as the maximum cost of its
preconditions plus 1. The cost of a proposition node is the
minimum cost of operator achieving it.

Since resource maps are unioned at various points dur-
ing construction of the regression graph, the graph is opti-
mistic. This means that even if the goal node is not dead,
the corresponding graph may not contain a solution. To
extract a solution (or prove its absence), a search is per-
formed in the regression graph. The basic idea is similar
to that of the plan extraction step with positive memoiza-
tion. A totally ordered plan tail is grown starting from the
goal state. After selection of a new operator, the plan tail
is replayed in the corresponding resource map. The fol-
lowing describes plan construction for a given aggregate
node of the goal node.

1. Create a Queue, initialize it with OR nodes of the
aggregate node.

2. Create an empty plan tail.

3. Select the most expensive OR nodeOrN from the
Queue. If the cost is 0, return the plan tail.

4. Nondeterministically choose an AND nodeAndN
from children ofOrN . Add the corresponding oper-
ator to the plan tail.

5. Nondeterministically select an aggregate nodeAgN
of AndN .

6. Compute a working resource map as a union of the
maps of OrR nodes from the queue and the map of
AgN .

7. Execute the plan tail in the working map. If the exe-
cution fails, backtrack.

8. Add children ofAgN to the Queue.

9. Go to step 3.

As experiments presented in Section 7.3.2 show,
SekiteiNG performs similar to Sekitei with positive mem-
oization, but without the memory explosion side effect.
The main restriction of SekiteiNG is that it supports only
positive logical preconditions and effects (which is suffi-
cient for the CPP), while the original version of Sekitei
(with or without positive memoization) is also capable of
supporting negative preconditions and effects.

7 Evaluation

In this section we present experimental results illustrating
performance of different versions the Sekitei algorithm.
First, we illustrate scalability of the algorithm with re-
spect to the problem size. Second, we show how Sekitei
can take advantage of existing component deployments.
Finally, we demonstrate effect of our optimizations on the
planning time and memory requirements of the algorithm.
The measurements reported in this section were taken on
a 700MHz Pentium III machine running Windows 2000
and the 1.3.1 Java HotSpot(TM) Client VM using our Java
implementation of Sekitei.

To model different wide-area network topologies, we
used the GT-ITM tool [7] to generate eight different net-
works Nk (for different k ∈ {22, 33, . . ., 99} nodes).
Each topology simulates a WAN formed by high speed
and secure stubs connected by slow and insecure links.
The initial topology configuration files (.alt) were aug-
mented with link and network properties using the Net-
work EDitor tool [22].

The performance of the planner was evaluated using the
two applications described in Section 3. The goal in both
applications is to deploy the client components on specific
nodes. In both cases, the “best” deployment is defined as
the one with the fewest number of components.

7.1 Scalability evaluation

We tested scalability of Sekitei (the original version pre-
sented in Section 6.1) by running several experiments.
This subsection presents in more detail the goal, the de-
scription, and the results of each experiment.

7.1.1 Planning under various conditions

The purpose of the first experiment is to show that the
planner finds a valid component deployment plan even in

14

hard cases, and usually does so in a small amount of time.
The experiment, involving the mail service application,
is conducted as follows. For each network topologyNk,
wherek ∈ 22, 33, ..., 99, and for each noden in the net-
work Nk, the goal is to deploy aMailClient component
on the noden given that theMailServer is running on
some node. The algorithm indeed finds a solution when it
exists.

The data points in Figure 14 represent the time needed
to find a valid plan for each of the different networks, and
correspond to the following cases. When the client and
the server are located in the same stub, the algorithm es-
sentially finds the shortest path between two nodes, which
takes a very short time.5 Placement of a client in a differ-
ent stub requires inserting some components into the path,
and therefore takes longer.

0

10

20

30

40

50

60

70

80

P
la

n
n

in
g

 t
im

e
(s

)

22 33 44 55 66 77 88 99

Network size

Figure 14: Planning under various conditions.

7.1.2 Scalability w.r.t. network size

To see how the performance of the algorithm is affected
by the size of the network, we ran the following exper-
iment. Taking theN99 network topology (Figure 15) as
our reference and starting with a small network with only
two stubs, we added one stub at a time until the original
99-node configuration was achieved. For each of the ob-
tained networks we ran the planner with the goal of plac-
ing MailClient on a fixed node. Figure 16 shows the
planning time as a function of the network size.

As shown in Figure 16, the running time of the planner
increases very little with the size of the network. More-
over, the graph tends to flatten. Such behavior can be
explained by the fact that the regression phase of the al-
gorithm considers only stubs reachable in the number of
steps bounded by the length of the final plan. Even this set
is further pruned at the progression stage. Therefore, our
algorithm is capable of identifying the part of the network
relevant to the solution, without additional preprocessing.

5The algorithm does not distinguish any special cases. “The shortest
path” is only a characterization of the result.

server

client

1

2

3

4

5
6

7

8

9

Figure 15: 9-stub networkN99

0

2

4

6

8

10

12

14

16

18

19 27 43 53 63 70 77 92

Number of nodes

T
im

e
(s

)

Figure 16: Scalability w.r.t. network size for the mail ap-
plication.

7.1.3 Complex application structure

The mail application used in the above experiments re-
quires only a chain of components. An important fea-
ture of our algorithm is that it can support more compli-
cated application structures, i.e., DAGs and even loops.
To verify that planner behavior is not negatively affected
by DAG-like structures, we generated deployments for
the webcast service (the DAG structure arises because of
splitting and merging the image and text streams). The
goal for the planner was deployment of theClient com-
ponent on a specific node, given that theServer was sep-
arated from it by links with low available bandwidth. Fig-
ure 17 illustrates the running time of the algorithm as a
function of the network size and validates our assertion.

7.1.4 Scalability w.r.t. irrelevant components

To analyze the scalability of the planner when the applica-
tion framework consists of a large number of components,
we classify components into three categories: (i) abso-
lutely useless components that can never be used in any
application configuration; (ii) components useless given
availability of interfaces in the network, and (iii) useful
components, i.e., those that implement an interface rele-
vant for achieving the goal and whose required interfaces

15

0

5

10

15

20

25

30

35

19 27 43 53 63 70 77 92

Number of nodes

T
im

e
(s

)

Figure 17: Scalability w.r.t. network size for webcast ap-
plication.

0

1

2

R
a

ti
o

 t
o

 t
h

e
 b

a
s

e
 c

a
s

e

Absolutely useless components

Components with unavailable required interfaces

Figure 18: Scalability w.r.t. increasing number of irrele-
vant components.

are either already present or can be provided by other use-
ful components.

Figure 18 shows the performance of the planner in the
presence of irrelevant components. The two plots cor-
respond to two situations: the mail service application
augmented first with ten absolutely useless components,
and then with ten components that implement interfaces
meaningful to the application, but require interfaces that
cannot be provided. The absolutely useless components
are rejected by the regression phase of the algorithm and
do not affect its performance at all.6 Components whose
implemented interfaces are useful, but required interfaces
cannot be provided can be pruned out only during the sec-
ond phase, which also takes into account the initial state
of the network (the required interfaces might be available
somewhere from the very beginning). The running time
increases as a result of processing these components in the
first phase (polynomial in the number of components).

Scalability with respect to relevant components is dis-
cussed in Section 7.3.

6Slight fluctuations are a result of artifacts such as garbage collection.

7.2 Reusability of existing deployments.

In practical scenarios, by the time a new client requests
a service, the network may already contain some of the
required components. To see how the planning time is
affected by reuse of existing deployments, we ran the fol-
lowing experiment. Starting with the webcast application
and theN99 topology where theServer was present on a
fixed node, we analyzed the planning costs for the goal of
putting theClient on each of the network nodes in turn.
The x-axis in Figure 19 represents the order in which the
nodes were chosen. The network state is saved between
the runs, so that clients can join existing paths. We assume
that clients are using exactly the same data stream, and
there is no overhead for adding a new client to a server.

As expected, it is very cheap to add a new client to a
stub that already has a client of the same type deployed
(this corresponds to the majority of the points in Fig-
ure 19), because most of the path can be reused. The
problem in this case is effectively reduced to finding the
closest node where the required interfaces are available.

0

100

200

300

400

500

600

700

800

900

Node index

P
la

n
n

in
g

 t
im

e
 (

m
s
)

Figure 19: Reuse of existing deployments.

7.3 Benefits from optimizations

7.3.1 Planning time

Figure 20 shows the performance of the original planner
(without optimizations) with increasing number of useful
components.

In this experiment, the webcast client is placed in turn
on each of the nodes of theN99 network given a fixed
location of the server. The graph shows average plan-
ning time per client per stub. The four bars correspond
to four different network conditions and application con-
figurations.

Cfg 1. In the first case the transit links have high band-
width, so that theClient can be directly connected
to theServer .

16

Cfg 2. In the second case, the bandwidth of transit links
is slightly lower, so that theClient ’s quality re-
quirements, which are originally specified in terms
of the request rate, cannot be satisfied by a direct
connection. However, it is sufficient to reduce the
color depth of the image portion of the stream to re-
solve the problem. Therefore, the planner decides to
insertSplitter , Merger , andFilter components
into the data path.

Cfg 3. In the third case the bandwidth of transit links
is even lower, but using compression of the text por-
tion of the stream solves the problem. The planner
decides to addSplitter , Merger , Zip , andUnzip

components into the data path. Note that this plan re-
quires more components then the previous scenario.
Therefore, even though the quality of the resulting
stream is better in this case than when theFilter

is used, the planner’s decision to useFilter in the
previous scenario instead ofZip andUnzip is cor-
rect.

Cfg 4. Finally, the fourth configuration includes five
additional components (Splitter , Merger , Zip ,
Unzip , andFilter).

The choice of whether a useful component is actually
used in the final plan is made during the third phase of the
algorithm, which in the worst case takes time exponential
in the length of the plan. Larger numbers of useful com-
ponents increase the branching factor of PG, and there-
fore the base of the exponent. This means that in hard
cases (very strict resource constraints, multiple compo-
nent types implementing the same interface, highly con-
nected networks) the planning can take a long time.

Figure 21 shows the planning time for the same exper-
iment presented above for the planner with the positive
memoization technique discussed in Section 6.3.1. The
modified version of the planner takes about the same time
on simple problems (Configuration 1), and scales much
better on harder instances. Figure 22 shows the additional
improvements of SekiteiNG discussed below.

7.3.2 Memory consumption

The main source of memory consumption in all versions
of Sekitei is the values of resource intervals stored in
resource maps. To evaluate the memory behavior of
Sekitei, we recorded the maximum number of such inter-
vals present in memory at any given moment during plan-
ning. Although this number is affected by the garbage
collection behavior of a Java VM, it is a reasonable esti-
mate of the memory consumption of the algorithm.

Figure 23 shows the average number of constants gen-
erated by the three versions of Sekitei on four configura-

0

1

2

3

4

5

6

1 2 3 4 5 6 7 8 9
Stub index

lo
g

1
0

 t
im

e
(m

s
)

C
fg

1

C
fg

3

C
fg

2

C
fg

4

Figure 20: Scalability of the original Sekitei algorithm
w.r.t. increasing number of relevant components. The
highest peaks correspond to about 15 min.

0

1

2

3

4

5

6

1 2 3 4 5 6 7 8 9

Stub index

lo
g

1
0
 t

im
e
(m

s
)

Figure 21: Scalability w.r.t. increasing number of rele-
vant components with positive memoization. The highest
peaks correspond to about 10 seconds

0

1

2

3

4

5

6

1 2 3 4 5 6 7 8 9

Stub index

lo
g

1
0

 t
im

e
(m

s
)

Figure 22: Scalability of SekiteiNG w.r.t. increasing num-
ber of relevant components. The highest peaks correspond
to about 2.3 seconds

tions of the webcast application discussed above. Sekite-
iNG scales much better with respect to memory consump-
tion as compared to the positive memoization version of
Sekitei. In fact, as shown in Figure 24, memory consump-
tion of SekiteiNG is comparable to that of the original ver-
sion of the algorithm. The number of constants generated
by SekiteiNG on configurations 3 and 4 is less than three
times bigger than that of the original algorithm.

The fact that SekiteiNG considers much fewer resource
values also affects the planning time. Figure 22 shows the

17

1

10

100

1000

10000

100000

1000000

1 2 3 4

Configuration

N
u

m
b

e
r

o
f

c
o

n
s
ta

n
ts

Original Sekitei

Positive Memoization

SekiteiNG

1

10

100

1000

10000

100000

1000000

1 2 3 4

Configuration

N
u

m
b

e
r

o
f

c
o

n
s
ta

n
ts

Original Sekitei

Positive Memoization

SekiteiNG

Figure 23: The average number of constants generated by
the three versions of Sekitei on four configuration of the
webcast application

0

0.5

1

1.5

2

2.5

1

6

1
1

1
6

2
1

2
6

3
1

3
6

4
1

4
6

5
1

5
6

6
1

6
6

7
1

7
6

8
1

Node index

Config 1

Config 2

Config 3

Config 4

Figure 24: Ratio of constants generated by SekiteiNG w.r.t.
the original algorithm.

planning time of SekiteiNG for the four configurations of
the webcast application (compare to Figures 20 and 21).

We also tested the scalability of SekiteiNG with respect
to irrelevant operators. The behavior of the planner is sim-
ilar to that reported in Section 7.1, and we do not present
the detailed results here.

8 Discussion and future work

Sekitei achieves good scalability on the CPP in presence
of non-reversible resource functions by using a combi-
nation of regression and progression techniques. Such a
combination is beneficial when it is impossible to prune
the set of operators using standard preprocessing tech-
niques. On classic planning problems (without resources)
this technique does not give any speedup, even though the
size of the progression graph is smaller than that of the
standard GraphPlan approach.

The examples presented in this paper describe place-
ment of a single component on a given node. The same
algorithm can be used for placing multiple components,
or for fixing existing deployments after a failure due to

change in resource availability.

Extensions to Sekitei need to focus on two principal
directions. First, we believe that the performance of the
algorithm can be further improved. In particular, it seems
reasonable to explore only the most promising paths. One
possible way to identify such paths in the component
placement problem is to start by building a direct connec-
tion between the client and the server along the shortest
path in the network (the cheapest path in the relaxed re-
gression graph), and then deviate from this path and add
components only in case of a resource conflict.

Another way to improve performance of Sekitei is to
use some properties of resources to prune search. It is
often possible to distinguish between monotonic and gen-
eral resources. A resource ismonotonicif application of
any operator changes its value in the same direction. If
some operators can increase and others can decrease the
value of a resource, we refer to such a resource asgen-
eral.7 For example, available CPU is always a decreasing
resource in the CPP, but the bandwidth of a data stream
may be general if a caching component can be injected
into the data path. We are currently investigating use of
resource monotonicity information for early resource con-
flict detection.

The second direction is improving expressiveness of
the model of the CPP. This includes a better model for
publish-subscribe applications and support for global pre-
conditions. The latter may be used, for example, for par-
allel applications where all copies of the same component
need to be deployed with the same parameters.

The current Sekitei implementation does not take into
consideration the actual load on components, e.g. the
number of clients connected to a server. One way of
capturing such incremental resource consumption in our
current model is by introducing artificial components that
can support a limited number of additional clients. A
more general scheme may include changing the formu-
lae describing component placement to consider parame-
ters of implemented interfaces (as opposed to their upper
bounds).

The current version of our planner, as many other AI
planners, minimizes the total number of parallel steps. In
real world problems, such as the CPP, application of an
operator usually involves some cost. It is more desirable
to minimize the total cost of a plan rather than its parallel
length. Supporting a notion of resource-dependent opera-
tor cost may help realize this objective.

Another interesting research direction is allowing un-
certainty in the resource values of the initial state and pro-
ducing sensitivity information for a plan.

We are working on adding distributed planning capa-

7[1] proposes a classification of resource variables.

18

bilities to Sekitei. The reason for this is that it is desirable
for each administrative domain to have its own planner,
which plans for nodes in its domain collaborating only
when necessary.

In addition to improving the presented algorithms, we
also plan to evaluate the effectiveness of other approaches
for solving the CPP. For example, the progression phase
of the four-phase algorithm can be replaced with compila-
tion into an optimization problem. Such an approach will
require putting tighter restrictions on the form of expres-
sions used in preconditions and effects. The right balance
between the expressiveness of the expressions and the per-
formance of the algorithm is an interesting long-term re-
search question.

9 Summary

In this paper, we have presented the Sekitei algorithm for
solving the component placement problem and possible
ways to improve its performance. The CPP is a real-
world problem, whose compilation into a planning prob-
lem is characterized by simple logical structure and ar-
bitrary non-reversible monotonic resource functions. In
addition, a planner for the CPP needs to cope with large
number of irrelevant operators that cannot be removed by
static preprocessing techniques.

Sekitei addresses the scaling problem by using a com-
bination of regression and progression techniques to limit
the search space. The positive memoization technique sig-
nificantly increases performance of Sekitei by allowing
early detection of resource conflicts. The main drawback
of positive memoization is its high memory requirements.
We presented a refined version of the algorithm that ad-
dresses this problem.

Sekitei is designed and optimized specifically for the
component placement problem. However, techniques de-
veloped for the CPP may be useful for other problems as
well. We plan to extend our resource planner to support
more general planning problems, namely, those contain-
ing operators with negative logical preconditions and ef-
fects.

10 Acknowledgements

This research was sponsored by DARPA agreements
N66001-00-1-8920 and N66001-01-1-8929; by NSF
grants CAREER:CCR-9876128, CCR-9988176, and
CCR-0312956; and Microsoft. The U.S. Government is
authorized to reproduce and distribute reprints for Gov-
ernment purposes notwithstanding any copyright annota-
tion thereon. The views and conclusions contained herein
are those of the authors and should not be interpreted as

representing the official policies or endorsements, either
expressed or implied, of DARPA, Rome Labs, SPAWAR
SYSCEN, or the U.S. Government.

References

[1] T. Bedrax-Weiss, C. McGann, and S. Ramakrishnan. For-
malizing resources for planning. InProc. of ICAPS’03
Workshop on PDDL, Trento, Italy, June 2003.

[2] A. Blum and M. Furst. Fast planning through planning
graph analysis.Artificial Intelligence, 90(1-2):281–300,
1997.

[3] J. Blythe, E. Deelman, and Y. Gil. Planning for Workflow
Construction and Maintenance on the Grid. InProc. of
ICAPS’03 Workshop on Planning for Web Services, 2003.

[4] J. Blythe, E. Deelman, Y. Gil, C. Kesselman, A. Agarwal,
G. Mehta, and K. Vahi. The role of planning in grid com-
puting. InICAPS, 2003.

[5] B. Bonet and H. Geffner. Planning as heuristic search:
New results. InECP, 1999.

[6] F. Bustamante and K. Schwan. Active Streams: An ap-
proach to adaptive distributed systems. InHotOS-8, 2001.

[7] K. Calvert, M. Doar, and E. Zegura. Modeling Internet
topology. IEEE Communications Magazine, 35(6):160–
163, June 1997.

[8] R. Dechter, I. Meiri, and J. Pearl. Temporal constraint net-
works. Artificial Intelligence, 49:61–95, 1991.

[9] M. B. Do and S. Kambhampati. Solving planning-graph
by compiling it into CSP. InAIPS, pages 82–91, 2000.

[10] I. Foster and C. Kesselman. Globus: A metacomputing in-
frastructure toolkit.Intl. J. of Supercomputer Applications
and High Performance Computing, 11(2):115–128, 1997.

[11] I. Foster, C. Kesselman, J. Nick, and S. Tuecke. The phys-
iology of the grid: An Open Grid Services Architecture for
distributed systems integration. Open Grid Service Infras-
tructure WG, Global Grid Forum, 2002.

[12] I. Foster, A. Roy, and V. Sander. A quality of service archi-
tecture that combines resource reservation and application
adaptation. InIWQOS, 2000.

[13] J. Frank and E. Kurklu. SOFIA’s choice: Scheduling ob-
servations for an airborne observatory. InICAPS, 2003.

[14] X. Fu and V. Karamcheti. Planning for network-aware
paths. InProc. of DAIS, 2003.

[15] X. Fu, W. Shi, A. Akkerman, and V. Karamcheti. CANS:
Composable, Adaptive Network Services infrastructure.
USITS-3, 2001.

[16] M. Helmert. Decidability and undecidability results for
planning with numerical state variables. InAIPS, 2002.

[17] A. Ivan, J. Harman, M. Allen, and V. Karamcheti. Par-
titionable Services: A framework for seamlessly adapting
distributed applications to heterogenous environments. In
HPDC-11, 2002.

19

[18] H. Kautz and B. Selman. Planning as satisfiability. In
ECAI, 1992.

[19] H. Kautz and B. Selman. BLACKBOX: A new approach
to the application of theorem proving to problem solving.
In AIPS, 1998.

[20] H. Kautz and J. Walser. Integer optimization models of
AI planning problems. Knowledge Engineering Review,
15(1):101–117, 2000.

[21] T. Kichkaylo. Planning with Arbitrary Monotonic Re-
source Functions. InPrinted Notes of ICAPS’03 Doctoral
Consortium, 2003.

[22] T. Kichkaylo and A. Ivan. Network EDitor.
http://www.cs.nyu.edu/pdsg/projects/partitionable-
services/ned/ned.htm, 2002.

[23] T. Kichkaylo, A. Ivan, and V. Karamcheti. Constrained
component deployment in wide-area networks using AI
planning techniques. InIPDPS, 2003.

[24] J. Koehler. Planning under resource constraints. InECAI,
1998.

[25] J. Koehler, B. Nebel, J. Hoffmann, and Y. Dimopoulos.
Extending planning graphs to an ADL subset. InECP,
1997.

[26] P. Laborie. Algorithms for propagating resource con-
straints in ai planning and scheduling: Existing approaches
and new results.Artificial Intelligence, 143(2):151–188,
2003.

[27] J. Lopez and D. O’Hallaron. Support for interactive heavy-
weight services. InHPDC-10, 2001.

[28] D. McDermott. Using regression-match graphs to control
search in planning.Artificial Intelligence, 109(1-2):111–
159, 1999.

[29] Microsoft Corporation. Microsoft .NET.
http://www.microsoft.com/net/default.asp.

[30] N. Muscettola. Computing the envelope for stepwise-
constant resource allocations. InProc. of Principles and
Practice of Constraint Programming (CP), pages 139–154,
2002.

[31] Object Management Group. Corba. http://www.corba.org.

[32] Object Management Group. CORBA Component Model.
http://www.omg.org/, 2003.

[33] J. Penberthy and D. Weld. Temporal planning with conti-
nous change. InAAAI, 1994.

[34] J. S. Penberthy and D. Weld. UCPOP: A sound, complete,
partial order planner for ADL. InKR, 1992.

[35] P. Reiher, R. Guy, M. Yarvis, and A. Rudenko. Automated
planning for open architectures.OPENARCH, 2000.

[36] S. Gribble et al. The Ninja architecture for robust
Internet-scale systems and services.Computer Networks,
35(4):473–497, 2001.

[37] Sun Microsystems, Inc. Java(TM) 2 platform, Enterprise
Edition.

[38] S. Wolfman and D. Weld. Combining linear programming
and satisfiability solving for resource planning.Knowledge
Engineering Review, 2000.

[39] D. Zhou and K. Schwan. Eager Handlers - communi-
cation optimization in Java-based distributed applications
with reconfigurable fine-grained code migration. In3rd
Intl. Workshop on Java for Parallel and Distributed Com-
puting, 2001.

20

