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Abstract

We study tail bounds and small ball probabilities for sums of random variables obtained

from a Markov chain. In particular, we consider the following sum

Sn = f1(Y1) + · · ·+ fn(Yn)

where {Yi}∞i=1 is a Markov chain with state space [N ], transition matrix A, and stationary

distribution µ such that Y1 is distributed as µ, and fi : [N ]→ R. We also consider settings

in which fi(Yi) is vector-valued.

In all results, the bounds are in terms of the spectral gap of the Markov chain. In almost

all of the results in this thesis, when the transitions are independent and the spectral gap

is 1, the bounds match the corresponding bounds for independent random variables up to

constant factors.

• We first obtain tail bounds in the case that only the pth moment of the random variable

fi(Yi) is bounded. This is a Markov chain version of a corollary of the Marcinkiewicz-

–Zygmund inequality. Using this, we also obtain tail bounds for Sn when the fi(Yi) are

elements of an `q space.

• Next, we obtain tail bounds in the case that the fi(Yi) are bounded in the range [−ai, ai]

for each i. This is a Markov chain version of the Hoeffding inequality. This improves

upon previously known bounds in that the dependence is on
√
a2

1 + · · ·+ a2
n rather than

maxi{ai}
√
n. Using this, we obtain tail bounds for certain types of random variables in

which the fi(Yi) are elements of any Banach space.
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• Next, we obtain sharp tail bounds when the random variables fi(Yi) are bounded

and the expected value of Sn is small. This is a Markov chain version of a Poisson

approximation to sums of independent random variables. As an application, we explain

how such tail bounds can be used to construct simple and explicit resilient functions

that match the non-constructive functions shown to exist due to the work of Ajtai and

Linial.

• Finally, we show that if the fi(Yi) take on values {−vi, vi} with equal probability and

the vi are Euclidean vectors with norm at least 1, the probability that Sn lies in a ball

of volume 1 is small. This is a Markov chain version of the Littlewood-Offord inequality.

We also construct a new pseudorandom generator for the Littlewood-Offord problem.
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Chapter 1

Introduction

It is well known by the central limit theorem that in many cases, the probability distribution

of the sum of independent random variables tends to that of a normal distribution as the

number of terms increases. This is even if the random variables themselves do not have a

probability distribution that is similar to a normal distribution. Expanding upon this, one

can ask what properties of normal distributions also hold for sums of independent random

variables. These can include upper bounds on the tails of a Gaussian (concentration), and on

any short interval (anti-concentration). In particular, it is known that for a Gaussian random

variable X with mean 0 and variance 1 that

Pr[|X| ≥ u] ≤ 2 exp(−u2/2) (1.1)

and

Pr [|X| ≤ u] ≤ u. (1.2)

Thus, one can ask if sums of independent random variables also exhibit concentration and

anti-concentration.
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Concentration for sums of independent random variables: We start by discussing

concentration bounds for sums of random variables. If X1, . . . , Xn are independent random

variables each with mean 0 and bounded in absolute value by 1, Chernoff bounds tell us that

Pr[|X1 + . . .+Xn| ≥ u
√
n] ≤ 2 exp(−u2/2), (1.3)

and thus the property of Gaussian random variables exhibited in Eq. (1.1) also applies to

sums of independent variables.

If just the pth moment of the Xi are bounded, that is E[|Xi|p] ≤ 1, the following

bound on the pth moment of |X1 + · · ·+Xn| is a corollary of the Marcinkiewicz–Zygmund

inequality (MZ37), for some constant C independent of n and p.

E[|X1 + · · ·+Xn|p]1/p ≤ C
√
pn. (1.4)

If u is small enough, then one can obtain tail bounds as in Eq. (1.3) with just a change in

the constant factor of the exponent.

Additionally, if each Xi is bounded in absolute value by ai, the Hoeffding inequality (Hoe63)

states that

Pr

|X1 + · · ·+Xn| ≥ u

(
n∑
i=1

a2
i

)1/2
 ≤ 2 exp(−u2/2). (1.5)

We also point out that in some cases, it is possible to show that the probability distribution

of a sum of independent random variables tends to that of a Poisson random variable as the

number of terms increases. In particular, it is known that for a Poisson random variable X

with mean µ,

Pr[X ≥ u] ≤ exp

(
u− µ− u ln

u

µ

)
. (1.6)

If X1, . . . , Xn are independent random variables in the range [0, 1] and E[X1 + · · ·+Xn] = Φ,
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then

Pr[X1 + · · ·+Xn ≥ u] ≤ exp
(
u− Φ− u ln

u

Φ

)
. (1.7)

exhibiting the same property as found in Poisson random variables.

Finally in recent years, much attention has been placed on concentration inequalities for

vector-valued random variables. That is, rather than assuming that the Xi are scalars, we

can assume that they are matrices, or elements of some other Banach space.

One example of such an inequality is due to Ahlswede and Winter (AW02), who considered

the case of matrices under the Schatten-∞ norm. They showed that if X1, . . . , Xn are random

d× d matrices such that ‖Xi‖ ≤ 1 and E[Xi] = 0 for all i, then

Pr[‖X1 + · · ·+Xn‖S∞ ≥ u
√
n] ≤ d exp(−cu2).

This inequality has been extended to many more settings in a similar manner to many of

the above extensions of the regular Chernoff bound in the scalar case. For a more complete

treatment of tail bounds for sums of matrices, see the monograph by Tropp (Tro15).

For general Banach spaces, Naor (Nao12) obtained tail bounds for sums of random

variables from a Banach space satisfying certain properties. Before stating the corresponding

tail bound, we define a quantity called the modulus of uniform smoothness.

Definition 1. The modulus of uniform smoothness of a Banach space (X, ‖ · ‖) is

ρX(τ) = sup

{
‖x+ τy‖+ ‖x− τy‖

2
− 1 : x, y ∈ X, ‖x‖ = ‖y‖ = 1

}
.

Let (X, ‖ · ‖) be a Banach space so that ρX(τ) ≤ sτ 2 for some s and all τ > 0. When the

elements of the Markov chain are independent, for fi : [N ]→ {x ∈ X : ‖x‖ ≤ ai} and such
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that E[fi(Yi)] = 0, it was shown in (Nao12) that

Pr

‖f1(Y1) + · · ·+ fn(Yn)‖ ≥ u

(
n∑
i=1

a2
i

)1/2
 ≤ exp

(
s+ 2− cu2

)
(1.8)

for some universal constant c.

Anti-concentration for sums of independent random variables: In terms of anti-

concentration for sums of random variables, we will focus for the most part on the following

problem first posed by Littlewood and Offord. If v1, . . . , vn ∈ Rd are fixed vectors of Euclidean

length at least 1, and X1, . . . , Xn are independent Rademacher random variables, so that

Pr[Xi = 1] = Pr[Xi = −1] = 1/2 for all i, then

Pr[X1v1 + · · ·+Xnvn ∈ B] ≤ C√
n

(1.9)

for an open Euclidean ball B with radius 1, and a constant C. The case d = 1 was proved by

Erdős (Erd45), and for general d by Kleitman (Kle70), and was subsequently improved by

series of work (Sal83; Sal85; FF88; TV12). When d = 1, Eq. (1.9) shows that this sum of

random variables exhibits the property of Gaussian random variables in Eq. (1.2).

Random variables obtained from a Markov chain

In this thesis, we investigate to what extent independence is needed for the sums of

random variables to exhibit similar behavior to Gaussian and Poisson random variables. In

particular, we consider the case that the random variables are obtained from a Markov chain

as follows. Consider a Markov chain {Yi}∞i=1 with state space [N ], transition matrix A, and

stationary distribution µ such that Y1 is distributed as π, and let f1, . . . , fn : [N ] → R be

functions on the state space. Then we consider the random variable f1(Y1) + · · ·+ fn(Yn).

4



For the most part, we will show that the bounds in the independent case also hold when

the random variables are obtained from a Markov chain, with an additional dependence on

the spectral gap which we define as follows. Let Eµ be the associated averaging operator

defined by (Eµ)ij = µj, so that for v ∈ RN Eµv = Eµ[v]1 where 1 is the vector whose entries

are all 1. We define λ(Y ) to be

λ(Y ) = ‖A− Eπ‖L2(µ)→L2(µ),

and the spectral gap to be 1 − λ(Y ). The averaging operator Eµ is the transition matrix

of a Markov chain whose transitions are independent and whose stationary distribution is

µ. Thus, in some sense λ(Y ) represents how close the transitions of {Yi}∞i=1 are to being

independent.

Concentration inequalities for sums of random variables obtained from a Markov chain were

first obtained by Gillman, who gave the following tail bound in the case that f1 = · · · fn = f ,

for reversible Markov chains.

Pr[|f(Y1) + · · ·+ f(Yn)| ≥ u
√
n] ≤ 2 exp

(
−u2(1− λ)

20

)
. (1.10)

These bounds were improved by a series of work, including (Din95; Kah97; Lez98; LP04),

where the result due to León and Perron is tight for reversible Markov chains. In particular,

this result yields a Markov chain version of both Eq. (1.3) and Eq (1.7).

We remark that the dependence on λ in both Eq. (1.10) is optimal, which was shown

in (LP04). In particular, one can consider the Markov chain on two states with the transition

matrix 1+λ
2

1−λ
2

1−λ
2

1+λ
2
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so that fi(1) = 1 and fi(2) = −1 for all i. Intuitively, the random variable f1(Y1)+ · · ·+fn(Yn)

is similar to the sum of n(1− λ) geometric random variables with parameter 1− λ. Thus,

each is close to 1/(1− λ) or close to −1/(1− λ) with equal probability.

Markov chain versions of Bennett’s and Bernstein’s inequality, a version of Eq. (1.3)

with extra dependencies on the variance of the individual random variables, were obtained

in (Lez98; Wag08; Pau15). Healey developed a simpler proof that does not require the use of

perturbation theory, and allows for differing functions fi (Hea08). The case of non-reversible

Markov chains was first studied in (CLLM12). In work done independently of this thesis,

a version of Hoeffding’s inequality for general Markov chains was shown by (FJS18), and a

version of Bernstein’s inequality for general Markov chains was shown by (JSF18).

In the setting of vector-valued random variables, a tail bound was obtained for `2 spaces

by (Kar07), with the assumption that the functions are bounded, that is, ‖f(v)‖`2 ≤ L for

all v ∈ [N ] for some constant L. In particular, it was shown that when f : [N ]→ Rd,

Pr[‖f(Y1) + · · ·+ f(Yn)‖`2 ≥ u
√
n] ≤ 3 · 2d/2 exp

(
−αu

2

L

)
,

where E[〈f(Y1), u〉2], for constants C1 and C2, α is a constant that depends on λ. As λ goes

to 1, it behaves like O(1− λ), which matches the exponent for the same setting in Eq (1.10).

Finally, Garg, Lee, Song and Srivastava (GLSS17) were able to generalize the matrix

Chernoff bound due to Ahlswede and Winter (AW02) to Markov chains. In particular it was

shown that for a Markov chain {Ys}∞i=1 and function f : [N ]→ Rd×d satisfying E[f(Y1)] = 0

and ‖f(v)‖S∞ ≤ 1 for all v ∈ [N ],

Pr[‖f(Y1) + · · ·+ f(Yn)‖S∞ ≥ u
√
n] ≤ 2d exp

(
−c(1− λ)u2

)
. (1.11)

As far as we are aware, this thesis is the first to investigate anti-concentration inequalities
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for sums of random variables obtained from a Markov chain.

Overview of Results

In this thesis we obtain the following concentration and anti-concentration results for

Markov chains, along with applications.

In Chapter 3, we prove a corollary of the Marcinkiewicz-Zygmund inequality for Markov

chains, thus generalizing Eq. (1.4) to Markov Chains. Additionally, we use this bound to

obtain moment bounds for sums of random variables from an `p space, generalizing Eq. (1.8)

to Markov chains for such spaces. This chapter is based on work with Assaf Naor and Oded

Regev in (NRR17).

In Chapter 4, we prove a Hoeffding inequality for Markov chains, generalizing Eq. (1.5).

Additionally, we use this bound to prove tail bounds for certain types of random variables

from a general Banach space. As an application, we are able to analyze the Schatten-∞ norm

of random matrices whose entries are not necessarily independent. This chapter appears

in (Rao19a).

In Chapter 5, we prove a Poisson approximation for sums of random variables obtained

from a Markov chain and different functions, thus generalizing Eq. (1.7) to Markov chains.

As an application, we are able to construct explicit resilient functions matching the non-

constructive functions shown to exist due to Ajtai and Linial. Informally, resilient functions

are functions for which any not too large subset of the inputs cannot affect the output of the

function when the other inputs are set randomly. This chapter is based on joint work with

Oded Regev in (RR17).

Finally, in Chapter 6, we prove a Littlewood-Offord inequality for Markov chains, general-

izing Eq. (1.9). However, our bound has an extra factor in the dimension of the vectors vi. As

an application, we are able to obtain new pseudorandom generators for the Littlewood-Offord

7



problem. This chapter appears in (Rao19b).
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Chapter 2

Background and Preliminaries

In this chapter we introduce the notation to be used throughout the thesis. We also give

background on Markov chains and the special case of random walks on expander graphs which

will be used in the applications of the results in this thesis. We also present some claims that

are used throughout this thesis to bound the norms of products of matrices. Finally, we give

a proof of Gillman’s original bound using similar techniques as the results in this thesis.

2.1 Notation

In this thesis we will use the following notation.

Given vectors v, µ ∈ RN so that µ has positive entries, (typically µ will be a distribution

over [N ]), let

‖v‖pLp(µ) =
N∑
i=1

µi|vi|p.

We define the inner product for two vectors u, v ∈ RN and µ ∈ RN with positive entries to be

〈u, v〉L2(µ)

N∑
i=1

µiuivi.

9



Additionally, we let the operator norm of a matrix A ∈ RN×N be defined as

‖A‖Lp(µ)→Lq(µ) = max
v:‖v‖Lp(µ)=1

‖Av‖Lq(µ).

We will use `p in place of Lp(1) where 1 is the vector whose entries are all 1.

The Schatten p-norm of a matrix A ∈ RN×N is defined to be

‖A‖pSp =
N∑
i=1

spi

where s1, . . . , sN are the singular values of A.

For a vector v, we let diag(v) be the diagonal matrix where diag(v)i,i = vi.

2.2 Markov Chains

A Markov chain on a finite state space [N ] is a random sequence, {Yn}∞n=1 whose elements

are from the state space [N ] in which each Yn depends only on Yn−1. Additionally, this

dependency on the previous element of the sequence is independent of n. Thus, a Markov

chain can be completely defined by its transition matrix, A ∈ RN×N where Ai,j is the

probability that Yn = j, given that Yn−1 = i, for all n. Such a matrix must be stochastic,

that is, the entries on each row must sum to 1. Thus 1, the vector whose entries are all 1, is

a right eigenvector of A.

In this thesis, we focus only on Markov chains with a stationary distribution µ ∈ RN , where

µ is a vector with positive entries that sum to 1, and is a left eigenvector with eigenvalue 1 of

the transition matrix A, so that µtA = µt. One interpretation of the stationary distribution

is that given that Yn is distributed as µ, it is also the case that Yn+1 is distributed as µ, for

all n. The stationary distribution is not always unique and some Markov chains have many

stationary distributions — for example, the Markov chain whose transition matrix is the
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identity matrix. This will not affect any of the results in this thesis. For such Markov chains,

a stationary distribution can be chosen arbitrarily when needed.

We define the averaging operator Eµ ∈ RN×N of a Markov chain to be the matrix defined

as (Eµ)i,j = µj, so that Eµ = 1µt, where 1 is the vector whose entries are 1, and µ is a

stationary distribution. Such an operator is also the transition matrix of a Markov chain

whose transitions are completely independent, that is, Yn does not even depend on Yn−1. It

is also helpful to note that EµA = AEµ = E2
µ = Eµ.

For a Markov chain {Yi}∞i=1, we define the quantity λ(Y ) to be

λ(Y ) = ‖A− Eµ‖L2(µ).

Informally, this represents how close the transitions of the Markov chain are to being

completely independent. Sometime we refer to 1− λ(Y ) as the spectral gap. For example,

if the transition matrix A is Eµ, the transitions are completely independent, λ(Y ) = 0 and

the spectral gap is 1. On the other hand, if the transition matrix A is I, the transitions are

completely dependent on the previous state, λ(Y ) = 1, and the spectral gap is 0.

We note that in the literature, it is common to define λ(Y ) as the quantity

λ(Y ) = max
v:〈v,1〉L2(µ)=0

‖vA‖L2(µ)

‖v‖L2(µ)

.

This definition is equivalent, which can be seen from the fact that µ(A−Eµ) = 0. Informally,

the v that maximizes ‖v(A− Eµ)‖L2(µ) is orthogonal to µ.

It is also the case that

λ(Y ) = ‖A− (1− λ(Y ))Eµ‖L2(µ),

as the operator A− λ(Y )Eµ maps the space of vectors orthogonal to the all-1’s vectors to
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itself. This fact will be used in many of the proofs in this thesis.

In many results, it is often assumed that that the Markov chain be reversible, that

is, µiAi,j = µjAj,i. In other words, running the Markov chain in reverse yields the same

distribution of sequences. The assumption of reversibility is natural; as explained in the next

section, the common example of random walks on undirected graphs are reversible Markov

chains. Practically, the assumption of reversibility implies that the matrix A is symmetric

with respect to the space L2(µ), and thus has an orthonormal basis of eigenvectors along

with real eigenvalues. This further implies that λ(Y ) is the second largest absolute value of

an eigenvalue of A.

The results in this thesis apply to general Markov chains, without requiring much extra

effort to handle the case of irreversible Markov chains. However, they will all be stated for

reversible Markov chains. Because λ(Y ) does not necessarily correspond to the absolute

value of an eigenvalue, it can be difficult to gain an intuition about the spectral gap of

non-reversible Markov chains. Additionally, there are examples of irreversible Markov chains

where λ(Y ) = 1 that mix well, and thus it is unclear if λ(Y ) is an appropriate quantity

to consider when analyzing irreversible Markov chains. For a more complete treatment of

irreversible Markov chains, see the survey due to to Montenegro and Tetali (MT06)

2.3 Expander Graphs

Many of the applications of the results in this thesis use the existance of expander graphs.

A graph G = (V,E) consists of a set of vertices V and a set of edges E ⊆ V × V . For

each vertex v ∈ V , we let its out-degree d(v) be the number of edges e such that e = (v, u)

for any vertex u. Given a graph G, we can define a random walk to be a random sequence of
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vertices {Yi}∞i=1 such that for every n and every edge (v, u) ∈ E, we have that

Pr[Yn = u | Yn−1 = v] =
1

d(v)
.

In particular, a random walk on a graph is an example of a Markov chain. Thus, all the

results in this thesis can also be applied to random walks on graphs.

We let the normalized adjacency matrix A of a graph G be defined by Ae = 1/d(e1)

for each edge e ∈ E. This is also the transition matrix of a random walk on the graph G.

Additionally, we can refer to the spectral gap of a graph as the spectral gap of the Markov

chain representing the random walk on the graph.

We say that a graph is undirected if (u, v) ∈ E implies that (v, u) ∈ E. We say that

a graph is d-regular if d(v) = d for all v ∈ E. The stationary distribution of undirected

d-regular graphs is the one that is uniform over all vertices. Thus, the spectral gap of random

walks on these graphs can be expressed as

1− ‖A− J‖`2→`2

where J is the |V | × |V | matrix whose entries are all 1/|V |.

We say that a family of graphs G is an expander if λ(G) is bounded above by a constant

less than 1 for every G ∈ G or if the spectral gap is bounded below by a constant greater than

0. It is well known that there exist several explicit infinite families of undirected d-regular

graphs that are expanders. We state the following result due to Lubotzky, Phillips, and

Sarnak.

Theorem 1. For every d such that d− 1 is a prime congruent to 1 mod 4, there exists an

infinite family of undirected d-regular graphs of increasing size such that λ(G) ≤ 2
√
d− 1/d.

These graphs have the optimal dependence on λ and degree d due to the Alon-Boppana
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theorem, which we state below.

Theorem 2. For every constant d ∈ N, any undirected d-regular graph G = (V,E) satisfies

λ(G) ≥ 2
√
d− 1/d− o(1), where the o(1) term vanishes as |V | → ∞ and d is held constant.

The benefit of expander graphs can be seen in considering the seed-length. For a set V ,

define a sampler from V of length n as a function whose range is V n. The seed length of

a sampler is defined as the logarithm of the cardinality of the function’s domain, and can

be seen as the number of random bits necessary to sample from the function. Consider a

sampler that is a list of vertices visited in a random walk of a d-regular graph G = (V,E). It

has seed length log2 |V |+ (n− 1) log2 d, and in particular, if G is a constant degree expander,

the seed length of H is log2 |V |+ O(n). On the other hand, if one samples independently,

the seed length is n log2 |V |.

The fact that expander walks have small seed length while having a large spectral gap

has led them to many useful applications in theoretical computer science, among other

areas of mathematics. In particular, Gillman’s original bound has been used in randomness

reduction for randomized algorithms (AKK99; AS99), proving the inapproximability of

NP-hard problems (Zuc07), and decoding algorithms for error correcting codes (HOW15).

For a more complete treatment of expander graphs and expander walks and their uses

in theoretical computer science, we direct the reader to the survey by Hoory, Linial, and

Wigderson (HLW06).

In this thesis, we apply some of our new results on concentration and anti-concentration

for Markov chains to problems in theoretical computer science, via the use of expander walks.

In Chapter 5, we construct explicit resilient functions matching the non-constructive functions

shown to exist by Ajtai and Linial (AL93). Informally, resilient functions are functions for

which any not too large subset of the inputs cannot affect the output of the function when

the other inputs are set randomly. In Chapter 6, we construct an explicit pseudorandom
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generator for the Littlewood-Offord problem. This is an explicit subset D of {−1, 1}n of

size |D| ≤ 2C1
√
n, so that sampling uniformly from D gives the same anti-concentration

properties up to constant factors for the Littlewood-Offord problem, as sampling uniformly

from {−1, 1}n.

2.4 Preliminary Claims

We present a few preliminary results that will be used throughout the thesis. These will

mostly be used to bound expressions of the form E[fj1(Yj1) · · · fjp(Yjp)] for j1, . . . , jp ∈ [n].

The following claim shows how the averaging operator can help break up expressions.

Claim 1. For all k ≥ 1, matrices R1, . . . , Rk ∈ RN×N , and distributions µ over [N ]

〈1, R1EµR2Eµ · · ·EµRk1〉L2(µ) =
k∏
i=1

〈1, Ri1〉L2(µ) ≤
k∏
i=1

‖Ri1‖L1(µ) .

The following is Hölder’s inequality.

Lemma 1 (Hölder’s inequality). Let f and g be vectors, and r, p, q ≥ 1 be such that 1
r

= 1
p

+ 1
q
.

Then

‖f ◦ g‖Lr(µ) ≤ ‖f‖Lp(µ)‖g‖Lq(µ)

where f ◦ g is the coordinate-wise product of f and g.

We use Hölder’s inequality in the next claim to again break up expressions.

Claim 2. Let u1, . . . , uk+1 ∈ RN , let Ui = diag(ui), and let T1, . . . , Tk ∈ RN×N . Then for
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any q > k − 1 and a probability measure µ on [N ],

∥∥∥∥∥
(

k∏
j=1

UjTj

)
Uk+11

∥∥∥∥∥
L1(µ)

≤

‖u1‖L 2q
q−k+1

(µ)‖uk+1‖L 2q
q−k+1

(µ)

(
k∏
j=2

‖u‖k−1
Lq(µ)

)(
k∏
j=1

‖Tj‖L 2q
q+k+1−2j

(µ)→L 2q
q+k+1−2j

(µ)

)
.

If u := u1 = · · · = uk+1 and q ≥ k + 1, this is at most

‖u‖k+1
Lq(µ)

k∏
j=1

‖Tj‖L 2q
q+k+1−2j

(µ)→L 2q
q+k+1−2j

(µ) . (2.1)

For q =∞, we obtain the bound

‖u1‖L2(µ)‖uk+1‖L2(µ)

(
k∏
j=2

‖uj‖k−1
L∞(µ)

)(
k∏
j=1

‖Tj‖L2(µ)→L2(µ)

)
(2.2)

We note that the reciprocals of the norms appearing in the product above in the main

statement. form an arithmetic progression with difference 1/q centered around 1/2.
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Proof. By Hölder’s inequality and the definition of operator norm,

1

∥∥∥∥∥
(

k∏
j=1

UTj

)
u

∥∥∥∥∥
L1(µ)

≤ ‖u‖L 2q
q−k+1

(µ)

∥∥∥∥∥T1

(
k∏
j=2

UTj

)
u

∥∥∥∥∥
L 2q
q+k−1

(µ)→L 2q
q+k−1

(µ)

≤ ‖u‖L 2q
q−k+1

(µ)‖T1‖L 2q
q+k−1

(µ)→L 2q
q+k−1

(µ)

∥∥∥∥∥
(

k∏
j=2

UTj

)
u

∥∥∥∥∥
L 2q
q+k−1

(µ)→L 2q
q+k−1

(µ)

≤ ‖u‖L 2q
q−k+1

(µ)‖T1‖L 2q
q+k−1

(µ)→L 2q
q+k−1

(µ)‖u‖Lq(µ)

‖T2‖L 2q
q+k−3

(µ)→L 2q
q+k−3

(µ)

∥∥∥∥∥
(

k∏
j=3

UTj

)
u

∥∥∥∥∥
L 2q
q+k−3

(µ)→L 2q
q+k−3

(µ)

≤ ‖u‖2
L 2q
q−k+1

(µ)‖u‖k−1
Lq(µ)

(
k∏
j=1

‖Tj‖L 2q
q+k+1−2j

(µ)→L 2q
q+k+1−2j

(µ)

)
,

as desired.

The next claim helps rearrange products involving the averaging operator and diagonal

matrices.

Claim 3. Let µ ∈ RN be a distribution, and let Eµ be the associated averaging operator.

Then for any u ∈ CN ,

Eµ diag(u)Eµ = 〈u, µ〉L2(µ)Eµ.

Proof.

(Eµ diag(u)Eµ)i,j =
∑
k∈[N ]

(Eµ)i,kuk(Eµ)k,j = 〈u, µ〉L2(µ)µj.

Finally, we combine all of the above claims in the following Lemma 2, that will be used

throughout this thesis.

Lemma 2 uses notation which we define below. Let Sk be the set of {0, 1}k of vectors s
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with no two consecutive 0s and so that sk = 1. For a given vector s ∈ Sk and index j for

which sj = 1, we define p(s, j) ≥ 1 in the following way. Consider the consecutive run of 1s

in which j is located, and let i1 and i2 be the first and last indices of this run. (Formally,

i1 = max{j < i : sj = 0}+ 1 or 1 if no such j exists, and i2 = min{j > i : sj = 0} − 1 or k if

no such j exists.) Then we define p(s, j) := 2q/(q + i2 + i1 − 2j). In other words, for each

consecutive run of 1s, we assign norms whose reciprocals form an arithmetic progression with

difference 1/q centered around 1/2, as in Claim 2.

Lemma 2. Let k ≥ 1 be an integer and q ≥ k + 1. Let Sk ⊆ {0, 1}k be as above. Let µ be a

probability measure on [N ], u1, . . . , uk+1 ∈ RN be an N -dimensional vectors, let Ui = diag(ui)

for all i, and let T1, . . . , Tk ∈ RN×N . We have the following upper bounds on the quantity

∣∣∣〈1, U1(T1 + Eµ)U2(T2 + Eµ)U3 · · ·Uk(Tk + Eµ)Uk+11〉L2(µ)

∣∣∣ (2.3)

• If u = u1 = · · · = uk+1 and 〈u, µ〉L2(µ) = 0, then we obtain an upper bound of

‖u‖k+1
Lq(µ)

∑
s∈Sk

∏
j:sj=1

‖Tj‖Lp(s,j)(µ)→Lp(s,j)(µ) . (2.4)

• If 〈uj, µ〉L2(µ) = 0 for all j, then we obtain an upper bound of

‖u1‖L∞(µ)‖u2‖L∞(µ) · · · ‖uk+1‖L∞(µ)

∑
s∈Sk

∏
j:sj=1

‖Tj‖L2(µ)→L2(µ) . (2.5)

• Let ωj = 〈uj, µ〉L2(µ). If the coordinates of uj are in the range [0, 1] for all j, then we

obtain an upper bound of

∑
s∈{0,1}k

 ∏
j:sj=0

√
ωjωj+1

 ∏
j:sj=1

‖Tj‖L2(µ)→L2(µ)

 . (2.6)
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Finally, for s ∈ {0, 1}k, let s := (0, s, 0) ∈ {0, 1}k+2 and t(s) := {j : sj = sj−1 = 0}.

Then if ‖ui‖L∞(µ) ≤ 1 for all i,

‖U1(T1 + (1− λ)Eµ)U2(T2 + (1− λ)Eµ)U3 · · ·Uk(Tk + (1− λ)Eµ)Uk+11‖L1(µ) ≤∑
s∈{0,1}k

 ∏
j:sj=1

‖Tj‖L2(µ)→L2(µ)

 ∏
j:sj=0

(1− λ)

 ∏
j∈t(s)

∣∣〈uj, µ〉L2(µ)

∣∣ . (2.7)

Proof. We start with the first three statements. For j = 1, . . . , k, let Tj,0 = Eµ and Tj,1 = Tj .

Then using the triangle inequality, the left-hand side of (2.3) is at most

∑
s∈{0,1}k

∥∥∥∥∥
(

k∏
j=1

UTj,sj

)
U1

∥∥∥∥∥
L1(µ)

. (2.8)

For the first two statements in particular, we have that this is equal to

∑
s∈Sk

∥∥∥∥∥
(

k∏
j=1

UTj,sj

)
U1

∥∥∥∥∥
L1(µ)

, (2.9)

since the terms corresponding to vectors s with two consecutive zeros or with sk = 0 are

equal to 0 because in these cases the term EµUEµ = 0 (or EµU1 = 0) appears.

Fix an s ∈ Sk for the first and second bound, or an s ∈ {0, 1}k for the third, and let

1 ≤ r1 < r2 < · · · < r` < k be the indices of s that are 0. By Claim 1, the term corresponding

to s in Eq. (2.8) or Eq. (5.4) is at most

‖UT1UT2 · · ·Tr1−1U1‖L1(µ) · ‖UTr1+1UTr1+2 · · ·Tr2−1U1‖L1(µ) · · · ‖UTr`+1UTr`+2 · · ·TkU1‖L1(µ) .

The lemma for the first three cases now follows by applying Claim 2. In particular, Eq. (2.1)

from Claim 2 gives us the first bound, and Eq. (2.2) gives us the second and third. For the

second bound, we note that because µ is a probability distribution, ‖uj‖L2(µ) ≤ ‖uj‖L∞(µ)
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for all j. For the third bound, we note that ‖uj‖L∞(µ) ≤ 1 for all j, and that ‖uj‖2
L2(µ) ≤

‖uj‖L1(µ) = ωj, as the entries of uj are in the range [0, 1].

For the final bound, let U ′i = Ui if i ∈ t(s), and U ′i = I otherwise. Again, let Tj,0 = Eµ

and Tj,1 = Tj. Then the left-hand side of Eq. (5.4) is at most

∑
s∈{0,1}k

∥∥∥∥∥
(

k∏
j=1

UjTj,sj

)
Uk+11

∥∥∥∥∥
L1(µ)

=

∑
s∈{0,1}k

∥∥∥∥∥
(

k∏
j

U ′jTj,sj

)
U ′k+11

∥∥∥∥∥
L1(µ)

 ∏
j:sj=0

(1− λ)

 ∏
j∈t(s)

∣∣〈µ, u〉L2(µ)

∣∣ (2.10)

where the equality follows from Claim 3 and the fact that E2
µ = Eµ. We finish by fixing

an s ∈ {0, 1}k and proceeding as in the proofs of the second bound, Eq. (2.5). Note that

‖uj‖L∞(µ) ≤ 1 for all j

2.5 The Basic Chernoff Bound for Markov Chains

In this section, we present a proof of the Chernoff bound for Markov Chains as originally

proved in (Gil98). We state our version of the bound below, which is has different constant

factors. Our proof uses the preliminary claims developed in Section 2.4

Theorem 3. Let {Yi}∞i=1 be a stationary reversible Markov chain with state space [N ] and

stationary probability measure µ, and so that Y1 is distributed according to µ. Let f1, . . . , fn :

[N ]→ [−1, 1] be such that E[fi(Yi)] = 0 for all i. Then,

Pr[f1(Y1) + · · ·+ fn(Yn) ≥ u
√
n] ≤ 2 exp(−u2/(32e(1− λ)))

We start by bounding E[|f(Y1) + · · ·+ f(Yn)|q] by a sum of L1(µ)-norms of vectors that

can expressed as a product of the transition matrix of the Markov chain as well as matrices
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defined by the function f . We note that Lemma 3 will also be used in Chapter 3 in the

corollary of the Marcinkiewicz-Zygmund inequality for Markov chains.

Lemma 3. Let {Yi}∞i=1 be a stationary reversible Markov chain with state space [N ], transition

matrix A and stationary probability measure µ, and so that Y1 is distributed according to µ,

and let f1, . . . , fn : [N ]→ R Then for any even integer q ≥ 2 and any integer n ≥ 1,

E[|f1(Y1) + · · ·+ fn(Yn)|q] ≤ q!
∑

v0,...,vq−1≥0:
v0+···+vq−1≤n−1

‖U1A
v1U2A

v2 · · ·UqAvq−1U1‖L1(µ),

where ui is the vector such that ui(v) = fi(v) and Ui = diag(ui).

Proof. Because q is even, the left-hand side can be rewritten as

E

 ∑
w∈[n]q

q∏
i=1

f(Wwi)

 . (2.11)

Let Vq be the set of vectors in w ∈ [n]q so that 1 ≤ w1 ≤ w2 ≤ · · · ≤ wq ≤ n. Then Eq. (2.11)

is bounded above by

q!
∑
w∈Vq

E

[
q∏
i=1

f(Wwi)

]
.

The lemma follows by noting that

E

[
q∏
i=1

f(Wwi)

]
≤ ‖UAw1−w2UAw3−w2 · · ·UAwq−wq−1U1‖L1(µ)

and that the map sending any w ∈ Vq to the vector (w1 − 1, w2 − w1, . . . , wq − wq−1) (whose

coordinates are non-negative and sum to at most n− 1) is injective.

We proceed by applying Lemma 3 to each term in the sum to obtain a bound on the qth

moment.
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Lemma 4. Let {Yi}∞i=1 be a stationary reversible Markov chain with state space [N ] and

stationary probability measure µ, and so that Y1 is distributed according to µ. Let f1, . . . , fn :

[N ]→ [−1, 1] be such that E[fi(Yi)] = 0 for all i. Then for any integer n ≥ 1 and any even

2 ≤ q,

E[|f1(Y1) + · · ·+ fn(Yn)|q] ≤ 4qqq/2nq/2
(

1

1− λ

)q/2
.

Proof. When q > n, we have

E[(f(W1) + · · ·+ f(Wn))q] ≤ nq ≤ nq/2qq/2.

By Lemma 3, we can bound the left-hand side from above by

q!
∑

v0,...,vq−1≥0:
v0+···+vq−1≤n−1

‖U1A
v1U2A

v2 · · ·UqAvq−1U1‖L1(µ),

where A is the transition matrix of Y and ui is the vector such that ui(v) = fi(v) and

Ui = diag(ui). For each j, let Tj = Avj − Eµ. By Eq. (2.5) of Lemma 2, this is bounded

above by

q!
∑

v0,...,vq−1≥0:
v0+···+vq−1≤n−1

∑
s∈Sq−1

∏
j:sj=1

λvj (2.12)

using the fact that

‖Avj − Eµ‖L2(µ)→L2(µ) = ‖(A− Eµ)vj‖L2(µ)→L2(µ) ≤ (‖A− Eµ‖L2(µ)→L2(µ))
vj .

Let λ0 = (1− q/(2n))λ, and notice that since (1− q/(2n))n ≥ 2−q, Eq. (2.12) is at most

q!2q
∑

v0,...,vq−1≥0:
v0+···+vq−1≤n−1

∑
s∈Sq−1

∏
j:sj=1

λ
vj
0 (2.13)
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Fix some s ∈ Sq−1, and let q0 (respectively q1) be the number of coordinates of s that are 0

(respectively 1). Notice that q0 + q1 = q−1 and that by definition of Sq−1, q1 ≥ q/2. Consider

the q0 + 1 variables vj for which either j = 0 or sj = 0. There are

(
q0 + n

q0 + 1

)
≤ (2n)q0+1

(q0 + 1)!

ways to set them so that their sum is at most n− 1. Therefore, the term corresponding to s

in (3.5) is at most

q!2q
(2n)q0+1

(q0 + 1)!

∏
j:sj=1

∞∑
i=0

λi0 = q!2q
(2n)q0+1

(q0 + 1)!

(
1

1− λ0

)q1
≤ q!2q

(2n)q/2

qq1−q/2(q0 + 1)!

(
1

1− λ0

)q/2
≤ 2qqq/2(2n)q/2

(
1

1− λ

)q/2
.

The first inequality above follows by noting that q1 ≥ q/2 and that λ0 ≤ 1− q/(2n) and thus

1/(1− λ0) ≤ 2n/q. The second follows by noting that because q1 ≥ q/2, and q0 + q1 = q − 1,

we have qq1−q/2(q0 + 1)! ≥ (q/2)!, and that (1− λ0)−1 ≤ (1− λ)−1.

We prove Theorem 3 by using Markov’s inequality.

Proof of Theorem 3. If u2/(16e(1 − λ)) < 2, the right-hand side is greater than 1 and the

theorem holds trivially.

Otherwise, by Markov’s inequality,

Pr[f1(Y1) + · · ·+ fn(Yn) ≥ u
√
n] = Pr[(f1(Y1) + · · ·+ fn(Yn))q ≥ uqnq/2]

≤ E[(f1(Y1) + · · ·+ fn(Yn))q]

uqnq/2
.

By Lemma 4 and letting q be an even integer in the range [u2/(32e(1− λ)), u2/(16e(1− λ))]
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we obtain the upper bound of exp(−q/2) ≤ exp(−u2/(32e(1− λ)). The Theorem follows by

repeating the above for the left tail.
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Chapter 3

A Marcinkiewicz-Zygmund Inequality

for Markov Chains

Let X1, . . . , Xn be independent and identically distributed real-valued random variables

such that E[Xi] = 0 and E[|Xi|q] ≤ 1 for some q ≥ 1. Then it is well known that

E[|X1 + · · ·+Xn|q]1/q .
√
qn, (3.1)

for example by the Marcinkiewicz-Zygmund inequality (MZ37) applied in the case that all

variables are identically distributed. After applying Markov’s inequality, Eq. (3.1) allows

one to obtain sharper tail bounds than what is given by Chebyshev’s inequality, without

requiring a bound on the moment generating function E[exp(tX1)], which is necessary to

apply Chernoff bounds.

We obtain the following analogue of Eq. (3.1).

Theorem 4. Let {Yi}∞i=1 be a stationary reversible Markov chain with state space [N ],

transition matrix A and stationary probability measure µ, so that Y1 is distributed according

to µ. Let λ = ‖A − Eµ‖σ→L2(µ). Let f : [N ] → R and q ≥ 2 so that E[f(Y1)] = 0 and
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E[|f(Y1)|q] ≤ 1. Then for any integer n ≥ 1,

E[|f(Y1) + · · ·+ f(Yn)|q]1/q .
√

qn

1− λ
.

By a simple application of Markov’s inequality, one can obtain the following tail bound.

See Section 3.4 for the proof.

Corollary 1. Assume the setting of Theorem 4. Then there exists a universal constant C

such that for any u ≥ 0,

Pr[|f(Y1) + · · ·+ f(Yn)| ≥ u
√
n] ≤

(
Cq

(1− λ)u2

)q/2
.

In particular, if q ≥ u2(1− λ)/(Ce), then

Pr[|f(Y1) + · · ·+ f(Yn)| ≥ u
√
n] ≤ exp

(
2− u2(1− λ)

2Ce

)
.

Vector-valued random variables: Using Theorem 4 we also obtain moment bounds

when the function f is vector–valued, in particular, when f takes on values in `p for p ≥ 2. In

the case of independent random variables, the following moment bound follows from (Nao12,

Theorem 2.1). In particular, if X1, . . . , Xn are independent and identically distributed random

variables such that E[Xi] = 0 and E[‖Xi‖q`p ] ≤ 1, then

E[‖X1 + · · ·+Xn‖q`p ]
1/q .

√
max{p, q}n. (3.2)

When the random variables are not independent, we obtain the following moment bound.

Theorem 5. Let {Yi}∞i=1 be a stationary reversible Markov chain with state space [N ],

transition matrix A and stationary probability measure µ, so that Y1 is distributed according

to µ. Let λ = ‖A− Eµ‖L2(µ)→L2(µ). Let f : [N ]→ Rm and p, q ≥ 2 so that E[f(Y1)] = 0 and
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E[‖f(Y1)‖q`p ] ≤ 1. Then,

E[‖f(Y1) + · · ·+ f(Yn)‖q`p ]
1/q .

√
max{p, q}n

1− λ
.

As in the scalar case, a simple application of Markov’s inequality yields the following tail

bound.

Corollary 2. Assume the setting of Theorem 5. Then there exists a universal constant C

such that for any u ≥ 0,

Pr[‖f(Y1) + · · ·+ f(Yn)‖`p ≥ u
√
n] ≤

(
C max{p, q}

(1− λ)u2

)q/2
.

In particular, if q ≥ u2(1− λ)/(Ce), then

Pr[‖f(Y1) + · · ·+ f(Yn)‖`p ≥ u
√
n] ≤ exp

(
p− u2(1− λ)

2Ce

)
.

We remark that the dependence on max{p, q} in Eq. (3.2) (and similarly Theorem 5),

rather than just q as in the scalar case, is in fact necessary. To see this, consider the following

construction for the case p even, n = p and q = 1. Let v1, . . . , vp ∈ R2p be random vectors

such that (vi)j = −1si,j · (εi/2) where si,j is the ith digit in the binary representation of j,

and εi are independent Rademacher random variables. Then it always holds that ‖vi‖`p = 1

for all i. Additionally,

E[‖v1 + · · ·+ vp‖`p ] ≥ E
[
max
j

(v1 + · · ·+ vp)j

]
=
p

2
.

3.1 Preliminaries

The following preliminaries are specific to this chapter.
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When v ∈ (Rd)N and ‖ · ‖ is a norm on Rd, we let

‖v‖pLp(µ;‖·‖) =
N∑
i=1

µi‖vi‖p.

As stated in the introduction, our bounds are in term of the quantity λ = ‖A −

Eµ‖L2(µ)→L2(µ). We will use the Riesz-Thorin interpolation theorem (Rie27; Tho48) to

bound ‖A− Eµ‖Lp(µ)→Lp(µ) in terms of λ.

Theorem 6 (Riesz-Thorin interpolation theorem). Let 1 ≤ p0 ≤ p1 ≤ ∞ and 1 ≤ q0 ≤

q1 ≤ ∞. Let µ and µ′ be any probability measures and let T be a linear operator such

that ‖T‖Lp0 (µ)→Lq0 (µ′) and ‖T‖Lp1 (µ)→Lq1 (µ′) are finite. Let 1/pθ = (1 − θ)/p0 + θ/p1 and

1/qθ = (1− θ)/q0 + θ/q1. Then

‖T‖Lpθ (µ)→Lqθ (µ′) ≤ ‖T‖1−θ
Lp0 (µ)→Lq0 (µ′)‖T‖

θ
Lp1 (µ)→Lq1 (µ′).

We use the Riesz-Thorin interpolation theorem to prove the following bound on ‖A −

Eµ‖Lp(µ)→Lp(µ) in terms of λ(A− Eµ) = ‖A− Eµ‖L2(µ)→L2(µ).

Claim 4. Let A be a stochastic matrix, and let Eµ be the averaging operator on its stationary

distribution. Then for all 1 ≤ p ≤ ∞,

‖A− Eµ‖Lp(µ)→Lp(µ) ≤ 2‖A− Eµ‖1−|1−2/p|
L2(µ)→L2(µ).

Proof. Because A is a stochastic matrix, ‖A‖L1(µ)→L1(µ) and ‖A‖L∞(µ)→L∞(µ) are bounded

above by 1, and the same is true for Eµ. Therefore, ‖A−Eµ‖L1(µ)→L1(µ), ‖A−Eµ‖L∞(µ)→L∞(µ) ≤

2. When p ≤ 2, by Theorem 6

‖A− Eµ‖Lp(µ)→Lp(µ) ≤ 2‖A− Eµ‖2(1−1/p)
L2(µ)→L2(µ),

28



and similarly when p > 2,

‖A− Eµ‖Lp(µ)→Lp(µ) ≤ 2‖A− Eµ‖2/p
L2(µ)→L2(µ)

as desired.

3.2 Calculating moment bounds in the scalar case

We start proving Theorem 4 by considering even moments. Thus, we can use combining

Lemmas 3 from Chapter 2 used in the proof of Gillman’s original bound, and apply Eq. (2.4)

from 2, also from Chapter 2. Finally, we can use Claim 4 to bound the norms of the matrices

that appear in the corresponding expression. In particular, we point out the left-hand side of

the inequality in Lemma 5 below appears in the right-hand side of the inequality in Lemma 3.

Lemma 5. Let A ∈ RN×N be a stochastic matrix, and let λ = ‖A−Eµ‖L2(µ)→L2(µ) for some

probability measure µ over [N ]. Let u be a vector such that
∑

i µiui = 0 and let U = diag(u).

Then for all n ≥ 1 and all even q ≥ 2,

∑
v0,...,vq−1≥0:

v0+···+vq−1≤n−1

‖UAv1UAv2 · · ·UAvq−1U1‖L1(µ) ≤ Cq(1− λ)−q/2‖u‖qLq(µ)

nq/2

(q/2)!
(3.3)

for some universal constant C.

Proof. We start by applying Eq. (2.4) from Lemma 2 in Chapter 2 with k = q − 1 and

Tj = Avj − Eµ. Because AEµ = EµA = Eµ we have that Avj − Eµ = (A − Eµ)vj and thus

‖Tj‖L2(µ)→L2(µ) = λvj . By Claim 4, ‖Tj‖Lp(s,j)(µ)→Lp(s,j)(µ) ≤ 2λvj(1−|1−2/p(s,j)|), and thus we
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can bound the left-hand side of (3.3) from above by

‖u‖qLq(µ)

∑
s∈Sq−1

∑
v0,...,vq−1≥0:

v0+···+vq−1≤n−1

∏
j:sj=1

2λvj(1−|1−2/p(s,j)|). (3.4)

Let λ0 = (1− q/(2n))λ, and notice that since (1− q/(2n))n ≥ 2−q, Eq. (3.4) is at most

2q‖u‖qLq(µ)

∑
s∈Sq−1

∑
v0,...,vq−1≥0:

v0+···+vq−1≤n−1

∏
j:sj=1

2λ
vj(1−|1−2/p(s,j)|)
0 ≤

4q‖u‖qLq(µ)

∑
s∈Sq−1

∑
v0,...,vq−1≥0:

v0+···+vq−1≤n−1

∏
j:sj=1

λ
vj(1−|1−2/p(s,j)|)
0 . (3.5)

Fix some s ∈ Sq−1, and let q0 (respectively q1) be the number of coordinates of s that

are 0 (respectively 1). Notice that q0 + q1 = q − 1 and that by definition of Sq−1, q1 ≥ q/2.

Consider the q0 + 1 variables vj for which either j = 0 or sj = 0. There are

(
q0 + n

q0 + 1

)
≤ (2n)q0+1

(q0 + 1)!

ways to set them so that their sum is at most n− 1. Therefore, the term corresponding to s

in (3.5) is at most

(2n)q0+1

(q0 + 1)!

∏
j:sj=1

∞∑
i=0

λ
i(1−|1−2/p(s,j)|)
0 . (3.6)

The sum in (3.6) is bounded above by

∞∑
i=0

λ
i(1−|1−2/p(s,j)|)
0 =

1

1− λ1−|1−2/p(s,j)|
0

≤ 1

(1− |1− 2/p(s, j)|)(1− λ0)
,
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where we used the convexity of λα0 in α. Therefore, (3.6) is at most

(2n)q0+1

(q0 + 1)!

( 1

1− λ0

)q1 ∏
j:sj=1

(1− |1− 2/p(s, j)|)−1 . (3.7)

Recalling the definition of p(s, j), notice that the contribution to the product in (3.7) coming

from a run of consecutive 1s of length r in s is

r∏
i=1

(
1−

∣∣∣r + 1− 2i

q

∣∣∣)−1

=

br/2c∏
i=1

( q

q − r − 1 + 2i

)2

.

Assuming for simplicity that r is even (a similar calculation holds for odd r), this is

2−rqr ·
((q − r − 1

2

)
!
/(q − 1

2

)
!
)2

≤ 2−rqr · e2 ·
(q − r − 1

2e

)q−r−1(q − 1

2e

)−(q−1)

≤ 2−rqr · e2 ·
(q − 1

2e

)−r
≤ 2−r · e · e2 · (2e)r

≤ e4r ,

where we used Stirling’s approximation,
√

2µ ≤ n!/((n/e)nn1/2) ≤
√

2µe. Summarizing, the

product in (3.7) (over all j such that sj = 1) is at most e4q1 ≤ e4q, and therefore (3.7) is at

most

e4q · (2n)q0+1

(q0 + 1)!

( 1

1− λ0

)q1
≤ e4q · (2n)q/2

qq1−q/2(q0 + 1)!

( 1

1− λ0

)q/2
≤ e4q · (2n)q/2

(q/2)!

( 1

1− λ

)q/2
(3.8)

The first inequality in Eq. (3.8) follows by noting that q1 ≥ q/2 and that λ0 ≤ 1 − q/(2n)

and thus 1/(1 − λ0) ≤ 2n/q. The second follows by noting that because q1 ≥ q/2, and

q0 + q1 = q − 1, we have qq1−q/2(q0 + 1)! ≥ (q/2)!, and that (1− λ0)−1 ≤ (1− λ)−1.

We complete the proof by plugging this back into (3.4) and noting that there are at most
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2q−1 elements in Sq−1.

Finally, we obtain the moment bound described in the introduction.

Proof of Theorem 4. If q > n, we have

E[|f(Y1) + · · ·+ f(Yn)|q]1/q = n · E
[∣∣∣∣f(Y1) + · · ·+ f(Yn)

n

∣∣∣∣q]1/q

≤ n · E
[
|f(Y1)|q + · · ·+ |f(Yn)|q

n

]1/q

≤ n

≤ √qn,

as desired, where the first inequality follows from Jensen’s inequality.

When 2 ≤ q ≤ n is an even integer we combine Lemma 3 from Chapter 2 and Lemma 5

to obtain the following inequality.

E[|f(Y1) + · · ·+ f(Yn)|q] ≤ Cq(1− λ)−q/2‖u‖qLq(µ)

q!nq/2

(q/2)!
.

The theorem follows in this case by noting that q!/(q/2)! ≤ qq/2.

We now treat the general case when q is not an even integer. Let p be the largest even

integer smaller than q. Let Tn be the linear transformation from functions on [N ] to functions

on [N ]n defined as

Tnf(W ) =
n∑
i=1

f(Yi)

for W ∈ [N ]n. Consider the operator IN − Eµ, where IN is the identity operator. First, by

Claim 4 (or directly by the triangle inequality), ‖IN − Eµ‖Lp(µ)→Lp(µ) ≤ 2. Moreover, for all

functions f on [N ], E[(IN −Eµ)f(W )] = 0, i.e, the image under IN −Eµ of any function f is
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a centered function. Therefore, by the even integer case of the theorem, we have that

‖Tn ◦ (IN − Eµ)‖Lp(µ)→Lp(µn) .

√
pn

1− λ
, (3.9)

where µn is the law of (Y1, . . . , Yn). Similarly, we can replace p with p+ 2 in Eq. (3.9). By

Theorem 6, we obtain that there exists some 0 ≤ θ ≤ 1 such that

‖Tn ◦ (IN − Eµ)‖Lq(µ)→Lq(µn) ≤ ‖Tn ◦ (IN − Eµ)‖1−θ
Lp(µ)→Lp(µn)‖Tn ◦ (IN − Eµ)‖θLp+2(µ)→Lp+2(µn)

.

√
(p+ 2)n

1− λ

.

√
qn

1− λ
,

which implies the desired conclusion of the theorem.

3.3 Calculating moment bounds in the `p case

In this section we prove Theorem 5. We consider functions of the form f : [N ] → Rm

with the property that E[f(Y1)] = 0. Then we will bound E[‖Sn‖q`p ]
1/q where Sn = f(Y1) +

· · ·+ f(Yn). The proof proceeds in three steps. In the first step, we handle the case p = q,

which follows almost immediately from Theorem 4. We then derive from this the case p = 2

by using Dvoretzky’s theorem (Dvo61), which provides an embedding of `2 into `q. Finally,

we derive the case 2 ≤ p ≤ q by interpolation, and the case p > q follows from the case p = q.

3.3.1 A bound on the qth moment for `q

Bounding the qth moment for `q only requires a bound on the sum of qth moments of

many scalar random variables, which we already have from Theorem 4. We carry out these

computations in the following lemma.
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Lemma 6. Let {Ys}∞s=1 be a stationary reversible Markov chain with state space [N ], transition

matrix A and stationary probability measure r(s) ≤, so that Y1 is distributed according to µ.

Let λ = ‖A−Eµ‖L2(µ)→L2(µ) and let f : [N ]→ Rm so that E[f(Y1)] = 0 and E[‖f(Y1)‖q`q ] ≤ 1.

Let Sn = f(Y1) + · · ·+ f(Yn). Then for q ≥ 2,

E[‖Sn‖q`q ]
1/q .

√
qn

1− λ
.

Proof. Note that

E[‖Sn‖q`q ] = E [|(Sn)1|q + |(Sn)2|q + · · ·+ |(Sn)m|q] .

Applying Theorem 4 to each |(Sn)i|q, we find that this is bounded above by

(Cqn/(1− λ))q/2(E[|f1|q] + · · ·+ E[|fm|q]) ≤ (Cqn/(1− λ))q/2,

for some universal constant C as desired.

3.3.2 A bound for `2

Dvoretzky’s theorem, which we state below, shows that `2 can be embedded into `q for

any q ≥ 1 (Dvo61).

Theorem 7. For all 1 ≤ q < ∞, ε > 0, and integer m, there exists Nq(m, ε) and a linear

function g : Rm → RNq(m,ε) so that for all x ∈ Rm,

‖x‖`2 ≤ ‖g(x)‖`q ≤ (1 + ε)‖x‖`2 .

Lemma 7. Let {Ys}∞s=1 be a stationary reversible Markov chain with state space [N ], transition

matrix A and stationary probability measure µ, so that Y1 is distributed according to µ. Let
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λ = ‖A− Eµ‖L2(µ)→L2(µ) and let f : [N ]→ Rm be so that E[f(Y1)] = 0 and E[‖f(Y1)‖q`2 ] = 1.

Let Sn = f(Y1) + · · ·+ f(Yn). Then for q ≥ 2,

E[‖Sn‖q`2 ]1/q .

√
qn

1− λ
.

Proof. Let g be the function in Theorem 7 for ε = 1 and m. Then,

E[‖Sn‖q`2 ]1/q ≤ E[‖g(Sn)‖q`q ]
1/q

= E[‖g(f(Y1)) + · · ·+ g(f(Yn))‖q`q ]
1/q

. E[‖g(f(Y1))‖q`q ]
1/q
√
qn/(1− λ)

≤ 2E[‖f(Y1)‖q`2 ]1/q
√
qn/(1− λ) ,

where the first inequality is by Theorem 7, the second is by Lemma 6 (applied to the function

g ◦ f), and the last is again by Theorem 7.

3.3.3 A bound for `p for all p ≥ 2

We need the following generalization of the Riesz-Thorin interpolation theorem, which

can be obtained from Theorems 4.1.2 and 5.1.2 in (BL76).

Theorem 8. Let 1 ≤ p0 ≤ p1 ≤ ∞ and 1 ≤ q ≤ ∞, and µ and µ′ be distributions. Let T

be a linear operator such that ‖T‖Lq(µ;`p0 )→Lq(µ′;`p0 ) and ‖T‖Lq(µ;`p1 )→Lq(µ′;`p1 ) are finite. Let

1/pθ = (1− θ)/p0 + θ/p1. Then

‖T‖Lq(µ;`pθ )→Lq(µ′;`pθ ) ≤ ‖T‖1−θ
Lq(µ;`p0 )→Lq(µ′;`p0 )‖T‖

θ
Lq(µ;`p1 )→Lq(µ′;`p1 ).

The following is the upper bound on E[‖Sn‖q`p ]
1/q.

Proof of Theorem 5. For the case p ≤ q, as in Theorem 4, let Tn be a linear transformation
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from functions f on [N ] to functions on [N ]n, so that

Tnf(W ) =
n∑
i=1

f(Yi)

for W ∈ [N ]n. As in the proof of Theorem 4, let IN be the identity operator, and note that

by the triangle inequality ‖IN − Eµ‖Lq(µ;`p)→Lq(µ;`p) ≤ 2, for p = 2, q. Then by Lemma 7 and

by Lemma 6,

‖Tn ◦ (In − Eµ)‖Lq(µ;`2)→Lq(µn;`2), ‖Tn ◦ (In − Eµ)‖Lq(µ;`q)→Lq(µn;`q) .

√
qn

1− λ
,

where µn is the law of (Y1, . . . , Yn). The statement of the theorem follows from Theorem 8

and setting p0 = 2, p1 = q, and pθ = p.

If p ≥ q, then by Jensen’s inequality, E[‖Sn‖q`p ]
1/q ≤ E[‖Sn‖p`p ]

1/p, and the theorem follows

from Lemma 6.

3.4 Tail bounds

We now prove the two tail bounds mentioned in the introduction. Both proofs follow

easily from Markov’s inequality, and are nearly identical.

Proof of Corollary 1. The first tail bound follows by noting that

Pr[|f(Y1) + · · ·+ f(Yn)| ≥ u
√
n] = Pr[|f(Y1) + · · ·+ f(Yn)|q ≥ (u2n)q/2]

and using Markov’s inequality and Theorem 4.

For the second tail bound, note that if u ≤
√

2Ce/(1− λ), then the right-hand side is

greater than 1 and the inequality holds trivially. Otherwise, the bound follows by taking

q = u2(1− λ)/(Ce), which is greater than 2.
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Proof of Corollary 2. The first tail bound follows by noting that

Pr[‖f(Y1) + · · ·+ f(Yn)‖`p ≥ u
√
n] = Pr[‖f(Y1) + · · ·+ f(Yn)‖q`p ≥ (u2n)q/2]

and using Markov’s inequality and Theorem 5.

For the second tail bound, note that if u ≤
√
pCe/(1− λ), then the right-hand side

is at least 1 and the inequality holds trivially. Otherwise the bound follows by taking

q = u2(1− λ)/(Ce) which is greater than p, and thus max{p, q} ≤ 2q.
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Chapter 4

A Hoeffding Inequality for Markov

Chains

In this chapter, we prove a Markov chain version of Hoeffding’s inequality. We also use

this to prove tail bounds for sums of vector-valued random variables, and in pariticular point

out an application to norms of random matrices whose entries are obtained from a Markov

chain.

Let Y1, . . . , Yn be independent random variables uniform over [N ] and let the functions

f1, . . . , fn be on [N ] so that fi has range [−ai, ai]. Recall from the introduction that Hoeffding

obtained the following tail bound (Hoe63).

Pr

|f1(Y1) + · · ·+ fn(Yn)| ≥ u

(
n∑
i=1

a2
i

)1/2
 ≤ 2 exp(−u2/2). (4.1)

In this work, we generalize Eq. (4.1) to reversible Markov chains with a stationary distribution.

In particular, we prove the following.

Theorem 9. Let {Yi}∞i=1 be a stationary reversible Markov chain with state space [N ],

transition matrix A, stationary probability measure µ, and averaging operator Eµ, so that Y1

38



is distributed according to µ. Let λ = ‖A − Eµ‖L2(µ)→L2(µ) and let f1, . . . , fn : [N ] → R so

that E[fi(Yi)] = 0 for all i and |fi(v)| ≤ ai for all v ∈ [N ] and all i. Then for u ≥ 0,

Pr

|f1(Y1) + · · ·+ fn(Yn)| ≥ u

(
n∑
i=1

a2
i

)1/2
 ≤ 2 exp(−u2(1− λ)/(64e)).

One interpretation of Theorem 9 is that for a Markov chain {Yi}∞i=1 and functions

f1, . . . , fn : [N ]→ [−1, 1], the random vector (f1(Y1), . . . , fn(Yn)) is sub–gaussian.

4.0.1 Extension to vector–valued random variables

We extend Theorem 9 to random variables from a fixed Banach space as follows. We

stress that the setting in the following theorem is more limited than that of Eq. (1.8). In

particular we only allow random variables of the form f(Yi)Xi in which f(Yi) is a random

scalar and Xi is a fixed element from the Banach space.

Theorem 10. Let (X, ‖ · ‖) be a Banach space, and let X1, . . . , Xn ∈ X. Let {Yi}∞i=1 be

a stationary reversible Markov chain with state space [N ], transition matrix A, stationary

probability measure µ, and averaging operator Eµ, so that Y1 is distributed according to µ.

Let λ = ‖A− Eµ‖L2(µ)→L2(µ), and let f1, . . . , fn : [N ]→ [−1, 1] be such that E[fi(Yi)] = 0 for

all i. Then there exist universal constants C and L, such that for any u ≥ 0,

Pr [‖f1(Y1)X1 + · · ·+ fn(Yn)Xn‖ ≥ uCE[‖g1X1 + · · ·+ gnXn‖]] ≤ L exp(−Cu2(1− λ))

where g1, . . . , gn ∼ N (0, 1) are independent standard Gaussian random variables.

Note that Eq. (1.8) implies that E[‖g1X1 + · · ·+ gnXn‖] ≤ C
√
s(‖X1‖2 + · · ·+ ‖Xn‖2)

for some constant C. This follows from the fact that the distribution of the normalized sum

of independent Rademacher random variables approaches that of a Gaussian, in the limit.
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Thus for Banach spaces that satisfy ρX(τ) ≤ sτ 2, we also have the bound

Pr
[
‖f1(Y1)X1 + · · ·+ fn(Yn)Xn‖ ≥ uC

√
s(‖X1‖2 + · · ·+ ‖Xn‖2)

]
≤ L exp(−Cu2(1− λ))

4.0.1.1 Bounds on the Schatten ∞-norm of a random matrix

As an application, we are able to generalize bounds on the Schatten ∞-norm of a matrix

with independent entries to matrices whose entries are obtained from a reversible Markov

chain with stationary distribution.

Let I ⊆ [d] × [d] be the set of pairs (i, j) such that i ≤ j, and let B = (bi,j) ∈ Rd×d be

a symmetric matrix with positive entries. Let X ∈ Rd×d be the random symmetric matrix

whose entries are

Xi,j =


εi,jbi,j if (i, j) ∈ I

εj,ibi,j otherwise

where εi,j are independent Rademacher random variables. Then it was shown in (BvH16)

that

E[‖X‖S∞ ] ≤ min
{
C(σ + σ∗

√
log d), ‖B‖S∞

}
(4.2)

for some absolute constant C, where

σ = max
i

√∑
j

b2
i,j and σ∗ = max

i,j
|bi,j|. (4.3)

We generalize Eq. (4.2) to reversible Markov chains with a stationary distribution. In

particular, we obtain a similar bound in terms of λ = ‖A− Eµ‖L2(µ)→L2(µ) on the Schatten

∞-norm of a matrix whose entries are chosen in the following manner. We start by choosing

an arbitrary permutation of the entries in the diagonal and upper triangular part of the

matrix. Then we fill in the entries according to the order given by the permutation, using
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the values given by the Markov chain. Finally we fill in the entries in the lower triangular

part of the matrix, so that the matrix is symmetric. The case that the transition matrix is

A = Eµ corresponds to choosing the entries of the diagonal and upper triangular part of the

matrix independently, as in (BvH16).

Corollary 3. Let {Yi}∞i=1 be a stationary reversible Markov chain with state space [N ],

transition matrix A, stationary probability measure µ, and averaging operator Eµ, so that Y1

is distributed according to µ. Let λ = ‖A− Eµ‖L2(µ)→L2(µ), let f : V → [−1, 1] be such that

E[f(Yi)] = 0, and let B ∈ Rd×d be a symmetric d× d matrix with positive entries. For any

injective function ω : I → {1, 2, . . . , (d2 + d)/2}, let X be the symmetric matrix defined by

Xi,j =


f(Yω(i,j))bi,j if (i, j) ∈ I

f(Yω(j,i))bj,i otherwise

Then,

E[‖X‖S∞ ] ≤ min

{
C√

1− λ
(σ + σ∗

√
log d), ‖B‖S∞

}
,

for some absolute constant C, where σ and σ∗ are defined as in Eq. (4.3).

4.1 Preliminaries

The following preliminaries are specific to this chapter.

The following simple claim bounds ‖T‖L2(µ)→L2(µ) for a matrix T in terms of ‖T‖L1(µ)→L1(µ)

and ‖T‖L∞(µ)→L∞(µ). This can be viewed as a special case of interpolation of matrix norms.

Claim 5. For any matrix T ,

‖T‖2
L2(µ)→L2(µ) ≤ ‖T‖L1(µ)→L1(µ)‖T‖L∞(µ)→L∞(µ).
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Proof. For all x, µ ∈ Rn so that µ has positive entries,

‖Tx‖2
L2(µ)→L2(µ) =

n∑
i=1

µi

(
n∑
j=1

Tijxj

)2

≤
n∑
i=1

µi

(
n∑
j=1

|Tij|

)(
n∑
j=1

|Tij|x2
j

)

≤ ‖T‖L∞(µ)→L∞(µ)‖T (x ◦ x)‖L1(µ)→L1(µ) ≤ ‖T‖L∞(µ)→L∞(µ)‖T‖L1(µ)→L1(µ)‖x‖2
L2(µ)

where the first inequality follows by Cauchy-Schwarz, and ◦ denotes entrywise product.

4.2 Proof of Theorem 9

To prove Theorem 9, we follow the strategy of bounding the qth moment for some even

integer q, and using Markov’s inequality to obtain a tail bound. We start by expanding

(f1(Y1) + · · ·+ fn(Yn))q into a sum of monomials.

The following lemma bounds the expectation of monomials in the fi(Yi), and can be

derived from Lemma 2 in the introduction. Recall that Sq−1 ⊂ {0, 1}q−1 is the set of strings

with no consecutive 0’s and so that s1, sq−1 = 1 for all s ∈ Sq−1.

Lemma 8. Let {Yi}∞i=1 be a stationary reversible Markov chain with state space [N ], transition

matrix A, stationary probability measure µ, and averaging operator Eµ, so that Y1 is distributed

according to µ. Let λ = ‖A−Eµ‖L2(µ)→L2(µ) and let f1, . . . , fn : [N ]→ R so that E[fi(Yi)] = 0

for all i and |fi(v)| ≤ ai for all v ∈ [N ] and all i. For all q, and w ∈ [n]q such that

w1 ≤ w2 ≤ · · · ≤ wq

E[fw1(Yw1)fw2(Yw2) · · · fwq(Ywq)] ≤ aw1aw2 · · · awq
∑
s∈Sq−1

( ∏
i:si=1

λwi+1−wi

)
.

Proof. We apply Eq. (2.5) from Lemma 2 in Chapter 2, letting k = q − 1, ui(v) = fwi(v) for
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all v ∈ [N ], and Ti = Awi+1−wi − Eµ. Note that for all k ≥ 0,

Ak − Eµ = Ak − Ak−1Eµ − EµA+ E2
µ = (Ak−1 − Eµ)(A− Eµ) = (A− Eµ)k.

The lemma follows by noting that ‖ui‖L∞(µ) ≤ awi and ‖Ti‖L2(µ)→L2(µ) ≤ λwi+1−wi

We obtain the following bound on the moments of f1(Y1) + · · ·+ fn(Yn).

Theorem 11. Let {Yi}∞i=1 be a stationary reversible Markov chain with state space [N ],

transition matrix A, stationary probability measure µ, and averaging operator Eµ, so that

Y1 is distributed according to µ. Let λ = ‖A − Eµ‖L2(µ)→L2(µ) be less than 1, and let

f1, . . . , fn : [N ]→ R so that E[fi(Yi)] = 0 for all i and |fi(v)| ≤ ai for all v ∈ [N ] and all i.

Then for even q,

E[(f1(Y1) + · · ·+ fn(Yn))q] ≤ 4q(q/2)!

(
1

1− λ

)q/2( n∑
i=1

a2
i

)q/2

.

Proof. Let σ : [n]q → [n]q be the function where σ(w) is the sorted list of coordinates of w in

non-decreasing order. Then by Lemma 9,

E[(f1(Y1) + · · ·+ fn(Yn))q] =
∑
w∈[n]q

E[fw1(Yw1)fw2(Yw2) · · · fwq(Ywq)]

≤
∑
w∈[n]q

aw1aw2 · · · awq
∑
s∈Sq−1

( ∏
i:si=1

λσ(w)i+1−σ(w)i

)
. (4.4)

Let
(

[q]
q/2

)
denote the collection of subsets of [q] of size exactly q/2. For each subset I ∈

(
[q]
q/2

)
,

let WI ⊂ [n]q be the set of all vectors w such that for each j ∈ [n],

|{i : i ∈ I and wi = j}| = |{i : i ∈ {1, 3, 5, . . . , q − 1} and σ(w)i = j}| ,
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i.e. the multi-set
⋃
i∈I{wi} is equal to the multi-set {σ(w)1, σ(w)3, σ(w)5, . . . , σ(w)q−1}. Let

wI , w[q]\I ∈ [n]q/2 be the restriction of w to the coordinates in I and [q]\I respectively.

Additionally, for each I ∈
(

[q]
q/2

)
and s ∈ Sq−1, let TI,s be the nq/2 × nq/2 matrix defined as

follows. For each w ∈ [n]q, the entry in the wIth row and w[q]\Ith column of TI,s is

TI,s(wI , w[q]\I) =


∏

i:si=1 λ
σ(w)i+1−σ(w)i if w ∈ WI

0 otherwise.

Because ⋃
I∈( [q]

q/2)

WI = [n]q,

Eq. (4.4) can be bounded above by

∑
s∈Sq−1

∑
I∈( [q]

q/2)

∑
w∈WI

aw1aw2 · · · awq

( ∏
i:si=1

λσ(w)i+1−σ(w)i

)
=
∑
s∈Sq−1

∑
I∈( [q]

q/2)

〈
a⊗q/2, TI,sa

⊗q/2〉
`2

≤ |Sq−1|
(
q

q/2

)
max

s∈Sq−1,I∈( [q]
q/2)
‖TI,s‖`2→`2‖a‖

q
`2
,

where a⊗q/2 ∈ Rnq/2 is the vector such that a
⊗q/2
i1,...,iq/2

= ai1ai2 · · · aiq/2 for i ∈ [n]q/2 and thus

‖a⊗q/2‖`2 = ‖a‖q/2`2
. Both |Sq−1| and

(
q
q/2

)
are each bounded above by 2q. Thus by Claim 5, it

is enough to show that

‖TI,s‖`1→`1 , ‖TI,s‖`∞→`∞ ≤ (q/2)!

(
1

1− λ

)q/2
.

We show this for ‖TI,s‖`∞→`∞ ; the proof for ‖TI,s‖`1→`1 is similar.

Because the entries of T are positive, ‖TI,s‖`∞→`∞ is just the largest row sum of TI,s.

Without loss of generality, assume that I = {1, 3, 5, . . . , q − 1}. Then the sum of the entries
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of the row corresponding to wI = (w1, w3, w5, . . . , wq−1) is

∑
w2,w4,...,wq :w∈WI

TI,s(wI , w[q]\I) ≤ (q/2)!

σ(w)3∑
w2=σ(w)1

σ(w)5∑
w4=σ(w)3

· · ·
n∑

wq=σ(w)q−1

∏
i:si=1

λσ(w)i+1−σ(w)i

≤ (q/2)!

(
1

1− λ

)q/2
,

as desired. The first inequality follows from the fact that w ∈ WI and w1, w3, w5, . . . , wq−1

determine σ(w)1, σ(w)3, σ(w)5, . . . , σ(w)q−1 exactly, and that there are at most (q/2)! possible

orderings of w2, w4, . . . , wq. The second inequality follows from the definition of Sq−1, which

implies that for every positive even integer k ≤ q, either sk−1 = 1 or sk = 1, along with the

formula for the sum of an infinite geometric series.

Finally, Theorem 9 follows by considering the moment generating function and applying

Markov’s inequality.

Proof of Theorem 9. If λ ≥ 1 or if u ≤ 8/
√

1− λ, the theorem holds trivially as the right-

hand side is greater than 1.

Otherwise, we start by bounding the moment generating function. Let θ = (1−λ)u/(32(a2
1+

· · ·+ a2
n)1/2) By Theorem 11 and keeping in mind that by Jensen’s inequality, odd moments

are bounded above by even moments,

E [exp(θ(f1(Y1) + · · ·+ fn(Yn)))] =
∞∑
q=0

E[θ(f1(Y1) + · · ·+ fn(Yn))q]

q!

≤ 1 +
∞∑
q=1

(1− λ)(2q−1)/2u2q−1q!

82q−1(2q − 1)!
+

(1− λ)qu2qq!

82q(2q)!

≤ 2
∞∑
q=0

(1− λ)qu2q

82qq!

= 2 exp
(
u2(1− λ)/64

)
.
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By Markov’s inequality,

Pr

[
f1(Y1) + · · ·+ fn(Yn) ≥ u

(
n∑
i=1

a2
i

)1/2]

= Pr

[
exp(θ(f1(Y1) + · · ·+ fn(Yn))) ≥ exp

(
θu

(
n∑
i=1

a2
i

)1/2)]

≤ E [exp(θ(f1(Y1) + · · ·+ fn(Yn)))]

exp
(
θu (

∑n
i=1 a

2
i )

1/2
)

≤ 2 exp
(
u2(1− λ)/64− u2(1− λ)/32

)
= 2 exp

(
−u2(1− λ)/64

)
The final bound follows by doing the same for the left tail, and noting that if u ≥ 8/

√
1− λ,

either 4 exp(−u2(1− λ)/64) ≤ 2 exp(−u2(1− λ)/(64e)), or 2 exp(−u2(1− λ)/(64e) ≥ 1.

We note that it is possible to obtain stronger tail bounds that improve on the constant

factor by optimizing some of the calculations above, but we will not do so here.

4.3 Extension to vector–valued random variables

To prove Theorem 10 we use the techniques of Talagrand’s generic chaining. These

techniques apply to random variables that satisfy the “increment condition,” which we define

below.

Definition 2. A metric space (T, d) and process (Zt)t∈T satisfies the increment condition if

for all u and all s, t ∈ T ,

Pr[|Zs − Zt| ≥ u] ≤ 2 exp

(
− u2

2d(s, t)2

)
.
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When (Zt)t∈T is a gaussian process, that is Zt is gaussian for all t ∈ T , we can equip T

with the canonical distance, d(s, t) = E[(Zs − Zt)2]1/2.

Theorem 9 essentially states that for a a Markov chain {Yi}∞i=1 and functions f1, . . . , fn :

[N ]→ [−1, 1] with E[fi(Yi)] = 0, the process (Zt)t∈T defined by Zt = (f1(Y1)t1, . . . , fn(Yn)tn)

for T = Rn satisfies the increment condition if the associated distance is
√

32e/(1− λ) times

the Euclidean distance.

We also define the γ2 functional.

Definition 3.

γ2(T, d) = inf sup
t∈T

∞∑
i=0

2i/2 min
t′∈Ti

d(t, t′),

where the infimum is taken over all sequences of subsets T0 ⊆ T1 ⊆ · · · ⊆ T such that |T0| = 1

and |Ti| ≤ 22i for i ≥ 1.

The majorizing measures theorem, due to Talagrand (Tal87) (see also Theorem 2.4.1

in (Tal14)), gives bounds on the expected value of supt∈T Zt, where (Zt)t∈T is a gaussian

process, in terms of γ2(T, d) where d is the canonical distance. We state the theorem below.

Theorem 12 (Talagrand’s majorizing measures theorem). For some universal constant C,

and for every gaussian process (Zt)t∈T ,

1

C
γ2(T, d) ≤ E

[
sup
t∈T

Zt

]
≤ Cγ2(T, d),

where d(s, t) = E[(Zs − Zt)2]1/2.

We also use the following tail bound for any process that satisfies the increment condition,

which is given as Theorem 2.2.27 in (Tal14).

Theorem 13. If the process (Zt) satisfies the increment condition, then for u > 0, Then,

Pr

[
sup
s,t∈T
|Xs −Xt| ≥ Lγ2(T, d) + uL sup

t1,t2∈T
d(t1, t2)

]
≤ L exp(−u2).
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We now describe how to select T to apply the above tools to the setting of Theorem 10.

Let (X, ‖ · ‖) be a Banach space, and let (X∗, ‖ · ‖∗) be the dual space of X with closed unit

ball B∗. Recall that for x ∈ X,

‖x‖ = sup
x∗∈B∗

|〈x∗, x〉|.

(see for instance, Theorem 4.3 in (Rud91)). For fixed X1, . . . , Xn ∈ X, let T ⊂ Rn be the set

of points,

T = {(〈x∗, X1〉, 〈x∗, X2〉, . . . , 〈x∗, Xn〉) : x∗ ∈ B∗} . (4.5)

Note that T is symmetric, as for every x∗ ∈ B∗, we also have −x∗ ∈ B∗. It follows that

‖f1X1 + · · ·+ fnXn‖ = sup
t∈T
〈f, t〉. (4.6)

Finally, we prove Theorem 10.

Proof of Theorem 10. Consider the metric space (T, d) where T is as constructed in Eq. (4.5)

and d(s, t) =
√

32e/(1− λ)‖s − t‖`2 . Then by Theorem 9, the process (Zt)t∈T defined by

Zt = (f1(Y1)t1, . . . , fn(Yn)tn) satisfies the increment condition.

Additionally, consider the Gaussian process (Z ′t)t∈T on the metric space (T, d′), so that

Zt = g1t1 + · · · + gntn for independent standard Gaussian variables g1, . . . , gn and d′ =

E[(Zs − Zt)2]1/2. Then by Theorem 12,

γ2(T, d) =

√
32e

1− λ
γ2(T, d′) ≤ C

1− λ
E
[
sup
t∈T

Z ′t

]

The theorem then follows from Theorem 13 the observation that sups,t |Zs−Zt| = 2 supt Zt

as T is symmetric, and Eq. (4.6).
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4.3.1 Comparison to matrices with independent entries

We prove Corollary 3, which follows from a straightforward application of Theorem 10.

In order to apply Theorem 10, we need a bound on E[‖X ′‖S∞ ] when X ′ is the random

symmetric matrix whose entries are

X ′i,j =


gi,jbi,j if (i, j) ∈ I

gj,ibi,j otherwise

where gi,j ∼ N (0, 1) are independent standard Gaussian random variables (rather than

Rademacher random variables, as in Eq. (4.2)). This setting was also discussed in (BvH16)

in which it was shown that

E[‖X ′‖S∞ ] ≤ C(σ + σ∗
√

log d), (4.7)

where σ and σ∗ are defined as in Eq. (4.3).

Proof of Corollary 3. Let X ′ be the random matrix defined above. Then by Theorem 10 and

Eq. (4.7),

E[‖X‖S∞ ] ≤ C√
1− λ

E[‖X ′‖S∞ ] ≤ C ′√
1− λ

(σ + σ∗
√

log d)

Finally, because |f(v)| ≤ 1 for all v ∈ [N ] and B has positive entries, it follows that

‖X‖S∞ ≤ ‖B‖S∞ , always.
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Chapter 5

Poisson Approximations for Markov

Chains

In this chapter, we investigate to what extent sums of random variables obtained from

a Markov chain share properties with Poisson random variables. As an application, we

construct explicit resilient functions matching the nonconstructive versions shown to exist

due to Ajtai and Linial (AL93).

In particular, let {Yi}∞i=1 be a reversible Markov chain with state space [N ] and stationary

distribution µ, and let f1, . . . , fn : V → [0, 1] (where often f1 = · · · = fn = f) be so that

E[f1(Y1) + · · ·+ fn(Yn)] = Φ. When the Yi are completely independent of each other, a simple

calculation shows that the moment generating function is bounded above by

E[αf1(Y1)+···+fn(Yn)] ≤ exp((α− 1) · Φ) .

The above bound easily imply tail bounds on f1(Y1) + · · ·+ fn(Yn) by Markov’s inequality.

In this chapter we prove an analogous bound for the case of Markov chains

Theorem 14. {Yi}∞i=1 be a reversible Markov chain with state space [N ] and stationary
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distribution µ, and let λ = λ(Y ). Let f1, . . . , fn : V → [0, 1], and let σi = E[fi(v)]. Let

Φ := E[f1(Y1) + · · ·+ fn(Yn)]. Then for 1 < α < 1/λ,

E[αf1(Y1)+···+fn(Yn)] ≤ exp

(
(α− 1) · Φ ·

(
1− λ

1− αλ

))
. (5.1)

The proof strategy we use for Theorem 14 is to first bound expressions of the form

E[Zw1Zw2 · · ·Zwk ]

where Zi = f(Yi) for all i. The will then allow us to bound expressions of the form

E [(f1(Y1) + · · ·+ fn(Yn))q]

for integers q, which will finally allow us to obtain a bound on the moment generating

function.

As stated previously, bounds on the moment generating function immediately imply tail

bounds. In particular, by plugging in α = λ−1 − (1− λ)/(t1/2λ3/2) in Theorem 14 we obtain

the following.

Corollary 4. In the setting of Theorem 14, for all t > 1/λ,

Pr[Sn ≥ tΦ] ≤
(1

λ
− 1− λ
t1/2λ3/2

)−tΦ
exp(Φ · (1− λ)(

√
tλ− 1)/λ) . (5.2)

For instance, for λ = 1/2, we obtain

Pr[Sn ≥ tΦ] ≤
(

2−
√

2

t

)−tΦ
exp(Φ · (

√
t/2− 1)) .

We also note that for large t, the bound in (5.2) is roughly λtΦ, which is again close to tight
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by the example in Section 5.0.1.

5.0.1 Sharpness

We now sketch an argument showing that Theorem 14 is sharp in the following sense.

Fix arbitrary λ ∈ [0, 1) and Φ > 0, and consider the Markov chain with transition matrix

A = λI + (1− λ)J of dimensions N ×N where J is the matrix whose entries are all 1/N .

This corresponds to the walk where at each step we either stay in place with probability λ, or

choose a uniform vertex with probability 1− λ. Let f1 = · · · = fn = f be the function that

assigns 1 to a µ = Φ/n fraction of “marked” states and 0 to the remaining states (where we

assume for simplicity that Φ|V |/n is integer). Equivalently, one can consider a Markov chain

with two states, one marked and one unmarked; a step in the chain stays in the same state

with probability λ and otherwise chooses from the stationary distribution, which assigns mass

µ to the marked state and 1− µ to the unmarked state.

Then we claim that as n goes to infinity, the left-hand side of Eq. (5.1) converges to the

right-hand side. To see that, we say that a step of the walk is a “hit” if (1) the walk chooses

a uniform state (which happens with probability 1− λ), and (2) that chosen state is marked.

Then observe that the random variable counting the number of hits during the walk converges

to a Poisson distribution with expectation (1 − λ)Φ (since it is the sum of n independent

Bernoulli random variables, each with probability (1− λ)µ of being 1). Moreover, each time

a hit occurs, we stay in that vertex a number of steps that is distributed like a geometric

distribution with success probability 1− λ. (We are ignoring here lower order effects, such as

reaching the end of the walk.) Therefore, using the probability mass function of the Poisson

distribution and the moment generating function of the geometric distribution, we see that
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for any α < 1/λ, as n goes to infinity, E[αSn ] converges to

∞∑
k=0

exp(−(1− λ)Φ)((1− λ)Φ)k

k!

((1− λ)α

1− λα

)k
= exp

(
−(1− λ)Φ + (1− λ)Φ

(1− λ)α

1− λα

)
= exp

(
Φ ·
(

(1− λ)(α− 1)

1− αλ

))
,

as desired.

5.1 Bounding monomials

In this section we prove Lemma 9, bounding the expectation of monomials in the fi(Yi).

Lemma 9. Let {Yi}∞i=1 be a stationary reversible Markov chain with state space [N ], transition

matrix A and stationary distribution µ so that Y1 is distributed as µ, and let λ = λ(Y ). Let

f1, . . . , fn : V → [0, 1], and let σi = E[fi(Yi)], and let Zi = fi(Yi) for all i. Then for all k ≥ 1

and w ∈ [n]k such that w1 ≤ w2 ≤ · · · ≤ wk,

E[Zw1Zw2 · · ·Zwk ] ≤
∑

s∈{0,1}k−1

√
σw1σwk

( ∏
i:si=0

√
σwiσwi+1

)( ∏
i:si=1

λwi+1−wi

)
.

Proof. Let di = wi+1 − wi for all i. Let ui be given by (ui)v = fwi(v) and let Ui = diag(ui).

Then

E[Zw1Zw2 · · ·Zwk ] = ‖U1A
d1U2A

d2 · · ·Adk−1Uk1‖L1(µ). (5.3)

Let Ti,0 = Eµ and Ti,1 = Adi − Eµ and notice that ‖Ti,1‖L2(µ)→L2(µ) ≤ λdi . Using the triangle

inequality, we can bound the right-hand side of Eq. (5.3) from above by

∑
s∈{0,1}k−1

‖U1T1,s1U2T2,s2 · · ·Tk−1,sk−1
Uk1‖L1(µ).
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By Eq. (2.6) in Lemma 2 in Chapter 2, for each s, the term corresponding to s satisfies

‖U1T1,s1U2T2,s2 · · ·Tk−1,sk−1
Uk1‖L1(µ) ≤

√
σw1σwk

( ∏
i:si=0

√
σwiσwi+1

)( ∏
i:si=1

λdi

)
. (5.4)

The lemma follows by summing over s ∈ {0, 1}k−1.

It is interesting to note that we can also let Ti,0 = (1−λdi)Eµ in the proof above to obtain

a bound of

E[Zw1Zw2 · · ·Zwk ] ≤
∑

s∈{0,1}k−1

√
σw1σwk

( ∏
i:si=0

(1− λwi+1−wi)
√
σwiσwi+1

)( ∏
i:si=1

λwi+1−wi

)

=
√
σw1σwk

k−1∏
i=1

((1− λwi+1−wi)
√
σwiσwi+1

+ λwi+1−wi). (5.5)

When σ1 = · · · = σn = µ, this bound simplifies to

E[Zw1Zw2 · · ·Zwk ] ≤ µ
k−1∏
i=1

((1− λwi+1−wi)µ+ λwi+1−wi).

Observe that for the two-state Markov chain described in Section 5.0.1, for every n ≥ 1

and every 1 ≤ w1 ≤ · · · ≤ wk ≤ n, this inequality is actually an equality. Indeed, the

left-hand side is the probability that we are in the marked state at all the steps w1, . . . , wk.

The probability of being in the marked state at step w1 is µ (as we are in the stationary

distribution); and the probability of being in the marked state at step wi+1 conditioned on

being there at step wi is (1− λwi+1−wi)µ+ λwi+1−wi .

This observation implies that the moment generating function E[αSn ] of an arbitrary

graph and arbitrary f1, . . . , fn with all E[fi] equal can be bounded by the moment generating

function of the corresponding two-state Markov chain (as can be seen from the Taylor

expansion; see Eq. (5.8) below). This can be used to give an alternative (and perhaps more
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intuitive) proof of Theorem 14. We do not include this proof here since it is not clear how to

extend it to the case of general σi.

5.2 Proof of Theorem 14

In this section we complete the proof of the main theorem using the bound in Lemma 9.

We start with the following easy corollary of Cauchy-Schwarz.

Claim 6. Let P ∈ R[X1, . . . , Xn] be a multivariate polynomial with non-negative coefficients.

Then for x1, . . . , xn, y1, . . . , yn ∈ R,

P (x1y1, x2y2, . . . , xnyn) ≤ max{P (x2
1, x

2
2, . . . , x

2
n), P (y2

1, y
2
2, . . . , y

2
n)}.

Proof. Let

P (X1, . . . , Xn) =
∑
m∈Nn

amX
m1
1 Xm2

2 · · ·Xmn
n

for some am ≥ 0. Then

P (x1y1, x2y2, . . . , xnyn) =
∑
m∈Nn

am(x1y1)m1(x2y2)m2 · · · (xnyn)mn

=
∑
m∈Nn

(
√
amx

m1
1 xm2

2 · · ·xmnn )(
√
amy

m1
1 ym2

2 · · · ymnn )

≤

(∑
m∈Nn

amx
2m1
1 x2m2

2 · · ·x2mn
n

)1/2(∑
m∈Nn

amy
2m1
1 y2m2

2 · · · y2mn
n

)1/2

≤ max{P (x2
1, x

2
2, . . . , x

2
n), P (y2

1, y
2
2, . . . , y

2
n)},

where the first inequality follows from Cauchy-Schwarz.

Lemma 10. Let {Yi}∞i=1 be a stationary reversible Markov chain with state space [N ], tran-

sition matrix A and stationary distribution µ so that Y1 is distributed as µ, and let λ = λ(Y ).
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Let f1, . . . , fn : [N ]→ [0, 1], let Zi = fi(Yi) for all i, and let σi = E[fi(v)], Φ = σ1 + · · ·+ σn.

For all k ∈ [n], let Wk ⊆ [n]k be the set of all w such that w1 < w2 < · · · < wk. Then

E

[∑
w∈Wk

Zw1Zw2 · · ·Zwk

]
≤

k−1∑
i=0

(
k − 1

i

)
Φi+1λk−i−1

(i+ 1)!(1− λ)k−i−1
.

Proof. By Lemma 9 and Claim 6,

E

[∑
w∈Wk

Zw1Zw2 · · ·Zwk

]
≤
∑
w∈Wk

∑
s∈{0,1}k−1

√
σw1σwk

( ∏
i:si=0

√
σwiσwi+1

)( ∏
i:si=1

λwi+1−wi

)

≤ max

{ ∑
w∈Wk

∑
s∈{0,1}k−1

σw1

∏
i:si=0

σwi+1

∏
i:si=1

λwi+1−wi ,

∑
w∈Wk

∑
s∈{0,1}k−1

σwk
∏
i:si=0

σwi
∏
i:si=1

λwi+1−wi
}
.

We assume for the remainder of the proof that the second term is the maximum. A similar

proof holds under the assumption that the first term is the maximum.

We will show that for each s ∈ {0, 1}k−1,

∑
w∈Wk

σwk

( ∏
i:si=0

σwi

)( ∏
i:si=1

λwi+1−wi

)
≤ (σ1 + · · ·+ σn)k−|s|λ|s|

(k − |s|)!(1− λ)|s|
, (5.6)

where |s| is the number of coordinates of s equal to 1. This proves the lemma, as there are(
k−1
k−j−1

)
vectors s ∈ {0, 1}k−1 such that |s| = j. From this point we fix s.

Let ws̄ be w restricted to the coordinates i such that si = 0 along with the kth coordinate.
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Then

∑
w∈Wk

σwk

( ∏
i:si=0

σwi

)( ∏
i:si=1

λwi+1−wi

)
=

∑
v∈Wk−|s|

(
k−|s|∏
j=1

σvj

)( ∑
w:ws̄=v

∏
i:si=1

λwi+1−wi

)

≤
∑

v∈Wk−|s|

(
k−|s|∏
j=1

σvj

)(
λ

1− λ

)|s|
.

where the last inequality uses the observation that the function that maps any w ∈ Wk−|s|

with ws̄ = v to the sequence of positive values (wi+1−wi)i:si=1 is an injective function. Finally,

Eq. (5.6) follows by noting that

∑
v∈( [n]

k−|s|)

(
k−|s|∏
j=1

σvj

)
≤ (σ1 + · · ·+ σn)k−|s|

(k − |s|)!
.

The following lemma gives an upper bound on the moments of Sn. We denote by
{
n
k

}
the

Stirling number of the second kind. This counts the number of ways to partition a set of n

labelled objects into k nonempty unlabelled subsets

Lemma 11. Let {Yi}∞i=1 be a stationary reversible Markov chain with state space [N ], tran-

sition matrix A and stationary distribution µ so that Y1 is distributed as µ, and let λ = λ(Y ).

Let f1, . . . , fn : V → [0, 1], let Zi = fi(Yi) for all i, and let Sn = Z1 + · · · + Zn, and let

σi = E[Zi], Φ = σ1 + · · ·+ σn. Then for all positive integers q,

E[Sqn] ≤
q∑

k=1

{
q

k

}
k!

k−1∑
i=0

(
k − 1

i

)
Φi+1λk−i−1

(i+ 1)!(1− λ)k−i−1
.

Proof. Consider the subset Dk ⊆ [n]q of vectors with exactly k distinct coordinates. Note
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that

E[Sqn] =
∑
w∈[n]q

E

[
q∏
j=1

Zwj

]
=

q∑
k=1

∑
w∈Dk

E

[
q∏
j=1

Zwj

]
.

We will upper bound each term on the right-hand side separately.

Fix a k, and let Wk ⊆ [n]k be the set of vectors w so that w1 < w2 < · · · < wk. Let

ψ : Dk → Wk be the function mapping each w ∈ Dk to the vector whose coordinates are

exactly those in w in sorted order and without repetition. Then because Zi ∈ [0, 1] for all i,

∑
w∈Dk

E

[
q∏
j=1

Zwj

]
≤
∑
w∈Dk

E

[
k∏
j=1

Zψ(w)j

]
. (5.7)

Moreover, for all w ∈ Wk we have |ψ−1(w)| =
{
q
k

}
k! (as this is the number of ways to partition

q labeled balls into k nonempty labeled boxes), and thus Eq. (5.7) is equal to

{
q

k

}
k!
∑
w∈Wk

E

[
k∏
j=1

Zwj

]
.

The lemma then follows from Lemma 10.

Finally we can insert the upper bounds from Lemma 11 in the Taylor expansion of αSn to

prove Theorem 14.

Proof of Theorem 14. By Lemma 11,

E[αSn ] =
∞∑
q=0

log(α)qE[Sqn]

q!
(5.8)

≤ 1 +
∞∑
q=1

log(α)q

q!

q∑
k=1

{
q

k

}
k!

k∑
i=1

(
k − 1

i− 1

)
Φiλk−i

i!(1− λ)k−i
.
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Rearranging the sums yields

1 +
∞∑
i=1

Φi

i!

∞∑
k=i

(
k − 1

i− 1

)
λk−i

(1− λ)k−i

∞∑
q=k

{
q

k

}
log(α)qk!

q!
. (5.9)

Using the following identity (Sta12, Eq. 1.94(b)),

∞∑
q=k

{
q

k

}
log(α)q

q!
=

(α− 1)k

k!
,

(which can be seen by writing α− 1 = elog(α) − 1 as log(α) + 1
2!

log(α)2 + 1
3!

log(α)3 + · · · ) we

can rewrite Eq. (5.9) as

1 +
∞∑
i=1

Φi

i!
(α− 1)i

∞∑
k=i

(
k − 1

i− 1

)
λk−i

(1− λ)k−i
(α− 1)k−i . (5.10)

Using the following identity for 0 ≤ x < 1,

∞∑
j=i

(
j − 1

i− 1

)
xj−i = (1− x)−i,

(which follows from differentiating
∑∞

j=0 x
j = (1− x)−1 a total of i− 1 times) we can rewrite

Eq. (5.10) as

1 +
∞∑
i=1

Φi(α− 1)i

i!

(
1− λ(α− 1)

1− λ

)−i
= exp

(
Φ ·
(

(1− λ)(α− 1)

1− αλ

))
.
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5.3 Explicit constructions of resilient functions

We apply our expander sampler to construct resilient functions. Informally, these are

Boolean functions for which any not too large subset of the inputs cannot affect the output

of the function when the other inputs are set randomly. We define resiliency formally.

Definition 4. Given a function f : {0, 1}` → {0, 1}, and Q ⊆ [`], let IQ(f) be the probability

that a random assignment of the variables in coordinates [`]\Q does not determine the value

of f . Let Iq(f) = maxQ⊆[`],|Q|≤q IQ(f). We say that f is τ -strongly resilient if Iq(f) ≤ τ · q

for all q ≤ `.

Note that a function that is a constant, or close to a constant, will by definition be

resilient, and thus we restrict our attention to functions that are almost balanced, i.e., are

0 on about half the inputs, and 1 on the other half. Almost-balanced resilient functions

were shown to exist by Ajtai and Linial (AL93). An explicit construction was shown by

Meka (Mek17), who proved the following.

Theorem 15. For some universal constants c1, c2 ≥ 1, the following holds. For infinitely

many `, there exists an efficiently computable function f : {0, 1}` → {0, 1} such that

• f is almost balanced, that is Prx∈{0,1}[f(x) = 1] = 1/2± 1/10.

• f is (c1(log2 `)/`)-strongly resilient.

• f has a depth 3 monotone circuit of size at most `c2.

The proof in (Mek17) uses a sampler based on the extractors constructed in (Zuc97). We

will show how to instead use expander samplers, leading to a somewhat simpler proof of the

same theorem.

We start by outlining the general strategy used to prove Theorem 15. The function is

constructed as follows. Let P = {P 1, P 2, . . . , P u} be a set of partitions of [`] such that each Pα
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is a collection of v sets, Pα
1 , P

α
2 , . . . , P

α
v , so that |Pα

j | = `/v for all j and Pα
1 ∪Pα

2 ∪· · ·∪Pα
N = [`].

The construction is the function fP : {0, 1}` → {0, 1} defined as

fP(x) =
∧
α∈[u]

∨
i∈[v]

( ∧
k∈Pαi

xk

)
. (5.11)

To prove that fP is almost balanced, Meka starts by showing that his choice of partitions

is a design, which we define below.

Definition 5. Let P = {P 1, . . . , P u} be a set of partitions of [`] so that every partition has v

parts, each of size w, and thus ` = v ·w. For d ≤ w, P is a d-design if for all α 6= β ∈ [u] and

i, j ∈ [v], |Pα
i ∩P

β
j | ≤ w−d. For d ≤ k < w and δ ∈ (0, 1), we say that P is a (d, k, δ)-design

if it is a d-design and for all α ∈ [u] and i, j ∈ [v],

Prβ∼[n][|Pα
i ∩ P

β
j | ≤ w − k] ≥ 1− δ.

Now, define the function

bias(u, v, w) := (1− (1− 2−w)v)u

which can be interpreted as the probability that f(x) = 1 if the leaves of the formula in (5.11)

(i.e., all occurrences of the xk) are also independent and uniform over {0, 1}. Meka proceeds

by showing that if a set of partitions is a (d, k, δ)-design, and bias(u, v, w) is close to 1/2,

then so is the bias of the function fP . In particular, he shows the following.

Theorem 16. Let P = {P 1, . . . , P u} be a set of partitions of [`] so that every partition

has v parts, each of size w, that is a (d, k, δ)-design. Assume v = θ(1)w2w and 1/3 ≤
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bias(u, v, w) ≤ 2/3. Then,

∣∣∣∣∣Prx∼{0,1}` [fP = 1]− bias(u, v, w)

∣∣∣∣∣ ≤ C

(
w exp(−Ω(k)) + exp(−Ω(d)) + 2wδ

)
.

To prove that fP is resilient, Meka shows that his choice of partitions is load-balancing,

which we define below.

Definition 6. Let P = {P 1, . . . , P u} be a set of partitions of [`] so that every partition has

v parts, each of size w, and thus ` = v · w. P is (q, t)-load balancing if for all Q ⊆ [`] with

|Q| ≤ q and j ∈ [v],

Eα∼[u]

[
1(Q ∩ Pα

j 6= ∅)2|Q∩P
α
j |
]
≤ tq

v
.

Note that Eα∼[u][|Q ∩ Pα
j |] = q/v. In Theorem 2.5 in (Mek17), it was shown that if a set

of partitions is load-balancing, then there is a bound on Iq(fP). In particular, we have the

following.

Theorem 17. Let P = {P 1, . . . , P u} be a set of partitions of [`] so that every partition has v

parts, each of size w, and is (q, t)-load balancing. Then fP is (u(1− 2−w)v−q) · (t2−w)-strongly

resilient.

5.3.1 Our construction

Our construction differs from Meka’s only in the choice of partitions P, and thus it is

enough to prove that our partitions are also a design and are load balancing. Let c1, c2, λ

and d be constants to be chosen below. Let G = (ZN , E) be a d-regular undirected graph

with vertex set ZN for some prime N to be chosen later. Let T ⊂ ZnN be the set of paths of

length n on G. Define the function r : ZN → Zc1N by

r(v) = (v mod N, 2v mod N, . . . , c1v mod N),
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and let U = {(r(t1), r(t2), . . . , r(tn)) : t ∈ T } be a subset of vectors of Znc1N , obtained by

concatenating the result of r on the vertices of paths in T .

For i ∈ ZN and α ∈ U , let

Pα
i = {(k − 1)N + ((i− αk) mod N) : k ∈ [nc1]} ⊆ ZNnc1 ,

so that Pα is a partition of the set ZNnc1 , and thus our function will be on the set {0, 1}Nnc1 .

We will refer to each set Pα
i as a part of the partition Pα. We let P(G) = {Pα : α ∈ U} be

the collection of partitions constructed from a graph G.

Parameters

Our construction depends on the constants c1, c2, λ and d, and also n and N . Below, we

describe how to choose c1, c2, λ and d. For the rest of the section, we assume that these

conditions hold.

• c1 is a universal constant chosen in the proof of Corollary 7.

• λ =
1

82c1
.

• d = O(1/λ2) is the degree of expander graphs with spectral gap λ

• c2 is the constant from Claim 7 below, and does not depend on anything.

It is known that there exist d-regular expander graphs G of any large enough size so that

d = O(1/λ2) for all λ (for example, the expander graphs constructed in (LPS88). Thus, there

exist constant factors so that the first three dependencies hold.

We allow n to be any integer, and we choose N according to the following claim.

63



Claim 7. There exists a constant c2 < 1 such that for all n and all d, the following holds.

There exists a prime number N such that for u = Ndn−1,

0 ≤ N − 2c1n(ln(u/ ln 2)) ≤ 2c2c1n.

Proof. Consider the function

φ(x) = x− 2c1n(lnx+ (n− 1) ln d+ ln ln 2).

Because φ(x) is continuous, there exists an x∗ ≥ 1 so that φ(x∗) = 0, and we let N be the

next largest prime. Note that x∗ ≤ 2(c1 + ln d)n2c1n as φ(x∗) is positive for this x∗. By

results on gaps between primes (see for example, (BHP01)), there exists a prime number in

the range [x∗, x∗ + 2c2c1n] for some universal constant c2 less than 1. Thus if we assign to N

this prime number, φ(x∗) = 0 ≤ N − 2c1n(ln(u/ ln 2)) = φ(N) ≤ N − x∗ ≤ 2c2c1n.

Claim 7 can be used to apply the following fact, which will be used both to prove that

fP(G) is almost-balanced and strongly resilient.

Fact 1. Let n ≤ N ≤ u, B ≥ 1 and 0 ≤ N − 2n(ln(u/ ln 2)) ≤ B and θ = (1− 2−n)N . Then

(1 + θ)u = O(1) and (1− θ)u = 1/2±O(B lnu)2−n.

5.3.2 Strongly resilient

To prove that fP(G) is resilient, we will use the same general strategy as in (Mek17) but

use the result of Theorem 14 in place of (Mek17, Theorem 1.8). In particular, we will show

that P(G) is load balancing, and then apply Theorem 17.

Lemma 12. Let G = (ZN , E) be a graph, let λ = λ(G). Then P(G) is (q, t)-load balancing
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for q ≤ N and

t = exp

(
(2c1 − 1)

(
1− λ

1− 2c1λ

))
.

Proof. Fix a Q ⊆ ZNnc1 so that |Q| = q, and fix j ∈ ZN . Let α be a uniformly random

element of U , and define the random variable

gi =
∣∣{k : j − αk ∈ Q ∩ {(k − 1)N, (k − 1)N + 1, . . . , kN − 1} and k ∈ [(i− 1)c1 + 1, ic1]}

∣∣.
Then,

Sn := |Q ∩ Pα
j | = g1 + · · ·+ gn.

and

E
(
1(Q ∩ Pα

j 6= ∅)2|Q∩P
α
j |
)
≤ E[2Sn ]− 1 + E[Sn]

≤ exp

(
(2c1 − 1)

|Q|
N

(
1− λ

1− 2c1λ

))
− 1 +

|Q|
N

≤ |Q|
N

exp

(
(2c1 − 1)

(
1− λ

1− 2c1λ

))

as desired, where the second inequality follows from Theorem 14 and noting that gi is bounded

above by c1, and the third inequality follows because |Q|/N ≤ 1. Note that because λ < 2−c1 ,

the conditions of Theorem 14 hold.

We can now conclude that fP(G) is strongly-resilient.

Corollary 5. Let n be any integer, and let N be chosen according to Claim 7. There exists a

graph G = (ZN , E) such that the function fP(G) : {0, 1}nNc1 → {0, 1} is O((log2 `)/`)-strongly

resilient.

Proof. By Lemma 12 and Theorem 17, fP(G) is (u(1− 2−nc1)N−q) · (t2−nc1)-strongly resilient

for some constant t. For q = O(2nc1), it holds that u(1− 2−nc1)N−q = O(1), which follows
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from applying Fact 1 and Claim 7. The corollary follows in this case by noting that

2nc1 = O(`/(log2 `)). When q ≥ 2nc1 , the corollary holds trivially.

5.3.3 Almost balanced

To prove that fP(G) is almost balanced, we will also use the same general strategy as

in (Mek17). In particular, we will show that P(G) is a design, and then apply Theorem 16.

To aid in the proof that the set of partitions P(G) described is a design, we also define the

following distance dH(x, x′).

Definition 7. For two sequences x, x′ ∈ Z`N , let dH(x, x′) = mina∈ZN |{i ∈ [d] : xi − x′i 6=

a mod N}|.

We now prove that P is in fact a design.

Lemma 13. Let G = (ZN , E) be a graph such that λ(G) = λ. Then if λ ≤ 1/4 and n ≤
√
N ,

then P(G) is a (c1 − 1, n(c1 − 1)/2, e1/λ(2λ)n/2)-design.

Proof. As in (Mek17), we note that for α, β ∈ ZnN and i, j ∈ ZN , it holds that

|Pα
i ∩ P

β
j | = |{k ∈ [n] : βk − αk = (j − i) mod N}| ≤ w − dH(α, β).

Note that if v, u ∈ ZN are distinct, then dH(r(v), r(u)) ≥ c1 − 1, and thus dH(α, β) ≥ c1 − 1

for all distinct α, β ∈ U .

Now fix a path t ∈ T . By Corollary 4, the probability that a random walk (Y1, . . . , Yn) ∈ T

agrees with t in at least n/2 coordinates is bounded above by

(1

λ
− 1− λ

(N/2)1/2λ3/2

)−n/2
exp
( n
N
· (
√
Nλ/2− 1)

1− λ
λ

)
≤ e1/λ(2λ)n/2,

where the inequality follows from the conditions set on λ and n. To see this, let the function
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gi be the indicator function for ti, that is gi(Yi) = 1 if Yi = ti, and is 0 otherwise. Then,

Sn = g1(Y1) + · · ·+ fn(Yn) is the number of vertices that agree with t, and E[Sn] = n/N . If

Sn ≤ n/2, then dH((r(t1), . . . , r(tn)), ((r(s1), . . . , r(sn)) ≥ n(c1 − 1)/2.

Now we can apply Theorem 16 to get the following.

Corollary 6. For any n and d, let N be as in Claim 7, and u = |U|, and assume that

1/3 ≤ bias(u,N, nc1) ≤ 2/3. Let G = (ZN , E) be a d-regular graph such that λ(G) = λ for

λ ≤ 1/4. Then

∣∣∣∣∣Prx∼{0,1}Nn [fP(G) = 1]− bias(u,N, nc1)

∣∣∣∣∣ ≤
C

(
nc1 exp

(
− Ω

(
n(c1 − 1)

4

))
+ exp(−Ω(c1 − 1)) + e1/λ(4c1λ1/2)n

)
.

Proof. Apply Lemma 13 and Theorem 16.

Finally, we prove that fP(G) is almost balanced, using a bound on bias(u,N, nc1) that

follows from Corollary 6 and Claim 7.

Corollary 7. Let n be any integer, and let N be chosen according to Claim 7. There exists

a graph G = (ZN , E) such that the function fP(G) : {0, 1}nNc1 → {0, 1} has the property that

Prx∈{0,1}[fP(G)(x) = 1] = 1/2± c.

for some constant c < 1/10.

Proof. If we let θ = (1− 2−nc1)N , then

bias(u,N, nc1) = (1− θ)u = 1/2± o(1)
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as desired by Fact 1 and Claim 7. The corollary follows from this, Corollary 6, and the fact

that c1 can be made arbitrarily large.
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Chapter 6

The Littlewood-Offord Problem for

Markov Chains

Let v1, . . . , vn ∈ Rd be fixed vectors of Euclidean length at least 1, and let ε1, . . . , εn be

independent Rademacher random variables, so that Pr[εi = 1] = Pr[εi = −1] = 1/2 for

all i. The celebrated Littlewood-Offord problem (LO43) asks for an upper bound on the

probability,

Pr[ε1v1 + · · ·+ εnvn ∈ B] (6.1)

for an open Euclidean ball B with radius 1. This question was first investigated by Littlewood

and Offord for the case d = 1 and d = 2 (LO43). A tight bound of
(
n
n/2

)
/2n = Θ(1/

√
n)

when n is even, with the worst case being when the vectors are equal, was found by Erdős

for the case d = 1 using a clever combinatorial argument (Erd45). Such bounds can be

contrasted with concentration inequalities like the Hoeffding inequality in the scalar case and

the Khintchine-Kahane inequality in the vector case, both of which give an upper bound on

the probability Pr[‖ε1v1 + · · ·+ εnvn‖ ≥ k
√
n] for positive k. In contrast, an upper bound on

Eq. (6.1) can be considered a form of anti-concentration, that is showing that the random
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sum is unlikely to be in B.

In the case that the vi are d-dimensional vectors, a tight bound up to constant factors of

C/
√
n was found by Kleitman (Kle70), and was improved by series of work (Sal83; Sal85;

FF88; TV12). In the scalar case, under the restriction that v1, . . . , vn are distinct integers,

an upper bound of n−3/2 was found by Sárközy and Szemeredi (SS65).

In this chapter, we investigate the case in which ε1, . . . , εn are not independent, but

are obtained from a stationary reversible Markov chain {Yi}∞i=1 with state space [N ] and

transition matrix A, and functions f1, . . . , fn : [N ]→ {−1, 1}, using εi = fi(Yi).

Let µ be the stationary distribution for the Markov chain, and let Eµ be the associated

averaging operator defined by (Eµ)ij = µj, so that for v ∈ RN , Eµv = Eµ[v]1 where 1 is the

vector whose entries are all 1. As in the rest of this thesis, our generalizations will be in

terms of the quantity

λ = ‖A− Eµ‖L2(µ)→L2(µ).

We show that the Littlewood-Offord problem can also be generalized to Markov chains with an

extra dependence on λ, for all dimensions. We additionally consider the one-dimensional case

when the scalars are distinct integers. In all cases, the proof is based off a Fourier-analytic

argument due to Halász (Hal77).

The random variables in all cases are defined in the same way, which we state below.

Setting 1. Let {Yi}∞i=1 be a stationary reversible Markov chain with state space [N ], transition

matrix A, stationary probability measure µ, and averaging operator Eµ so that Y1 is distributed

according to µ. Let λ = ‖A− Eµ‖L2(µ)→L2(µ), and let f1, . . . , fn : [N ]→ {−1, 1} be such that

E[fi(Yi)] = 0 for every i. Then consider the random variables f1(Y1), f2(Y2), . . . , fn(Yn).

We obtain the following theorem that upper bounds the probability that the random sum

is concentrated on any unit ball. In the case that the vi are one-dimensional, the bound is

tight up to a factor of
√

(1− λ)/(1 + λ) in λ. Note that the bound depends on the dimension,

70



while in the independent case, there is no dependence on the dimension.

Theorem 18. Assume the setting of 1. Let x0 ∈ Rd and R ≥ 1
C
√
d

for some universal

constant C ′. For every set of vectors v1, . . . , vn ∈ Rd of Euclidean length at least 1,

Pr[‖f1(Y1)v1 + f2(Y2)v2 + · · ·+ fn(Yn)vn − x0‖`2 ≤ R] ≤ C ·R
√
d

(1− λ)
√
n
.

for some universal constant C.

In the one-dimensional case, we also consider the restriction that v1, . . . , vn are distinct

integers.

Theorem 19. Assume the setting of 1. Then for every set of distinct integers v1, . . . , vn ≥ 1

and b ∈ Z,

Pr[f1(Y1)v1 + f2(Y2)v2 + · · ·+ fn(Yn)vn = b] ≤ C

(1− λ)3n3/2

for some universal constant C.

Finally, we consider a different setting, where rather than choosing ε1, . . . , εn independently,

we choose these uniformly at random from a subset D of {−1, 1}n that we can construct

explicitly.

Theorem 20. For every n, there exists an explicit set D ⊆ {−1, 1}n of cardinality at most

2C1
√
n for some universal constant C1 such that the following holds. For every v1, . . . , vn ≥ 1

and b ∈ R and ε chosen uniformly at random from D

Pr[|ε1v1 + ε2v2 + · · ·+ εnvn − b| ≤ 1] ≤ C√
n
.

for some universal constant C independent of n.

71



One interpretation of Theorem 20 is that one can obtain similar results as in the Littlewood-

Offord problem in one dimension using much less randomness, and in particular, using C1

√
n

bits of randomness rather than n.

This setting was also considered in (KKL17), in which they were able to construct an

explicit set of cardinality n2n
c
, from which a random sample satisfies

Pr[f1(Y1)v1 + f2(Y2)v2 + · · ·+ fn(Yn)vn = b] ≤ log(n)C1/c

√
n

.

for any constant c bounded above by 1. Sampling from the set in Theorem 20 guarantees a

stronger bound on the probability that the sum lands in any interval, while requiring more

randomness when c < 1/2.

6.1 The Littlewood-Offord problem for independent

random variables

As warm up, we present the bound in the independent case for 1-dimensional vectors,

or scalars. These calculations will be used later in the proofs of Theorems 18, 19, and 20,.

This bound was first proved by Erdős (Erd45) who used a clever combinatorial argument

that applies Sperner’s theorem. The proof we present is in spirit, due to Halász (Hal77) and

is based on techniques from Fourier analysis.

We start by presenting the following concentration inequality due to Esséen (Ess66),

which will allow us to upper-bound probabilities. This inequality is in the spirit of Fourier

inversion, but written in a way that can be more readily applied for our purposes.

Theorem 21 (Esséen concentration inequality). Let X ∈ Rd be a random variable taking a
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finite number of values. For R, ε > 0,

sup
x0∈Rd

Pr [‖X − x0‖`2 ≤ R] = O

(
R√
d

+

√
d

ε

)d ∫
ξ∈Rd: ‖ξ‖`2≤ε

|E[exp(2πi〈ξ,X〉)]| dξ.

The following bound is implicit in the proof of Proposition 7.18 in (TV06) and will be

used to further bound the quantities obtained from Theorem 21

Claim 8. Let v1, . . . , vk ∈ R be such that |vj| ≥ 1 for all j. Then

∫ 1

−1

(∏
j∈k

|cos(2πξvj)|

)
dξ ≤ C√

|k|
,

for some constant C.

We now prove the bound in the independent case.

Theorem 22. Let v1, . . . , vn ∈ R be non-zero, and let ε1, . . . , εn be independent random

variables uniform over the set {−1, 1}. Then for all x0 ∈ R,

Pr[|ε1v1 + · · ·+ εnvn − x0| ≤ 1] ≤ C√
n
.

for some constant C independent of n.

Proof. By Theorem 21, the left-hand side can be bounded above by

C1

∫ 1

−1

|E[exp(2πiξ(ε1v1 + · · ·+ εnvn))]| dξ = C1

∫ 1

−1

n∏
j=1

|E[exp(2πiξεjvj)]| dξ

= C1

∫ 1

−1

n∏
j=1

|cos(2πξvj)| dξ (6.2)

≤ C2√
n
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for some constants C1 and C2. The first equality follows from the independence of the εj,

the next equality follows from the fact that εj is uniform over {−1, 1} for all j, and the

subsequent inequality follows from Claim 8.

6.2 The Littlewood-Offord Problem for Random Vari-

ables from a Markov chain

Now we consider the case that ε1, . . . , εn are obtained from a Markov chain. The proof

follows very closely the proof for independent random variables in Proposition 7.18 in (TV06)

which itself is due to Halász (Hal77).

Before proving Theorem 18, we first prove the following that will allow us to upper-bound

negative moments of binomial random variables.

Claim 9. Let x = B(n, p) be a binomial random variable with n trials, each with success

probability p > 0. Then for all positive integers d,

E
[

1

(x+ 1)d

]
≤ dd

ndpd
.

Proof. Note that because d(i+1) ≥ i+d for all non-negative i, the right-hand side is bounded

above by ddE
[

x!
(x+d)!

]
, where the term inside the expected value can be written as

n∑
i=0

(
n

i

)
pi(1− p)n−i i!

(i+ d)!
=

n∑
i=0

n!

(n− i)!(i+ d)!
pi(1− p)n−i

=
n∑
i=0

(
n+ d

i+ d

)
pi+d(1− p)n−i n!

(n+ d)!pd

≤ n!

(n+ d)!pd
.

The claim follows by noting that n ≤ n+ i for 1 ≤ i ≤ d.
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We start by considering the case of 1-dimensional vectors, or scalars. We allow in

this case for at most one-half of the vi to have length less than 1. This will allow us to

generalize to higher dimensions. We note that in the case of independent random variables the

corresponding statement follows from the usual Littlewood-Offord problem, by conditioning

on the εi such that |vi| < 1, for just an increase in the constant factor in the bound.

Lemma 14. Assume the setting of 1. Then for every v1, . . . , vn ∈ R such that |{i : |vi| ≥

1}| ≥ n/2 and x0 ∈ R,

Pr[|f1(Y1)v1 + f2(Y2)v2 + · · ·+ fn(Yn)vn − x0| ≤ 1] ≤ C

(1− λ)
√
n
.

for some universal constant C.

Proof. By Theorem 21,

Pr[|f1(Y1)v1 + · · ·+ fn(Yn)vn − x0| ≤ 1] ≤

C1

∫ 1

−1

|E[exp(2πiξ(f1(Y1)v1 + · · ·+ fn(Yn)vn))]| dξ (6.3)

for some constant C1. Note that

E[exp(2πiξ(f1(Y1)v1 + · · ·+ fn(Yn)vn))] = E

[
n∏
j=1

exp(2πiξfj(Yj)vi)

]
. (6.4)

Let Tj = A − (1 − λ)Eµ, let uj be the vector defined by uj(y) = exp(2πiξfj(y)vj) for

y ∈ [N ], and let Uj = diag(uj). For s ∈ {0, 1}n−1, let t(s) be the set of indices j such that

sj−1 = sj = 0, and also includes 1 if s1 = 0 and includes n if sn−1 = 0. Then the right-hand
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side of Eq. (6.4) is bounded above by

‖U1(T1 + (1− λ)Eµ)U2(T2 + (1− λ)Eµ)U3 · · ·Un−1(Tn−1 + (1− λ)Eµ)Un1‖L1(µ) ≤∑
s∈{0,1}n−1

 ∏
j:sj=1

λ

 ∏
j:sj=0

(1− λ)

 ∏
j∈t(s)

|cos(2πξvj)|

 ,

where the inequality follows by Eq. (2.7) in Lemma 2 in Chapter 2 and evaluating |〈µ, u〉L2(µ)|.

Let t′(s) be the set of indices j ∈ t(s) such that |vj| is greater than 1. When |t′(s)| = 0,

the corresponding product disappears. When |t′(s)| > 0, we can apply Claim 8. Thus, the

right-hand side of Eq. (6.3) can be bounded above by

C1

∑
s∈{0,1}n−1

 ∏
j:sj=1

λ

 ∏
j:sj=0

(1− λ)

 C2√
|t′(s)|+ 1

. (6.5)

Let r : {0, 1}n−1 → [n− 1] be defined as

r = |{j : sj = sj+1 = 0 and |vj| ≥ 1}| ,

so that r(s) ≤ |t′(s)| for all s ∈ {0, 1}n−1. Let s be a random vector from {0, 1}n−1 so that

for each s ∈ {0, 1}n−1

Pr[s = s] =

 ∏
j:sj=1

λ

 ∏
j:sj=0

(1− λ)

 .

By the definition of r and s, the right-hand side of Eq. (6.5) is bounded above by,

C1E

[
C2√
r(s) + 1

]
.

We conclude with the following argument. Let r′ = B(bn/4c − 1, (1 − λ)2) + 1 where
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B(n, p) denotes a binomial random variable with n trials, each with success probability p. It

follows that r′ is dominated by r(s) + 1, and thus

E

[
C√

r(s) + 1

]
≤ E

[
C√
r′

]
≤
(
E
[
C2

r′

])1/2

, (6.6)

where the second inequality follows by Jensen’s inequality. Finally, by Claim 9, the right-hand

side of Eq. (6.6) is bounded above by C
(

(1− λ)
√
bn/4c

)−1

as desired.

Before proving Theorem 18, we prove the following bound on random unit vectors.

Claim 10. Let v ∈ Rd be a random unit vector uniform over the d− 1-dimensional sphere.

Then there exists a constant C such that

Pr

[
|v1| ≥

1

C
√
d

]
≥ 1

2

Proof. We start by noting that the probability density function of v1 at t is proportional to

(1− t2)(d−3)/2, which is also the probability density of the beta distribution, shifted so that

the domain is [−1, 1]. The probability density function at all points is bounded above by

1

2d−3
· Γ(d− 1)

Γ((d− 1)/2)2
≤ 1

2d−3
· C1(d− 1)d−3/2e−d+2

C2
1((d− 1)/2)d−2e−d+1

≤ C2

√
d− 1

for some constants C1 and C2, where the inequality follows from Stirling’s approximation

(see (Jam15)). The claim follows by letting C = C2/4.

We now use Lemma 14 to prove Theorem 18 as follows.

Proof of Theorem 18. Let A ∈ SO(d) be a random rotation uniform over the Haar measure of

the special orthogonal group. Then it is enough to consider the random variable ‖Af1(Y1)v1 +

· · ·+Afn(Yn)vn −Ax0‖`2 . Additionally, the left-hand side in the statement of the theorem is
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bounded above by

Pr[|(Af1(Y1)v1 + · · ·+ Afn(Yn)vn − Ax0)1| ≤ R]. (6.7)

This is because if the absolute value of the first coordinate of the random vector is greater

than R, so is the Euclidean norm.

By Claim 10, for any fixed d, it holds that |fi(Yi)vi| ≥ 1/(C ′
√
d) for at least half of the i

for some constant C ′. By Lemma 14, we have that Eq. (6.7) is bounded above by

C ′ ·R
√
d sup
x0∈R

Pr

[
|(Af1(Y1)v1 + · · ·+ Afn(Yn)vn − x0)1| ≤

1

C ′
√
d

]
≤ C ·R

√
d

(1− λ)
√
n

as desired.

Remark 1. For scalars, Theorem 18 is tight up to a factor of
√

(1− λ)/(1 + λ). To see

this, consider the transition matrix on two states defined by

A =

1−λ
2

1+λ
2

1+λ
2

1−λ
2


with f(1) = 1 and f(2) = −1, and stationary distribution uniform over both states. Such

a Markov chain can be interpreted as first choosing a state at random, and then at each

subsequent step choosing a new state uniformly at random with probability 1− λ, or switching

states with probability λ. We can associate with this walk a sequence of numbers, (X1, X2, . . .)

obtained as follows. Whenever a state is chosen at random, we add a new entry in the sequence

starting at 1, and increase this entry every time the state is switched. Then conditioned on

this sequence, f(Y1) + f(Y2) + · · ·+ f(Yn) is distributed as ε1 + ε2 + · · ·+ εn where n is the
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number of entries in the sequence that are odd. Thus, if n is considered as a random variable,

Pr[f(Y1) + f(Y2) + · · ·+ f(Yn) = 0] ≤ E
[
C√
n

]

If we assume that n is large, then the probability that any given step in the walk is the start

of a entry that will eventually be of odd length is approximately 1/(1 + λ), and thus, n is

approximately distributed like B(n, (1− λ)/(1 + λ)), and thus

E
[
C√
n

]
≤ C√

(1− λ)n/(1 + λ)

6.3 Extension to distinct vi’s

Theorem 22, the bound obtained in the independent case, is tight when v1 = · · · = vn = 1.

It is reasonable to ask if one can obtain better bounds on the probability Pr[ε1v1 + · · ·+εnvn ∈

B] under certain restrictions of v1, . . . , vn. In particular, when the vi are distinct integers,

Sárközy and Szemeredi (SS65) showed that for all x0 and for some constant C

Pr[ε1v1 + · · ·+ εnvn = b] ≤ C

n3/2
, (6.8)

which is a factor n smaller than Theorem 22.

Like Erdős’s proof of Theorem 22, the proof of the above by Sárközy and Szemeredi uses

a clever combinatorial argument. However, Halász’s Fourier-analytic argument can also be

used to prove the above. A similar bound can be achieved in the case of Markov Chains, as

in Theorem 18.

Our proof is based on the techniques used in (TV06) for the same problem, in which the

Fourier-analytic argument is over the group Zp for some large enough p, rather than over the

integers or over the real numbers. The following claim is implicit in Corollary 7.16 in (TV06)
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and will be used in our computation.

Claim 11. If v1, . . . , vn are distinct positive integers, then there exists a prime p such that

p ≥ vi for all i, and

1

p

∑
ξ∈Zp

[
n∏
i=1

| cos(2πξ · vi)|

]
≤ C

n3/2
.

We use Claim 11 to prove Theorem 19 which is a Markov chain version of Eq. (6.8).

Proof of Theorem 19. Let p be the prime in Claim 11. Note that by Fourier inversion,

Pr[f1(Y1)v1 + f2(Y2)v2 + · · ·+ fn(Yn)vn = x0]

≤ Pr[f1(Y1)v1 + f2(Y2)v2 + · · ·+ fn(Yn)vn ≡ x0 mod p]

=
1

p

∑
ξ∈Zp

∣∣∣∣exp

(
−2πi

N
ξ · x0

)
E
[
exp

(
2πi

N
ξ · (f(Y1)v1 + f(Y2)v2 + · · ·+ f(Yn)vn)

)]∣∣∣∣ .
(6.9)

Let Tj = A − (1 − λ)Eµ for all j, and let ui be the vector defined by uj(y) = exp(2πi(ξ ·

fj(y)vj)/N). Then the absolute value of the expectation inside the right-hand side of Eq. (6.9)

is bounded above by

‖U1(T1 + (1− λ)Eµ)U2(T2 + (1− λ)Eµ)U3 · · ·Un−1(Tn−1 + (1− λ)Eµ)Un1‖L1(µ) ≤∑
s∈{0,1}n−1

 ∏
j:sj=1

λ

 ∏
j:sj=0

(1− λ)

 ∏
j∈t(s)

|cos(2πξ · vj)|

 ,

by Eq. (2.7) in Lemma 2 in Chapter 2, where for each s ∈ {0, 1}n−1, we define t(s) to be the

set of indices j such that sj−1 = sj = 0, or sj = 0 if j = 1 or sj−1 = 0 if j = k + 1. Thus by
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Claim 11, we can upper bound on the right-hand side of Eq. (6.9) by

1

2π

∑
s∈{0,1}n−1

 ∏
j:sj=1

λ

 ∏
j:sj=0

(1− λ)

 C

(|t(s)|+ 1)3/2
,

where the inequality also holds in the case that |t(s)| = 0.

As in the proof of Theorem 18, let r : {0, 1}n−1 → [n− 1] be defined as

r = |{j : sj = sj+1 = 0}| ,

so that r(s) ≤ |t(s)| for all s ∈ {0, 1}n−1, and let s be a random vector from {0, 1}n−1 so that

for each s ∈ {0, 1}n−1

Pr[s = s] =

 ∏
j:sj=1

λ

 ∏
j:sj=0

(1− λ)

 .

By the definition of r(s), we have

Pr[f(Y1)v1 + f(Y2)v2 + · · ·+ f(Yn)vn = 0] ≤ 1

2π
E
[

C

(r(s) + 1)3/2

]

As before, let r′ = B(b(n/2c − 1, (1− λ)2) + 1. Then because r′ is dominated by r(s),

E
[

C

(r(s) + 1)3/2

]
≤ E

[
C

r′3/2

]
≤
(
E
[
C4/3

r′2

])3/4

, (6.10)

where again the second inequality follows by Jensen’s inequality. Finally, Claim 9 can be

used to upper-bound the right-hand side of Eq. (6.10).
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6.4 A Pseudorandom Generator for the

Littlewood-Offord Problem

In this section we prove Theorem 20. As stated in the introduction, this theorem can be

interpreted as proving the existence of a pseudorandom generator for the Littlewood-Offord

problem.

We start by describing the construction of D. Our construction will be based on expander

graphs which we define as follows. Given a d-regular graph G = (V,E), let A be the

normalized adjacency matrix of G and let J be the matrix whose entries are all 1/|V |. We

say that a family of d-regular graphs G is a family of expanders if for all graphs G in the

family,

‖A− J‖L2(µ)→L2(µ) ≤ λ

for some constant λ bounded away from 1, where µ is the vector whose entries are all 1/|V |.

In particular 1− ‖A− J‖L2(µ)→L2(µ) is also the spectral gap of the Markov chain that is a

simple random walk on G. When G = (V,E) is d-regular, the stationary distribution is µ,

and the averaging operator is J . It is well known that there exist infinite families of expander

graphs of constant degree d (see for example, (LPS88) and (Mar88)).

Let G = ({−1, 1}k, E) be a d-regular graph from such a family so that ‖A−J‖L2(µ)→L2(µ) ≤

λ for some constant λ independent of k. We let our set D be the set of concatenations of the

labels of walks of length n/k on G, and thus D has cardinality 2k+C1n/k for some constant C1

independent of n and k.

Proof of Theorem 20. Let µ be the uniform measure on {−1, 1}k and let D be as defined
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above. Then by Theorem 21,

sup
x0∈R

Prε∼D[|ε1v1 + ε2v2 + · · ·+ εnvn − x0| ≤ 1] ≤ C

∫ 1

−1

|E[exp(2πiξ(ε1v1 + · · ·+ εnvn))]|dξ.

(6.11)

For each j ∈ [n/k], let Tj = A− (1− λ)J and let uj ∈ R{−1,1}k be the vector defined by

uj(w) = exp(2πiω(w(j−1)k+1v(j−1)k+1 + · · ·+ wjkvjk))S

and let Uj = diag(uj). Then |E[exp(2πiξ(ε1v1 + · · ·+ εnvn))]| is bounded above by,

∥∥U1(T1 + (1− λ)J)U2(T2 + (1− λ)J)U3 · · ·Un/k−1(Tn/k−1 + (1− λ)J)Un/k1
∥∥
L1(µ)

≤

∑
s∈{0,1}k

 ∏
j:sj=1

λ

 ∏
j:sj=0

(1− λ)

 ∏
j∈t(s)

∣∣〈uj, µ〉L2(µ)

∣∣ ,

where the inequality follows by Eq. (2.7) in Lemma 2 in Chapter 2, and for each s ∈ {0, 1}n/k−1,

we define t(s) to be the set of indices j such that sj−1 = sj = 0, or sj = 0 if j = 1 or sj−1 = 0

if j = n/k.

Note that 〈uj, µ〉L2(µ) is the Fourier transform at ξ of the random variable w(j−1)k+1v(j−1)k+1+

· · · + wjkvjk where each coordinate of w is uniformly random over the set {−1, 1}. This

brings us back to the original setting of completely independent random variables, and by

Eq. (6.2), it follows that

〈uj, µ〉L2(µ) =
k∏
`=1

cos(2πv(j−1)k+`ξ).
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1

2π

∑
s∈{0,1}n/k−1

∫ 1

−1

 ∏
j:sj=1

λ

 ∏
j:sj=0

(1− λ)

 ∏
j∈t(s)

k∏
`=1

∣∣cos(2πv(j−1)k+`ξ)
∣∣ dξ ≤

1

2π

∑
s∈{0,1}n/k−1

 ∏
j:sj=1

λ

 ∏
j:sj=0

(1− λ)

 C√
k(|t(s)|+ 1)

,

where the inequality follows from Claim 8, We proceed by using the same argument as in

Lemma 14 starting from Eq. (6.5), which gives an upper bound of C/
√
k · (n/k) = C/

√
n as

desired. Finally, we obtain a construction of the desired size by letting k =
√
n.
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[SS65] A. Sárközi and E. Szemerédi. über ein Problem von Erdös und Moser. Acta Arith.,

11:205–208, 1965. ISSN 0065-1036.

[Sta12] R. P. Stanley. Enumerative combinatorics. Volume 1, volume 49 of Cambridge

Studies in Advanced Mathematics. Cambridge University Press, Cambridge, second

edition, 2012. ISBN 978-1-107-60262-5.

[Tal87] M. Talagrand. Regularity of Gaussian processes. Acta Math., 159(1-2):99–149,

1987. ISSN 0001-5962.

[Tal14] M. Talagrand. Upper and lower bounds for stochastic processes, volume 60 of

Ergebnisse der Mathematik und ihrer Grenzgebiete. 3. Folge. A Series of Modern

Surveys in Mathematics [Results in Mathematics and Related Areas. 3rd Series.

A Series of Modern Surveys in Mathematics]. Springer, Heidelberg, 2014. ISBN

978-3-642-54074-5; 978-3-642-54075-2. doi:10.1007/978-3-642-54075-2. Modern

methods and classical problems.

[Tho48] G. O. Thorin. Convexity theorems generalizing those of M. Riesz and Hadamard

with some applications. Comm. Sem. Math. Univ. Lund [Medd. Lunds Univ. Mat.

Sem.], 9:1–58, 1948.

[Tro15] J. A. Tropp. An introduction to matrix concentration inequalities. Found. Trends

Mach. Learn., 8(1-2):1–230, May 2015. ISSN 1935-8237. doi:10.1561/2200000048.

[TV06] T. Tao and V. Vu. Additive combinatorics, volume 105 of Cambridge Studies in

Advanced Mathematics. Cambridge University Press, Cambridge, 2006. ISBN

978-0-521-85386-6; 0-521-85386-9. doi:10.1017/CBO9780511755149.

[TV12] T. Tao and V. Vu. The Littlewood-Offord problem in high dimensions and a

90
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