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Introduction

Many problems in the engineering sciences lead to indefinite systems of par-
tial differential equations. Important examples are the Stokes equations of
fluid dynamics, modeling the flow of an incompressible viscous fluid, and
mixed formulations of problems from linear elasticity, e.g. for almost incom-
pressible materials, beams and plates. These problems can be analyzed in the
framework of saddlepoint problems with a penalty term. There are also im-
portant scalar indefinite partial differential equations, such as the Helmholtz
equation which plays a fundamental role in many mathematical models of
physical phenomena, e.g. the solution of Maxwell’s equations; see Krizek and
Neittaanmaiki [59].

We now give an abstract formulation of the problem. Assume that A :
X — Y is an isomorphism and that F € Y', where X,Y are Hilbert spaces
and X',Y" their duals. Consider the abstract problem

Az = F. (0.1)
Discretizing (0.1) by finite elements, we obtain a sparse linear system
Anzy = Fh,

which can be of very large dimension.

Ever since electronic computing became important, there has been a lot of
research devoted to the development of (preconditioned) iterative methods
for the solution of linear systems. It is not an exaggeration to say that
the theory for symmetric, positive definite problems is very well advanced.
Among the fastest algorithms are multigrid/-level and domain decomposition
methods which often converge in O(1) iterations when applied to this class of
problems. Such a method is also often used as a preconditioner for a Krylov
space method, which serves as an accelerator. The method of choice as an

accelerator for symmetric, positive definite systems is the conjugate gradient



algorithm. Turning to indefinite or nonsymmetric systems, no similar unified
approach exists yet, although a lot of research has been carried out to extend
the existing framework to these classes of problems.

It is the goal of this thesis to present new results on preconditioning in-
definite linear systems arising from certain differential problems. As Krylov
space methods, we use the conjugate residual algorithm for symmetric indef-
inite problems and GMRES and BI-CGSTAB for nonsymmetric systems.

We first consider saddlepoint problems with a penalty term. Then, we

have

A Bt
A= CF= () tep1 amdx=v=vxm,
B —tC g

where V, M, M, are certain Hilbert spaces with M, dense in M and where
A, C are linear operators fulfilling certain ellipticity conditions. The bilinear

form associated with the operator B satisfies an inf-sup condition, i.e.

> 0o >0
M. e [Ipllu JJully =707

where b(u,p) :=< Bu,p >. From these assumptions, we know, from the
famous theory of Babuska and Brezzi, that A defines an isomorphism. These
results are also valid for properly chosen finite element spaces. We then
require, additionally, that the constants are independent of the discretization
parameter h. In the remainder of this indroduction, we restrict ourselves to
the discretized versions of Problem (0.1), thus we can drop the index h.

Several techniques have been developed to solve saddlepoint problems,
with or without a penalty term, iteratively. One of our goals is to develop
and analyze methods with convergence rates independent of the penalty pa-
rameter. We have found little in the literature on preconditioned Krylov
space methods concerning this issue.

The oldest algorithm for saddlepoint problems is Uzawa’s algorithm; see
Arrow, Hurwicz, and Uzawa [5]. One common variant of it is essentially a
steepest descent algorithm applied to the Schur complement t2C' + BA 1 B®
of the indefinite linear system. When this algorithm is used, we have to
solve a linear system of the form Ad = d quite accurately. This can require
many iterations since this system normally is not well conditioned and it is
often quite expensive to solve by a direct method. Therefore many authors

have considered the effect of an inaccurate inner iteration for A=!, see Bank,



Welfert, and Yserentant [13|, Bramble, Pasciak, and Vassilev [21], Elman
and Golub [43], and Rgnquist [68].

To avoid inner and outer iterations and to provide a much simpler ap-
proach, some authors have in recent years tried to precondition the whole
indefinite system and using a conjugate residual algorithm as an accelerator;
see e.g. Rusten and Winther [69], and Silvester and Wathen [85, 76]. This is
closely related to our approach. In the first of these papers, a preconditioner
for a saddle point problem without a penalty term is analyzed; in the others,
problems arising from stabilized and unstabilized Stokes flow are considered.
Only the stabilized case results in a saddle point problem with a penalty
term. In contrast to certain problems arising in elasticity, where the penalty
parameter normally arises from the material or the geometry, the penalty
term in the stabilized Stokes case can and should be chosen to stabilize an
otherwise unstable discretization and to ensure fast convergence of the itera-
tive method. The main goal in Silvester and Wathen [85, 76] is to provide a
good criterion for choosing this parameter in the context of preconditioning.
We are not going to discuss this aspect here further. We refer the reader
to the survey on stabilization techniques presented in Fortin [46] and to the
references therein.

A third possibility is to transform the indefinite problem into a positive
definite system by introducing a new inner product. Then the conjugate
gradient method can be applied; see Bramble and Pasciak [20]. By using the
results developed in Chapter 5, their transformation can be analyzed in the
context of triangular preconditioners.

In our work, we present a blockdiagonal preconditioner,

R A o
Bp = s 0.2
b (Oc) 02)

where fl, C are V —elliptic and M —elliptic, respectively. Thus, Bp is symmet-
ric, positive definite. The preconditioner Bp is assumed to be easily invertible
and it ideally should define a norm equivalent to the standard norm in X;
the preconditioning can be interpreted as a change of basis resulting in a well
conditioned operator. We show that the conjugate residual method applied
to the preconditioned system BBIA can be made to converge independently
of the discretization and the penalty parameters. We note that, except for
our blockdiagonal preconditioner, all of the methods mentioned before ex-

plicitly assume that the subblock A of A is positive definite. However, the



theory of Babuska and Brezzi indicates that this is not a necessary but only a
sufficient condition for A being an isomorphism. Our new analysis of block-
diagonal preconditioners can be applied, whenever A is an isomorphism, i.e.
when A satisfies the assumptions of the Babuska-Brezzi theory.

Our second preconditioner has the form

R A B
By = -,

where A and C again are V— and M —elliptic, respectively. Thus, By is
nonsymmetric with an indefinite symmetric part. Using By in combination
with Krylov space methods like GMRES and BI-CGSTAB, we also obtain an
iterative method that can be made to converge independently of the critical
parameters. A new analysis of triangular preconditioners for symmetric sad-
dlepoint problems is presented. We show that the preconditioned system is
symmetrizable and use this property to derive GMRES convergence estimates
dependent on /k. Here & is the condition number of the preconditioned sys-
tem. Thus, we obtain a convergence estimate for a non-symmetric system
matching, except for a constant leading factor, the well-known formula of the
conjugate gradient method applied to symmetric, positive definite systems.

It turns out that our analysis of triangular preconditioners also provides
a proof of a result due to Bramble and Pasciak [19].

As a second, somewhat different, example of indefinite problems, we con-
sider scalar second order symmetric elliptic equations, such as the Helmholtz
equation, i.e.

A:=A-C,

where A,C' > 0 represent the part of second and zero order, respectively.
The preconditioner is chosen as a good preconditioner for the principal part
of the given differential operator, i.e. B:=Aisa good preconditioner for A.
Then, our preconditioning strategy can again be interpreted as a change of
basis. We show that the conjugate residual method applied to the precondi-
tioned system can be made to converge independently of the discretization
parameters.

The numerical experiments show that all of our preconditioners lead to
robust iterative methods.

We note that our positive definite preconditioning techniques suggested

for saddlepoint problems with a penalty term and for the Helmholtz equa-
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tion, are generally valid for problems like (0.1), where A is a symmetric
isomorphism. This result appears to be new.

The remainder of the thesis is organized as follows.

In the first chapter, we review Babus§ka’s inf-sup and sup-sup conditions.
They are necessary and sufficient for A being an isomorphism. Then, we give
a short description of the Petrov-Galerkin method.

In the second chapter, we give a short general introduction to Krylov
space methods and preconditioners, followed by a description of the conjugate
residual method, GMRES and BI-CGSTAB. We also discuss some a priori
convergence estimates which relate the convergence rates to the spectrum and
the field of values of the preconditioned system. In the second part of this
chapter, we review an abstract framework for the Schwarz methods which
allows us to analyze a large family of preconditioners including multigrid and
domain decomposition methods.

In the third chapter, we introduce the theory of saddlepoint problems with
a penalty term. In the first part, we give conditions on the subblocks A, B,
and C which guarantee that Babugka’s inf-sup and sup-sup conditions for A
are satisfied. In the second part, we discuss three examples of linear elas-
ticity: the equations of linear elasticity for almost incompressible materials,
the Timoshenko beam, and the Mindlin-Reissner plate in the Brezzi-Fortin
formulation.

In the fourth chapter, we introduce our new analysis of blockdiagonal
preconditioners for saddlepoint problems with a penalty term. This presen-
tation is based on two reports [57, 58]. We give a condition number estimate
and numerical results for a problem arising in linear elasticity.

In the fifth chapter, the triangular preconditioner is discussed. We show
that the spectrum of the preconditioned system and its field of values, with
respect to a certain energy metric, are bounded independently of the dis-
cretization and the penalty parameters. New convergence estimates for GM-
RES and numerical results using preconditioned GMRES and BI-CGSTAB
are presented.

Finally, we show in the sixth chapter that the techniques developed in
the fourth chapter also work well for the case of scalar symmetric second
order elliptic equations. We give a condition number estimate and present

numerical results for the Helmholtz equation.






Chapter 1

Background Results

1.1 The Abstract Problem

Let X,Y be Hilbert spaces, X, Y be the duals of X,Y and let < -, > denote
the dual pairing for X', X or Y',Y. Let A(-,-) : X xY — R be a continuous
bilinear form. Associated with it is a linear operator A : X — Y, defined
by

< Az,y >= A(z,y) VyeY.

Consider the abstract problem:
Find z € X, such that
Az = F,

where F € Y'. This problem is equivalent to the variational problem
Alz,y) =< F,y> YyeY. (1.1)

The next theorem on the uniqueness and existence of the solution of 1.1,
is apparently due to Necas [64], Theorem 3.1. Its importance for the finite
element theory was pointed out by Babuska; see [12, 9, 11, 10].

Theorem 1.1 Let X,Y be Hilbert spaces with norms ||| - |||x, ||| - |||y- The
variational problem (1.1) has a unique solution if the bilinear form A(-,-)

satisfies the following three conditions

(i) (sup-sup condition)
Jv1 > 0, such that

A(z,
sup SUPM <, (1.2)
sex yev |||z/|[x![|yllly



(ii) (inf-sup conditions)
Fyo > 0, such that

inf sup Az, )

2eX yey |||zl x| |yl| |y

o > 0, such that

- Az, y)
It sup ————7—
veY zex |||z|||x|||yll|v

AV

Yo- (1.4)

For a proof of this theorem; see Necas [64] or Babuska [9].
If the bilinear form .A(:,-) is symmetric and X = Y, then we only have to
prove one inf-sup condition. The well-known Lax-Milgram Lemma can easily

be derived from the previous theorem.

Lemma 1.1 (Lax-Milgram) Let X be a Hilbert space with the norm |||-|,
A(-,-) : X x X — R a continuous X —elliptic bilinear form, i.e.

AC4 > 0, such that A(z,y) < Calllz|||||ly|]|| Vz,y € X,
Ja > 0, such that A(z,z) > «afllz]||® Vz e X.

Let F: X — R be a continuous linear functional, i.e. F € X . Then, the

variational problem
Az, y) = F(y) Vy€ X,

has a unique solution.

Proof: The sup-sup condition of Theorem 1.1 follows directly from the con-
tinuity of the bilinear form A(-,-). We obtain the first inf-sup condition

from

Alz,y)  Alz,z)
>
vex [[|yllly — lllelllx

The second inf-sup condition can be derived analogously since X =Y.

2 7 |l x-

1.2 The Petrov-Galerkin Method

Let A > 0 denote a “small” parameter, which in the finite element method
represents the meshsize, i.e. the diameter of a typical finite element. We

assume that X; C X,Y, C Y are finite dimensional subspaces with dimX; =
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dimY, = ny for all A > 0. The numerical approximation z; € X} of the

solution of problem (1.1), is given by
A(Cﬂh, yh) =< .7:, Yn > Vyh S Yh. (15)

If the spaces X} and Yj are chosen, such that Theorem 1.1 is still valid, we

obtain the following generalization of Cea’s Lemma

Lemma 1.2 Let A(-,-) and F satisfy the assumptions made in Theorem 1.1.
Let Xy, and Y, be chosen, such that the sup-sup and inf-sup conditions are

still valid uniformly. Then,

Yy .
|z —znlllx < (1+ %) negf,h\IW—zh\Hx-

For a proof of this lemma; see e.g. Braess [15], pp. 116-117. This application
of Theorem 1.1 to the theory of finite elements is due to Babugka; see [12, 9,
11, 10].
The special case X = Y (resp. X, = Y3) is also known as the Galerkin
method.

Having derived a finite dimensional version of (1.1), we can also formulate
it in a matrix/vector setting. Let (¢;)j=1,..n, (resp. (¥;)j=1,..n,) be a basis
of X, (resp. Y3), such that

Nh Np
zh =) &5 and yn = D _miv;.
j=1 j=1
From (1.5), we derive the matrix form
Ah£ = fha

where Ay, == (A(¢s, ¥)))ij, Fr == (F(¢;)); and £ := (&), foré,5 =1,...,np.
The matrix Ay, is called the stiffness matriz and the vector F;, called the load

vector.
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Chapter 2

Iterative Methods and

Preconditioners

2.1 Iterative Methods for Indefinite Nonsym-

metric Problems
We consider iterative methods for the solution of linear problems of the form
Az = F,

where A: X — X', is a continuous symmetric operator on a Hilbert space
X and F € X'. There exist many classical iterative methods to solve this
problem and discretized versions thereof. Among them are the Richardson,
Gauss-Seidel and Jacobi methods and the Chebyshev semi-iterative method.
All these methods converge for positive definite symmetric problems, al-
though the Richardson and the Jacobi method might require an adequate
damping parameter. The Chebyshev and the Richardson algorithms con-
verge even for some nonsymmetric problems but some spectral information
is required to assure convergence, see e.g. Manteuffel [62]. More precisely, if
we restrict ourselves to real operators, we require the spectrum to be con-
tained in the right or left half plane. For the Chebyshev method, we then
have to choose two parameters which depend on the knowledge of the convex
hull of the spectrum of the nonsymmetric problem. The most common ex-
amples thereof are given by a positive real interval and by an ellipse that is
contained in the right or left half plane and is symmetric with respect to the

real axis. Additionally, it can easily be shown that Richardson’s method fails

11



to converge for all complex damping parameters if A has both, positive and
negative real eigenvalues, as it is the case for symmetric indefinite problems.

Krylov space methods normally do not require any a priori spectral infor-
mation and there are methods in this class especially designed for indefinite
and nonsymmetric problems. We will therefore restrict ourselves to these

methods.

2.1.1 Krylov Space Methods

The practical use of Krylov space methods for the solution of Az = F are
based on the assumption that the matrix-vector product Az is relatively

inexpensive. The iterates of these methods are of the form
Tm ‘= To +pm—1(A)’r0a (21)

where p,_1 € Pm_1 is a polynomial of degree m — 1 and rq := F — Az is

the initial residual associated with the initial guess zy.Thus,
Tm € o + ’Cm(’l"o, A),

where K,,(r0, A) := span{ry, Arg,..., A" re} is the Krylov space of di-
mension m. There are two common recipes to select the iterates. One is to
minimize the residual r,,, := F — Az, in a suitable norm, i.e.

= i F — Ac|.
lrmll =, min 7 — Az

The other is to require that the residuals satisfy a certain orthogonality
condition,
(rm,8) =0 Vs &€ Sp,

where S,, is an appropriately chosen Krylov space of dimension m. The
method of conjugate residuals and GMRES are examples for algorithms that
minimize the residual while BI-CGSTAB is a method based on a combination
of an orthogonality relation and a local minimization property.

At first glance, the construction of the iterates (2.1) seems to require
long-term recurrences. It is clear that such an update in each iteration step
could be quite expensive in terms of both, computing time and memory
requirements with these costs increasing with m. When solving a problem,
where A is symmetric, we are able to give a Krylov basis update that can

be constructed from a three-term recurrence. More generally, Faber and
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Manteuffel [45] show that [—term recurrences exist if A4 is % —normal(l — 2),
i.e. if
HA = (p(A)'H,

where p € P; 5 is a polynomial of degree [ —2 and H is a non-singular matrix.
There is also another way of reducing the computing time and memory re-
quirements of Krylov space methods using long-term recurrences: One fixes
the dimension m of the Krylov space in advance. If the prescribed accuracy
is not obtained after m iterations, then the method is restarted with the
starting vector obtained from the previous cycle. Such a truncated version
of GMRES is given in 2.1.4.

From the formula for the iterates (2.1), we can easily derive representa-
tions of the residuals r,, := F — Ax,, and of the errors e,, := x — x,, with

respect to the initial residual r¢ and the initial error eq:
Tm = (I — Pm—1 (A)A)TO
= ﬁm(A)TO,
em = (I —pm_1(A)Aeg
= ﬁm(A)eo

For a more detailed discussion of Krylov space methods, we refer the reader
to Bruaset [31].

2.1.2 Preconditioning

The performance of Krylov space methods can be often significantly improved
by using appropriate preconditioners. Assume that we have two regular linear
operators By, and Bg. Then, we understand by a preconditioned Krylov space

method the original algorithm applied to
B'ABRly = B;'F, Bply==z.

The corresponding Krylov space is then IC,,(Bg 7o, B ABg'). We make a
distinction between left preconditioning (Bg = I) and right preconditioning
(Br = I). It often does not matter if left or right preconditioning is used
as far as the cost of computation is regarded. However, for Krylov space
methods that minimize the residual in the euclidean norm such as GMRES
(cf. 2.1.4), the choice can make a difference. We write the preconditioned

system in the form
AP ) — )

13



where

AP =B 1A 2P =g FO .=BlF

in the case of left preconditioning and

AP .= ABg!, z® .= Bpz, F@®) .= F

for right preconditioning. Thus, the k—th residual r,(cp) is minimized in the

euclidean norm over the Krylov space IC(r((,p ), AP,
In the case of right preconditioning, the quantity minimized is the eu-

clidean norm of the residual of the unpreconditioned system, i.e.

Il = 179 = AP,
= |7 = Al
= lrell-

In the case of left preconditioning, the norm of the residual r,(cp ) might

be a good approximation of the norm of the error of the unpreconditioned
system, i.e. if A®) x I, then
I = 1F® — AP,
= [APATF — )|,

[ = kl2-

%

The best choice of the preconditioners depends on the problem and on
the Krylov space method applied to it. The construction of optimal precon-
ditioners, i.e. of preconditioners that lead to iterative methods converging
independently of parameters, such as the mesh size or the Lamé parameters,
is a major concern of this thesis.

For some historical remarks on preconditioning, we refer to Golub and
O’Leary [49].

2.1.3 The Conjugate Residual Method

The preconditioned conjugate gradient method (PCG) has gained great pop-
ularity for positive definite problems. A natural generalization for symmetric
indefinite problems is the preconditioned conjugate residual method (PCR);
see e.g. Ashby et al. [6], and Hackbusch [53]. We describe the PCR-method
and give a convergence estimate that is determined by the condition number

of the preconditioned linear system.
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Algorithm 2.1

Initialization :

Iteration :

while

old
bbot

end

15

F — Axy,

A

B lqm,

(T Sm)2,

(Qma 5m)2;
btop/bbota

Tm + ADm,

Tm — AQm,
As.,

(tm, Sm)2,
btop/bbota

(tm’ Sm—l),
btop/bgfff

Sm — CoPm — C1Pm—1,
APmi1 * /

tm — ®oGm — Q1qm-1,
pm+1/||pm+1||2’
Im+1/ ||Pm+1ll2,
Sm

Pm,

Pm+1,

m;

Im+1;

bbota
m+1,



The PCR-method is an algorithm to solve Ax = F with a symmetric
indefinite operator A and a positive definite preconditioner B. We will give a
stable version that is based on a three term recurrence; see Hackbusch [53],
p. 270.

The implementation provided here, only requires one matrix-vector prod-
uct per step with each of the operators A and B~!. This is achieved at the
expense of introducing three additional vectors g, := Apm, $m := B_lqm, and
tm := As,,. Here, the matrix-vector product ¢,, := Ap,, can be computed

from the three term recurrence for p,,.

Remark 2.1 Attention should be paid to scaling: If we assume that A is an
optimal positive definite preconditioner but choose B:= c/l, c € RT, then A
will grow in proportion to Cm% This can easily be seen by induction. This
phenomenon seems to be well known but not discussed in the literature. The
easiest way of fixing this problem is to normalize p,11 in every iteration; we

have done so in our implementation.

We introduce the following notation
K(B1A) = p(B 1 A)p((B~1A) ), (2.2)

where p(B~'.A) denotes the spectral radius of B~'.A. The next theorem can be
found in Hackbusch [53], p. 270. It gives an upper bound for the convergence
rate of the PCR-method.

Theorem 2.1 Let the reqular matriz A be symmetric and B be symmetric

positive definite. Then the m-th iterate x,, of Algorithm 2.1 satisfies

2cH
1+ 2+

||3_1/2(A:cm - F)l2 < ||l§_1/2(«4370 — F)ll2 (2.3)

where ¢ := :—:L}, k= k(B 1A) and § —1<pu <% VuelZ

This estimate can be improved if A is only weakly indefinite, i.e. has
only a few negative eigenvalues. In this case, it can be shown that the
asymptotic convergence rate is determined by the square root of the condition
number. The next theorem can be found in Hackbusch [53], p. 272. The
bound depends on the number of negative eigenvalues k£ but for k fixed, we
have the same asymptotic convergence rate as for the conjugate gradient
method.

16



Theorem 2.2 Let the reqular matrix A be symmetric and B be symmetric
positive definite. Assume further that the number of negative eigenvalues k
1s bounded for h — 0 and that there exist constants, 0 < v_ < I'_, and
0 < vy < Ty, such that all non-positive eigenvalues are contained in the
interval [—T_,—~_] and all positive eigenvalues in |[yy,Ty] for all h > 0.
Then the m-th iterate x,, of Algorithm 2.1 satisfies

1+F+/’}/,
C

k
IB2(Az™ — F)|l, < 2 ( ) " |BTA(AS — F)ll: (2.4)

VE—1 =~ Ty
where ¢ := YE K= —*.
ViE+1? T+

Remark 2.2 Obviously, we can replace both, & and T,/v_,
by an upper bound of the condition number k(B7'A) =
p(B*A)p((B*A)™Y), where p(B'A) is the spectral radius. Thus, in
this special case when we only have a few negative eigenvalues, the conver-
gence rate of the PCR-method is determined asymptotically by the square
root of the condition number of the preconditioned system and by the number

of negative eigenvalues.

2.1.4 The Generalized Minimal Residual Method

We now consider a Krylov space method for general nonsymmetric matrices
that is based on minimizing the residual. In contrast to the PCR method,
the minimal residual algorithms for nonsymmetric problems typically use
long term recurrences and work and storage requirements grow linearly with
the number of iterations. Thus, it often becomes necessary to use restarted
or truncated versions instead of running the full algorithm.

The best-known scheme of this type is GMRES, due to Saad and Schultz
[71]. GMRES is a generalization of MINRES, see Paige and Saunders [66],
to general nonsymmetric matrices, where the Arnoldi method replaces the
symmetric Lanczos algorithm in the construction of the orthonormal basis
for the Krylov space K,(ro,.A); see Saad [70]. We will give a version of the
algorithm using right preconditioning; see Bruaset [31], pp. 50-51. We have
chosen right preconditioning for GMRES since then the quantity minimized
is the euclidean norm of the residual of the original system; see 2.1.2.

For each iteration step, one matrix-vector product is required with the

system matrix A as well as with the preconditioner B! In addition, m
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vectors have to be stored in the m-th iteration step and a small least squares

problem has to be solved in each iteration.

Algorithm 2.2

Initialization :
ro := F — Axg,
v1 == 71o/|70ll2,

Iteration :

forj=1,2,....m

q:= .Al;’_lvj

fori=1,2,...,7
hij == (g, vi)2

end

w = q — iy hijv;

hjaj = [Jwl|2

Vjt1 = w/hjyj

end

Minimize J(ym) = ||Be1 — HmYml||2

T = Lo + B VY,
where e; is the unit vector in the direction of the i-th coordinate direction,
Vi := (v1,V2, ., Up), Hp == VEAB™1V,, and

_ H,
Hﬁ::( )EIU”IXRW.
h t

m+1mC€p,
If many iterations are needed to achieve the desired accuracy, GMRES can
be restarted, i.e. the algorithm is repeated with zy := x,,. This procedure is
repeated until the prescribed tolerance is obtained. The least squares prob-
lem that appears in the algorithm is normally solved by a QR factorization.
For a more detailed analysis of GMRES, we refer the reader to the original
work by Saad and Schultz [71].

We now give some convergence bounds for GMRES. We are mainly inter-
ested in a priori bounds based on properties of ABL. Eigenvalue informa-
tion of the preconditioned operator is generally not sufficient if the problem
is nonsymmetric; see Nachtigal, Reddy, and Trefethen [63]. The best a pri-
ori bounds known today are based on the field of values of AB~'. For an
arbitrary matrix M € R™*", the field of values is defined by

Mz

Ttr

W(M):={

1 0#£z € C).
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The following theorem provides an upper bound for the convergence be-
havior of GMRES; see Starke [82].

Theorem 2.3 The residuals computed by GMRES satisfy

il <(1—-77)™2
[[70][2
where
7 = min{Rez : z€ W(AB)}
) ' AB 'z n
= mln{70¢$€R}
and

7 := min{Rez : z € W((ABfl))fl}
s{(AB ) e

e : 0#z € R}

= min{

Let us point out that a well known bound given by Elman, cf. [41] The-
orems 5.4 and 5.9, can be derived from Theorem 2.3; see Starke [82], p. 25.
The bound due to Elman is

[7m |2 <(1- )‘minA(M)z)m/z

[I7oll2 I AB=1[3
where Apmin(M) is the minimum eigenvalue of M = (AB ! + (AB 1)t)/2.
We observe that

I

c(AB ) g

7 = min{ o :0#£z € R}
t ARBR-1
= min{ yAAB Y .o #y € R"}
y{(AB 1) AB 1y
r
I AB-1|[3’
and
. TtAB 'z n
T = mln{T:O#xER }
t AR-1 t( AR-1\¢
_ min{(z AB 'z)/2 —;tix (AB 1)'x)/2 04z €R")

Although, we have already mentioned that eigenvalue information, nor-
mally, is not sufficient to predict the convergence behavior of GMRES, there
are some special cases where eigenvalue bounds give us some information.

When the preconditioned system is normal, we have the following
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Theorem 2.4 For GMRES applied to a normal matriz, we have

”rm”2§ min max [p(A)],
IToll2 ~ PEPm.P(0)=1 rco(4B—1)

where o(AB 1) denotes the set of eigenvalues of AB .

For a proof, see Nachtigal, Reddy, and Trefethen [63], Theorem 2.

For diagonalizable systems, we have

Theorem 2.5 If AB1 s diagonalizable, i.e. there exists a reqular matrix
Q, such that AB™' = QDQ™', D := diag{\;}, where )\; is an eigenvalue of
AB~!, we have

[[7ml2 :
—= < k(9 min max M,
||7'0||2 o ( ) PEPm.p(0)=1 Aco(AB-1) |p( )|
where k(Q) = ||Q|2||Q 7|2 is the condition number of Q and o(AB™)

denotes the set of eigenvalues of AB1L.

For a reference to this theorem; see Saad and Schultz [71], Proposition 4.
Consequently, the convergence rate of GMRES can be bounded in terms

of the eigenvalues of the preconditioned system when AB~! is normal or

close to normal. Unfortunately, nonsymmetric matrices are in practice rarely

normal.

2.1.5 The Stabilized Bi-Conjugate Gradient Method

Another popular method for nonsymmetric indefinite problems is the sta-
bilized bi-conjugate gradient method (BI-CGSTAB) due to van der Vorst
[83]. An experimental comparison of BI-CGSTAB and GMRES (and other
methods), is given in Schmid, Paffrath, and Hoppe [75]. Since there are no
a priori bounds known to predict the convergence behavior of BI-CGSTAB,
we only give the algorithm for BI-CGSTAB (with left preconditioning.)
BI-CGSTAB needs two matrix-vector products per iteration step with
each of the linear operators .4 and B~. This is twice as many as for GMRES.
However, unlike GMRES, it is based on a 3-term recurrence and thus requires

less memory.
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Algorithm 2.3

Initialization :
initial quess Ty 19 := F — Axy,
To arbitrary such that
(To,70)2 # 0, €.g. To =0
po=0a=wy:=1
vo=po:=0
Iteration :
while ||r;]|2/||roll2 > €
pi == (To,Ti—1)
B = (pi/pi-1)(a/wi 1)
pi =11+ B(Pic1 — Wim1vi-1)
y = Ap;
V; 1= B_ly
a = p;/(To,vi)2
S:i=Ti 1 — Qu;
z:= As
t:=B"1z
w; := (t,8)2/(t,1)2
T; = Ti_1 + ap; + w;S
T i = 8§ — wst
1:=1+1

end

2.2 Abstract Schwarz Methods

We now review an abstract framework for the construction of positive definite
preconditioners. Such preconditioners provide essential tools in our design of
preconditioners for symmetric indefinite problems. The framework includes
domain decomposition and multilevel /multigrid techniques; it is named after
H.A. Schwarz who, in 1869, published what is believed to be the first domain
decomposition method.

For the time being, we consider the problem

Alz,y) =< F,y> YyeX,

where A(-, -) is a positive definite symmetric bilinear form and X is a Hilbert

space. Let the exact solution of this variational problem be denoted by z*.
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We introduce a subspace splitting of X into N + 1 subspaces X; C X, i =
0,1,...,N,ie.
X=Xo+X;+...+ Xn. (2.5)

This subspace splitting does not necessarily have to be a direct sum; in fact,
there are important splittings where the representation of an element of X
can be constructed in different ways out of elements of the subspaces X;. For
each subspace X;, we introduce a positive definite symmetric bilinear form
Bi(-,:) : X; x X; — R, and an operator 7; : X — X;, defined by

Bi(Tix,y) = Az,y) Vy € X;.

The B;(-,:) can be regarded as an approximation of A(-,-) on X; x X; and
the 7; as an approximate projection; 7; is an A—orthogonal projection onto
X; when we use B;(-,-) = A(-, ).

We can derive an operator representation of the 7; by using the operators
associated with the bilinear forms. As already done for A in Section 1.1, we
define B; : X; — X; by

< Biz,y >= Bi(z,y) Yy € X;.
From the definition of 7;, we obtain
T. = B ' A

The product B; A is well defined since X; C X implies X "C le'-

There are basically two different paradigms: The multiplicative and the
additive Schwarz method. Some hybrid methods have also been constructed
mixing these two basic ideas; see Dryja, Smith, and Widlund [38] and the

references therein.

Multiplicative Schwarz Method (MSM)

The MSM is an iterative method for solving the operator equation

7-msm = gmsa (26)
where 7, is defined by
N
Tms =1- H(I - TNfi)
i=0



and Gp,s by
gms = ﬁnsx*-

We note that G,,; can be computed without knowing the exact solution since
the polynomial 7,,; does not contain any constant terms. Therefore, we can
compute G; by applying B; ' to a known vector

G = Tz"
= B;'Az*
= B;'F.

The operator 7, is normally nonsymmetric. Problem 2.6 can be solved by
using any Krylov space method for nonsymmetric problems, e.g. GMRES
or Bi-CGSTAB; see Section 2.1. It is also possible to symmetrize 7,,,; see
Dryja, Smith and Widlund [38] for three alternatives:

® Toms1 =1 — (Hfio(I - 7;)) (Hfio(I _ TN—i)) ,
¢ Toms2 =1 —(IT—"To)---(I—=Tn)---(I—"To),
i 7;ms3 = 7;n5+7-n€s

If the operators Tymq,t = 1,2, 3, are used, the right hand side G,,,,; has to
be modified appropriately.

Additive Schwarz Method (ASM)

The ASM is an iterative method for solving

77151' = gasa (27)
where 7, is defined by
N
71-15 = Z 7;
i=0

and G,, by
N
gas = Zgz, g1 = 7;1'*.
=0

As in the multiplicative case, we can compute G,, without knowing the exact

solution z.
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Algorithms

The most prominent members of the family of Schwarz methods are domain
decomposition and multigrid methods. Since this field consists of a large
number of topics, we will not try to give a complete description of these
methods but will only try to give a short overview of the two main types of
methods. Normally, a domain decomposition method does not have to be a
two-level algorithm. But without a second level which corresponds to a global
communication operator, the performance of the methods often deteriorates
when the number of subdomains is increased. We denote by €2 the domain,

on which the differential problem is defined.

Two-Level Methods

A two-level method corresponds to a space decomposition into at least two

spaces, i.e.

X =X,+XW.

Here, the space X, is a coarse space that is used to provide a mechanism
to transmit global information. It can for example be a finite element space
on a coarse triangulation of the original domain . The space X1 could
then correspond to a fine grid triangulation obtained from the coarse one by

refinement; see Figure 2.1.

One possibility to construct a domain decomposition method, is to de-
compose the domain (2 into several overlapping subdomains 2;, ¢ =1,..., N,
such that Q = Y, ;. For each subdomain €;, we introduce a subspace X,
such that X =¥ X;.

To obtain a domain decomposition into overlapping subdomains, one can
first divide €2 into non-overlapping subdomains Q’Z and then extend them

elementwise by the desired overlap; see Figure 2.1.

For overlapping Schwarz methods using nonnested spaces and unstruc-
tured grids, see Cai [32], Chan and Smith [36], and Chan, Smith and Zou
[35]. There are also non-overlapping domain decomposition methods that
can be analyzed within the abstract Schwarz framework. Since we are not
using these methods in this thesis, we refer to Dryja, Smith, and Widlund

[38] for further discussions and references.
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Figure 2.1: A two-level mesh and an overlapping subdomain.

Multilevel Methods

A natural extension of two-level methods can be obtained by introducing

several coarse spaces or levels, such that we get the subspace splitting
X=X+ XU 4 x® 4 4+ x0O

where we assume that X® represents the finest level and X, the coarsest
one. As in the two-level case, we could start from a coarse finite element
triangulation and successively refine. For each triangulation obtained by
refinement, we introduce a subspace X(). By applying the multiplicative

Schwarz method, the classical multigrid algorithm is obtained.

It is now possible to combine domain decomposition techniques with a
multilevel splitting by decomposing the triangulation corresponding to the

spaces X ). Obviously, we obtain

1 N; ]
X = XO —+ Z ZX1(]))
j=1i=1
see e.g. Zhang [91, 90] or Smith, Bjgrstad, and Gropp [81].

There are also hybrid methods, combining domain decomposition and
multilevel /-grid techniques to improve performance, e.g. on parallel comput-
ers; see Griebel [50].
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Convergence Theory

The convergence theory can be based on three parameters which measure
the interactions between the subspaces X; and the properties of the local
operators B;. Before we discuss these parameters, let us present an important

lemma.

Lemma 2.1 The additive Schwarz operator is invertible and we have

N
A(Tte,2) = min Y Bi(wi, ).
EZZ?:O z; =0

z;€X;

For a proof, see Zhang [90], p.20, or [91].
We make the following

Assumptions

(i) Let Cy be the smallest constant, such that for all z € X there exists a

representation z = Zfio x;, x; € X;, with

N
Y Bi(wi, ;) < C? Az, z).

i=0
(ii) Let the following strengthened Cauchy-Schwarz inequalities hold:
Az, 25)| < (A, 2:)) (A, 25)) ' Vi € X 25 € X5,

for ¢,j =1,2,...,N and 0 < ¢; < 1. The spectral radius p(£) of the
matrix £ := (¢;);,; can be interpreted as a measure of the orthogonality

of the subspaces X;. Note that the coarse space X, is excluded.

(iii) Let w > 0 be the smallest constant, such that

Alz,z) < wBi(z,z) Vre X,
i=0,1,...,N.

Obviously, we can always choose w := max; ||B;|| 4. Note that it is
always possible to scale the local operators, such that 1 < w < 2,
although this will also affect the value of Cj.

26



Subspace splittings satisfying these three assumption, are called stable; see
Oswald [65]. The importance of these three parameters becomes clear in
Theorem 2.6.

Theorem 2.6
K(Tas) < Cw (p(E) +1).

Proof: From the usual Rayleigh-quotient argument, we obtain

)";1,%71(7718) = )‘maz(7;;1)
ecX Az, )
Yo Bi(zi, z;)
Az, z)

= m%gc min
S
z:EjV:O T;

z;€X;

Analogously, we obtain

-1 . .
Maz(Tas) = min - min
N
z:Zi:o Ti

z;€X;

Here, we have used that 7, is symmetric with respect to A(:,-). Combining

these two formulas with Assumptions (1)-(3), we get

)\min(']:zs) Z C()_27
Ama:c(']:zs) S w(p(8)+1)

O

The next convergence result on the unaccelerated multiplicative Schwarz
method is due to Bramble, Pasciak, Wang, and Xu [22], see also Dryja and
Widlund [39].

Theorem 2.7

(2-0) 2
ms S 1- ~ )
1 7rms 14 < (1+202p(€)2C2

where & := max{1l,w}.

The symmetric multiplicative Schwarz operator 7,51 can also be analyzed;
cf. Dryja and Widlund [39].
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Theorem 2.8

where @ = max{l,w}.

For a more detailed discussion on Schwarz methods, we refer to Smith,
Bjgrstad, and Gropp [81] and Oswald [65].

In our applications, we will assume that the parameters Cy, p(€), and w
are independent of the mesh size h;, the diameter of a typical finite element
on the discretization level 7, and of the number of levels. Such a result holds,
for example, for the overlapping Schwarz method with generous overlap, i.e.
an overlap of order H, the diameter of a typical subdomain. Another method
that fulfills this optimality condition has been proposed by Smith [79]. This
algorithm is based on the substructuring idea; the overlap is implemented on
the edges and faces of the subdomains.

But there are also other interesting cases, where the conver-
gence rate depends only weakly on the discretization parameters, e.g.
(poly)logarithmically; see e.g. Dryja, Smith, and Widlund [38] and the ref-

erences therein.
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Chapter 3

Saddlepoint Problems with
Penalty Term

3.1 Introduction

An important area, where saddlepoint problems arise, is fluid dynamics. Typ-
ical examples are the Navier-Stokes and the Stokes equations for incompress-
ible flow. Saddlepoint or mixed formulations can also be of interest for scalar
second order elliptic equations. A reformulation as a saddlepoint problem
allows us for example to compute the gradient of the solution directly and
not by numerical differentiation which could lead to a loss of accuracy. A
third application area of saddlepoint problems is the field of mechanics. An
important example is the Hellinger-Reissner principle of linear elasticity; cf.
Braess [15], pp. 245-246. Saddlepoint reformulations also turn out to be a
remedy for problems from solid mechanics that suffer from locking. Here,
we will only give a short and informal definition of locking. For a detailed
mathematical discussion of the locking phenomenon, we refer to Babuska
and Suri [7, 8]. Engineers denote by locking “a condition of excessive stiff-
ness of a particular deformation state”, see MacNeal [60], p. 204. In other
words, a finite element is said to lock when the results obtained by the finite
element method are significantly smaller than the exact ones. Locking can
occur when a parameter, e.g. the Poisson ratio of a material, approaches a
critical limit and a (low order) conforming finite element approach is used.
In recent years, modern iterative methods, e.g. domain decomposition
and multigrid methods, have been applied to parameter dependent problems

arising in solid mechanics; see Braess [14], Braess and Blomer [16], Jung
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[66], and Smith [78], p. 68 and Table 4.12. We note that one has to make
a distinction between the convergence rate of the finite element model and
the convergence rate of the iterative method. Both convergence rates can
deteriorate severely when the limit of a certain parameter is approached, e.g.
when the Poisson ratio tends to 1/2 in the problem of linear elasticity; see
Braess [14] and Jung [56]. The loss of convergence can be explained as a
problem of ill conditioning; see Braess [15], pp. 253-254.

There are different approaches to overcome the problem of locking
in the finite element model; nonconforming finite element methods, re-
duced/selected integration and a reformulation in terms of a saddle point
problem with a penalty term. Many of them can be analyzed as saddle point
problems with a penalty term; see Braess [15], Brenner [24, 25|, Brenner and
Scott [26], Brezzi and Fortin [30], and Hughes [55]. For all of these approaches
it can be proven, that the finite element solution converges uniformly with
respect to the penalty parameter. There are still differences between these
methods as far as the iterative solution of the resulting linear systems is con-
cerned. Thus it has been observed in Braess and Blomer [16] that the mixed
formulation is better suited for multigrid methods than reduced/selected in-
tegration; the convergence rate of the iterative method, considered by these
authors, for the linear system arising from the latter model still deteriorates.

The remainder of this chapter is organized as follows. We first describe
an abstract framework for saddle point problems with a penalty term. This
framework is based on the famous theory of Babuska and Brezzi and it gives
sufficient conditions to guarantee that Babuska’s inf-sup and sup-sup condi-
tions introduced in 1.1 are satisfied. Finally, we give some examples arising

in solid mechanics.

3.2 The Abstract Framework

Let (V,|| - |lv) and (M, ]| - ||ar) be two Hilbert spaces, let M, be a dense
subspace of M, and let

a(,):VxV =R, b ): VMR, cf,): M, x M, >R, (3.1)

be three continuous bilinear forms. Additionally, introduce Vg, a subspace
of V, given by Vy := {v € V : b(v,q) = 0 Vg € M}. We assume that a(-,-)

is Vp-elliptic and V —positive semi-definite and that c(-,-) is symmetric M,-
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positive semi-definite. We consider the following problem:
Find (u,p) € V x M., such that

a(u,v) + blv,p) = <fv> YweV (3.2)
b(u,q) — t’c(p,q) = <g,9q> Vge M, te]|0,1].
We denote by X the product space V x M., and by
A(z,y) = a(u,v) + b(u, q) + b(v, p) — t*e(p, q),
z=(u,p) € X, y=(v,9) € X,
the bilinear form of problem (3.2) on X. Introducing
Fly) =< f,v>+<g,q>,
we obtain an equivalent formulation of problem (3.2):
Alz,y) =F(y) Yye X. (3.3)
Assuming that we have an additional norm on M., ||| - |||, we introduce a
new norm on X by
][ = [lully + [llpll|ar for z = (u,p) € X.
If the bilinear form c(+,-) is continuous on M x M, let
[1pl1ar := llpllar- (3.4)
Otherwise, |||p|||ar is defined by
Ipl[las = llpllar + #[ple, (3.5)

where |p|. := 4/c(p, p) is a semi-norm on M,.

We now apply the abstract theory given in Section 1.1 to our saddlepoint
problem with a penalty term. Accordingly, we have to verify a sup-sup and
an inf-sup condition to guarantee the well-posedness of the problem. Let us
point out that for reasons of symmetry, we only have one inf-sup condition;
see Section 1.1. From the assumptions, we can conclude that A(-,-) is a

continuous bilinear form on X, i.e.

Alz,
sup sup _Alz,y) <, (3.6)
vex zex |||z]|[ [||yll]
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where v; > 0 is independent of ¢ € [0,1]. Additionally, A(-,-) has to fulfill

an inf-sup condition,

: Az, y)
inf sup ————— > 79 > 0, (37)
veX gex [||2|[] [|[yll]

where 7, is independent of ¢ € [0, 1].
Theorem 3.1 Let the following three assumptions be satisfied:

(i) The continuous bilinear form a(-,-) is Vy-elliptic, i.e.
Jag > 0, such that a(v,v) > allv]|?, Vv €V

and V —positive semi-definite, i.e.

a(v,v) >0, Yv eV,

(i) The continuous bilinear form b(-,-) fulfills an inf-sup condition, i.e.

b
368y > 0, such that inf sup ﬂ

> B
aede ey ollvligle = "°

(#53) The continuous bilinear form c(-,-) is symmetric and M.-positive

semi-definite, i.e.
c(¢,9) >0 Vg e M.

Then, the inf-sup condition (3.7) holds if in addition one of the following

conditions s satisfied:
1) The bilinear form c(-,-) is continuous on M x M.
2) The bilinear form a(-,-) is V —elliptic.

Proof: Let us first assume that condition 1) holds. Then, we define the norm
[l + [llar by ||lp|l|ar := ||p||ar; see (3.4). The proof that the inf-sup condition
(3.7) holds, can be found in Braess and Blomer [16].

Now, let us assume that 2) is fulfilled. In this case, we define |||p|||s =
lp||az +t|p|c, see (3.5). For a special formulation of the Mindlin-Reissner plate
a proof for (3.7) can be found in Huang [54], Lemma 3.1. The arguments

given there immediately carry over to our more general setting.
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All these results are also valid for suitable finite element spaces; see Sec-
tion 3.3. We then require, additionally, that the constants in Theorem 3.1
are independent of h. The continuity assumptions turn into uniform bound-
edness with respect to h; see e.g. Braess [15]. We note that there exist also
useful methods for which 3y goes to zero slowly with h, cf. Brezzi and Fortin
[30].

3.3 Examples

We now discuss some problems from solid mechanics that can be treated

within this abstract framework. We denote the finite element spaces approx-
imating V and M (resp. M,) by V" and M" (resp. M}").
We introduce the following product for matrices
d d
o7 = )Y 04T

i=1j=1

where o, 7 € R%4,
In the context of saddlepoint problems, u,v (resp. p,q) will always denote

vector valued (resp. scalar) functions. We use Sobolev spaces defined by:

H{(Q) = {ve H(Q):vr, =0},
Hy(Q) = HH(Q) with Ty = 09,

where I’y denotes the part of the boundary where a homogeneous Dirichlet

condition is imposed. The finite element spaces are defined by:

(Ta) = {v € Ly(Q):vr €PFforall T € Ty}
(Ta) = MMTa) N H' (),
Mio(Tn) = M (Ta) N Hy(9),
(Tn) = {v € M(Ts) : v vanishes on the boundary of every element },
(7n)

= My(Ta) ® B*(Th).

Here T, is a triangulation of Q and P* the space of polynomials of total
degree < k.
The differential operators are defined by:

d a’Uz'

div(v) = Zaxi’

=1
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o (@)
Oz ic{l,...,d}

Vv;)iz1,...d>
(Vv + (Vv)t) .

<
<
|

e(v) =

DN | =

In two dimensions, we set

0 0
rot(v) := _8—2+8—Z’

0q Oq
curl(q) := ETRE ).

All of these operators can be defined element by element on the space
MF¥(Th). The resulting discrete operators are marked by a subscript h.

We make use of the following inner products,

(e(w),e(u))o := Joe(v) : e(u)de, (v,u)o:= [qvude,
< f,v>:= [q fode + [p, qrvde, Ty := &\ T,.

3.3.1 The Equations of Linear Elasticity

An example of a saddlepoint problem with a penalty term arises from the
displacement formulation of the equations of linear elasticity. The equations
of linear elasticity model the displacement of an elastic material under the
action of some external and internal forces. Denote the elastic body by
Q2 Cc R4, d = 2,3, and its boundary by I'. Assume one part of the boundary,
Iy, to be clamped, i.e. we impose Dirichlet boundary conditions, and let the
other part of the boundary, I'; := I'\I'g, be subject to a surface force of
density g;. We also introduce an internal volume force f, e.g. gravity; see
Figure 3.1.

The variational formulation is given by
2 1 (e(u),e(v))o + A (divu, dive)y =< f,v > VYo € V:= (Hp(Q)% (3.8)
The ellipticity of problem (3.8) follows from Korn’s inequality.

Theorem 3.2 (Korn’s inequality) Let Q@ C R¢ d = 2,3, be an open and
bounded domain with piecewise smooth boundary and assume that Ty # 0.

Then there ezists a positive constant ¢ = ¢(2,Ty), such that
(e(v),e(v))o > ellv]lf Vv € (Hp(2))".
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Figure 3.1: An elastic body.

For a proof, see e.g. Braess [15], p. 248.

Existence and uniqueness of problem (3.8) follow immediately from the

Lax-Milgram Lemma; see Section 1.1.

Instead of using the Lamé constants A and u, we can also work with
Young’s elasticity modulus £ and the Poisson ratio v. These parameters are

related to each other by the following equations

_ Ev v = A

T (+)(a-2v) 0 T 2(AHp)? (3.9)

_ E E = HB 2 )
2(1+v) ’ Adtp

Some materials, e.g. rubber, are nearly incompressible, i.e. small changes
in the density of the material lead to a rapid growth of the energy. Almost
incompressible materials are characterized by a Poisson ratio near % In terms
of the Lamé constants, this means that A tends to infinity. This leads to
the phenomenon of locking if a low order finite element model is used in a
pure displacement setting. To obtain a finite element model that converges
independently of locking as h — 0, we reformulate the pure displacement
model as a saddle point problem with a penalty term; see Brezzi and Fortin

[30], and Braess [15]. We introduce a new variable p := Adivu and obtain
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Figure 3.2: The Taylor-Hood Element: O denotes the points of the displace-

ment discretization, () the ones of the Lagrange multiplier.

from (3.8)

2u(e(w),e())o + (dive,p)y = < fiv> VveV :=(HEQ)),
(divu, q)o — % (p,9)0 = 0 Vg € M := Ly(Q).
(3.10)

Remark 3.1 If we have homogeneous Dirichlet conditions on the whole
boundary it is possible to use an equivalent simpler formulation; see Brezzi
and Fortin [30], p.201,

u(Vu, Vo)o + (dive,p)y = < f,v> VYo eV :=(HFHQ))Y,

. 1
(divu, q)o — m (p,q)0 = 0 Vg € M := Ly(Q).

We note that in the case of pure Dirichlet boundary conditions, the pressure
18 only determined up to an additive constant. A remedy is, as known from
the Stokes problem, to replace M := Ly(Q2) by L2(Q)/R.

We know from Korn’s inequality that the bilinear form (e(u),e(v))o is
V- elliptic. Thus (3.10) is very similar to the Stokes problem and we can
use finite elements developed for that problem. For simplicity, we restrict
ourselves to the Taylor-Hood element; see Fig. 3.2. For the displacements
u, we use piecewise bilinear polynomials on quadrilaterals on a grid with the
meshsize h and for the Lagrange parameter p piecewise bilinear polynomials

on quadrilaterals with mesh size 2h. The corresponding finite element spaces
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are
Vh o= {u € (CO)INV tupr € Q1, T € 1},

X (3.11)
M = {qh EC(Q)ﬂM:QMTE Ql; T€T2h}.

For a proof that the inf-sup condition holds for b(-, -) in this case; see Verfiirth
[84], Girault and Raviart [48], or Brezzi and Fortin [30]. All the conditions
for Theorem 3.1 are satisfied and the finite element method converges inde-
pendently of the Lamé constants (resp. the Poisson ratio). There is of course
no restriction to assume that % =: t? is in [0, 1] since we are mainly interested

in the nearly incompressible case.

3.3.2 The Timoshenko Beam Problem

Let Q := I C R be a finite interval and f € Ly(I). The mixed Ansatz for

the Timoshenko beam is given by

/

@)+ 0@ —1¥,7)0 = (fv) Y(v,¥) €, (3.12)
(w' —8,m)0 —t*(v,mo = 0 Vn € M,, (3.13)

with V := (HL(I))* and M, = M := Ly(I). Equations (3.12) and (3.13)
represent a saddlepoint problem with a penalty term, in the sense of Theorem
3.1, with

a((w’a)’ (’U,’gﬁ)) = (01’¢I)0’
b((va 1/1)’ 77) = (vl - 1/)’ 77)0
C(’Y, ’f]) = (,Y, 77)0-

We obtain the finite element formulation of the Timoshenko beam by re-
placing V x M := (HNI))’ x Lo(I) with V* x M* := (Mho(Ta)) x
MFY(T), k > 2; see Arnold [1], Braess [15], p.278, and Braess and Blomer
[16]. The proof that the assumptions of Theorem 3.1 hold, can also be found

in these references.

3.3.3 The Mindlin-Reissner Plate Problem

Let Q C R? be a polygonal domain and let f € Ly(f2). Brezzi and Fortin [29]
consider a formulation of the Mindlin-Reissner plate problem which contains

the following mixed Ansatz as a subproblem:
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Find (¢, q) € (HL(Q))? x H'(Q)/R, such that

2

a(8,9) + (rot(¥),p)o = (f,9)o Vo € (Hy(Q)) ,(3.14)
(rot(8),q)o — t*(curl(p), curl(q))o = 0 Vg € H'(Q)/R, (3.15)
with a(8,v) = [q {2ue(9) ce(y) + %A—_‘i’;—“div(ﬁ) div(w)} dz. The constants u
and )\ denote the Lamé parameters and t represents the thickness of the
plate.

By setting z+ := (=3, z;) for z € R?, we have

rot(y) = div(y™h).

By using the definition of curl(p), we obtain an equivalent Stokes problem
with a penalty term from (3.14), (3.15):

a9 + (@) pe = (Fu) Vot e (HQ),
(div(67),9)0 — £*(P,g)r = 0 Vg € H(Q)/R.

The finite element formulation is obtained by replacing V x M, :=
(HL())” x HY(Q)/R with V* x M := (Noo(Tr))* x MY(T:)/R, where
Noo(T) := Mg o(Tr) ® B*(Th); see Arnold, Brezzi, and Fortin [3], or Arnold
and Falk [4]. These finite element spaces correspond to the MINI-element of
Arnold, Brezzi, and Fortin; see [3]. Since the problem considered is similar to
the Stokes problem, it is also possible to use other elements that are common
in fluid dynamics, e.g. the Taylor-Hood element; see Huang [54].

The assumptions of Theorem 3.1 hold with V := (H}(Q))?,M :=
Ly(Q)/R, M, := H'Y(Q)/R. A proof can be found in the references just
provided.

It is also possible to use the MITCn-elements, introduced by Brezzi,
Bathe, and Fortin in [28]; see also Peisker and Braess [67].

We note that the approach considered in this section is not the only
one possible. There are direct approaches that do not use the Helmholtz

decomposition; see Arnold and Brezzi [2].
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Chapter 4

A Blockdiagonal Preconditioner

4.1 Introduction

In this chapter, we introduce a blockdiagonal preconditioner for saddlepoint
problems with a penalty term; see Section 3.2. We show that the condi-
tion number of the preconditioned system is bounded independently of the
discretization and the penalty parameters. Therefore the preconditioned
conjugate residual method converges at a rate independent of the critical

parameters; see Section 2.1.3.

The remainder of this chapter is organized as follows. In Section 4.2,
we first describe the preconditioner and the assumptions made on it. In
4.2.1, we discuss a condition number estimate that is valid for the complete
Babus§ka-Brezzi theory as described in Section 3.2, i.e. we do not assume A
and C to be V— and M —positive definite, respectively, whereas in 4.2.2, we
restrict ourselves to this case and give a condition number estimate based on
a different analysis. Finally, in Section 4.3, we present numerical results for

a problem of linear elasticity.

The following analysis is using a matrix formulation of the discretized
saddle point problem. Let us point out that it could have as well been
presented in an abstract Hilbert space setting. The matrix representation
obtained from discretization by finite elements provides bounds that are uni-
form. These bounds are natural counter parts of bounds for the solution of

the continuous problem formulated in the proper Hilbert space.

The results presented in this chapter are based on Klawonn [57, 58].
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4.2 The Preconditioner

To construct the preconditioner, we work with the matrix representation of

the discretized saddle point problem,

A Bt
A= € Rvt™ x R™t™, (4.1)
B —t*C
and give the block diagonal preconditioner the form
3 A O
B .= A € R™M™ x RVH™, (4.2)
o C

Here A and C satisfy certain ellipticity conditions, i.e. there exist positive

constants ag, a; and cg, ¢y, such that
ag ||ull < u'Au < of [|ull3,
cs |llpl|[3 < p'Cp < & lIpll 3

The next lemma shows that B is positive definite and defines a norm on
R™™_ which is equivalent to ||| - |||, cf. Section 3.2. Let us point out that

the norms in this Chapter are defined on R*, k = n, m,n + m.
Lemma 4.1 There exist positive constants by, by, such that
bo |lz|| < 1B"2ll> < by [[[«]]-

Proof: Using the ellipticity of A and C, we obtain

B2l = o'Bo
= ulAu+p'Cp
< af [lulli, + ¢ |llpl| 3
< max{at, ¢t }(|[ully + [|Ipll3,)
< max{at, ¢t }(|[ullv + [||p[l|ar)?

max{af, c }/||z]]|".
Analogously, we get

[[|]]]?

2

(lleellv + 11l 1a1)

2|[ully + 2/[lpll

11,
}IBY2el3

a?’

7]_ ~
2 (min{a3, 2}) " 1Bl

IN

IN

2 max{

|
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Remark 4.1 Ezamples of very fast and efficient methods, which fulfill the
ellipticity requirements, are given by domain decomposition and multigrid
methods or, more generally, by Schwarz methods; see Section 2.2. The ellip-
ticity constants should preferably be independent of the discretization param-
eters but there are also interesting cases with a polylogarithmic dependence
on H/h; see [37, 72, 73]. (The parameter H represents the diameter of a

subdomain in a domain decomposition method.)

4.2.1 A Condition Number Estimate

In view of Theorem 2.1, our goal is to give an estimate of the condi-
tion number x(B~1A):= p(BLA)p((B-1A)~1). Since B is positive definite,
B 1A and B Y2AB /2 have the same eigenvalues and since B /2AB /2
is normal, we obtain p(B'A) = ||B"/2AB '/?||,. The same argument ap-
plies to p ((B_IA)_l). Thus, we only have to provide upper bounds for
|B12 B2y and || (B12AB1/2) " |5

The next two Lemmata are well known and are given here for the sake of

completeness only.

Lemma 4.2 Let L be a k x k matriz. Then, the following three inequalities
are equivalent:
ztLy

infsup ———— > «
v70 220 [[l2llylla ~

Lyl > a|lyllz Vy € R,

B 1
1L Hl2 < =
(0%

Lemma 4.3 Let L be a k x k matriz. Then, the following three inequalities
are equivalent:
z'Ly

supsup ——— < C,
v£0 20 ||z][2]|y]l2

ILylla < Cllylla Vy € RE,
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IL]|2 < C-

In the following lemma, we prove lower and upper bounds for the inf-sup

and sup-sup of B~Y/2AB1/2, respectively.
Lemma 4.4 There exist positive constants Cy, Cy, such that

thl/2ABAfl/2
Cy < inf sup d Y
v 0gz0  [lzll2]lyll2

xté—l/zAB—l/zy
sup sup

< (4.
y#0 o20  ||@[l2/lyll2

Proof: The Lemma follows immediately from the discretized versions of
(3.6), (3.7) by changing basis and by applying Lemma 4.1. From the theory
of saddle point problems with penalty term, see (3.6), (3.7), we have

tA

Y < infsup T (4.3)

v70 270 |||l x|yl x

t

< supsup xiAy (4.4)

v#0 =20 ||zl x |lyllx
< M- (4.5)

Thus, we obtain by using Lemma 4.1
tB-1/2 AB1/2 7t A
inf sup ? A LA inf sup — jE AyA — (4.6)
v 020 |lzll2llyll2 770 320 ||B'/2E||2|| B2
> 5 infsup Ty (4.7)
bt 570 a0 || Z]| x |7l x
Yo
> P (4.8)
1
Analogously, we get the upper bound
tB—1/2AB—1/2
sup sup d Y < ’Y—; (4.9)
y70 a70  |Z]l2][yll2 bo
From these estimates, we have C := 33 and C; := 3.
1 0

O

The next theorem follows from the definition of the condition number and
Lemmata 4.2, 4.3, and 4.4.
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Theorem 4.1 The condition number of B~'A is bounded independently of

the discretization and the penalty parameters, i.e.

4.2.2 An Alternative Proof

In this section, we consider a special case of saddle point problems with
penalty. We assume that A is V— rather than Vy—elliptic and that C is
M —elliptic. This is the case for the mixed formulation of the equations of
linear elasticity and the Stokes problem of fluid dynamics. The restricted
problem considered here, allows us to give a condition number estimate that
is based on a generalized eigenvalue problem.

We assume that the preconditioner has the form

R A O
B:= (O é’) (4.10)

Here A is V-elliptic and CM -elliptic. Thus, B is positive definite.

We denote the case of A = A and C = C by B. As in the previous section,
our goal is to give an estimate of the condition number m(B_lA). A simple
computation shows that

Afl/ZAfiflﬂ A71/2BtCA’fl/2

3-1/2 AR-1/2 _—
B AB ( 0—1/2BA—1/2 —2 0—1/200—1/2 )

_ A Bt
\ B ¢ |’

We denote by x an eigenvalue of BB,

(4.11)

We make the following assumptions on A and B:

The matrix A is a good preconditioner for A, i.e.
dag,a; > 0 agutflu < ulAu < a%ut/iu Yu € R". (4.12)

The constants ag, a; should preferably be independent of the discretization
parameters but there are also other interesting cases; see Remark 4.1.
We also require that C is a good preconditioner for the pressure mass

matrix M, i.e.
Img,my >0 m%ptép < p'Myp < m%ptCA'p Vp e R™ (4.13)
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and we finally assume that C' is spectrally equivalent to 6, , i.e.
Jeg,er >0 cgptép <p'Cp < cfptép Vp € R™. (4.14)

For lower order finite elements, a good choice for C is a one-level overlapping
Schwarz method. This family of methods also includes the popular algo-
rithms that use diagonal and block preconditioning. Although the (pressure)
mass matrix is uniformly well conditioned, i.e. has a condition number inde-
pendent of h, we can decrease the number of iterations at a small expense
by replacing a diagonal preconditioner by a one-level overlapping Schwarz
method using an overlap of one node and small subdomains; see Section 4.3.

We will next establish some bounds for BA~!Bt. These bounds depend
directly on those of the inf-sup condition and on the boundedness of B. We
then consider the case of the special preconditioner B and use these results
to obtain a condition number estimate for the more general choices of B.

From the inf-sup condition, we obtain
Bap'Myp < p'BA™'B'p Vp e R™; (4.15)
see Babuska [10], Brezzi [27], Brezzi and Fortin [30], and Silvester and Wa-
then [85]. Since B is uniformly bounded, we have

36, > 0, s.t. u'Btp < By (p*M,p)/? (v Au)'/? Vu € R",Vp € R™,

where M, is again the pressure mass matrix. Substituting v = A~!Bp and

cancelling a common factor, we get
p'BA™'B'p < 8,’p'M,p Vp € R™, (4.16)
and the following inequality holds with positive constants Gy, (1,
B p'Myp < p'BA™'B'p < B2 p'M,p Vp € R™. (4.17)

These constants are independent of the penalty parameter ¢.

We next consider the case of the special preconditioner B. By A% and

A we denote the extrema of the absolute values of the eigenvalues.

Lemma 4.5

e e 1— 2 1+2)°
)‘ni)az(B 1"4) = 2 + \ Nmaz + 2

- 21 1+2\2
AEA) = S+ (1
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Proof: We consider the preconditioned system B~1/2A4B~'/2 and the re-

lated eigenvalue problem

(5 w) () ()
B —] P P
From this equation, it follows that
BB'p = (A= 1)+ \p.
Denoting the eigenvalues of BB? by u, we get
A=D1+ ) = p.

Solving for A\, we obtain

N L 1+2\?
T2 # 2 )

We get, by comparing the distances of the two values of A to the origin,
12 1+2)°
1— 2 1+2)°
)‘grffn = 2 - \lﬂmin + ( 2 )

21 1+#2)\°

The next lemma provides a condition number estimate for the case of the

O

exact preconditioner.

B 1/2 4 \/tmaz + 1/4
k(B A) < .
—1/2 + \/pthmin + 1/4

Proof: It is sufficient to provide an upper bound for

1_t2+ N 1+82)\2
2 /J‘ma:l: 2

2 -1 1+2)°

From the assumptions that 0 < ¢ < 1, we easily, by computing the first

Lemma 4.6

and a lower bound for

derivative, find the upper and the lower bound.
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We are now able to prove

) 1/2+/mip +1/4
k(BT A) < .
—1/2+ /m2B3 +1/4

Proof: Obviously, we only have to provide an upper bound for ., and a

Theorem 4.2

lower bound for pp,,, i-e. upper and lower bounds for the Rayleigh quotient
p'BB'p/p'p.
By construction, see (4.16), we have
i -1t
p"(BA~'B")p
% < 512
p*Mpp

Using (4.13) and C = C, we get

t -1t tA—1/2 -1t A-1/2
p(BA'B')p _ ¢'C"'?BA'B'C ¢ g
ptCp q'q

Applying (4.12), results in

qt(0—1/23/1—1/2)(A—1/2Btér—1/2)q
a‘q

2 2 _o
< Bimiay”.

The definition of B gives

q'BB'q

2,2 -2 2,2
'q < Bimiay” = Bim;.

Here, ag = 1, since we are using A = A. Analogously, using (4.12),(4.13),

and (4.15), we obtain

q'BB'q

2,2 2 2,2
o > Bymgay © = Bymg.

The theorem follows from Lemma 4.6.

O

Remark 4.2 In many applications, we have C' = M,. In this case the bound

in Theorem 4.2 simplifies to

1/2+4/67 4+ 1/4
~1/2+ /B +1/4
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We next give an upper bound of the condition number when a general

preconditioner B~! is used.

Theorem 4.3
5 max{a?, cl}

k(B A)

IN

k(B 'A).

min{ag, c§}
Proof: We consider

A (BUZABY) = (B2 AB )
— B AB
(xt3_1/2A3_1/2x>
sup ;
z#0 T
“ (mle) “ <xt3x>
w#% Bz z;éI(.)) CUtBAZL'

< A (B2 ABY?) max{d?, ¢?}.

max

IN

Here, we have used that M := B~Y/2A4B~'/2 is normal. Analogously, we
obtain, by using that A% (M) = (p(M 1)) 1,

Xt (B AB ) > et (B AB ) min{af, )
Since B 1A and B1/2AB1/2 have the same spectrum, Theorem 4.3 follows.
O

From Theorem 4.2 and 4.3 follows immediately

Corollary 4.1

w(BLA) < max{a?,c?} 1/2+/mipf+1/4
~ min{ad, c§} —1/2+ /m2B2+1/4

Hence, we have now derived an estimate for the condition number which

is independent of the discretization and the penalty parameter and for which
we can guarantee that the convergence rate of the Krylov space method
considered will not deteriorate when ¢ and h decrease. Corollary 4.1, shows
that the condition number estimate of B4 is completely determined by the

quality of the preconditioners A, C , and the condition number of BA~!B?.
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Figure 4.1: The elastic domain.

4.3 Numerical examples

We apply our preconditioner to the problem of planar, linear elasticity; see
Section 3.3.1. For simplicity, we work with the formulation given in Remark
3.1. All the results shown are for mixed boundary conditions, 'y := {z =
(1,22) € O : 1 < —0.8} and the region [—1, 1] x [—1, 1]; see Figure 4.1.

Without loss of generality, we use £ = 1 as the value for Young’s modulus.
We note that our model is mathematically equivalent to the full elasticity
problem only in the case of homogeneous Dirichlet conditions. The numerical
results confirm that the number of iterations is bounded independently of the
critical parameters h and t.

All computations were carried out on a Sun workstation with 256 Mbyte
memory using the numerical software package PETSc developed by William
Gropp and Barry Smith at the Argonne National Laboratory; see Gropp and
Smith [51] or Smith [80]. In the original version of PETSc, saddlepoint prob-
lems were not included. Thus, we have added this feature to the functionality
of PETSc. The initial guess in our experiments is 0, and the stopping crite-
rion is ||7||2/||7ol|2 < 107°, where 7 is the k-th residual. The Krylov space
method used is always the PCR-method.
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Table 4.1: PCR-method with exact solvers as preconditioners for A and C,

v =0.3.
Grid | 20x 10 | 40 x 20 | 60 x 30 | 80 x 40 | 100 x 50 | 120 x 60 | 140 x 70
Iter 17 19 19 21 21 21 21

To see how the PCR-method behaves under the best of circumstances, we
first conducted some experiments using exact solvers, i.e. A=Aand C=C.
The method works as predicted for both limit cases, h — 0 and ¢t — 0, see
Tables 4.1 and 4.5.

In another series of experiments, we applied different preconditioners for
A and C. We present results with A definied by a two-level multigrid precon-
ditioner with a V-cycle including one pre- and one post-smoothing symmet-
ric Gauss-Seidel step, and C defined by a one-level symmetric multiplicative
overlapping Schwarz method with overlap of one node; see Tables 4.2, 4.3, 4.6,
4.7, 4.8. The use of a Schwarz method can be motivated as follows: We note,
that although C is uniformly well conditioned, i.e. has a condition number
independent of h, a simple diagonal preconditioning is not the best choice as
far as the number of iterations is concerned; cf. Table 4.4, the iteration count
can be reduced at a little extra expense. Interpreting diagonal precondition-
ing as a one-level additive non-overlapping Schwarz method with 1 node per
subdomain, see e.g. Hackbusch [53], p. 343, it is natural to try to improve the
convergence by introducing some overlap or by using a multiplicative scheme.
Our experiments show that already a minimal overlap of one node, i.e. only
the boundary nodes of adjacent substructures are common, combined with a
one-level symmetric multiplicative Schwarz method yields results matching
those obtained by the exact solver for C; see Tables 4.2 and 4.3 (resp. Tables
4.6 and 4.8). We also note that it would of course be more efficient to use
more than two levels in the multigrid preconditioner but here, we primarily
wish to analyze the parameter dependence of the preconditioned methods.

The experiments show that the preconditioned conjugate residual method
represents an efficient and robust iterative solver for saddle point problems
with a penalty term. For a comparison of the convergence rates and the effi-
ciency of multigrid and Krylov subspace methods for saddle point problems;
see Elman [42].
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Table 4.2: PCR-method with a two-level multigrid preconditioner with a
standard V-cycle defining A,and C =C, and v = 0.3.

Grid

20 x 10

40 x 20

60 x 30

80 x 40

100 x 50

120 x 60

140 x 70

Iter

20

23

24

26

26

26

26

Table 4.3: PCR-method with a two-level multigrid preconditioner with a

standard V-cycle defining A and a one-level symmetric multiplicative over-

lapping Schwarz method with overlap of one node defining é, and v = 0.3.

Grid

20 x 10

40 x 20

60 x 30

80 x 40

100 x 50

120 x 60

140 x 70

Iter

20

23

24

26

26

26

26

Table 4.4: PCR-method with a two-level multigrid preconditioner with a

standard V-cycle defining A, a diagonal preconditioner C = diag(C), and

v =0.3.
Grid | 20 x 10 | 40 x 20 | 60 x 30 | 80 x 40 | 100 x 50 | 120 x 60 | 140 x 70
Iter 46 53 56 58 58 58 60

Table 4.5: PCR-method with A = 4 and € = C on a 80 x 40 grid.

v | 0.3

0.410.49

0.499

0.4999

0.49999

0.499999

0.5

Iter

21

21 | 23

25

25

25

25 25

Table 4.6: PCR-method with two-level multigrid with a standard V-cycle
defining A and C = C on a 80 x 40 grid.

v | 0.3

041049

0.499

0.4999

0.49999

0.499999

0.5

Iter

26

29 | 33

33

33

33

33 33

a0




Table 4.7: PCR-method with an exact solver as A and a one-level symmetric
multiplicative overlapping Schwarz method with overlap of one node as C
on a 80 x 40 grid.

v [03]04]049]|0.499 | 0.4999 | 0.49999 | 0.499999 | 0.5
Iter | 21 | 21 | 23 25 25 25 25 25

Table 4.8: PCR-method with two-level multigrid with a standard V-cycle
as A and a one-level symmetric multiplicative overlapping Schwarz method

with overlap of one node as C on a 80 x 40 grid.

v [0.3]04|0.49 | 0.499 | 0.4999 | 0.49999 | 0.499999 | 0.5
Iter | 26 | 29 | 33 33 33 33 33 33

o1
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Chapter 5

A Triangular Preconditioner

5.1 Introduction

In this chapter, we analyze a triangular preconditioner for saddlepoint prob-
lems with a penalty term. We only consider symmetric saddlepoint problems.
For related work on the non-symmetric case, see Elman and Silvester [44],
who analyze the Oseen operator which is obtained by applying a Picard it-
eration to the Navier-Stokes equations. It turns out that our analysis of
triangular preconditioners also provides an alternative proof of a result due
to Bramble and Pasciak [19].

As in the previous chapter, the following analysis is carried out using a
matrix formulation of the discretized saddle point problem. Let us point out
that it could have as well been presented in an abstract Hilbert space setting.
The matrix representation obtained from discretization by finite elements
provides bounds that are uniform. These bounds are natural counter parts
of bounds for the solution of the continuous problem formulated in the proper
Hilbert space.

The outline of the remainder of this chapter is as follows. In Section 5.2,
we discuss the preconditioning strategy. In the case of exact solvers for A
and C, we show that the spectrum of the preconditioned system is bounded
independently of the critical parameters by solving a generalized eigenvalue
problem. This technique cannot be applied to inexact preconditioners. Nei-
ther can a perturbation argument be used since the preconditioner is indef-
inite. We find that the preconditioned system AB1 is symmetric positive
definite in a certain metric which is defined by a symmetric positive definite
matrix A~ and that the generalized eigenvalues of H 1 AB™! = AH ! are
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bounded independently of the critical parameters. From this, we obtain the
bounds of the eigenvalues of AB~!. We also use this fact to show that GM-
RES, in a certain metric defined by HT, converges independently of these
parameters. Here H is an arbitrary symmetric positive definite matrix with
C2H ' < H ' < C?H ', where Cy,C; > 0 are constants independent of
the discretization and the penalty parameters. To prove this convergence
estimate, we introduce an apparently new technique. We exploit that both,
GMRES and the method of conjugate residuals (CR), minimize the residual
in the norm used and that X! and H ™! define equivalent norms. Then, we
use that the convergence of CR in the 2! —metric can be estimated in terms
of the generalized eigenvalues of ' AB~! = MH~'. Finally, we show that
AB ! s diagonalizable and use this property to give a convergence estimate
for GMRES in the Euclidean metric.

In Section 5.3, we discuss numerical results for a problem of linear elas-
ticity obtained by using GMRES and BI-CGSTAB.

5.2 Preconditioning Techniques

In this section, we consider a triangular preconditioner for problem (3.2). As
in Section 4.2.2, we restrict ourselves to the case of A being V —elliptic and
C being M —elliptic. The preconditioned system is either of the form AB-1
or B! A where B is the triangular preconditioner.

We use the following notation

R A Bt R A 0O
By = .|, By := N

Here A and C are positive definite. We make the following assumptions on
A and B:
The matrix A is a good preconditioner for A, i.e.

Jag,ay > 0 aluldu < utAu < a?ulAu Vu € R™. (5.1)

The constants ag,a; should preferably be close to each other and be inde-
pendent of the discretization parameters but there are also other interesting
cases; see Remark 4.1. Multigrid and domain decomposition methods are

examples of preconditioners that meet these requirements; see Section 2.2.
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We also require that Cisa good preconditioner for the pressure mass

matrix M, i.e.
Ime,m; >0 m3 ptCp < p'Myp < m? p'Cp VpeR™ (5.2)
and we finally assume that C' is spectrally equivalent to C , i.e.
Jeo,c1 >0 ¢ p'Cp < piCp < 3 p'Cp VpeR™. (5.3)

A good choice for C is a one-level overlapping Schwarz method; see Klawonn
[67] and Section 4.3, Tables 4.3,4.7,4.8.
From the inf-sup condition for B and the uniform boundedness of B, we

obtain the following inequality
B3 p"Myp < p'BA™'B'p < 8} p'M,p Vp € R™,

with positive constants (g, 31; see Brezzi and Fortin [30]. These constants
are independent of the discretization and the penalty parameters. We denote

by u an eigenvalue of the generalized eigenvalue problem
BA'Blp =1 Cp

and by Umin, Umaz its extreme eigenvalues.

We first restrict our analysis to By and drop the subscript U. In the case
of A=A and C = C, we use B rather than B.

To get bounds for the spectrum of AB~!, we consider the generalized

eigenvalue problem

Az = \Bz.

Now, we can proceed as in the case of the block-diagonal preconditioner that

is discussed in Section 4.2.2.

Lemma 5.1
O'(AB_I) C [,Umin, Hmaz + 1] U {1}

Proof: The proof follows by considering the generalized eigenvalue problem
Az = A\ Bz.

We obtain



which is equivalent to

Au+ B'p = X(Au+ B'p)
Bu—tCp = —-\Cbp.
We first show that A = 1 is an eigenvalue. This can be easily seen by

considering
Bu=(#-1)Cp

and looking at the cases 2 = 1 and t? < 1, separately. In the first case, we
can choose p # 0 arbitrarily and u € ker B and in the second one, we can
choose u # 0 arbitrarily and set p := (t2 — 1) *C 'Bu. In both cases, we
obtain eigenvectors for the eigenvalue A = 1.

We now assume that A # 1. Then, we get
BA'B'p= (A —t*)Cp.
Thus, we obtain the relation
p=\—t.

By using that ¢ € [0, 1], we immediately have

IA

1 + ,u'maz,

Ama:z:

v

O
From this lemma, we obtain
Theorem 5.1
o(AB ) C [Bymg, Bim;i + 1] U {1}
Proof: Use the bounds for g, and e, given in Theorem 4.2.
O

To provide bounds for AB™!, we cannot solve the generalized eigenvalue
problem easily anymore. Nor is it possible to apply the techniques of Section
4.2.2, since B! is not positive definite.

By making the assumption that
1 <ag < ay, (54)
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which can always be achieved by an appropriate scaling, we can show that
the spectrum of AB-1 stays bounded independently of the discretization and

the penalty parameters. Consider

R A Bt A—1 A—1Bt ~N—1
AB1 = ¢
B —tC O —C!
B (AA—I (A— A)A1BC1

BA™' (£2C + BA- lBt)é )

Introduce the notation,

A—A
H = q }
0 C

Multiplying AB~! by H from the right, we obtain

( AA1(A -

A A-1npt
ABH = . ) A=A B )
BA (A -

A
A) #C+ BA'B!

which is a symmetric positive definite matrix; cf. Lemma 5.2. Thus, the

preconditioned system AB ! is % —normal(1); see Section 2.1.1. Introduce

T .= I 0 and H:= 40 ,
BA™! T 0o S

where S := t2C'+ BA~! B! and —S denotes the Schur complement of A which

is obtained by block Gaussian elimination.

the notation

Lemma 5.2 There ezist positive constants Cy, Cy, independent of t, h, such
that
CoH < AB'H < C, A,

with Cy = min{(ao — 1),1}/3 and C; = 3max{(a; — 1),1}.1

Proof: The proof is based on a block Cholesky factorization of AB 1.

A direct computation shows:

A-14 —-1nt
AR = I 0 AATTA-A 0 I A'B (55)
BA' I 0 S 0 I

1As usual, A < B means B — A is symmetric positive semi-definite.
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From the assumptions (5.1), (5.4), we obtain

AA"TA— A 0

CoH < <C\#, 5.6
= ( 0 S ) - (5:6)
where Cy := min{(ag — 1),1} and C; := max{(a; — 1), 1} are positive con-
stants.

We now show that the eigenvalues of THT" are bounded by the extreme

eigenvalues of H,

H< THT® < 3H. (5.7)

T?”{Tt:( I_ 0)<A 0)(1 A—lBt)
BA™' I 0 S 0o I

(A Bt
~ \B S+BA'Bt |’

B (5.8)
D B S+ BA B! D

= u'Au+ 2p'Bu+p'Sp +p'BA ' Bp
< u'Au+ 2|p'Bu| + 2p'Sp.

W =

We have

From this, we get

S THT

Applying the Cauchy-Schwarz inequality and ab < a?/2 + b%/2, we obtain

p'Bul = |p'BA Y2412
(ptBA—lBtp)1/2(utAu)1/2
1 1
—p'BA'B'p + Zu'Au

2 2

1

Q(ptsp + u'Au).

IN

IN

IN

Hence, we get from (5.8)
e THT 'z < 2u'Au+ 3p'Sp
< 3z'He.
To obtain a lower bound, consider the generalized Rayleigh-quotient

s THT 'z Y Hy
ot Hz YPT-HT -ty
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where we have used the substitution y := 7T'z. As in the case of the upper

bound, we obtain

= () (L) (2 () ()
() (G et (3)

v'Av — 2¢'Bv + ¢!Sq + ¢!BA ' B'q

< v'Av + 2|¢*Bv| + 2¢'Sq
3yt Hy.

IN

From (5.5), (5.6) and (5.7), we obtain

CN’OI):Z S AB*LH S 6117'2

From this lemma, we derive

Lemma 5.3 There exist positive constants Cy, C1, independent of t, h, such
that

CoH < AB™'H < CiH.

Proof: The lemma follows immediately from Lemma 5.2 since C is spectrally
equivalent to t2C + BA~'B! and A — A to A.

Remark 5.1 This lemma could also be used to prove a result due to Bramble
and Pasciak [20], cf. Theorem 1.

Since we have made the assumption that 1 < ag < aq, A — A and C are
positive definite, and H defines a new inner product on R"*™. We are now

able to give bounds for the spectrum of AB™L.

Theorem 5.2 There exist positive constants Cy, Cy, independent of t,h,
such that

o(AB™) C [Cy, Cy).
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Proof: The constants Cy, C; in Lemma 5.3 provide lower and upper bounds

for the eigenvalues of the generalized eigenvalue problem
AB '"Hz = M.
Since H is non-singular, this problem has the same eigenvalues as
AB 1y = Ay.

O

Corollary 5.1 ! also defines an inner product on R™™ and AB™! is
symmetric positive definite in this inner product, i.e. HLAB ! is symmetric
and there ezist positive constants Cy, Cy, such that Co H™' < HLAB™! <
(o HL

Proof: The symmetry of H 1 AB™! follows immediately from a direct

computation:

AR = (,474)71@171 ) Alet(A}*l A
C1BA-1 C-1(#2C + BA™1B")C1

(A— AA14) A1Bto
B C-1BA-! C«—l(tzc + BA_lBt)C'_l )

The generalized eigenvalue problem
HIAB ' = AH 'z

has the same eigenvalues as

From Theorem 5.2, we know that AB ! has only positive real eigenvalues.

O
Remark 5.2 Since it can be shown that
ABG'H = 1B A,
the previous results obtained for .AB,}l also apply to the spectrum of By A.
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We now use the bounds of Corollary 5.1 to provide bounds of the con-
vergence rate of the GMRES method used with a norm equivalent to the
H~!—norm. Here, we exploit the fact that both, CR and GMRES, mini-
mize the residual in the norm used; see e.g. Bruaset [31], Freund, Golub, and
Nachtigal [47] or Saad and Schultz [71].

Theorem 5.3 Let H be a positive definite matriz, such that C2 H™' <
HL < C? N, where Cy,Cy are positive constants independent of the

discretization and penalty parameters. Then,

C, Ve —1\"
Il < g2 (YE5T) Il

where T, is the n-th residual, 7o = b — AB'zo and k := k(AB™!) < g—(‘) is

the condition number of AB™! in the H '—inner product.

Proof:

: 5—1
Irallis =, min - 1@a(AB roll-

C, min  ||®,(AB )re||s-1

®,€Pn,2,(0)=1

_ —-1\"
Gy 2 (L) Iollzes

IN

IN

k+1

G (L)
Co VE+1 ol

IN

O

Remark 5.3 Our convergence estimate only depends on the square root of
the condition number of the preconditioned problem. Note that this estimate
matches, except for a leading factor, the standard estimate for the conjugate

gradient method applied to positive definite symmetric problems.

Finally, we give a well-known convergence estimate for GMRES in the
lo—norm; see e.g. Saad and Schultz [71]. This estimate is based on the
eigenvalues of the preconditioned system. We make use of the fact that AB !
is diagonalizable. This can easily be seen from the following arguments:

AB1% is symmetric positive definite; so is
HP(AB HYH T = HVPAB T H
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Thus, H~Y/ 2AB1H? s diagonalizable, i.e. there exists an unitary matrix
Q, such that
HV2AB Y2 = 9DO Y,

where D := diag{\;} with ); the eigenvalues of AB 1. Note that AB ! and

H12 AB1H/2 have the same eigenvalues. We also obtain
ABfl _ (%1/2 Q) D(Hl/z Q)fl
= 9DQ ',

ie. AB! is diagonalizable with the diagonalization matrix Q := HL/2Q.
Unfortunately, our estimate depends on the condition number of the matrix

Wi,
Theorem 5.4 We have

_ vE—1\"
Iralla < 320 13772, 2 <¢z+ Iroll2

where T, is the n-th residual and k := m(Alg”l) = Amaz/Amin @S the spectral

condition number of the preconditioned system.

Proof: Under the assumptions made, the following estimate is satisfied,

< ! i ®, (A
Iralls < Q0 1€, min  max (2.3 ol
see Saad and Schultz [71], Proposition 4. Since the spectrum of AB ! is real
and positive, we can use the Chebyshev polynomials to construct an upper
bound. The given estimate follows from the invariance of the Euclidean norm

under unitary transformations, i.e.

1Qll: = 1I#2Qll> = 1%L,
172 = 17" H 2l = [H™?|l2.

a

Note that the convergence estimate in Theorem 5.4 is independent of the
penalty parameter but unfortunately it normally still depends on h. To
give an estimate of x(#/?) for a particular discretization, we now restrict
ourselves to the mixed formulation of the equations of linear elasticity dis-

cretized by the Taylor-Hood element; see Section 3.3.1. In this case, we have
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k(HY?) € O(1/h). Since H/? is symmetric positive definite, this can be

immediately seen from the extreme eigenvalues:

Amaz(HY?) < const (1/h),
Amin(HY?) > const (1 + h).

A factor of 1/h appears in the bound given by Theorem 5.4. However, our
numerical experiments do not reflect the presence of such a factor; see Section
5.3.

5.3 Numerical Examples

In this section, we apply the triangular preconditioner to the problem of
planar, linear elasticity; see Section 3.3.1. For simplicity, we work with the
formulation given in Remark 3.1. All results shown are for mixed boundary
conditions and the region [—1, 1] x [—1,1]; see Figure 4.1. We note that our
model is mathematically equivalent to the full elasticity problem only in the
case of homogeneous Dirichlet conditions. The relation between the penalty
parameter ¢ and the Poisson ratio v is given by ¢ := (1 + v)(1 — 2v)/(Ev),
where F is Young’s modulus. Without loss of generality, we use £ = 1. We
discretize by a Taylor-Hood element, see Section 3.3.1.

All computations were carried out on a SUN SPARC 10 workstation us-
ing the numerical software package PETSc developed by William Gropp and
Barry Smith at the Argonne National Laboratory; see Gropp and Smith
[61] or Smith [80]. The initial guess is 0, and the stopping criterion is
ll7xll2/||7o]|l2 < 107°, where 7 is the k-th residual.

We give numerical results for two Krylov space methods, GMRES and
BI-CGSTAB; see e.g. [77, 71, 40]. We use a version of GMRES without
restarts but we also ran a version with a restart every 10 iterations. The
number of iterations for this version was always just 1-2 iterations larger
than for the GMRES method without a restart. We use right-oriented pre-
conditioning with B’E,I for GMRES and left-oriented preconditioning with
B;l for BI-CGSTAB and we only use the L,— rather than the H '—metric.
The numerical results suggest that the number of iterations is bounded inde-
pendently of the critical parameters h and ¢t. We point out that BI-CGSTAB
always converges smoothly in our experiments. We test each combination of
preconditioners fi, C for both limit cases, h — 0 and t — 0.
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Table 5.1: ITteration counts for exact solvers as preconditioners for A and C,
and v = 0.3.

Grid GMRES | Bi-CGSTAB

20 x 10 10
40 x 20 11
60 x 30 11
80 x 40 12

100 x 50 12
120 x 60 12
140 x 70 12

D || || O] Ot

To see how the Krylov space methods behave under the best of circum-
stances, we first conducted some experiments using exact solvers, i.e. A=A
and C = C; see Tables 5.1 and 5.4.

In other series of experiments, we use different preconditioners for A and
C. We present results with a two-level multigrid preconditioner with a V-
cycle including one pre- and one post-smoothing symmetric Gauss-Seidel step
defining fl, and a one-level symmetric multiplicative overlapping Schwarz
method with the minimal overlap of one node as C; see Tables 5.2, 5.3, 5.5,
5.6, 5.7.

Finally, we show that the assumption ag > 1 does not appear to be
necessary for the convergence of the Krylov space methods. We conducted
some experiments with A := €A, where € is a parameter at our disposal. The
numerical results show that the methods still converge, even when € > 1; see
Table 5.8.

In all experiments, BI-CGSTAB converges twice as fast as GMRES. On
the other hand, BI-CGSTAB requires twice as many matrix/vector products
with the system matrix A and the preconditioner B‘l; see Section 2.1.4 and
2.1.5. Hence, by just comparing matrix/vector products, the two methods
appear to be equally efficient. But one also has to take into account that
GMRES needs more memory than BI-CGSTAB. An implementation on a
parallel computer might also be faster if BI-CGSTAB is used since it is based

on a 3-term recurrence.

64



Table 5.2: Tteration counts for a two-level multigrid preconditioner with a
standard V-cycle defining A,C=C,and v =0.3.

Grid GMRES | Bi-CGSTAB

20 x 10 13
40 x 20 14
60 x 30 14
80 x 40 15

100 x 50 15
120 x 60 15
140 x 70 15

ENEIENJIEN B IEN RPN PN S I

Table 5.3: Iteration counts for a two-level multigrid preconditioner with
a standard V-cycle defining A and a one-level symmetric multiplicative
overlapping Schwarz method with the minimal overlap of one node defining
C ,and v = 0.3.

Grid GMRES | Bi-CGSTAB

20 x 10 13
40 x 20 14
60 x 30 14
80 x 40 15

100 x 50 15
120 x 60 15
140 x 70 15

N NN NN~
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Table 5.4: Iteration counts for exact solvers as preconditioners for A and C

on a 80 x 40 grid.

Table 5.5: Iteration counts for a two-level multigrid method with a standard

v GMRES | Bi-CGSTAB

0.3 12 6
0.4 13 7
0.49 14 7
0.499 14 7
0.4999 14 7
0.49999 14 7
0.499999 14 7
0.5 14 7

V-cycle defining A and €' = C on a 80 x 40 grid.

v GMRES | Bi-CGSTAB

0.3 15 7
0.4 16 7
0.49 17 7
0.499 17 7
0.4999 17 7
0.49999 17 7
0.499999 17 7
0.5 17 7
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Table 5.6: Iteration counts for an exact solver as A and a one-level symmetric
multiplicative overlapping Schwarz method with the minimal overlap of one
node as C on a 80 x 40 grid.

v GMRES | Bi-CGSTAB

0.3 12 6
0.4 13 7
0.49 14 7
0.499 14 7
0.4999 14 7
0.49999 14 7
0.499999 14 7
0.5 14 7

Table 5.7: Iteration counts for a two-level multigrid method with a stan-
dard V-cycle as A and a one-level symmetric multiplicative overlapping

Schwarz method with the minimal overlap of one node as C on a 80 x 40 grid.

v GMRES | Bi-CGSTAB

0.3 15 7
0.4 16 7
0.49 17 7
0.499 17 7
0.4999 17 7
0.49999 17 7
0.499999 17 7
0.5 17 7
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Table 5.8: Tteration counts for A = €A and C = C on a 80 x 40 Grid with
v =0.3.

e | GMRES | Bi-CGSTAB
0.8 13 6
0.9 13 6
0.99 13 6
1.01 13 6
1.1 14 6
1.2 14 6
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Chapter 6

Preconditioning Second Order

Symmetric Problems

6.1 Introduction

In the last decade, several methods for indefinite elliptic problems have been
proposed; see Bramble, Kwak and Pasciak [17], Bramble, Leyk and Pasciak
[18], Bramble, Pasciak and Xu [23], Cai and Widlund [33, 34], Mandel [61],
Xu and Cai [87], Xu [86], and Yserentant [89]. All of these methods use
indefinite preconditioners or a reduced (positive definite) system.

Here, we show, that under certain assumptions, it is sufficient to pre-
condition indefinite elliptic problems with a positive definite preconditioner.
By applying techniques developed in Section 4.2 to second order elliptic
problems, we have rediscovered results established, by different means, by
Yserentant [88]. In our opinion, the proof given in this chapter is simpler
and shorter, and gives new insight into the method.

We consider indefinite linear systems arising from second order elliptic
operators, such as the indefinite Helmholtz equation. The preconditioner is
chosen to be a good preconditioner for the principal part of the given dif-
ferential operator. The problem is discretized by conforming finite elements
and we assume that the resulting linear system satisfies Babuska’s inf-sup
and sup-sup conditions. Qur preconditioning strategy can be interpreted as
a change of basis. The proof of the bound of the condition number uses the
same arguments as in Section 4.2.1.

The remainder of this chapter is organized as follows. In Section 6.2,

we describe the elliptic second-order problem and its discretization by finite

69



elements. In Section 6.3, we analyze our preconditioner and give an estimate
of the conditon number of the preconditioned system. In Section 6.4, we

present numerical results for the indefinite Helmholtz equation.

6.2 Second Order Elliptic Problems

Let Q@ C R%d = 2,3, be an open, bounded polygon (resp. polyhedron)
with boundary 0€2. We consider the homogeneous Dirichlet boundary value

problem

Lu = f in Q
u = 0 on Of.

The elliptic operator L has the form

Lu(z) = — f 9 (%-(x) Ou(z) ) — c(z)u(x), (6.1)
ig=1 0% Oz;

where the matrix (a;;);; is symmetric and uniformly positive definite for all
x € . Since we only consider indefinite problems, we restrict ourselves to
the case of c(z) > 0 for all z € Q. All the coeflicients are, by assumption,
sufficiently smooth. We note that the assumption of ¢(z) being positive is
not necessary. As pointed out below, we only need that the bilinear form
associated with the operator L satisfies Garding’s inequality.

Let (-,+)o denote the standard L,—inner product and (-,-); the usual
H'—inner product. As usual, the corresponding norms are defined by ||-||o :=
m and ||-||1 :=4/(-,)1 + (-, -)o. From the Friedrichs-Poincaré inequality,
we know that |- |; = m defines a norm on X := Hj(Q) equivalent to
|- 1]z

The weak formulation of (6.1) is

A(u,v) = > /Qa”(x)agl(s) 8;}5) —/Qc(x)u(x)v(x)

i,j=1

=: a(u,v) — c(u,v),

for all u,v € X := Hg(). From the assumptions made on (a;;);;, we see

that a(+,-) is a symmetric and positive definite bilinear form defining a norm
Il ||x := y/a(-,-) on X. Since ¢(z) is positive on €2, ¢(-, ) is a positive definite
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bilinear form. Thus, the bilinear form .A(:,-) satisfies Garding’s inequality,
i.e. there exist constants C, > 0,C,. € R, such that

Alu,u) > Collullx — Cellully Vu € X.

Furthermore, we can easily prove that A(-,-) is continuous, i.e. there exists

a positive constant C' > 0, such that
|A(u,v)| < C|lu|lx||v]|x Vu,v € X. (6.2)
Finally, we assume that
A(u,v) = (f,v)g Ywe X (6.3)

is solvable for all f € X.

To discretize problem (6.3), we use conforming finite elements. For sim-
plicity, we restrict ourselves to bilinear quadratic (resp. trilinear cubic) ele-
ments. Let 7 denote a triangulation of ). The corresponding finite element
spaces are denoted by X" := {v, € C(Q) N Hy(Q) : vy, € Q(T), T € T},
where h represents the diameter of a typical element and Q;(T") denotes the
set of bilinear (resp. trilinear) functions on 7T'. The discretized version of (6.3)
is

Aup,vp) = (f,vn)0 Vop € XM (6.4)
The following lemma shows that (6.4) is solvable if A is small enough; see e.g.
Hackbusch [52], p. 155. To the best of our knowledge, the earliest reference
to this result is an article by Schatz; see [74].

Lemma 6.1 Let A(-,-) satisfy Gdrding’s inequality and let X" C X, such
that ’llirr(l) dist(u, X") =0 Vu € X.
%
If h is small enough, the inf-sup condition
inf sup U)o
uneX* y exh [|[unllx||vnllx

holds, with o independent of h.

a>0 (6.5)

From the continuity assumption (6.2), we obtain

A(un,
sup sup _Alun,vn) <C. (6.6)
unext vext |[unllxlvnllx
According to the well-known theory of Babuska, see Section 1.1, we now
know that (6.4) is uniquely solvable. Note that the second inf-sup condition

in Theorem 1.1 follows from (6.5) by symmetry.
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6.3 The Preconditioning Strategy

In this section, we construct a positive definite preconditioner for the indef-
inite problem (6.4). We prove that already a good preconditioner for a(-,-)
can guarantee an h—independent convergence rate of the PCR-method.

We denote the matrix representation of the bilinear forms A(:,-),a(:, ")
and c¢(+,-) by A, A and C. Hence, we have A= A — C.

We assume that B := A is symmetric and positive definite and defines
a norm on R" that is equivalent to || - ||x, i-e. there exist positive constants

ag, a1, independent of A, such that
agllullx < [[A"?ulls < as]lullx, (6.7)

where || - ||2 denotes the l;—norm.

Examples of methods that meet these requirements are given by domain
decomposition and multigrid methods or, more generally, by Schwarz meth-
ods; see Section 2.2.

In view of Theorem 2.2 and Remark 2.2, our goal is to give an estimate of
the condition number (B 1.A4). Since B := A is positive definite, B 1.4 and
B~'2 AB~'/2 have the same eigenvalues and p(B~'A) = ||B~/2AB~/2|,.
Here, we have used that B~Y/24B~/2 is normal. Thus, we only have to
provide upper bounds for ||B~/2AB"'/2||, and ||(B~/2AB/2)71||;.

We obtain the next lemma from (6.5) and (6.6) by performing a change

of basis; see also Lemma 4.4.

Lemma 6.2 There exist positive constants Cy,C1, independent of h, such
that

B 12 AB1/2
Co < inf sup ( A Up, Un)2
nF0uz0  |lunll2l|vall2
(B2 AB?uy, vp),
sup sup

wntounz0  [lunllz]|vallz

I

< (.

Now, we are able to give our condition number estimate. It follows im-
mediately from the definition of the condition number in combination with
Lemmata 4.2, 4.3, and 6.2.

Theorem 6.1 The condition number of B! A is bounded independently of

the discretization parameter h < hg, t.e.

5 Cy
1

< N
H(B A) < Co’
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where hy is small enough to guarantee that the inf-sup condition (6.5) is
satisfied.

Remark 6.1 There exist other parameters that might influence the conver-
gence rate of the iterative method, such as the number of levels in a multigrid
method or the number of subdomains in a domain decomposition method. The
PCR-method also converges independently of these parameters if the condi-
tion number of A1A s independent of them. This condition is satisfied for

many domain decomposition and multilevel methods.

Remark 6.2 Assuming h < hy, we exclude the case of A being (nearly)
singular. The numerical experiments show that the proposed method still

behaves well in this case; see Section 6.4.

6.4 Numerical Results

In this section, we apply our preconditioner to the indefinite Helmholtz equa-

tion with homogeneous Dirichlet boundary conditions on a square, i.e.

~Au—qu = f in Q:=]0,1]%
u = 0 on 01,

where the right hand side f(z,y) is always chosen so that the exact solution
is u(z,y) = z €® sin(w z) sin(m y); see also Figure 6.1.

All the computations were carried out on a SPARC 10 workstation using
Matlab 4.2a. The initial guess is 0 and the stopping criterion ||7x||2/||70]l2 <
1075, where 7}, is the k-th residual.

To see how the PCR-method behaves under the best of circumstances,
we conducted some experiments using an exact solver as a preconditioner,
je. A= A; see Table 6.1. The method works as predicted for the limit case
h — 0.

Another critical parameter is the constant g since it determines k, the
number of negative eigenvalues. According to Theorem 2.2 we should expect
that the number of iterations will grow as ¢ is increased. This is confirmed
by the experiments; see Table 6.1.

In the theory developed in the previous sections, we have excluded the
(nearly) singular case. In our model problem, A is singular when ¢ is an

eigenvalue of —A. It is well-known that the eigenvalues of —Au = Au on
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T2

Figure 6.1: The domain.

the unit square are given by (2 + j2) 72, 4,7 = 1,2,3,.... To demonstrate
the robustness of the proposed algorithm, we consider two cases for q, one
when it is an exact eigenvalue and the other when it is an approximation

2 and

of an eigenvalue. This is done for the two different eigenvalues 2
872, ie. ¢ = 272 ~ 19.7392, ¢ = 19.72 and ¢ = 872 ~ 78.9568, ¢ =
78.94. The experiments show that the algorithm does not deteriorate, see
Tables 6.2,6.3,6.4,6.5, although the finite element solution might be quite
inaccurate. The same accuracy is obtained by solving the system by Gaussian
elimination. This shows that the loss of precision cannot be traced back to
the stopping criterion but is inherent to the finite element discretization. We
also ran the same experiments with different random right hand sides, to
eliminate the possibility that our results are due to a special right hand side.
We could not detect any significant difference in the number of iterations.
As we did not know the exact solution, we cannot say anything about the

error of the finite element solution.
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Table 6.1: PCR-method with an exact solver as a preconditioner, i.e. A= A.

qa |h=w%|h=%|h=x|r=m|r=%|r=8|r=x%
10 4 5 ) 5 5 5 )
20 8 7 7 7 7 7 7
30 7 7 7 7 7 7 7
40 9 9 9 9 9 9 9
50 10 11 11 11 11 11 11
60 10 11 11 11 11 11 11
70 10 11 12 12 12 12 12
80 12 15 15 15 16 15 15
90 12 13 13 14 16 16 16
100 12 17 17 17 17 17 17
160 14 18 19 19 19 19 19
300 24 43 33 33 33 33 33

Table 6.2: PCR-method with an exact solver as a preconditioner, i.e. A = A,
and g = 19.72.

q h==X|h=2%
Iterations 7 9 9 9 9 9
||lu — up||oo | 0.9376 | 0.7049 | 0.5020 | 0.3581 | 0.2616 | 0.1969 | 0.1523

Table 6.3: PCR-method with an exact solver as a preconditioner, i.e. A= A4,
and ¢ = 27% ~ 19.7392.

q h= h= | h=L|h=L|h=L|h=2L|h=21
Iterations 7 9 9 9 10 10 10
||lv — up||oo | 1.0508 | 1.0408 | 1.0389 | 1.0377 | 1.0380 | 1.0378 | 1.0377
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Table 6.4: PCR-method with an exact solver as a preconditioner, i.e. A = A,
and ¢q = 78.94.

q h= h= | h=L|h=L|h=L|h=2L|h=21
Iterations 12 13 16 15 11 11 11
||lu — up||oo | 0.1410 | 0.1260 | 0.1119 | 0.0994 | 0.0723 | 0.0685 | 0.0660

A

Table 6.5: PCR-method with an exact solver as a preconditioner, i.e. A = A,
and ¢ = 872 ~ 78.9568.

q h= 1
Tterations | 12 13 16 15 11 11 11
[ u — wplloo | 0.1414 | 0.1279 | 0.1162 | 0.1070 | 0.0725 | 0.0687 | 0.0661
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