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Abstract

We study several simple models for optical mapping and explore their
power and limitations when applied to the construction of maps of clones
(e.g., lambdas, cosmids, BACs and YACs). We provide precise lower
and upper bounds on the number of clone molecules needed to create the
correct map of the clone. Our probabilistic analysis shows that as the
number of clone molecules is increased in the optical mapping data, the
probability of successful computation of the map jumps from 0 to 1 for
fairly small number of molecules (for typical values of the parameter, the
transition point is around 70 molecules). These observations have been
independently verified with extensive test, with both in vitro and in silico
data.

In addition, we compare our results with those derived by Karp and
Shamir [KS98] in a recent paper. We hope that this paper clarifies certain
misconceptions and explains why the model proposed in Anantharaman
et al. (1997) [AMS97] has proven so powerful.

1 Some Preliminary Remarks

We study several simple models for optical mapping and explore their power and
limitations when applied to the construction of maps of clones (e.g., lambdas, cosmids,
BACs and YACs). We provide precise lower and upper bounds on the number of clone
molecules needed to create the correct map of the clone. Our probabilistic analysis
shows that as the number of clone molecules is increased in the optical mapping data,
the probability of successful computation of the map jumps from 0 to 1 for fairly
small number of molecules (for typical values of the parameters, the transition point
is around 70 molecules).
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Independently, we examine several recent results [KS98, MP96], based on simple
models of optical mapping that approximate the optical mapping data by a coarse
discretization and describe their limitations.

The paper is organized as follows: In section 2, we formulate the problem; in
sections 3, 4 and 5, we successively introduce and analyze the effects of various error
sources: namely, partial digestion error, misorientation error and quantization error,
respectively. We use probabilistic methods to provide upper and lower bounds on
the choices of parameters that would ensure correct result with high probability. In
section 6, we study the effect of sizing error and its interaction with discretization.
The analysis indicates that for reasonable choice of sizing error, the algorithms based
on discretization are unlikely to work correctly with any reasonable probability. In
section 7, we present some empirical results and compare these with theoretical results
from the earlier sections. In the concluding section, we examine the results derived
in a recent paper of Karp and Shamir [KS98].

2 Problem Formulation

The underlying bio-chemical problem concerns with the construction of ordered re-
striction map of a clone (a piece of DNA of length L). Typical values of L are 2-20Kb
(lambda’s), 20-45Kb (cosmids) 150-200Kb (BAC’S) and ~ 1Mb (YAC’S). For our
mathematical analysis, we will often assume that L takes some fixed value which can
be arbitrarily large. These clones are sequences of length L over the alphabet { A,
T, ¢, G }. Certain short subsequences (typically of length 6, e.g., GGATCC) can be
recognized by a restriction enzyme (e.g., BamH 1), and location of these restriction
sites

0<H <H;<---<Hp<L

in the clone is the ordered restriction map of the clone with respect to the given
enzyme.

Let h; = H;/L be a real number. Then the normalized ordered restriction map of
the clone with respect to the enzyme is

0< hy <hy<---<hp<l,

where each h; assumes some real value in the open unit interval (0, 1).

Note that in the absence of any additional distinguishing characteristic of the
clone (e.g., identification of 3’ end or 5’ end), we could have also taken the following
as another normalized ordered restriction map of the same clone with respect to the
same enzyme:

0<hf <. <hlt<hl<i,

where th =1 — h;. Note that the normalized ordered restriction map is unique up to
reversal in the absence of any additional distinguishing characteristic, and is unique
if we know the orientation.
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3 False Negative Errors: Partial Digestion

Let us postulate an experiment, where the desired normalized ordered restriction map
is observed, subject to partial digestion error where any particular restriction site is
observed with some probability p < 1. We assume no other error sources for now;
thus no other spurious sites (false restriction cuts) are included in the observation
and the observed restriction map appears in the correct orientation.

Thus the result of the experiment is an ordered sequence of sites (normalized)

0<sy <8< <<,

where for each s;, there is an A; in the true map, such that s; = h;. By assumption,
for each h; the probability

Pr[ there exists some s; s.t. h; = s;] = p.

Let us also assume that the experiment is repeated n-many times resulting in n
observed restriction maps. Assume that the true restriction map is unknown and is
to be constructed from these n observations. A straightforward algorithm for doing
this would be to simply take the union of all the observed restriction sites, and output
this result in sorted order.

We claim that if n > z% + % (k> 1 and ¢ > 1) then the result of the preceding

algorithm is correct with probability greater than e~ “e=(¢7*)/2k Note that the
probability that a cut site h; does not appear in any particular observation is (1 —
p) and thus the probability that h; does not appear in any of the n independent
observations is (1 —p)”. Thus, we see that the probability that the cut site h; appears
in the final result is [1 — (1 — p)"]. Note that
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Thus the probability that all £ true cut sites show up in the final map is given by

[1-1-p"

1-(1-p>1-°

—c

= (6_1_€k’c)e

—c —
— e ¢ “eTCkct

> e—e_c e—((3_2°)/2k7

c

since €5 < 1/(ke®) (k> 1 and ¢ > 1 and ke® > 1.45).
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On the other hand, if n < 5 lf_fp) (k> 1and 0 < p < 0.69) then it is easy to argue

fécient to recover the correct map with high probability.
Note again that given a true cut site /; the probability that this cut is never observed
in any of the n observations is simply (1 —p)” > emPr(14p) 5 o= Ink — % Thus, with

n data the probability that we can recover all the true cut sites is simply bounded

from above by
<1 1)’f L1
k) —e 2

Thus with probability half or higher any algorithm will fail to produce the correct
ordered restriction map.

that the amount of data is insu

Theorem 3.1 Let ¢ be a positive constant and ¢ > 1 be so chosen that 1 —e " ° = ¢.

Then forn > C(H%_C)ﬁ— % (k > 1), with probability at least 1 — ¢, the correct ordered
restriction map can be computed in O(nk) time.
When n < —Ink (k>1and0 < p < 0.69), no algorithm can compute the correct

p(1+p)
ordered restriction map with probability better than half. |

For example, for a BAC clone digested by a 6-cutter enzyme, k ~ 37 (expected
value), with a partial digestion rate p > 0.1, if we compute an ordered restriction
map from n = 250 observations then the probability that we have a correct map is at
least 1 — 2 x 1079, Similarly, for n = 100 (with all other parameters unchanged), the
same probability is at least 1 — 2.5 x 1073, In contrast, for the same values k ~ 37
and p = 0.1, but with » < 30 observations, the probability of obtaining a correct map
drops to less than half.

Note, however, that since the value of £ and p are not known a priori, it is really
impossible to use this result in a meaningful way in designing an experiment (i.e., in
choosing n).

4 Misorientation Errors

Now, let us postulate a modified experiment, where the desired normalized ordered
restriction map is observed, subject to partial digestion error as well as error due to
misorientation. Thus the result of the experiment is an ordered sequence of sites

0<sy <8< <<,
where either the sequence or its reversal
0<sfasl, < <P,
could be assumed to be derived from the true normalized ordered restriction map
0<hy <hy<---<hp<l,

after partial digestion. By assumption, for each h; and for each observation, the
probability
Pr[ there exists some s; s.t. hj =s; or hj =sF]=p
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models the partial digestion.
Assumption: For the time being, we assume that the true normalized ordered re-
striction map has no symmetric site, i.e.,

R
Vs Vj;gi h; 75 h]- .
Let us also assume that the experiment is repeated n-many times resulting in n
observed restriction maps whose orientations may be misspecified.
An algorithm to reconstruct the true map may proceed in two phases:
4.1 Phase 1:
Define a map

f + (0,1)—(0,1/2)

A if z € (0,1/2);
’ 2P if e (1/2,1).

In phase 1, our goal is to construct the set

{f(h1), f(h2), ..., f(he)},

which can be easily accomplished by considering the sets

{f(si1), f(si2)y -y f(sit,)}, 1=1,...,n.

and proceeding in a manner similar to the one outlined in the preceding section.
Using the arguments as given earlier, we see that we will succeed in this phase with

probability e=*" ", if n > (:(1-:'%@—0) + %,

4.2 Phase 2:

While one cannot recreate the map directly from the result of the phase 1, one can
invert f correctly, if each computed site is further augmented with a sign value (€
{+1,—1}), where +1 denotes that the site belongs to the left half [(0,1/2)] and —1
denotes that the site belongs to the right half [(1/2, 1)]. Thus, we may define

f o (0,1/2) x {+1,-1} = (0,1)

h; if Sgn = +1;
((hs),Sgn) { Him e =

We can assign the sign values correctly as follows: Define a graph G = (V, F),
where V.= {f(h1), f(h2), ..., f(h)} and e = [f(h;), f(h;)] € £ if and only if

355, fsir) = f(hi) and f(s0) = f(hj).
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Furthermore, label € with +1 if s; and s; € (0,1/2) or if s and s;» € (1/2,1) (both
sites belong to the same half); and with —1 if s; € (0,1/2) and s;» € (1/2,1) or if
sp € (1/2,1) and s € (0,1/2) (two sites belong to different halves). In other words,

Sgn (e) = Sgn [(1/2— s;7)(1/2 — s;1)].

It is trivial to see that if the graph is connected then one can compute the correct
vertex labels by first labeling an arbitrary vertex +1 and then labeling the remaining
vertices by following the edge labels during a graph-search process. Thus if f(h;) and
f(h;) are path connected by a simple path e;, eg, ..., €, then

Sgn (f(h:)) = Sgn (e1) - Sgn (e2) - - -Sgn (e )Sgn (f(h;))-

Let us assume that n > # In (ﬁ)
With partial digestion rate p > 1, for any pair [f(h;), f(h;)], the probability that
this edge does not occur is

k—Ink—c Ink ¢
1 - pH)" < —p2n< —In(k/k=Ink—c) _ — _< _)
(I-p)"<e”"<e 2 P tE)
and Ik
=1—(1=p?) > 22 E
P I=p)" 2 =+

Thus by the well-known result on the connectivity in random graphs [Spe87], we see
that with p, > % + 7,

lim Pr[Gg,, is connected] = e~ "

k—oco

On the other hand, if n < m In kkj (k> 1and 0 < p < 0.83) then it is easy
to argue that the amount of data is insufficient to recover the correct map with high
probability. Note that, since

(1 _ pZ)n > E_np2(1+p2) > e In(k/k-1) —1— %7
we have p, < % In this case the graph is almost surely not connected (the largest con-
nected component has size o(In k)), and the final map cannot be computed uniquely
(correctly). Thus with probability half or higher any algorithm will fail to produce
the correct ordered restriction map.

Theorem 4.1 Let ¢ be a positive constant and ¢ > 1 be so chosen that 1 —e™2¢"" = ¢.
Then for
14+e ¢ Ink 1 k
> max |[CUFE) Ink Ly <7) 7
P p ' p? k—Ink—c

(k> c+1Ink), with probability at least 1 — €, the correct ordered restriction map can
be computed in O(nk?) time.
When

In k 1 In k ]
p(1+p) p?(1+p?) k—1]"

(k> 1 and 0 < p < 0.69), no algorithm can compute the correct ordered restriction
map with probability better than half. O

n < max[
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Considering the earlier example, for a BAC clone digested by a 6-cutter enzyme,
k =~ 37 (expected value), with a partial digestion rate p > 0.1, if we compute an
ordered restriction map from n = 250 observations then the probability that we
have a correct map is at least 1 — 6 x 107%. Similarly, for n = 100 (with all other
parameters unchanged), the same probability is at least 1—7.5x 1072, In contrast, for
the same values k = 37 and p = 0.1, but with n < 30 observations, the probability of
obtaining a correct map drops to less than half. Thus, the effect of the misorientation
is dominated by the partial digestion error for p > 0.1.

In fact, comparing the two terms in the earlier theorem, we see that as long as

S In(k/(k—Ink—¢))  —In(l-(Ink+c)/k) (nk+c)/k 1
Pz nk+c - nk+c ~ Thk+e K

then only the term due to partial digestion dominates. For instance, if we assume
that every observation contains at least one true restriction site, then p > 1/k and
n = O(klogk) observations will suffice to find the true map without any other a
priori knowledge of p.

4.3 Optical Cuts

Next we shall consider the situation when we have additional spurious cuts (optical
cuts) that do not correspond to any restriction sites. A sound probabilistic model
for these spurious cuts can be given in terms of a Poisson process with parameters
Af (thus the expected number of false cuts per molecule is Af). Hence, for any small
region [z, x + dz] in an observation,

Pr[# false cuts € [z, 2+ dz] =1] = Aoz,
Pr[# false cuts € [z,2 4+ dz] > 2] = o(dz).

The probability that an observation contains exactly f spurious cuts is given by:
s

e~ M ;—’,‘ Typical observed values for Ay are about 0.2 for Lambda clones, 0.5 for
cosmids and 1.0 for BAC’s. Thus, we expect roughly 1 false cut per 100 Kb.

Under this model, it is fairly trivial to see that the false cuts pose no serious
problem. Our algorithm can be modified in a straightforward manner where Phase
1 computation needs to be somewhat more robust.

In phase 1, our goal is to construct the set

{f(h1), f(h2), ..., f(he)}.

This is accomplished by considering the observation-based sets

{f(si1), f(si2), -y f(si,)}, i1=1,...,n.

and including only those f(s;;)’s that occur at least twice in the combined observa-
tions. In other words, if there exist iy # i3 such that if

Eljl ,J2 f(Silyjl) = f(sim]é) =7,
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then include z in the output set.
Assume that n > % + 21?%]“, (with ¢ > 1.26) then if h; is a true cut site then the
probability that f(h;) is not included in the output is

(1= p)" +np(1=p)" " < (L4 p(n = 1)) 7?0070 < e7r0mD2 = —
Proceeding as before the probability that all k& true sites will be included is thus
bounded from below by

e—e_C e—(6_2°)/2k7
Also, by the assumption regarding the distribution of spurious cuts, we see that the
probability that a spurious cut is included in the final set is zero.

4.4 Symmetric Cuts

Next, assume that the true ordered restriction map consists of & asymmetric cuts
and m symmetric cuts. Thus the total number of cuts is & + 2m. Note that a cut
h; is a symmetric cut, if both A; and hZR are true cuts. Additionally, we assume that
the observations are subject to the partial digestion errors, misorientation errors,
spurious cut errors (determined by a Poisson process) and symmetric cuts.

In this case, we proceed with the phase 1, as in the preceding subsection, and

again assuming that n > % + 21}%]“ (¢ > 1.26), we will almost surely (with probability

no smaller than e~ “e=(¢7*)/2%) construct a set

{f(h1)7f(h2)7 e '7f(hk)7f(hk+1)7 e 7f(hk+m)}

However, before proceeding to phase 2, we will remove those f(h;)’s from the
preceding set that correspond to symmetric cuts. A simple approach we can take is
to check each observation for the existence of symmetric cuts at positions s and s%,
where f(s) = f(sT) = f(h;).

We claim that if n > Z%ﬁ—h;—? (m > 1and ¢ > 1) then the preceding steps correctly

detect the symmetric cuts with probability greater than e “e=(e7)/2m  Note that
the probability that, assuming %; to be a symmetric true cut, the above test fails in
any particular observation is (1 — p?) and thus the probability that the symmetric cut
h; goes undetected in any of the n independent observations is (1 — p?)”. Observe
that

(1-p?)" < ™
< —c—lnm:e__c
- m7
and
e—C
1—-(1=-pH)">1- )
(1-p7)" > —
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Thus the probability that all m symmetric true cut sites are detected in the final map
is given by

since me® > 1.45.

Again, by the assumption regarding the distribution of spurious cuts, we see that
the probability that a spurious cut is included or symmetric cut is missed in the final
set is zero.

Using an argument, similar to the one presented in section 1, we are led to the
conclusion that if n < 272%‘117_@)2) (m > 1 and 0 < p < 0.83) then we will fail to
detect at least one symmetric cut (and hence fail to create the correct final map) with
probability half or higher.

At the end of this step, we are left with a set only corresponding to asymmetric
cuts

{f(h1), f(h2), ..., f(hr)}.

At this point, we simply proceed with the phase 2 mutatis mutandis and claim results
similar to the ones derived earlier.

4.5 Summary

Consider an ordered restriction map with k£ 4+ 2m restriction sites, of which m are
symmetric cuts. Assume that the postulated experiment observes these maps, with
each observation suffering from partial digestion error (p < 1), misorientation error,
spurious cuts (determined by a Poisson process with parameter Af), but no sizing
error.

—c

Theorem 4.2 Let € be a positive constant and ¢ > 1.26 be so chosen that 1—e=3¢" " =
€. Then for

n > max 2e(1+ ™) + 21n(k+m),imax [c(l—l—e‘c) + Inm,In <L)]
P P p? k—Ink—c

(k> c+Ink and m > 1), with probability at least 1 — ¢, the correct ordered restriction
map can be computed in O(n(L + k* +m)) time.
When
In(k+ m) 1 k
, max |In m,In ,
p(1+p) " p*(1+p?) k=1

(k>1,m>1and 0 < p < 0.69), no algorithm can compute the correct ordered
restriction map with probability better than half. a

n<max[
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Figure 1: Theoretical Results. The probability of successfully computing the correct
restriction map as a function of the number of cuts in the map and the number of molecules
used in creating the map. The individual maps for each single molecule is assumed to be
subject to several sources of error: partial digestion (10%), unknown orientation and false
cut (with a rate of 1 false cut in 100Kb) error. Effects of the other error sources are not
explicitly accounted for. Note that, in almost all cases (number of cuts exceeding 4), 70-100
molecules suffice to find the correct map. Our experimental results with significantly better
digestion rate agree with the theoretical analysis with remarkable fidelity. Notice the sharp
transition in the probability of successfully computing the map (from a probability of near-0
value to near-1 value) as the number of molecules used in the construction is increased from

30 to 90.

5 Discretization

There now remain to introduce two more significant effects in order to make the
observation model somewhat more realistic. Firstly, we need to study the effect of
the underlying discrete model, as one may argue that at the most basic level the maps
can only be presented with fragment lengths in base pairs. (Although this itself
is not a realistic model, as what one observes are randomly attached flurochromes
filtered by various optical and image processing steps.) The good news here is that
our analysis so far holds with minor modification; the detailed analysis only makes
the effect of spurious cuts a lot more obvious. Secondly, we need to model the errors
in fragment sizes. The bad news are two fold: a) the analysis tools we have used so
far simply do not apply; b) the obvious discretization algorithms that we have relied
on simply fails. The last fact is rather important as it clearly explains why at least
three of the algorithms that have appeared in the literature have failed to produce
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Figure 2: Theoretical Results. Another view of the earlier plot.

maps for any data set.

5.1 Base Pair Accuracy

Let us assume that the clone DNA that we wish to analyze is of length L bps and the
restriction enzyme used is a 6-cutter. Let A =12 and § = A/L. In the normalized
ordered restriction map, we may assume that the computational processes cannot
distinguish between two locations if they are only § apart. More formally, we say
that

r =5 oy, fy-d6<az<y+d
r <5 vy, fx<y—2¢
x >s5 oy, ifz>y+4.
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We can thus imagine that the unit length is partitioned into M = 1/§ = L/A
consecutive subintervals and it is not possible to distinguish the restriction cuts and
spurious cuts in each of these subintervals. Thus, we need to ensure that ¢ is sig-
nificantly small so that no more than one true restriction cut location belongs to a
subinterval. We now write r = A6 = AX¢/L to denote the probability that we shall
observe one spurious cut in a subinterval. Note that the probability that we shall
observe f spurious cuts in any observation is given by

M A AfA
f1 = M-/ -2 _ A=
<f)(r) (1—r) ,  where r i A

Thus in the limit as M — oo and r — 0,

. M f M—f _ —); ’\j‘t
L W Y VA e
the analysis given earlier holds true. Here, we are simply interested in the effect of
finite M (and nonzero r).

To give some idea of the numbers involved, we see that for lambdas, M can range
from 200 to 2,000 and r ~ 1073-10~%; for cosmids, M is 2,000—4, 000 and r ~ 10~%;
for BACs M =~ 15,000 and r =~ 10~%. In general, even for significantly smaller (but
still realistic) values of M, r < p. We will use the following simplifying assumption:

26T < p.

More precisely, (12e — 7)r < p, thus implying that (p + r)/6r > 2e — 1. While it is
interesting to analyze the case when p and r are arbitrarily close, the analysis only
produces unrealistic and pessimistic results, and differs widely from experimentally
observed results.

5.2 Limit on M

The discretization process, now, makes it possible for spurious cuts to introduce a
“wrong” cut site into final map. For instance, if each of the n observations contains a
spurious cut in the same subinterval, then no algorithm can distinguish this spurious
cut from a true cut (independent of digestion rate). Thus the probability that none
of the M subintervals has a spurious cut in each of the n observations is given by

(1—rmM,
Now if we assume that n < %, then the above probability is bounded from above

by

(1 . rn)M < (1 _ rlnM/ln(l/r))M

IN
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Hence we must guarantee that

n(L/A)  In(L/A)

In(1/r)  In(L/A;A)’

since otherwise the computed map will be wrong with probability half or more. Note
that, in order for the above expression to have any discernible effect, I has to be
astronomically large, and of course, none of the single molecule approaches is ever
planned to be used for molecules much longer than few Mbs.

Theorem 5.1 When

In(k + m) 1

n < max ,
p(1+p) " p*(1+p?)

k In(L/A)
T — 1] "In(L/AA) |

max [ln m,In

(k>1,m>1,L>A and 0 < p < 0.69), no algorithm can compute the correct
ordered restriction map with probability better than half. a

5.3 Statistical Analysis

Next we shall provide a simple statistical analysis for the success of the phases of the
earlier algorithm, which need to be adapted to the new case. As mentioned earlier,
we shall make use of the following inequality in the analysis:

26r < p,

although in general we expect r < p (r ~ 107* and p > 0.1).

5.3.1 Phase 1 a

In phase 1 a, our goal is to construct the set

{f(h1)7 f(h2)7 s '7f(hk+m)}a

by considering the observation-based sets

{f(si1), f(si2), .-y f(sit,)}, 1=1,...,n.

and including only those f(s;;)’s that occur significantly large number of times, de-
termined by a threshold. Suppose that a location f(h) corresponds to a true loca-
tion, then the number of f(s;;)’s equal to f(h) must follow a Binomial distribution
~ S(n,p+ 2r). If on the other hand, f(h) does not correspond to any true location,
then the number of f(s;;)’s equal to this f(h) must follow a Binomial distribution
~ S(n,2r). Let
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and the threshold be

(I+e)2nr = <1 + ]%) 2nr = w + 2nr
_nlen) | 2(rn)
3 27
n(p+2r)
5

By assumption (since 267 < p), this threshold is less than

where

Assume that

8 3
n> Emax [c—l—ln(k—i—m),m(c—l—ln(M/Q—k —m))] .

Now we can use the Chernoff’s bound [ASE92] to note that

Pr [S(n,p+ 2r) < (1 —e)n(p+ QT)]

< e~ (@/2)n(pt2r)

e—C

< e—np/S < e—c—ln(k—}—m) — )
k+m

Thus the probability that all the correct cuts appear in the computed set is
bounded from below by

—c k4+m
(1 ‘ ) L)

Ck+m

Again, using the Chernoff’s bound [ASE92] in the other direction, we get

Pr [S(n, 2r) > (1+ 61)2717‘]
< 2—(1—|—51)2nr < 2—(p/67“)2n7“

—C

e—(ln2/3)np < e—c—ln(M/?—k—m) _ €

< M2 —k—m’

Thus the probability that no spurious cut appears in the computed set is bounded

from below by

ec M/2—k—m

1 e —_e—¢ _(e—2c)/M‘
( M/2 -k — m) e ‘
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5.3.2 Phase1b

In phase 1 b, our goal is to construct the set of asymmetric cuts

{f(h1), f(h2), ..., f(he)},

by eliminating the symmetric cuts. Suppose that a location f(h) corresponds to a
symmetric true cut site, then the number of times an observation has sites at s’ = f(h)
and s” = f(h)® must follow a Binomial distribution ~ S(n, (p+r)?). If on the other
hand, f(h) is not a symmetric site, then the corresponding number must follow a
Binomial distribution ~ S(n,2(p+ r)r). Let

€1 = p+ - Z £7
67 6r
and the threshold be
tr n(p+r)?
(a2t rir= (14 2D onpot e = MEE fonp g,

where
€1 > 2e — 1.

By assumption (since 267 < p), this threshold is less than

where

Assume that

8In2
Now we can use the Chernoff’s bound [ASE92] to note that

n> %max[c+lnm,i(c+lnk)].
p

Pr [S(n, (p+r)?) < (1- 60)"(P+7‘)2]

< (@ /2n(p4r)?

< e—np2/8 < e—c—lnm _ € )
m

Thus the probability that all the symmetric cuts are detected is bounded from

below by
(1 . ) )

m

Again, using the Chernoff’s bound [ASE92] in the other direction, we get

Pr [S(n7 2(p+r)r) > (1+¢a)2n(p+r)r

< 2—(1+51)2n(p+7“)7“
e=¢

In 2/3)np? < e—c—lnk —
e

< e_(
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Thus the probability that no asymmetric cut is mistakenly eliminated is bounded

from below by
o\ k
(1 < ) s e o2k,

5.3.3 Phase 2

In phase 2, our goal is to assign consistent sign labels to the asymmetric cuts

{f(h1), f(h2), ..., f(hs)},

so that the final map can be constructed correctly with high probability. Consider
a potential edge [f(h;), f(h;)], then the number of times an observation has sites at
sy and sj such that f(h;) = f(sy) and f(h;) = f(s;) assigning the correct edge
labeling must follow a Binomial distribution ~ S(n, (p+ r)?). If on the other hand,
the edge labeling is incorrect, then the corresponding number must follow a Binomial
distribution ~ S(n,2(p+ r)r). Let

p+r
67

€1 = Z 9

2|~

and the threshold be

n(p+r)’

3 +2n(p+r)r,

(I+ea)2n(p+r)r= (1 + %) 2n(p+r)r=

where
€1 > 2e — 1.

By assumption (since 267 < p), this threshold is less than

where

Assume that

8 k 3
— 1 2Ink)|.
n>meaX[n<k—lnk—C)78ln2(C+ ! )]

Now we can use the Chernoff’s bound [ASE92] to note that

Pr [S(n, (p+1)?) < (1-e)n(p+ 7“)2]

e— (€ /2)n(ptr)?

o~ 8 o= In(k/(k=Ink~c))
Ink+c

_ —

<
<

=1
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Thus the probability, p. that any edge is correctly labeled is bounded from below

by
ke

TR
and the resulting random graph G, ,, is connected with probability higher than e~
Again, using the Chernoff’s bound [ASE92] in the other direction, we get

e—¢

Pr{S(n,2(p+r)r) > (1+e)2n(p+r)r
< 2—(1+61)2n(p—|—7“)7“

< e—(ln?/S)'ﬂp2 < e—c—QInk _ e

Thus the probability that no non-edge is included with incorrect label is bounded

from below by
e\ FE=1)/2
(1 -2 ) > e e (T2

5.4 Summary

Theorem 5.2 Let ¢ be a positive constant and ¢ > 1 be so chosen that 1—e™12¢° = ¢.
Then for
1+e° 1 1 k
n> S0 et e+ my, E™ L <7) 7
p P P k—Ink—c
2In k
(c+In(L/2A — k —m)), ”7“]
p

(k>c+Ink, m>1, L > 2A and r < p/26), with probability at least 1 — €, the
correct ordered restriction map can be computed in O(n(L + k? + m)) time. o

The previous result can be tightened further, if we generalize our assumption to
(2%0e) r < p, where a > 1 and 6 > 3. For instance, @« = 6 and # = 9/2, requires that
r < p/785 as opposed to 1/26. In this case, we can show that the appropriate choice
of n in the preceding theorem could be changed to:

n > (14+e° max[

2 c+Inm 1 k
In(k - ~Ih|—m
(1—2/0(1+2_a/e))2pmax<c+ n(k +m), p p n<k—lnk—c))’
0 c+2Ink
S — In(L/2A — k — -
(21n2a) p max<(6+ n(L/ ™) P )]

Note: Use essentially the same analysis as before: Simply take € to be (p +
r)/(fr) > 2%e — 1, and note that ¢q is then bounded by (1 —2/0(1+27%/e)).
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Figure 3: Experimental Results: #Cuts, K = 37, ¢ = 1.5bp, p=10.1

For example, for a BAC clone digested by a 6-cutter enzyme, k ~ 37 (expected
value), with a partial digestion rate p > 0.1, with the false optical cut rate r =
10=* and M = 15,000 if we compute an ordered restriction map from n = 1050
observations then the probability that we have a correct map is at least 1 — 7 x 107°.
In contrast, for the same values k& ~ 37, p = 0.1 and r ~ 10~%, but with n < 30
observations, the probability of obtaining a correct map drops to less than half.

Let pg denote the probability that the restriction enzyme cuts at a site. For
instance, the probability pg = 1/4% ~ 1/4, 000 for 6-cutters. Also note that assuming
that ¢ > 4 and Lpg > 8¢, we see that since the total number of cuts (k + 2m) ~
S(L,pg), the probability that a random clone of length I has total number of cuts

18 e Gen. via Opt. Map (1) e June 1998
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Figure 4: Experimental Results: #Cuts, £ = 37, 0 = 1.5bp, p = 0.2
ranging between 2c and (1 + ¢) Lpg is close to one:
Pr|S(L,pg) € [2¢,(1+¢)Lpg]| > 1 — 2e7%.
Using the previous arguments, we see that in general if we use
5 (¢ 1 . 1
n>-—(c+Inl), =c+2In(l+e¢),

p

observations (with r < p/26), we will compute the correct map almost surely for
almost all clones.
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Figure 5: Experimental Results: #Cuts, k =37, Ay =1,p=10.1

6 Sizing Errors

However, we need to model the sizing error and analyze its effect. Before doing so, we
need to derive some inequalities relating the size of the discretized subinterval (A) to
several other external parameters. In particular, in order to infer the map correctly
with probability greater than 1/v/2, we must guarantee that A < m, where &
is the number of cuts and pg, as usual, denotes the probability that the restriction
enzyme cuts at a site.

Assume that A > m. Let [ denote the length of the smallest restriction
fragment (piece of the molecule between two consecutive restriction sites). Note that

the fragment lengths are distributed as pge™ % and the probability that a fragment
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is of length > A/3 is

/OO prePET dy = e7PEA/S,
A/3
Thus the probability that the smallest of all (k — 1) fragments is no smaller than A/3,

18
e—(k=1)pEA/3 _ =2/3.

Thus the probability that the smallest fragment is of length < A/3 and that both
ends of the fragment belong to the same subinterval is bounded by

_e23) (1 - b

(1—e2*) (1-1/3)>1 75

However, note that for the running BAC example, this implies that the largest value
we may choose for A < 200bp (requiring M to be about 750).

Next assume that a true cut site at location h actually appears as a Gaussian
distribution ~ N (h, o). Again, considering the complementary requirement to the
one mentioned earlier, we must ensure that the observed cuts corresponding to the
same true cut (at location h;) belong to the same subinterval with high probability.
As a result, we may require that

Vici<k Figjem hi € (jA+ o, (j+1)A - 0),

with high probability (say, > 1/+v/2). Thus, we require that

[1 — 2—U]k ~ e 2ko/A > L

A V2

In other words, we require that 2ko /A <In2/2, and

M2y Mm2
— 4k T 2k(k-1)pE
A simple calculation for the BAC example reveals that in order to guarantee the
above inequality we need that ¢ < 0.89bp. Thus for all practical purposes, in order
for the discretized algorithm to work with any degree of correctness, we must require
the observation to be free of sizing error.

It is somewhat interesting to note that if we are considering an example involving
lambda’s or very small cosmids (with £ &~ 5), and willing to accept a rather small
probability of success, then a o = 60bp is feasible. The experimentally observed value
for o has ranged around 700bps, and it is inconceivable that even in this case such
an approach could be made to work except for few lucky instances.

7 Experimental Verification

This section compares the performance of a program based on the maximum like-
lihood approach (described in [AMS97]) to map computation with the theoretical
bounds in the previous sections. At the time of this writing, AMS algorithm [AMS97]
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Figure 6: Experimental Results: #Cuts, K = 20, ¢ = 1.5bp, p= 0.1

still remains the only algorithm that has worked successfully on raw experimental
data, without access to any extraneous parameters or the final answer. In each case,
when the computed map was verified with data (from sequence and gel data) derived
independently and subsequent to the experiment, the algorithm was found to be re-
markably successful; in fact, the maps from AMS algorithm has been used to find
sequence assembly errors in publicly available data. The algorithm has been used for
a wide range of clones (lambdas, cosmids, BACs) and is used routinely by chemists
and biologists in our laboratory. None of this can be claimed of any other published
algorithm.

For all the experiments described in this section, random data were generated
using the data models of the previous sections. For each data model, and assumed
number of data molecules, we generated 20 random data samples and counted the
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Figure 7: Experimental Results: #Cuts, K = 20, ¢ = 1.5bp, p=10.2

fraction of these samples for which the maximum likelihood program computed the
correct map. For each data model the number of data molecules is varied to obtain the
fraction of cases solved correctly as a function of the number of data molecules. We
show that in each case there is a fairly sharp transition from not being able to solve
any of the 20 samples to being able to solve all 20 samples. Moreover this transition
point lies within the theoretical bounds computed in the previous sections. Finally
we examine the performance of the maximum likelihood program for the case where
there is significant sizing error. In this case the discrete methods described previously
fail to work altogether, whereas the maximum likelihood method continues to work,
albeit requiring a larger number of data molecules as the sizing error increases.

The maximum likelihood approach described in [AMS97] is based on a continuous
(non-discrete) modeling of the data. The modeling of sizing error in the model results
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Figure 8: Experimental Results: #Cuts, K = 10, ¢ = 1.5bp, p= 0.1

in a singularity in the probability density when the sizing error is zero. Therefore this
case was approximated by assuming a small sizing error of 107° of the total molecule
size, 0 = 1.5bp. Each data model is specified by providing the number (k) and value
of the actual cut locations, the sizing error in the form of a standard deviation (o), a
digest rate (p) and a false cut rate (Af). For each model random data is generated
with the help of a random number generator in a straightforward fashion: For each
of the actual cuts, we draw a random number uniformly from [0,1] and if this value is
below p the cut is assumed to be present. Then another random number is drawn from
the standard Gaussian distribution to determine the location of the cut with sizing
error. Next false cuts are added by first drawing a random sample from a Poisson
distribution with mean A; to determine the number of false cuts, then drawing the
required number of random samples uniformly over [0,1] to get the false cut locations.
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Figure 9: Experimental Results: #Cuts, K = 10, 0 = 1.5bp, p=10.2

This results in the generation of one in silico “molecule.” This process is repeated to
get the required number of molecules to make up one data set. This data set is then
input as raw data to our maximum likelihood program and the resulting map scored
a success if the number of cuts is correct and their location is within one standard
deviation (o) of the correct location. (Note that o is the standard deviation for the
cuts of one sample molecule: the map computed by the AMS algorithm typically has
sizing error much less than that since the data from all molecules are averaged). This
process is repeated for a total of 20 samples and the fraction of times the program
succeeds is recorded against the data sample parameters (k, o, p, A, number of
molecules). The whole process was repeated for different values of the parameters.
The number of cuts was varied using the values £ = 0, 1, 2, 5, 10, 20 and 37. The
values of p tested were p=0.10 and p=0.20. The values of A; tested were A;=0
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Figure 10: Experimental Results: #Cuts, £k = 5, 0 = 1.5bp, p=10.1

(no false cuts) and Ay=1,2 and 4. For most experiments we selected ¢ = 1.5bp to
approximate no sizing error, but for a small number of experiments with £ = 2 and 37
we also tested o= 150bp, 300bp, 750bp and 1.5Kb. Most experiments were repeated
with the number of molecules set at 10, 20, 30, 40, 50, 70, 100, 200, 500 and 1000
and in few instances 2000 or 5000.

The results are summarized in a series of graphs showing the success rate (out of
20 samples) as a function of the number of molecules used. The graph in Figure 3
shows the case for £ = 37 and Ay = 0, 1, 2 and 4, which corresponds to the case
analyzed in Section 4. We see that for p = 0.10 and Ay = 1 a sharp transition occurs
when the number of molecules increases from 30 to 50. At 70 or more molecules the
AMS algorithm never (out of 20 experiments) fails to find the correct map, whereas
for 20 or less molecules it invariably fails to find the correct map. For p = 0.20
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Figure 11: Experimental Results: #Cuts, £k = 5, 0 = 1.5bp, p=10.2

(Figure 4), the transition (from probability of near 0 to near 1) occurs at a lower
value of around 20-30 molecules. Compare this with the theoretical bounds on the
number of molecules required from section 4 of between 30 and 100 (lower bound and
upper bound respectively).

When the number of (true) cuts in the molecules is changed to k£ = 20, 10, 5 and
2, similar graphs are obtained: Figures 6 and 7 show the results for the case k = 20;
Figures 8 and 9, for the case k£ = 10; Figures 10 and 11, for the case k = 5; Figures 12
and 13, for the case k = 2; Figures 15 and 16, for the case £ = 1 and Figure 17,
for £ = 0. The main trend is an increase in the number of molecules required as k
is reduced down to & = 2: for instance, with £ = 2 and p = 0.1, 500 molecules are
required to find the correct map in every case (Ay = 0, 1, 2 and 4), in contrast to
just 200 for & = 37. This agrees with the theory from sections 4 and 5 which shows
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Figure 12: Experimental Results: #Cuts, £ = 2, 0 = 1.5bp, p= 0.1

that the bounds increase slowly as k is decreased. The case £ =1 in Figures 15 and
16, however, show that fewer molecules are required: e.g., with p = 0.1 and Ay =1,
200 molecules are sufficient to find the correct map. The reason is that orientation is
less of a problem with only 1 cut.

Figure 5 shows what happens with £ = 37 when sizing error is increased to 150bp,
300bp, 750bp and 1.5Kb, respectively. With p = 0.10 and Ay = 1, the number of
molecules required to find the correct map in every case increases from 200 to about
5000 as the sizing error increases. Figure 14 shows what happens at £ = 2 when
sizing error is increased similarly. In this case the number of molecules increases
from an already larger value, but more slowly: it increase from 500 to 2000. While
we do not have any theoretical bounds for this case, the intuition is that while it is
harder to get the orientation right with & = 2 than with &£ = 37, it is less likely that

28 @ Gen. via Opt. Map (1) e June 1998



Prob gcuts =2, LambdaF =0) Prob scuts =2, LanbdaF =1)
1

0.8 0.8
0.6 0.6
0.4 0.4
0.2 0.2
00 200 300 400 50d PSS 100 200 300 400 500 PS"S
Probiscuts =2, LanbdaF =2) Probiscuts =2, LanbdaF =4)
1 1
0.8 0.8
0.6 0.6
0.4 0.4
0.2 0.2

O#Cl)sns d&d)sns

100 200 300 400 50 100 200 300 400 50

Figure 13: Experimental Results: #Cuts, £ = 2, 0 = 1.5bp, p=10.2

neighboring cuts will be confused with each other due to sizing errors when k = 2
than when k£ = 37.

8 Last Words

Before we end, we wish to bring the attention of the readers to few simple observations
(related to the recent work of Karp and Shamir):

e Based on the discussion of the preceding section, it is hard to believe that the
algorithms implicit in Karp-Shamir’s analysis will work on any real example.
The difficulty is in their model which simply ignores the effect of the sizing
error.
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Figure 14: Experimental Results: #Cuts, k =2, Ay =1, p=10.1

e Karp-Shamir lower bound: Their theorem implies that in order for optical map-
ping approach to work effectively, the technique would need Q(A*) molecules,
where A = p — r. For a value of p = 0.1 and r = 1074, this requires about
10, 100 molecules, in total disagreement with the results computed and verified
experimentally in this paper. Even for large values of p, the numbers are still
unusually high. Our experimental analysis contradicts these results, as does
our theoretical result. The difficulty is two fold: Karp-Shamir analysis focuses
on the case where p = r—a situation that has no realistic physical interpreta-
tion. Secondly, use of the parameter A = p — r, implies that these parameters
(p and r) are somehow correlated, which is impossible as r is an artifact of the
quantization process. The bounds computed in terms of p and Ay directly (as
done here) are clearly more informative.
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Figure 15: Experimental Results: #Cuts, £k = 1, 0 = 1.5bp, p = 0.1

e In the model Karp and Shamir propose, it seems to be implied that r is fixed
and independent of the level of quantization m. In addition, it seems to be
implied that m is a fixed constant that cannot be changed either. As increasing
m would reduce r, it is quite easy to guarantee a condition like r < p which
changes the nature of the analysis significantly. Also, it is unclear what the
authors assume regarding the limiting effect of m — oo, on the distribution of
the false cuts.

e Finally, all their upper bounds seem only to be functionsof A = p—r,t = k+2m
and ¢ (controlling the probability of error). It is unclear why the upper bounds
do not depend on the length of the molecule L, as it is not hard to see that
asymptotically as L — oo, for any positive false cut rate r > 0, the probability
that a false cut is accidentally included in the final map approaches 1.
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Figure 16: Experimental Results: #Cuts, k = 1, 0 = 1.5bp, p = 0.2
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functions of the parameters: #Cuts, k& € {0..37}, Digest rate p € {0.1,0.2} and
Ar€40,1,2,4}.
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