
Higher-Order Conditional Synchronization

by

Niki Afshartous

A dissertation submitted in partial ful�llment

of the requirements for the degree of

Doctor of Philosophy

Courant Institute of Mathematical Sciences

New York University

January, 1999

c Niki Afshartous

All Rights Reserved, 1999

For Jenny and Brian

iii

Acknowledgements

I would �rst, and foremost, like to thank my wife and parents for their support

and love during the many years it took to ful�ll my education.

I would also like to thank my advisor, Ben Goldberg, and my dissertation com-

mittee, who's participation and review was critical throughout. John Reppy and

Jon Riecke carefully reviewed earlier drafts of the dissertation. The presentation of

the semantics Chapters bene�ted greatly from their suggestions and feedback. I also

thank them both for their hospitality during several visits to Bell Labs - Lucent.

Suresh Jaganthan carefully reviewed the dissertation draft and provided insight-

ful comments and suggestions. I also bene�ted from the participation of Edmond

Schonberg and Vijay Karemcheti.

I thank Allen Leung for many hours of discussions and for comments on earlier

drafts. I would also like to thank Malcolm Harrison who headed the Gri�n project

at NYU. It was my involvement in Gri�n which gave me experience in concurrency

and programming language design and implementation. This experience sparked

the idea for the the translation technique developed in this dissertation.

In addition, Anina Karmen assisted throughout by helping to interpret the aca-

demic bureaucracy. Finally I thank the LYX team for a nice writing package.

iv

Preface

Conditional synchronization - a mechanism that conditionally blocks a thread

based on the value of a boolean expression currently exists in several programming

languages in second-class form. In this thesis we propose promoting conditional syn-

chronization to �rst-class status. To demonstrate our idea we extend Concurrent ML

and present several examples illustrating the expressiveness of �rst-class conditional

synchronization (FCS). The end result facilitates abstraction and adds �exibility in

writing concurrent programs. To minimize re-evaluation of synchronization condi-

tions we propose a static analysis and translation that identi�es expressions for the

run-time system that could a�ect the value of a synchronization condition. The

static analysis (which is based on an e�ect type system) therefore precludes exces-

sive run-time system polling of synchronization conditions. This dissertation makes

the following contributions:

� We show how FCS can be seamlessly integrated into an existing language

(Concurrent ML)

� We illustrate the usefulness of FCS by using it to construct several abstractions

(barrier synchronization and discrete event simulation in Section 2.1.2).

� We de�ne source and target level semantics for FCS and prove that a simula-

tion relation holds between consistent con�gurations of the source and target.

� We perform static analysis and optimization in conjunction with a a type-

directed translation from source to target.

� We prove type soundness for the target language

v

The dissertation is organized into two parts. Part I (Introduction) surveys a repre-

sentative selection of languages from the three categories of concurrent programming

languages: concurrent object-oriented languages, concurrent constraint languages,

and concurrent functional languages. Part II (Extending Concurrent ML) begins the

design of �rst-class conditional synchronization as an extension to Concurrent ML.

We chose Concurrent ML since the language has an existing framework for �rst-class

synchronous operations. The subsequent chapters present examples, the semantics,

translation scheme, and implementation. Finally we conclude and identify some

topics for future research.

vi

Contents

Dedication iii

Acknowledgements iv

Preface v

List of Figures ix

Part 1. Introduction xii

Chapter 1. Introduction 1

1.1. Concurrency 3

1.2. Concurrent object-oriented languages 7

1.3. Concurrent constraint languages 13

1.4. Discussion 17

1.5. Concurrent functional languages 19

Part 2. Extending Concurrent ML 31

Chapter 2. Design 32

2.1. Synchronizing with �rst-class conditions 32

Chapter 3. Source Language 42

3.1. Notation 42

3.2. Dynamic semantics of source 42

vii

3.3. Static semantics of the source language 55

Chapter 4. Target Language 63

4.1. Dynamic semantics of target 63

4.2. Static semantics of the target language 69

4.3. Type soundness 75

Chapter 5. Translation 93

5.1. Translation rules 93

5.2. Correctness of the translation 97

Chapter 6. Implementation 113

6.1. Benchmarks 115

Chapter 7. Conclusion 118

7.1. Comparison with concurrent object-oriented languages 118

7.2. Comparison with concurrent constraint languages 118

7.3. Comparison with concurrent functional languages 119

7.4. Other related work 120

7.5. Summary 123

Bibliography 125

viii

List of Figures

1.0.1 Bounded bu�er using conditional critical region 2

1.0.2 Cars waiting at a tra�c light 3

1.2.1 A one-slot bu�er task in Ada95 8

1.2.2 Readers/writers in Ada95 10

1.2.3 Readers/writers in Ada95 11

1.2.4 Orca speci�cation of bounded bu�er 13

1.2.5 Orca implementation of bounded bu�er 14

1.3.1 Max of two numbers 15

1.3.2 Complete admissible pairs solution 17

1.3.3 Trace of admissible program. 17

1.3.4 Verifying admissible properties 18

1.5.1 Futures in Multi-lisp 20

1.5.2 The core CML operations 22

1.5.3 CML M-variable operations 23

1.5.4 A bu�ered channel abstraction 24

1.5.5 One-slot bounded bu�er in Concurrent Haskell 27

1.5.6 An Erlang process encapsulating a counter 29

ix

1.5.7 Spawning the counter process 29

2.1.1 A thread blocking on a shared variable 34

2.1.2 A thread blocking on a shared variable by busy-waiting 34

2.1.3 Barrier synchronization 35

2.1.4 A discrete event simulator 38

2.1.5 Scheduler for discrete event simulator 39

2.1.6 De�nitions for a tra�c light control system 40

2.1.7 Body for a tra�c light control system 41

3.2.1 Source language grammar 43

3.2.2 Example applying store reductions 48

3.2.3 Coding Yv using processes and channels 54

3.3.1 Source language types 57

3.3.2 Core type rules 59

3.3.3 Type rules for event values 60

3.3.4 Type speci�cations of store operations 60

3.3.5 Type speci�cations of event constructors and combinators 60

3.3.6 Operations having e�ects 61

4.1.1 Target language grammar 64

4.2.1 Target language types 71

4.2.2 Core type rules for target 73

4.2.3 Type rules for event values 74

x

4.2.4 Type speci�cations of store operations 74

4.2.5 Operations having e�ects 74

4.2.6 Speci�cations of event constructors and combinators 75

4.2.7 Speci�cations of list constructors 75

6.0.1 System architecture 114

6.0.2 Topology of run-time system data structures 115

6.0.3 Example target program 115

7.4.1 A simple controller in Esterel 120

xi

Part 1

Introduction

CHAPTER 1

Introduction

This dissertation consists of the design and implementation of the �rst higher-

order synchronization mechanism based on using boolean conditions to control syn-

chronization. We refer to this notion as �rst-class conditional synchronization (FCS).

FCS has broadcast semantics making it appropriate for applications where many

threads of control need to be unblocked when a false condition becomes true.

Some examples of applications where this is required are synchronization barriers

[Jor78] and discrete-event simulation (illustrated in subsection 2.1.2). Our idea is

demonstrated as an extension to Concurrent ML [Rep92], since this language has

�rst-class synchronous operations in order to facilitate abstraction in concurrent

programming. This dissertation makes the following contributions:

� We show how FCS can be seamlessly integrated into an existing language

(Concurrent ML)

� We illustrate the usefulness of FCS by using it to construct several abstractions

(barrier synchronization and discrete event simulation in Section 2.1.2).

� We de�ne source and target level semantics for FCS and prove that a simula-

tion relation holds between consistent con�gurations of the source and target.

� We perform static analysis and optimization in conjunction with a type-

directed translation from source to target.

� We prove type soundness for the target language

1

empty := true

slot := nil

procedure put (item) {
await empty
slot := item

empty := false
}

procedure get () {

await not empty
empty := true
return slot

}

Figure 1.0.1. Bounded bu�er using conditional critical region

One of the earliest forms of conditional synchronization is the conditional critical

region where a thread of control must wait (if necessary) for a condition to become

true before entering a critical section. This mechanism can be used to implement

abstractions such as the canonical bounded bu�er (illustrated by the pseudo-code

in Figure 1.0.1).

Harland in his book Concurrency and Programming Languages [Har86] notes

that a potential problem is that a condition may become brie�y true and then

false again without waiting tasks noticing due to the non-determinism inherent in

scheduling. The limitation is that there is no guarantee that transient changes in the

value of conditions will not be missed. While this limitation was known, the alter-

native (searching the system for waiting tasks every time a variable update occurs)

was considered too expensive. Moreover, the transient limitation is only a problem

for applications that have synchronization conditions that are non-monotonic. Con-

sider a concurrent system consisting of cars and tra�c lights shown in Figure 1.0.2.

2

light=RED

 CAR 2

 CAR 1 CAR 1

light=RED

 CAR 2

 CAR 1

 CAR 2

light=GREEN

Time

Figure 1.0.2. Cars waiting at a tra�c light

In the example the two cars are initially waiting at a red light (synchronizing on the

condition that light=GREEN). The tra�c light then becomes brie�y green and then

red again. Without a semantics that guarantees transients are not missed the cars

can miss a signal change!

As will be seen in Section 1.2 the conditional critical region has been integrated

into Ada95 and Orca. Conditions are also used for synchronization in concurrent-

constraint languages and we examine the strength and limitations of these more

recent incarnations of conditional synchronization. Next, before examining some

existing concurrent programming languages we discuss the history and motivation

for concurrency.

1.1. Concurrency

Support for expressing concurrency (the potential to execute separate tasks in

parallel) previously existed solely in the operating systems (OS) domain. At the

3

OS level concurrency was only accessible to the programmer via system calls like

the Unix [Bac86] fork routine. Later, support for concurrency appeared at the

programming language level. One of the earliest forms was the cobegin statement

of Algol-68 [iTCS96]. Subsequently, Pascal Plus [Per87] incorporated monitors

[Hoa74], Modula-2 [Wir83] supported co-routines, and Ada [Bar89] introduced

the task as a unit of concurrency. There were several motivations driving this trend:

� improved performance - concurrent programs can exploit the inherent paral-

lelism of multi-processors and distributed systems.

� improved response of interactive applications - it has been argued that de-

signing concurrent graphical-user interfaces (GUI's) improves response time

relative to sequential GUI's. [GR93]. This is in contrast to the traditional

GUI which is based on a sequential event model.

� expressiveness - certain application's (i.e. client/server and simulation) have

inherent concurrent structure and thus are more easily implemented as con-

current programs.

Another factor in the trend to support concurrency has been the increasing perva-

siveness of multiprocessors and network clusters. In addition to languages support-

ing concurrency, there are a plethora of distributed systems that allow programmers

to exploit the inherent parallelism of networks. Most provide libraries on top of

existing languages (Linda [Gel85], and PVM [BDG+91]).

Writing and debugging concurrent programs however is not a trivial endeavor.

The concurrent programmer must deal with potential problems such as deadlock

and race conditions that are not present in sequential programming. Moreover the

programming language can help by providing a framework, which facilitates the

4

construction of higher-level abstractions that hide the low-level details of communi-

cation and synchronization protocols. To address this di�culty, several mechanisms

to facilitate the use of concurrency and synchronization have been incorporated

into programming languages. Synchronization is provided by some variation of ei-

ther message-passing (synchronous or asynchronous), monitors, or the rendezvous.

Some languages also provide a select construct to allow a non-deterministic choice

among several synchronous operations [Hoa78]. These synchronization mechanisms

are described as follows.

� message-passing (synchronous) - After both a sender and a receiver have ar-

rived at their respective synchronization points a message is transmitted from

the sender to the receiver and then both processes continue. Whichever pro-

cess (sender or receiver) arrives �rst must wait for the other process to arrive

at its corresponding synchronization point.

� message-passing (asynchronous) - The sender deposits a message in a bu�er

where it may later be picked up by the receiver. A receiver must wait for a

message (block) if the bu�er is empty.

� rendezvous - The Ada rendezvous is a request-reply protocol. Like synchro-

nous message passing two processes (Ada tasks) arrive at their respective

synchronization points. Task A executes the rendezvous body (using input

from task B) and then sends a reply back to task B.

� monitor - a set of procedures which collectively de�ne a critical section. Only

a single thread of control may be executing inside the monitor at any time.

Several advantages can be gained by supporting concurrency at the programming

language level. First, portability, since it is no longer necessary to make external

5

system calls. And second, when a concept becomes part of a language, the compiler

can more thoroughly analyze a program's semantics. In addition improved perfor-

mance may be achieved by having the compiler perform optimization. For instance,

it has been discovered that in the case of integrating transactions and persistence

into a language, greater concurrency can be achieved with user de�ned type-speci�c

locking as opposed to traditional read/write locking [HW87]. Thus, it becomes

clear that when new language concepts are well integrated into a programming lan-

guage there are many bene�ts. We propose the following as criteria to help evaluate

whether or not a language extension has merit:

� does incorporating the extension into the language create opportunities for

improved performance via optimizing transformations ?

� can guarantees of correctness properties be made by analyzing and verifying

program semantics ?

� does the language extension facilitate abstraction ?

In the remainder of this Chapter we survey existing forms of conditional synchroniza-

tion in the context of concurrent object-oriented languages and concurrent constraint

languages. Since FCS extends Concurrent ML (a concurrent functional language) we

survey a representative selection of concurrent functional languages to identify and

characterize existing support for concurrency and synchronization. Part II (Extend-

ing Concurrent ML) begins the design of a new synchronization mechanism (FCS -

�rst-class conditional synchronization) as an extension to Concurrent ML. FCS uses

conditions as a basis for synchronization and has broadcast semantics. The sub-

sequent Chapters present examples, the formal semantics, and translation scheme.

6

We conclude by evaluating our language extension based on the above criteria and

then suggest some topics for future research.

1.2. Concurrent object-oriented languages

During the same time that languages supporting concurrency and distribution

have evolved, languages based on the object-oriented paradigm [Mey88] have been

gaining popularity. The bene�ts that are commonly cited are:

� data abstraction

� facilitation of code re-use via inheritance

� �exibility resulting from subtype polymorphism and dynamic binding

It seems natural then that the concepts surrounding concurrency and object-

orientation should meet and interact giving rise to Concurrent Object-Oriented Lan-

guages (COOL's). Various approaches have been undertaken to integrate the two

areas. See [Pap89] for a classi�cation scheme. In the following Subsubsections, our

focus is on COOL's which have a form of conditional synchronization.

1.2.1. Ada95. The main additions to Ada introduced by the Ada95 language

de�nition are support for object-oriented programming and protected objects. Ada95

has two kinds of objects. Associated with every protected object is a monitor so that

concurrent access by competing tasks controlled. Conditional synchronization may

be used in conjunction with protected objects. The other kind of object called a

tagged object is associated with polymorphism and inheritance.

Concurrency in Ada is provided by tasks. A task consists of a speci�cation and a

body. The speci�cation lists the entries which may be called by other tasks in order

to rendezvous. A rendezvous may proceed when task A invokes the entry of task

7

task Buffer is

entry Get (X: out item);
entry Put (X: in item);

end Buffer;

task body Buffer is

V: item;
begin

loop
accept Get (X: out item) do

X := V;
end Get;

accept Put (X: in item) do

V := X;
end Put;

end loop;
end Buffer;

Figure 1.2.1. A one-slot bu�er task in Ada95

B and task B has reached the accept statement corresponding to the entry. This is

illustrated by an example from [Int95] in Figure 1.2.1. The task Bu�er encapsulates

a single value while supporting read and write operations as entries. Other tasks

may invoke task Bu�er's entries by calling Buffer.Put or Buffer.Get. Entries

may have both in and out parameters and hence the rendezvous is a synchronous

request-reply protocol.

A protected object type de�nition may consist of data (declared in the private

part) and three kinds of subprograms: functions, procedures, and entries. Functions

may only read (not write) the data of a protected object and hence an implemen-

tation is free to execute function calls concurrently. Since procedures and entries

may write to a protected object's data, mutual exclusion is implicitly applied. The

8

distinction between procedures and entries is that entries must specify boolean con-

ditions (called barriers) which control access into the entry body (conditional syn-

chronization). An entry may contain parameters but there is an inhibiting restric-

tion that the formal parameters of an entry may not be referenced in the boolean

expression.

Tasks invoking entries with false barriers are queued until the barrier condi-

tion becomes true and then only one queued task may proceed due to the mutual

exclusion requirement of the protected object. If there are tasks queued on barriers,

then the conditions are re-evaluated every time a task exits a procedure or entry.

To illustrate protected objects we examine several examples from [Bar96]. Figure

1.2.2 is a solution to the readers/writers problem. Since the read operation has no

side-e�ects, it is written as a function while the write operation is a procedure. The

next example of a producer/consumer protected object in Figure 1.2.3 illustrates the

use of entries and the use of associated barriers for conditional synchronization. The

put operation may proceed when the bu�er is not full (count < N) and conversely

the get operation may proceed when the bu�er is not empty (count > 0).1 Since

the entries occur within a protected type, the entry provides a more modern form

of the conditional critical region discussed earlier.

1.2.2. Orca. Orca [BKT88] supports concurrent programming by processes

that communicate via shared objects. The language goals were to make it simple,

expressive, and e�cient with clean semantics. Logically shared memory is supported

via a reliable broadcast protocol. The salient issue addressed by ORCA is how data

can be shared among distributed processors in an e�cient way. Access to shared

1The automatic wrapping (mod N arithmetic) of the variables I and J is a property of the
type Index.

9

protected Variable is

procedure Read(X: out item);
procedure Write(X: in item);

private
V: Item := initial value;

end Variable;

protected body Variable is

procedure Read(X: out item) is

begin
X := V;

end Read;

procedure Write(X: in item) is
V := X;

end Write;

end Variable;

Figure 1.2.2. Readers/writers in Ada95

data structures is performed through higher level operations instead of using low

level instructions for reading, writing, and locking data. Operations may contain

guarded branches which are used for conditional synchronization.

Orca intentionally omits pointers because pointers are invalid across node address

spaces. Instead Orca provides language constructs that allow the run-time system to

keep track of the data structure that a dynamic node is associated with. This yields

dynamic data structures that are �rst-class and type-secure. Orca has hierchical

objects (objects can contain other objects) but no class inheritance.

A shared data-object is an instance of an abstract data type. An abstract data

type de�nition in Orca consists of two parts: speci�cation and implementation. The

speci�cation part de�nes the operations allowed on the corresponding type. The

10

N: constant := 8;

type Index is mod N;
type Item_array is array (Index of Item;

protected type Buffer is
entry Get(X: out item);

entry Put(X: in item);
private

A: Item_Array;
I,J: Index := 0;

Count: Integer range 0..N := 0;
end Buffer;

protected body Buffer is

entry Get(X: out item) when Count > 0 is
begin
X := A(J);
J := J + 1; Count := Count - 1;

end Read;

entry Write(X: in item);
A(I) := X;

I := I + 1; Count := Count + 1;
end Write;

end Buffer;

Figure 1.2.3. Readers/writers in Ada95

implementation part consists of the data and code used to implement the operations

described in the speci�cation. Objects are passive entities in Orca. Concurrency in

Orca is expressed by explicit creation of sequential processes. Initially a program

consists of a single process but new processes can be created via the fork statement:

fork name (actual-parameters) [on (cpu-number)]

11

The on keyword allows the option of locating the new process on a speci�ed physical

processor. If the on part is absent then the new process resides on the same processor

as its parent.

There are two kinds of actual parameters. The �rst is value or input parameters.

Copies of a value parameter are passed to a process. The second is shared objects.

In this case the data object is shared between the parent and child and can be used

for communication.

For objects that are shared among multiple processes the issue of synchronization

arises. Orca provides two types of synchronization: mutual exclusion and conditional

synchronization.

Mutual exclusion is performed implicitly by executing all object operations atom-

ically. Conceptually an operation locks the entire object so that other invocations of

operations cannot interfere. More precisely, serializability [EGLT76] of operations

is guaranteed. An implementation of the serializability model is not restricted to

executing each operation one by one. To allow for greater concurrency, operations

which do not con�ict may be run simultaneously. An operation can wait (block)

by using a condition synchronization. In Orca the conditional synchronization is

integrated with operations as illustrated below.

operation op(formal-parameters): ResultType;

begin

guard condition1 do statements1 od;

..

guard conditionN do statementsN od;

end;

12

object specification BoundedBuffer;

operation Put (item: T);
operation Get (): T;

end generic;

Figure 1.2.4. Orca speci�cation of bounded bu�er

The conditions are boolean expressions called guards. An operation initially

blocks until one of the guards evaluates to true (conditional synchronization). One

of the true branches is then selected non-deterministically and its statement se-

quence is executed. Part of the Orca version of the bounded bu�er is shown in

�gures 1.2.4 and 1.2.5 and uses guards.

A guard condition may contain operation parameters, and local variables of the

object and operation. A guard that initially fails may later become true, so it may

be necessary to evaluate a guard more than once. In this model an operation only

blocks initially which allows Orca to guarantee serializability. If an operation could

block at anytime serializability could not be provided.

1.3. Concurrent constraint languages

Vijay Saraswat's dissertation research [Sar93] was the design of concurrent-

constraint programming CCP, which uni�ed the areas of concurrent logic program-

ming [Sha86] [Sha87] and constraint logic languages [BC93] [JL87]. In CCP, com-

munication and control between concurrently executing agents is mediated through

operations on constraints. What makes this model of computation unique is that

there is a global store of constraints. This store has the monotonic property that

a constraint c can only be added if c does not con�ict with existing constraints.

13

generic

object implementation BoundedBuffer
buffer: array [1..N] of integer;
getIndex, putIndex: integer;

operation Put(item: T)

begin
guard not full do
buffer[putIndex] := item;
if putIndex = N then

putIndex := 1;
else
putIndex := putIndex + 1;

fi;

if putIndex = getIndex then
full := true;

fi;
empty := false;
od;

end;

operation Get(): T
item: T;

begin
...

end;
begin

putIndex := 1; getIndex := 1;
empty := true; full := false;
end generic;

Figure 1.2.5. Orca implementation of bounded bu�er

Hence once a constraint c becomes satis�ed in a particular store, c will continue to

hold for all successive store con�gurations.

The fundamental operations in CCP are ask and tell. An agent may either

atomically add (�tell�) a constraint on the value of variables, or verify ("ask") that

14

max(X,Y,Z) :: ask(X<=Y) : tell(Y=Z) --> stop.

max(X,Y,Z) :: ask(Y<=X) : tell(X=Z) --> stop.

Figure 1.3.1. Max of two numbers

the store entails a given constraint. The ask operation can be viewed as a form of

conditional synchronization. When an agent performs an ask to establish whether

the store entails a constraint c there are three possible results:

1. The information in the store agrees with c and the agent proceeds

2. The information in the store rejects c and the agent is aborted

3. At the current time there is not enough information in the store to either

reject or con�rm c. The agent is then blocked inde�nitely until other agents

add information to the store that either con�rms or rejects c.

To illustrate this framework we examine several of the examples in [Sar93]. First a

simple program which calculates the maximum of two numbers. Invoking the goal

max(X,Y,Z) (Figure 1.3.1) suspends until the values of X and Y become �xed in the

current store. The colon : is used to compose the ask and tell into an atomic unit

that must be satis�ed before committing to a branch with the -->. If more than

one goal branch may be committed to, then one is non-deterministically chosen and

the commit point is returned to via backtracking if the chosen branch results in goal

failure. Once the --> is reached the other possible branches that may satisfy a goal

are aborted. Operationally, c1 : c2 succeeds only if the constraint c1 and c2 hold

in the current store. If c1 suspends then c1 : c2 suspends and if c2 suspends then

c1 : c2 suspends. Finally after determining the maximum number to be X or Y the

agent is terminated with stop.

15

The next example is the admissible pairs problem. The goal is to verify that a

list of pairs L satis�es two properties:

1. if (x; y) 2 L then y = 2 � x

2. if (x1; y1) and (x2; y2) are successive elements of L then x2 = 3 � y1

The approach taken in [Sar93] is to spawn two agents to verify each of the two

properties. To verify the �rst property we have predicate double shown in Figure

1.3.4. The notation (X, Y, L1)� introduces the three variables X,Y, and L1 into

the current scope. The goal double(L) succeeds if either L is the empty list (L=<>),

or L is of the form <pair(X, Y) | L1> where Y=2*X and the goal double(L1) also

succeeds. The goal triple(L) succeeds if L is of the form <pair(X, Y) | L1>

and either L1 is empty or L1 is of the form <pair(3*Y, Z) | L2> and triple(L2)

succeeds. Now with the predicates double and triple de�ned the complete solution

is shown in Figure 1.3.2. The curly braces have the e�ect of introducing a local

procedure into the current scope. In Figure 1.3.2 double and triple are introduced

as local procedures before invoking them. Invoking the goal admissible(L) spawns

three agents. The �rst agent invokes the goal double(L) which then suspends until

it is determined that L is either the empty list or of the form <pair(X,Y)|L1> .

The second agent invokes the goal triple(L) which �rst establishes that L is of the

form <pair(X,Y)|L1> and then chooses one of the two OR branches. Thus the �rst

agent calculates the doubles which are input to the second agent which calculates

the triples which in turn triggers the �rst agent. The third agent generates the

initial structure of the list and partially speci�es the �rst pair. The trace in Figure

1.3.3below shows the intermediate steps involved in constructing the list with labels

to identify the agent responsible for each step.

16

admissible(L)::(S, U)^

{double(L)::(X, Y, L1)^
ask(L = <>) --> stop
OR
ask(X, Y, L1) L = <pair(X, Y) | L1> --> (Y = 2 * X), double(L1).
double(L)},

{triple(L)::(X, Y, L1, L2, Z)^
L = <pair(X, Y) | L1>,
(tell(L = <>) --> stop

OR
tell(L = <pair(3 * Y, Z) | L2>) --> triple(L2)).

triple(L)},
L = <pair(1,S) | U>.

Figure 1.3.2. Complete admissible pairs solution

< pair(1; Z1) j U1 > agent 3

< pair(1; 2) j U1 > agent 1

< pair(1; 2); pair(6; Z2) j U2 > agent 2

< pair(1; 2); pair(6; 12) j U2 > agent 1

< pair(1; 2); pair(6; 12); pair(36; Z3) j U3 > agent 2

Figure 1.3.3. Trace of admissible program.

1.4. Discussion

Both Ada95 and Orca have introduced conditional synchronization (a mechanism

that uses boolean conditions to control synchronization). The event of a condition

becoming true enables waiting processes to proceed. However, there are drawbacks.

In both cases the boolean expression is �hard-wired� in the syntax of the language

17

double(L)::(X, Y, L1)^

ask(L = <>) --> stop
OR
ask(X, Y, L1) L = <pair(X, Y) | L1> --> (Y = 2 * X), double(L1).

triple(L)::(X, Y, L1, L2, Z)^

L = <pair(X, Y) | L1>,
(tell(L = <>) --> stop
OR
tell(L = <pair(3 * Y, Z) | L2>) --> triple(L2)).

Figure 1.3.4. Verifying admissible properties

and the synchronization point is not a �rst-class value. Also, no guarantee is pro-

vided that transient changes are not missed. That is, a synchronization condition

may becomes brie�y true and then false again without unblocking any waiting

tasks.

In particular to Ada95, referencing variables non-local to a protected type inside

a synchronization condition yields unpredictable results. This is because an update

to a non-local variables will not trigger re-evaluation of a barrier condition. Finally,

it is not apparent from a speci�cation that an Ada95 entry or an Orca operation

may block. Thus an important property, the fact that operations are synchronous,

is lost in constructing abstractions [Rep92].

CCP presents a radically di�erent model of concurrent computation based on

viewing the store as a set of monotonically increasing constraints. The ask operation

is a form of conditional synchronization that involves suspending an agent until such

time that the monotonic store can either accept or reject a constraint. Like the

forms of conditional synchronization in Ada95 and Orca, the CCP ask operation is

a second-class conditional synchronization. The issue of missing transient changes

18

does not apply to CCP due to the monotonic store. That is, a constraint that holds

at a given point in time continues to hold subsequently.

1.5. Concurrent functional languages

There is considerable variety in the characteristics of functional languages (FL's),

but the basis is Church's �-calculus [Bar84]. Functional languages typically extend

the calculus with higher-level constructs such as pattern-matching and facilitate the

use of recursion by performing optimizations. Garbage collection [JL96] is employed

to relieve the programmer from the burden of dynamic memory management and

variables are bound to values as opposed to state. The variations pertain to the

following design points:

� static versus dynamic typing - some FL's have statically typed expressions and

hence can perform type-checking prior to run-time. In the dynamically typed

languages the types of expressions is not �xed and consequently type-checking

is performed at run-time.

� imperative features - some FL's support mutable references while pure FL's

do not. However the pure FL's can mimic imperative features through the

use of monads [Wad95].

� strict - the semantics of the language specify the exact order in which the

actual arguments are evaluated.

� non-strict - the semantics of the language do not specify the order of eval-

uation. One has to be careful so that di�erent evaluations do not result in

di�erent execution results. Non-strict language may be lazy meaning that

arguments are not evaluated until their values are needed inside the func-

tion body. One way to implement non-strict evaluation is by associating a

19

(let

((x (future exp)))
bodyExp)

Figure 1.5.1. Futures in Multi-lisp

parameterless function (called a thunk [iTCS96]) with each argument which

is evaluated for each use of the corresponding formal parameter inside the

function body.

As with COOL's, concurrent functional languages integrate a notion of process and

some variation of the mechanisms for synchronization/communication. As condi-

tional synchronization has yet to be explored in the context of a CFL, the purpose

of the CFL survey is to examine the other existing mechanisms for communication

and synchronization.

1.5.1. Multi-lisp. Multi-lisp [RHH85]is one of the earliest CFL's. A test-and-

set like mechanism is provided for communication and synchronization. In addition,

Multi-lisp (as well as other concurrent dialects of Lisp and Scheme [KJ88]) provides

futures. The let expression in Figure 1.5.1 spawns a child thread to evaluate exp.

Referencing variable x suspends the parent thread until the child thread has �nished

evaluating exp with the resulting value stored in variable x. Futures are a one-shot

synchronization mechanism and are intended for use in parallel programming as

opposed building higher-level communication and synchronization abstractions.

1.5.2. Concurrent ML. An important advance towards the goal of integrating

concurrency into programming languages is the concept of �rst-class synchronous

operations, which �rst appeared in PML [Rep88] and was then further developed

as Concurrent ML (CML) ([Rep92],[Rep95]).

20

The salient feature of CML is the event type constructor, which is the type of

�rst-class synchronous operations. An event value represents a delayed synchronous

operation. The delayed synchronous operation may later be forced applying the sync

function to an event value. Below are the speci�cations of the sendEvt, recvEvt,

and sync functions, which are used for synchronous message-passing:

val sendEvt: 'a chan * 'a -> unit event

val recvEvt: 'a chan -> 'a even

val sync: 'a event -> 'a

Both sendEvt and recvEvt are non-blocking operations. That is, they both

create delayed synchronous operations that may later be forced by applying sync

to an event value. The sendEvt function takes two arguments: a channel of type

'a chan and a value of type 'a and then returns a unit event value. The unit

event value represents the delayed synchronous operation of attempting synchro-

nization by sending the value of type 'a across the channel argument to sendEvt.

Applying the sync function to the event value forces the synchronization by actu-

ally attempting to send the value across the channel. The recvEvt function takes

a single channel argument and returns an event value corresponding to the delayed

operation of synchronizing by receiving on the channel argument to recvEvt. Ap-

plying sync to this event value forces the synchronization by attempting to receive

a value from the channel.

Thus in order for a message to be transmitted there must be two threads which

have applied sync to two events corresponding to the act of sending and receiving

on the same channel. When the synchronization takes place a message is sent from

the sending thread to the receiving thread. The core operations of CML are shown

in Figure 1.5.2.

21

val sendEvt: 'a chan * 'a -> unit event

val recvEvt: 'a chan -> 'a event

val recv: 'a chan -> 'a
val send: 'a chan * 'a -> unit

val spawn: (unit -> unit) -> thread_id
val channel: unit -> 'a chan
val wrap: ('a event * (a -> b)) -> 'b event

val choose: 'a event list -> 'a event
val select: 'a event list -> 'a

val sync: 'a event -> 'a

Figure 1.5.2. The core CML operations

When sync is directly applied to an event created with sendEvt or recvEvt,

the shorthands send or recv may be used. send is sync composed with sendEvt,

and recv is sync composed with recvEvt. The wrap combinator binds an action,

represented as a function, to an event value. And the choose combinator composes

a list of events into a new event that represents the non-deterministic selection of

one of the events in the list. select is sync composed with choose. The advantage

of this approach to concurrency is that it allows the programmer to construct �rst-

class synchronization and communication abstractions. For example, as shown in

[Rep92], one could de�ne an event-valued function that implements the client side

of the RPC protocol:

fun ClientCallEvt x = wrap(transmit(reqCh,x),fn()=>accept replyCh)

Applying it ClientCallEvt to a value v does not actually send a request to the

server, rather it returns an event value that can be used later to send v to the server

22

type 'a mvar
val mVar : unit -> 'a mvar
val mVarInit : 'a -> 'a mvar
val mPut : ('a mvar * 'a) -> unit

val mTake : 'a mvar -> 'a
val mTakeEvt : 'a mvar -> 'a event
val mGet : 'a mvar -> 'a
val mGetEvt : 'a mvar -> 'a event

Figure 1.5.3. CML M-variable operations

and then accept the server's reply. Furthermore, since ClientCallEvt returns an

event value, we can place a call to ClientCallEvt in the list argument to select.

The key advantage to �rst-class synchronous values is that di�erent kinds of

synchronization mechanisms may be integrated into the framework. In addition to

the events corresponding to channel communication, CML also has Id-style [AP89]

synchronous variables called M-variables whose operations are shown in Figure 1.5.3.

An M-variable may be created by calling mVar or by calling mVarInit to store an

initial value in the M-variable. The mPut operation updates the M-variable location

with a value while mTake operation consumes the value in the M-variable. Calling

mPut blocks if the M-variable is full while calling mTake blocks if the M-variable

is empty. The mGet operation is similar to mTake except that mGet returns the

encapsulated value without emptying the M-variable.

CML also has I-variables which are similar to M-variables except that I-variables

encapsulate write-once memory locations. An exception is raised on successive at-

tempts to put a value in the I-variable.

23

datatype 'a buffer_chan = BC of {

inCh : 'a chan,
outCh : 'a chan

}

fun buffer () = let

val inCh = channel()
and
outCh = channel()

fun loop ([],[]) = loop([accept inCh], [])

| loop (front as (x::r), rear) =
select [wrap(recvEvt inCh,

fn y => loop(front, y::rear)),
wrap(sendEvt(outCh x),

fn y => loop(r, rear))]
| loop ([], rear) = loop(rev rear, [])

in
spawn(fn () => loop([], []));
BC{inCh=inCh, outCh=outCh}

end

fun bufferSend (BC{inCh,...}, x) = send(inCh, x)

fun bufferReceive (BC{outCh,...}, x) = recvEvt outCh

Figure 1.5.4. A bu�ered channel abstraction

The example in Figure 1.5.4 from [Rep92] is a CML implementation of a bu�ered

channel with an asynchronous send operation (bufferSend). Since the receive op-

eration is blocking, bufferReceive returns an event value. Calling function buffer

spawns a thread which selectively waits on inCh and outCh. The argument to func-

tion loop consists of a pair of lists. The �rst list is used to hold outgoing messages

while the second holds newly received messages. When the �rst list is empty, the

contents of the second list are reversed and transferred to the �rst list via a recursive

call. Reppy makes the following observations:

24

� bu�ered channels are a new �rst-class communication abstraction. In partic-

ular, bufferedReceive returns an event value allowing calls to

buffevredReceive to be used in contexts where an event is required (i.e. the

argument list to select).

� the bu�ered channel implementation illustrates the need for generalized se-

lective communication since the call to select inside function loop waits to

both send and receive on di�erent channels

� the bu�ered channel relies on the fact that unreachable threads and channels

are cleaned up by the garbage collector. Thus a client does not have to be

concerned about a server thread which runs in an in�nite loop.

In addition to CML there have been several other designs which integrate message-

passing and ML [Mat89] [Ram90] [KPT96].

1.5.3. Synchrons. The synchron[Tur96] is a �rst-class barrier synchroniza-

tion mechanism. With the synchron the number of threads participating in the

barrier is not �xed as additional threads may subsequently join the barrier group.

A rendezvous takes place when all threads holding a synchron arrive at the barrier

by waiting on the synchron. Synchrons are powerful but more complex to manage

and are not intended for use by the �casual programmer� but are intended to be

packaged inside higher-level abstractions. The motivation for synchrons was the

design of space-e�cient algorithms as the modular composition of aggregate data

operations.

1.5.4. Concurrent Haskell. Concurrent Haskell [JGF96] is a lazy (non-strict)

purely functional language in which IO and mutable state operations are based on

monads [Wad95]. Monadic operations are viewed as sate transformations which

25

transform the current state of the world into a new state. This idea is re�ected in

the following type de�nition:

type IO a = World -> (a, World)

where an operation of type IO a takes a world state as input and transforms the

state into a new state with a value of type a. Processes are created by calling

forkIO:

forkIO :: IO () -> IO ()

which takes an action as its argument and performs the action in a new concurrent

process. Synchronization between concurrent processes is based on the MVar which

integrates previous work on mutable structures [LJ96] and the I-structures and

M-structures of the data�ow language Id [AP89]. Mvar's are similar to the CML

M-variable. The MVar operations are:

� newMVar :: IO (MVar a) - creates a new MVar.

� takeMVar :: MVar a -> IO a - returns the value of type a encapsulated

inside the MVar (blocking if necessary until the MVar becomes full).

� putMVar :: MVar a -> IO () - stores a value of type a inside the MVar. This

operation results in an error if the MVar is already full.

The design philosophy was to provide only the MVar as a low-level synchronization

mechanism around which higher-level abstraction could be built. Using MVar it is

shown in [JGF96] how to construct a bu�ered channel, skip channel, and quantity

semaphore.

The example in Figure 1.5.5 from [JGF96] uses the MVar to implement a one-

slot bounded bu�er. The CVar abstraction encapsulates two MVar's. The �rst is

used to hold the data and the second is used for the consumer to communicate to

26

type CVar a = (MVar a,

MVar ())

newCar :: IO (CVar a)
newCVar =

newMVar >>= \ data_var ->

newMVar >>= \ ack_var ->
putMVar ack_var ()
return (data_var, ack_var)

putCVar :: CVar a -> a -> IO ()
putCVar (data_var, ack_var) val =

takeMVar ack_var >>
putMVar data_Var val

getCVar :: CVar a -> IO a
getCVar (data_var, ack_var) val =

takeMVar data_var >>= \ val ->
putMVar ack_var () >>

return val

Figure 1.5.5. One-slot bounded bu�er in Concurrent Haskell

the producer that the CVar is empty. Invoking newCVar creates two MVar's and

putMVar is applied to the second before returning the pair. The syntax >�>= \var

is used to bind the result of an operation to a variable. and the :: indicates the

types of the CVar operations. The putCVar operation checks the ack_var �rst to

determine that the CVar is empty and subsequently calls putMVar on data_var to

produce a value. getCVar �rst calls takeMVar on data_var (blocking if necessary)

and then changes the CVar state to empty by calling putMVar on ack_var.

We note that if putMVar on a full MVar simply blocked the calling process (as

opposed to generating an error) then one MVar would su�ce as a solution to the

one-slot bounded bu�er since the second MVar would be unnecessary.

27

Concurrent Clean [AP95] is another purely functional language which is also

based on monadic operations. Concurrent Clean has processes which communicate

via either synchronous or asynchronous message-passing.

1.5.5. Erlang. The concurrent functional language Erlang [AWWV96] [Wik96]

was designed in the late 1980's at Ericsson's Computer Science Lab for application

development within Ericsson. Erlang is a dynamically typed language although re-

cently a type system has been designed for Erlang [MW97]. Multiprocessor and

distributed implementations of Erlang are also available [Wik86] . Erlang is dis-

tinct among functional languages in that it has been used commercially in large

scale applications.

Concurrency is supported by processes and message-passing for communica-

tion and synchronization. The function spawn creates a new concurrent process

to perform an action. The message-passing operations are send (in�x !) and

receive (which uses pattern-matching). Channels are not provided since the

sender speci�es the process ID of the receiver. We use the example in Figures

1.5.6 from [AWWV96] to illustrate the concurrent facilities of Erlang. In the ex-

ample the a process executing the function loop suspends until receiving a message

of the form:

� increment - which causes the process to increment the counter

� {from} - which sends the message {self(), val} back to the requesting

process. Calling self() returns the Id of the current process.

� stop - which causes the process to terminate.

� Other - which is used to ignore unrecognized messages.

28

-module(counter).

-export([loop/1]).

loop(val) ->
receive
increment -> loop(val+1);

{from} -> from!{self(), val}, loop(val);

stop -> true;

Other -> loop(val)
end.

Figure 1.5.6. An Erlang process encapsulating a counter

...
pid = spawn(counter,loop,[0]),

pid!increment,
pid!increment,

pid!{self()}
receive {pid,value} -> value
end,

...

Figure 1.5.7. Spawning the counter process

The program fragment in 1.5.7 spawns a process to execute loop with an initial

value of 0. Then two increment message are sent before requesting that the current

value be sent back to the parent process.

29

Synchronization/Communication Languages

message-passing (sync) CML, Concurrent Clean, Erlang
message-passing (async) CML, Concurrent Clean

monitor none
rendezvous none

conditional synchronization none
M-Variable CML, Concurrent Haskell

Table 1. Communication/synchronization in concurrent functional languages

1.5.6. Discussion. By incorporating �rst-class synchronization mechanisms

such as CML's event and Concurrent Haskell's MVar, functional programming lan-

guages are facilitating abstraction in concurrent programs. Moreover, as shown

in Table 1, conditional synchronization has yet to be explored in the context of a

concurrent function language.

30

Part 2

Extending Concurrent ML

CHAPTER 2

Design

To address the restrictions of existing forms of conditional synchronization (CS),

we propose promoting CS to �rst-class status (FCS). Moreover, our static analy-

sis and translation helps the the run-time system in deciding when to re-evaluate

pending synchronization conditions. In this and the subsequent Chapters:

� We show how FCS can be seamlessly integrated into an existing language

(Concurrent ML)

� We illustrate the usefulness of FCS with examples (barrier synchronization

and discrete event simulation in Section 2.1.2)

� We de�ne source and target level semantics for FCS and prove that a simula-

tion relation holds between consistent con�gurations of the source and target.

� We de�ne a type-directed translation from source to target.

� We prove type soundness for the target language.

2.1. Synchronizing with �rst-class conditions

We chose to introduce FCS as an extension of Concurrent ML (CML) [Rep92]

since it already has an existing framework for �rst-class synchronous operations. As

described in Subsection 1.5.2 CML is a concurrent extension of Standard ML of New

Jersey.

2.1.1. Extension to CML. At the language level, our extension to CML con-

sists of adding the function condEvt:

32

condEvt: (unit -> bool) -> unit event

in conjunction with special reference variables with the associated operations:

new : 'a -> 'a sync_ref

get : 'a sync_ref -> 'a

set : 'a * 'a -> unit

We do not use the SML reference variables for synchronization in order to avoid

introducing overhead in programs which use references but not for synchroniza-

tion. This will become clear when the translation is presented in Chapter 5 since

the translation adds extra annotations for synchronization references to the target

program.

The function argument to condEvt encapsulates a boolean expression corresponding

to a synchronization point. We call the result returned by condEvt a conditional

event. Operationally, a thread attempting to apply sync on a conditional event will

block until the boolean expression becomes true. Therefore it may be necessary to

re-evaluate the boolean expression multiple times during the synchronization.

The CML event type allows us to abstract away from the details behind synchro-

nization. Moreover, with the addition of the conditional event, one cannot perceive

if the synchronization behind an event value is associated with a rendezvous or a

conditional synchronization. Thus synchronous values of the same type can actually

represent di�erent kinds of synchronization [Rep92].

2.1.2. Examples. We now illustrate the the conditional event mechanism through

several examples. The �rst example in Figure 2.1.1 illustrates a thread waiting for

a change to a shared reference variable x by blocking on a conditional event. The

33

let
val x = new 5
val xEvent = condEvt(let

val oldx = get x

in
fn () => get x <> oldx

end)
fun foo () = set(x,10)

in
spawn foo;
sync(wrap (xEvent, fn () => print "x has changed value"))

end

Figure 2.1.1. A thread blocking on a shared variable

let

val x = new 5
val oldx = get x
val ch = channel()
fun foo () = set(x, 10)
fun poll () = if (get x) <> set(oldx,10) then

send(ch,())
else
poll()

val xEvent = recvEvt ch

in
spawn foo;
spawn poll;
sync (wrap (xEvent, fn () => print "x has changed value"))

end

Figure 2.1.2. A thread blocking on a shared variable by busy-waiting

event xEvent encapsulates the initial value of x and becomes enabled for synchro-

nization when x's value changes. While not of practical use, the example illustrates

one use of a conditional event that would otherwise require the programmer to write

34

fun makeBarrier n =

let
val counter = new 0
val incCh = channel()
fun inc () = (recv incCh;

set(counter,get counter + 1);

inc())
val barrierEvt = condEvt (fn () => get counter = n)

in

spawn inc;
wrap(sendEvt(incCh,()),

fn ()=> sync barrierEvt)
end

Figure 2.1.3. Barrier synchronization

a busy-waiting loop as shown in Figure 2.1.2. However, there are two advantages

to using condEvt. First it is not necessary to spawn an auxiliary thread to do the

busy-waiting. And second, the semantics of condEvt provides a guarantee that no

transient changes are missed where a condition becomes true brie�y and then false

before being detected. This kind of guarantee cannot be programmed since it is

dependant upon the thread scheduler.

Next, we use condEvt to write the function makeBarrier that returns an event

to be subsequently used by a group of threads participating in barrier synchroniza-

tion. Barriers have been applied in parallel applications such as global atmospheric

circulation, the n-body gravitational problem, and parallel sorting [GA89]. The

argument n to function makeBarrier in Figure 2.1.3 corresponds to the number of

threads participating. Each thread signals that it has reached the barrier by apply-

ing sync to the event returned by makeBarrier. An auxiliary thread is spawned to

coordinate increments to the counter reference variable.

35

The second example (Figure 2.1.4) illustrates how FCS can be applied in im-

plementing a discrete event simulator. The system consists of actor threads and a

scheduler thread. The scheduler is parameterized by the number of cycles to run

the system and the number of actors present. During each cycle the scheduler:

� advances the clock one tick

� waits for actors scheduled to wake up at the current time by calling

processTimeQueue

� waits for all actors to sleep before starting the next cycle

Actors may call either timeWait or eventWait to sleep until a speci�ed time or

event respectively. Calling timeWait returns immediately if the clock has already

advanced past the time argument t. Otherwise a message is sent on the timeSleep

channel to inform the scheduler that an actor is waiting for time t. Then a wrapped

event is returned for which synchronization will succeed when the clock is at time t,

while the wrapper function informs the scheduler that the actor is awake. The broad-

cast semantics of condEvt are appropriate since all actors waiting for a given time

can be simultaneously unblocked. The function eventWait is similar to timeWait

except that synchronization is based on a boolean expression which is passed inside

the argument e, a unit -> bool function.

The scheduler maintains an internal hash table in order to keep track of how

many actors are waiting for a given time step. In the scheduler, incTimeStep (body

not shown) increments the counter for a given time step. The scheduler also spawns

an auxiliary thread to execute function trackAll which listens for messages from the

actors in order to maintain the awakeActors count. In addition, the main scheduler

thread sends a message on the startTimeCh at the beginning of each time step so

36

that the auxiliary thread can wait for all actors slated for the current time step to

wake up.

The condEvt function is used to implement the blocking and queuing of the

actors. Without using condEvt, additional coding and data structures would be

required in the scheduler to manage the blocking and queuing of the actors. By

applying condEvt the queuing machinery is hidden in the run-time system inter-

nals. For example, advancing the clock directly wakes up all actors waiting for the

next time step. Thus the dependency between the clock reference variable and the

suspended actors is captured internally in the RTS.

FCS is ideal for this kind of application where there are several queues of blocked

threads and a queue is �ushed when a condition is established.

The �nal example in Figures 2.1.6 and 2.1.7 uses condEvt to synchronize cars

against a set of tra�c lights. Here broadcast semantics are appropriate since the

event of a light changing to green should be broadcast to all waiting cars. In ad-

dition the property of not missing transient changes in the store is critical since it

is not desirable for cars to miss signal changes! This is in contrast to the barrier

and discrete event simulation examples where the synchronization conditions are

monotonic.

In the code, a tra�c light consists of three components, each represented as a

record �eld in the light type constructor. The status �eld maintains the green/red

status of the light while the delayEvt �eld is used to time the delay between signal

changes. Thus each tra�c light may have a di�erent delay. Then for each tra�c

light a thread is spawned to execute function manageLight which toggles the status

�eld of a light repeatedly while inserting delays by synchronizing on the delayEvt

of the light. Four cars are created by spawning threads to execute functions route1

37

local

val clock = new 0
val timeSleepCh = channel()
val eventSleepCh = channel()
val timeAwakeCh = channel()
val eventAwakeCh = channel()

in
fun timeWait t =
if get clock >= t then ()
else (

send(timeSleepCh,t);
wrap(condEvt(fn()=> get clock = t),

fn()=> send(timeAwakeCh,())))

fun eventWait e =
if e() then ()
else (

send(eventSleepCh,());
wrap(condEvt e, fn()=> send(eventAwakeCh,())))

fun scheduler ... (* see next Figure *)
end

Figure 2.1.4. A discrete event simulator

and route2 which synchronize on the tra�c lights in di�erent orders to represent

di�erent tra�c routes.

We also envision that condEvt would be useful for other kinds of applications.

Imagine an animated object in motion which sets o� multiple actions when it's

position satis�es a constraint based on the object's position. This kind of synchro-

nization could be programming easily with condEvt by creating a thread for each

suspended action which is synchronizing on the following event:

condEvt(fn () => get x < 10 and get y < 20)

38

fun scheduler (cycles, numActors) = let

val awakeActors = ref numActors
val startTimeCh = channel()
val finishTimeCh = channel()
fun trackAll () = (

select [wrap(recvEvt timeSleepCh,

fn (t)=> (set(awakeActors,get awakeActors - 1);
incTimeStep t)),

wrap(recvEvt eventSleepCh,
fn ()=> set(awakeActors,get awakeActors - 1)),

wrap(recvEvt eventAwakeCh,
fn () => set(awakeActors,get awakeActors + 1)),

wrap(recvEvt startTimeCh,
fn()=>

let
val wakeUps = getTimeStep(get clock)
fun loop () =

if (get awakeActors) = wakeUps then ()
else (

recv timeAwakeCh;
set(awakeActors,get awakeActors + 1);
loop())

in

loop();
send(finishTimeCh,())

end)];
trackAll())

fun run cycles = if cycles = 0 then ()
else (
set(clock,get clock + 1);
send(startTimeCh,());
recv finishTimeCh;

sync(condEvt(fn () => get awakeActors = 0));
run(cycles-1))

in
spawn trackAll;

sync(condEvt(fn () => get awakeActors = 0));
run cycles

end

Figure 2.1.5. Scheduler for discrete event simulator

39

datatype light_status = GREEN | RED

datatype light = LIGHT of {status : light_status ref,
delayEvt : unit event,
signalEvt : unit event}

fun makeLight (s,d) =
LIGHT{status = statusFlag,

delayEvt = timeOutEvt TIME{sec=d,usec=0},
signalEvt = condEvt(fn () => get statusFlag = GREEN)

}

fun manageLight (LIGHT{status,delayEvt,...},n) =
let

fun loop () = (
set(status,OFF);
sync(delayEvt);
set(status,ON);
loop()

)
in
loop n

end

fun getSignalEvt (LIGHT{signalEvt,...}) = signalEvt

Figure 2.1.6. De�nitions for a tra�c light control system

Again, the property of not missing transient changes in the store is key in case the

object moves in and then back out of the region which satis�es the synchronization

condition.

40

let

val light1 = makeLight(new RED,3)
val light2 = makeLight(new RED,4)
val light3 = makeLight(new RED,5)

fun route1 () = (

sync (getSignalEvt light1);
sync (getSignalEvt light3);
sync (getSignalEvt light2);
route1()

)

fun route2 () = (
sync (getSignalEvt light1);

sync (getSignalEvt light2);
sync (getSignalEvt light3);
route1()

)

in
spawn(fn () => manageLight light1);
spawn(fn () => manageLight light2);
spawn(fn () => manageLight light3);

spawn route1; (* create cars *)
spawn route1;
spawn route2;

spawn route2
end

Figure 2.1.7. Body for a tra�c light control system

41

CHAPTER 3

Source Language

To express the semantics of �rst-class conditional synchronization (FCS) we de-

�ne �s
cv, which extends the PML subset of �cv [Rep92] with support for FCS and

imperative features. The dynamic semantics consist of sequential 7�! and concur-

rent =) evaluation relations and an event matching relation; that describes when

rendezvous is possible.

3.1. Notation

The following notation is used throughout. A �nite map is a map with �nite

domain. For sets A and B, the set of �nite maps from A to B is denoted A
�n
! B. The

domain and range of �nite map f are denoted Dom(f) and Range(f) respectively.

For �nite maps f and g, f � g is the �nite map whose domain is Dom(f)[Dom(g)

and whose value is g(x) when x 2 Dom(g) and f(x) otherwise.

3.2. Dynamic semantics of source

From �cv, the ground terms are variables, base constants, function constants, and

channel names. The set FConst includes the following event-valued combinators and

constructors: choose, recvEvt, sendEvt, and wrap. We add to this list condEvt

and the store operations for synchronization references: assignment, dereference,

and allocation (set,get, and new). The style of the dynamic semantics is based

on Felleisen and Friedman's notion of an evaluation context [FF86] which uses

42

e ::= v value
j e1 e2 application
j (e1; e2) pair
j let x = e1 in e2 let

v ::= c constant
j x variable
j l locations
j (v1; v2) pair value
j �x:e abstraction
j � channel name
j ev event value

ev ::= �!v channel output
j �? channel input
j ev) v wrapper
j ev1 � ev2 choice
j �e conditional

Figure 3.2.1. Source language grammar

term-rewriting and small-step reductions. This method has been shown to simplify

type soundness proofs and provides a framework amenable to language extensions

[WF92]. The source language grammar is shown in Figure 3.2.1.

In addition to the syntactic class of expressions, e 2 Exp, and values, v 2 Val,

there is a syntactic class of event values, ev 2 Event � Val. In addition store

locations l 2 Loc � Val are also values. We extend the syntactic class of event values

with a value �e that represents an event value whose synchronization is performed

by evaluating the boolean expression e.

43

3.2.1. Sequential evaluation. A sequential con�guration consists of a store �

and evaluation context E . The store � is a �nite map from locations to values:

� 2 Loc
�n
! Val

The evaluation context E is an expression with one subexpression replaced by a hole,

denoted []. The expression E[e] is formed by placing the expression e in the hole

of E. The evaluation context ensures that expressions are evaluated in a leftmost-

outermost fashion via the grammar:

E ::= [] j E e j v E j let x = E in e j (E; e) j (v; E)

The free variables of an expression e (denoted FV(e)) are de�ned inductively:

FV(x) = fxg

FV(e1 e2) = FV(e1) [FV(e2)

FV(let x = e1 in e2) = FV(e1) [(FV(e2)nfxg)

FV(�x:e) = FV(e)nfxg

A expression e is closed if FV(e) = ;.

Definition 3.2.1. A sequential con�guration �; e is well-formed if FV(e) �

Dom(�) The sequential semantics are based upon the following reductions:

� ` E[c v] 7�! E[Æ(c; v)] if Æ(c; v) is de�ned (function constant)

� ` E[(�x:e) v] 7�! E[e[x 7! v]] (� � reduction)

� ` E[let x = v in e] 7�! E[e[x 7! v]] (let)

44

where the Æ function is used to de�ne the meaning of the built-in function constants.

Application and let expressions are reduced by substituting v for free occurrences

of x in e. Renaming is also used to avoid capture in the store operations. The get

operation dereferences x returning the value v in the store binding:

� � fx 7! vg ` E[get x] 7�! E[v] (get)

The other store operations (new and set) are de�ned as concurrent reductions and

hence sequential evaluation has no side e�ects with respect to the store �. This

guarantees that evaluating synchronization conditions is pure, since the transitive

re�exive closure
�
7�! is used.

In this semantic framework the partial function Æ abstracts the set of constants:

Æ : Const� ClosedVal* ClosedVal

and the Æ�meanings of the event constructors and combinators are:

Æ(sendEvt; (�; v)) = �!v

Æ(recvEvt; �) = �?

Æ(wrap; (ev; v))) = ev) v

Æ(choose; (ev1; ev2)) = (ev1 � ev2)

Æ(condEvt; �x:e) = �e

3.2.2. Concurrent evaluation . As in semantics of �cv, concurrent evaluation

is de�ned as a transition system between �nite sets of process states. This is based

on the style of the �Chemical Abstract Machine� [BB90]. The concurrent evaluation

45

relation =) extends 7�! to processes, and adds additional rules for process creation,

channel creation and communication.

� 2 ProcID

p = h�; ei 2 Process = hProcID� Expi

P 2 ProcID
�n
! Exp

The
�

=) relation is the transitive re�exive closure of =). In addition since the

store is used for synchronization we introduce a global store as part of concurrent

con�gurations. The store must be global since synchronization references may be

communicated across channels. Processes may then contain references to the store.

Definition 3.2.2. (Concurrent Con�guration - adapted from [Rep92]) If �

is a �nite map from locations to values, Pv [Pr is a �nite set of process states, and

K a �nite set of channel names then �;K;Pv;Pr is a concurrent con�guration. The

processes in Pr are ready while processes in Pv are attempting to rendezvous.

We use P to refer to Pv [Pr when it is not necessary to distinguish between the

ready and rendezvous processes.

Definition 3.2.3. A concurrent con�guration �;K;P is well-formed if P is well-

formed with respect to the store � and channel set K. A process set P is well-formed

with respect to store � if for all h� ; ei 2 P it is true that FV(e) � Dom(�). Also a

process set P is well-formed with respect to channel set K if for all h� ; ei 2 P it is

true that FCN(e) � Dom(K) where FCN(e) denotes the set of free channel names

in e.

46

The rule 3.2.1 extends the sequential evaluation relation to concurrent con�gura-

tions.

�; e 7�! �; e0

�;K;Pv;Pr + h� ; ei =) �;K;Pv;Pr + h� ; e0i
(3.2.1)

The rule for new (3.2.2) creates a new store binding which associates the variable x

with the value v.

�;K;Pv;Pr + h� ; E[new v]i =) � + fx 7! vg;K;Pv;Pr + h� ; E[x]i x fresh

(3.2.2)

Figure 3.2.2 identi�es the reductions that are applied to evaluate a sample expres-

sion.

The rule for dynamic channel creation consists of picking a new channel name �

and substituting � for x in the body expression e .

� =2 K

�;K;Pv;Pr + h� ; E[chan x in e]i =) �;K + �;P + h� ; E[e[x 7! �]]i
(3.2.3)

Dynamic process creation consists o� picking a new process id �0 which then executes

the result of applying the spawn argument �x:e to the unit value.

�0 =2 Dom(P) + f�g

�;K;Pv;Pr + h� ; E[spawn �x:e]i =) �;K;Pv;Pr + h� ; E[()]i+ h�0 ; �x:e ()i

(3.2.4)

A rendezvous is based upon the revised notion of event matching in [Rep99].

Informally k events ev1; :::; evk match if the events satisfy the conditions for a k-way

47

fg; let x = new 4 in let y = new 5 in (�z:get(x) + get(y))(set(x; 10))

fa 7! 4g; let x = a in let y = new 5 in (�z:get(x) + get(y))(set(x; 10)) new

fa 7! 4g; let y = new 5 in (�z:get(a) + get(y))(set(a; 10)) let

fa 7! 4; b 7! 5g; let y = b in (�z:get(a) + get(y))(set(a; 10)) new

fa 7! 4; b 7! 5g; (�z:get(a) + get(b))(set(a; 10)) let

fa 7! 10; b 7! 5g; get(a) + get(b) set; �

fa 7! 10; b 7! 5g; 10 + 5 get

Figure 3.2.2. Example applying store reductions

rendezvous:

� ` (ev1; :::; evk);k (e1; :::; ek)

The above may be read as given the store �, the events ev1; :::; evk satisfy the con-

ditions for a k-way rendezvous and the processes synchronizing on events ev1; :::; evk

will continue after the rendezvous by evaluating expressions e1; :::; ek respectively.

For instance, channel communication may occur when two processes are attempting

to send and receive on the same channel �:

� ` (�?; �!v) ;2 (v; ())

Matching may also involve events constructed by wrap and choose:

� ` (ev1; :::; evi; :::evk) ;k (e1; :::ei; :::; ek) i 2 f1::kg

� ` (ev1; :::; evi) v; :::evk) ;k (e1; :::; ei v; :::ek)

48

� ` (ev1; :::evi; :::; evk;) ;k (e1; :::ei; :::; ek) i 2 f1::kg

� ` (ev1; :::; evi � ev0; :::evk) ;k (e1; :::ei; :::; ek)

� ` (ev1; :::evi; :::; evk;) ;k (e1; :::ei; :::; ek) i 2 f1::kg

� ` (ev1; :::; ev0 � evi; :::evk) ;k (e1; :::ei; :::; ek)

The following rule indicates that the order of events in the matching is not signi�cant.

� ` (ev1; :::evi�1; evi; :::; evk) ;k (e1; :::ei�1; ei; :::; ek) for i 2 f2::kg

� ` (ev1; :::evi; evi�1; :::; evk) ;k (e1; :::ei; ei�1; :::; ek)

In the �rst example below the value 20 is sent across the channel. In the second

example a wrapper function is applied to the received value.

� ` (�?; �!20) ;2 (20; ())

� ` (�?) �x:x + 1; �!20) ;2 (�x:x+ 1 20; ())

An event value may be in the form of the non-deterministic choice � and there-

fore event matching is non-deterministic. Hence both of the following matches are

valid:

� ` (�!10� �!20; �?) ;2 ((); 10)

� ` (�!10� �!20; �?) ;2 ((); 20)

Synchronization conditions have no side e�ects, that is the store bindings, channel

and process sets are una�ected. As will be seen in Section 3.3, these restrictions are

statically enforced by the type system. Synchronizing on a conditional event is a

1-way rendezvous where matching succeeds if the boolean expression e evaluates to

49

true with respect to �.

� ` e
�
7�! true

� ` �e ;1 ()
(3.2.5)

Definition 3.2.4. (Synchronization Object [Rep99]) The synchronization

objects of an event value are de�ned as:

SyncObj(�!v) = f�g

SyncObj(�?) = f�g

SyncObj(�e) = �e

SyncObj(ev1 � ev2) = SyncObj(ev1) [SyncObj(ev2)

SyncObj(ev) v) = SyncObj(ev)

Definition 3.2.5. (Enabled [Rep99]) A synchronization object is enabled

in con�guration �;K;Pv;Pr if there is a process h�1 ; E1[sync ev1]i 2 Pv with 2

SyncObj(ev1), and there are also k � 1 processes in the con�guration such that:

� ` (ev1; :::; evk);k (e1; :::; ek)

and h�i ; Ei[sync evi]i 2 Pv for 1 � i � k.

Processes synchronizing on matching events may simultaneously reduce sync

expressions to the corresponding expression speci�ed on the right-hand side of the

50

matching relation.

� ` (ev1; :::; evk);k (e1; :::; ek)

�;K;Pv + h�1 ; E1[sync ev1]i+ ::: + h�k ; Ek[sync evk]i ;Pr =)

�;K;Pv;Pr + h�1 ; E1[e1]i+ :::+ h�k ; Ek[ek]i

(3.2.6)

Ready processes synchronizing on conditional events that are enabled may pro-

ceed without being moved into Pv.

� ` ev ;1 ()

�;K;Pv;Pr + h� ; E[sync ev]i =) �;K;Pv;Pr + h� ; E[()]i
(3.2.7)

In 3.2.8, if all the synchronization conditions of an event value evaluate to false

in �, then processes evaluating a sync expression are moved from Pr to Pv by the

following rule to indicate arrival at a rendezvous point.

� ` e
�
7�! false and �e 2 SyncObj(ev)

�;K;Pv;Pr + h� ; E[sync ev]i =) �;K;Pv + h� ; E[sync ev]i ;Pr

(3.2.8)

After the �rst attempt, subsequent evaluations of synchronization conditions are

triggered by store updates. The subscript i is used since the update may unblock

multiple processes synchronizing on di�erent conditional events whose conditions

are true in the resultant store.

M = fh� ; E[sync ev]i j h� ; E[sync ev]i 2 Pv and � � fx 7! v2g ` ev ;1 ()g

N = fh� ; E[()]i j h� ; E[sync ev]i 2 Ng

� � fx 7! v1g;K;Pv;Pr + h�0 ; E[set (x; v2)]i =)

� � fx 7! v2g;K;Pv �N;Pr +N + h�0 ; E[()]i

(3.2.9)

The =) relation has the following properties.

51

Lemma 3.2.6. (Adapted from [Rep92]) If �;K;P is well-formed and �;K;P =)
�0;K0;P 0 then the following hold:

1. �0;K0;P 0 is well-formed

2. Dom(�) � Dom(�0)

3. K � K0

4. Dom(P) � Dom(P 0)

Proof. By examination of the rules for =) .

The following de�nitions are used in the theorem that guarantees transient store

con�gurations are not missed by waiting processes.

Definition 3.2.7. (Trace - adapted from [Rep92]) A trace is a (possibly in�-

nite) sequence of well-formed con�gurations

T = hh�0;K0;P0; �1;K1;P1; :::ii

such that �i;Ki;Pi =) �i+1;Ki+1;Pi+1; for all i; i+ 1 in the sequence. The head of

T is �0;K0;P0.

Definition 3.2.8. (Blocked)A process � is blocked in con�guration �;K;Pv;Pr

if h� ; E[sync ev]i 2 Pv and there does not exist k� 1 other processes in the con�g-

uration such that:

� ` (ev1; :::; evk�1; ev) ; k(e1; :::; ek�1; e)

The semantics of conditional synchronization guarantees that no transient store

con�gurations are missed. In other words a blocked process waiting for a condition

52

to become true is guaranteed to become ready before the condition subsequently

becomes false.

Theorem 3.2.9. (Transient Property) If h� ; E[sync ev]i 2 Pvx of con�gu-

rations cx 2 T (x 2 fi::j � 1g) and for all �e 2 SyncObj(ev)

�x ` e
�
7�! false

and subsequently in con�guration cj 2 T there exists a �e 2 SyncObj(ev) such that

�j ` e
�
7�! true

then h� ; E[()]i 2 Prj .

Proof. Since the store changed during the transition cj�1 =) cj reduction 3.2.9

must have been applied and this forces re-evaluation of all pending synchronization

conditions e. Using

�j ` e
�
7�! true

as a premise to 3.2.5 we get

�j ` �e ;1 ()

and therefore by 3.2.9

h� ; E[()]i 2 Prj

53

val Y = fn f => let

val a = channel()
val g = fn v => let val h' = accept a

in
spawn(fn () => send(a, h'));
f h' v

end
in
spawn(fn () => send(a, g));
let val h = accept a

in
spawn(fn () => send(a, h));
f h

end

end

Figure 3.2.3. Coding Yv using processes and channels

3.2.3. Recursion. We provide no built-in mechanism for recursion since �cv has

none due to the fact that the call-by-value Yv combinator can be implemented using

processes and channels. The CML example in Figure 3.2.3 by Reppy was adopted

from [GMP89] and uses only what is provided by �cv. The unrolling normally

associated with the Yv combinator is done by sending a copy of the function across

a channel. In Figure 3.2.3 a copy of the function g is sent across channel a for the

next iteration. When discussing recursive functions we write:

letrec f(x) = e1 in e2

as syntactic sugar for

let f = Yv(�f:�x:e1) in e2

54

3.3. Static semantics of the source language

In order to enforce certain restrictions within synchronization conditions we in-

corporate e�ects into the source static semantics. E�ects come out of research done

at the MIT Laboratory for Computer Science in the late 1980's [Luc87] [JG91]

[LG91]. One product of this research was the The FX language [GJLS87] which

applies its e�ect system to perform parallel code generation and stack allocation

of temporary data structures. Talpin and Jouvelot subsequently designed an e�ect

type system for the core of ML [TJ92] . They then applied their framework to make

the type generalization associated with let polymorphism more precise than previ-

ous methods [TJ97]. Communication e�ects have also been used to optimize CML

programs [NN94]. This dissertation can be viewed as an application of e�ects to

conditional synchronization. The source semantics applies e�ects in order to enforce

restrictions and in addition the target semantics apply e�ects to preclude excessive

re-evaluation of synchronization conditions.

Before presenting the static semantics of the target language we �rst give an

overview of e�ects. An e�ect ' is de�ned as:

' ::= ; j init j read j write j � j ' ['

channel j block j spawn

Null e�ects are represented by ;. The e�ect init corresponds to the initialization

of a synchronization reference. Read and write e�ects to synchronization references

are denoted by read and write respectively. E�ect variables are represented by

�. Discussion of the remaining e�ects (channel, block, and spawn) is deferred to

Section 3.3.1. The source types � 2 Type are shown in Figure 3.3.1. Types � can be

either unit, type variable �, synchronization reference value of type � in the region

55

�, and function type �1
'
! �2. A salient point is that the e�ects ' of a function

body are captured in the function type. This allows the inference of e�ects incurred

by function application. The event type � event' has an associated e�ect ' since

synchronizing on an event value may evaluate a synchronization condition or the

body of a wrapper function.

A substitution S is a pair of type and e�ect substitutions. Type substitutions

map type variables to types where St ranges over all type substitutions. E�ect

substitutions map e�ect variables to e�ects where Se ranges over all e�ect substitu-

tions. S then ranges over all substitutions. The type variables � are used for type

generalization (polymorphism):

� 2 TyVar

We use FTV(�) to denote the free type variables of � . Type schemes � 2 TyScheme

[DM82] may have quanti�ed type variables:

� ::= �

j 8�1; :::; �n:�

The variables �1; :::; �n are bound in � and are denoted by BV(�). Substitutions

map type variables to types where S ranges over all substitutions. A type � 0 is

an instance of a type scheme � ::= 8�1; :::; �n:� , denoted � � � 0, if there exists a

substitution S where Dom(S) = bv(�) and S(�) = � 0 with a renaming of the bound

variables when necessary to avoid capture. Type environments TE 2 TyEnv are a

56

� ::= unit

j bool

j � type variables

j �1
'
! �2 function types

j �1 � �2 pair types
j � chan channel types
j � event' event types
j � sync_ref reference types

Figure 3.3.1. Source language types

triple of �nite maps: a variable typing, channel typing, and store typing :

V T 2 VarTy = Var
�n
! TyScheme

CT 2 ChanTy = Ch
�n
! Type

ST 2 StoreTy = Loc
�n
! Type

TE = (V T; CT; ST) 2 TyEnv = (VarTy � ChanTy � StoreTy)

We use FTV(VT) and FTV(CT) for the set of free type variables of variable and

channel typings respectively. The free type variables of a type environment de�ned

as:

FTV(TE) = FTV(V T) [FTV(CT) [FTV(ST)

There are no bound variables in a channel typing or store typing.

In ML, polymorphism is associated with the let construct by allowing di�erent

type instantiations of let-bound variables within the scope of the let body expres-

sion. However, it is well known that generalizing type variables that appear in the

types of stored values results in a unsound type system [Tof90]. Hence a variety

of mechanisms have been used to restrict generalization including e�ects [TJ97]

57

[Wri92]. More recently the trend has been to use the simple approach of only

generalizing the type when the right-hand side of a let-binding is a value (value

restriction). Although more conservative than other methods the value restriction

is easier for a programmer to understand as to why generalization succeeds or fails.

The reason for this restriction is that when the binding expression is a value it is

safe to generalize the type since the domain of the store will not be expanded by

evaluating the right-hand side. Generalizing the type of an expansive right-hand

side expression in a let-binding would lead to an unsound type system as illustrated

by the example:

let

val f = new (fn x => x)

in

set(f, fn x => x + 1);

(get f) true

end

Assigning f the type 8�: � ! � allows the program to pass through the type-

checker. However, a run-time type error will occur when executing the expression

((get f) true) since the type of the value stored at f's location is int
'
! int.

Following the approach of Tofte and Talpin [TT97], we incorporate the value

restriction in by associating polymorphism only with the letrec construct as shown

in Figure 3.3.2. Thus the letrec construct is used for both recursion and polymor-

phism.

58

V T (x) � �

(V T; CT; ST) ` x : �; ;

CT (�) = �

(V T; CT; ST) ` � : �; ;

ST (l) = �

(V T; CT; ST) ` l : �; ;

TypeOf(c) � �

TE ` c : �; ;

TE � fx 7! �g ` e : � 0; '

TE � fx 7! �g ` �x:e : �
'
! � 0; ;

TE ` e : �
'
! � 0; '0 TE ` e0 : �; '00

TE ` e e0 : � 0; ' ['0 ['00

TE ` e1 : �1; '1 TE � fx 7! �1g ` e2 : �2; '2

TE ` let x = e1 in e2 : �2; '1 ['2

TE � ff 7! �1g ` �x:e1 : �1; ; f�1; :::; �ng \ FTV(TE) = ;
TE � ff 7! 8�1; :::; �n:�1g ` e2 : �2; '2

TE ` letrec f(x) = e1 in e : �2; '2

Figure 3.3.2. Core type rules

The type rules for event values are shown in Figure 3.3.3. The speci�cations of the

store operations and the speci�cations of the event constructors/combinators are in

Figures 3.3.4 and 3.3.5.

3.3.1. Pure and impure e�ects. The semantics of FCS illustrates that the

synchronization condition is evaluated an arbitrary number of times. Since the

motivation for FCS is to allow a thread to synchronize with the store being in a

certain state, it would be undesirable to allow synchronization conditions which have

59

TE ` � : � chan; ; TE ` v : �; ;

TE ` �!v : unit event; ;

TE ` � : � chan; ;

TE ` �? : � event; ;

TE ` ev : � event'; ; TE ` �x:e : �
'0

! � 0; ;

TE ` ev) �x:e : � 0; unit event'['0 ; ;

TE ` ev1 : � event'; ; TE ` ev2 : � event'0 ; ;

TE ` ev1 � ev2 : � event'['0 ; ;

TE ` e : bool; 'pure

TE ` �e : �; unit event'pure; ;

Figure 3.3.3. Type rules for event values

TE ` new : 8�:�
init
! � sync_ref; ;

TE ` get : 8�:� sync_ref
read
! �; ;

TE ` set : 8�:� sync_ref
;
! �

write
! unit; ;

Figure 3.3.4. Type speci�cations of store operations

TE ` wrap : 8��0��:� event�
;
! (�

�0

! �)
;
! � event�[�0; ;

TE ` sendEvt : 8� chan
;
! �

;
! unit event;; ;

TE ` recvEvt : 8�:� chan
;
! � event;; ;

TE ` choose : 8��0�:� event� � � event�0
;
! � event�[�0; ;

Figure 3.3.5. Type speci�cations of event constructors and combinators

60

sync : 8��:� event�
�[block
! �

spawn : 8�(unit
�
! unit)

�[spawn
! thread_id

channel : 8�:unit
channel
! � chan

Figure 3.3.6. Operations having e�ects

e�ects. To allow otherwise would permit the re-evaluation of the synchronization

condition to unblock the thread attempting synchronization. In e�ect a thread could

unblock itself with its own condition as illustrated by the code fragment:

condEvt(fn () => (set(x,get x + 1); get x > 4)

Clearly the semantics of such programs is nonsensical and dependant on process

scheduling. In addition, blocking operations should be prevented during evaluation

of the synchronization condition. To allow otherwise would result in ambiguous

semantics. To enforce these restrictions we identify e�ects as being either pure or

impure e�ects as in [BF96]. Di Blasio and Fisher de�ne an impure e�ect as contain-

ing a write e�ect for the purpose of disallowing write e�ects in their synchronization

guards. We take this de�nition a step further by incorporating block e�ects and any

other e�ect which generates a new concurrent con�guration in the dynamic seman-

tics. Thus in addition to read, write, and init e�ects, we now introduce channel,

spawn, and block e�ects.

Definition 3.3.1. (Pure E�ect) An e�ect is pure (denoted 'pure) if the e�ect

does not contain any of the following e�ects: block, write, init, channel, or spawn.

Hence a pure e�ect 'pure may only contain read e�ects.

61

Otherwise the e�ect is impure. In addition to set and new, impure e�ects

are generated by the functions in Figure 4.2.5. Thus the desired restrictions are

enforced by the type system as the type of condEvt is implicitly quanti�ed over all

pure e�ects.

TE ` e : unit
'pure

! bool; '

TE ` condEvt e : event'pure; '
(3.3.1)

62

CHAPTER 4

Target Language

The translation scheme described in Chapter 5 generates a target program which

precludes continuous polling of synchronization conditions. To support our transla-

tion scheme, we incorporate into the target language (�t
cv) e�ects (as in the source)

and in addition regions [TJ92] [TJ97]. Next in Section 4.1 we de�ne the dynamic

semantics of our target language �t
cv followed by the static semantics in Section 4.2.

4.1. Dynamic semantics of target

The salient distinction of the target language is the introduction of region names.

Region names are run-time representations of regions and are values in the target

as shown in Figure 4.1.1. Regions names are used to help distinguish store locations

and are necessary due to aliasing. Hence region names are used to uniquely iden-

tify the memory locations associated with synchronization references. Thus every

synchronization reference value is assigned its own region name at run-time. Other

techniques such as abstract interpretation [CC77] have been applied to perform

alias analysis. However, Talpin [TJ92] cites several advantages in the context of

high-order functional programs in using the regions of type and e�ect inference over

other techniques

As in the source language, the rules of the dynamic semantics are categorized

as either sequential 7�! or concurrent =), and as before, the matching relation ;

de�nes when a rendezvous is possible.

63

e ::= v value
j e1 e2 application
j (e1; e2) pair
j let x = e1 in e2 let
j nil empty list
j cons(e1; e2) cons
j case e0 of nil ! e1 OR cons(v1; v2) ! e2 case

v ::= c constant
j x variable
j (v1; v2) pair value
j �x:e abstraction
j � channel name
j ev event value
j r regionnames
j nil empty list value
j cons(v1; v2) list value

ev ::= �!v channel output
j �? channel input
j ev) v wrapper
j ev1 � ev2 choice
j �e [r1;r2;:::] conditional

Figure 4.1.1. Target language grammar

4.1.1. Sequential evaluation. The store � is as in the source semantics:

� 2 Loc
�n
! Va

While evaluation contexts E are extended for lists:

E ::= [] j E e j v E j let x = E in e j (E; e) j (v; E) j

case E of nil ! e1 OR cons(v1; v2) ! e2

64

as are the sequential reductions:

� ` E[c v] 7�! E[Æ(c; v)] (function constant)

� ` E[(�x:e) v] 7�! E[e[x 7! v]] (� � reduction)

� ` E[let x = v in e] 7�! E[e[x 7! v]] (let)

� � fx 7! vg ` E[get x] 7�! E[v] (get)

� ` case nil of nil ! e1 7�! E[e1]

OR cons(x1; x2) ! e2

� ` case cons(v1; v2) of nil ! e1 7�! E[e2[x1 7! v1; x2 7! v2]]

OR cons(x1; x2) ! e2

The list constructors cons and nil are utilized in the annotations introduced by the

translation. Moreover, we write [a,b,c] as syntactic sugar for

cons(a,cons(b,cons(c,nil))).

The event constructor condEvt0 creates a conditional event from a pair consisting

of a lambda and a region name list. The event value returned �e [r1;:::;rn] encapsulates

not only the boolean expression e but also the region names r1; :::; rn corresponding

to the regions read by e. The region names r1; :::; rn are automatically passed to

condEvt0 by the translation described in Chapter 5.

Æ(condEvt0; (�x:e; [r1; :::; rn])) = �e [r1;:::;rn]

The function newRegName generates a new region name on each call. The translation

inserts calls to newRegName in the target at points corresponding to the allocation

of a synchronization reference value.

Æ(newRegName; ()) = ri i 2 f1::ng

65

4.1.2. Concurrent evaluation. Concurrent con�gurations are as in the source

semantics. The de�nition for the synchronization objects of and event value is

modi�ed to take into account the target form of a conditional event:

SyncObj(�e [r1;:::;rn]) = �e [r1;:::;rn]

Also, the two rules below for extending sequential evaluation and new are identical

to the source semantics.

�; e 7�! �; e0

�;K;Pv;Pr + h� ; ei =) �;K;Pv;Pr + h� ; e0i
(4.1.1)

�;K;Pv;Pr + h� ; E[new v]i =) � + fx 7! vg;K;Pv;Pr + h� ; E[x]i x fresh

(4.1.2)

As before, processes synchronizing on matching events may simultaneously reduce

their sync expressions to the corresponding expression speci�ed by the matching

relation.

� ` (ev1; :::; evk);k (e1; :::; ek)

�;K;Pv + h�1 ; E1[sync ev1]i+ ::: + h�k ; Ek[sync evk]i ;Pr =)

�;K;Pv;Pr + h�1 ; E1[e1]i+ :::+ h�k ; Ek[ek]i

(4.1.3)

Rule 4.1.4 illustrates that the initial attempt at evaluating the synchronization con-

dition allows a process to synchronize on an event without being moved into the

rendezvous set Pv.

� ` ev ;1 ()

�;K;Pv;Pr + h� ; E[sync ev]i =) �;K;Pv;Pr + h� ; E[()]i
(4.1.4)

66

In 4.1.5, if all the synchronization conditions of an event value evaluate to false in

� then the corresponding processes are moved to the rendezvous set.

� ` e
�
7�! false for all �e [r1;::;rn] 2 SyncObj(evi)

�;K;Pv;Pr + h�i ; E[sync evi]i =) �;K;Pv + h�i ; E[sync evi]i ;Pr

(4.1.5)

The rule for re-evaluating synchronization conditions refers to the following de�ni-

tion for the Regions of an event value.

Definition 4.1.1. (Regions) The Regions of an event value ev is the union of

the regions in the conditional events:

Regions(ev) =
[

�e [r1;:::;rn]2SyncObj(ev)

fr1; :::; rng

After the �rst attempt, subsequent evaluations of synchronization conditions are

triggered by updates to regions r which intersect with the Regions of an event

value. The subscript i is used in Rule 4.1.6, since the update may unblock multiple

processes synchronizing on di�erent conditional events reading th same region r.

M = fh� ; E[sync ev]i j h� ; E[sync ev]i 2 Pv and r 2 Regions(ev)

and � � fx 7! v2g ` ev ;1 ()g

N = fh� ; E[()]i j h� ; E[sync ev]i 2Mg

� � fx 7! v1g;K;Pv;Pr + h� ; E[set0 (x; v2; r)]i =)

� � fx 7! v2g;K;Pv �M;Pr +N + h� ; E[()]i

(4.1.6)

where ;1 is de�ned as in the source as:

� ` e
�
7�! true

� ` �e ;1 ()
(4.1.7)

67

The target semantics also guarantees the transient property.

Theorem 4.1.2. (Transient Property) If h� ; E[sync ev]i 2 Pvx of con�gu-

rations cx 2 T (x 2 fi::j � 1g) and for all �e [r1;:::;rn] 2 SyncObj(ev)

�x ` e
�
7�! false

and in con�guration cj 2 T there exists a �e [r1;:::;rn] 2 SyncObj(ev) such that

�j ` e
�
7�! true

then h� ; E[()]i 2 Prj .

Proof. Since the store changed during the transition cj�1 =) cj reduction 4.1.6

must have been applied and this forces re-evaluation of conditions e reading the

region r being updated. Using

�j ` e
�
7�! true

as a premise to 4.1.7 we get

�j ` �e [r1;:::;rn] ;1 ()

and therefore by 4.1.6

h� ; E[()]i 2 Prj

68

Finally, the rules for channel and process creation are as in the source.

� =2 K

�;K;Pv;Pr + h� ; E[chan x in e]i =) �;K + �;P + h� ; E[e[x 7! �]]i
(4.1.8)

�0 =2 Dom(P) + f�g

�;K;Pv;Pr + h� ; E[spawn �x:e]i =) �;K;Pv;Pr + h� ; E[()]i+ h�0 ; �x:e ()i

(4.1.9)

4.2. Static semantics of the target language

The static semantics have three kinds of semantic objects: e�ects, types, and

regions as in [TJ92].

� ::= ! j % regions

' ::= ; j init(�) j read(�) j write(�) j � j ' [' e�ects

spawn j block j channel

Regions can be either region constants ! or region variables %. Regions statically

abstract the memory used to hold values in the store. Every store value is assigned to

a region upon initialization. Since more than one memory location may correspond

to the same region, regions approximate memory locations. By unifying region

variables, a static analysis can make conservative approximations when it is not

possible to statically infer whether two values in the program correspond to the

same memory location. Note that the regions in our semantics are speci�cally for

synchronization. If SML references were present in the semantics then there would

69

be two kinds of regions: one kind for synchronization and the other for the SML

references. The distinction is necessary since the motivation for the translation is to

inform the run-time system regarding updates to the regions read by synchronization

conditions.

E�ects correspond to the kind of e�ects present in the source semantics except

that read, write, and init e�ects are associated with some region �. Null e�ects are

represented by ;. The e�ect init(�) corresponds to the initialization of a value in

the region �. Read and write e�ects to the region � are denoted by read(�) and

write(�) respectively. Types � (Figure 4.2.1) can be either unit, type variables �,

reference values of type � in the region �, and function types �1
'
! �2. A salient

point is that the e�ects of a function body are captured in the function type. This

allows the inference of e�ects incurred by function application.

A substitution S is a triple (St; Sr; Se) of type, region and e�ect substitutions. Type

substitutions map type variables to types where St ranges over all type substitutions.

Region substitutions map region variables to region variables where Sr ranges over

all region substitutions. E�ect substitutions map e�ect variables to e�ects where Se

ranges over all e�ect substitutions. S then ranges over all substitutions. The target

type schemes are either simple or compound :

� ::= �

j 8�1; :::; �i; �1; :::; �j; :::; �1; :::; �k:�

where i � 0; j � 0; k � 0: This method was devised by Tofte and Talpin [TT97]

to distinguish the types of region polymorphic functions from regular functions.

Compound type schemes are used solely for region polymorphic functions. The

70

� ::= unit

j bool

j � type variables

j �1
'
! �2 function types

j �1 � �2 pair types
j � chan channel types
j � event' event types
j � sync_ref� reference types
j � list lists

Figure 4.2.1. Target language types

underlining � helps to identify the compound type schemes. For compound type

schemes, the bound variables bv(�) are the variables in the set:

f�1; :::; �n; �1; :::; �n; :::; �1; :::; �ng

The vector notation (
!
�;

!
�;

!
�) is used to refer to the bound variables in a type scheme.

As before, a type is an instance of a type scheme � � � if there is a substitution

S where Dom(S) = bv(�) and S(�) = � with a renaming of bound variables when

necessary to avoid capture.

Figure 4.2.1 shows the result of incorporating e�ects and regions into the types of

�t
cv. In Figure 4.2.1 an e�ect ' is attached to the event type since synchronization

may evaluate synchronization conditions or calls to wrapper functions. Thus the

e�ects ' is incurred when applying sync.

In the remaining discussion of this Subsection there are no salient distinctions from

the source semantics. The inference rules of the static semantics associate a type

environment TE and an expression e with its type � and e�ects ', noted TE ` e :

�; '. As in the source semantics, type environments are actually a triple of variable

71

typing V T , channel typing CT and store typing ST .

V T 2 VarTy = Var
�n
! TyScheme

CT 2 ChanTy = Ch
�n
! Type

ST 2 StoreTy = Loc
�n
! Type

TE = (V T; CT; ST) 2 TyEnv = (VarTy � ChanTy � StoreTy)

The core type rules are shown in Figure 4.2.2 and the store operations are in Figure

4.2.4. The type rules for event values are shown in Figure 4.2.6. Next, in order to

describe the static semantics of condEvt0 we distinguish e�ects ' as being either

pure or impure (as in the source).

Definition 4.2.1. (Pure E�ect) An e�ect is pure (denoted 'pure) if the e�ect

does not contain any of the following e�ects: block, write, init, channel, or spawn.

Hence a pure e�ect 'pure may only contain read e�ects.

Otherwise the e�ect is impure. In addition to set0 and new, impure e�ects are

generated by functions in Figure 4.2.5.

Source calls to condEvt are translated to condEvt0 whose argument function has

a pure e�ect 'pure. Thus the desired restrictions are enforced by the type system

as the type of condEvt0 is implicitly quanti�ed over all pure e�ects.

TE ` e : unit
'pure

! bool; ' TE ` [r1; :::; rn] : reg_name list; '

TE ` condEvt0 (e; [r1; :::; rn]) : unit event'pure

(4.2.1)

Note that if the standard SML reference variable were present in the semantics

then there would be another kind of region distinct from our regions which are

intended for synchronization. In this case the e�ects pertaining to SML references

would also be disallowed within pure e�ects. The speci�cations of the other event

72

V T (x) � �

(V T; CT; ST) ` x : �; ;

CT (�) = �

(V T; CT; ST) ` � : �; ;

ST (l) = �

(V T; CT; ST) ` x : �; ;

TypeOf(c) � �

TE ` c : �; ;

TE � fx 7! �g ` e : � 0; '

TE � fx 7! �g ` �x:e : �
'
! � 0; ;

TE ` e : �
'
! � 0; '0 TE ` e0 : �; '00

TE ` e e0 : � 0; ' ['0 ['00

TE ` e1 : �1; '1 TE + fx 7! �1g ` e2 : �2; '2

TE ` let x = e1 in e : �2; '1 ['2

TE � ff 7! �1g ` �x:e1 : �1; ; f�1; :::; �ng \ FTV(TE) = ;
TE � ff 7! 8�1; :::; �n:�1g ` e2 : �2; '2

TE ` letrec f(x) = e1 in e : �2; '2

TE � fx 7! �1g ` e : �2; '

TE ` chan x in e : �2; '

Figure 4.2.2. Core type rules for target

constructors and combinators are shown in Figure 4.2.6. Finally, the types of the

list constructors are shown in Figure .

73

TE ` � : � chan; ; TE ` v : �; ;

TE ` �!v : unit event; ;

TE ` � : � chan; ;

TE ` �? : � event; ;

TE ` ev : � event'; ; TE ` �x:e : �
'0

! � 0; ;

TE ` ev) �x:e : � 0; unit event'['0 ; ;

TE ` ev1 : � event'; ; TE ` ev2 : � event'0 ; ;

TE ` ev1 � ev2 : � event'['0 ; ;

TE ` e : bool; 'pure TE ` [r1; :::; rn] : reg_name list; ;

TE ` �e [r1;:::;rn] : �; unit event'pure; ;

Figure 4.2.3. Type rules for event values

TE ` new : 8�:�
init(�)
! sync_ref�(�); ;

TE ` get : 8�:sync_ref�(�)
read(�)
! �; ;

TE ` set0 : 8�:sync_ref�(�)
;
! �

;
! reg_name

write(�)
! unit; ;

Figure 4.2.4. Type speci�cations of store operations

sync : 8��:� event�
�[block
! �

spawn : 8�(unit
�
! unit)

�[spawn
! thread_id

channel : 8�:unit
channel
! � chan

Figure 4.2.5. Operations having e�ects

74

TE ` wrap : 8��:� event'
'0

! (�
'00

! �)
'000

! � event'['00 ; ;

TE ` sendEvt : 8� chan
'
! �

'0

! unit event;; ;

TE ` recvEvt : 8�:� chan
'
! � event;; ;

TE ` choose : 8�:� event' � � event'0

'00

! � event'['0; ;

Figure 4.2.6. Speci�cations of event constructors and combinators

TE ` nil : 8�:� list; ;

TE ` cons : 8�:� � � list
;
! � list; ;

Figure 4.2.7. Speci�cations of list constructors

4.3. Type soundness

The main result presented at the end of this Section is that well-typed �t
cv pro-

grams do not cause run-time type errors. We follow the approach of Wright and

Felleisen in proving syntactic soundness for our semantics. This approach involves:

� proving subject reduction holds (i.e, that evaluation preserves types)

� characterizing answers and stuck expressions

� proving stuck expressions are untypable

The following sequence of lemmas and de�nitions are used in the subject reduction

theorems.

Lemma 4.3.1. (Replacement Lemma - [HS86]) If:

1. D is a deduction concluding TE ` C[e1] : �; �

75

2. D1 is a subdeduction of D concluding TE 0 ` e1 : � 0; �0

3. D1 occurs in D in the position corresponding to the hole ([]) in C, and

4. TE 0 ` e2 : �
0; �0

then TE ` C[e2] : �; �

The basic idea is to view type deductions as trees. In this case the tree for

deduction D contains a sub-tree for D1. Let D2 be the tree for the deduction

TE 0 ` e2 : � 0; �0. Then if we cut out D1 and replace it with D2 and also substitute

occurrences of e1 for e2 then the resulting tree still satis�es deduction D. The

detailed proof in [HS86] uses induction on the height of the tree.

Lemma 4.3.2. (Substitution [WF92]) If TE � fx 7! 8�1:::�n:�g ` e : � 0; '

and x =2 Dom(TE) and TE ` v : � and f�1:::�ng\FTV(TE) = ; then TE ` e[x 7!

v] : � 0; '.

See [WF92] for the detailed proof.

Subject reduction illustrates that evaluation preserves types. We now demon-

strate subject reduction for both sequential and concurrent con�gurations in the

target language �t
cv.

Definition 4.3.3. (Well-formed Store) A store � is well-formed with respect

to store typing ST (denoted ST ` � : ST), if for all l 2 Dom(�) it holds that

ST ` �(l) : ST (l); ;.

Definition 4.3.4. (Well-formed Sequential Con�guration) A well-formed

sequential con�guration �; e has type � and e�ect ' under store typing ST denoted:

ST ` �; e : �; '

76

if the following hold:

� Dom(�) � Dom(ST)

� (fg; fg; ST) ` e : �; '

� ST ` � : ST

Theorem 4.3.5. (Sequential Subject Reduction) If �; e is a well-formed se-

quential con�guration where and �; e1 7�! �; e2 and for store typing ST if

ST ` �; e : �; ', then ST ` �; e0 : �; '.

Proof. If e1 = E[e] and e2 = E[e0] then by the Replacement Lemma it su�ces

to show that if TE ` e : � 0; '0 then TE ` e0 : � 0; '0. The proof is a case analysis of

the syntactic structure of e1 and 7�! .

Case �; E[c v] 7�! �; E[Æ(c; v)]

By the typing of application (Figure 4.2.2) there exists a type environment TE such

that

TE ` c v : � 0; '0

Hence by the Æ�typability we get

TE ` Æ(c; v) : � 0; '0

Case �; E[(�x:e) v] 7�! �; E[e[x 7! v]]

77

By the typing of application (Figure 4.2.2) there exists a type environment TE such

that

TE ` (�x:e) v : � 0; '0

and from the premises (Figure 4.2.2)

TE ` �x:e : �
'00

! � 0; '0

TE � fx 7! �g ` e : � 0; '00

Hence by the Substitution Lemma 4.3.2

TE ` e[x 7! v] : � 0; '0

Case �; E[let x = v in e] 7�! �; E[e[x 7! v]]

By the type of let (Figure 4.2.2) there exists a type environment TE such that

TE ` let x = v in e : � 0; '0

and from the premises

TE ` v : � 00; ;

TE + fx 7! Closure(� 00; TE) ` e : � 0; '0

Hence by the Substitution Lemma 4.3.2

TE ` e[x 7! v] : � 0; '0

78

Case � � fx 7! vg; E[get x] 7�! � � fx 7! vg; E[v]

By the type of get (Figure 4.2.4) and application (Figure 4.2.2) there exists a type

environment TE such that

TE ` get x : � 0; '0

and from the premises

TE ` x : � 0 sync_ref�; ;

Hence by well-formed con�gurations 4.3.4

TE ` v : � 0; ;

Next we introduce process typings which allow the extension of typing judgments to

concurrent con�gurations. A process typing is a �nite map from process identi�ers

to types

PT 2 ProcTy = ProcID
�n
=) Ty

In addition, the following de�nitions and lemmas are used in the concurrent subject

reduction theorem.

Definition 4.3.6. (Well-formed Concurrent Con�guration - adapted from

[Rep92]) A well-formed concurrent con�guration �;K;P has type PT under channel

79

typing CT and store typing ST denoted:

CT; ST ` �;K;P : PT

if the following hold:

� K � Dom(CT)

� Dom(P) � Dom(PT)

� Dom(�) � Dom(ST)

� for every h� ; ei 2 P; (fg; CT; ST) ` e : PT (�); '

Due to the fact that the spawn function requires an argument of type unit
'
! unit

all CML processes have type PT (�) = unit for all � 2 Dom(P).

Lemma 4.3.7. (Matching - adapted from [Rep92]) If � ` (ev1; :::; evk) ;k

(e1; :::; ek) and TE ` evi : �i event'i
; ; (i 2 f1::kg), then TE ` ei : �i; 'i.

The proof is given at the end of the Chapter.

Lemma 4.3.8. [Rep92] If x =2 FV(e), then TE ` e : �; ' i� TE � fx 7! �g `

e : �; '. Similarly if � =2 FCN(e) then TE ` e : �; ' i� TE � f� 7! � 0g ` e : �; '.

Proof. The proof is a simple induction on the height of the typing deduction.

Theorem 4.3.9. (Concurrent Subject Reduction - adapted from [Rep92])

If �;K;P is a well-formed con�guration where �;K;P =) �0;K0;P 0 and for channel,

store and process typings CT; ST; PT

CT; ST ` �;K;P : PT

80

then there exists CT;0 ST 0; PT 0such that:

� CT � CT 0

� PT � PT 0

� ST � ST 0

� CT 0; ST 0 ` �0;K0;P 0 : PT 0

� CT 0; ST 0 ` �;K;P : PT 0

Proof. The �fth property follows from the �rst four. The proof of the �rst four

properties is a case analysis of the left hand side of the =) relation.

Case �;K;Pv;Pr + h� ; E[new v]i =) � + fx 7! vg;K;Pv;Pr + h� ; E[x]i x fresh

By the typing of application application (Figure 4.2.2) and the type of new (Figure

4.2.4) there is a type environment TE such that

TE ` new v : � sync_ref�; init(�)

(fg; CT; ST) ` E[new v] : PT (�); '

and from the premises

TE ` v : �; ;

Letting ST 0 = ST � fx 7! � sync_ref�g by Lemma 4.3.8

(fg; fg; ST 0) ` v : �; ;

81

Applying the Replacement Lemma to E we get

(fg; CT; ST 0) ` E[x] : PT (�); '

and therefore

CT; ST 0 ` � � fx 7! vg;K;P + h� ; E[x]i : PT

letting CT 0 = CT and PT 0 = PT satis�es the theorem

Case �;K;Pv + h�i ; Ei[sync evi]i ;Pr =) �;K;Pv;Pr + h�i ; Ei[ei]i i 2 f1::kg

By the typing of application (Figure 4.2.2) and the type of sync (Figure 4.2.5)

there is a type environment TE such that

TE ` sync evi : �i; 'i

(fg; CT; ST) ` Ei[sync evi] : PT (�i); '
00
i

and from the premises

TE ` evi : �i event'i
; ;

From the premise of 4.1.3

� ` (ev1; :::; evk);k (e1; :::; ek)

and hence by the Matching Lemma 4.3.7 we get

TE ` ei : �i; 'i

82

Applying the Replacement Lemma to E we get

(fg; CT; ST) ` Ei[ei] : PT (�i); '
00
i

and therefore

CT; ST ` �;K;Pv;Pr + h�i ; Ei[ei]i : PT

letting CT 0 = CT , ST 0 = ST , and PT 0 = PT satis�es the theorem

Case �;K;Pv;Pr + h� ; E[sync ev]i =) �;K;Pv;Pr + h� ; E[()]i

By the typing of application (Figure 4.2.2) and sync (Figure 4.2.5) there is a type

environment TE such that

TE ` sync ev : �; '

(fg; CT; ST) ` E[sync ev] : PT (�); '

and from the premises

TE ` ev : � event'; ;

From the premise of 4.1.4

� ` ev ;1 ()

and hence by the Matching Lemma 4.3.7

� = unit

83

Applying the Replacement Lemma to E we get

(fg; CT; ST) ` E[()] : PT (�); '

and therefore

CT; ST ` �;K;Pv;Pr + h� ; E[()]i : PT

letting CT 0 = CT , ST 0 = ST , and PT 0 = PT satis�es the theorem

Case
� � fx 7! v1g;K;Pv + h�i ; Ei[sync evi]i ;Pr + h� ; E[set0 (x; v2; r)]i =)

� � fx 7! v2g;K;Pv;Pr + h�i ; Ei[()]i+ h� ; E[()]i

By the typing of application (Figure 4.2.2) and the type of sync (Figure 4.2.5)

and set0 (Figure 4.2.4) there is a type environment TE such that

TE ` sync evi : �i; 'i

TE ` set0(x; v2; r) : unit;write(�)

(fg; CT; ST) ` Ei[sync evi] : PT (�i); '1

(fg; CT; ST) ` E[set0(x; v2; r)] : PT (�); '2

and from the premises

TE ` evi : �i event'i
; ;

From the premise of 4.1.6

� ` evi ;1 ()

84

and hence by the Matching Lemma 4.3.7

�i = unit

Applying the Replacement Lemma to Ei and E we get

(fg; CT; ST) ` Ei[()] : PT (�i); '1

(fg; CT; ST) ` E[()] : PT (�); '2

and therefore

CT; ST ` � � fx 7! v2g;K;Pv;Pr + h�i ; Ei[()]i+ h� ; E[()]i : PT

letting CT 0 = CT , ST 0 = ST , and PT 0 = PT satis�es the theorem

Case �;K;Pv;Pr + h� ; E[chan x in e]i =) �;K + �;P + h� ; E[e[x 7! �]]i

By the typing of channel binding (Figure 4.2.2) there is a type environment TE

such that

TE ` chan x in e : �; '

(fg; CT; ST) ` E[chan x in e] : PT (�); '0

Letting CT 0 = CT + f� 7! � 0g (where � =2 K) and by Lemma 4.3.8 we get

(fg; CT 0; ST) ` E[chan x in e] : PT (�); '0

Applying the Replacement and Substitution Lemmas we get

(fg; CT 0; ST) ` E[e[x 7! �]] : PT (�); '0

85

and therefore

CT 0; ST ` �;K + fx 7! �g;Pv;Pr + h� ; E[e[x 7! �]]i : PT

letting ST 0 = ST and PT 0 = PT satis�es the theorem

Case �;K;Pv;Pr + h� ; E[spawn �x:e]i =) �;K;Pv;Pr + h� ; E[()]i+ h�0 ; �x:e ()i

By the typing of application (Figure 4.2.2) there is a type environment TE such

that

TE ` spawn �x:e : unit; '

(fg; CT; ST) ` E[spawn �x:e] : PT (�); '0

and from the premises

TE ` �x:e : unit
'
! unit; ;

and therefore

TE ` �x:e () : unit; '

By letting PT 0 = PT � f�0 7! unitg (where �0 =2 P) and by Lemma 4.3.8 we get

(fg; CT; ST) ` �x:e () : PT 0(�0); '

Applying the Replacement Lemma to E we get

(fg; CT; ST) ` E[()] : PT (�); '0

86

and therefore

CT; ST ` �;K;Pv;Pr + h� ; E[()]i+ h�0 ; �x:e ()i : PT 0

letting CT 0 = CT and ST 0 = ST and satis�es the theorem

With the subject reduction theorems in hand we can now continue towards the

overall goal of establishing syntactic soundness.

Definition 4.3.10. (Stuck - adapted from [Rep92]) A process h� ; ei is stuck

if e is not a value and there do not exist well-formed con�gurations �;K;P and

�0;K0;P 0 such that �;K;P =) �0;K0;P 0 with � a selected process. A well-formed

con�guration is stuck if one or more of its processes are stuck.

In [Rep92] the expressions that cause a process to become stuck are:

� E[b v], such that Æ(b; v) is unde�ned

� E[v v0] , where v is not of the form �x:e

� E[sync v] , such that v =2 Event .

To this list we add the cases:

� E[condEvt0 v] , where v is not of the form (�x:e; [r1; :::; rn])

� E[condEvt0 (�x:e; [r1; :::; rn])], where evaluating e updates or expands the

store, creates processes or channels, or applies sync to an event

In addition, function constants c of type unit
�
! bool are not allowed in order to

reject programs that pass c to condEvt0 in the position �x:e above.

Lemma 4.3.11. (Uniform Evaluation - adapted from [WF92]) Let e be a

program, T 2 Comp(e) and � 2 Procs(T), then either � *T , � +T v or Pi(�) is

stuck for some �i;Ki;Pi .

87

Proof. This follows immediately from the de�nitions

Next we show that stuck con�gurations are untypable.

Lemma 4.3.12. (Untypability of Stuck Con�gurations - adapted

from [WF92]) If � is stuck in a well-formed con�guration �;K;P then there do not

exist CT 2 ChanTy, ST 2 StoreTy and PT 2 ProcTy such that

(fg; CT; ST) ` P(�) : PT (�); '

Proof. The idea is to show by case analysis that stuck expressions are incon-

sistent with type inference rules of the static semantics. See [Rep92] for the cases

involving the concurrency operations and [WF92] for the cases involving the store

operations. We do the case for condEvt0 by contradiction. We assume that the stuck

expression is P(�) = E[condEvt0 v] and the con�guration is well-typed. Hence by

the typing of condEvt0 (4.2.1) and the application type rule (Figure 4.2.2)

TE ` condEvt0 v : unit event'pure; ;

and from the premises we get

TE ` v : unit
'pure

! bool� reg_name list; ;

contrary to the assumption that v is not of the form (�x:e; [r1; :::; rn]) or that e is

not pure.

The key result now follows which guarantees that well-typed programs do not become

stuck. That is, a process � in a well-formed con�guration either diverges or converges

88

to a value that is consistent with � 's process typing. The important implication is

that well-typed programs cannot cause run-time type errors.

Theorem 4.3.13. (Syntactic Soundness - adapted from [Rep92]) Let e be

a program with ` e : �; ', then for any T 2 Comp(e) where �i;Ki;Pi is the �rst

occurrence of � in T , then there exists CT , ST , PT such that

CT; ST ` �i;Ki;Pi : PT

PT (�) = �

and either

� � *T

� � +T v and there exists CT 0 � CT , ST 0 � ST where CT 0; ST 0 ` v : PT (�)

Proof. See [Rep92] for the proof which relies on uniform evaluation, subject

reduction, untypability of stuck con�gurations, and well-formed con�gurations.

By de�ning an evaluation function that distinguishes programs that diverge from

those that cause run-time type errors we can state strong and weak soundness the-

orems.

eval0(�) =

8<
:

WRONG if �i is stuck for some �i;Ki;Pi 2 T

v if � +T

Then strong and weak soundness follow as corollaries to syntactic soundness.

Theorem 4.3.14. (Strong Soundness - adapted from [Rep92]) if eval0(�) =

v and �i;Ki;Pi is the �rst occurrence of � in T , then for any CT; ST; PT such that

CT; ST ` �i;Ki;Pi : PT and PT (�) = � then there is a CT 0 � CT and ST 0 � ST

such that (fg; CT 0; ST 0) ` v : PT (�); ;

89

Theorem 4.3.15. (Weak Soundness - [WF92]) eval0(�) 6= WRONG

Proof of Matching Lemma 4.3.7

Lemma. (Matching - adapted from [Rep92]) If � ` (ev1; :::; evk);k (e1; :::; ek)

and TE ` evi : �i event'i
; ; (i 2 f1::kg), then TE ` ei : �i; 'i.

Proof. The proof is by induction on the event matching relation

Base case � ` (�!v; �?);2 ((); v)

By the typing of channel output and input (Figure 4.2.3) there is a type environment

TE such that

TE ` �!v : unit event;; ;

TE ` �? : � event;; ;

hence the result follows immediately for �!v and ()

Then from the premises we get

TE ` v : �; ;

Base case � ` �e [r1;:::;rn] ;1 ()

By the typing of conditional events (Figure 4.2.3) there is a type environment TE

such that

TE ` �e [r1;:::;rn] : unit event'pure; ;

and hence the result follows immediately

90

Inductive cases: for the inductive cases the i 2 f1::k�1g cases follow immediately

from the induction hypothesis. The i = k case is proved by a case analysis.

Case � ` (ev1; :::evk);k (e1; :::ek)

This case follows immediately

Case � ` (ev1; :::; evk�1; ev) �x:e);k (e1; :::; ek�1; �x:e e
0)

By the typing of wrapped events (Figure 4.2.3) there is a type environment TE such

that

TE ` ev) �x:e : � event'['0 ; ;

and from the premises

TE ` ev : � 0 event'; ;

TE ` �x:e : � 0
'0

! �; ;

By applying the induction hypothesis we get

TE ` e0 : � 0; '

and therefore by the typing of application (Figure 4.2.2)

TE ` �x:e e0 : �; ' ['0

Case � ` (ev1; :::; evk�1; ev � ev0);k (ei; :::; ek�1; e)

91

By the typing of choice events (Figure 4.2.3) there exists a type environment TE

such that

TE ` ev � ev0 : � event'['0; ;

and from the premises

TE ` ev : � event'; ;

TE ` ev0 : � event'0; ;

By applying the induction hypothesis we get

TE ` e0 : �; ' ['0

Case � ` (ev1; :::; evk�1; ev
0 � ev);k (ei; :::; ek�1; e)

Same as previous case

92

CHAPTER 5

Translation

5.1. Translation rules

By applying region and e�ect inference, the translation rules introduce anno-

tations in the target to help the run-time system track synchronization references.

The translation rules are of the form:

TE ` e ,! e0 : �; '

read given the type environment TE, expression e translates to e0 which has type �

and e�ect '.

Rule 5.1.3 translates the condEvt expression as a call to condEvt0. The regions

�i are introduced in the target expression as an annotation. In addition, there may

be e�ect variables �j contained in 'pure and the function getRegions extracts the

regions corresponding to the e�ects of �j. The operation of extracting the regions

of an e�ect is based on the following de�nition.

Definition 5.1.1. (E�ect Regions) The regions of an e�ect ' are the regions

referenced in the e�ects of '.

E�ectRegions(read(�) = f�g

E�ectRegions(write(�)) = f�g

E�ectRegions(init(�)) = f�g

E�ectRegions(�1 [�2) = E�ectRegions(�1) [E�ectRegions(�2)

93

The rule 5.1.7 translates calls to set to set0. As was shown in the dynamic

semantics of the target (Subsection 4.1), set0 in addition to performing a store

update, informs the run-time system that a sync-region is being updated. Rule

5.1.8 translates lambda expressions. The condition frv(e0) � frv(TE; �) ensures

that the lambda is not region polymorphic. Rule 5.1.10 handles the translation

of polymorphic functions and is based on a similar translation due to Tofte and

Talpin [TT97]. The condition fv(
!
�i;

!
�j;

!
�) \ fv(TE; ') = ; ensures that the bound

variables do not occur free in neither the type environment nor in the e�ect of

the region polymorphic function. The polymorphic function is arity-raised by the

translation to add list parameters for the polymorphic regions
!
�i and e�ects

!
�j. As

mentioned in Subsection 3.2.3, we use letrec as synctactic sugar for the equivalent

de�nition that uses the applicative Yv. Then rule 5.1.11 instantiates the region and

e�ect list arguments of polymorphic functions.

Rule 5.1.12 wraps a let around the scope of a sync-region and is similar to the

letregion translation rule in [TT97]. Since the region � does not appear free in the

type environment or in the result type � of e, the translation can wrap e0 inside a let

which has a binding corresponding to �. The function newRegName will generate

a value of type reg_name corresponding to the region name associated with �. It

is these extra variable bindings that are referenced in the target expression of rule

5.1.3.

TE ` c ,! c : �; ;(5.1.1)

TE ` v ,! v : �; ;(5.1.2)

94

TE ` e ,! e0 : unit
'pure

! bool; ' fread(�i)g [f�jg = 'pure

i; j 2 f0::ng

TE ` condEvt e ,! condEvt0 (e0; [�i; getRegions(�j)]) : �; ;
(5.1.3)

TE ` e ,! e0 : �; '

TE ` chan x in e ,! chan x in e0 : �; '
(5.1.4)

TE ` e1 ,! e01 : �1; '1 TE ` e2 ,! e02 : �2; '2

TE ` (e1; e2) ,! (e01; e
0
2) : �1 � �2; '1 ['2

(5.1.5)

TE ` e1 ,! e01 : �1
'
! �2; '1 TE ` e2 ,! e02 : �1; '2

TE ` e1 e2 ,! e01 e
0
2 : �2; '1 ['2 ['

(5.1.6)

TE ` e1 ,! e01 : sync_ref�(�); '1 TE ` e2 ,! e02 : �; '2

TE ` set(e1; e2) ,! set0(e01; e
0
2; �) : unit; '1 ['2 [fwrite(�)g

(5.1.7)

TE � fx 7! �1g ` e ,! e0 : �2; ' � = �1
'0

! �2

' � '0 frv(e0) � frv(TE; �)

TE ` �x:e ,! �x:e0 : �; ;
(5.1.8)

95

TE ` e1 ,! e01 : �1; '1

TE + fx 7! �1g ` e2 ,! e02 : �2; '2

TE ` let x = e1 in e2 end ,!

let x = e01 in e02 end : �2; '1 ['2

(5.1.9)

TE + ff 7! 8
!
�i;

!
�j;

!
� :�g ` �x:e1 ,! �x:e01 : �; ; � = �1

'1
! �2

fv(
!
�i;

!
�j;

!
�) \ fv(TE; ') = ;

TE + ff 7! 8
!
�i;

!
�j;

!
� :�g ` e2 ,! e02 : �; '2 i; j 2 f0::ng

TE ` letrec f(x) = e1 in e2 ,!

letrec f [
!
�i][

!
�j] (x) = e01 in e02 : �; '2

(5.1.10)

TE(f) = � � � �2 viaS

� = 8
!
�i;

!
�j;

!
� :�1 i; j 2 f0::ng

TE ` f ,! f [S(
!
�i)][S(

!
�j)] : �2; '

(5.1.11)

TE ` e ,! e0 : �; '

� 62 frv(TE; �)

TE ` e ,! let � = newRegName()

in

e0

end : �; 'nfread(�);write(�); init(�)g

(5.1.12)

96

5.2. Correctness of the translation

The main result of this Section is that consistency is preserved by concurrent

reduction. That is, if source and target con�gurations cs and ct are consistent and

they each perform a small-step reduction then the resulting con�gurations are also

consistent. For now consistency is described informally in that consistent con�gura-

tions are related by the translation rules. The approach of this Section is as follows.

After stating several de�nitions we present translation rules for the intermediate

values in the language. The new translation rules allow us to de�ne consistency for

con�gurations that contain intermediate values. Then following Lemma 5.2.4 we

state and prove consistency for sequential and subsequently concurrent con�gura-

tions. We also show that the consistency properties can be formulated as satisfying

a similarity relation. The following de�nitions are from [Mil89].

Definition 5.2.1. (Simulation) A relation S � Rel is a simulation i� a S b

implies: whenever a! a0 9b0 such that b! b0 and a0 S b0.

Let similarity .� Rel be the greatest simulation

.=
[
fS j S is a simulationg

We also de�ne [] as

[S]
def
= f(a; b) j whenever a! a0 there exists b0 such that b! b0 and a0 S b0g

We are interested in similarity as opposed to bisimilarity since there is only a trans-

lation in one direction (although we conjecture that bisimilarity holds). Next we

de�ne consistency for sequential con�gurations.

97

Definition 5.2.2. (Consistent Stores) Two stores � and �0 are consistent

(denoted C(�; �0) if Dom(�) � Dom(�0) and TE ` �(x) ,! �0(x) : �; ; for all

x 2 Dom(�)

Definition 5.2.3. (Consistent Sequential Con�gurations) Two well-formed

sequential con�gurations cs = �; e and ct = �0; e0 are consistent (denoted C(cs; ct)) if

TE ` e ,! e0 : �; ' and C(�; �0)

Since a con�guration may contain intermediate values which are not part of

the concrete syntax we must de�ne translation rules for the intermediate values.

This will allow the translation of con�gurations containing both intermediate values

and expressions. Channels are translated by the identity function (rule 5.2.1) and

this is re�ected in rules 5.2.2 and 5.2.3. A wrapper event is translated (rule 5.2.4)

by combining the result of translating both the wrapped event and the wrapper

function. Similarly for choice events (rule 5.2.5), the result is obtained by combining

the results of translating component events. Conditional events (rule 5.2.6) are

translated by translating the encapsulated expression e and also by adding the region

name variables �i which correspond to the read e�ects of e:

TE ` � ,! � : � chan; ;(5.2.1)

TE ` v ,! v0 : �; ;

TE ` �!v ,! �!v0 : unit event;
(5.2.2)

TE ` �? ,! �? : unit event;(5.2.3)

98

TE ` ev ,! ev0 : � event'; ; TE ` v ,! v0 : �
'
! � 0; ;

TE ` ev) v ,! ev0) v0 : � 0 event'pure; ;
(5.2.4)

TE ` ev1 ,! ev01 : � event'pure
1

; ; TE ` ev2 ,! ev02 : � event'pure
2

; ;

TE ` ev1 � ev2 ,! ev1 � ev2 : � event'pure
1 ['pure

2
; ;

(5.2.5)

TE ` �e : unit event; ; fread(�i)g = 'pure

TE ` e ,! e0 : bool; 'pure

TE ` �e ,! �e0 [�i] : unit event'pure

(5.2.6)

Next we introduce several lemmas which are used in the proofs of sequential and

concurrent consistency.

Lemma 5.2.4. If TE ` Es[es] ,! Et[et] : �; ' and

TE ` e0s ,! e0t; �
0; '0, and TE ` es : �

0; '00 then TE ` Es[e
0
s] ,! Et[e

0
t] : �; '

000 .

Proof. The idea is to view the translation as transforming the syntax tree

Es[es] into another tree Et[et]. Then if we cut out the subtree es replacing it with

e0s (which translates into e0t) then the translation of Es[e
0
s] will generate Et[e

0
t]. The

only other requirement is that all expressions that can be placed in a given hole

must have the same type.

Lemma 5.2.5. If TE ` es ,! et : �; ' and TE ` vs ,! vt : �
0; ;, then

TE ` es[x 7! vs] ,! et[x 7! vt] : �; '.

Lemma 5.2.6. If TE ` evi ,! ev0i : �i event; 'i for i 2 f1::ng and

TE ` (ev1; :::; evn);n (e1; :::; en) then there exists e01; ::; e
0
n such that

TE ` ei ,! e0i : �i; 'i and TE ` (ev01; :::; ev
0
n);n (e

0
1; :::; e

0
n)

99

Lemma 5.2.7. (Sequential Consistency) If cs = � ` E[e] and ct = �0 ` E 0[e0]

are well-formed sequential con�gurations where C(cs; ct) and cs 7�! c0s then there

exists a transition ct 7�! c0t such that C(c0s; c
0
t) .

In terms of similarity, the Lemma illustrates that if S � Rel is f(cs; ct) j cs and ct

are consistent sequential con�gurations C(cs; ct)g then S � [S [.]:

Proof. From the de�nition of consistency we have

TE ` E[e] ,! E 0[e0] : �; '(5.2.7)

TE ` �(x) ,! �0(x) : �; ; for all x 2 Dom(�)(5.2.8)

By Lemma 5.2.4 it su�ces to show that in con�gurations c0s; c
0
t the expressions in

the holes of E and E 0 are related by translation. Consistency is implicitly preserved

with respect to the stores since sequential evaluation is pure. The proof proceeds

as a case analysis on the structure of e and 7�! in order to show that the resulting

con�gurations are consistent.

Case e = c v and the transition

�; E[c v] 7�! �; E[Æ(c; v)]

From the translation rule 5.1.1 for constants

TE ` c ,! c : �; '

The remaining part is a case analysis on c in order to determine the form of v

Subcase e = + (v1; v2)

100

By the typablility of Æ we have

TE ` v1 : int; ;

TE ` v2 : int; ;

then by the translation for constants

TE ` v1 ,! v1 : int; ;

TE ` v2 ,! v2 : int; ;

hence the target expression is identical

e0 = + (v1; v2)

Subcase es = first (v1; v2) If

TE ` v1 ,! v01 : �1; ;(5.2.9)

TE ` v2 ,! v02 : �2; ;(5.2.10)

then the target expression is

e0 = first (v01; v
0
2)

hence

�; E[first (v1; v2)] 7�! �; E[v1]

�0; E 0[first (v01; v
0
2)] 7�! �0; E 0[v01]

and therefore the resulting con�gurations are consistent.

101

Case e = �x:e v and the transition

�; E[�x:e v] 7�! �; E[e[x 7! v]]

If by translation rules 5.1.8

TE ` �x:e ,! �x:e0 : �
'
! � 0; ;(5.2.11)

TE ` v ,! v0 : � : ;(5.2.12)

and then from the premises

TE + fx 7! �g ` e ,! e0 : � 0; '(5.2.13)

then by 5.2.7, 5.2.11, and 5.2.12 the corresponding target con�guration is

�0; E[�x:e0 v0]

with the target transition

�0; E[�x:e0 v0] 7�! �0; E 0[e0[x 7! v0]]

Finally by 5.2.13, Lemma 5.2.5, and 5.2.12 we get

TE ` e[x 7! v] ,! e0[x 7! v0] : � 0; '

and therefore the resulting con�gurations are consistent.

102

Case e = let x = e1 in e2 and the transition

�; E[let x = v in e] 7�! �; E[e[x 7! v]]

If by translation rules 5.1.8

TE ` e ,! e0 : �; '(5.2.14)

TE ` v ,! v0 : � :; ;(5.2.15)

then by consistency the corresponding target con�guration is

�0; E 0[let x = v0 in e0]

with the target transition

�0; E 0[let x = v0 in e0] 7�! �0; E 0[e0[x 7! v0]]

Finally by 5.2.14, Lemma 5.2.5, and 5.2.15 we get

TE ` e[x 7! v] ,! e0[x 7! v0] : �; '

and therefore the resulting con�gurations are consistent.

Case cs = � � fx 7! vg; E[get x] and the transition

� � fx 7! vg; E[get x] 7�! � � fx 7! vg; E[v]

103

If by translation rule 5.1.6

TE ` E[get x] ,! E 0[get x] : �; '(5.2.16)

and

TE ` v ,! v0 : � 0; ;(5.2.17)

then by consistency the corresponding target con�guration is

�0 � fx 7! vg; E 0[get x] 7�! �0 � fx 7! vg; E 0[v]

with the target transition

�0 � fx 7! v0g; E 0[get x] 7�! �0 � fx 7! v0g; E 0[v0]

Finally by Lemma 5.2.4 and 5.2.17 we get

TE ` E[v] ,! E 0[v0] : �; '

and therefore the resulting con�gurations are consistent.

Definition 5.2.8. (Consistent Processes) Two process set P and P 0 are con-

sistent (denoted C(P;P 0)) if Dom(P) � Dom(P 0) and TE ` P (�) ,! P 0(�); �; '

for all � 2 Dom(P)

Definition 5.2.9. (Consistent Concurrent Con�gurations)Two well-formed

concurrent con�gurations cs = �;K;P and ct = �0;K;P 0 are consistent (denoted

C(cs; ct)) if C(�; �0) and C(P;P 0).

104

Theorem 5.2.10. (Concurrent Consistency) If cs = �;K;P and ct = �;K;P

are well-formed concurrent con�gurations where C(cs; ct) and cs =) c0s then there

exists a transition ct =) c0t such that C(c0s; c
0
t) .

In terms of similarity, the Theorem illustrates that if S � Rel is f(cs; ct) j cs and

ct are consistent concurrent con�gurations C(cs; ct)g then S � [S[.]:

Proof. By consistency

TE ` P (�) ,! P 0(�) : �; ' for all � 2 Dom(P)

TE ` �(x) ,! �0(x) : �; ; for all x 2 Dom(�)

The proof is a case analysis on the left hand side of =) in order to show that the

resulting con�gurations are consistent.

Case cs = �;K;Pv;Pr + h� ; E[e]i and the transition

�;K;Pv;Pr + h� ; E[e]i =) �;K;Pv;Pr + h� ; E[e0]i

If by the translation rules

TE ` E[e] ,! E 0[e00] : �; '

then by consistency the corresponding target con�guration is

�0;K;P 0
v;P

0
r + h� ; E[e00]i

with the target transition

�0;K;Pv;P
0
r + h� ; E 0[e00]i =) �0;K;P 0

v;P
0
r + h� ; E 0[e000]i

105

Hence by the Sequential Consistency Lemma 5.2.7 the resulting con�gurations are

consistent.

Case cs = �;K;Pv;Pr + h� ; E[new v]i and the transition

�;K;Pv;Pr + h� ; E[new v]i =) � + fx 7! vg;K;Pv;Pr + h� ; E[x]i

If by rule translation rule 5.1.6

TE ` E[new v] ,! E 0[new v0] : �; '

and from the premises

TE ` v ,! v0 : �; ;(5.2.18)

then by consistency and 5.2.18 the corresponding target con�guration is

�0;K;P 0
v;P

0
r + h� ; E[new v0]i

with the target transition

�0;K;P 0
v;P

0
r + h� ; E 0[new v0]i =) �0 � fx 7! v0g;K;P 0

v;P
0
r + h� ; E 0[x]i

By Lemma 5.2.4 we get

TE ` E[x] ,! E 0[x] : �; '

an by C(�; �0) and 5.2.18 we get

C(� � fx 7! vg; �0 � fx 7! v0g)

106

and therefore the resulting con�gurations are consistent.

Case
cs = � � fx 7! v1g;K;Pv + h�i ; Ei[sync evi]i ;Pr + h� ; E[set (x; v2)]i

i 2 f0::ng

and the transition

� � fx 7! v1g;K;Pv;Pr + h�i ; Ei[sync evi]i+ h� ; E[set (x; v2)]i =)

� � fx 7! v2g;K;Pv;Pr + h�i ; Ei[()]i+ h� ; E[()]i

based on the premise

� � fx 7! v2g ` evi ;1 ()

If by translation rules 5.1.6 and 5.1.7

TE ` E[set (x; v2)] ,! E 0[set0 (x; v02; r)] : �; '

TE ` Ei[sync evi] ,! E 0
i[sync ev

0
i] : �i; 'i

and from the premises

TE ` v1 ,! v01 : �1; ;(5.2.19)

TE ` v2 ,! v02 : �2; ;(5.2.20)

TE ` evi ,! ev0i : �3; ;(5.2.21)

then by consistency the corresponding target con�guration is

�0 � fx 7! v01g;K;P
0
v + h�i ; E

0
i[sync ev

0
i]i ;P

0
r + h� ; E 0[set0 (x; v02; r)]i

107

and by Lemma 5.2.6 the target transition is

�0 � fx 7! v01g;K;P
0
v + h�i ; E

0
i[sync ev

0
i]i ;P

0
r + h� ; E 0[set0 (x; v02; r)]i =)

�0 � fx 7! v02g;K;P
0
v;P

0
r + h�i ; E

0
i[()]i ;P

0
r + h� ; E 0[())]i

By Lemma 5.2.4 we get

TE ` E[()] ,! E 0[()] : �; '

TE ` Ei[()] ,! E 0
i[()] : �i; 'i

and by 5.2.20 and C(�s; �t) the resultant stores are consistent

�(� � fx 7! v2g; �
0 � fx 7! v02g)

therefore the resulting con�gurations are consistent.

Case cs = �;K;Pv;Pr + h� ; E[sync ev]i and the transition

�;K;Pv;Pr + h� ; E[sync ev]i =) �;K;Pv;Pr + h� ; E[()]i

based on the premise

� ` ev ;1 ()

If by translation rule 5.1.6

TE ` E[sync ev] ,! E 0[sync ev0] : �; '(5.2.22)

108

and from the premises

TE ` ev ,! ev0 : � 0; '0(5.2.23)

then by consistency the corresponding target con�guration is

�0;K;P 0
v;P

0
r + h� ; E 0[sync ev0]i

with the target transition

�0;K;P 0
v;P

0
r + h� ; E 0[sync ev0]i =) �0;K;P 0

v;P
0
r + h� ; E 0[()]i

By 5.2.22 and Lemma 5.2.4 the target con�gurations are consistent.

Case cs = �;K;Pv + h�1 ; E1[sync ev1]i+ ::: + h�k ; Ek[sync evk];Pri and the tran-

sition

�;K;Pv + h�1 ; E1[sync ev1]i+ :::+ h�k ; Ek[sync evk]i ;Pr =)

�;K;Pv;Pr + h�1 ; E1[e1]i+ :::+ h�k ; Ek[ek]i

based on the premise

� ` (ev1; :::; evk);k (e1; :::; ek)

If by translation rule 5.1.6

TE ` Ei[sync evi] ,! E 0
i[sync ev

0
i] : �i; 'i i 2 f1::kg(5.2.24)

TE ` ei ,! e0i : �
0
i ; '

0
i(5.2.25)

109

and from the premises

TE ` evi ,! ev0i : �
0
i ; '

0
i(5.2.26)

then by consistency the corresponding target con�guration is

�0;K;P 0
v + h�1 ; E

0[sync ev01]i+ :::+ h�k ; E
0
k[sync ev

0
k]i ;P

0
r

and by Lemma 5.2.6 the target transition is

�0;K;P 0
v + h�1 ; E 0[sync ev01]i+ :::+ h�k ; E 0

k[sync ev
0
k]i ;P

0
r =)

�0;K;P 0
v;P

0
r + h�1 ; E 0[e01]i+ ::: + h�k ; E 0

k[e
0
k]i

based on the premise

� ` (ev0; :::; ev0k);k (e
0
1; :::; e

0
k)

By 5.2.25 and Lemma 5.2.4 the target con�gurations are consistent.

Case cs = �;K;Pv;Pr + h� ; E[channel x in e]i and the transition

�;K;Pv;Pr + h� ; E[channel x in e]i =)

�s;K + �;Pv;Pr + h�; E[e[x 7! �]]i

If by translation rule 5.1.4

TE ` E[channel x in e] ,! E 0[channel x in e0] : �; '(5.2.27)

110

and from the premises

TE � fx 7! � 0g ` e ,! e0 : � 00; '0(5.2.28)

then by consistency the corresponding target con�guration is

�;K;Pv;Pr + h� ; E[channel x in e0]i

with the target transition

�0;K;P 0
v;P

0
r + h� ; E 0[channel x in e0]i =)

�0;K;P 0
t + h� ; E[e0[x 7! �]]i

By 5.2.28 we get

TE ` e[x 7! �] ,! e0[x 7! �]; �; '(5.2.29)

and by Lemma 5.2.5

TE ` E[e[x 7! �]] ,! E[e0[x 7! �]] : �; '

therefore the resulting con�gurations are consistent.

Case cs = �;K;Pv;Pr + h� ; E[spawn �x:e]i and the transition

�;K;Pv;Pr + h� ; E[spawn �x:e]i =)

�;K;Pv;Pr + h� ; E[()]i+ h�0 ; �x:e ()]i

If by translation rule 5.1.6

TE ` E[spawn �x:e] ,! E 0[spawn �x:e0] : �; '(5.2.30)

111

then by consistency the corresponding target con�guration is

�0;K;P 0
v;P

0
r + h� ; E 0[spawn �x:e0]i

with the target transition

�0;K;P 0
v;P

0
r + h� ; E 0[spawn �x:e0]i =)

�0;K;P 0
v;P

0
r + h� ; E 0[()]i+ h�00 ; �x:e0 ()]i

By the translation rule for unit and 5.2.30 we get

TE ` () ,! () : unit; ;

TE ` �x:e () ,! �x:e0 (); �; '

and hence by Lemma 5.2.4

TE ` E[()] ,! E 0[()] : �; '

therefore the resulting con�gurations are consistent.

112

CHAPTER 6

Implementation

Currently we have a prototype implementation that has been used to experiment

with the ideas presented in this thesis. The implementation consists of a parser which

utilizes sml-lex [AMT94] and sml-yacc [TA94], a static analysis and translation

module which utilizes the sml basis library, and a run-time system module which

extends CML with support for FCS. The architecture diagram (Figure 6.0.1) illus-

trates a source-to-source transformation and a run-time system consisting of CML

extended for FCS loaded into SML/NJ. Our modules consist of approximately 2000

lines of ML code.

To implement the semantics of the target language, the run-time system (RTS)

must know which store locations could a�ect the value of a synchronization condi-

tion. Our implementation represents this dependency by a link from store regions

to internal condEval structures. Figure 6.0.2 illustrates the topology of the RTS

data structures. The synchronization structure condEvt1 is dependent upon store

regions R1 and R2. Currently Thread1 and Thread2 are blocked and waiting for

the condition in condEvt1 to change from false to true. The condEvt2 structure

depends on store regions R2 and R3. Similarly, the condition in condEvt2 is false

and Thread3 and Thread4 will remain blocked until the synchronization condition

becomes true.

If an update to region R1 occurs then the condition for condEvt1 is re-evaluated.

A result of true would unblock Thread1 and Thread2. An update to R2 would

113

Translator

Static Analysis
Source

SML/NJ

CML + Extensions Source

Figure 6.0.1. System architecture

force the re-evaluation of the conditions in both condEvt1 and condEvt2 which

could result in all four threads becoming unblocked. Once a condition is determined

to be true the RTS may delete its corresponding internal condEval representation

since there are no longer any threads waiting on the condition. The code that

creates internal condEvt structures is encapsulated inside the event value and is

triggered at synchronization time. Thus whenever a threads attempts to sync on a

conditional event the internals condEval structure is created (if necessary. Another

approach would have been to leave the internal condEval structures intact until the

garbage collector determines the structures may be removed. We chose the former

approach since it does not require extending the garbage collector.

The target example in Figure 6.0.3 is the translated version of the makeBarrier

example from Subsection 2.1.2. The annotations consist of the extra binding for the

region variable � which is then passed in the argument list to condEvt0 since � is

being read by the synchronization condition. Also the call to set in the source was

translated to call set0 which has a region parameter.

114

Thread1 Thread3

Store Regions

Blocked Threads

Thread4

R1 R2 R3

Thread2

condEval2condEval1

Figure 6.0.2. Topology of run-time system data structures

fun makeBarrier n =
let
val counter = new 0
val incCh = channel()
fun inc () = (
recv incCh;
set0(counter,get counter + 1,�);
inc())

val barrierEvt = condEvt0(fn () => get counter = n,[�])
in
spawn inc;
wrap(sendEvt(incCh,()), fn()=>sync barrierEvt)

end

Figure 6.0.3. Example target program

1 car 2 cars 3 cars 4 cars 5 cars

number of re-evaluations 6 12 80 224 425
time (seconds) 5.5 12.3 31.4 46.3 69.2
Table 1. Measurements for unannotated programs

6.1. Benchmarks

To quantitatively measure the bene�t of performing the translation we executed

several versions of the translated tra�c light program (Figure 2.1.6) against identical

115

1 car 2 cars 3 cars 4 cars 5 cars

number of re-evaluations 2 8 15 32 50
time (seconds) 5.8 12.5 18.5 28.2 58.3

Table 2. Measurements for annotated (translated) programs

CML programs that were not annotated by translation. The run-time system for

the unannotated programs simply polls all pending synchronization conditions when

any sync ref variable is updated. Two measurements were made for each test case:

� the number of re-evaluations of synchronization conditions

� the time for 1 designated car to pass through all the tra�c lights

A computational delay was inserted for each re-evaluation in order to magnify the

time penalty for performing a re-evaluation. The lights were arranged in an alternat-

ing red/green pattern with one car initially positioned at each red light. In addition,

the alternating pattern was maintained by changing all lights simultaneously. Each

test case has twice as many lights as cars. The goal is to gradually increase the

number of pending synchronization conditions for each successive test case. This is

achieved by having a car waiting at each red light. Note that the synchronization

conditions are disjoint since each condition references the status of only one light.

Tables 1 and 2 contain the resulting data.

For the test case consisting of 1 car and 2 lights the annotated and unannotated

programs performed closely in terms of both re-evaluations and time. However, as

more lights and cars were introduced the bene�t of introducing the region annota-

tions becomes manifest. The test case consisting of 5 cars and 10 lights shows the

translated program performing 50 re-evaluations as opposed to 425 for the unanno-

tated counterpart. The timings for this test case are also more distinct in favor of

the translated program.

116

We conclude that the translation produces a performance bene�t for concurrent

programs whose execution pro�le exhibits multiple pending synchronization condi-

tions. At least some of the synchronization conditions must be disjoint to show

improved performance relative to the unannotated program. Otherwise, a region

update results in re-evaluation of all pending synchronization conditions which is

exactly what the run-time system for the unannotated program does.

117

CHAPTER 7

Conclusion

We now undertake a comparison of FCS with the synchronization mechanisms

of the categories of concurrent programming languages examined in Part I.

7.1. Comparison with concurrent object-oriented languages

FCS is a more �exible form of synchronization as compared conditional synchro-

nization in Orca and Ada95 for several reasons. First, the synchronization mech-

anism is freed from the syntactic �baggage� of its second-class form. Second, our

analysis and translation allow non-local variables to be used in the synchronization

condition where this is disallowed in Ada95. Orca does not have nested scopes.

In addition, in �rst-class form conditional synchronization could enhance COOL's

since it would allow an object to export partial information about its internal state

without violating encapsulation. This would be accomplished by having a method

return a conditional event. The synchronization in this case would involve private

instance variables of a server object. Hence a client object could establish that a

server object has reached a certain state.

7.2. Comparison with concurrent constraint languages

On the surface, CCP's ask seems similar to conditional synchronization since

both involve synchronizing on boolean expressions. However there are fundamental

118

di�erences in the operational semantics. In the case of conditional synchronization

on a boolean expression b, there are two possible outcomes:

1. b evaluates to true and the thread attempting synchronization proceeds.

2. b evaluates to false and the thread blocks inde�nitely until the value of b

toggles to true.

Unlike ask in CCP, b must evaluate to either true or false. Conversely, an agent

in CCP may ask about a constraint containing variables yet to be �xed in the store.

Furthermore, if an agent asks about an expression that is inconsistent with the store

then the agent is aborted. There is no notion of rejection in FCS. Moreover, ask

synchronization is a second-class mechanism.

The similarity between FCS and ask is that in both cases a thread of control is

suspended based on the status of a boolean expression. Thus both ask and FCS al-

low a thread to establish an invariant condition before crossing a program point. In

spite of substantial di�erences, the similarity suggests that using conditional expres-

sions to control synchronization is useful across di�erent frameworks for concurrent

programming.

7.3. Comparison with concurrent functional languages

The introduction of FCS is new to functional programming since none of the

concurrent functional languages have a form of conditional synchronization nor a

broadcast mechanism. Thus FCS complements the existing synchronization mecha-

nisms of these languages.

119

module

ABRO:
input A, B, R;
output 0;
loop

[await A || await B];

emit 0
each R
end module

Figure 7.4.1. A simple controller in Esterel

7.4. Other related work

The notion of a language mechanism which broadcasts an event in a concur-

rent system also exists in the synchronous language Esterel [BG92] [Ber98]. In

this Section we describe the semantic framework of Esterel and then undertake a

comparison of the broadcast mechanisms found in FCS and Esterel.

Esterel is one of the so-called synchronous languages. Other synchronous lan-

guages are Signal [GBBG85] and Lustre [CPHJ87]. The synchronous model has

also been incorporated into concurrent constraint programming [SJG95]. Synchro-

nous languages appeared in the 1980's and have applications in the control systems

domain (embedded systems). Synchronous languages are concurrent, yet determinis-

tic. Prior to synchronous languages, one had to choose between concurrency and de-

terminism since the classical concurrent languages (i.e. Ada) are non-deterministic.

The motivation for incorporating determinism into concurrent systems is to create

systems which are easier to specify, debug, and analyze. Determinism also allows

120

synchronous languages to be e�ciently compiled into deterministic �nite-state au-

tomata. A synchronous program will always produce the same output for a given

set of inputs [MP86].

Synchronous languages are designed for programming reactive systems where

programs react (in a timely fashion) to stimuli from the external environment. This

is in contrast to interactive systems such as operating systems where submitted

requests are processed at some point in the future. Thus reactive systems are driven

by external input and the pace of the interaction is determined by the environment

(not by the system).

The essence of synchronous languages is expressed by the synchrony hypothesis

which states that:

� all reactions are instantaneous and take zero time with respect to the external

environment

� sub processes react instantly to each other

� interprocess communication is done instantaneously by broadcasting events

To illustrate the properties of synchronous languages and in particular Esterel, we

next examine present the English speci�cation and Esterel implementation of a

simple controller from [Ber98]. The speci�cation is given as:

� Emit the output 0 as soon as both the inputs A and B have been received.

� Reset the behavior whenever the input R is received.

The Esterel realization of the controller is given in Figure 7.4.1. During each reaction

a signal has a unique status of being either present or absent. The status of an input

signal is determined by the environment while other signals are generated when a

process executes an emit statement. Unlike variables (which may be repeatedly

121

updated), a signal's status is �xed during each reaction. The await statement waits

for the speci�ed signal and then terminates. Parallel composition is denoted by the

vertical bars ||, thus:

await A || await B

waits for the presence of both A and B and then terminates. The loop each state-

ment is used for preemption [Ber93]. In the controller the body of the loop is

restarted from the beginning each time the R signal is received.

We now compare the signal broadcasting mechanism of Esterel to the broadcast

mechanism of FCS. There are salient distinctions between the two. First, sync ref

variables may updated at random times while signals are established at for each

reaction.

Hence our static analysis and translation does not apply since the signal changes

happen at well de�ned times and await statements may not consist of boolean

expressions.

The broadcast mechanism of Esterel is inherently di�erent from conditional syn-

chronization. Although signals may have values, the statement await S suspends

until the signal S is present. Boolean expressions are not allowed in an await state-

ment. The di�erence between signals and variables is illustrated by the fact that

there are two di�erent ways to test for the presence of a signal and the value of a

boolean expression. The statement:

present S else stmt end

tests for the presence of S in the current reaction (executing stmt if S is not

present). This is in contrast to the if statement used for testing the value of

boolean expression.

122

7.5. Summary

FCS is a general purpose synchronization mechanism. As in the example of the

discrete event simulator, FCS is appropriate for applications where it is required

to suspend groups of threads in queues where a queue is �ushed by establishing

a condition. Thus the event of a condition becoming true is broadcast to all of

the threads in the corresponding queue while the queuing machinery is hidden in

the RTS internals. Moreover, FCS is the �rst higher-order form of conditional

synchronization. Thus allowing greater expressiveness than the previous forms of

conditional synchronization. The advantages of �rst-class synchronous values were

previously demonstrated by the advent of CML [Rep92]:

� abstraction - the fact that a function performs a synchronous operation is

re�ected in its type speci�cation.

� composability - by applying the CML choose or wrap combinators, new event

values may be created by combining existing event values.

Our conditional event incorporates broadcast synchronization which complements

the existing CML synchronization facilities associated with channel communication,

M-variables, and I-variables.

With the introduction of concurrency into mainstream languages like Java [GJS96]

concurrency has manifested itself as being useful for a broad class of application de-

velopment. Yet the basis for synchronization in Java, the monitor [Hoa74], is not

well-integrated with the type system and consequently does not aid the programmer

su�ciently in building concurrent-access abstractions. By incorporating �rst-class

mechanisms like FCS the programming language can facilitate programming with

concurrency.

123

We introduced FCS and achieved the main bene�ts cited in the Introduction

that can be achieved when introducing a concept into a programming language:

� improved performance since the compiler can perform optimizing transforma-

tions - our optimizing transformation for FCS results in re-evaluating sync

conditions only when regions being read by a condition are updated.

� guarantees of correctness properties - since the semantics of programs can be

analyzed and veri�ed - in particular our transient theorem guarantees that

a thread waiting for a condition to become true will not miss any changes

where the condition becomes brie�y true and then false again.

� abstraction - our examples of barrier synchronization and the discrete-event

simulator (Subsection 2.1.2) illustrate that FCS facilitates the development

of applications where broadcast synchronization is required.

A topic for future research is a distributed framework for FCS, which presents some

interesting issues. In this context, a synchronization condition becoming true may

require noti�cation messages to be sent to remote hosts. Hence additional bookeep-

ing would need to be maintained to track the network locations of threads synchro-

nizing on conditional events.

124

Bibliography

[AMT94] A. W. Appel, J. S. Mattson, and D. R. Tarditi. A lexical analyzer generator for

Standard ML.version 1.6.0. October 1994.

[AP89] R. Nikhil Arvind and K. Pingali. I-structures - data structues for parallel computing.

TOPLAS, 11:598�632, 1989.

[AP95] P. Achten and R. Plasmeijer. Concurrent interactive processes in a pure functional

language. In Proc. of Computing Science in the Netherlands (CSN '95), pages 10�21,

1995.

[AWWV96] J. L. Armstrong, M. C. Williams, C. Wikstrom, and S. R. Virding. Concurrent Pro-

gramming in Erlang. Prentice-Hall, 2nd edition, 1996.

[Bac86] M. J. Bach. The Design of the Unix Operating System. Prentice-Hall, 1986.

[Bar84] H. P. Barendregt. The Lambda Calculus, volume 103 of Studies In Logic And The

Foundations of Mathematics. North-Holland, 1984.

[Bar89] J. G. P. Barnes. Programming in Ada. Addison-Wesley, 3rd edition, 1989.

[Bar96] J. Barnes. Programming in Ada 95. Addison-Wesley, 1996.

[BB90] G. Berry and G. Boudol. The chemical abstract machine. In Principles of Programming

Languages, pages 81�94. ACM, 1990.

[BC93] F. Benhammou and A. Colmerauer. Constraint Logic Programming - Selected Re-

search. Logic Programming. MIT Press, 1993.

[BDG+91] A. Beguelin, J. J. Dongarra, A. Geist, R. Mancheck, and V. Sunderam. A users' guide

to PVM (parallel virtual machine). Technical Report ORNL/TM-11826, Oak Ridge

National Laboratory, 1991.

[Ber93] G. Berry. Preemption and concurrency. In FSTTCS 93, Lecture Notes in Computer

Science, volume 761. Springer-Verlag, 1993.

125

[Ber98] G. Berry. The Foundations of Esterel. MIT Press, 1998.

[BF96] P. D. Blasio and K. Fisher. A calculus for concurent objects. In Concurrency Theory

- CONCUR '96, volume 1119 of LNCS, pages 655�670, 1996.

[BG92] G. Berry and G. Gonthier. The synchronous programming language Esterel: De-

sign, semantics, and implementation. Sience of Computer Programming, 19(2):83�152,

1992.

[BKT88] H. Bal, M. F. Kaashock, and A. Tanenbaum. Orca: A language for parallel program-

ming of distributed systems. In Usenix/SERC Workshop on Experiences with Building

Distributed and Multiprocessor Systems. Vrije University, Netherlands, 1988.

[CC77] P. Cousot and R. Cousot. Abstract interpretation: a uni�ed lattic model for static

analysis of programs by construction of approximation of �xpoints. In ACM Sympo-

sium on Principles of Programming Languages. ACM, 1977.

[CPHJ87] P. Caspi, D. Pilaud, N. Halbwachs, and J.Plaice. Lustre: a declarative language

for real-time programming. In Proceedings of Principles of Programming Languages

(POPL'87). ACM, 1987.

[DM82] L. Damas and R. Milner. Principal type schemes for functional programs. In ACM

Symposium on Principles of Programming Languages, 1982.

[EGLT76] K.P. Eswaran, J. N. Gray, R.A. Lorie, and I. L. Traiger. The notions of consistency

and predicate locks in a database system. CACM, 19(11):624�633, Nov 1976.

[FF86] M. Felleisen and D. Friedman. Formal Description of Programming Concepts III, chap-

ter Control operators, the SECD-machine, and the � calculus. North-Holland, 1986.

[GA89] A. Gottlieb and G. S. Almasi. Highly Parallel Computing, chapter 2. Ben-

jamin/Cummings Publishing, 1989.

[GBBG85] P. Le Guernic, A. Benveniste, P. Bournal, and T. Gauthier. Signal: A data�ow oriented

language for signal processing. Technical Report 246, IRISA, Rennes, France, 1985.

[Gel85] D. Gelernter. Generative communication in Linda. ACM Transactions on Program-

ming Languages and Systems, 7(1):80�112, January 1985.

[GJLS87] D. Gi�ord, P. Jouvelot, J. M. Lucassen, and M. Sheldon. Fx-87 reference manual.

Technical Report TR-407, MIT-LCS, 1987.

126

[GJS96] J. Gosling, B. Joy, and G. Steele. The Java Language Speci�cation. The Java Series.

Addison-Wesley, June 1996.

[GMP89] A. Giacalone, P. Mishra, and S. Prasad. Facile: A symmetric integration of concur-

rent and functional programming. In International Journal of Parallel Programming,

volume 18. 1989.

[GR93] E. R. Gansner and J. H. Reppy. A Multi-threaded Higher-order User Interface Toolkit,

volume 1 of Software Trends, pages 61�80. John Wiley & Sons, 1993.

[Har86] D. M. Harland. Concurrency and Programming Languages. John Wiley and Sons,

1986.

[Hoa74] C. A. R. Hoare. Monitors: an operating system structuring concept. Communications

of the ACM, 17:549�557, 1974.

[Hoa78] C. A. R. Hoare. Communicating sequential processes. In Communications of the ACM,

volume 21, pages 666�677. ACM, August 1978.

[HS86] R. J. Hindley and J. P. Seldin. Introduction to Combinators and �-Calculus. Cambridge

University Press, 1986.

[HW87] M. Herlihy and J. Wing. Avalon : Language support for reliable distributed system.

In 17th Int. Symposium on Fault-Tolerant Computing, pages 89�94. , Pittsburgh, PA,

[7] 1987.

[Int95] Intermetrics, Inc. Ada 95 Rationale, Jan. 1995.

[iTCS96] Algol-Like Languages (Progress in Theoretical Computer Science. P. W. O'Hearn R.

D. Tennent. Birkhauser, 1996.

[JG91] P. Jouvelot and D. Gi�ord. Algebraic reconstruction of types and e�ects. In ACM

Symposium on Principles of Programming Languages, 1991.

[JGF96] S. P. Jones, A. Gordon, and S. Finne. Concurrent Haskell. ACM Symposium on Prin-

ciples of Programming Languages, 1996.

[JL87] J. Ja�ar and J. L Lassez. Constraint logic programming. In ACM Symposium on

Principles of Programming Lanaguages, pages 111�119, January 1987.

[JL96] R. Jones and R. Lins. Garbage Collection : Algorithms for Automatic Dynamic Mem-

ory Management. John Wiley and Sons, 1996.

127

[Jor78] H. Jordan. A special purpose architecture for �nite element analysis. In International

Conference on Parallel Processing, pages 263�266, 1978.

[KJ88] D. A. Kranz and R. H. Halstead Jr. Multi-t: A high-performance parallel Lisp. In

Conference on Programming Language Design and Implementation PLDI'88. ACM,

June 1988.

[KPT96] N. Kobayashi, B. C. Pierce, and D. N. Turner. Linearity and the pi-calculus. In Pro-

ceedings of Principles of Programming Languages (POPL'96). ACM, 1996.

[LG91] J. Lucassen and D. Gi�ord. Polymorphic e�ect systems. In ACM Symposium on Prin-

ciples of Programming Languages, 1991.

[LJ96] J. Launchbury and S. P. Jones. I-structures - data structues for parallel computing.

Lisp and Symbolic Computation, 1996.

[Luc87] J. M. Lucassen. Types and E�ects, towards the integration of functional and imperative

programing. MIT/LCS/TR-408, MIT Laboratory for Computer Science, 1987.

[Mat89] D. C. J. Matthews. Processes for Poly and ML. Technical Report 16, University of

Cambridge, 1989.

[Mey88] B. Meyer. Object-oriented software construction. Prentice-Hall, Englewood Cli�s, New

Jersey, 1988.

[Mil89] R. Milner. Communication and Concurrency. Prentice-Hall, 1989.

[MP86] Z. Manna and A. Pneuli. Concurrency and Programming Languages. John Wiley and

Sons, 1986.

[MW97] S. Marlow and P. Wadler. A practical subtyping system for Erlang. In 2'nd ACM

International Conference on Functional Programming, Amsterdam, June 1997.

[NN94] F. Nielson and H. R. Nielson. Constraints for polymorphic behaviours of Concurrent

ML. In CCL'94, volume 845 of LNCS, pages 73�88. Springer, 1994.

[Pap89] M. Papathomas. Concurrency Issues in Object-Oriented Programming Languages,

pages 207�245. Centre Universitaire d'Informatique, University of Geneva, July 1989.

[Per87] R. H. Perrott. Parallel Programming. Addison-Wesley, Menlo Park, 1987.

[Ram90] N. Ramsey. Concurrent programming in ML. Technical Report CS-TR-262-90, Prince-

ton University, 1990.

128

[Rep88] J. H. Reppy. Synchronous operations as �rst-class values. In SIGPLAN Programming

Language Design and Implementation, pages 250�259. ACM, June 1988.

[Rep92] J. H. Reppy. Higher-Order Concurrency. Technical Report TR 92-1285, Cornell Uni-

versity, 1992.

[Rep95] J. H. Reppy. First-class synchronous operations. In Theory and Practice of Parallel

Programming. Springer-Verlag LNCS, 1995.

[Rep99] J. H. Reppy. Concurrent Programming in ML. Cambridge University Press, 1999.

[RHH85] Jr R. H. Halstead. Multilisp: A language for concurrent symbolic computation. In

Transactions of Programming Languages and Systems, volume 7, October 1985.

[Sar93] V. Saraswat. Concurrent Constraint Programming. MIT Press, 1993.

[Sha86] E. Shapiro. Concurrent prolog: A progress report. In IEEE Computer, volume 19,

August 1986.

[Sha87] E. Shapiro. Concurrent Prolog. MIT Press, 1987.

[SJG95] V. Saraswat, R. Jagadeesan, and V. Gupta. Default timed concurrent constraint pro-

gramming. In Proceedings of Principles of Programming Languages (POPL'95). ACM,

1995.

[TA94] D. R. Tarditi and A. W. Appel. ML-Yacc user's manual version 2.3. October 1994.

[TJ92] J. P. Talpin and P. Jouvelot. Polymorphic type, region and e�ect inference. Journal

of Functional Programming, 2(2), 1992.

[TJ97] J. P. Talpin and P. Jouvelot. The type and e�ect dicipline. In Information and Com-

putation. Academic Press, 1997.

[Tof90] M. Tofte. Type inference for polymorphic references. In Information and Computation,

1990.

[TT97] M. Tofte and J. P. Talpin. Region-based memory management. In Information and

Computation, 1997.

[Tur96] F. Turbak. First-class sychronization barriers. ACM International Conference on

Functional Programming, 1996.

[Wad95] P. Wadler. Monads for functional programming. In J. Jeuring and E. Meijer, editors,

Advanced Functional Programming, volume 925 of LNCS. Springer Verlag, 1995.

129

[WF92] A. K. Wright and M. Felleisen. A syntactic approach to type soundness. In Information

and Computation, 1992.

[Wik86] C Wikstrom. Distributed programming in Erlang. In IEEE Computer, volume 19,

August 1986.

[Wik96] C Wikstrom. Implementing distributed real-time control systems in a functional lan-

guage. In IEEE Workshop on Parallel and Distributed Real-Time System, April 1996.

[Wir83] N. Wirth. Programming in Modula-2. Springer-Verlag, 1983.

[Wri92] A. K. Wright. Typing references by e�ect inference. In European Symposium on Pro-

gramming, 1992.

130

