
MASSIVELY PARALLEL

BAYESIAN OBJECT RECOGNITION

by

Isidore Rigoutsos

A dissertation submitted in partial ful�llment

of the requirements for the degree of

Doctor of Philosophy

Computer Science Department

Courant Institute of Mathematical Sciences

New York University

August 1992

Approved:

Professor Robert A. Hummel

Faculty Advisor

Copyright c 1992 by Isidore Rigoutsos

All Rights Reserved

And then the man steps right up to the microphone

And says at last as the time bell rings

``Thank you good night now it's time to go home''

and he makes it fast with one more thing

``We are the Sultans of Swing''

Mark Knopfler

Gi� toÔs goneØs mou

v

Acknowledgments

My most sincere thanks go to my advisor Bob Hummel for his support, guid-

ance and encouragement during the work on this dissertation. To him, I also owe

the understanding of how to identify promising research directions.

I am very grateful to Haim Wolfson of the Tel Aviv University, School of

Mathematical Sciences for being a constant source of enthusiasm, criticism and

insight.

My thanks also go to Stephane Mallat for support, and guidance, and for

insight on the \tricks of the trade."

During my years of research, Ruud Bolle, Andrea Califano and Rakesh Mo-

han of IBM's T. J. Watson Research Center provided stimulating feedback and

criticism, for which I sincerely thank them.

I am also grateful to Alan Mainwaring and Lewis Tucker of Thinking Machines

Corporation for all the lengthy discussions we had during my �rst steps in the

exciting world of data parallel computing.

Thanks are also due to Marsha Berger for providing, through the adaptive

mesh re�nement work, a source of support and interesting distraction from my

thesis research during my summer months in the Courant Institute.

The work in this dissertation would not have been possible without access

to a Connection Machine, through the DARPA Connection Machine Network

Server Program. I especially thank the University of Maryland UMIACS center

for generously providing access to their resources.

Work on this dissertation has been supported by an IBM Graduate Research

Fellowship, and by AFAL contract F33615-89-1087.

vi

Abstract

The problem of model-based object recognition is a fundamental one in the

�eld of computer vision, and represents a promising direction for practical appli-

cations.

We describe the design, analysis, implementation and testing of a system

that employs geometric hashing techniques, and can recognize three-dimensional

objects from two-dimensional grayscale images. We examine the exploitation of

parallelism in object recognition, and analyze the performance and sensitivity

of the geometric hashing method in the presence of noise. We also present a

Bayesian interpretation of the geometric hashing approach.

Two parallel algorithms are outlined: one algorithm is designed for an SIMD

hypercube-based machine whereas the other algorithm is more general, and relies

on data broadcast capabilities. The �rst of the two algorithms regards geometric

hashing as a connectionist algorithm. The second algorithm is inspired by the

method of inverse indexing for data retrieval.

We also determine the expected distribution of computed invariants over the

hash space: formulas for the distributions of invariants are derived for the cases

of rigid, similarity and a�ne transformations, and for two di�erent distributions

(Gaussian and Uniform over a disc) of point features. Formulas describing the de-

pendency of the geometric invariants on Gaussian positional error are also derived

for the similarity and a�ne transformation cases.

Finally, we present an interpretation of geometric hashing that allows the

geometric hashing algorithm to be viewed as a Bayesian approach to model-based

object recognition. This interpretation is a new form of Bayesian-based model

matching, and leads to natural, well-justi�ed formulas. The interpretation also

vii

provides a precise weighted-voting method for the evidence-gathering phase of

geometric hashing.

A prototype object recognition system using these ideas has been implemented

on a CM-2 Connection Machine. The system is scalable and can recognize aircraft

and automobile models subjected to 2D rotation, translation, and scale changes

in real-world digital imagery. This system is the �rst of its kind that is scalable,

uses large databases, can handle noisy input data, works rapidly on an existing

parallel architecture, and exhibits excellent performance with real world, natural

scenes.

viii

Contents

1 Introduction 1

1.1 Object Recognition: the four stages : : : : : : : : : : : : : : : : : : 2

1.1.1 Data Acquisition : 2

1.1.2 Feature Extraction : 3

1.1.3 Matching : 5

1.1.4 Veri�cation : 6

1.2 The Scope of this Dissertation : 7

1.2.1 Exploitation of Parallelism : : : : : : : : : : : : : : : : : : 7

1.2.2 Distributions of Invariants : : : : : : : : : : : : : : : : : : : 8

1.2.3 Modeling of Noise : 8

1.2.4 Bayesian Interpretation : 8

2 An Introduction to Model-based Object Recognition 10

2.1 A Survey of the Object Recognition Field : : : : : : : : : : : : : : 11

2.2 Indexing Methods : 18

2.2.1 Geometric Hashing for Model Matching : : : : : : : : : : : 19

2.2.1.1 The Steps Behind the Idea : : : : : : : : : : : : : 23

2.3 Geometric Hashing Systems : 30

ix

3 Exploiting Parallelism 35

3.1 Parallelizability of Geometric Hashing : : : : : : : : : : : : : : : : 36

3.2 Some De�nitions : 38

3.3 Design Issue : 40

3.4 Building-block Algorithms : 41

3.4.1 The p-product : 41

3.4.2 Histograming : 44

3.4.2.1 A Novel Radix-Sort Algorithm : : : : : : : : : : : 46

3.5 The Geometric Hashing Connectionist Algorithm : : : : : : : : : : 46

3.5.1 Connectionist Algorithm: Preprocessing Phase : : : : : : : 48

3.5.2 Connectionist Algorithm: Recognition Phase : : : : : : : : 52

3.5.3 Time Complexity : 54

3.6 The Hash-location Broadcast Algorithm : : : : : : : : : : : : : : : 56

3.6.1 The Data Structure : 57

3.6.2 Hash-location Broadcast: Preprocessing Phase : : : : : : : 58

3.6.3 Hash-location Broadcast: Recognition Phase : : : : : : : : 61

3.6.4 Time Complexity : 64

3.7 Implementation Details : 65

3.8 Implementation Results / Scalability : : : : : : : : : : : : : : : : : 69

4 Distributions of Invariants 71

4.1 Rigid Transformation : 72

4.2 Similarity Transformation : 74

4.3 A�ne Transformation : 75

x

5 Parallelism Revisited 83

5.1 Rehashing : 84

5.2 Symmetries and Foldings : 88

5.3 Timing Results : 93

6 Noise Modeling 96

6.1 Performance in the Presence of Noise : : : : : : : : : : : : : : : : : 98

6.2 Modeling Positional Noise : 105

7 Bayesian Interpretation 112

7.1 Abstract Formulation of Geometric Hashing : : : : : : : : : : : : : 113

7.2 Updating Formulas and Conditional Independence : : : : : : : : : 123

7.3 Reasoning with Parts : 125

7.4 Conditional Independence : 127

7.5 Density Functions : 133

7.6 Bayesian Geometric Hashing : 137

7.7 Exact versus Approximate Matching : : : : : : : : : : : : : : : : : 140

7.8 False Alarm Rates : 144

7.9 The Formulas: Exact Matching : 146

7.10 The Formulas: Approximate Matching : : : : : : : : : : : : : : : : 154

8 Experimental Results 160

8.1 O�-Line Preprocessing : 160

8.2 The Two-level Randomized Algorithm : : : : : : : : : : : : : : : : 163

8.3 Results : 168

xi

9 Conclusion 184

9.1 Summary of Results : 184

9.2 Future Research Directions : 187

A Some Details Regarding the Derivation of Eqn. 6.6 188

xii

List of Tables

2.1 The time complexities for the preprocessing and recognition phases,

for several transformations. : 29

8.1 The thirty-two models of the database. : : : : : : : : : : : : : : : : 162

xiii

List of Figures

2.1 Model M1 consisting of �ve points. : : : : : : : : : : : : : : : : : : 19

2.2 Determining the hash table entries when points 4 and 1 are used

to de�ne a basis. The models are allowed to undergo rotation,

translation and scaling. : 20

2.3 The locations of the hash table entries for model M1. Each entry is

labeled with the information \model M1" and the basis pair (i; j)

that was used to generate the entry. The models are allowed to

undergo rotation, translation and scaling. : : : : : : : : : : : : : : 21

2.4 Determining the hash table bins that are to be noti�ed when two

arbitrary image points are selected as a basis. The allowed trans-

formation is similarity. : 22

2.5 The coordinate system de�ned by a two-point basis. : : : : : : : : 24

2.6 The coordinate system de�ned by a three-point basis. : : : : : : : 28

3.1 The two stages of the parallel p-product computation for the simple

case where p=3 (3-product). : 43

3.2 Simple Radix Sort on a Hypercube. : : : : : : : : : : : : : : : : : : 47

3.3 Radix Sort: an illustration. : 47

xiv

3.4 The �rst pass of the preprocessing phase for the case where the

basis tuple consists of two points. : : : : : : : : : : : : : : : : : : 51

3.5 The third stage of the second pass of the preprocessing phase for

the case where the basis tuple consists of two points. : : : : : : : 52

3.6 The recognition phase of the parallel geometric hashing connec-

tionist algorithm, for the case where the basis tuple consists of two

points. Note how tokens ow from one set via connections to the

next set. : 55

3.7 Hash-location broadcast algorithm: the preprocessing phase for the

case where the basis tuple consists of two points. : : : : : : : : : : 60

3.8 The recognition phase of the parallel hash-location broadcast algo-

rithm, for the case where the basis tuple consists of two points. : 63

3.9 Hash bin occupancy for a typical database; the height is propor-

tional to the length of the corresponding hash bin list. : : : : : : 67

3.10 Average time required for a single basis probe, as a function of the

number of processors in the Connection Machine. The database

contains 1024 models of 16 points each, and the scenes contain 200

points. : 70

4.1 The distribution over the space of invariants, and several of its

contours for the case of point features that are generated by the

Gaussian process N (0; (�

0

0

�
)). The allowed transformation is rigid. 73

4.2 The distribution over the space of invariants, and several of its con-

tours for the case of point features that are uniformly distributed

over the unit disc. The allowed transformation is rigid. : : : : : : 74

xv

4.3 The distribution over the space of invariants, and several of its

contours for the case of point features that are generated by the

Gaussian process N (0; (�

0

0

�
)). The allowed transformation is sim-

ilarity. : 75

4.4 The distribution over the space of invariants, and several of its con-

tours for the case of point features that are generated by the Gaus-

sian process N (0; (�

0

0

�
)). The allowed transformation is a�ne. : 78

4.5 Correspondence between feature and hash space regions: if p lies

in the region of the feature space marked i, the computed invariant

tuple will lie in the region i' of the space of invariants. : : : : : : 79

4.6 Several of the contours of the hash table distribution. The model

features are uniformly distributed over the unit disc, and the al-

lowed transformation is a�ne. : 81

5.1 Hash table equalization for the case of rigid transformations and

point features generated by the Gaussian process N (0; (�

0

0

�
)).

Left: the expected distribution of remapped invariants. Right:

several of the distribution's contours. : : : : : : : : : : : : : : : : 86

5.2 Hash table equalization for the case of rigid transformations and

point features uniformly distributed over the unit disc. Left: the

expected distribution of remapped invariants. Right: several of the

distribution's contours. : 87

xvi

5.3 Hash table equalization for the case of similarity transformations

and point features generated by the Gaussian processN (0; (�

0

0

�
)).

Left: the expected distribution of remapped invariants. Right:

several of the distribution's contours. : : : : : : : : : : : : : : : : 88

5.4 Hash table equalization for the case of a�ne transformations and

point features generated by the Gaussian process N (0; (�

0

0

�
)).

Left: the expected distribution of remapped invariants. Right:

several of the distribution's contours. : : : : : : : : : : : : : : : : 89

5.5 Symmetries in the storage pattern of the hash entries. Top: if

no rehashing is used, the hash entries are symmetric with respect

to the center of the coordinate system of the space of invariants.

Bottom: when rehashing is used, the rehashed entries have the

same abscissa but are distance � apart. These observations hold

true for both the rigid and similarity transformations. : : : : : : : 91

5.6 Symmetries in the storage pattern of the hash entries under the

a�ne transformation. Top: if no rehashing is used, the hash entries

are symmetric with respect to the line that is at a 45 degree angle

with the horizontal axis. Bottom: when rehashing is used, the

rehashed entries have the same abscissa and � values of opposite

signs. : 92

xvii

5.7 Average time that the connectionist algorithm requires for a sin-

gle basis probe, as a function of the number of processors in the

Connection Machine. The database contains 1024 models of 16

points each; the points have been generated by a Gaussian process

and the scenes contain 200 points. The allowed transformation is

similarity and rehashing is used. : : : : : : : : : : : : : : : : : : : 94

6.1 Similarity Transforms: the expected percentage of model/basis

combinations receiving exactly k votes. Top: the models' feature

points are distributed according to a Gaussian of �=1. Bottom: the

models' feature points are distributed uniformly over the unit disc.

In both cases, the database contained 512 models, each consisting

of 16 points. : 99

6.2 Percentage of the embedded model's bases receiving k votes when

used as probes, for di�erent amounts of Gaussian noise. The mod-

els can only undergo similarity transformations. Top: the models

points are distributed according to a Gaussian of �=1. Bottom:

the models points are distributed uniformly over the unit disc. In

both cases, the database contained 512 models, each consisting of

16 points. : 100

xviii

6.3 Regions of the hash table that would need to be accessed in the

case of Gaussian error in the positions of the point features. The

models are allowed to undergo a similarity transformation. The

left graph of each pair shows the feature space domain, whereas

the right shows the space of invariants. For presentation purposes,

the amount of Gaussian error was deliberately large. : : : : : : : 103

6.4 Regions of the hash table that would need to be accessed in the

case of Gaussian error in the positions of the point features. The

transformation class is a�ne transformations. The left graph of

each pair shows the feature space domain, whereas the right shows

the space of invariants. For presentation purposes, the amount of

Gaussian error was deliberately large. : : : : : : : : : : : : : : : : 104

7.1 The preprocessing phase: for each model and for every N-tuple of

points in the model, a hash location is computed, and an entry

is recorded in the space of invariants at that location. The entry

is tagged with the information concerning the model identity and

model features that were used to compute the position. : : : : : : 117

7.2 The recognition phase and voting process of Bayesian geometric

: hashing using N-tuples of image features, locations in the space

of invariants are computed, and nearby entries are accessed. Each

entry is tagged with a model number and a set of model features,

which can be paired with the image features used to compute the

hash location to form a candidate interpretation. Interpretations

are then given weighted votes. : 119

xix

7.3 The probability density function of hashes in the space of invariants

which are generated by image features not belonging to the model

that is embedded in the image. : : : : : : : : : : : : : : : : : : : 131

7.4 The probability density function of the hashes generated by the

features of a model that is embedded in an image. In this example,

n{c=6. : 132

7.5 An exact-matching hypothesis as compared to an approximate-

matching hypothesis. Note that in the case of an approximate-

matching hypothesis, there is a greater range of uncertainty in the

predicted image features that arise as a result of the remaining

features of the model. : 142

7.6 The steps for a probe with a single basis set during the recogni-

tion phase of the Bayesian geometric hashing algorithm for point

pattern recognition. : 153

8.1 The edge maps and the selected feature points for the database

models of the F-16 Falcon, the Ford Econoline150, and the Sea

Harrier. : 164

8.2 Several of the contours for the e�ective speedup function. The hor-

izontal axis corresponds to the fraction of the image features that

is considered by the probe selection algorithm. The vertical axis

corresponds to the least number of model features that one expects

to see in the selected subset. The di�erent contours correspond to

the values of the e�ective speedups, and were taken at heights 1.0,

1.8, 2.0, 2.5, 3.0, 3.5, 4.0 and 4.36 respectively. : : : : : : : : : : : 167

xx

8.3 A test image for the recognition algorithm: the photograph of an

F-16. : 171

8.4 The edge map extracted by the Cox-Boie edge detector (the value

of � was 2.0) for the F-16 test image. Also shown are the 80

automatically extracted features. : : : : : : : : : : : : : : : : : : : 172

8.5 Another test image: the photograph of a Sea Harrier. The airplane

at the bottom of the picture is a Hunter T-8M. : : : : : : : : : : : 173

8.6 The edge map extracted by the Cox-Boie edge detector (the value

of � was 2.0) for the Sea Harrier test image. Also shown are the

169 automatically extracted features. : : : : : : : : : : : : : : : : : 174

8.7 The test image of a Ford Econoline150. : : : : : : : : : : : : : : : 175

8.8 The edge map extracted by the Cox-Boie edge detector (the value

of � was 3.4) for the Ford Econoline150 test image. Also shown

are the 98 automatically extracted features. : : : : : : : : : : : : : 176

8.9 The output of the implementation of our system on the Connection

Machine. The test input (F-16) is shown on the top left. The edge

map together with the automatically extracted point features is

shown on the top right; the basis selection that led to recognition

is also marked. A total of 22 basis selections was required, and

the elapsed time was 40.5 seconds (NB. this �gure does not include

the edge detection and feature extraction stages). The bars above

each of the 9 top retrieved models provide a length encoding of

the total accumulated evidence for the corresponding model/basis

combination. The retrieved database model appropriately scaled,

rotated and translated is shown overlaid on the test input. : : : : 178

xxi

8.10 The F16 test input with the retrieved model overlaid on it. The

recovered transformation (rotation, translation and scaling) was

based solely on the basis pair, and not on a best least-squares

match of all corresponding feature pairs. : : : : : : : : : : : : : : 179

8.11 The output of the implementation of our system on the Connection

Machine. The test input (Sea Harrier) is shown on the top left. The

edge map together with the automatically extracted point features

is shown on the top right; the basis selection that led to recognition

is also marked. A total of 4 basis selections was required, and the

elapsed time was 15.7 seconds (NB. this �gure does not include

the edge detection and feature extraction). The bars above each of

the 9 top retrieved models provide a length encoding of the total

accumulated evidence for the corresponding model/basis combina-

tion. The retrieved database model appropriately scaled, rotated

and translated is shown overlaid on the test input. : : : : : : : : 180

8.12 The Sea Harrier test input with the retrieved model overlaid on it.

The recovered transformation (rotation, translation and scaling)

was based solely on the basis pair, and not on a best least-squares

match of all corresponding feature pairs. : : : : : : : : : : : : : : 181

xxii

8.13 The output of the implementation of our system on the Connec-

tion Machine. The test input (Ford Econoline150) is shown on the

top left. The edge map together with the automatically extracted

point features is shown on the top right; the basis selection that

led to recognition is also marked. A total of 4 basis selections was

required, and the elapsed time was 9.1 seconds (NB. this �gure

does not include the edge detection and feature extraction). The

bars above each of the 9 top retrieved models provide a length

encoding of the total accumulated evidence for the corresponding

model/basis combination. The retrieved database model appropri-

ately scaled, rotated and translated is shown overlaid on the test

input. : 182

8.14 The Ford Econoline 150 test input with the retrieved model over-

laid on it. The recovered transformation (rotation, translation and

scaling) was based solely on the basis pair, and not on a best least-

squares match of all corresponding feature pairs. : : : : : : : : : : 183

xxiii

Chapter 1

Introduction

This dissertation addresses the problem of model-based object recognition of

three-dimensional objects in two-dimensional grayscale images. In particular,

we describe the design, analysis, implementation and testing of a recognition

system that can identify three-dimensional objects from real world grayscale pho-

tographs using a database of stored models. The models in the image can be rigid-,

similarity-, or a�ne-transformed versions of prototype models in the database.

By object recognition we mean,

� the recovery of the imaged object's identity, and

� the recovery of the transformation that the model has undergone.

The problem of object recognition is a fundamental one in the �elds of com-

puter vision and robotics. Perhaps the most promising research direction in image

analysis, and the one most likely to lead to industrial and commercial applica-

tions, is the area of object recognition where the search is con�ned within a �nite

set of observable models.

1

1.1 Object Recognition: the four stages

In all of the object recognition systems, one can distinguish four stages: data

acquisition, feature extraction, matching, and veri�cation. We examine each of

these stages in more detail.

1.1.1 Data Acquisition

Data acquisition is carried out via the use of \sensors." Sensors are devices

sensitive to a variety of modalities. Commonly used sensors are sensitive to

one of the following: X-rays, visible spectrum light, infrared, microwaves, and

ultrasound. Sensors can be either active, in which case they emit an energy beam

and subsequently record the signal that is returned from the scene objects, or

passive.

The output of a sensor is typically a discrete valued function and results from

sampling the input signal at regularly spaced intervals.1 The spatial pattern of

the sample points is called a \tessellation." For two-dimensional signals, the

rectangular tessellation has been used in the overwhelming majority of systems.

Recently, a prototype light sensor based on an hexagonal tessellation has made

its appearance [96].

Independent of whether the tessellation is rectangular, hexagonal, or triangu-

lar, regularly tessellated sensors operating at rates of 30 frames/sec produce large

amounts of data that typically cannot be processed and analyzed in real time

with today's available computing power. In order to accommodate the problem,

fovea-like sensors have also been suggested [9]. The resolution of a foveated sensor

1Actually, the recorded value is not the value of the function at the location where the sampling

takes place, but rather the function's integral over a very small area of the sensor.

2

is not constant across the �eld of view, but instead decreases as one moves from

the center of the �eld to the periphery, similarly to the human fovea [63]. An im-

mediate result of such a tessellation is the considerable reduction of the amount

of data that needs to be processed, to the point that real-time vision tasks might

be feasible. However, such a tessellation also necessitates the development of new

image processing algorithms, a not-so-straightforward task [100].

In what follows, we will concern ourselves with sensors that are sensitive to

the visible spectrum light, and have a rectangular tessellation. The output of

such sensors is a 2D, grayscale (or color) intensity image.

1.1.2 Feature Extraction

When presented with an intensity image, an object recognition system's task is

to identify and locate the object(s) present in the scene that generated the image.

The �rst step toward this goal is the reduction of the amount of the input data.

Given that the object, or objects, of interest occupy only a small portion of

the viewed scene, most of the data present in the sensor's output is extraneous

and not relevant to the task at hand. Feature extraction attempts to identify

interesting pieces of the input signal.

It is not easy to de�ne what consists a feature. The de�nition of a feature

is directly related to the model representation, i.e. the way each of the recogniz-

able by the system objects is represented and stored in the computer. Such a

representation is in turn related to the way a model can appear in the context

of the sensor data [11], and is application speci�c. Traditionally, the following

image characteristics have been used as features: linear and curvilinear segments,

curvature extrema, curvature discontinuities, conics etc.

3

Due to the importance of this stage's output, the problem of feature extraction

has received a great lot of attention over the years; in particular, the topic of

edge detection (i.e. extraction of linear and curvilinear segments from gray-level

intensity data) has attracted the attention of a large number of researchers. This

interest was the result of experimental evidence attesting to the importance of

boundaries for the human visual system [2]. A large number of techniques and

algorithms were developed for feature extraction. However, a presentation of

these techniques escapes the scope of this dissertation, and the reader is referred

to one of the relevant textbooks such as [7,43,63].

Various features can be combined together to generate object descriptions.

The way the various features are combined depends on the application and/or

the method. In a number of approaches, geometric information is derived from

the extracted features: for example, the position of a certain feature, the cur-

vature of a constant-curvature curvilinear segment, the eccentricity of a conic,

etc. This information is used in the representation of the corresponding object.

Also, relational information, e.g. relative distance or relative orientation between

features, has proven useful in object recognition.

Before we conclude this section, we mention an important issue pertaining

to feature extraction, that of sensor noise. Indeed, the sensing devices are not

perfect, but instead introduce \measurement" and \ampli�cation stage" noise.

This noise manifests itself as small random perturbations of the values of the

sampled modality and can potentially cause problems during the feature extrac-

tion process. Consequently, a preprocessing or \�ltering" stage typically precedes

the feature-extraction stage; the goal of the �ltering stage is the reduction of the

random perturbations introduced during the sampling.

4

1.1.3 Matching

Once the set of models that are to be recognizable by the system has been chosen,

the form of representation of the models must be �xed. As already noted, the

representation of the models dictates the feature types that the feature-extraction

stage will attempt to detect in the sensory output.

Once the types of features have been determined, a database is built containing

information about those features that can be identi�ed in objects from the set of

recognizable models. The task of the matching stage is to identify the model, or

models, whose features approximately match a (sub-)set of the features generated

by the feature-extraction module.

The matching stage is the most crucial component of an object recognition

system. A number of techniques have been developed toward this end. But in

all cases there is a trade-o� between the reliability and the computation cost:

techniques that produce very reliable results are computationally heavy, and vice

versa. Most matching algorithms have been based on cross-correlation techniques,

tree- or graph-search, clustering, or indexing: the technique generally depends on

the feature type.

The matching technique should allow for partial occlusion, rotation, transla-

tion, and scale changes, as well as for small amounts of data perturbation. The

output of the matching stage is a set of hypotheses regarding the identity of the

models that are embedded in the scene. Sometimes, a measure of belief can be

associated at this stage with each of the models in the set; this measure allows

the hypotheses' relative ranking. Together with the set of models, the matching

stage also recovers the transformation that the corresponding model is assumed

5

to have undergone.

Several matching techniques can be viewed as \�lters" or \sieves" that con-

siderably reduce the number of candidate hypotheses as to the identity of the

object(s) in the scene and the transformation the objects have undergone. In this

dissertation, we will concentrate on the geometric hashing approach to match-

ing [45,59,61,62]. This approach uses geometric invariants to represent the various

models. Geometric invariants are also used to index into the database of models

(see also section 2.2.1).

1.1.4 Veri�cation

The output of the matching module is a set of hypotheses regarding the identity of

the object or objects embedded in the scene. These hypotheses are subsequently

piped into the veri�cation stage whose purpose is to evaluate the quality of the

hypotheses and either accept or reject them.

In order to evaluate the quality of the hypotheses that are generated, the

vision system projects the candidate models onto the scene and the fraction of

the model accounted for by the available input data is computed. \Optimal"

cuto� values (thresholds) are typically pre-determined either empirically or in

an ad hoc fashion. These thresholds can be either model-dependent or constant

across the various models, and their use allows the veri�cation module to decide

whether to accept or reject certain hypotheses.

The majority of vision systems use empirically-determined thresholds very suc-

cessfully. In some cases, and under certain simplifying assumptions, a theoretical

analysis makes possible the computation of threshold values that are a function

of the scene and complexity of the model [37]. However, to our knowledge, no

6

current operational system makes use of theoretically-determined thresholds.

1.2 The Scope of this Dissertation

In this dissertation, we concentrate on four di�erent issues:

� Exploitation of parallelism for performing object recognition;

� Analysis of the expected probability distributions of invariants over the

hash space for a number of transformation and model feature distribution

combinations;

� Analysis of how sensor noise propagates through the stage of invariant com-

putations; and

� Formulation of a Bayesian interpretation of model matching with geometric

hashing.

1.2.1 Exploitation of Parallelism

In chapter 3, we present two data-parallel algorithms for performing geometric

hashing.

� The �rst algorithm is designed for an SIMD hypercube-based parallel archi-

tecture; the algorithm has a \connectionist" avor with information owing via

communication patterns.

� The second algorithm is more general, based on data broadcast capabilities,

and suitable for any type of parallel architecture.

In addition to these two algorithms, we also present a novel radix-sort algo-

rithm for SIMD hypercube-based architectures.

7

1.2.2 Distributions of Invariants

In chapter 4, we derive precise as well as approximate formulas and qualitative

results for the statistical distribution of geometric invariants. The results are

derived for a number of transformation (rigid, similarity, a�ne) and feature-

distribution (uniform, Gaussian) combinations.

The analysis corroborates that the non-uniform distribution of invariants over

hash space is endemic to all indexing-based approaches to model based object

recognition. In chapter 5, we show how one can use the knowledge of the index

distributions to develop techniques that result in much faster implementations of

indexing-based object recognition methods.

1.2.3 Modeling of Noise

In chapter 6, we study the behavior of geometric hashing techniques in the pres-

ence of noise.

We show that, under the assumption that the noise introduced by the sensor

and the feature-extraction module can be modeled as a Gaussian random process,

the computed indices follow a Gaussian distribution to a �rst order approximation.

We also perform the noise analysis for the similarity and a�ne transforma-

tions, and show that the e�ect of noise in the latter case is more pronounced.

1.2.4 Bayesian Interpretation

In chapter 7, we present an interpretation of geometric hashing which shows that

the algorithm can be viewed as a Bayesian, maximum-likelihood object recog-

nition method; the hypotheses span the discrete collection of models and the

discrete pairings of image features to model features.

8

We make use of the results from chapters 4 and 6 to show how an adap-

tive weighted-voting scheme can be used to accumulate evidence for model/basis

tuples in the geometric hashing framework.

The validity of our theory is demonstrated in chapter 8 where we describe a

complete object recognition system that makes use of the ideas. The system is

implemented on a SIMD hypercube-based parallel machine (a Thinking Machines

Corporation CM-2) and can recognize objects that have undergone a similarity

transformation, from a library containing the models of 14 aircraft and 18 produc-

tion automobiles. The system is tested using real-world imagery, works rapidly,

and exhibits exceptional performance.

9

Chapter 2

An Introduction to Model-based

Object Recognition

Most of the successful object recognition systems have been model-based. In

these systems, the search is con�ned to a �nite set of observable models. A priori

information about these recognizable models is maintained in an appropriately

structured database. The type of information contained in the database depends

on the scheme by which models are represented, and also on the type of features

(e.g. points, edges, conics, etc.). Apart from having given rise to a number of

successful systems, the model-based vision paradigm o�ers the possibility of a

well-de�ned analyzable formulation.

During the matching stage, the task of a model-based vision system is to

determine the model identity (equivalently: a set of model features), and a trans-

formation for each model that is present in the scene. The transformation brings

the set of model features in correspondence with a (possibly proper) subset of

image features. During the search for the model identity and the appropriate

transformation, the system has access to the information that is stored in the

10

system's database. Things may be complicated if the objects that are contained

in the input image are partially occluded, and the attributes of the extracted

features (e.g. position, orientation, etc.) are corrupted by noise.

In general, object recognition involves some type of search. The search can

take place over the set of extracted features and recognizable models: in this case,

the system attempts to determine correspondences between (sub-)sets of model

and image features; these correspondences are consistent with the permissible

transformations. Since the number of all possible \pairings" between model and

image feature sets is exponential in the cardinality of the feature sets, straightfor-

ward implementations result in an unfavorable time complexity. In an attempt

to e�ciently prune the tree search, a number of systems have made use of local

constraints with considerable success.

Alternatively, the search can take place in the space of transformations: in this

case, the system attempts to determine a transformation that brings (sub-)sets

of model and image features in correspondence.

These two approaches, namely the search over the space of extracted features

and the search over the space of transformations, represent the main paradigms

that have dominated the �eld of object recognition in the last ten years.

2.1 A Survey of the Object Recognition Field

In this section, we briey describe some of the most representative object recog-

nition systems that have been developed during the last two decades.

One of the earliest object recognition systems was developed by Roberts [82].

The system was able to recognize convex polyhedral objects under the weak per-

spective transformation. It controlled and pruned the search by considering only

11

vertices that were connected by an edge, and thus could not handle occlusion.

Unlike Roberts' system, the models in ACRONYM [19] were generalized cylin-

ders. ACRONYM used symbolic constraints to control and e�ectively prune the

search, and could handle both noise and occlusion.

A related approach to that of ACRONYM's was taken in Goad's system [35].

The system used quantitative (as opposed to symbolic) constraints to control

the search. Goad's system also introduced the notion of the two stage (o�-line

stage, on-line stage) recognition algorithm, where data precomputed during a �rst

phase (o�-line) are used during the phase of actual recognition (on-line) in order

to speed up the processing.

The use of geometric constraints (such as distance and angle) as an e�cient

way for pruning the search while matching image and model features, was advo-

cated by Bolles in his LFF and 3DPO systems [15,16]; LFF is used to recognize

2D objects from intensity images, whereas 3DPO is used for recognition of 3D

objects from range data. Geometric constraints are also used in the RAF sys-

tem of Grimson [38,39]. In Grimson's system, the search is structured around an

interpretation tree, and exhibits exponential time complexity if the input image

(intensity data) includes spurious data. More recently, the BONSAI system [31]

exploits unary and binary constraints to control the search of the interpretation

tree, and prune the search space: the input to BONSAI comprises range images

of parts that have been designed using a CAD tool.

The HYPER system of Ayache and Faugeras [3] also belongs to the category

of systems that attempt to determine correspondences between sets of model and

image features. HYPER is used to recognize 2D objects from intensity images.

However, its success is dependent on the quality of the polygonal approximations

12

of the input image's contours. Furthermore, it is sensitive to noise and does not

deal with the occlusion of edges.

Lowe's system, SCERPO [68], is a complete object recognition system that

recognizes polyhedral 3D objects from intensity images, under the perspective

transformation. SCERPO attempts to reduce the complexity of the search by

performing perceptual groupings of image features. However, it typically deals

with only one or two models in the model database at any given time.

More recently, work by Kak [53] shows that e�cient algorithms can prove

bene�cial in reducing the complexity in the case of systems that search over the

sets of features. In particular, Kak uses bipartite matching in conjunction with

the notion of discrete relaxation to perform recognition of 3D objects using the

output of a structured-light scanner.

In addition, a number of other systems have been developed that search the

space of allowed transformations. The classic representative of this approach is

the generalized Hough transform [5,8,91]: the method is a generalization of the

Hough transform [44] and is used to detect arbitrary shapes. In the generalized

Hough transform framework, the recognition of objects is achieved by recovering

the transformation that brings a large number of model features in correspon-

dence with image features. The transformation is described in terms of a set of

transformation parameters, and votes for these parameters are accumulated by

hypothesizing matchings between subsets of model and image features. The gen-

eralized Hough transform requires the quantization of a range of values for each

of the parameters, thus resulting in decreased accuracy. The space requirements

are exponential in the number of the parameters.

The system by Mundy and Thompson [69,70] uses large Hough tables to per-

13

form recognition of 3D objects from 2D input data, under the weak perspective

transformation. To constrain the space of possible transformations, the system

uses the notion of the \vertex-pair." A vertex pair consists of two vertices and

the two edges forming one of the vertices. An improved version of Mundy and

Thompson's system [85] remedies the problem of �xed parameter quantization

by iteratively re�ning the quantization around volumes of interest (histogram

peaks), until the required precision was achieved. A similar system is the one

of Linnainmaa [64] which introduced the notion of the \triangle-pair;" triplets of

vertices from the image are matched against triplets of model vertices in order to

hypothesize a transformation under the perspective projection model; however,

the system provides multiple alternatives that require examination.

The approaches of the last three systems can be considered as special cases of

a more general scheme called \alignment" [97]. In alignment, one seeks a model

from the model database together with a transformation from the allowed class of

transformations such that the object being viewed and the transformed model are

in correspondence; for those transformations where the number of corresponding

features exceeds a certain threshold, a veri�cation procedure is invoked. An-

other alignment-based system, RANSAC [30], is used to recognize objects under

perspective transformation, for a known camera position. Huttenlocher's ORA

system [50] on the other hand, performs recognition assuming the weak perspec-

tive transformation model. More recently, alignment ideas have been combined

with e�cient string matching in order to perform unoccluded polygonal object

recognition [83].

The approach of Ullman and Basri [98] is considerably di�erent. The basic

idea here is that each topologically di�erent model view can be expressed as a

14

linear combination of a small number of 2D views of the model. The method

assumes that the transformation of the model to the scene can be modeled by an

orthographic projection, and can handle 3D rigid as well as non-rigid transforma-

tions of the models. Scene clutter causes considerable problems. The scheme has

been treated mostly theoretically. Some preliminary results indicate reasonable

performance with databases containing a handful of objects.

Another general scheme that also involves search over the space of transfor-

mations is the geometric hashing scheme. Although based on the same geometric

principles as alignment, geometric hashing di�ers from alignment in the algo-

rithmic approach. Since this dissertation revolves around the geometric hashing

scheme, we chose to survey the object recognition systems that have been based

on geometric hashing ideas in a separate section (section 2.3).

All of the systems that have been described so far, as well as those based on

the geometric hashing scheme, typically represent the database models using a

small number of homogeneous, local features. These features \de�ne" the objects.

Furthermore, the objects under consideration are treated in isolation from the rest

of the scene. Unlike these systems, CONDOR [92] is the �rst system that takes

the approach of performing context recognition �rst, and then instantiates the

individual components. Natural objects such as sky, ground, foliage are included

in the system's vocabulary. A special-purpose database contains all the necessary

information about the world. The introduction of context results in increased

exibility at the expense of a major increase of the computational complexity.

The input to the system can be any combination of intensity, range, color or other

data modalities. The output is a labeled 3D model of the input image, with the

labels referring to the object classes that can be recognized by the system.

15

The system by Swain [93] can recognize deformable objects and substances

described by mass nouns by making use of color information. Thus it is similar in

avor to CONDOR. However, its use of precomputed invariants for the di�erent

database models in a two-stage algorithm, brings the system closer to the ones

that are based on hashing/indexing ideas (see section 2.3). Notably, Swain's

system can recognize objects independent of background and viewpoint variations,

occlusion, scale, and lighting conditions.

Vayda and Kak's INGEN system [99] performs object classi�cation based on

the overall shape of the object. For certain object recognition tasks it su�ces to

categorize the objects based on their general shape (e.g. parallelepiped, cylinder,

etc.) and independently of their size. Because of the large variations in size,

feature-based object recognition techniques are not easily applicable. INGEN

uses a hypothesize-and-verify approach to determine the pose and generic shape

of objects from range data. Hypotheses generated for each region in the segmented

range data can be combined using either information contained in a combinability

graph, or proximity and continuity heuristics. Use of the combinability graphs

controls the combinatorial explosion by e�cient pruning of the search space.

Another system with no knowledge of a geometric or structural model for each

of the database objects is the one by Stark and Bowyer [88]. In their system,

object classes are described in terms of the functional properties shared by all the

3D objects in the class. The various functional properties are represented using

procedural knowledge. The system has been successfully tested with a database

of 100 objects belonging to the \chair" class; the output of a CAD tool was used

to provide the test input to the system.

Dickinson [26] presents yet another approach to 3D object recognition from

16

intensity images. His system uses a small set of volumetric primitives which can be

assembled to form the objects that can be recognized. An important component

to the system is a hierarchy of 2D features (such as contours, faces, groups of

faces) that are generated by projecting the primitives based on a set of viewer-

centered orientations; conditional probabilities capture the relation between nodes

at di�erent levels of the hierarchy, and can be computed o�-line. The number of

orientations is �xed and thus independent of the number of models the system

can recognize. During recognition, the system uses a bottom-up approach and

precomputed conditional probabilities to extract primitives in the input image, as

well as the connectivities of the primitives. Using the primitive and connectivity

information, the system indexes into the model database to recover the identity

of the viewed object. Bergevin's PARVO system [10] takes a similar approach to

that of Dickinson's but makes use of \geons" [12] as the modeling primitives.

Kriegman and Ponce's approach [57] also exploits the relation between the

shape of intensity image contours and the models of 3D objects of revolution.

Under the assumption that the image contours are the projections of either surface

discontinuities or occluding contours, Kriegman and Ponce use elimination theory

to construct the implicit equations of the contours under perspective and weak

perspective projections; the equations are parameterized by the object's position

and orientation. In the current system, edge segments are grouped into contours

manually, and no extraneous data are fed into the algorithm. Also, contours that

are neither surface nor occluding discontinuities are manually removed. Although

they obtain good results, the success of the approach relies heavily on the quality

of segmentation.

17

2.2 Indexing Methods

The geometric hashing/indexing methods represent an alternative, e�cient and

highly parallelizable approach to performing pattern matching. These methods

borrow from the technique of \hashing," a fundamental technique in the �eld of

computer science [1,56].

The basic idea behind hashing is the partitioning of a possibly in�nite data

set, D, into a �nite set of groups Gi, i = 1; 2; 3; . . . ; g. The Gi's form the hash

table data structure. A hash function, h, whose domain is the set from where

the members of D obtain values, and range the set f1; 2; 3; . . . ; gg, provides the

partitioning by assigning a data item x to the group Gh(x). The data item x is

then said to belong to the group Gh(x), and the group's index h(x) is called the

hash value of the data item x. Clearly, there is no unique choice for the hash

function h(�). This particular form of hashing is known as open hashing/closed

addressing, and is one of the two classic forms of hashing [1].

The importance of the hashing technique comes from the fact that, by ap-

propriately selecting the hash function, dictionary operations such as INSERT,

DELETE and MEMBER (see [1]) can be carried out in O(1) time on the average.

In geometric hashing, the collection of models to be stored in the database

is used during a preprocessing phase (thus executed \o�-line") in order to build

the hash table data structure. The hash function is selected in such a way that

the resulting hash table structure encodes geometric information pertaining to

small subsets of model features. This geometric information is encoded in a

highly-redundant way. During the recognition phase, when presented with a

scene from which features are extracted, the hash table data structure is used to

18

index geometric properties of the scene features to candidate matching models.

A search over the scene features is still required. However, the geometric hashing

scheme obviates a search over the models and the model features as is the case

with the interpretation tree and alignment methods. In the following section, we

examine in more detail the geometric hashing idea.

2.2.1 Geometric Hashing for Model Matching

Features such as points, linear and curvilinear segments, corners, etc. are ex-

tracted during the feature extraction stage (see section 1.1.2). Any such collection

of features can be represented by a set of dots: each dot represents the feature's

location; associated with each dot is a list of one or more attributes (the feature's

attribute list) which depends on the corresponding feature's type.

5

3

2

1

4

Figure 2.1 Model M1 consisting of �ve points.

We can thus con�ne ourselves, without any loss of generality, to the problem

of recognition of clusters of point features (dot patterns), with the understanding

that each such point may have associated with it an attribute list. In the simplest

case which is examined below, one is interested only in the positional information

of the features, and the attribute list is empty. In a more general vision system,

one wishes to recognize patterns of lines, corners, and other features, attached to

19

3D objects undergoing rigid 3D transformations and perspectively projected onto

the image plane. The geometric hashing algorithms extend to that case as well,

at the expense of more complicated transformation classes and implementation

issues.

rotation

translation -1/2 1/2

y
append (M1,(4,1))
to end of hash
bin list

3

4
5

2

1
scaling

Model

2

5

1

4

3

x

4

5

1

3

2

Figure 2.2 Determining the hash table entries when points 4 and 1

are used to de�ne a basis. The models are allowed to undergo rotation,

translation and scaling.

Suppose that we wish to perform recognition of patterns of point features

that may be translated, rotated and scaled (similarity transformations). Two

points are needed to de�ne a basis. Figure 2.1 shows a model (M1) consisting

of �ve dots with position vectors p1;p2;p3;p4 and p5 respectively. We begin by

scaling the model M1 so that the magnitude of
�!

p4p1 in the Oxy system is equal

to 1. Suppose now that we place the midpoint between dots \4" and \1" at the

origin of a coordinate system Oxy in such a way that the vector
�!

p4p1 has the

direction of the positive x-axis. The remaining three points of M1 will land in

three locations. Let us record in a quantized hash table, in each of the three bins

where the remaining points land, the fact that modelM1 with basis \(4; 1)" yields

20

an entry in this bin. This is shown graphically in Figure 2.2.

o o

o

o

o

o

o

o

o

o
o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o oo

o

o

o
o

o

o

o

o

o

o

o

o
o

o

o

o

o

o

o

o

o

o

y

x

Figure 2.3 The locations of the hash table entries for model M1.

Each entry is labeled with the information \model M1" and the basis

pair (i; j) that was used to generate the entry. The models are allowed

to undergo rotation, translation and scaling.

Similarly, the hash table contains three entries of the form (M1; (4; 2)), three

entries of the form (M1; (4; 3)), etc. Each triplet of entries is generated by �rst

scaling the model M1 so that the corresponding basis has unit length in the Oxy

coordinate system, and then by placing the midpoint of the basis at the origin

of the hash table in such a way that the basis vector has the direction of the

21

positive x-axis. The same process is repeated for each ordered basis, and each of

the models in the database. Of course, some hash table bins may receive more

than one entry. As a result, the �nal hash table data structure will contain a list

of entries of the form (model; basis) in each hash table bin. Figure 2.3 shows the

locations of all the hash table entries for model M1.

In the recognition phase, a pair of points, (p�1;p�2), from the image is chosen

as a candidate basis. This ordered basis de�nes a coordinate system Oxy whose

center coincides with the midpoint of the pair; the direction of the basis vector

p�2 � p�1 coincides with that of the positive x-axis. The magnitude of the basis

vector de�nes the \unit" length for Oxy.

5

3

2
1

4

cast 1 vote

for each entry

in bin’s list

in the end histogram

all entries with one

or more votes

Model

Image

-1/2 1/2

y

x

Figure 2.4 Determining the hash table bins that are to be noti�ed

when two arbitrary image points are selected as a basis. The allowed

transformation is similarity.

The coordinates of all other points are then calculated in the coordinate system

de�ned by the chosen basis. Each of the remaining image points is mapped to

the hash table, and all entries in the corresponding hash table bin receive a

vote. Figure 2.4 shows this graphically. If there are su�cient votes for one or

22

more (model; basis) combinations, then a subsequent stage attempts to verify the

presence of a model with the designated basis matching the chosen basis point.

In the case where model points are missing from the image because they are

obscured, recognition is still possible, as long as there is a su�cient number of

points hashing to the correct hash table bins. The list of entries in each hash

table bin may be large, but because there are many possible models and basis

sets, the likelihood that a single model and single basis set will receive multiple

votes is quite small, unless a con�guration of transformed points coincides with a

model. In general, we do not expect the voting scheme to give only one candidate

solution (see [60]). The goal of the voting scheme is to act as a sieve and reduce

signi�cantly the number of candidate hypotheses for the veri�cation step.

For the algorithm to be successful it is su�cient to select as a basis tuple any

set of image points belonging to some model. It is not necessary to hypothesize a

correspondence between speci�c model points, and speci�c scene points, since all

models and basis pairs are redundantly stored within the hash table. Classi�cation

or perceptual grouping of features can be used to make the search over scene

features more e�cient, for example, by making use of only special basis tuples.

2.2.1.1 The Steps Behind the Idea

We described above how one conceptually determines the index of a hash table

bin during the two phases of geometric hashing for the special case of similarity

transformations. We next examine in greater detail the actual algorithm, and also

give the hash functions for the set of transformations that we will be considering

in this dissertation. Note that since both the model and the input data come

from a 2D grayscale image, the patterns of point features will be planar.

23

Case of Rigid Transformations. Assume that the patterns of point features

corresponding to the di�erent models can undergo only rigid transformations,

i.e., rotation and translation. A rigid transformation of any such pattern can be

uniquely de�ned by the transformation of two points.

5

4

3

2

1

O

y

x

Figure 2.5 The coordinate system de�ned by a two-point basis.

Assume that we are given a set of n point features belonging to one of the

models of our database, e.g. M1, and let p�1 and p�2 be an ordered pair of

points from that set. Then the vectors pr

x
, (p�2

� p�1
)= k (p�2

� p�1
) k and

pr

y
, Rot90(p

r

x
)1 form an orthonormal basis, and thus a coordinate system Oxy

(see Figure 2.5). Any point p in the plane can be represented in this basis, namely,

there is a unique pair of scalars (u; v), such that

p� pr

0 = upr

x
+ vpr

y
(2:1)

where pr

0 =
p�1+p�2

2
is the midpoint between p�1

and p�2
. In other words, the

center of the coordinate system Oxy coincides with pr

0.

The parameters u and v are the coordinates of the point p in the coordinate

system de�ned by the basis pair. If we apply a rigid transformation T to all of

1I.e. pr
y
is the vector obtained by rotating pr

x
counter-clockwise by 90 degrees.

24

the n points, then with respect to the new basis (Tpr
x
;Tpr

y
), the transformed

coordinates of Tp will again be (u; v). That is, (u; v) is invariant with respect

to transformation T, providing the corresponding points are chosen as the basis

pair, and providing the corresponding point is represented in that basis.

We will represent the object points by their coordinates in all possible basis

tuples. This is because for any given tuple, it is possible that one of the points will

be obscured, and thus the speci�ed tuple may not be present. More speci�cally,

the following preprocessing is carried out:

Preprocessing Phase

For each model m do:

(1) Extract the model's point features. Assume that n such features are found.

(2) For each ordered pair (p�1 ;p�2) of point features do:

(a) Compute the coordinates (u; v) of the remaining features in the coordinate

frame de�ned by the basis (p�1 ;p�2).

(b) After a proper quantization, use the tuple (u; v) as an index to a two-

dimensional hash table data structure, and insert in the corresponding hash

table bin the information (m; (p�1 ;p�2)), namely, the model number and the

basis tuple which was used to determine (u; v).

If M models are to be inserted in the database, it is clear that the time

complexity of this step is O(Mn3).

During the recognition phase, the algorithm uses the hash table data structure

that was prepared during the preprocessing phase. This phase proceeds as follows:

25

Recognition Phase

When presented with an input image,

(1) Extract the various points of interest. Assume that S is the set of the interest

points found; let S be the cardinality of S.

(2) Choose an arbitrary ordered pair, (p�1 ;p�2), of interest points in the image.

(3) Compute the coordinates of the remaining interest points in the coordinate system

Oxy that the selected basis de�nes.

(4) For each such coordinate check the appropriate hash table bin, and for every entry

found there, cast a vote for the model and the basis.

(5) Histogram all the hash table entries that received one or more votes during step (4).

Proceed to determine those entries that received more than a certain number

(threshold) of votes: each such entry corresponds to a potential match.

(6) For each potential match discovered in step (5), consider all the model-image feature

pairs which voted for the particular entry, and recover the transformation T that

results in the best least-squares match between all these corresponding feature

pairs. Since the computation of this transformation is based on more than two

point feature pairs, it will most likely be more accurate.

(8) Transform the edges and higher-order features of the model according to the re-

covered transformation T and verify them against the input image features. If

the veri�cation fails, go back to step (2) and repeat the procedure using a di�erent

image basis pair.

26

The time complexity for the recognition phase is O (S2Mn3), in the worst

case. This complexity results from the fact that all O(S2) possible image basis

pairs may have to be considered, requiring the histograming of O(Mn3) data

items each time. In reality, though, a handful of basis selections will su�ce, and

only a small percentage of all hash table entries will be histogramed for each such

selection.

Case of Similarity Transformations. Assume now that the patterns of point

features corresponding to the di�erent models can undergo similarity transforma-

tions, i.e. rotation, translation, and scaling. Again, a similarity transformation

of any such pattern can be uniquely de�ned by the transformation of two points.

The analysis is the same as in the case of the rigid transformation, with one

simple modi�cation: in the calculation of the transformed coordinates of a point

with respect to a basis pair, we normalize the basis pair to have unit length. The

orthonormal basis of the system Oxy (see Figure 2.5) de�ned by the basis pair

will now be ps

x
, (p�2

� p�1
) and ps

y
, Rot(ps

y
) respectively. Any point p in the

plane can be represented in this basis, namely, there is a unique pair of scalars

(u; v) such that

p� ps

0 = ups

x
+ vps

y
(2:2)

where ps

0 =
p�1+p�2

2
is the midpoint between p�1

and p�2
. In other words, the

center of the coordinate system Oxy coincides with ps

0.

The operations during the preprocessing and recognition phases are precisely

the same as described in the case of rigid transformations, with the understanding

that Eqn. 2.2 is now used to determine the invariants (u; v). The time complexities

of the preprocessing and recognition phases remain the same as in the case of the

27

rigid transformation.

Case of A�ne Transformations. The case where the patterns of point fea-

tures corresponding to the di�erent models can undergo a general linear (a�ne)

transformation is slightly di�erent. An a�ne transformation of any such pattern

can be uniquely de�ned by the transformation of three, instead of two, points.

O

x

4

3

5

2
1

y

Figure 2.6 The coordinate system de�ned by a three-point basis.

Assume that we are given a set of n point features belonging to one of the

models of our database, and let p�1, p�2, and p�3 be an ordered triplet of points

from that set. Then the vectors pa

x
, (p�2

� p�1
) and pa

y
, (p�3

� p�1
) form a

skewed basis, and thus a skewed coordinate system Oxy (see Figure 2.6). Any

point p in the plane can be represented in this basis, namely, there is a unique

pair of scalars (u; v), such that

p� pa

0
= upa

x
+ vpa

y
(2:3)

where pa

0
=

p�1+p�2+p�3

3
is the barycenter of the triangle formed by p�1

, p�2
and

p�3
. In other words, the center of the coordinate system Oxy coincides with pa

0.

The parameters u and v are the coordinates of the point p in the coordinate

system de�ned by the skewed basis. If we apply an a�ne transformation T to all

28

of the n points, then with respect to the new basis (Tpa

x
;Tpa

y
), the transformed

coordinates of Tp will again be (u; v). That is, (u; v) is invariant with respect

to the transformation T, providing the corresponding triplet of points is chosen

to de�ne the skewed coordinate system, and providing the corresponding point is

represented in that basis.

The operations during the preprocessing and recognition phases are precisely

the same as described in the case of rigid transformations, with the understanding

that: (i) Eqn. 2.3 is now used to determine the invariants (u; v), and (ii) the basis

tuple is a triplet. The time complexity of the preprocessing phase for the case of

the a�ne transformation is now O(Mn4), whereas that of the recognition phase

is O(S3Mn4).

Some General Observations. Before we conclude this section, we make sev-

eral observations. The �rst concerns the selection of the position of the center of

the coordinate system Oxy which is de�ned by the chosen basis. In all three cases

above, we made a seemingly arbitrary selection for that position. As we will see

in section 4.3, there is a well-founded justi�cation behind our choice.

Name c Allowed Transformation Preproc. Compl. Recog. Compl.

Fixed 1 Translation O
�
Mn2

�
O

�
S2Mn2

�

Rigid 2 Rotation/Translation O
�
Mn

3
�

O
�
S
3
Mn

3
�

Similarity 2 Rotation/Translation/Scaling O
�
Mn3

�
O

�
S3Mn3

�

A�ne 3 Linear/Similarity O
�
Mn4

�
O

�
S4Mn4

�

Table 2.1 The time complexities for the preprocessing and recogni-

tion phases, for several transformations.

The second observation concerns the time complexities of the preprocessing

and recognition phases. If c denotes the cardinality of the basis tuple, then the

29

time complexity of the preprocessing phase is O (Mnc+1), whereas the complexity

of the recognition phase is O (Sc+1Mnc+1). Table 2.1 summarizes these results.

Also, recall from the previous section that in the context of geometric hashing,

the hash functions assume values from the set R2. In general, the hash function

in the context of geometric hashing can have the general form

h : R
k
! R

l;

with k; l 2 Z
+. The hash function h is then said to be l-dimensional, and the

range of h will be referred to as the \hash space," or \space of invariants."

2.3 Geometric Hashing Systems

We conclude this chapter with a historical summary of the development of geo-

metric hashing methods for object recognition. This discussion is mostly limited

to treatments that led directly to the geometric hashing method or used the geo-

metric hashing terminology. It is clear that related ideas and essentially equivalent

concepts occurred frequently in the development of object recognition systems.

For example, the \feature sphere" used in Chen and Kak's 3D-POLY [23] is essen-

tially a hash function that permits indexing into a smaller set of models. Likewise,

work by researchers at IBM T.J. Watson Research Center has been based on ideas

of indexing into model bases for many years [14,20,21].

Geometric hashing shares certain philosophical underpinings with Hough

transform methods, and was in part motivated by related works [5,6]. The di�er-

ence is that Hough transform methods search over the space of transformations,

whereas hashing uses model/scene matches to establish interpretations. The idea

of geometric hashing, at least in its modern incarnation, has its origins in work of

30

Professor Jacob Schwartz [52]. The �rst e�orts were concentrated on the recog-

nition of 2D objects from their silhouettes. Hence, e�cient curve-matching tech-

niques were developed. The use of \footprints" to describe properties along the

curves was later extended by Wolfson and Hong [42] and resulted in a recognition

system that was able to recognize about ten 2D objects partially occluding each

other. The objects were taken from a library of a hundredmodels, and recognition

was performed allowing planar rigid motion (rotation and translation). A land-

mark in the application of curve matching and combinatorial optimization meth-

ods was their use to assemble (graphically rather than physically) all the pieces of

two hundred-piece commercial jigsaw puzzles, from separate photographs of their

individual pieces [101]. The assembly was based on shape information only. In all

two-dimensional curve-matching work, footprints were used to limit the number

of candidate curves accessed by the matching system.

However, hash functions (still called footprint information) were much more

essential when used for 3D curve matching obtained from depth data of objects.

Using depth data obtained from a fast but approximate depth sensor [22], Wolf-

son and Kishon developed a practical method for locating and matching curves

on rigid 3D objects [54], and extended the work by using a di�erent hashing tech-

nique [84]; all 3D curve-matching systems used measures of the local curvature

as index values into a table.

Application of the geometric hashing idea as an approach to model-based

vision object recognition was introduced by Lamdan, Schwartz, and Wolfson.

Much of the work is summarized in the dissertation of Lamdan [58]. E�cient

algorithms were developed for recognition of at rigid objects assuming the a�ne

approximation of the perspective transformation [61,62] and the technique was

31

also extended to the recognition of arbitrary rigid 3D objects from single 2D

images [59]. An integrated discussion of both the object-matching and the curve-

matching aspects can be found in [45], and related demonstrations of geometric

hashing applications are described in [61,62].

Geometric hashing systems have since been built and explored by many re-

search groups. It is fair to say that most implementations of geometric hashing

systems seem to work as well as classical model-based vision systems, and deliver

in terms of the promise of greater e�ciency.

Stein and Medioni [89] present a system for the recognition of planar objects

from intensity images. The system uses a hash table that contained the gray-

encodings of groups of consecutive edge segments (\supersegments"), of varying

cardinalities. For recognition of general 3D objects from single 2D images, promis-

ing results have been obtained in the dissertation of Lamdan [58], where many

viewpoint-centered models are generated of simple 3D models, and the work of

Gavrila and Groen [34], who generate viewpoint-centered models based on ex-

periments that determine limits of discriminability. Stein and Medioni's TOSS

system [90] uses \structural hashing" to recognize 3D shapes from dense range

data from which characteristic curves and local di�erential patches are extracted.

The method allows only for rigid transformations (rotation and translation), and

despite the use of high-dimensional indices, the veri�cation stage is very costly.

Forsyth et al. [33] present and use descriptors based on pairs of planar curves;

the descriptors are invariant under a�ne and perspective transformations. They

obtain good results, but their method is sensitive to occlusion and its performance

depends strongly on the quality of the segmentation.

For the recognition of rigid 3D curves extracted frommedical imagery, Gu�eziec

32

makes use of hashing methods to speed matching based on spline curve approxi-

mations [40]. For recognition of 3D objects from range data, Flynn and Jain [32]

use hashing and local feature sets to generate hypotheses (without a voting pro-

cedure), and report a more e�cient search than a constrained search (hypothesize

and verify) approach, when applied to two dozen models. Representing 3D ob-

jects by means of their characteristic view, and regarding object recognition as a

graph matching problem, Sossa and Horaud [86] develop hash functions for graphs

to provide rapid matching capabilities.

Parallel implementations of geometric hashing, for a Connection Machine,

have been attempted by Medioni [17]. A parallel implementation developed for

this dissertation has been described elsewhere [78,79,80,81].

There have been numerous e�orts to add an error model to geometric hash-

ing, and to investigate its performance in the presence of positional noise of the

features. Costa et al. [25] investigate the variation of the standard hash func-

tions in the presence of noise, and suggest a weighted-voting scheme. Lamdan

and Wolfson [60] investigate both analytically and empirically the false-alarm

rate, and conclude that acceptable �ltering is possible, although a degradation

in performance can be expected for a�ne-invariant matching. Grimson and Hut-

tenlocher [36] give pessimistic predictions for a�ne-invariant matching using geo-

metric hashing. Rigoutsos and Hummel [79,80] look at error rates in the presence

of noise for both similarity and a�ne invariance, and conclude that weighted vot-

ing is essential for recognition in the a�ne case. Gavrila and Groen [34] report

good �ltering capabilities of similarity-invariant model matching in the presence

of noise. Fischer et al. apply the geometric hashing method to the problem of

structural comparison of proteins [29].

33

There is also a number of corporate research groups that are using geometric

hashing methods for US Defense Department-funded projects. We are aware of

geometric hashing investigations at I-Math Associates, in Orlando, Florida, at

Martin Marietta Denver, and at The Analytic Sciences Corporation.

34

Chapter 3

Exploiting Parallelism

In this chapter, we examine the issue of parallelism in the context of geometric

hashing. Two parallel algorithms that realize the geometric hashing method are

described. In addition to these two algorithms, a novel hypercube-based radix-

sort algorithm as well as a number of general performance enhancements are

presented.

The �rst algorithm is based on a \connectionist" view of the geometric hashing

method and is designed for an SIMD hypercube-based machine. The algorithm

is data parallel over the hash table entries and regards geometric hashing as a

connectionist algorithm with information owing via patterns of communication.

The second algorithm is more general, and relies on a \data broadcast" ap-

proach. This algorithm is data parallel over combinations of small subsets of

model features, and is inspired by the method of inverse indexing for data re-

trieval [87]. The algorithm treats the parallel architecture as a source of \intelli-

gent memory."

Both algorithms are sequential over the observed image features. This is

a fundamental design decision and is motivated by the fact that the geometric

35

hashing method greatly speeds the search over the database containing the models

and the anchor points within the models, while still requiring a search over the

set of features in the image. However, once a set of candidate features (a basis

tuple) is selected such that the features belong to a model embedded in the scene,

recognition of the model will follow.

An important step during the recognition phase is the histograming of those

hash table entries that received one or more votes during the voting process.

One of the approaches to histograming is the use of sorting: a novel and simple

hypercube-based radix-sort algorithm is described.

3.1 Parallelizability of Geometric Hashing

One of the major advantages of the geometric hashing method is that it is inher-

ently parallelizable. Its parallel nature manifests itself both in the preprocessing

(o�-line) and the recognition (on-line) phase of the algorithm. There are several

ways that the algorithm can be parallelized, depending on the mapping of data

items to the available processing elements (PE's).

Let us recall the description of the preprocessing phase from section 2.2.1.

We assume that the database will contain M models each consisting of n point

features, and that the models are allowed to undergo similarity transformations

(thus, two points are needed to de�ne a basis tuple).

Parallelism in the Preprocessing Phase. During the creation of the hash

table data structure, and for a given model and basis selection, we compute the

hash invariants for each subset of model features comprising the selected basis

and each of the remaining (n� 2) model features. Clearly, this computation can

36

proceed in parallel. Depending on the number of available PE's, the computations

corresponding to the n(n � 1) distinct ordered bases possible may also proceed

in parallel. Each of the n(n � 1)(n � 2) PE's will compute one hash location in

O(1) time. Finally, if at least Mn(n � 1)(n � 2) PE's are available, the hash

invariants corresponding to all possible (basis; model � feature) combinations

can be computed in O(1) parallel time.

Once a set of hash invariants is available, the relevant (model; basis) infor-

mation can be stored in the appropriate hash bins, again in parallel. This may

result in contention, when more than one PE's, having computed the same hash

invariant, attempt to deposit distinct (model; basis) tuples in the same hash bin.

A simple protocol can be used to impose an arbitrary ordering on the compet-

ing PE's.

Parallelism in the Recognition Phase. During the recognition phase, S fea-

tures from the feature extraction process are presented. Once a basis has been

selected, hash invariants must be computed for each set of features composed of

the selected basis and one of the remaining S � 2 scene features. Assuming the

availability of at least S PE's, the computation of these invariants can proceed in

parallel and the appropriate hash bins are noti�ed. If there is at least as many

PE's as hash bins, then the list of entries associated with each bin can be stored in

the local memory of a PE which is assumed to control that bin. The local lists can

then be traversed in parallel, with the longest such list dominating the required

time for the list traversal. Finally, as we will see in section 3.4, the histograming

of the votes received by the various (model; basis) combinations can also proceed

in parallel.

37

In the above description, we use only one basis pair during the recognition

phase. However, by repeating the coordinates of the S interest points, we can

employ multiple bases at once, at the expense of additional bookkeeping on a per

processor basis. For example, if the input images have a maximum of 200 interest

points, as many as 256 bases can be computed at the same time on a 64K-

processor machine. The PE assigned to a hash bin must maintain a separate

counter for each of the 256 bases. The i-th such counter counts the number

of times that the bin is hit by invariants that are computed in the coordinate

system de�ned by the i-th basis. During the histograming step, messages must

be \tagged" with one of 256 possible identi�ers, before performing the evidence

accumulation.

3.2 Some De�nitions

We will now give several de�nitions that will facilitate the description of the two

algorithms.

Typically, two separate components can be (logically and/or physically) iden-

ti�ed in any SIMD supercomputer. One component is the array of processors

executing the various instructions. The other component is a traditional sequen-

tial computer that controls the array of processors. The role of the sequential

computer is to provide a familiar environment to the users of the supercomputer

for program development and execution. User programs execute on the sequen-

tial computer which translates the segments of code that are to be executed in

parallel into sequences of instructions plus data; these sequences are subsequently

relayed to the various processors of the array with the help of a communication

network. We will be referring to the sequential machine as the host.

38

SIMD supercomputers are the typical target architectures for implementing

data parallel algorithms. Data parallelism separates tasks to be performed con-

currently according to the indices of items in the data structures participating

in the algorithm. This indexing e�ectively associates one data item with one

processor from the processor array. The number of processors comprising the ar-

ray is typically limited to a few tens of thousands, whereas in many applications

the data sets have cardinalities that are in the order of millions of items. For

this reason, software support provides the user with a virtual processor facility.

This facility multiplexes the physical processors of the processor array in order

to simulate a machine with many more than the actually available processors.

The local memory of each physical processor is divided evenly among the virtual

processors it simulates, and all physical processors simulate the same number of

virtual processors. The number of virtual processors simulated by one physical

processor will be referred to as the \virtual processor ratio," or \VPR" [95]; a

VPR value of r incurs an at least r-fold slowdown in execution speed.

Finally, many applications consist of more than one data set that are mapped

to the array of processors during the lifetime of the program. We will call the set

of virtual processors to which a given data set is mapped a \virtual processor set,"

or \VP set" [95] for short. At any time during program execution, more than

one VP set may be in existence; these VP sets will correspond to distinct data

sets. Clearly, the physical processors simulating the di�erent VP sets will not be

disjoint, implying that at most one VP set can be active at any moment. Distinct

VP sets can communicate with one another either through message passing, or

by sharing variables.

39

3.3 Design Issue

Three data sets that can be identi�ed in the description of the recognition phase

(section 3.1) are: the set of the coordinates of the input image features, the set

of the coordinate tuples corresponding to all possible basis tuples formed from

image features, and the set of hash table entries.

The discussion implicitly assumed the following mapping:

� The coordinates of the image features comprised the �rst VP set;

� The hash entries belonging to a given hash bin were coalesced together into

one group; each such group was mapped to one processor, thus forming the

second VP set.

The coordinates of a selected basis are broadcast by the host to the processors

that implement the �rst virtual processor set. This approach makes the algorithm

data parallel over the image features, and serial over the set of basis tuples.

Alternatively, each member of the set of basis tuples could be associated with

one processor; the coordinates of the image feature points could then either be

broadcast by the host, or held in temporary storage. This mapping results in a

di�erent approach to performing geometric hashing. This latter approach is data

parallel over the set of basis tuples, and serial over the image features.

As can be seen, for a given problem, there is relative exibility in deciding

which data sets are mapped to the available processors, and how. In our descrip-

tion of the parallel algorithms for performing geometric hashing, an alternative

mapping will be presented.

40

3.4 Building-block Algorithms

Before we proceed with the description of the algorithms for performing geometric

hashing in parallel, we present certain building-block algorithms that are funda-

mental to the programming of a hypercube-based SIMD architecture and which

will be used as \subroutines" by our algorithms. We assume a concurrent-read-

exclusive-write (CREW) model of computation: any pattern of concurrent reads

to neighboring processors uses unit time. (Accesses are permitted along di�erent

dimensions in the same clock cycle).

3.4.1 The p-product

The �rst of the building block algorithms is the one needed to perform a p-product.

The p-product is de�ned as follows: given p �nite sets A1 = fa1;i1g
`1
i1=1

, A2 =

fa2;i2g
`2
i2=1

, A3 = fa3;i3g
`3
i3=1

, . . ., Ap = fap;ipg
`p
ip=1

, the p-product A1 � A2 � . . .Ap

is the set of all the ordered p-tuples f(a1;i1 ; a2;i2; . . . ; ap;ip)g
`1;`2;...;`p
i1=1;i2=1;...;ip=1

.

One way to compute the p-product is to perform an outer product p�1 times.

An outer product for the Connection Machine is succinctly described in [66].

An extension of the method leads to a direct p-product computation, which we

describe next.

Using standard Gray-code embedding algorithms, we con�gure the hypercube

as a p-dimensional array of size `1 by `2 by . . . by `p. Let xj, j = 1; 2; 3; . . . ; p

denote the j-th axis of this con�guration. We assume, purely for convenience, that

the `i's are powers of 2, and that a su�cient number of processors is available.

The processors are indexed by their coordinates (i1; i2; . . . ; ip) and, initially,

data element a1;i is contained in processor (i; 0; . . . ; 0), a2;i in processor (0; i; . . . ; 0)

41

etc. In other words, the elements of set Aj are spread along the xj-axis, j =

1; 2; . . . ; p.

The algorithm has two phases. During the �rst phase, the a1;i data is spread

along a row in the direction of the x2-axis, the a2;i data is spread in the direction

of the x3-axis etc. In general, the aj;i data is spread along a row in the direction

of the xjmodk+1-axis. Figure 3.1 shows a simple example with three sets A1, A2,

and A3 (for the case of a triple product).

In the second phase, the data on each hyperplane is spread into the entire

hypercube, �rst spreading the data on the (x1; x2; . . . ; xk�1)-plane along the xk-

axis, then the data on the (x2; x3; . . . ; xk)-plane along the x1-axis, etc. Finally,

the data on the (xk; x1; . . . ; xk�2)-plane is spread along the xk�1-axis.

Upon completion, processor (i1; i2; . . . ; ik) will have received datum a1;i1 from

(i1; 0; . . . ; 0), datum a2;i2 from processor (0; i2; . . . ; 0), etc., and thus has the p-

product element (a1;i1 ; a2;i2; . . . ; ak;ik).

The operation of spreading data along a single axis that occurs during both

phases can clearly be performed inO(`j) time, since nearest neighbors are adjacent

in the hypercube, but can in fact be completed in O(log `j) time. This is because

we may use a recursive doubling scheme to spread the data rapidly along the

axis. (Algorithms of this kind are described by Hillis [41].) In the parlance of the

Connection Machine Paris (TM) language, the operation is a \scan with copy."

Power-of-two communication along each axis is provided by O(1) communication

cycles due to the Gray-code embedding. Speci�cally, if G(i), i = 0; 1; . . . ; n�1, is

a Gray-code (n a power of 2), then it can be shown that G(i) andG((i+2d) mod n)

di�er in at most two bits, and thus can be connected by two communications cycles

on a hypercube. This is true for any value of d.

42

2, l
2

1, l1

z

y

x

a a
2
ai

a
a

a 2,1 2,2 2,3

a

a

a

a a a a

3,1

3,2

3, 3l

a

1,1

1,2

1,3

i1, 3,i
1

2,
3

x

z

y

Figure 3.1 The two stages of the parallel p-product computation for
the simple case where p=3 (3-product).

43

3.4.2 Histograming

The second building-block algorithm is needed to perform histograming in par-

allel. Histograming can be de�ned as follows: given a collection of data faig
D

i=1
,

such that each ai is an element of a �nite collection of possible values, say

ai 2 f1; 2; :::; V g, determine a count of the number of elements equal to each

possible output value, i.e., H(k) = #fi j ai = kg. The value H(k) is also known

as the frequency of value k.

As pointed out in [66], there are three distinct approaches to parallel his-

tograming:

(1) Sequentially iterate, from 1 through V ; for each value k, allow each ai to

mark itself if it is equal to k, and then perform a parallel sum to count the

number of elements that were marked. Since parallel summing is O(logD),

this method has parallel complexity O(V logD).

(2) Perform additive writes; each processor looks at its value ai, and sends a

message to processor ai to increment an accumulator. There are two virtual

processor sets, the initial set with D processors, one per data element ai,

and a set of V processors in the output, containing one accumulator per

processor. The parallel complexity on an SIMD hypercube without addi-

tive writes is O(log2D + log V), although additive writes will typically be

handled in an average-case more e�cient method. In practice, the mes-

sages to increment accumulators will be combined in a probabilistic routing

network, to avoid serialization at the location of the accumulators. The

complexity is in all cases at least
(logD), since if all messages are destined

to a single processor, then the combination of the messages is equivalent to

44

a global sum, but in practice, the complexity will depend upon V and D,

the e�ciency of the routing algorithm and the combining of messages in the

router.

(3) Sort the data, so that a�(i) (where �(�) is a permutation) forms a nonde-

creasing sequence, for i = 1; :::D. For example, the Batcher bitonic sort al-

gorithm operates on a hypercube machine in O(log2 D) time. After sorting,

each processor can determine if the data in the processor to its left is di�er-

ent. If so, it marks itself as the head of a constant-data block. Since each

processor needs to be able to communicate with its neighboring processor

for this step, the processors should be con�gured as a one-dimensional array

embedded in the hypercube, using a Gray-code embedding. The Batcher

sort process is still e�cient in this con�guration, although with a penalty in

the proportionality constant. Next, a segmented parallel pre�x sum is used

to count the number of processors in each constant-data block and this infor-

mation is delivered to the head processor of each block. Finally, each head

processor sends the information about the cardinality of its block to the ap-

propriate histogram bin, a�(i); this is the processor whose index is equal to

the data item shared by the processors of the block. Since the destinations

of the messages are distinct and ordered relative to the indices of the source

indices, these messages can be sent using anO(logD+log V) contention-free

algorithm of the sort described by Nassimi and Sahni [73]. The total parallel

time complexity of histograming by sorting is thus O(log2 D + logV).

For our purposes, the histogram vector is not needed; rather, we only need

knowledge of the few maximum-vote-getting values. To this end, the �nal stage

45

of sending messages (method (3) above) can be omited, and the maximum counts

among the marked processors can be determined and relayed to the front end.

Thus the process of �nding the maximum histogram bin can be accomplished in

O(log2D) time.

In the actual implementation of our system, to be described later, we used

method (2) above. However, the most e�cient implementation would have been

to use method (3) in conjunction with a radix-sort algorithm. Lin and Kumar

[65] provide a hypercube-based radix-sort algorithm; however, because they sort

from high-order bit to low-order bit, the algorithm is unnecessarily complicated.

In the next section, we present a simpler method for performing radix sorting on

a hypercube.

3.4.2.1 A Novel Radix-Sort Algorithm

We now describe a novel algorithm for performing radix sorting on a hypercube.

This algorithm has the same time complexity as the one described by Lin and

Kumar [65], but it is much simpler. The time complexity of the algorithm is

O(log V � logD).

The algorithm is outlined in Figure 3.2, whereas Figure 3.3 illustrates the

algorithm for a simple example data set.

3.5 The Geometric Hashing Connectionist Al-

gorithm

In this section, we present the �rst of the two data-parallel algorithms for per-

forming geometric hashing on a hypercube-based SIMD architecture.

The algorithm is based on a \connectionist" view of the geometric hashing

46

Assume that the values in the sequence faig
D
i=1 to be sorted are represented in binary bit

form, and let fb`;igDi=1 be the sequence of the `-th from-the-right bits. We sort the values
in a stable fashion.

For ` beginning at zero, and successively increasing to logV � 1, we do the following:

a: Mark all processors with b`;i = 0.

b: Rank these processors: each marked processor determines its relative position among
all marked processors using a parallel pre�x sum (Nassimi-Sahni [73] describe a
RANK algorithm). Let ri be the rank of a processor if it is marked and t be the
maximum ri.

c: Mark all processors with b`;i = 1.

d: Rank these processors as well; let si be the rank of the i-th such processor.

e: Move the ai data: every processor with b`;i = 1 sends its data ai to processor t+ si,
while every processor with b`;i = 0 sends its data to processor ri. Because the paths
of communication are ordered, this routing can be completed in O(logD) time, using
the CONCENTRATE and DISTRIBUTE algorithms from [73].

After the �rst iteration, all items are stably sorted with respect to their low-order bit. Upon
termination, the sequence faigDi=1 will be sorted.

Figure 3.2 Simple Radix Sort on a Hypercube.

010 110 000 011 010101

010 110 000 010 101 011

000

000

101 010

010

010

010

011

011 101

110

110
OUTPUT

key: MSB

key: LSB

INPUT

Figure 3.3 Radix Sort: an illustration.

47

method and is data parallel over the hash bin entries and the image features.

The database is assumed to contain M models; each model m has an associated

set of features, Fm = ffm;kg
n

k=1
= f(xm;k; ym;k)g

n

k=1
, containing the coordinates of

the model's n features. Without loss of generality, the coordinates of the features

of all models are assumed to reside in the local memory of the host. The number

of features extracted from the input image is S, and the hash table consists of

B bins. Since we do not wish to restrict ourselves by making any assumptions

regarding the transformation that the database models are allowed to undergo,

the cardinality of the basis tuple will be a parameter, and equal to c. Finally, the

availability of �(Mnc+1) PE's is assumed.

3.5.1 Connectionist Algorithm: Preprocessing Phase

During the preprocessing phase, the hash table is created for the set of M models.

Four virtual processor sets participate in this phase: the model feature set V1, the

(c+1)-product set V2, the hash bin set V3, and the set of hash bin entries V4. This

phase is completed in two passes. The purpose of the �rst pass is to determine

the number of entries that will hash to each bin of the hash table, when all the

models in the database are considered. During the second pass the hash entries

are actually stored in the hash table.

Preprocessing Phase: Pass 1

For each model m do:

Stage 1: The host relays the coordinates of the m-th model's features to the n

PE's of set V1: the i-th element of set Fm will reside in the local memory of the

i-th PE of set V1.

48

Stage 2: The (c+1)-product (Fm)
c+1 is computed using the p-product algorithm

described in section 3.4. Each of the nc+1 processors of set V2 now contains a

(c+ 1)-tuple of the form
h
(xi1 ; yi1) ; (xi2 ; yi2) ; . . . ;

�
xi(c+1) ; yi(c+1)

�i
2 (Fm)

c+1. The

�rst c points of each such tuple de�ne an ordered basis and thus a coordinate

system. Some of those bases are formed by repeating the same feature point, and

thus are degenerate; the corresponding virtual processors will be disabled and will

not participate in the rest of the computation. Additionally, those processors in

charge of tuples where the (c + 1)-st point coincides with one of points forming

the basis will be disabled as well. The remaining processors proceed to compute

the coordinates of the (c + 1)-st point in the coordinate system de�ned by the

basis. Subsequently, these coordinates are converted to a hash bin number, i.e.

the index h of a processor in the two-dimensional set V3.

Stage 3: Each processor of V2, with information destined for a certain hash bin,

sends an additive write with increment 1 to an accumulator in that bin. This is

e�ected by sending a message to the processor of V3 in charge of the corresponding

hash bin. A subsequent parallel pre�x operation on the resulting counts allows us

to organize the set V4 of hash entries into a one-dimensional array so that entries

belonging to the same hash bin occupy a contiguous block of processors. There

is a total of B such blocks, and the length of each block is precisely equal to the

number of expected entries in the corresponding hash bin. The �rst processor of

a block is assumed to head the block. Finally, a map is built: the h-th processor

of V3 stores locally the index Th of the V4 processor heading the block of entries

for the h-th hash bin.

49

Figure 3.4 details the �rst pass for the case where the basis tuple consists of

two points.

Preprocessing Phase: Pass 2

For each model m do:

Stage 1: The same as in the �rst pass.

Stage 2: The same as in the �rst pass.

Stage 3: At this point, each of the active processors of V2 has computed the

index h of a processor in the two-dimensional set V3; the latter will receive a

message requesting the index of the next available processor in the group of V4

processors headed by Th. Clearly, it may happen that more than one processors of

V2 send a request to the same V3 processor. A variable in the local memory of the

h-th processor of V3, initially equal to Th, can provide the necessary information.

Combining this with an SIMD version of a parallel Fetch-and-Add resolves the

contention simply and e�ectively. This stage concludes with the active processors

of V2 sending a tuple of the form (m; (i1; i2; . . . ; ic)) to the appropriate processor

of V4.

Figure 3.5 details the second pass for the case where the basis tuple consists of

two points.

The hash table is represented by two data structures. The �rst of the two

structures (set V3) contains one processor for each hash bin h, and gives the

pointers to a head processor Th of a block of data in the second structure (set V4).

50

1

e

a

t

s

g

s

t

a

g

e

2

V
1

V
2

V
3

s

t

a

g

e

3

V
1

Disable PE’s where:

Active PE’s compute hash bin index and
send message ‘‘increment local counter

x ,yn

x
x
x

H O S T

VP set

VP set

VP set

Compute relative coordinates.

Disable PE’s with bad basis.

i=ki=j j=koror .

Compute triple product.
Triplets will reside in first n PE’s.

3

,y
,y
,y

x ,y1 x ,yk1 k n

k
j
i i

j
k

Host relays the coordinates
mof

of set .

3

 -th model’s features to the PE’s

by 1’’ to corresponding PE of V .

Figure 3.4 The �rst pass of the preprocessing phase for the case

where the basis tuple consists of two points.

51

Active PE’s compute hash index and

H H H

0

h
request the index of next available PE in
group headed by Th .

Active PE’s send V4 .

1T
i

T

VP set V
4

VP set V
3

VP set
2

V

to appropriate PE in (m,(i,j))

Figure 3.5 The third stage of the second pass of the preprocessing

phase for the case where the basis tuple consists of two points.

This latter structure consists of at most M (n
c
) (n� c) c! hash bin entries which

are of the form (m; (i1; i2; . . . ; ic)).

3.5.2 Connectionist Algorithm: Recognition Phase

Four virtual processor sets participate in the recognition phase: the feature co-

ordinate set V1, the hash table sets V2 and V3, and the histogram bin set V4. We

assume that the coordinates of the features that were extracted from the input

image reside in the local memory of the S processors of the set V1: the coordi-

nates of the i-th image feature reside in the memory of the i-th processor of V1.

The hash table is preloaded from storage into the local memory of the processors

comprising the sets V2 and V3: the VP set V2 contains the pointers to the heads

of the blocks of entries whereas V3 is the one-dimensional array of concatenated

lists of hash entries. This phase of the algorithm proceeds in three stages.

52

Recognition Phase

Stage 1: The host selects a basis tuple (a set of c image features) and relays

its coordinates to the S processors of V1. Each processor in V1 combines the

coordinates of the feature stored locally with the broadcast tuple to compute the

feature's coordinates in the system de�ned by the basis. The coordinates are

subsequently used to determine the index of the hash bin (processor in V2) to be

noti�ed.

Stage 2: In the second stage, messages saying \you receive one vote" are sent

by the processors of V1 to the appropriate processors in V2. The messages are

sent using additive writes and the general routing facilities provided by the in-

terconnection network; multiple votes destined for the same recipient processor

combine en route to the destination.

Stage 3: In the last stage, every processor h from the set V2 that received

one or more messages in the previous stage relays the number of votes that it

received to the block of processors Th through Th+1 � 1 of V3. This operation

can be done, for example, using a modi�ed version of Nassimi-Sahni's GENER-

ALIZE algorithm [73]. Alternatively, every processor h from set V2 can send a

message containing the number of votes (which might be zero) to the processor

Th in V3. Using a parallel pre�x computation with \copy from the left" as the

binary associative operator, processor Th can then spread the count to the re-

maining members of its group. At this point, we wish to histogram the entries

of the processors in the set V3 using the multiplicities determined in the previous

step. Use of the radix sort algorithm that was described in section 3.4.2.1 o�ers

53

advantages from a complexity viewpoint. Each processor of V4 is associated with

one histogram bin representing a tuple of the form (m; (i1; i2; . . . ; ik)). Upon ter-

mination of the histograming step, each of the M (n
c
) c! processors of V4 contains

the frequencies of the corresponding (model; basis) combination. A thresholding

operation of the vote tallies over the processors of the set V4 recovers the winning

(m; (i1; i2; . . . ; ik)) combinations. These combinations are communicated back to

the host which will verify the existence of matching models.

Figure 3.6 details the recognition phase for the case where the basis tuple

consists of two points.

3.5.3 Time Complexity

For the time complexity of the algorithm, we assume that M (n
c
) (n�c)c! PE's are

available. The interconnection network is a hypercube, and the concurrent-read-

exclusive-write (CREW) model of computation is adopted. We further assume

that M > n, M > S, and Mnc+1 � B.

Preprocessing Phase: The complexity of this phase is dominated by the third

stage of the second pass. During that stage, the �(nc+1) processors of V2 begin by

requesting the index of the processor in V4 that will eventually receive a message

of the form (m; (i1; i2; . . . ; ic)) to a processor in V3. Although, in principle, it

is possible that all the active processors of V2 send their request to the same

processor of V3, thus forcing serialization and increasing the time complexity of

this step to O(nc+1 logB), fewer than a small constant number of collisions are

54

h1 2h kh hk+1 Sh

Interest Points (~ 200)

.hi

V
3

VP set V
1

‘‘you receive one vote.’’

all the members within
a group.

Spread number of votes to

the hash table bins saying
Active PE’s send messages to

DATA

Host broadcasts
selected basis

B B B

Send number of votes to

of entries.
head PE of proper group

={(

B

all PE’s in
Histogram the entries of

1

e

a

t

s

s

t

a

g

e

2

s

t

a

g

e

3

g

a message.

x ,y1 1 xk,yk xS,yS

H

H

H H H

H H H

x’,y’),(x,y)}B

Model:1 Basis:1 Model: Basis:

Recover winning combination.

 M n(n-1)

Disable the two PE’s where:
(x,y)=(x , yi i), (x’, y’)=(x , yi i).

Compute hash bin index

that received

VP set V
3

VP set

VP set V
4

V
2

Figure 3.6 The recognition phase of the parallel geometric hashing

connectionist algorithm, for the case where the basis tuple consists of

two points. Note how tokens ow from one set via connections to the

next set.

55

expected to occur on the average.1 As a result, the time complexity of this

step is O(logB) per database model. The active processors of V2 continue by

forwarding a message of the form (m; (i1; i2; . . . ; ic)) to the appropriate processor

of V4; it should be noted that no two processors of V2 will forward to the same

target processor of V4. This second step can be completed in O (log (Mnc+1))

time per database model. The time complexity of the preprocessing phase is

thus O (M log (Mnc+1)) which is the same as O (M log (Mn)). The preprocessing

phase is very expensive, even when carried out in parallel, but this is of no concern

since it is executed o�-line.

Recognition Phase: The time complexity of the recognition phase, per broad-

cast basis tuple, is dominated by the histograming step. In fact, the time com-

plexity of the remaining operations of the recognition phase is no worse than

O (log (Mnc+1)) which is the same as O (log (Mn)). The complexity of his-

tograming depends on the particular method that is used; if Batcher's bitonic

sort [76] is used to perform the histograming, the time complexity of the recog-

nition phase is O
�
log2 (SMnc+1)

�
or equivalently O

�
log2 (SMn)

�
. On the other

hand, if the radix sort algorithm that was described in section 3.4.2.1 is used, the

time complexity of the recognition phase drops to O (log (SMnc+1) log (Mnc)) or

O (log (SMn) log (Mn)).

3.6 The Hash-location Broadcast Algorithm

In this section, we present the second of the two data-parallel algorithms for

performing geometric hashing.

1This, in fact, is a basic characteristic of geometric hashing.

56

Unlike the �rst algorithm which is based on a \connectionist" view of the

geometric hashingmethod, the second algorithmmakes use of the parallel machine

as a source of \intelligent memory." The algorithm is inspired by the method of

inverse indexing [87], and is data parallel over combinations of small subsets of

model features.

The main characteristic of the connectionist algorithm is that the various

(model; basis) combinations are the data items; these combinations are grouped

by means of the hash table according to the invariant tuples that they generate.

On the other hand, in the broadcast approach, the data items are the invariants

generated by the (model; basis) combinations, and they can be grouped based on

the feature combinations that generate these combinations.

Again, the database is assumed to contain M models, and each model m

has associated with it a set of features, Fm = f(xm;k; ym;k)g
n

k=1
. Without loss of

generality, the coordinates of the features of all models are assumed to reside in the

local memory of the host computer. The number of features extracted from the

input image is S. Furthermore, we will make no assumptions with regard to the

transformation that the database models are allowed to undergo; the cardinality

of the basis tuple will be a parameter, and equal to c. Finally, the availability of

�(Mnc+1) PE's is assumed.

3.6.1 The Data Structure

The main idea behind the algorithm is the following. Let us assume that we

have formed a basis tuple, B, by selecting a set of c features from model m. The

coordinates of each of the remaining n� c features of model m, in the coordinate

system de�ned by B, will need to be computed; this will generate a total of

57

n � c coordinate pairs. In other words, there will be one coordinate pair for

every subset of model features comprising the selected basis B and each of the

remaining n � c features of m. One could conceivably dedicate one PE for each

such combination, requiring (n
c
) (n� c)c! PE's per database model; each such PE

holds the corresponding coordinate pair.

Evidently, a data structure that is di�erent from the hash table data structure

of section 3.5 is required. The data can be regarded as a collection of records of

the form (m; (i1; i2; . . . ; ic) ; k; (x; y)), where (x; y) is the hash location to which

the k-th feature of model m maps under the basis tuple B = (i1; i2; . . . ; ic).

This information can be organized in a (c + 2)-dimensional table indexed by

(m; (i1; i2; . . . ; ic) ; k). Recall that i1; i2; . . . ; ic; k are integers between 1 and n; m

is an integer between 1 and M . Clearly, not all of the M (n
c
) (n � c)c! locations

will be used: for example, the entries of the table corresponding to degenerate

bases will be empty. Similarly, the table locations corresponding to feature sub-

sets where the k-th model feature has also been used to form B will also be

empty. Then self-index of a table location su�ces to recover the correspond-

ing (m; (i1; i2; . . . ; ic) ; k) information. In the sequel, we will refer to this data

structure as the hash-function table.

3.6.2 Hash-location Broadcast: Preprocessing Phase

During the preprocessing phase the hash-function table is constructed for the set

ofM models. Three sets of virtual processors participate in this phase: the model

feature set V1, the (c+1)-product set V2, and the hash-function table set V3. Each

processor of V3 is associated with exactly one table location. This phase consists

of three stages.

58

Preprocessing Phase

For each model m do:

Stage 1: The host relays the coordinates of the m-th model's features to the n

PE's of set V1: the i-th element of set Fm will reside in the local memory of the

i-th PE of set V1.

Stage 2: The (c+1)-product (Fm)c+1 is computed using the p-product algorithm

described in section 3.4. Each of the nc+1 processors of set V2 now contains a

(c+ 1)-tuple of the form
h
(xi1 ; yi1) ; (xi2 ; yi2) ; . . . ;

�
xi(c+1) ; yi(c+1)

�i
2 (Fm)

c+1. The

�rst c points of each such tuple de�ne an ordered basis and thus a coordinate

system. Some of those bases are formed by repeating the same feature point, and

thus are degenerate; the corresponding virtual processors will be disabled and

will not participate in the rest of the computation. Additionally, those processors

in charge of tuples where the (c + 1)-st point coincides with one of the points

forming the basis will be disabled as well. The remaining processors proceed to

compute the coordinates of the (c+ 1)-st point in the coordinate system de�ned

by the basis.

Stage 3: Each processor of V2 with information destined for a certain table

location, sends a tuple of the form (m; (i1; i2; . . . ; ic) ; k; (x; y)) to that location.

Since the destinations of these messages are pairwise distinct, no collisions could

possibly occur during this stage.

59

1

e

a

t

s

g

s

t

a

g

e

2

s

t

a

g

e

3

V
1

,yxk k

,yx jj

,yixi

,yx1 1 ,yxk k ,yxn n

H O S T

Host relays the coordinates
of
of set .

 -th’s models features to the PE’sm

Compute triple product.

Disable PE’s where:

Disable PE’s with bad basis.
Compute relative coordinates.

Triplets will reside in first n PE’s.

VP set V
1

VP set
2

V

3

VP set 3V

ori=j j=kori=k .

Each active PE sends the
tuple (m, (i,j), k, (x,y))

to appropriate location of V
3

.

Figure 3.7 Hash-location broadcast algorithm: the preprocessing

phase for the case where the basis tuple consists of two points.

60

Figure 3.7 graphically depicts the preprocessing phase for the case where the

basis tuple consists of two points.

3.6.3 Hash-location Broadcast: Recognition Phase

Two virtual processor sets participate in this phase: the feature coordinate set

V1, and the hash-function table set V2.

We assume that the coordinates of the features that were extracted from the

input image reside in the local memory of the S processors of the set V1: the

coordinates of the i-th image feature reside in the memory of the i-th processor

of V1. The hash-function table is again preloaded from storage into the local

memory of the processors of V2. This phase proceeds in three stages.

Recognition Phase

Stage 1: The host selects a basis tuple (a set of c image features) and relays

its coordinates to the S processors of V1. With the exception of the c processors

whose interest points form the selected basis, each processor in V1 combines the

coordinates of the feature stored locally with the broadcast tuple to compute the

feature's coordinates in the system de�ned by the basis. These operations involve

minimal data movement and thus are extremely fast.

Stage 2: In the second stage, the data from S � c processors in V1 are succes-

sively broadcast to all the processors of the set V2. Each broadcast contains a

coordinate of the form (u; v), and gives a location in the hash table where a vote

should be tallied. Each processor in V2, indexed by (m; (i1; i2; . . . ; ic) ; k) with

(i1; i2; . . . ; ik) corresponding to a valid basis tuple for model m, contains a hash

location (coordinate pair) which the processor can compare against (u; v). If the

61

two locations are su�ciently close together, then the corresponding table location

records a hit indicating a vote for model m and basis (i1; i2; . . . ; ik). We will see

in chapter 7, that an extremely useful modi�cation permits the use of weighted

voting for model-basis tuples determined according to the relative proximity of

(u; v) to (x; y). This vote originates from the particular feature (among the S� c

extracted from the input image) whose coordinates in the frame of the selected

basis are being broadcast. The tallying of votes continues by accumulating hits

in each hash-function table location; each of the S� c broadcasts generates either

one or no hits at any table location.

Stage 3: Upon completion of the tallying step, a third stage is invoked; using

a segmented parallel-sum operation, we add the votes over k among locations

(m; (i1; i2; . . . ; ic) ; k). The result is the total number of votes that the model m

and the basis (i1; i2; . . . ; ic) obtain for the given scene and basis selection. Finally,

a global-max among the processors associated with the locations holding the sum

of votes is used to determine the winning (model; basis) combination. A �nal

veri�cation step may be added to determine the quality of the match.

Figure 3.8 details the recognition phase for the case where the basis tuple

consists of two points.

An asymptotically faster alternative to the Stages 2 and 3 described above

also exists. Strictly speaking, each one of the S � c broadcasts will require

O (log (Mnc+1)) time, since there are Mnc+1 processors in the V2 data set. How-

ever, assuming the existence of S storage locations in each processor of set V2, the

62

x,y), (x’,y’)}B={(

BBB selected basis1

e

g
a
t
s

 Host broadcasts

 Interest Points (~ 200)

B

t
s

e
g
a

2

VP set

s

e

g
a
t

3

 Determine the winning combination.

 combination receives.
 Compute the votes each model/basis

 or (
Disable the two PE’s where

Data

VP set

 to the outcome.
 incrementing a local counter according

 Each table PE compares its local entry
 coordinate pair to the entire table.
 Each PE in turn broadcasts its local

 against the broadcast coordinate pair

) = (x , yi i).x’, y’

) = ()ii(x , yx, y

Compute relative coordinates.

V

V2

1

k1 1x , y x k, y x , yS S

u , v1 1 uk, vk uS, vS

Figure 3.8 The recognition phase of the parallel hash-location broad-

cast algorithm, for the case where the basis tuple consists of two

points.

63

theoretical complexity can be decreased. This can be accomplished as follows.

Assume for simplicity that S = nc. Then all S � c broadcasts can be done

simultaneously, by having each of the S � c active processors in V1 send its data

to a unique processor in a c-dimensional (n� n� . . .� n) slice of the (c + 2)-

dimensional data set V2. This routing can be completed in time O (logn). This

slice of data can subsequently be spread to the rest of V2, in parallel slices, requir-

ing no more than O (log (Mn)) time. Observe that after this spread the entire set

of the computed coordinate pairs is distributed among the nc processors of a slice,

one coordinate pair per processor. Exactly c processors in each slice will be empty.

The processors within a slice can now exchange their data in such a way that the

entire list of computed coordinate pairs becomes available to every single one of

them. This can be simply achieved by a recursive doubling procedure which com-

municates data between pairs of processors, and forms lists of coordinate pairs.

It must be noted though that the entries of those lists will not necessarily appear

in the same order in each processor. This recursive doubling procedure can be

completed in O (S) time. Total time complexities are summarized in the next

subsection.

3.6.4 Time Complexity

For the time complexity of the two phases, we assume thatM (n
c
) (n�c)c! PE's are

available. The interconnection network is a hypercube, and the concurrent-read-

exclusive-write (CREW) model of computation is adopted. We further assume

that M > n, M > S, and Mnc+1 � B.

64

Preprocessing Phase: The complexity of this phase is dominated by the third

stage. During that stage, each processor of set V1 sends a message of the form

(m; (i1; i2; . . . ; ic) ; k; (x; y)) to a processor in V2. The destinations of all these mes-

sages are pairwise distinct; thus no collision-resolution protocols will be required.

As a result, the time complexity of this stage is O (log (Mn)) per database model.

The time complexity of the preprocessing phase is thusO (M log (Mn)). The pre-

processing phase is very expensive, even when carried out in parallel, but again,

this is of no concern since it is executed o�-line.

Recognition Phase: The time complexity of the recognition phase, per broad-

cast basis tuple, is dominated by the second stage. Indeed, the time complexity

of the �rst stage is O(logS). The second stage, using the data-spreading trick

described at the end of the previous section results in time complexity which is

no worse than O (S + log (Mn)). This is also the complexity of the recognition

phase for the hash-location broadcast algorithm.

3.7 Implementation Details

In this section, we present in detail the actual implementations of the two algo-

rithms already described. Both algorithms were implemented on a hypercube-

based SIMD Connection Machine.

Implementing carefully-crafted parallel algorithms on existing architectures

frequently involves more compromises than one might expect. In our case, the

two algorithms that we have described have assumed the existence of � (Mnc+1)

PE's. ForM = 1024, n = 16, and the similarity transformation (c = 2) this would

entail a 4Meg-processor machine. Although there exist 64K-processor Connection

65

Machines, it is more usual to have access to a 32K- or 16K-processor model, and

to do the prototyping on an 8K-processor model. Conceivably, one could make use

of the Connection Machine software facilities to simulate a larger parallel machine

by mapping multiple processors to each physical processor, which then execute in

round-robin fashion. Unfortunately, the overhead involved in the mapping makes

the implied \virtual processor ratio" of 512 impractical. Accordingly, we must

modify the algorithms somewhat.

Connectionist Algorithm. Rather than associating a separate processor with

each hash entry, we can store the entire list of entries for a hash bin in the lo-

cal memory of a single processor. In order to implement the algorithm, all the

entries that hash into the same bin are stored contiguously in a single physical

processor memory rather than associated with distinct physical processors. More

speci�cally, each hash table bin is mapped onto a physical processor; this proces-

sor maintains locally a list of all the (m; (i1; i2; . . . ; ic)) entries hashing into the

corresponding hash table bin. The required number of processors drops to B, the

number of desired hash bins.

The preprocessing phase is now far less e�cient, due to the need for random

access to local memory as entries are appended to the lists. Clearly, the lengths

of the lists will vary over the hash table, and some of them will be empty. For a

given database of models, the typical occupancies for uniformly quantized hash

bins are non-uniform (see Figure 3.9). Provided that no single list is exorbitantly

long, memory requirements are not a problem. The collisions that are likely to

occur during this phase are resolved using a simple protocol based on \locks."

During recognition, the entries in the hash bins that receive votes must be

66

Figure 3.9 Hash bin occupancy for a typical database; the height is

proportional to the length of the corresponding hash bin list.

histogramed (i.e., counted) with the multiplicity of the number of votes that each

hash bin receives. ForM models each having n points and a basis tuple comprising

c features, each hash entry need only be dlogM + c logne-bits long: logM bits

for the model index, and logn bits for the index of each of the c basis members.

Rather than histograming by sorting, we opt, as already indicated, for a message

passing strategy (additive writes): we set up 2dlogM+c logne buckets (which results

in a virtual processor ratio of 2dlogM+c logne�13 on the 8K-processor machine), one

bucket for each (m; (i1; i2; . . . ; ic)) combination.

The processors in charge of those hash bins that received one or more votes,

scan their local lists and cast a vote for each entry (m; (i1; i2; . . . ; ic)) encountered

by sending a message to the corresponding histogram bucket. The time needed

for the list traversal is clearly dominated by the longest such list.

This histograming process currently accounts for 99% of the execution time of

the recognition phase. Clearly, e�ciencies in histograming will very much improve

67

the performance of the implementation. In particular, the use of our radix-sort

based method of Section 3.4.2 is expected to considerably reduce processing times.

Further improvements in e�ciency can be achieved by requantization of the hash

space, and the use of symmetries, and will be examined in more detail in chapter 5.

Hash-location Broadcast Algorithm. In order to reduce the virtual proces-

sor ratio for set V2 in the implementation of the second algorithm, we have chosen

to assign one processor to each index (m; (i1; i2; . . . ; ic)), and store contiguously in

that processor's local memory the n entries associated with k = 1; 2; . . . ; n. This

in e�ect collapses one of the dimensions of the hash-function table. Consequently,

during the construction of the hash-function table, precisely n� c processors at-

tempt to deposit a distinct tuple at the same destination. Use of \locks" provides

the necessary serialization.

During recognition, the S processors of V1 rank themselves using either the

index of the locally available image feature, or their own address: either approach

to performing the ranking involves no data movement and is therefore extremely

fast. After having computed the relative coordinates of the local feature in the

frame determined by the broadcast basis, each of S � c processors of V1 in turn

broadcasts the computed coordinates to all of the processors of the hash-function

table: each processor of V2 compares the broadcast location with each of the n�c

locations stored in its local memory, updating a local counter if necessary. A

total of (S � c) (n� c) comparisons will be required per basis selection. When

all image features have been exhausted, a global-max operation on the values of

the local counters recovers the winning (m; (i1; i2; . . . ; ic)) combination. Compu-

tational e�ciencies can again be achieved by making use of symmetries, and will

68

be examined in more detail in chapter 5.

Languages. Although a number of special-purpose parallel languages have been

developed for the Connection Machine, we found that C code running on the host

enhanced with system calls to the Connection Machine using its Paris package is

the most suitable for our needs. The Paris package includes routines that give us

the greatest level of control over the machine. For the broadcast-based algorithm,

just about any language would su�ce, and the Paris primitives represent a fast

development path.

3.8 Implementation Results / Scalability

Models (dot patterns) of 16 points each were generated using either a uniform

distribution over a region, or a Gaussian distribution. After generating 1024 such

models, scenes were constructed of approximately 200 points, with a single model

embedded in the scene, translated, rotated, and scaled. Noise was added to the

scene points (through quantization round-o� error).

In both implementations, the front end randomly selects a pair of scene points

(a probe) as the basis to be used for possible recognition. For the connectionist

algorithm, a probe takes 5:05 seconds on an 8K-processor machine, dropping to

0:80 seconds on a 32K-processor machine (see the plots in Figure 3.10). The

employed hash table contained 86:6% of the total number of hash entries. It can

be seen from the plots that the connectionist algorithm is operating in a roughly

linear regime { i.e., we are achieving linear speedup due to the heavy loading.

In fact, as the number of processors increases, reduced contention in the routing

algorithm gives us, in some cases, an apparent extra boost; such improvements

69

1.25

2.5

5.0

32K16K8K

(L
og

 s
ca

le
)

T
im

e
(s

ec
s.

)

Connectionist algorithm

0.4

0.8

1.6

32K16K8K

(L
og

 s
ca

le
)

T
im

e
(s

ec
s.

)

Broadcast algorithm

Figure 3.10 Average time required for a single basis probe, as a

function of the number of processors in the Connection Machine. The

database contains 1024 models of 16 points each, and the scenes con-

tain 200 points.

would not continue forever.

In the broadcast algorithm, the 8K-processor machine processes a probe at a

rate of 10 msec per scene point, i.e., approximately 2:0 seconds for a probe using

a two hundred point scene. The employed hash-function table contained 100%

of the total number of hash entries for the given database. Experiments with

a 16K- and 32K-processor model indicate nearly linear increases in speed (see

Figure 3.10), so that a 64K-processor machine should be able to perform a probe

in about 300 milliseconds.

By way of comparison, both algorithms are easily coded on a typical high-

performance workstation. Performance results are highly dependent on disk

access rates and available memory, but we have seen probe times of roughly

35 seconds for the equivalent of the hash-location broadcast algorithm on a SUN

Sparcstation-2.

70

Chapter 4

Distributions of Invariants

In this chapter, we examine the issue of index distribution over the space of in-

variants. In particular, we derive precise as well as approximate formulas and

qualitative results for a number of transformation and feature distribution com-

binations.

Soon after the conception of the geometric hashing technique, researchers dis-

covered that one of the main characteristics of the method was the non-uniform

distribution of indices over the space of invariants [21,25,89]. This non-uniformity,

which appears to be an endemic of all indexing-based approaches to object recog-

nition, typically poses problems. A number of heuristics were invented in order

to alleviate those problems [25], but the results were not particularly promising.

In our study, we will concentrate on the rigid, similarity and a�ne transfor-

mations. We will assume that the model point features are generated by either a

Gaussian random process of standard deviation �, or a process that is Uniform

over the unit disc or the unit square.

As it will be demonstrated in chapter 5, the knowledge of those distributions

is particularly important; indeed, it allows for a number of performance enhance-

71

ments in the implementations of the algorithms described in chapter 3. Also,

the knowledge of those distributions proves instrumental in the development of a

Bayesian approach to model matching with geometric hashing (see chapter 7).

4.1 Rigid Transformation

We begin our study of the distribution of indices over the space of invariants with

the rigid transformation: the database models are allowed to undergo rotation

and translation only.

Let p�1 , p�2, and p be the position vectors of three point features belonging

to model m. Then, the tuple (u; v) satisfying Eqn. 2.1 is unique, and invariant

under rigid transformations.

Let us further assume that the point features p�1 , p�2 , and p are generated

by the Gaussian random process N (0; (�

0

0

�
)), i.e. a two-dimensional Gaussian

process with mean value (0; 0) and covariance matrix (�

0

0

�
). From standard prob-

ability theory, we know that the joint distribution f(u; v) of u and v is given by

the expression

Z
R4
f(x(u; v); y(u; v)) f(x�1 ; y�1) f(x�2 ; y�2) j J j�1 dx�1dx�2dy�1dy�2 ; (4:1)

where J is the Jacobian of the transformation. Evaluation of this integral yields

the following result for the distribution of indices over the space of invariants

f(u; v) = 1
3� �2

� e
�
�
u2 + v2

3�2

�
: (4:2)

Figure 4.1 shows the distribution over the space of invariants, and several of its

contours.

72

Figure 4.1 The distribution over the space of invariants, and several

of its contours for the case of point features that are generated by the

Gaussian process N (0; (�

0

0

�
)). The allowed transformation is rigid.

For the case where the point features p�1 , p�2 , and p are uniformly distributed

over the unit disc, an evaluation of the above integral proves too di�cult to

obtain analytically. Consequently, non-linear parameter �tting was exploited.

We applied the method of Levenberg-Marquardt [75] to synthetically generated

data, and found that, in this case, the distribution of indices over the space of

invariants can be approximated well by

f(u; v) =
1

�
(4:7u2 + 3:9 v2)

2
+ 36:7

�
2

: (4:3)

The distribution of synthetically generated indices over the space of invariants,

and several of its contours, are shown in Figure 4.2.

73

Figure 4.2 The distribution over the space of invariants, and sev-

eral of its contours for the case of point features that are uniformly

distributed over the unit disc. The allowed transformation is rigid.

4.2 Similarity Transformation

We next examine the distribution of indices over the space of invariants for the

case of the similarity transformation: the models in the database are allowed to

undergo rotation, translation and scaling.

If p�1, p�2, and p are the position vectors of three point features belonging to

model m, then the tuple (u; v) satisfying Eqn. 2.2 is unique, and invariant under

similarity transformations.

If we further assume that the point features p�1 , p�2, and p are generated

by the Gaussian random process N (0; (�

0

0

�
)), then, evaluation of the integral in

expression 4.1 yields

f(u; v) = 12
� � 1

(4 (u2 + v2) + 3)
2

: (4:4)

74

It is worth noting that the last expression is independent of the value of the

standard deviation of the Gaussian process generating the point features. The

distribution over the space of invariants, and several of its contours are shown in

Figure 4.3.

Figure 4.3 The distribution over the space of invariants, and sev-

eral of its contours for the case of point features that are generated

by the Gaussian process N (0; (�

0

0

�
)). The allowed transformation is

similarity.

A derivation of the expression for the distribution of invariants in the case

where the point features are uniformly distributed over either the unit disc, or

the unit square has proven intractable.

4.3 A�ne Transformation

The case where the patterns of point features corresponding to the di�erent mod-

els can undergo a general linear (a�ne) transformation is slightly di�erent. An

75

a�ne transformation of any such pattern will be uniquely de�ned by the trans-

formation of three, instead of two, points.

Assume that p�1, p�2 , and p�3 are the position vectors of three point features

belonging to model m. Then the vectors p�2 � p�1 and p�3 � p�1 form a skewed

basis, and thus a skewed coordinate system Oxy. Any other point p of model m

can be represented in this basis as

p� p0 = u (p�2 � p�1) + v (p�3 � p�1) (4:5)

where p0 = �p�1 + �p�2 + p�3 is the position vector of the center of the skewed

coordinate system. The reason for our expressing the coordinates of the latter

point as a function of p�1, p�2 , and p�3 will become evident shortly.

Let us assume that the point features p�1 , p�2, p�3 , and p are generated

by the Gaussian random process N (0; (�

0

0

�
)), i.e. a two-dimensional Gaussian

process with mean value (0; 0) and covariance matrix (�

0

0

�
). Then from standard

probability theory, we know that the joint distribution f (u; v) of u and v is given

by the expression

Z
R6

f(x(u; v); y(u; v)) f(x�1 ; y�1) f(x�2 ; y�2) f(x�3 ; y�3) j J j�1

dx�1dx�2dx�3dy�1dy�2dy�3 ; (4.6)

where J is the Jacobian of the transformation. Evaluation of the latter integral

yields the following result for the distribution of indices over the space of invariants

f(u; v) =
C

�
4u2 + 4v2 + 4uv + 4 (� � �)u+ 4 (� �) v + 2

�
�2 + �2 + 2 + 1

�� 3

2

(4:7)

where C is a normalization constant that makes f(u; v) a probability density

function.

76

Several observations regarding the distribution over the space of invariants

can be made. In particular, from this last equation we can see that the contours

of the distribution are second order curves of the elliptic type. These curves have

two axes of symmetry: one of the axes is at 45 degrees to the horizontal whereas

the second is perpendicular to the �rst, and this is independent of the choice of

�, �, and .

In addition to the axial symmetry, the curves also have a center of symmetry,

which is located at

(u
cs
; v

cs
) =

�� 2� +

3
;
�+ � � 2

3

!
: (4:8)

The location of the center of symmetry, which happens to coincide with the

location of the peak of the distribution, allows the derivation of a natural con-

straint on the pivot selection. If we require that the center of symmetry coincide

with the center of the coordinate system in the space of invariants, i.e. that

ucs = 0 ^ vcs = 0; (4:9)

we conclude from Eqn. 4.8 that it must hold that

� = � ^ � = : (4:10)

The choice for the location of the center of the skewed coordinate system

should be clear. By setting � = � = = 1=3, we e�ectively require that the

center coincide with the barycenter of the triangle de�ned by p1;p2;p3, a point

that is always well-de�ned since p1;p2;p3 are assumed to be in general position.1

1A similar result holds for the case of the rigid and similarity transformations. It can be easily

shown that the natural choice for p0 in these cases is the midpoint between the points de�ning

the basis tuple.

77

For this selection of �, �, and , the expression of the distribution of the hash

entries over the hash table becomes

f(u; v) = 2
p
2

� � 1

(4u2 + 4v2 + 4uv + 8=3)
3

2

: (4:11)

Note that, as was the case with the similarity transformation, the probability

density function is independent of the standard deviation of the Gaussian process

generating the feature points. Figure 4.4 shows the distribution over the space of

invariants, and several of its contours.

Figure 4.4 The distribution over the space of invariants, and several

of its contours for the case of point features that are generated by the

Gaussian process N (0; (�

0

0

�
)). The allowed transformation is a�ne.

We next extend our analysis to the case where the model point features have a

uniform distribution over a convex domain, for example the unit disc or the unit

square. In principle, one could attempt to evaluate the integral in the expres-

sion 4.6. Unfortunately, the evaluation of this multiple integral was too di�cult

78

to obtain analytically. Further, use of non-linear parameter �tting did not prove

helpful. However, as we will see below, a qualitative description of the distribution

is possible.

With regards to the selection of the position of the center of the skewed coor-

dinate system, and in spite of the fact that the barycenter is a natural selection, it

is not at all clear whether the above analysis carries over to the case of uniformly

distributed model features. Consequently, in what follows we assume that the

pivot coincides with p1 as was originally described in [61].

(0,0)

(1,0)

(0,1)

p

p
1

3
p

2

(ε)

(ε)

(ε)

1

3

2
2

3

4

7

6

51

Feature Space

convex domain K
3’ 4’

5’

6’

1’

7’
2’

Space of Invariants

Figure 4.5 Correspondence between feature and hash space regions:

if p lies in the region of the feature space marked i, the computed

invariant tuple will lie in the region i' of the space of invariants.

Let p1;p2; and p3 be three points of R2 in general position (Figure 4.5).

Lines (�1); (�2); and (�3) divide the feature and hash spaces into seven regions:

if the point p lies in the region of the feature space marked i, i 2 f1; 2; . . . ; 7g,

the generated tuple invariant will lie in the region of the space of invariants

marked i0. Notice that if p lies in any of the odd-numbered regions the quadrangle

formed by the four points will be reentrant, whereas if p lies in any of the even-

79

numbered regions the quadrangle will be convex. In order to qualitatively describe

the distribution over the hash table, we seek the probability that the generated

invariant tuple will lie in a given quadrant of the space of invariants. To this end,

we will make use of the answer to a famous problem from geometric probability:

the so-called Sylvester's Vierpunkt problem[4]. This problem can be stated as

follows: \given a convex domain K, �nd the probability that four points taken

at random inside K will form a reentrant quadrilateral." As it turns out, the

answer to this problem varies with the shape of K; for regular polygons and

circles/ellipses this probability is very close to 0:3.

Let Pr(C) (respectively Pr(R)) denote the probability that the quadrilateral

formed by p;p1;p2 and p3 is convex (respectively reentrant). From Figure 4.5

and using a symmetry argument, we can see that

Pr(p in 2) = Pr(p in 4) = Pr(p in 6) = 1

3
Pr(C)

Pr(p in 1) = Pr(p in 3) = Pr(p in 5) = Pr(p in 7) = 1

4
Pr(R):

We can then evaluate the desired probabilities as follows:

Pr(tuple in 1st quadrant) = Pr(tuple in 60 or 70) = Pr(p in 6) + Pr(p in 7)

= 1

3
Pr(C) + 1

4
Pr(R) = 1

3
(1 �Pr(R)) + 1

4
Pr(R)

= 1

3
�

1

12
Pr(R)

Working in a similar manner,

Pr(tuple in 2nd quadrant) = 1

3
�

1

12
Pr(R)

Pr(tuple in 3rd quadrant) = 1

4
Pr(R)

Pr(tuple in 4th quadrant) = 1

3
�

1

12
Pr(R):

The value of Pr(R) in the above formulas is given by the solution to Sylvester's

problem for the given convex domain K. In the case where K is the unit disc,

80

Pr(R) = 35=(12�2) and

Pr(tuple in 1st quadrant) = 1

3
�

35

144�2

Pr(tuple in 2nd quadrant) = 1

3
�

35

144�2

Pr(tuple in 3rd quadrant) = 35

48�2

Pr(tuple in 4th quadrant) = 1

3
�

35

144�2

In other words, the �rst, second, and fourth quadrants will each contain the

same number of hash entries, whereas only a very small percentage of the entries

(less than 8% of the total) will reside in the third quadrant! Consequently, the

resulting distribution will have only one axis of symmetry. This is a rather un-

expected result given the shape of the domain K (unit disc). If K is a square,

Figure 4.6 Several of the contours of the hash table distribution.

The model features are uniformly distributed over the unit disc, and

the allowed transformation is a�ne.

the value of Pr(R) is equal to 11/36: substitution of the latter value to the above

81

formulas gives

Pr(tuple in 1st quadrant) = 133

432

Pr(tuple in 2nd quadrant) = 133

432

Pr(tuple in 3rd quadrant) = 11

144

Pr(tuple in 4th quadrant) = 133

432

In other words, the asymmetry still persists. Figure 4.6 shows several of the

contours of the distribution over the hash table for the case where K is the unit

disc. This distribution was obtained by means of a Monte Carlo simulation. As

can be seen, practically all of the hash entries are located in the �rst, second and

fourth quadrants of the hash space, as predicted by the above analysis.

The above results also hold qualitatively for the case where the pivot coincides

with the barycenter.

82

Chapter 5

Parallelism Revisited

In this chapter, we present a number of enhancements to the geometric hashing

method. In particular, hash table equalization and exploitation of symmetries

are developed speci�cally for the parallel algorithms. These techniques lead to

substantial performance improvements and are also applicable to more general

implementations of indexing-based object recognition methods.

As was indicated in Section 3.7, the non-uniform occupancy of the hash bins

results in di�erent lengths for the hash entry lists. Since the time needed to

traverse the hash entry lists during the histograming phase of the algorithm is

dominated by the longest such list, a uniform distribution of the entries over the

hash table is desirable; a uniform distribution will reduce execution time and

result in an e�cient storage of the hash table data structure.

In addition to the e�ciencies gained by rehashing, we may independently make

use of certain symmetries in the storage pattern of hash entries in the hash table:

exploitation of these symmetries results in further savings in computational and

storage requirements.

83

5.1 Rehashing

We next describe a method to transform the coordinates of point locations so that

the equispaced quantizer in the space of invariants yields an expected uniform

distribution.

One must �rst determine the expected probability density f(u; v) of the distri-

bution of the untransformed coordinates (tuple of invariants). As we described in

chapter 4, this can be done either by �tting a parametric model to synthetically

generated data, or by calculating analytically the expected distribution based

upon a model for the distribution of point features in the plane.

Once the probability density f(u; v) is known, a transformation that maps the

original distribution to the uniform distribution over a closed region (in particu-

lar, a rectangle) must be computed. This new mapping is e�ectively a hashing

function

h : R
2 ! R

2;

and is used to evenly distribute the bin entries over a rectangular hash table.

When the appropriate remapping function is applied to the invariants computed

using either one of Eqns. 2.1, 2.2, or 2.3, then the equally-spaced hash bins in the

remapped space have a uniform expected population. Henceforth, this function

will be called a rehashing function.

Case of Rigid Transformations. In Section 4.1 we derived formulas for the

distribution f(u; v) of indices over the space of invariants for the case where the

point features were either generated by the Gaussian random processN (0; (�

0

0

�
)),

or, uniformly distributed over the unit disc.

84

We begin with the case of Gaussian distributed point features. The distribu-

tion of indices over the space of invariants was shown to be

f(u; v) =
1

3� �2
e
�

u2 + v2

3�2
:

The expression can be rewritten in polar coordinates (�; �) as follows

f(�; �) =
1

3� �2
e
�

�2

3�2
; � 2 [0;1) ; � 2 [0; 2�) :

Observing that Z
�0

0

Z 2�

0
� f(�; �) d�d� =

0
B@1� e

�

�20
3�2

1
CA ;

we conclude that the rehashing function is given by

h(u; v) =

0
@1� e

�

u2 + v2

3�2 ; atan2(v; u)

1
A : (5:1)

The function atan2(�; �) converts rectangular coordinates to polar coordinates by

returning the phase in the interval [��; �]. Figure 5.1 shows the result of hash

table equalization for the case of rigid transformations, and several of the cor-

responding contours. The point features were generated synthetically by the

Gaussian process N (0; (�

0
0
�
)).

When the model point features are uniformly distributed over the unit disc,

the distribution of indices over the space of invariants can be well-approximated

by the function

f(u; v) =
1

((4:7u2 + 3:9 v2)2 + 36:7)2
:

Repeating the above analysis, we can show that the rehashing function in this

case is

h(u; v) =

0
BB@ 2
�
atan

(au)2+(bv)

2

c2

!
+

2

h
(au)2+(bv)

2

i
c2

�

�h
(au)2+(bv)

2

i2
+c4

� ; atan2 (v; u)
1
CCA (5:2)

85

Figure 5.1 Hash table equalization for the case of rigid trans-

formations and point features generated by the Gaussian process

N (0; (�

0

0

�
)). Left: the expected distribution of remapped invariants.

Right: several of the distribution's contours.

where a = 4:7, b = 3:9, c = (36:7)1=4, and atan(�; �) returns the arctangent of its

argument in the interval [��=2; �=2]. In Figure 5.2 we show the result of hash

table equalization, and several of the corresponding contours. As can be seen, the

remapping is very e�cient.

Case of Similarity Transformations. For the case of the similarity trans-

formation, we have determined the distribution of indices only when the point

features are generated by a Gaussian process N (0; (�
0

0

�)). The expression for

that distribution was shown to be independent of �, and equal to

f(u; v) =
12

�

1

(4 (u2 + v2) + 3)2
:

86

Figure 5.2 Hash table equalization for the case of rigid transforma-

tions and point features uniformly distributed over the unit disc. Left:

the expected distribution of remapped invariants. Right: several of

the distribution's contours.

An analysis similar to the one carried out for the case of the rigid transformations

allows us to derive the following rehashing function

h(u; v) =
�
1� 3

4 (u2 + v
2) + 3

; atan2(v; u)
�

: (5:3)

Use of this rehashing function allows the remapping of the computed invariants

and results in the distribution shown in Figure 5.3. Again, the remapping is very

e�cient.

Case of A�ne Transformations. We �nally repeat the above analysis for

the case of a�ne transformations where the point features are generated by a

Gaussian processN (0; (�

0

0

�
)). As was determined in Section 4.3, the distribution

87

Figure 5.3 Hash table equalization for the case of similarity trans-

formations and point features generated by the Gaussian process

N (0; (�

0

0

�
)). Left: the expected distribution of remapped invariants.

Right: several of the distribution's contours.

of indices in the space of invariants is given by

f(u; v) =
2
p
2

�

1

(4u2 + 4v2 + 4uv + 8=3)
3

2

:

The appropriate rehashing function for this case can be shown to be

h(u; v)=

0
@1� 2

p
2p

3
q
(4u2 + 4uv + 4v2 + 8=3)

; atan2
�
u
p
3 + v

p
3; u� v

�1A : (5:4)

In Figure 5.4, we show the result of hash table equalization, and several of the

corresponding contours. As can be seen, the remapping is very e�cient.

5.2 Symmetries and Foldings

In the previous section, we described the use of rehashing functions which results

in a decrease of computational requirements. Additional savings in both compu-

88

Figure 5.4 Hash table equalization for the case of a�ne trans-

formations and point features generated by the Gaussian process

N (0; (�

0

0

�
)). Left: the expected distribution of remapped invariants.

Right: several of the distribution's contours.

tational and storage requirements are also possible. Certain symmetries exist in

the storage pattern of entries in the hash table; these symmetries are independent

of the use of rehashing functions given in section 5.1.

Let p�1 and p�2 be a basis pair comprising point features that belong to model

m, and let (u; v) be the coordinates of point p of m in the coordinate system

de�ned by p�1, p�2 . Then, there will be an entry of the form (m; (�1; �2)) at

location (u; v) of the hash table (or at the rehashed position h(u; v)). If the tuple

(p�2 , p�1) is used instead to form a basis pair, and thus a coordinate system, we

observe that the coordinates of p will be (�u;�v). I.e., at the location (�u;�v)

of the hash table there will be an entry of the form (m; (�2; �1)). This will hold

true for both the rigid and similarity transformations. Due to the symmetry

89

of the rehashing functions (see Eqns. 5.1-5.3), the rehashed points h(u; v) and

h(�u;�v) will still be related; in particular, they will have the same abscissa but

they will be a distance � apart in the polar coordinates. Figure 5.5 details the

above observations for the special case of modelM1, and the basis tuples (p4;p1),

(p1;p4).

A similar observation can be made for the case of the a�ne transformation as

well. Let p, p�1 p�2 and p�3 be an arrangement of four points belonging to model

m. There are a total of 4! distinct a�ne bases that one can form using points

from this point set. Two such bases are (p�1;p�2 ;p�3) and (p�1;p�3 ;p�2). From

Eqn. 2.3 we can see that the coordinates of p in the coordinate systems de�ned

by the two (skewed) bases will be (u; v) and (v; u) respectively. In other words,

the two hash entries corresponding to the two basis tuples will be symmetric

with respect to the line that is at a 45 degree angle with the horizontal axis. At

location (u; v) of the hash table there will be an entry of the form (m; (�1; �2; �3)),

whereas at location (v; u) there will be an entry of the form (m; (�1; �3; �2)). As a

result of the symmetry of the rehashing function in Eqn. 5.4, the rehashed points

h(u; v) and h(v; u) will still be related; in particular, they will have the same

abscissa, and opposite sign � values. In Figure 5.6, we graphically depict the

above observations for the case of model M1, and the basis tuples (p4;p5;p1),

(p4;p1;p5).

The result of these symmetries is that for every entry in a certain half of the

hash table, there is an equivalent entry in the other half, with the only change

that the basis tuple (or part of it) is reversed. Thus, we can dispose of half the

hash table: during the recognition phase, when a hash occurs to the missing half

of the table, the corresponding entry can be generated from the stored one, at the

90

4
5

2
1

3

4
5

2

3

(u,v)

(-u,-v)

(0,0)

1

= h (u,v)

(ρ,θ−π) = h (-u,-v)

(0,0)

−π

π

4
5

2
1

3

4
5

2

3

1

(ρ,θ)

1

Figure 5.5 Symmetries in the storage pattern of the hash entries.

Top: if no rehashing is used, the hash entries are symmetric with re-

spect to the center of the coordinate system of the space of invariants.

Bottom: when rehashing is used, the rehashed entries have the same

abscissa but are distance � apart. These observations hold true for

both the rigid and similarity transformations.

91

y

x

x

y

4
5

2
1

3

4
5

2
1

3

(0,0)

(v,u)

(u,v)

y

x

x

y

4
5

2
1

3

4
5

2
1

3

(0,0)

−π

π
(ρ,θ)

1

(ρ,−θ)

Figure 5.6 Symmetries in the storage pattern of the hash entries

under the a�ne transformation. Top: if no rehashing is used, the

hash entries are symmetric with respect to the line that is at a 45

degree angle with the horizontal axis. Bottom: when rehashing is

used, the rehashed entries have the same abscissa and � values of

opposite signs.

92

expense of minimal bookkeeping. Accordingly, only half the hash table will need

to be stored, and thus the entry lists become, on the average, half as long, when

spread among the existing set of processors. Consequently, a speedup of two, on

the average, can be expected. It is interesting to note that this speedup occurs

because of decreased storage requirements, and is not due to the doubling of the

computational capacity.

Clearly, the computational savings accrued by the use of rehashing are irrel-

evant for the case of the broadcast algorithm. However, by making use of the

symmetries in the storage pattern of the hash entries, the storage requirements

for the broadcast algorithm can be reduced by a factor of two, leading to a cor-

responding reduction of the VPR value, and thus a speedup.

A further possibility is to perform a folding of the space of invariants. For

example, when a hash occurs to the missing half-plane, rather than generating

the entries from the list of entries in the associated position of the other half-plane,

we can instead register a vote for the entire hash bin in the existing half-plane.

In the case of similarity transformations, for example, this operation will in e�ect

confuse entries of the form (m; (�1; �2)) with entries of the form (m; (�2; �1)):

thus, the basis tuples are now basis sets, and (p�1, p�2) is the same as (p�2 , p�1).

Although this means that a particular (model; basis) may receive more votes than

it actually deserves, we have encountered no di�culties with this method.

5.3 Timing Results

In order to demonstrate the validity of our ideas, we tested the connectionist

algorithm using synthetically generated models of 16 point features; the point

features were generated by a Gaussian process. We only demonstrate the per-

93

formance enhancements of rehashing. The transformation class was the set of

similarity transformations. During the building of the hash table, the rehash-

ing function of Eqn. 5.3 was used. After generating 1024 such models, scenes

were constructed of approximately 200 points, with a single model embedded in

the scene, translated, rotated, and scaled. Noise was added to the scene points

(through quantization round-o� error).

0.4

0.8

1.6

32K16K8K

(L
og

 s
ca

le
)

T
im

e
(s

ec
s.

)

Connectionist algorithm

Figure 5.7 Average time that the connectionist algorithm requires

for a single basis probe, as a function of the number of processors in

the Connection Machine. The database contains 1024 models of 16

points each; the points have been generated by a Gaussian process

and the scenes contain 200 points. The allowed transformation is

similarity and rehashing is used.

The front end randomly selected a pair of scene points (a probe) as the basis

to be used for possible recognition. For the connectionist algorithm, a probe

takes 1:52 seconds on an 8K-processor machine, dropping to 0:24 seconds on a

32K-processor machine (see the plot in Figure 5.7), making use of rehashing but

not using the symmetries. If the symmetries were used, then the time needed

94

for a probe would drop accordingly. Comparing these timing results to those of

Figure 3.10, we can see how bene�cial the performance enhancements are.

95

Chapter 6

Noise Modeling

In this chapter we introduce a new framework for model based object recognition

in the context of geometric hashing. We incorporate additive Gaussian noise

into our model and analytically determine its e�ect on the invariants that are

computed for the case where the models are allowed to undergo similarity or

a�ne transformations.

Usually, a number of drawbacks are associated with indexing techniques:

namely, high sensitivity to sensor noise and to quantization of the space of the in-

variants (the \hash space"), poor index selectivity, and non-uniform accumulation

of votes in the di�erent bins. Solutions to the problem of non-uniform accumu-

lation of votes, in the context of geometric hashing, were described for certain

combinations of transformations and model point distributions in chapter 5. For

noise tolerance, some preliminary results (see [36]) indicated that for a particular

type of indexing, small amounts of sensor noise may lead to a performance degra-

dation. Things are complicated by the fact that the index selectivity and the

quantization coarseness of the space of invariants are interrelated. For example,

if noise tolerance is important, the space of invariants is coarsely quantized, at the

96

expense of reduced index selectivity. If on the other hand, higher index selectivity

is desired, the hash bins are made smaller, resulting in smaller noise tolerance.

A common approach to the resolution of these competing demands is the use

of higher-dimensional indices. Due to the fact that the minimum probability of

error decreases as the dimensionality of the index increases [27], high-dimensional

indexing results in more descriptive power (higher selectivity) and higher noise

tolerance. However, the gains from this dimensionality increase cannot continue

ad in�nitum. Additionally, higher-dimensional indexing is not supported by phys-

iological evidence [46,55].

The number of dimensions that are needed is typically task dependent and,

either it is decided upon in advance [21,24], or it depends on the complexity of the

objects stored in the database [89]. To our knowledge, no current system makes

use of perceptual groupings as suggested by Lowe [68].

Recently, a number of researchers have attempted to build more robust object

recognition systems by taking into consideration the e�ect of sensor noise. These

e�orts have met with moderate success. In particular, under the assumption of

a bounded amount of noise for the sensing device, they derive either positional

bounds [47,49,51], or bounds in the space of allowed transformations [18,48]. In

all these systems, the databases contain only one or two models and the signal-to-

noise ratio for the scene features (i.e. the ratio of points belonging to the model

over the number of remaining scene points) is very small, typically one. Although

bounds are appealing because of the tractability of the computations and the ease

with which they can be applied, we conjecture that they will be of little or no

help in the case of cluttered scenes or large databases; the reason is that they

treat all the points of the bounded region equiprobably. An approach where the

97

sensing device is assumed to introduce Gaussian additive noise to the positions

of the scene features should lead to improved results.

6.1 Performance in the Presence of Noise

In this section, we examine the performance of the geometric hashing approach in

the presence of noise and discuss some suggestions that have been made in order

to improve the performance.

We �rst examine the power of the geometric hashing method as a �ltering

method. In particular, we have designed and carried out a series of experiments

that determine the percentage of model/basis combinations which for a given

probe receive exactly k votes, k = 1; 2; 3; . . . ; n; n is the number of points in

the model [79]. These experiments cover the cases of rigid and similarity trans-

formations and were performed using large databases (512 models) and a large

number (40) of test scenes. Similar experiments were reported in [60]; however,

the databases used there were very small (no more than 20 objects), and the

test scenes contained very little clutter (roughly as many clutter points as model

points). In our experiments, there was only one model embedded in the scene.

All of our database models consist of 16 point features. Our test scenes contain a

total of 200 points (i.e. the signal-to-noise ratio for the scene features was almost

1=12).

Figure 6.1 graphically shows the results of some of the experiments, for the

case where the database models are allowed to undergo similarity (i.e. rotation,

translation and scaling) transformations. As can be seen from these graphs, the

�ltering power of the method is satisfactory: indeed, less than 2% of all possible

98

0.1

1

10

100

0 5 10 15 20
.

.

.

.

.

.

.

.

.

.

.

.

.

.
.

.
.

.

.

votes

E
xp

ec
te

d
%

0.1

1

10

100

0 5 10 15 20
.

.

.

.

.

.

.

.

.

.

.

.

.

.

.
.

.
.

.

votes

E
xp

ec
te

d
%

Figure 6.1 Similarity Transforms: the expected percentage of
model/basis combinations receiving exactly k votes. Top: the mod-
els' feature points are distributed according to a Gaussian of �=1.
Bottom: the models' feature points are distributed uniformly over
the unit disc. In both cases, the database contained 512 models, each
consisting of 16 points.

99

0

10

20

30

40

50

60

70

80

90

100

1/3pxl

2/3pxl

4/3pxl

8/3pxl
-1 0 5 10 15 20

0

10

20

30

40

50

60

70

80

90

100

1/3pxl

2/3pxl

4/3pxl

8/3pxl
-1 0 5 10 15 20

Figure 6.2 Percentage of the embedded model's bases receiving k

votes when used as probes, for di�erent amounts of Gaussian noise.

The models can only undergo similarity transformations. Top: the

models points are distributed according to a Gaussian of �=1. Bot-

tom: the models points are distributed uniformly over the unit disc.

In both cases, the database contained 512 models, each consisting of

16 points.

100

model/basis combinations receive more than 9 votes. Figure 6.2, on the other

hand, shows the degradation of the method's performance as a function of the

noise. Observe that little noise in the input su�ces to render the model that is

embedded in the scene practically undetectable. The reason is that the existence

of noise in the input leads to positional errors, which in turn translate to errors

in the invariants. If the error in the input is \small," the computed invariant,

after proper quantization, will generate the same index as the noise-free case thus

hashing into the correct hash table bin. Clearly, the semantics of \small" in

this context directly depends on the coarseness of quantization of the space of

invariants. Once this coarseness is decided, an associated degree of tolerance is

implicitly built into the hash table. One can easily envision cases where a given

hash table has insu�cient power to discriminate among the stored models, for

certain choices of features in the scene: the hash table is too coarsely quantized for

these models; consequently, the hash table will yield too many candidate matches

during the recognition phase and one must revert to a situation of testing and

verifying many generated hypotheses.

Clearly, if a system is to be robust in a real setting, one should be able to cope

with the problems caused by the positional uncertainty of the scene features.

In [60], it was suggested that during the selection process a region of the hash

table (range of hash table bins) be accessed instead of a single bin. This region

might have a rectangular shape and should be centered at the hash bin which is

derived by the computed invariants. The same approach was suggested for both

the similarity and the a�ne transformation cases.

Most geometric hashing systems to date have used a quantized space of invari-

ants, so that entries fall in bins. Whenever a hash location is computed, then all

101

entries in the bin receive votes. Alternatively, we may assume that the space of

invariants is quantized into tiny bins, and that a hash to a bin invokes votes for all

entries in all bins in a circular region about the central bin. This is the approach

used by Gavrila and Groen [34] and is implicit in the analysis of Huttenlocher and

Grimson [36]. Speci�cally, this method approximates a weighted-voting function

that assigns a unit vote for all entries located in a disk or rectangle centered at

the hash location, and zero votes outside the disk or rectangle. Costa et. al. [25]

have suggested, and we have used in our work, a weighted-voting function in the

space of invariants that tapers down to zero in a region about the hash location,

in a way that depends on the hash location and the basis selection in the scene.

Thus if (u; v) is the hash location, and (u0
; v

0) is the location of a nearby entry,

then the later entry will receive a weighted vote of w (u; v; u0
; v

0). The function

w(�; �; �; �) may also depend on the scene basis that has been selected as a basis

probe.

It is anticipated that voting for regions of the hash table instead of individual

hash table bins will increase the degree of cross-talk among the di�erent models.

Indeed, a larger number of distinct model/basis combinations is expected to re-

ceive votes. Consequently, the veri�cation step of the recognition phase will be

more expensive. One might also observe an increased probability of false matches,

although this is not likely an issue for small databases. As we will see in chap-

ters 7 and 8, combining the idea of voting for regions with the idea of weighted

voting [42] considerably improves the results. A �rst attempt at using weighted

voting was described in [25]. The reported results were not very encouraging

despite the fact that the database contained only one model.

Although the above ideas are reasonable, they do not capture the nature of the

102

Figure 6.3 Regions of the hash table that would need to be accessed

in the case of Gaussian error in the positions of the point features.

The models are allowed to undergo a similarity transformation. The

left graph of each pair shows the feature space domain, whereas the

right shows the space of invariants. For presentation purposes, the

amount of Gaussian error was deliberately large.

103

Figure 6.4 Regions of the hash table that would need to be accessed

in the case of Gaussian error in the positions of the point features.

The transformation class is a�ne transformations. The left graph of

each pair shows the feature space domain, whereas the right shows

the space of invariants. For presentation purposes, the amount of

Gaussian error was deliberately large.

104

problem. In particular, the size, shape and orientation of the regions that need

to be accessed directly depend on the selected basis tuple, as well as on the com-

puted hash locations. Figures 6.3 and 6.4 show this dependence for certain point

con�gurations. As can be seen, the region variations are much more pronounced

in the a�ne transformation case. These two �gures provide a sound argument

against the straightforward use of either Manhattan or Euclidean distances when

determining the size of the regions that need to be accessed. Clearly, an adaptive

scheme is needed, and the �rst step towards creating a working system that can

perform satisfactorily in the presence of noise is the derivation of formulas quan-

tifying the observed behavior. As we will show next, such formulas are easy to

derive, and, furthermore, they are compatible with a Bayesian interpretation of

geometric hashing.

6.2 Modeling Positional Noise

In this section we present a model for sensor noise and describe the e�ect of posi-

tional error on the values of the computed hash locations. We concentrate on the

cases where the models are allowed to undergo similarity or a�ne transformations.

Traditionally, sensor noise has been modeled as additive Gaussian perturba-

tions. The perturbations are assumed to be statistically independent and dis-

tributed according to a Gaussian distribution of standard deviation �, centered

at the \true" value of the variable. This is the noise model we will assume in our

analysis of the dependence of the computed hash locations on noise in the input.

Case: Similarity Transformation. Let us consider a scene that contains S

feature points. Let (xi; yi) be the \true" location of the i-th feature point in

105

the scene. Let also (Xi; Yi) be the continuous random variables denoting the

coordinates of the i-th feature as these are measured by the sensing device (in

this case a camera). The joint probability density function (pdf) of Xi and Yi is

then given by:

f(Xi; Yi) =
1

2��2
exp(�

(Xi � xi)
2 + (Yi � yi)

2

2�2
); i = 1; 2; . . . ; S

where we have assumed that the standard deviation value, �, applies to both Xi

and Yi, for all the values of i.

Let (x1; y1) and (x2; y2) de�ne an ordered basis (and thus a coordinate frame

Oxy). Let also (x; y) be a third feature point whose coordinates (u; v) in the

frame Oxy we wish to compute. Solving Eqn. 2.2 for u, v yields

u =
(p� p0)(p2 � p1)t

k p2 � p1 k2
(6.1)

v =
(p� p0)(p2 � p1)?

t

k (p2 � p1)? k2
(6.2)

or, assuming that U and V are the random variables denoting coordinates in the

space of invariants,

U =
(X �X0; Y � Y0)(X2 �X1; Y2 � Y1)t

k (X2 �X1; Y2 � Y1)) k2
(6.3)

V =
(X �X0; Y � Y0) (X2 �X1; Y2 � Y1)

?
t

k (X2 �X1; Y2 � Y1)? k2
(6.4)

From probability theory, the joint pdf of U and V can be expressed as

f(U; V)=
Z
R4
f(X(U; V); Y (U; V))f(X1; Y1)f(X2; Y2) j J j�1dX1dX2dY1dY2 (6:5)

where j J j�1=k (X2 � X1; Y2 � Y1) k2. Since the pdf's f(X;Y) f(X1; Y1) and

106

f(X2; Y2) are known, f(U; V) can be computed from Eqn. 6.5 yielding:

f(U; V) = 1
2��2 (4 k (U; V) k2 +3)

3

�
�

2 k p2 � p1 k2
��

4 (U; V) (u; v)t + 3
�2

+
�
4 (U; V) (u; v)?

t
�2�

+ 24�2 (4 k (U; V) k2 +3)
�

� exp
�
�
k p2 � p1 k2

�2
�
k (U; V) � (u; v) k2

4 k (U; V) k2 +3

�

: (6:6)

In Appendix A, we give more details on the derivation of this formula.

Given a Gaussian perturbation of the three feature positions, Eqn. 6.6 de-

scribes the \spread" over the space of invariants of the computed coordinates.

This formula substantiates the observations based on experiments that the shape

and the size of the spread depend on the basis pair as well as on the value of the

computed hash location.

The above formula is too complicated to be practical. For all practical pur-

poses, the second and higher-order components of the expression in Eqn. 6.6 are

not of any importance. It would thus be bene�cial to derive a �rst order approx-

imation for the spread over the space of invariants. To this end, we observe that

the Eqns. 6.1 and 6.2 form the solution to the matrix equation:

0
BB@

x2 � x1 �y2 + y1

y2 � y1 x2 � x1

1
CCA

| {z }
A

0
BB@

u

v

1
CCA

| {z }
x

=

0
BB@

x � x1+x2
2

y � y1+y2
2

1
CCA :

| {z }
b

(6:7)

Let us now introduce Gaussian perturbation in the positions of the three points.

Then, Eqn. 6.7 can be rewritten as follows:

(A+ (�A)) x = b+ (�b)) A
�
I +A�1 (�A)

�
x = b+ (�b))

107

x=
�
I +A�1 (�A)

�
�1

A�1 (b+ (�b)))x �
�
I �A�1 (�A)

�
A�1 (b+ (�b)))

x � A�1b+A�1 (�b) �A�1 (�A) A�1b (6.8)

where we have ignored second and higher order perturbation terms. We see that

the Gaussian noise induces a perturbation �x to the correct solution x̂ � (u; v)

that is equal to:

�x = A�1 (�b)�A�1 (�A) x̂ :

If (X;Y), (Xi;Yi)i=1;2, (U;V), are stochastic variables denoting the perturbations

of p, fpigi=1;2 and (u; v) respectively, then the last equation can be rewritten as:

0
B@ U

V

1
CA =

0
BBBBBBBBBBB@

�ku(X2 � X1) +kv(Y2 � Y1) �k=2(X1 +X2) +kX

�lu(Y2 � Y1) �lv(X2 �X1) �l=2(Y1+ Y2) +lY

�mu(X2 �X1) +mv(Y2 �Y1) �m=2(X1 + X2) +mX

�nu(Y2 �Y1) �nv(X2 � X1) �n=2(Y1 +Y2) +nY

1
CCCCCCCCCCCA

where we have substituted A�1 by
�

k
m

l
n

�
and k; l;m; n 2 R. Analogously to

Eqn. 6.6, we have that the joint pdf, f(U;V), of U and V is equal to:

f(U;V)=
Z
R4

f(X(U;V);Y(U;V))f (X1 ;Y1)f(X2;Y2) j kn�ml j�1 dX1dX2dY1dY2 :

Since U, V are linear combinations of normally distributed stochastic variables,

the joint distribution of U, V will again be normal. Indeed, evaluation of the

above integral yields for the probability density of the perturbation of x̂

f(U;V) = 1

2�
q
j �s j

exp
�
�1
2 (U;V) �

�1

s (U;V)t
�

�s =
(4 k (u; v) k2 +3)�2

2 k p2 � p1 k2

0
BB@

1 0

0 1

1
CCA

: (6:9)

108

In other words, if we ignore second and higher-order terms, additive Gaussian

positional error results in computed values for the similarity invariants that are

also Gaussian distributed around their \true" value with covariance matrix �s. A

study of the last equation shows that it indeed incorporates the �rst order terms

from Eqn. 6.6.

As can be seen from the expression for the covariance matrix �s, the larger the

separation of the two basis points the smaller the spread in the space of invariants;

this is a long-honored observation. Eqn. 6.9 equation also introduces a new result.

Indeed, for a given basis separation, the distance of the point whose coordinates

we compute in the coordinate frame of the basis also a�ects the spread: the

smaller this point's distance from the center of the coordinate frame, the smaller

the spread in the space of invariants will be. The exact dependence is described

by Eqn. 6.9. In chapter 4, we showed that the distribution of the entries over the

space of invariants is non-uniform: hash indices near the center of the hash table

are more frequent than indices further away. Given the result of Eqn. 6.9, we can

see that there exists a trade-o� between the indexing power of an invariant tuple

and its sensitivity to noise. Although index values corresponding to relatively

unpopulated regions of the space of invariants carry more information, they are

very sensitive to noise. The opposite is also true: indices hashing near the peak

of the hash table distribution (very populated area) are less informative but also

more tolerant to noise. Recapitulating, we see that it is the entire triplet which

determines the size of the spread and not only the basis pair. In other words,

there is a distinct covariance matrix for every ordered triplet one can form using

model points.

109

Case: A�ne Transformation. The above analysis can be repeated for the

case of the a�ne transformation. Let (x1; y1), (x2; y2), and (x3; y3) de�ne an

ordered triplet and thus a coordinate frame Oxy. Let also (x; y) be a third

feature point whose coordinates (u; v) in the frame Oxy we wish to compute.

We will consider the general case (Eqn. 4.5) where the center of the (skewed)

coordinate system de�ned by the basis triplet is expressed as a function of the

position vectors of the points comprising the basis. Eqn. 4.5 can be rewritten in

matrix form as

0
BB@

x2 � x1 x3 � y1

y2 � y1 y2 � y1

1
CCA

| {z }
A

0
BB@

u

v

1
CCA

| {z }
x

=

0
BB@

x� �x1 � �x2 � x3

y � �y1 � �y2 � y3

1
CCA :

| {z }
b

(6:10)

Introduction of Gaussian perturbation in the positions of all four points, will

result in a perturbation of the correct solution x̂ � (u; v) by

�x = A�1 (�b)�A�1 (�A) x̂ :

Again the second and higher-order perturbation terms have been ignored. If

(X;Y), (Xi;Yi)i=1;2;3, (U;V), are stochastic variables denoting the perturbations

of p, fpigi=1;2;3 and (u; v) respectively, then Eqn. 6.10 can be rewritten as:

0
B@ U

V

1
CA =

0
BBBBBBBBBBB@

�ku(X2 �X1) �kv(X3 �X1) �k(�X1 + �X2 + X3) +kX

�lu(Y2 �Y1) �lv(Y3 � Y1) �l(�Y1 + �Y2 + Y3) +lY

�mu(X2 � X1) �mv(X3 �X1) �m(�X1 + �X2 + X3) +mX

�nu(Y2 �Y1) �nv(Y3 �Y1) �n(�Y1 + �Y2 + Y3) +nY

1
CCCCCCCCCCCA

where we have substituted A�1 by
�

k
m

l
n

�
and k; l;m; n 2 R. From standard

110

probability theory, the joint probability density, f(U; V), of U and V is given by:

f(U;V) =
Z
R6

f(X(U;V);Y(U;V)) f(X1;Y1) f(X2;Y2) f(X3;Y3)

j kn�ml j�1 dX1dX2dX3dY1dY2dY3 :

(6:11)

Both U, and V are linear combinations of normally distributed stochastic

variables. Thus, the joint distribution of U, V will again be normal. Evaluation

of the above integral yields for the probability density of the perturbation of x̂

f(U;V) = 1

2�
q
j �a j

exp
�
�1

2
(U;V)��1

a
(U;V)t

�

�a =
�
4
�
u2 + v2 + uv + (� � �)u+ (� �)v

�
+ 2

�
�2 + �2 + 2 + 1

��
�2

2 j (p2 � p1) (p3 � p1)?
t

j2

�

0
BB@

k (p3 � p1) k2 �(p2 � p1) (p3 � p1)t

�(p2 � p1) (p3 � p1)t k (p2 � p1) k2

1
CCA

: (6:12)

In other words, if we ignore second and higher order terms, additive Gaussian

positional error results in computed values for the a�ne invariants that are also

Gaussian distributed around their \true" value with covariance matrix �a.

It is clear from expression 6.12, that the spread around the noise-free solution

will be small for small values of the positional error in the input, small values of

the computed invariants, and long bases. Also, the smaller the skewness of the

coordinate frame that the three model points de�ne, the smaller the spread will be.

In other words, there is a distinct covariance matrix for every ordered quadruplet

that is formed using model points. For the special case where � = � = = 1=3,

the covariance matrix �a becomes

�a =
(4 (u2 + v2 + uv) + 8=3)�2

2 j (p2 � p1) (p3 � p1)?
t

j2

�

0
BB@

k (p3 � p1) k2 �(p2 � p1) (p3 � p1)t

�(p2 � p1) (p3 � p1)t k (p2 � p1) k2

1
CCA

:

111

Chapter 7

Bayesian Interpretation

In this chapter we provide an interpretation of geometric hashing that shows that

the algorithm is equivalent to a Bayesian maximum likelihood object recognition

method. The hypotheses span the discrete collection of models and the discrete

pairings of image features to model features.

The equivalence is precise only in the case where an adaptive weighted vot-

ing scheme is used to accumulate evidence for model/basis combinations in the

geometric hashing framework. We provide formulas for the weighting functions

in the case of similarity and a�ne-invariant recognition of point patterns and

under the assumption of Gaussian positional error in the image points. Finally

we discuss how the weighted-voting scheme and maximum-likelihood hypothesis

selection reduces false alarms.

We begin the chapter by providing an abstract presentation of the geometric

hashing method reformulating the more speci�c version given in section 2.2.1.

112

7.1 Abstract Formulation of Geometric Hashing

As we have already mentioned geometric hashing operates on image features

in order to locate objects. Image features are generated as the output of the

feature extraction stage and typically are local measurements which depend on

the grey levels of an image region. Each feature typically results in a vector of

measurements. Minimally a feature carries only positional information in which

case it is a two-vector giving the coordinates of a location. However there may

be other measurements (attributes) associated with a feature such as an angle

measurement a gray level value a direction (for example of a line) etc.

Henceforth we will assume that the image features are elements of Rp and

that c image features are needed to determine a basis. Nominally p = 2 i.e. the

features are points. The case c = 2 corresponds to rigid and similarity invariance

whereas c = 3 corresponds to a�ne invariance. Depending on the feature type

and invariance class other combinations of p and c are also possible. We will

further assume that the class of possible transformations under which we desire

invariant recognition is given by F . The members of F act on image features.

The database contains M models: 1; 2; . . . ;M . Each model m is a collection

of n features Fm = ffm;kg
n

k=1
. For simplicity we are assuming that the number

of features is the same across the models.

For recognition we are given an image S containing a total of S features

S = fplg
S

l=1
. In the terminology of Flynn [32] we seek a collection of interpre-

tations. An interpretation is a tuple

[m; [fm;j1;pk1] ; [fm;j2;pk2] ; . . . ; [fm;jr ;pkr]]

where m gives the index number of a model (1 � m � M) and the remainingr

113

pairs establish approximate correspondences between a subset of model features

of Fm with image features. Typically an interpretation involves more than c

matches (i.e. r � c) so that an interpretation carries an implicit transformation

that approximately matches a subset of features in a model to a subset of image

features and the pairings are all distinct. An interpretation with r = c distinct

pairs is a candidate matching (or simply a matching) which can be veri�ed or

rejected according to whether the matching can be extended to a viable interpre-

tation with the number of matchings substantially greater than c. Note that a

priori a recognition system must search over all possible matchings:

[m; [fm;j1;pk1] ; [fm;j2;pk2] ; . . . ; [fm;jc;pkc]]

to determine whether matchings can be extended to interpretations. Clearly since

there are M models n features in each model andS image features there are

O (MncSc) candidate matchings.

Hash Functions. In the geometric hashing model we use a hash function that

maps groups of N = c+d features to Re. Here d is the number of \extra features "

and e is the dimensionality of the space of invariants. Again nominally when we

use point features we have d = 1 i.e. the hash function is de�ned on groups that

consist of one more point than the basis set ande = 2 meaning that the hash

function maps into the Cartesian space. But more generally the hash function

uses collections of features to map into a higher dimensional space. The essential

point about the hash function is that it is F -invariant. Thus if T 2 F is a

transformation andp1;p2; . . . ;pN is a collection of N features then

h (T p1;T p2; . . . ;T pN) = h (p1;p2; . . . ;pN) :

114

Further in order to enable recognition in the presence of noise h must be a

continuous function. This is in complete distinction with normal hashing methods

for database search where the hashing function typically randomizes the keys as

much as possible. As such hashing is not necessarily the most appropriate name

for the technique using a continuous function h; perhaps it should instead be

called \geometric indexing."

An additional desirable property of the hash function is that the �bers coincide

with equivalence classes of the transformation group. Thus if two collections of

points have the same hash location:

h (p1;p2; . . . ;pN) = h (p0

1
;p0

2
; . . . ;p0

N
) ;

then there exists a transformation T 2 F such that

(T p1;T p2; . . . ;T pN) = (p0

1
;p0

2
; . . . ;p0

N
) :

We will say that a hash function that satis�es this property is F-speci�c as

in for example a�ne-transformation-speci�c. An F -speci�c hash function is a

bijection on equivalence classes of N-tuples of features modulo transformations

from the class F . Systems are likely to be possible with hash functions that are

not transformation-class-speci�c.

We can observe why the hash function must operate onN features with N > c.

If we de�ne a hash function on a basis set or sub-basis set then using a transfor-

mation the hash value must be the same independent of the con�guration of the

features. That is for any other con�guration we could map the initial basis set

(or sub-basis set) to the given con�guration and the hash value should remain

the same. A constant hash function is of little use.

115

On the other hand in practice features are not arbitrarily modi�able by the

transformations. For example if there are multiple feature types then the type of

the feature is usually not changed by a transformation. In this case collections of

features even in a basis set contain certain inherent information that is invariant

with respect to the transformation class and thus in this case a hash function

may be de�ned that takes advantage of this information. Our treatment here is

more elementary and abstract thus we assume that any collection of c or fewer

features may be mapped by a transformation to any con�guration of the same

number of features. Accordingly a hash function onc or fewer features will be

constant.

However a hash function de�ned onN = c + d features will map into a

Euclidean space and can exhibit up tod�p degrees of freedom where we recall that

p is the dimensionality of the features. Thus the space of invariants can e�ectively

span a (d � p)-manifold and is most reasonably parameterized by Euclidean space.

Consequently the dimensionality e of the hash space will always be less than the

number of extra degrees of freedom in the arguments to the hash function i.e.

e � d �p. Thus if the hash function is de�ned on groups of 2D points consisting of

a basis set plus one point then the maximum e�ective dimensionality of the space

of invariants will be two. However if the hash function is de�ned on say basis

sets plus two points then we can have a four-dimensional space of invariants.

Indexing. Hash locations are used to index to model/basis combinations. In-

dexing is based on a two-phase process. In the �rst phase the models are pro-

cessed o�-line and the hash table data structure is built. During the preprocessing

phase hash values are computed for combinations of N features frommodels. Ide-

116

ally for every set Fm for every combination of N features ffm;1; fm;2; . . . ; fm;Ng �

Fm and for every permutation of these N features h (fm;1; fm;2; . . . ; fm;N) is

computed. In practice certain permutations might be omitted and some combi-

nations might be collapsed because of symmetries in the hash function. Normally

at least c of the model features will be distinct but there is no general reason

for prohibiting repetitions. For each computed hash location in R
e we de�ne

an entry in the space of invariants. An entry consists of a tagged point in R
e

such that given a point (u; v) in the space of invariants a selection algorithm can

quickly locate nearby entries in the hash space and access the tagged information

on each such entry. One might reasonably use a k�D tree representation for the

set of all entries [74].

h

2 M

N-tuple

Space of
invariants

entry ω

Models: 1

Figure 7.1 The preprocessing phase: for each model and for every

N-tuple of points in the model, a hash location is computed, and an

entry is recorded in the space of invariants at that location. The

entry is tagged with the information concerning the model identity

and model features that were used to compute the position.

What information is tagged at an entry? As a minimum the entry records its

location in the space of invariants and the identity of the model that was used to

117

create the entry (i:e: modelm). Typically the entry will also contain information

allowing one to deduce the tuple of features from model m (fm;j1; fm;j2; . . . ; fm;jN)

that was used to compute the location. Clearly it is su�cient to record the

indices (j1; j2; . . . ; jN). Further information might be recorded with the entry. For

example we could attach an error model giving the covariance of the expected

distribution of the entry in the space of invariants as instances of the model

in a typical image are subjected to noise. In Flynn's terminology the tagged

information at an entry is called a proto-hypothesis.1 A sketch of the preprocessing

phase is depicted in Figure 7.1. More formally we de�ne a hash entry as follows:

De�nition: An entry ! is a tuple of a model index and indices of

an N-tuple of model points: ! = [m; [j1; j2; . . . ; jN]] with a position

denoted as � (!) = h (fm;j1 ; fm;j2; . . . ; fm;jN) and a tag � (!) which is

typically the information [m; [j1; j2; . . . ; jc]] but might include addi-

tional information. 2

The second phase is the recognition phase (on-line). We are presented with

an image and S features fp1;p2; . . . ;pSg are extracted. We then initiate

a search in the image. Ultimately subcollections ofN features will be used

to compute hash locations h (p1;p2; . . . ;pN). Once again repetitions of image

features in the N-tuple might be allowed. For each such hash location we locate

all nearby entries in the hash table and based on the information in each entry

we generate one or more votes (see Figure 7.2). Each nearby entry generates a

candidate interpretation. Speci�cally if the entry ! = [m; [j1; j2; . . . ; jN]] is tagged

1Flynn [32] calls a quantized bin in space of invariants an entry. Obviously this use of the
term clashes with our use of hash entry which refers to a tagged point in the space of invariants.
Thus Flynn's entry is our hash bin and his proto-hypothesis is our hash entry.

118

...
...

f , pm,1] ...] j 1] ...], ...

h

IMAGE
N-tuple Hash to (u,v)

nearby entries
ω , ω , ...1 2

Space of
invariants

Candidate Interpretations Entry Tags τ(ω)

[m,[[m, [

Figure 7.2 The recognition phase and voting process of Bayesian

geometric : hashing using N-tuples of image features, locations in the

space of invariants are computed, and nearby entries are accessed.

Each entry is tagged with a model number and a set of model features,

which can be paired with the image features used to compute the hash

location to form a candidate interpretation. Interpretations are then

given weighted votes.

with the information `(model m)' and model points (fm;j1 ; fm;j2; . . . ; fm;jN) then the

hash h (pi1;pi2; . . . ;piN) to a nearby location generates a candidate interpretation:

[m; [fm;j1;pk1] ; [fm;j2;pk2] ; . . . ; [fm;jN ;pkN]] (7:1)

In certain cases (for example if the hash function is known to have certain

symmetry properties) other interpretations might also be generated involving

the same sets of features. Votes are generated for interpretations or perhaps

sub-interpretations meaning a portion of the interpretation. For example we

119

might generate votes for model numbers (i.e. the indexm for the given en-

try) and then consider only models that receive su�cient votes in a subsequent

search process. Alternatively we may generate votes for matches of the form

[m; [fm;j1;pk1] ; [fm;j2;pk2] ; . . . ; [fm;jc;pkc]] and later verify candidate matches that

receive su�cient votes. In between it is possible to generate votes for sub-

matchings together optionally with votes in Hough-space for transformation pa-

rameter values. However our practice is to generate votes for full interpretations

of the form of Eqn. 7.1. However if two distinct collections of N image points

vote for the same entry then the two resulting interpretations are incompatible

and arbitration must be performed. The most convenient time to perform the ar-

bitration is when the hash takes place since both candidate interpretations may

be \stored" at the hash table entry.

A single vote for a single interpretation may not in itself constitute much

evidence for the existence of a model. Two interpretations are compatible how-

ever if they agree on pairs of model-feature and image-feature pairs and do not

disagree on other features. Accordingly after collecting votes for multiple inter-

pretations we will want to collapse the votes to discover multiple support for

common sub-interpretations. Sub-interpretations with c pairs of distinct features

(i.e. matchings) are particularly desirable since they indicate a unique matching

between a model and an image object together with the approximate transfor-

mation.

Search Strategies. Given an image hash values and votes are generated by

N-tuples of image points. For an image with S points there areO
�
SN

�
such

tuples. Each tuple can be used to locate a hash value and thus nearby entries

120

in the hash table. Each such entry can generate candidate interpretations which

can involve up to N feature pairs each.

We wish to structure the search over theO
�
SN

�
tuples so as to quickly extract

as many valid interpretations as possible. Note that the search space that occurs

without the use of hashing is of size O (MncSc) so that hashing is more favorable

when M is large or in general whenSd = o (Mnc). Of course the trade-o�

depends on the e�ectiveness of the hash function and the typical number of

interpretations that are generated during the search.

The best search strategy will depend on the application and will also be

considerably inuenced by the possible use of multiple feature types. However the

following strategy is a generic one that structures the search and takes advantage

of the possibility of \grouping" features in the image.

We iteratively chose basis sets of c distinct features in the image. There are

O (Sc) such sets. For each basis set we perform what we call a probe. The basis

sets may be chosen at random or may make use of grouping or other strategies. It

is desired that the c features chosen in the image all belong to a single object. On

a parallel machine multiple probes may be performed concurrently. In section 8.2

we describe a randomized algorithm that allows us to discard a probe after only

a fraction of the image features have been considered.

Entries will obtain weighted votes during the probe; at the start of the probe

all weights are zero. For each probe we append to the chosen basis set B

collections of d-tuples of image features. For technical reasons we prefer to allow

repetitions among the features in the d-tuple although some applications may

ban such repetitions. In any case thed-tuples will be formed of image features

that do not include any of the basis set. Using the tuple formed from B and a

121

d-tuple the hash function is applied to the resultingN-tuple to compute a hash

location. Nearby entries receive weighted votes. If an entry has already received

a non-zero vote during this probe then a collision occurs since distinct tuples of

image features are competing with the same N-tuple of model points. We accept

the vote with the closer
2 hash location which typically means the maximum vote.

After all (or many) d-tuples of image features are processed each entry ! will

have a weight z (!) and we are ready to accumulate votes for matchings. An

entry

! = [m; [j1; j2; . . . ; jc; jc+1; . . . ; jN]]

adds its vote to a model/basis accumulator indexed by [m; [j1; j2; . . . ; jc]]. This

accumulator implicitly represents the interpretation that the chosen basis set B

matches with the c model features used as a basis in the computation of the

corresponding entry. Note that the index of the accumulator to which the votes

are collapsed is the same as the data that is usually included in the tag � (!).

We may write:

Z (m; [j1; j2; . . . ; jc] ;B) =
X
jc+1

. . .
X
jN

z ([m; [j1; j2; . . . ; jc; jc+1; . . . ; jN]]) :

If for a given probe no model/basis combination receives a su�cient number

of votes then we deem that there is no valid interpretation and continue with

another probe (a di�erent basis set) in the image. If instead there are model/basis

combinations with a substantial weighted vote then each such implicit matching

should be veri�ed.

If all O (Sc) probes are performed andO
�
Sd
�
di�erent tuples are used in

each probe then a complete search of O
�
SN
�
will be invoked. However by

2
A Mahalanobis distance metric is used here.

122

organizing the search over basis sets in the image votes may be accumulated for

interpretations that involve exactly c pairs of features and basis sets in the image

that are likely to lead to recognition may be favored over completely random

selections. Further an object is typically recognized once any combination of c

features on the object is selected as a basis. Since there is a (n
c
)-fold redundancy

in the representation of the objects there is a concomitant expected speed-up.

7.2 Updating Formulas and Conditional Inde-

pendence

Let H be a hypothesis such as \object O is present in a designated region of

the image." Let E1 and E2 be two pieces of evidence that have impact on the

probability of H. In what follows we assume that E1 andE2 are boolean events

although extensions to predicates involving continuous-valued measurements are

straightforward. Our interest is to compute

Pr (H j E1; E2) :

Let us assume that we know in advance the values of Pr (H j E1) Pr (H j E2) and

the prior probability Pr (H).

In general there is nothing that can be said. The functional dependence of

Pr (H j E1; E2) on the values Pr (H j E1) and Pr (H j E2) can be anything. However

if we make the additional assumption of conditional independence of the events

E1 and E2 i.e.

Pr (E1 j E2;H) = Pr (E1 j H) ;

or equivalently Pr (E1; E2 j H) = Pr (E1 j H) �Pr (E2 j H) then we may deduce that

Pr (H j E1; E2)

Pr (H)
= ~K �

Pr (H j E1)

Pr (H)
�
Pr (H j E2)

Pr (H)

123

where ~K is a constant independent of H and equal to

~K =
Pr (E1) � Pr (E2)

Pr (E1; E2)
:

The formulas follow directly from Bayes' theorem for conditional probabilities.

If we additionally assume unconditional independence of the events E1 and E2 i.e.

Pr (E1 j E2) = Pr (E1) then we obtain that ~K = 1.

Unconditional independence is neither implied by nor implies conditional in-

dependence. Accordingly unconditional independence involves an additional as-

sumption which is often unjusti�ed and in any case is typically unnecessary. The

reason is that we usually are interested in the comparative probabilities of a se-

quence of propositionsH1 H2; . . . based on the evidenceE1 E2. We are interested

in the comparative probabilities Pr (Hk j E1; E2) and since the constant of pro-

portionality ~K is independent of Hk we are not concerned with its value. Note

however that we now require a set of conditional independence assumptions one

for each hypothesis of the form

Pr (E1 j E2;Hk) = Pr (E1 j Hk) :

The theory is usually applied when one is given a sequence of evidence. Thus

if E1 E2 E3 . . . is a sequence of pieces of evidence we have

Pr (Hk j E1; E2; E3 . . .)

Pr (Hk)
= K �

Y

i

Pr (Hk j Ei)

Pr (Hk)

under the assumption that the conditional independence relations

Pr (E1; E2; E3; . . . j Hk) =
Y

i

Pr (Ei j Hk) ; k = 1; 2; . . . :

hold. The constant of proportionality K is independent of Hk and equals

K =

Y

i

Pr (Ei)

Pr (E1; E2; E3; . . .)
:

124

There are many di�erent ways that the conditional independence relations can be

satis�ed. However all pairwise conditional independence relations are insu�cient.

Instead we need a sequence of relations. The following relations su�ce:

Pr (Ej j Ej1 ; Ej2 ; . . . ; Ejr ;Hk) = Pr (Ej j Hk) ; r � 1; j 62 fj1; j2; . . . ; jrg : (7:2)

That is each piece of evidence must be independent of the union of any other

pieces of evidence.

It is common to use logarithms rather than the probabilities in order to turn

products into sums. Thus given the conditional independence assumptions from

Eqn. 7.2 we have

log

Pr (Hk j E1; E2; E3; . . .)

Pr (Hk)

!
= logK +

X
i

log

Pr (Hk j Ei)

Pr (Hk)

!
; (7:3)

where the bias term logK is independent of the hypothesis Hk. Using Bayes'

theorem one more time Eqn. 7.3 may be rewritten as

log

Pr (Hk j E1; E2; E3; . . .)

Pr (Hk)

!
= logK +

X
i

log

Pr (Ei j Hk)

Pr (Ei)

!
(7:4)

which is the form in which we will use incremental probability assessment.

7.3 Reasoning with Parts

Suppose we are looking for a chair in the image of a room. We know that a chair

consists of several parts: legs a seat and a chair-back. An appealing strategy is

to search separately for legs seats and backs and then to put the parts together

to �nd instances of chairs. This approach combines the bottom-up processing

of feature extraction and simple object detection with the top-down reasoning

about the components of chairs. We readily arrive at a situation where we have

125

many candidate legs seats and chair-backs. Further it is customary to have

probabilities or degrees of certainty attached to each such detection. When we

combine the parts to locate instances of the chair object it is desirable to combine

the probabilities or certainty levels into a single estimate of the likelihood of each

detection of a chair.

The di�culty arises from the fact that the parts of the chair are not indepen-

dent. Indeed having four candidate legs in the appropriate positions makes the

likelihood of a chair much greater than the probability based on any single leg

alone. We might be very unsure about any single leg but the conuence of the

four legs makes the presence of a chair at that location very likely. Conditional

independence is also violated: under the assumption that the object is a chair

the presence of a leg in one spot makes the presence of a leg in other predictable

locations much more probable.

If we discard positional information then a certain level of conditional inde-

pendence is restored. Under the assumption that a chair is present the infor-

mation that a leg is present tells us nothing new about the probability of the

presence of another leg (or chair-back or seat) since the conditional hypothesis

already tells us that these legs are present. There are two problems with this

\solution." First it is precisely this geometric information that we wish to use

in order to accurately deduce the location and presence of objects. Second we

need conditional independence for all possible objects in our database. Thus

although the presence of chair legs might be conditionally independent under the

assumption of the presence of a chair under the assumption of the presence of

a sofa the presence of a chair leg makes the presence of another chair leg much

more probable.

126

Despite these di�culties there have been successful object recognition sys-

tems that reason about parts using heuristic formulas to combine evidence that

accumulates as subparts are found in appropriate positions [28 67].

We next show that in the geometric hashing situation where we have a �xed

basis set and simple features the individual features in the image are condition-

ally independent.

7.4 Conditional Independence

Let us return to the formulation of object recognition as given in section 2.2.1.

We will assume that a basis tuple comprising c image features is chosen and �xed:

B = fp�1;p�2; . . . ;p�cg

The hypothesis is formed by a matching involving B. That is a hypothesis will be

formed by the predicate that a matching can be extended to a valid interpretation

i.e. that

[m; [fm;j1;p�1] ; [fm;j2;p�2] ; . . . ; [fm;jc;p�c]]

can be extended to an interpretation involving r pairs r � c. Note that a

hypothesis involves the choice of a model index m a selection ofc features from

the model (fj1; fj2; . . . ; fjc) and an image basisB. Accordingly we will denote this

hypothesis by

H (m; [j1; j2; . . . jc] ;B) :

There is a total of O (Mnc) possible hypotheses for a given �xed basis tuple B.

The evidence for any particular hypothesis will be based on features of the

image except for the basis set:

S 0 = S � B = fpl j l 62 f�1; �2; . . . ; �cgg :

127

We will only use the evidence that comes from the hash locations

��1 ...�d = h (p�1;p�2 ; . . . ;p�c ;p�1;p�2 ; . . . ;p�d) :

where fp�1 ;p�2 ; . . . ;p�dg � S 0. The �rst c features are all distinct whereas the

�nal d features are permitted to have repetitions. There are potentially other

pieces of evidence available for example from permutations of the arguments

to the hash function but we will not use such permutations and depending on

the symmetries exhibited by the hash functions such information will usually

be redundant.3 Thus the information is formed from the hash function applied

to the �xed basis tuple together with d-tuples of features in the image.4 When

d = 1 this means that there areS � c pieces of evidence. In general there

are (S � c)d pieces of evidence available assuming that all permutations of the

arguments p�1 ;p�2; . . . ;p�d yield extra information. Each piece of evidence can

be regarded as a realization of a random variable that can be de�ned as

Y = h (p�1 ;p�2; . . . ;p�c;X1;X2; . . . ;Xd)

where the various Xi are independent random vectors assuming values in S 0.5

When we speak of conditional independence of the evidence we refer to informa-

tion that comes from realizations of this random vector and not to the indepen-

dence of this random vector from other random processes.

In order to deduce that the evidence is conditionally independent we will

need one further assumption. We need to assume that the entries in the space of

invariants do not \clump " so that no two entries of the same model and with a

3For example ifh is transformation-speci�c then permutations carry no added information.
4Recall that d is the number of extra features.
5Note that it can happen that some of the Xi realize the same feature.

128

�xed basis set (i.e. the same �rst c model features) land near one another in the

space of invariants. Ideally the hash function is injective on the d-tuple of features

for a �xed basis tuple in the �rst c parameters so that the condition amounts to

saying that model features are distinct and separated. This is typically the case

for a transformation-speci�c hash function. If more than one model features land

in approximately the same location then the features should be coalesced into a

single feature or the hash function should be modi�ed.

We claim that the evidence is conditionally independent. In order to see

this letH (i; [j1; j2; . . . ; jc] ;B) be a hypothesis. The evidence is the set of hash

locations

� =
n
��1;�2;...;�d

j fp�1;p�2 ; . . . ;p�d � S 0g
o

:

To show independence we consider the probability of a hash to a given location

under the assumption of the hypothesis H (i; [j1; j2; . . . jk] ;B). We are also inter-

ested in the probability of a hash to the same location under the same hypothesis

given a subcollection �0 � � of other hash locations. Since the hash value lo-

cations are continuous variables the probabilities can be replaced by evaluations

of the corresponding probability density functions and we will denote the two

functions by

fYjH (�) and fYj�0 ;H (�) ;

respectively; H is an abbreviation for H (i; [j1; j2; . . . jq] ;B).

Conditional independence of the evidence means the following: given a single

hash point ��1;�2 ;...;�d
together with a collection �0 of other hash locations all

distinct then

fYjH (�1; �2; . . . �d) = fYj�0;H (�1; �2; . . . �d) :

129

Let us �rst consider fYjH

�
��1 ;�2;...;�d

�
. From our assumption we know that the

m-th model is embedded in the image with model featuresfj1 fj2 . . . fjc mapping

to the image points p�1 p�2 . . . andp�c. Although some of the remaining points

of model m may be obscured there is a strong likelihood of their presence and

thus there is a large likelihood of obtaining hash values at locations corresponding

to hashes of model m using basis fm;j1 fm;j2 . . . fm;jc. Indeed at every location in

the hash table where there is an entry with tag [m; [j1; j2; . . . ; jq]] there is a large

likelihood of an image hash to the same location (since the hash function is trans-

formation invariant and the corresponding model features occur in the image).

Thus the probability density function for h (p�1 ;p�2; . . . ;p�c;X1;X2; . . . ;Xd) will

include spikes at the positions where these entries occur in the hash table. The

spikes will be smeared out due to the possibility of noise in the image features. All

the other hashes of h (p�1 ;p�2; . . . ;p�c;X1;X2; . . . ;Xd) will involve one or more

of the random vectors Xi taking on the value of image features not belonging to

the model m. The contribution to the density function due to these hashes will

be more continuous and depends upon the background distribution of features in

the image. Typically we will assume that this background distribution is uniform

in the image although in applications one might be able to solve analytically or

empirically for the true distribution. In any case the distribution will add to the

spikes in the distribution due to the model features embedded in the image. The

resulting distribution will be a weighted superposition of the two distributions

appearing in Figures 7.3 and 7.4; as we will show in what follows an analytic

expression can derived for this distribution.

Next consider the value of the density function fYj�0;H

�
��1;�2;...;�d

�
. We are

130

Figure 7.3 The probability density function of hashes in the space

of invariants which are generated by image features not belonging to

the model that is embedded in the image.

given a collection of points �0 in the space of invariants and we know that the

image has generated hashes to these locations. We also know that the model m is

embedded in the image with a known transformation. We are given a new hash

location �
�1;�2;...;�d

which is generated by a distinct hash and we ask whether

knowledge of �0 changes the likelihood of the hash to this location.

Some of the hashes in �0 may occur at locations that con�rm the presence of

the model m occurring at or near locations where the spikes occur in the density

function fYjH due to hashes involving only point features from the embedded

model. However since we already know from the hypothesis that the model is

present this information tells us nothing. Each such hash makes it much less

likely that another hash will occur at the same location since the combination of

image features from the model generating the hash is thereby \used." However

since the hash �
�1;�2 ;...;�d

is known not to be among the hashes in �0 and since

131

Space of Invariants

Figure 7.4 The probability density function of the hashes generated

by the features of a model that is embedded in an image. In this

example, n{c=6.

hashes due to model points are separated the suppression of the likelihood at hash

location entries will not inuence the density function evaluated at �
�1;�2;...;�d

. The

remaining information from �0 includes hashes from features that are not part of

model m which tell us nothing.6 Accordingly the likelihood of the hash to

location �
�1;�2 ;...;�d

is unchanged by knowledge of the hashes to locations in �0

which is to say that the evidence in the hash locations � are independent under

the hypothesis H for all possible hypotheses.

6We could potentially use the hashes from �0 to deduce the locations of some image features

providing there are enough hashes that utilize the same image features. Once we know the

value of other image features then the density distribution is modi�ed either adding spikes at

positions or blurred submanifolds where hashes are somewhat more likely. However extracting

this information would require a sophisticated statistical analysis of �0 and also likely depends

on a high dimensionality of the space of invariants. This dependence does not occur when d = 1

which is our application. We would be inclined to discount this dependence in other cases also

but a more detailed analysis is required.

132

7.5 Density Functions

In order to develop the Bayesian geometric hashing algorithm we will need to

make use of the density functions

fYjH (�) and fY (�) :

Recall thatY is the random vector h (p�1 ;p�2; . . . ;p�c;X1;X2; . . . ;Xd) where the

Xi independently take on image feature values in S 0. That is we must compute

the density of hashes in the space of invariants obtained by applying the hash

function to the concatenation of the �xed basis tuple with arbitrary d-tuples of

image features (chosen from S 0) both with and without the assumption that the

chosen basis participates in a valid interpretation of a model object. The �rst

probability density function was discussed in the previous subsection whereas

the second function is new.

We next provide more precise general formulas. In applications the density

functions will have to be computed using speci�c noise models. Our treatment

will assume that the map

T (r1; r2; . . . ; rd) = h (p�1;p�2 ; . . . ;p�c; r1; r2; . . . ; rd) (7:5)

is a one-to-one di�erentiable map from d-tuples of image features to the space of

invariants and that the Jacobian of the transformation is nowhere singular. In

this case h is necessarily F -speci�c but we are assuming more. Extensions to

more general cases are possible.

Consider a point

� � T (r1; r2; . . . ; rd) = h (p�1 ;p�2; . . . ;p�c; r1; r2; . . . ; rd) :

133

Using the stochastic independence of the Xi's the probability density function of

Y evaluated at � can be written as

fY (�) =

dY

i=1

fX (ri)

j JT (r1; r2; . . . ; rd) j
:

Here JT is the Jacobian matrix of the transformation T expressed as a function

of r1; r2; . . . ; rd (see Eqn. 7.5) andfX is the probability density function for the

set S 0 of image features. A similar expression holds for fYjH (�):

fYjH (�) =

dY

i=1

fXjH (ri)

j JT (r1; r2; . . . ; rd) j
:

In this expression fXjH is the probability density function of the set S 0 of im-

age features under the hypothesis H (m; [j1; j2; . . . ; jc] ;B) which will imply the

likely existence of image points at certain locations corresponding to points of the

model m.

In the case where T is not a one-to-one mapping of d-tuples of features into

the space of invariants then the revised formulas involve integrals on the right

hand sides over submanifolds of a d-fold feature space whered-tuples of features

map to the given hash location.

Typically we will assume that feature values are continuous and that all pa-

rameter values are equally likely. For example when image features are points

in a rectangular image we will assume a uniform density distribution over the

image domain. Thus fX (r) is often a constant over the range of features values.

For fXjH we typically have a mix of the background distribution fX and a set

of smeared delta masses at the predicted positions for model points:

fXjH (r) = (1� �) fX (r) +
�

n� c
�
n�cX

j=1

g� (r� qj) ;

134

where g� (�) is a Gaussian distribution representing the likely distribution of fea-

ture values around the image features qj that are predicted by hypothesis H

from model m. Note that there are n � c predicted feature vectors for features

in S 0 from model m representing the features of the model less the basis set

ffm;j1; fm;j2; . . . ; fm;jcg as embedded in the image. The coe�cient � represents a

weighting factor that models the number of features from the model m which are

expected to actually occur in the image features (i.e. S 0) as compared to the total

number of image features in S 0. For a given image feature r at most one model

feature in model m can be \close" to r. If we denote the closest such feature by

qj(r) then sinceg� typically falls o� rapidly the expression forfXjH (r) can be

simpli�ed:

fXjH (r) � (1� �) fX (r) +
�

n� c
� g�

�
r� qj(r)

�
:

In this case the resulting formula for fYjH will have the form:

fYjH (�) �

dY
i=1

�
(1� �) fX (ri) +

�
n� c � g�

�
ri � qj(ri)

��

j JT (r1; r2; . . . ; rd) j
:

Qualitatively we see that the product is small unless all or most of the ri are near

model features in the image. If they are all near model features then the location

of � is near an entry ! with! = [m; [j1; j2; . . . ; jc; j (r1) ; j (r2) ; . . . ; j (rd)]]. Thus

we expect peaks in fYjH (�) near entries having tags [m; [j1; j2; . . . ; jc]]. There are

other \surfaces" in the space of invariants where fYjH will be similarly elevated

due to all but one or all but a few of theri's falling close to model features

qj's. These surfaces only appear when d > 1 and can most likely be ignored

for most applications. Whether the surfaces can be useful for object recognition

as described in the next subsection is to our knowledge unexplored. Of course

135

this formula is only an example and di�erent applications will result in di�erent

models for fXjH and thus di�erent formulas for fYjH.

We may summarize our exploration of the conditional density function fYjH

by noting that we have given evidence for a decomposition theorem which says

that fYjH may be written as:

fYjH (�) = �1fY (�) + �2S (�)

+�3
X
k12I

. . .
X
kd2I

~g (� � � ([m; [j1; j2; . . . ; jc; k1; k2; . . . ; kd]])) :

Here S is a function which is large only in the \surfaces" described above and is

generally neglected andI is the set of indices of m's model features that have not

been used in the model basis chosen by H. I.e. I = f1; 2; . . . ; ng�fj1; j2; . . . ; jcg.

In the third term ~g is a local density function that accounts for a smeared spike

at the location of the entries ! = [m; [j1; j2; . . . ; jc; k1; k2; . . . ; kd]] which is the set

of all entries in the hash table generated by model m and the basis [j1; j2; . . . ; jc].

We recall that the location of the entry is denoted by � (!). The density function

~g will depend on the hypothesis H and the error model for errors in the image

features. For the case where T is one-to-one we have that

~g (T (r1; r2; . . . ; rd)) =

dY
i=1

g�
�
ri � qj(ri)

�
j JT (r1; r2; . . . ; rd) j

:

We further note in passing that when T is one-to-one and smooth as we have

assumed here it is possible to translate the density function measurements to

feature space (as opposed to space of invariants) and thus measure the log-density

ratio

log

fYjH (�)

fY (�)

!

136

in terms of a sum of deviations (measured relative to g�) in feature space over the

d-tuple of features p�1 p�2 . . . pd. It is this log-density ratio that we will use for

the Bayesian geometric hashing algorithm.

Note that the probability density function fY can potentially depend on the

image basis B = fp�1;p�2 ; . . . ;p�cg due to the j JT j term in the denominator

of the de�ning equation. Alternatively it is possible to use the same density

function fY independent of the basis B: more speci�cally we can compute either

empirically or analytically the average density function over all possible basis

selections (see section 7.10). In some cases use of a basis-dependent probability

density function actually simpli�es the formulas (see section 7.9).

7.6 Bayesian Geometric Hashing

We may now piece the various components together. Using Eqn. 7.4 we have that

log (Pr (H j �)) = logK + log (Pr (H)) +
X
�1

. . .
X
�d

log

0
@fYjH

�
��1 ;�2;...;�d

�

fY

�
��1;�2 ;...;�d

�
1
A :

Recall that � is the set of hashes that arise from the image features S 0 and

that ��1;�2;...;�d are the hash locations of those hashes. Since we are typically only

concerned with the relative strength of the probability of a given hypothesis in

order to �nd the top few hypotheses with the maximum support and since we

will typically assume that all hypotheses are equally likely we may neglect the

�rst two terms which are independent of H and simply compute the sum in order

to obtain total support weights Z (H) for each hypothesis. We thus have

Z (H) =
X
�1

. . .
X
�d

log

0
@fYjH

�
��1 ;�2;...;�d

�

fY

�
��1 ;�2;...;�d

�
1
A : (7:6)

137

As written the formula is not of much help since the computational cost

will be immense. The formula says that for every probe using a �xed basis B of

image features we compute hash locations using d-tuples of image features and

with each hash location increment accumulators for every hypothesis. Recall

that H = H (m; [j1; j2; . . . ; jc] ;B). Since there are O (Mnc) hypotheses and we

may have to perform O (Sc) probes we achieve no speedup over classical search

methods.

However if we make use of our \decomposition theorem" for fYjH ignoring

the surface masses we then obtain the following expression for Z (H):

X
�1

. . .
X
�d

log

0
BBB@�1+�3

X
k12I

. . .
X
kd2I

~g
�
��1;�2;...;�d

� � ([m; [j1; j2; . . . ; jc; k1; . . . ; kd]])
�

fY

�
��1;�2;...;�d

�

1
CCCA :

Recall that I is the set of available indices for feature points in the computation

of an entry corresponding to model m and basis [j1; j2; . . . ; jc].

Consider a �xed H. For each hash ��1;�2;...;�d
there is a contribution to Z (H).

If the hash does not fall near any of the entries with tag equal to [m; [j1; j2; . . . ; jc]]

(i.e. a tag associated with the hypothesis H) then all ~g terms may be ignored

and the contribution is log (�1). If the hash falls near one such entry then by

assumption it will fall nearonly one such entry. This is because for a given

model/basis [m; [j1; j2; . . . ; jc]] the corresponding entries are separated and so

that a single hash can be located in the vicinity of at most one such entry (al-

though there may be multiple entries in the neighborhood each with a di�erent

tag and thus contributing to di�erent hypotheses). Suppose that for the tag

[m; [j1; j2; . . . ; jc]] the entry ! is in the neighborhood of the hash ��1;�2;...;�d
. Then

138

the contribution to H will be

log

0
@�1 + �3

~g
�
�

�1;�2;...;�d
� � (!)

�

fY
�
�

�1 ;�2;...;�d

�
1
A :

We see that the criterion for a hash to be near an entry is that the value of the

second term of the log is signi�cant relative to the �rst term. The criterion may

be reinterpreted in terms of a threshold for ~g for particular applications.

The weighted voting may thus be organized as follows. Initially every entry

has a weight z (!) equal to zero. For each hash �
�1;�2;...;�d

we use a k � D (k-

Dimensional) tree or similar data structure to access entries in the neighborhood.

The weight

z (!) = log

0
@�1 + �3

~g
�
�
�1;�2;...;�d

� � (!)
�

fY

�
�
�1;�2;...;�d

�
1
A� log (�1)

= log

0
@1 + �3

�1

~g
�
�

�1;�2;...;�d

�
� � (!)

fY

�
�

�1;�2;...;�d

�
1
A

is computed and applied to !. If the entry already has a nonzero weight assigned

to it from a previous hash then we have two distinct collections of n scene fea-

tures vying for correspondence to a single group ofn features in a model. Since

only one of the two matchings can be correct and we should not allow both to in-

dependently support the matching hypothesisH we assign to z (!) the maximum

of the values computed from the competing hashes.

After all hashes are processed we compute total support values Z(H) by

accumulating weights for entries with common tags. However to account for the

hashes that do not fall near entries with the given tag each bucket begins with

a bias term equal to the number of hashes times log (�1). Assuming there are

139

(S � c)d hashes we have

Z (H) = (S � c)d log (�1) +
X
k12I

. . .
X
kd2I

z ([m; [j1; j2; . . . ; jc; k1; k2; . . . ; kd]]) :

We see that the net e�ect is that each hash implicitly contributes log (�1) through

the bias term or it contributes the same implicit amount together with the explicit

z (!) through a nearby entry. Since the z (!) contains a term that cancels the

log (�1) amount the hash contributes the correct quantity

log

�1 + �3

~g (� � �)

fY (�)

!!
:

In practice since a constant amount added to each hypothesis is irrelevant

(we only seek the top few hypothesis) we may omit the bias quantity in the

computation and simply set

Z (H) =
X
k12I

. . .
X
kd2I

z ([m; [j1; j2; . . . ; jc; k1; k2; . . . ; kd]]) :

Quite simply all entries with the same tag combine their z (!) values to yield a

degree of support for the corresponding hypothesis.

7.7 Exact versus Approximate Matching

The hypothesis H (m; [j1; j2; . . . ; jc] ;B) represents the statement that model m is

present in the image with the matching de�ned by placing the basis set of model

features fm;j1 fm;j2 . . . fm;jc respectively in correspondence with the features in B.

In the way we have formulated the hypothesis the transformation is uniquely and

precisely de�ned by the pairing of the features. There are two reasons why the

hypothesis might be rejected.

140

� First it may not be true that the matching is the correct one and thatB

is not part of an instance of model m with the appropriate association of

model features as given in the hypothesis;

� Second there might be too much noise in the image features represented by

the chosen B so that the transformation de�ned by pairing model points

fm;j1 fm;j2 . . . fm;jc respectively with B in the image does not bring su�-

ciently closely into correspondence features in m and S 0. This can happen

even though there does exist a transformation which approximately brings

into correspondence model points fm;j1 fm;j2 . . . fm;jc and B together with

other features of model m with features in S 0 establishing a valid interpre-

tation of model m. In this case the transformation will carry the model

basis to features that lie in the neighborhood of the respective features of B.

If we use the probe-based search strategy of locating models in the image

then it can happen that we chose a collection of features B as a basis and that

this basis belongs to a proper interpretation of a model but that the model will

not be recognized due to error in features inB. We identify three ways of dealing

with this situation.

First the problem may be ignored. Then some valid hypotheses may be

rejected. However the failure of a given probe with one basis B may be rescued

by a subsequent probe with a di�erent basis B0. We must analyze the probability

that a given valid basis will yield a rejection of the corresponding hypothesis

and then the probability that most or all bases on a given embedded model will

lead to rejections. We do not conduct such an analysis here but we note that

generally the best compromise matching will place some subset of model features

141

(generally at least a basis set) close to corresponding image features.

A second alternative is to modify the hypotheses so that each hypothesis

represents an approximate match between the chosen basis and a model/basis

combination. That is we can modify the hypothesis to say that H implies an ap-

proximate matching. Figure 7.5 depicts the di�erence between exact-matching hy-

potheses and approximate-matching hypotheses. In the computation of fXjH the

Predicted

Hash Feature

Predicted

Hash Feature

uncertainty

Exact-Matching Hypothesis Approximate-Matching Hypothesis

uncertainty

BasisMODEL BasisMODEL

Figure 7.5 An exact-matching hypothesis as compared to an ap-

proximate-matching hypothesis. Note that in the case of an approxi-

mate-matching hypothesis, there is a greater range of uncertainty in

the predicted image features that arise as a result of the remaining

features of the model.

probability density distribution of features predicted by the presence of model m

under an approximate matching of basis fm;j1 fm;j2 . . . fm;jc with image fea-

tures B must take into account potential noise in the features predicted to be

located in the image as well as the possible noise in the basis features B. This

142

is in fact the analysis that we carried out in chapter 6. The result is that in

fYjH which gives the distribution function in the space of invariants based on

h (p�1 ;p�2; . . . ;p�c;X1;X2; . . . ;Xd) the spikes due to the predicted locations of

features will be more spread out. In terms of the Eqn. 7.6 this means that the

local density function ~g used to construct spikes in the space of invariants will

have a larger support. Approximate-matching hypotheses leave a number of free

continuous parameters to be determined. When there are continuous parameters

that cannot be constrained by a �nite collection of possibilities this is when �l-

tering strategies or Hough transform methods become more appropriate. We are

thus led to suggest a third alternative for dealing with the possibility of rejection

of valid exact-matching hypotheses.

In the third alternative the hypotheses represent approximate transforma-

tions and the density functions reect the expanded uncertainty due to potential

error in the basis features. However instead of simply voting for the probability

of a hypothesis based on a nearby entry in the space of invariants we can instead

vote for ranges of parameter values that are consistent with the observed posi-

tions of the feature values. The search may be organized di�erently than probes

with basis sets. In general if a hashh (p�1;p�2 ; . . . ;p�n) lands near an entry

at location h (fm;j1 ; fm;j2; . . . ; fm;jn) we may vote in a Hough space for a range

of parameters that reasonably map the model features to corresponding image

features and store the table with a hypothesis concerning the particular model.

This is for example the approach of Gu�eziec [40] for matching 3D curves. We

might instead have a separate Hough table for each approximate matching and

use votes for local parameter values to establish probable deformations of the

basis features from the observed values. Methods combining geometric hashing

143

with parameter voting (Hough transforms) are only beginning to be studied and

extensions of the Bayesian interpretation to the case where parameter spaces and

Hough transforms are involved is not considered here.

Experiments with both random perturbations of synthetic data and an actual

database of real-world objects indicated that the use of approximate hypotheses

leads to better results.

7.8 False Alarm Rates

We may now comment on false alarm rates under varying scenarios. We �rst

suppose that the hash function is F-speci�c and that exact-matching hypotheses

are used. Further to simplify things let us assume that the number of excess

features in the hash function d is one.

If neighborhood voting is used and if a hypothesis receives n0 votes during

a probe then we can be certain that when the model basis of the hypothesis is

put into correspondence with the basis of scene features from the probe then

exactly n0 features fall within a radius as de�ned by the neighborhood radius of

the voting scheme. Ideally the radius for the neighborhood voting scheme in

the space of invariants has been adjusted for the probe according to the chosen

basis set so that the guarantee is that n0 features fall within a one- or two- (or a

predetermined multiple of) sigma distance of the predicted values for the feature.

If instead weighted voting is used then because there is a maximum weighted

vote w (�; �) that any given hash value can give to a hypothesis we can give a

guarantee of a minimum number of features from the corresponding model falling

within a given radius of the predicted values if the total vote for a hypothesis

is Z (H). Further if the appropriate Bayesian formula is used Z (H) will be an

144

accurate measure related to the true a posteriori probability of the hypothesis. If

the hash function is F 0-speci�c whereF 0 is a transformation class that strictly

contains F then all of the same comments apply but the postprocessing step will

have to disambiguate between models that match with an F transformation and

those that require the generality of an F 0 transformation.

In this sense with exact-matching hypotheses and an F-speci�c hash func-

tion there can be no false alarms. The situation is more complicated with hash

functions involving d-tuples of features appended to basis sets withd > 1 but

similar guarantees can be given as a result of the computation of a support value

for each hypothesis. These assure us that the measure of a certain value for Z (H)

will yield a valid interpretation; a simpler argument su�ces to show that the ex-

istence of a valid interpretation under an exact-matching hypothesis will yield a

guaranteed level of support even if the non-basis features match only within say

one sigma (on the average).

As indicated above the use of the exact-matching hypotheses can lead to a

hypothesis being rejected even though an approximate matching of the basis of

the model to the scene basis can be extended to a valid interpretation.

If we use approximate-matching hypotheses and neighborhood voting then

the guarantee that we can give for a total vote of n0 is much less. Each of the

votes in the total count of n0 indicates that there exists a transformation taking

the model basis together with the (d = 1) extra feature of the model to within

one-sigma (or an appropriate radius) of existing features in the scene. However in

the absence of a Hough space to measure deviations of the basis matching there

is no guarantee that the n0 votes correspond to the same transformation. We

can only be guaranteed that there are n0 di�erent transformations each similar

145

to the others in the sense that the basis set of the model is mapped to within a

speci�ed radius of the scene basis features such that remaining model features

are individually approximated by scene features.

If weighted voting is used in conjunction with approximate-matching hypothe-

ses then we once again obtain a support value which can be used to determine a

minimum number of existing points such that an approximating transformation

may be found for each such that the basis points of the model are mapped to

the vicinity of the scene basis. However we are not guaranteed that the mul-

tiple transformations are the same. Indeed in terms of the Bayesian analysis

the evidence is no longer independent due to the approximate-matching hypoth-

esis. The di�culty is that the error in the basis features can be deduced from

a su�cient number of corroborating hashes involving features from the model

embedded in the scene. The net e�ect of the use of Bayesian-based geometric

hashing with approximate matching hypotheses is the same as exact matching

hypotheses but with larger error bounds on the unpaired features. Due to the

lack of independence we cannot say that the values give a precise measure of the

relative a posteriori probabilities. We will nonetheless use the computations im-

plied by the exact-matching hypotheses for the approximate-matching case using

the larger error bounds in order to be able to detect models when the basis set

matches only approximately justifying the weighted-voting formulas empirically.

7.9 The Formulas: Exact Matching

We now apply the abstract theory. We are concerned with the matching of pat-

terns of point features in 2D. Thus a point feature p is speci�ed by a coordinate

pair p = (x; y). In this section we treat the case of exact-matching hypotheses

146

as a preparation for the next section where the approximate-matching formulas

are developed.

We will consider two classes of transformations: similarity and a�ne. Respec-

tively a basis tuple is de�ned by two or three points. The hash functions which

in each case operate on a basis set plus one feature are for similarity invariance

(c = 2):

hs (p1;p2;p3) =

0
BB@

u

v

1
CCA ;

0
BB@

x2 � x1 �y2 + y1

y2 � y1 x2 � x1

1
CCA

0
BB@

u

v

1
CCA =

0
BB@

x3 � (x1 + x2)=2

y3 � (y1 + y2)=2

1
CCA ;

and for a�ne invariance (c = 3):

ha (p1;p2;p3;p4) =

0
BB@

u

v

1
CCA ;

0
BB@

x2 � x1 x3 � x1

y2 � y1 y3 � y1

1
CCA

0
BB@

u

v

1
CCA =

0
BB@

x4 � (x1 + x2 + x3)=3

y4 � (y1 + y2 + y3)=3

1
CCA :

Clearly we have used the notation pi = (xi; yi) and we assume that the basis

arguments (the �rst c arguments to the hash function) are non-collinear. In both

cases the center of the coordinate system is de�ned as the barycenter of the basis

tuple (the �rst c vectors in the arguments to hc). As we saw in chapter 4 this

choice maximizes the number of available symmetries and has certain advantages

in terms of avoiding compounding of errors.

Each hash function has the form

h (p1;p2; . . . ;pc+1) =

0
BB@

u

v

1
CCA = A�1b

147

where the A and b appear in Eqns. 6.7 and 6.10 respectively.7

It can be shown that the functions hs andha are respectively similarity-

speci�c and a�ne-speci�c. We recall from section 7.1 that this means that the

�bers of the hash functions are orbits of the respective transformation classes so

that if h (p1;p2; . . . ;pc+1) =
�
p0

1;p
0

2; . . . ;p
0

c+1

�
then the features p1;p2; . . . ;pc+1

can be transformed to the features p0

1;p
0

2; . . . ;p
0

c+1 by a transformation in the

respective class. Thus if a hash value equals (or is very close to) a prerecorded

entry then we know that there is a transformation that brings the collection of

features from the model close to the set of features from the image.

The two distribution functions of an entry due to positional noise in the image

point features can be derived very easily. Recall that we make the assumption

of exact-matching hypotheses. Consequently in each case we assume that the

�rst c arguments are �xed and that the �nal point is perturbed by additive

Gaussian positional noise with zero mean and covariance (�0
0
�
). Thus p1 p2 . . .

pc are �xed andX is a random vector with mean pc+1 and covariance (�0
0
�
).

Let us consider the random vector h (p1;p2; . . . ;X). Since h is linear in pc+1 we

conclude that h (p1;p2; . . . ;X) is also a Gaussian with mean h (p1;p2; . . . ;pc+1)

and covariance

� = �2
h
AtA

i
�1

:

More speci�cally for the case of similarity we have that

�s =
�2

kp1 � p2k2
�

0
BB@

1 0

0 1

1
CCA : (7:7)

For the case of a�ne transformation we de�ne �1 = p2 � p1 and�2 = p3 � p1.

7For the special case � = � = = 1=3.

148

Then the covariance matrix is

�a =
�
2

j �1;x�2;y � �2;x�1;y j
2
�

0
BB@

�2
1;y + �2

2;y ��1;x�1;y � �2;x�2;y

��1;x�1;y � �2;x�2;y �2
1;x + �2

2;x

1
CCA : (7:8)

Next we compute the distribution functions fYjH (�) and fY (�). We use

Y = h (p1;p2; . . . ;X) whereX is now a random vector that takes on image

features (throughout the entire image). For the unconditioned case (fY) we

assume that X takes on with equal probability any of S � c features located

uniformly throughout the image. For the conditioned case
�
fYjH

�
then we know

that there are n � c positions where features are likely to occur due to the

completion of the interpretation represented by the hypothesis H. If we assume

that the rate of non-obscuration of model points in the image is � then there

are (n � c) known positions with total density � (n� c) which will correspond

to Gaussian spikes in the space of invariants and the remainingS � c� �(n� c)

total density of points will be evenly distributed throughout the image. Because

the number of excess features d is one there is no \surface" density support.

Let R denote the image region (usually rectangular). The support of fY (�)

in the space of invariants is simply h (p�1 ;p�2; . . . ;p�c;R) meaning the hash

function with the �xed basis applied to the entire image domain as the �nal

parameter. Since fY is assumed constant over its support and integrates to

S � c we have that

fY (�) �
S � c

j det (A�1) j �Area(R)

where the function Area(�) returns the area of its argument.

For the conditioned function we have Gaussian spikes at each entry !j located

149

at

�j = � (!j) = h (fm;j1; fm;j2 ; . . . ; fm;jc; fm;j) ;

where !j is the entry [m; [j1; j2; . . . ; jc; j]] and it is understood thatm; j1; j2; . . . ; jc

are �xed and j runs through the indices 1; 2; . . . ; n leaving out the basis indices

fj1; j2; . . . ; jcg. The entry is tagged with the information [m; [j1; j2; . . . ; jc]] which

is the same information that is �xed by the hypothesisH (m; [j1; j2; . . . ; jc]B). We

thus have

fYjH (�)=
S � c� � (n� c)

j det (A�1) j �Area(R)
+
X
j

�

2�
q
j det (�) j

exp

0
B@�

�
� � �j

�t
��1

�
� � �j

�

2

1
CA:

Note that H is considered �xed and the�j's depend on H.

Next we compute the log-probability ratio for each hypothesis using Eqn. 7.4.

We recall that the total support for a hypothesis is denoted by Z (H). We will

assume that each a priori probability Pr (H) is constant and will omit additive

constants (such as the logK term).

Using Eqn. 7.6 and the formulas for fY and fYjH we obtain after some sim-

pli�cations

Z (H) =
S�cX
k=1

log

2
641� � (n� c)

S � c

+
X
j

� �Area(R)

2� (S � c)�2
exp

0
B@�

�
�k � �j

�t
��1

�
�k � �j

�

2

1
CA

3
75

(7:9)

where
n
�
1
; �

2
; . . . ; �S�c

o
are the hash locations � of image point features using

basis B.

We wish to exchange the order of summations. This is possible because for a

given hypothesis H for a �xed image point and thus a �xed hash location �k at

150

most one model hash point �j can lie near �k. We have assumed that the model

points are distinct and separated and thus for a �xed model/basis the resulting

hashes �
1
; �

2
; . . . ; �n�c are separated so that at most one entry may lie near the

given point �j. Consequently all but one of the exponential terms is essentially

zero for any given k. Thus we set

zk;j (H)=

8>>>>><
>>>>>:

log

2
641� � (n� c)

S � c
+

� �Area(R)
2� (S � c) � �2

exp

0
B@�

�
�k � �j

�t
��1

�
�k � �j

�

2

1
CA

3
75

0

according to whether k�k � �jk is small (�rst line) or large (whence zk;j is set to

zero). We then have approximately

Z (H) �
n�cX
j=1

S�cX
k=1

zk;j (H) :

Other de�nitions for zk;j are possible and more elegant but there is a potential

advantage in assigning zero values for many of the variables.

Finally we describe the Bayesian geometric hashing algorithm for each of the

two transformations. The space of invariants contains entries with model/basis

tags of the form [m; [j1; j2; . . . ; jc]]. The entries are located at positions � =

h (fm;j1 ; fm;j2; . . . ; fm;jc; fm;j); fm;j is an arbitrary point in the model not included

in the �rst c arguments (the basis tuple). During the recognition phase we chose

a basis of point features p�1;p�2 ; . . . ;p�c and perform a probe during which we

will apply votes to entries. Initially a vote of zero is stored for each entry. We

compute hash locations � = h (p�1 ;p�2; . . . ;p�c;pk) for point features pk 2 S 0

i.e. using the remaining point features in the image. For each such hash � we

locate all entries at nearby positions �. For each such entry we compute the value

w (�; �) for the appropriatec. For similarity invariance (c = 2) we have

151

ws (�; �) = log

"
1�

� (n� 2)
S � 2 +

� �Area(R)
2� (S � 2)�2

exp

�k� � �k2

2�2=kp�1 � p�2k
2

!#
:

For a�ne invariance (c = 3) we set �1 = p�2 �p�1 and�2 = p�3 �p�1. Then

wa (�; �) = log

2
41 � � (n� 3)

S � 3

+
� �Area(R)
2� (S � 3) �2

exp

0
@�k (�x � �x) � �1 +

�
�y � �y

�
� �2k2

2�2

1
A
3
5

:

We might note that in both cases the argument to the exponential function is

one-half the square of the distance measured relative to the standard deviation

� between the predicted hash location of the corresponding point in the image

and the observed location of the point.

Having computed the weight w (�; �) for the entry ! we update the z value

at ! by replacing z (!) with the maximum of the current value and the weight.

This is done for every entry ! in the neighborhood of the hash � and is repeated

for every hash from the scene. The probe is concluded by summing the z values

associated with entries having equal tags:

Z (H) =
X
j

z ([m; [j1; j2; . . . ; jc; j]]) :

Here H = [m; [j1; j2; . . . ; jc]]. The hypotheses with the top few Z (H) values are

candidates for interpretations using the basis B.

Since the maximum value that a hash can contribute to a hypothesis is

z0 = log

1�

� (n� c)

S � c
+

� �Area (R)

2� (S � c)�2

!
;

we know that if a hypothesis with a total vote of Z (H) must have at least

Z (H) =z0 corroborating points in the neighborhood of the positions predicted

152

by the hypothesized match. A summary of the 2D point pattern recognition

algorithm is given in Figure 7.6.

Finally we briey consider the size of the neighborhood in which nearby hashes

should be accessed. Given a hash at location � the vote applied to nearby entries

is w (�; �) and zero for entries that are far away (the vote is applied in a maximum

h

w(initially all equal to 0)
z-values

ωIndexed by entries
sum z-values among entries with

compute hashes using

access nearby entries, and
compute w (ζ,ξ)
for each such entry

obtain support values for the
various model/basis hypotheses

the same model/basis tags to

choose image basis

other image points

ω ω ζ, ξ

IMAGE

N-tuple

Space of
invariants

replace z() by max(z(), w())

ω

ξ
ζ

Figure 7.6 The steps for a probe with a single basis set during the

recognition phase of the Bayesian geometric hashing algorithm for

point pattern recognition.

way). Since the function w (�; �) decays rapidly as the separation increases the

neighborhood can be as large as we like. If a vote is applied to two entries with

153

the same tag then the approximation to Eqn. 7.9 is violated but due to the

separation of hashes with equal tags at least one of those votes will be close to

zero which has no consequence to the vote at that site. However it is desirable

to use a small neighborhood to reduce the number of entries to which votes must

be applied. It su�ces to �nd a distance at which the weight is guaranteed to be

small i.e. a small fraction of its maximum value z0 relative to the n � c entries

that will be combined to form the total vote Z (H).

7.10 The Formulas: Approximate Matching

In this section we present the formulas for the case of weighted voting and

approximate-matching hypotheses.

We modify the hypotheses so that each hypothesis represents an approximate-

matching between the selected basis and a model/basis combination. H will now

imply an approximate matching. As in the exact matching case two classes of

transformations will be considered namely similarity and a�ne.

The hash functions again operate on a basis set plus one more feature and

have the form

h (p1;p2; . . . ;pc+1) =

0
BB@

u

v

1
CCA = A�1b

where the A and b appear in Eqns. 6.7 and 6.10 respectively.8

Since we make the assumption of approximate mathing hypotheses such an

analysis must take into account potential noise in the basis features B. And

this was the study in chapter 6 where we examined how the error propagates

if we assume that the positions of all the point features of the (c + 1)-tuple are

8For the special case � = � = = 1=3.

154

disturbed by additive Gaussian noise. The conclusion of that analysis was that

h (p1;p2; . . . ;X) is also a Gaussian with mean h (p1;p2; . . . ;pc+1) and covariance

matrices

�s =
(4 k (u; v) k2 +3)�2

2 k p2 � p1 k2

0
BB@

1 0

0 1

1
CCA ;

and

�a=
(4 (u2 + v2 + uv) + 8=3)�2

2 j (p2 � p1) (p3 � p1)?
t

j2

0
BB@

k (p3 � p1) k
2 �(p2 � p1) (p3 � p1)

t

�(p2 � p1) (p3 � p1)
t k (p2 � p1) k

2

1
CCA

for the similarity and a�ne cases respectively.

We next compute the distribution functions fYjH (�) and fY (�). We use

Y = h (p1;p2; . . . ;X) whereX is now a random vector that takes on image

features (throughout the entire image). As before for the unconditioned case

(fY) we assume that X takes on with equal probability any of S � c features

located uniformly throughout the image. For the conditioned case
�
fYjH

�
we

know that there are n� c positions where features are likely to occur due to the

completion of the interpretation represented by the hypothesis H. If � denotes

the rate of non-obscuration of model point features in the image then there are

(n � c) known positions with total density � (n� c) which will correspond to

Gaussian spikes in the space of invariants and the remainingS � c � �(n � c)

total density of points will be evenly distributed throughout the image. Because

the number of excess features d is one there is no \surface" density support.

Unlike the exact-matching case we use the same probability density func-

tion for the invariants independent of the selected basis B. In chapter 4 we

determined analytically the expected probability density function fe (�) for in-

variants over all possible basis selections for a number of transformation and

155

feature distribution combinations. Since fY integrates to S � c we have that

fY (�) � (S � c) � fe (�)

Alternatively and depending on the application fe (�) and thus fY can be de-

termined empirically. For the conditioned function we have Gaussian spikes at

each entry !j located at

�j = � (!j) = h (fm;j1; fm;j2 ; . . . ; fm;jc; fm;j) ;

where !j is the entry [m; [j1; j2; . . . ; jc; j]] and it is understood thatm; j1; j2; . . . ; jc

are �xed and j runs through the indices 1; 2; . . . ; n leaving out the basis indices

fj1; j2; . . . ; jcg. The entry is tagged with the information [m; [j1; j2; . . . ; jc]] which

is the same information that is �xed by the hypothesisH (m; [j1; j2; . . . ; jc]B). We

thus have

fYjH (�) = (S � c� � (n� c)) � fe (�)

+
X
j

�

2�
q
j det (�j) j

exp

0
@�

�
� � �j

�
��1

j

�
� � �j

�

2

1
A :

Note that H is considered �xed and thatboth �j and �j depend on H.

We can now compute the log-probability ratio for each approximate hypothe-

sis using Eqn. 7.4. Once again Z (H) denotes the total support for a hypothesis

each Pr (H) is constant and additive constants (i.e. the logK term) are omitted.

Using Eqn. 7.6 and the formulas for fY and fYjH we obtain

Z (H) =
S�cX
k=1

log

2
41� � (n � c)

S � c

+
X
j

� (S � c)�1 [fe (�)]
�1

2�
q
j det (�j) j

exp

0
@�

�
�k � �j

�
��1

j

�
�k � �j

�

2

1
A
3
5

(7:10)

156

where
n
�
1
; �

2
; . . . ; �S�c

o
are the hash locations � of image point features using

basis B.

Working as in section 7.9 we can show that

zk;j (H)=

8>>>><
>>>>:

log

2
41�� (n� c)

S � c
+
� (S � c)�1 [fe (�)]

�1

2�
q
j det (�j) j

exp

0
@�

�
�k � �j

�
��1j

�
�k � �j

�

2

1
A
3
5

0

according to whether
�
�k � �j

�
��1j

�
�k � �j

�
is small (�rst line) or large (whence

zk;j is set to zero). Approximately we can write

Z (H) �
n�cX
j=1

S�cX
k=1

zk;j (H) :

The Bayesian geometric hashing algorithm for each of the two transformations

and the assumption of approximate hypotheses proceeds as before: the space of

invariants contains entries with model/basis tags of the form [m; [j1; j2; . . . ; jc]]

located at positions � = h (fm;j1; fm;j2 ; . . . ; fm;jc; fm;j) wherefm;j is an arbitrary

point in the model not included in the �rst c arguments (the basis tuple). During

the recognition phase we chose a basis of image point features p�1 ;p�2; . . . ;p�c

and perform a probe during which we will apply votes to entries. Initially a

vote of zero is stored for each such entry. We compute hash locations � =

h (p�1 ;p�2; . . . ;p�c;pk) for point features pk 2 S
0 i.e. using the remaining point

features in the image. For each such hash � we locate all entries at nearby

positions �. For each such position we compute the value w (�; �) for the appro-

priate c. Simple substitution shows that for similarity invariance (c = 2) we have

157

ws (�; �) =

log

2
41 � � (n� 2)

S � 2 +
�kp�2 � p�1k

2

��2 (4k�k2 + 3) (S � 2) fe (�)

� exp

�k� � �k2

�2 (4k�k2 + 3) =kp�2 � p�1k
2

!#

For a�ne invariance (c = 3) we set �1 = p�2 �p�1 and�2 = p�3 �p�1. Then

wa (�; �) =

log

2
41 � � (n� 3)

S � 3 +
� j (p�2 � p�1) (p�3 � p�1)

?
t

j2

��2

�
4
�
k�k2 + �x�y

�
+ 8=3

�
(S � 3) fe (�)

� exp

0
@ �k (�x � �x) � �1 +

�
�y � �y

�
� �2k

2

�2

�
4
�
k�k2 + �x�y

�
+ 8=3

�
= j (p�2 � p�1) (p�3 � p�1)

?
t

j2

1
A
3
5

In the above two formulas fe (�) should be substituted by the appropriate

expression for the probability density; the expression can either be taken from

the analysis of chapter 4 or derived empirically.

Having computed the weight w (�; �) for the entry ! we update the z value

at ! by replacing z (!) with the maximum of the current value and the weight.

This is done for every entry ! in the neighborhood of the hash � and is repeated

for every hash from the scene. The probe is concluded by summing the z values

associated with with entries with equal tags:

Z (H) =
X
j

z ([m; [j1; j2; . . . ; jc; j]]) :

Here H = [m; [j1; j2; . . . ; jc]]. The hypotheses with the top few Z (H) values are

candidates for interpretations using the basis B. Figure 7.6 shows a summary of

158

the algorithm: the approximate-hypotheses expressions for w (�; �) and z (�) are to

be used.

We should mention again that our use of the approximate-matching hypothe-

ses implies that in the Bayesian analysis above the evidence is no longer inde-

pendent. In fact the error in the basis features can be deduced from a su�cient

number of corroborating hashes involving features from the model that is embed-

ded in the scene. As a result of the lack of independence the values we compute

give only an approximate measure of the relative a posteriori probabilities.

We already stated that experimental evidence with both synthetic and real-

world data supports the use of approximate-matching hypotheses; in the next

chapter we will present experimental results from the implementation of a system

that makes use of the approximate-matching approach to the accumulation of

evidence.

159

Chapter 8

Experimental Results

In this chapter we demonstrate the validity of the Bayesian geometric hashing

algorithm that uses the approximate matching hypotheses (see section 7.10). In

particular, we describe in detail the actual implementation of a complete object

recognition system.

The recognition system is implemented on a 8K-processor CM-2 and can

recognize objects that have undergone a similarity transformation (i.e. rotation,

translation, and scaling), from a library of 32 models. The models we use are

military aircraft and production automobiles.

We test the approach using real-world imagery; in particular, the test inputs

are photographic data of military aircraft in ight, and of automobiles in street

scenes. The resulting system is scalable, works rapidly and very e�ciently on an

8K-processor machine, and the quality of results is excellent.

8.1 O�-Line Preprocessing

Since our intention was to build a complete object recognition system, we incor-

porated an automatic feature extraction mechanism. A straightforward boundary

160

following algorithm1 was applied to the output of the edge detection stage, fol-

lowed by a simple divide-and-conquer polygonal approximation algorithm [27].

The edge detector that we used is the one described by Cox and Boie in [13].2

The output of the edge detection stage was a collection of curves (an edge map),

and polygonal approximations for each of those curves were determined; curves

shorter than 100 pixels were not considered. No other �ltering or preprocessing

was performed.

There was no attempt to implement the edge detection, boundary following

and feature extraction stages in parallel. Indeed, the corresponding code is serial

and runs on the Front End (see also [81]). Descriptions of very fast parallel

algorithms for these operations, based on replicating data structures, can be found

in [71,72].

The database in our experiments contained thirty-two models: fourteen of the

models were military aircrafts, whereas the remaining eighteen were automobiles

(six automobiles seen from three di�erent viewpoints). The database models

were allowed to undergo similarity transformations (i.e. rotation, translation and

scaling).

For the aircraft models, the pro�le drawings of fourteen military aircraft

from [77] were scanned using a Microtek 300 color/grayscale scanner. These draw-

ings are not photographs: they are schematic drawings that are probably drawn

roughly to scale. The scanner is capable of a resolution of 300 dpi, however, we

used 120 dpi resolution to digitize the drawings.

For the automobile models, we obtained photographs of six di�erent automo-

1The boundary following algorithm assumes eight-connectivity.
2The value of the �lter's � was typically equal to 1:5 (see [13]).

161

biles seen from three di�erent viewpoints: the camera was at the height of the

automobiles' midline, with its optical axis pointing at the middle of the automo-

biles' long side. The three viewpoints corresponded to azimuth values of roughly

�45, 0 and +45 degrees. The average distance from the automobiles was approx-

imately �fty feet. The photographs were subsequently scanned at a resolution of

75 dpi. The fourteen aircraft and six automobile types contained in our database,

appear in table 8.1.

A-4 Skyhawk A-6 Intruder

A-10 Thunderbolt F-14 Tomcat

F-15 Eagle F-16 Falcon

F/A-18 Hornet Mig-21 Fishbed

Mig-23 Flogger Mig-29 Fulcrum

Mig-31 Foxhound Mirage 2000
Sea Harrier Panavia Tornado
Chevrolet Astro (lateral) Chevrolet Astro (oblique frontal)
Chevrolet Astro (oblique rear) Dodge Dart (lateral)
Dodge Dart (oblique frontal) Dodge Dart (oblique rear)
Ford Econoline150 (lateral) Ford Econoline150 (oblique frontal)
Ford Econoline150 (oblique rear) Chrysler Horizon (lateral)
Chrysler Horizon (oblique frontal) Chrysler Horizon (oblique rear)
Honda Civic (lateral) Honda Civic (oblique frontal)
Honda Civic (oblique rear) Volvo S.-W. (lateral)
Volvo S.-W. (oblique frontal) Volvo S.-W. (oblique rear)

Table 8.1 The thirty-two models of the database.

The vertices of the di�erent approximating polygons coincided with either

points of discontinuity in the tangent direction of the model's contour (i.e., vertices

or points of very high curvature), or points of maximum curvature. A subset of

sixteen points was selected from each model's point feature set. It should be

stressed that this model feature selection is carried out during the building of the

162

database and thus performed o�-line. Figure 8.1 shows the edge maps and the

selected points for three of the database models: the F-16 Falcon, the Sea Harrier

and the Ford Econoline150.

Clearly, more sophisticated approaches, such as spline �tting, could be used to

determine the feature set: our choice for the feature detection mechanism reected

our desire to determine the limitations of the proposed object recognition system.

8.2 The Two-level Randomized Algorithm

In this section, we describe in more detail the probe selection mechanism, which is

independent of whether we use the formulas for approximate or exact matching.

The Bayesian geometric hashing algorithm necessitates that a basis probe with

c members be selected from the point feature set. Given such a probe, hashes

are determined for all of the remaining S � c image point features and z-values

are computed (see Figure 7.6).

The main component of our probe selection algorithm takes a straightforward

approach: the basis members are selected without replacement and uniformly

from the point feature set.3 This randomized algorithm is both simple and ef-

�cient. Indeed, if S is the number of image features, n the number of model

features, and �n the number of unoccluded model points, the probability that

s selections will be needed before we encounter a basis probe consisting only of

model features is given by the geometric distribution dg (�; �)

dg

s;

cY
i=1

� n� i+ 1

S � i+ 1

!!
=

cY
i=1

� n� i+ 1

S � i + 1

!
�

1�

cY
i=1

� n� i+ 1

S � i + 1

!!s�1

:

3However, in our current implementation of the algorithm, the di�erent bases are selected with

replacement, i.e. a given basis may be selected more than once before recognition occurs.

163

.

.

.

.

.

.

.

.

.
.

..

.

.

.
.

1

2

3

4

5

6

7

8

9

10

1112

13

14

15

16

. .
.

.

...

.
.

..

.
.

... 1 2

3

4

5
67

8

9

10

11

12
13

14
15

16

.

..

.

.

.

.

.

.
.

.

.

.

.

.

.
1

2
3

4

5

6

7

8

9

10

11

12

13

14

15

16

Figure 8.1 The edge maps and the selected feature points for the

database models of the F-16 Falcon, the Ford Econoline150, and the Sea

Harrier.

164

For � = 1, n = 16, S = 150, and c = 2 we can see that a probe consisting

entirely of model features will be encountered with probability 0:99 after about

30 probes have been considered. This is very useful since the required number of

probes represent roughly 0:1% of the 22; 350 possible two-member probes.

Clearly, the algorithmwill frequently select either a poor basis, or a basis where

at least one of the c members does not belong to the model that is embedded in

the test image. In both cases, the probe will be discarded after evidence from all

S � c hashes has been accumulated. However, it is possible to discard such a

probe after having considered only a fraction of the image features.

Let us assume that a given probe consists entirely of model features. Let us

further assume that we only consider a fraction k of the remaining image features

S�c by uniformly selecting without replacement among them: in other words, we

determine hashes and z-values for only (S � c) =k image features. The probability

that precisely l features, with l � (�n) � c, out of the selected (S � c)=k belong

to the embedded model is given by the hypergeometric distribution dh (�; �; �)

dh

�
S � c

k
; l; (�n) � c

�
=

0
BB@

(�n) � c

l

1
CCA
0
BB@

S � (�n)

S � c
k

� l

1
CCA

0
BB@

S � c

S � c
k

1
CCA

:

Then, the probability that at least l points of the embedded model belong to the

selected fraction of image features is

Pl =
(�n)�cX
j=l

dh

�
S � c

k
; j; (�n) � c

�
(8:1)

If we know the average contribution zav of a hash, and if maxfZ (�; �)g < l � zav,

then we can discard the current probe at this point, and select another one. If on

165

the other hand maxfZ (�; �)g � l � zav, we proceed and accumulate evidence from

the remaining (k � 1) (S � c) =k image features as well.

One can think of the 1=Pl value as the expected slowdown that results from

the fact that only a fraction of image features is used. In order for the modi�ed

probing algorithm to be useful, the e�ective speedup must be

k � Pl > 1 :

The value of this last expression is a function of k, l, S, � and n. In Figure 8.2

we show some of the contours of the expression for � = 1, n = 16, S = 150

and c = 2, as a function of l and k. The contour labels correspond to the

value of the e�ective speedup. We can see that the maximum e�ective speedup

occurs when we consider only one-seventh of the image features. But when only

a small fraction of the image features is considered, the probability of a large

number of model features occurring in the selected set of features is very small.

Other combinations of k and l are more preferable: in particular, if we require

that at least 5 model features occur in the selected set of features, theoretically

we can achieve an expected speedup of 1:8, and we do not need to consider

more than one third of the entire set of features. During the recognition process,

and after (S � 2) =3 features have been considered, we examine the largest value

Z (�; �): if the value is less than 5 times the average contribution zav that a hash

contributes to any hypothesis, we discard the current probe, and select another

one; otherwise, we accumulate evidence from the remaining 2(S � 2)=3 image

features and proceed as usual. We have incorporated this two-level randomized

algorithm into our recognition system, with k = 3 and l = 5: in all cases where

� = 1, we observed a speedup roughly equal to 1:7 over the straightforward

166

algorithm which accumulates evidence from all the image features.

2

4

6

8

10

12

14

16

2 4 6 8 10 12 14 16

x1.0
x1.8

x2.0

x2.5 x3.0 x3.5x4.0
x4.36

m

od
el

 f
ea

tu
re

s
in

 s
el

ec
te

d
gr

ou
p

(l
)

fraction of
image features (k)

Figure 8.2 Several of the contours for the e�ective speedup function.

The horizontal axis corresponds to the fraction of the image features

that is considered by the probe selection algorithm. The vertical axis

corresponds to the least number of model features that one expects

to see in the selected subset. The di�erent contours correspond to

the values of the e�ective speedups, and were taken at heights 1.0,

1.8, 2.0, 2.5, 3.0, 3.5, 4.0 and 4.36 respectively.

Another helpful heuristic which we incorporated in the probing algorithm is

the following: a basis tuple may be discarded if the length of any of the basis

components is too small or too big; the cut-o� values for our implementation

were 150 and 550 pixels respectively. Further experimentation indicated that for

scenes of approximately 100 points the resulting algorithm requires approximately

167

60 probe selections before recognition occurs.

8.3 Results

In this section, we describe the experimental results for our implementation of the

Bayesian geometric hashing algorithm described in Figure 7.6. The expressions

used for w (�; �) and z (�) are the ones corresponding to the approximate match-

ing approach (see section 7.10). The database models were allowed to undergo

similarity transformations (i.e. rotation, translation and scaling). In the formulas

that we used, fe (�) corresponds to the case of Gaussian distributed point features

(see Eqn. 4.4). The probe selection algorithm used is the two-level randomized

algorithm that was described in section 8.2. All of our experiments were run on

an 8K-processor Connection Machine.

In order to test the aircraft models, we selected a number of photographs of

the same aircraft type as our models, but from a di�erent source [94]. The pho-

tographs were chosen on the basis of being taken from approximately the same

viewpoint as the drawings in the model database. That is, since the model draw-

ings are side views, and since our implementation uses only similarity invariance,

recognition will only be possible with views taken generally from the side. No-

tably, �nding such photographs is not easy, since the pictures must be taken by

chase-planes. However, we emphasize that the test images are real photographs,

and not drawings nor simulated data. Nor are the models taken from the same

source as the photographs. The only thing that the test images and the model

database have in common, other than the approximately similar viewpoints, is

the aircraft types.

To test the automobile models, we obtained additional photographs of auto-

168

mobiles. The automobiles in our test photographs were from various locations in

New York City. The only thing that the automobiles in the test photographs and

those used to build our database have in common, other than the approximately

similar viewpoint, is the automobile type.

All the test photographs were digitized using an uncalibrated CCD camera.

The result was that distortions and warpings were introduced, not only from the

perspective projection of the 3-D plane onto the photograph, but also from the

digitization process. However, such distortions might be typical of a working

vision system, and all such distortions are approximable by a similarity trans-

formation. Edges were extracted from the resulting gray-level images, using the

same edge detector that was also used during the building of the database. Again,

no preprocessing or other �ltering of the test images was performed. A polygonal

approximation of the di�erent edge map curves provided the points of the fea-

ture set. Figures 8.3 through 8.8 show the digitized photographs for three of our

test inputs together with the corresponding edge maps and the extracted point

features.

In Figure 8.3, we can see that the original photograph of the F-16 was taken

with the camera positioned below the airplane's midline and towards the back of

the aircraft. Further, the airplane is banking to the left. Also, notice that the

F-16 in the test photograph is a two-seat trainer, unlike the model contained in

our database.

The original photograph of the Sea Harrier (Figure 8.5) was very small; a

juxtaposed pencil helps estimate the actual size of the original. The original

picture was taken with the camera positioned in the front of the aircraft, as

evidenced by the visible interior of the left engine intake. The airplane appearing

169

at the bottom of the photograph is a Hunter T-8M.

The photograph of the Ford Econoline150 was taken from the driver's side of

the automobile, unlike that of the model which was taken from the passenger's

side. Instead of augmenting our database with entries corresponding to that

viewpoint, we decided to reverse the test input and use its reection around the

vertical axis as a test input; this explains why the lettering on the front door

of the vehicle appears reversed. Note that the current recognition system is not

invariant to left/right reection.

In Figures 8.9 through 8.13 we show the output of our system's implementa-

tion, for three test inputs. The retrieved database model appropriately scaled,

rotated, and translated is shown overlaid on the test input. In the bottom half

of each screendump, the nine top-retrieved database models are shown in order

of decreasing accumulated evidence (column-major order). For each of the nine

models, its name, and the retrieved basis are also indicated. The point features

corresponding to each basis are marked along the contour of the corresponding

model. Above each model, bars providing a length encoding of the evidence

that the indicated model/basis combination has accumulated, are also shown. It

should be noted here that the recovery of the transformation was based solely on

the basis pair, and not on a best least-squares match between all the correspond-

ing model and scene feature pairs.

As stated in these �gures, approximately 24:0 milliseconds are required per

probe per scene point. This is a consequence of the less than optimal use of the

oating point hardware in the CM-2 model (hypercube model of computation).4

4Considerable speedup is possible with the SPRINT -chip model of computation, at the ex-

pense of requiring 64-bit oating point hardware.

170

Figure 8.3 A test image for the recognition algorithm: the photo-

graph of an F-16.

171

Figure 8.4 The edge map extracted by the Cox-Boie edge detector
(the value of � was 2.0) for the F-16 test image. Also shown are the
80 automatically extracted features.

172

Figure 8.5 Another test image: the photograph of a Sea Harrier.

The airplane at the bottom of the picture is a Hunter T-8M.

173

Figure 8.6 The edge map extracted by the Cox-Boie edge detector
(the value of � was 2.0) for the Sea Harrier test image. Also shown
are the 169 automatically extracted features.

174

Figure 8.7 The test image of a Ford Econoline150.

175

Figure 8.8 The edge map extracted by the Cox-Boie edge detector
(the value of � was 3.4) for the Ford Econoline150 test image. Also
shown are the 98 automatically extracted features.

176

Up to thirty-two models can be included in the database, without incurring any

additional requirements in processing time. As a rule of thumb, a database con-

taining 32k models will incur an almost k-fold increase in the above processing

time requirements (the number of processing elements is assumed �xed and equal

to 8K). Approximately linear speedup can be achieved on a larger Connection

Machine (see section 3.8).

In all our experiments, the true model/basis combinationwas discovered as the

pair with the largest weighted vote, i.e., evidence. However, even if the correct

model were not found as the maximum winner, it is assumed that a postprocess-

ing stage would be used to verify a number of possible matches. For example,

with our database of thirty-two models, there are 7680 possible model/basis com-

binations. If the �rst nine or so matching model/basis combinations from the

hashing algorithm are checked, we have still achieved a considerable speedup over

the alternative of checking all possible matchings. Accordingly, the fact that the

accumulated evidence for the ninth model/basis combination is considerably less

than the evidence for the winning model/basis combination indicates that the

method is robust.

177

Figure 8.9 The output of the implementation of our system on the
Connection Machine. The test input (F-16) is shown on the top left.
The edge map together with the automatically extracted point fea-
tures is shown on the top right; the basis selection that led to recog-
nition is also marked. A total of 22 basis selections was required, and
the elapsed time was 40.5 seconds (NB. this �gure does not include
the edge detection and feature extraction stages). The bars above
each of the 9 top retrieved models provide a length encoding of the
total accumulated evidence for the corresponding model/basis com-
bination. The retrieved database model appropriately scaled, rotated
and translated is shown overlaid on the test input.

178

Figure 8.10 The F16 test input with the retrieved model overlaid on
it. The recovered transformation (rotation, translation and scaling)
was based solely on the basis pair, and not on a best least-squares
match of all corresponding feature pairs.

179

Figure 8.11 The output of the implementation of our system on
the Connection Machine. The test input (Sea Harrier) is shown on
the top left. The edge map together with the automatically extracted
point features is shown on the top right; the basis selection that led to
recognition is also marked. A total of 4 basis selections was required,
and the elapsed time was 15.7 seconds (NB. this �gure does not in-
clude the edge detection and feature extraction). The bars above
each of the 9 top retrieved models provide a length encoding of the
total accumulated evidence for the corresponding model/basis com-
bination. The retrieved database model appropriately scaled, rotated
and translated is shown overlaid on the test input.

180

Figure 8.12 The Sea Harrier test input with the retrieved model
overlaid on it. The recovered transformation (rotation, translation
and scaling) was based solely on the basis pair, and not on a best
least-squares match of all corresponding feature pairs.

181

Figure 8.13 The output of the implementation of our system on the
Connection Machine. The test input (Ford Econoline150) is shown on
the top left. The edge map together with the automatically extracted
point features is shown on the top right; the basis selection that led to
recognition is also marked. A total of 4 basis selections was required,
and the elapsed time was 9.1 seconds (NB. this �gure does not in-
clude the edge detection and feature extraction). The bars above
each of the 9 top retrieved models provide a length encoding of the
total accumulated evidence for the corresponding model/basis com-
bination. The retrieved database model appropriately scaled, rotated
and translated is shown overlaid on the test input.

182

Figure 8.14 The Ford Econoline 150 test input with the retrieved model
overlaid on it. The recovered transformation (rotation, translation
and scaling) was based solely on the basis pair, and not on a best
least-squares match of all corresponding feature pairs.

183

Chapter 9

Conclusion

9.1 Summary of Results

This dissertation makes three principal contributions. First, the exploitation of

parallelism in object recognition is advanced. Two parallel algorithms that realize

the geometric hashing method are presented. One algorithm is designed for an

SIMD hypercube-based machine; the other algorithm is more general, and relies

on data broadcasting capabilities.

The �rst of the two algorithms is data parallel over the hash table entries and

regards geometric hashing as a connectionist algorithm with information owing

via patterns of communication. The second algorithm is inspired by the method

of inverse indexing for data retrieval and treats the parallel architecture as a

source of \intelligent memory." The algorithm is data parallel over combinations

of small subsets of model features.

Per probe of a candidate basis, and usingM (n
c
) (n�c)c! processors, the �rst of

the algorithms has time complexity O (log (SMn) log (Mn)), whereas the second

has time complexity O (S + log (Mn)); M is the number of database models, n is

the number of point features per model, c is the cardinality of the basis tuple, and

184

S is the number of extracted scene features. The model of parallel computation

is the concurrent-read-exclusive-write (CREW) SIMD Hypercube.

The implementations of these two algorithms on a Connection Machine allow

the rapid recognition of models consisting of patterns of points, embedded in

scenes of several hundred points, independent of rotation, translation or scale

changes, and using databases of thousands of models. With 1; 024 synthetic

models each consisting of 16 point features, and scenes with 200 point features,

we achieve probe times of about 250 milliseconds on a 32K{processor CM-2.

A number of enhancements to the geometric hashing method (such as hash

table equalization, and the use of hash table symmetries), which were developed

speci�cally for the parallel algorithms, are also presented. These techniques lead

to substantial performance improvements and are also applicable to more general

implementations of indexing-based object recognition methods.

A second contribution of this dissertation is an analysis of the expected dis-

tribution of computed invariants over the space of invariants, and a related noise

sensitivity analysis. In particular, formulas for the expected distributions of com-

puted invariants over the hash space are derived for the cases of rigid, similarity

and a�ne transformations, and for two di�erent distributions (Gaussian and Uni-

form over a disc) of point features in the model database. For the noise analysis,

formulas that describe the dependency of the values for the computed invariants

on Gaussian positional error are derived for the similarity and a�ne transforma-

tion cases. The basic underlying assumption here is that the positional accuracy

of the extracted features, which is subject to sensor noise and errors introduced

during the feature extraction stage, can be modeled by a Gaussian process.

Finally, the third and most important contribution of this dissertation is an

185

interpretation of geometric hashing that allows the algorithm to be viewed as a

Bayesian approach to model-based object recognition. This interpretation, which

is a new form of Bayesian-based model matching, leads to well-justi�ed formu-

las, and gives a precise weighted-voting method for the evidence-gathering phase

of geometric hashing. These formulas replace traditional heuristically-derived

methods for performing weighted voting, and also provide a precise method for

evaluating uncertainty.

A prototype object recognition system has been built using the above ideas,

and is implemented on a CM-2 Connection Machine. The system is scalable and

can recognize models subjected to 2D rotation, translation, and scale changes in

digital imagery. The models for the object database were obtained from readily

available sketches of military aircraft and production automobiles. Unlike military

aircraft, which tend to be elongated with distinguishing marks, automobiles have

more rotationally symmetric shapes making the recognition task potentially more

di�cult. Point features based on curvature extrema and singularities of extracted

curves were used to build the database. The test inputs to the system are real-

world, black and white photographs of airplanes in ight, and of street scenes.

The source of the test imagery is distinct from that of the model images.

The object recognition system with enhancements and Bayesian reasoning is

then used to locate model objects in the scenes, currently using an 8K{processor

Connection Machine. We obtain extremely good results with similarity-invariant

model matching. Currently, the model database consists of 32 objects, and the

scenes typically contain a little over a hundred extracted point features.

This system is the �rst system of its kind that is scalable, uses large databases,

can handle noisy input data, works rapidly on an existing parallel architecture,

186

and exhibits excellent performance with real world, natural scenes.

9.2 Future Research Directions

We end this dissertation with a brief mention of possible future research directions.

Currently, in the context of Bayesian geometric hashing and for a given ba-

sis selection, the model/basis combination accumulating the largest evidence is

retained or rejected based on empirically determined thresholds. An analysis in

the spirit of [37] will allow the determination of adaptive thresholds that are a

function of the complexities of the viewed scene and the stored models.

Another topic to be explored is the intelligent grouping of features. Currently,

a straightforward randomized algorithm selects candidate basis tuples in turn,

until recognition is achieved. Methods for grouping image features, as well as

their realization in a parallel setting, remain largely unexplored and are expected

to greatly expedite the search.

Finally, the use of higher-level image features (i.e. features other than points)

for performing object recognition in the context of Bayesian geometric hashing

remains largely unexplored. This will require extending the technique and de-

signing evaluation criteria for measuring the relative merit of the di�erent feature

types. Related to this topic, is the issue of the development of a control mecha-

nism that will permit the recognition stage of the system to selectively guide the

extraction of various features as the recognition process progresses.

187

Appendix A

Some Details Regarding the

Derivation of Eqn. 6.6

If we set X1 = (X1 � x1) =�, X2 = (X2 � x2) =�, Y1 = (Y1 � y1) =�, and Y2 =

(Y2 � y2) =�, we have that

f(X1; Y1)dX1dY1 =
1

2�
exp

�
X 2

1
+ Y2

1

2

!
dX1dY1 (A.1)

f(X2; Y2)dX2dY2 =
1

2�
exp

�
X 2

2
+ Y2

2

2

!
dX2dY2 (A.2)

If we set X = (X � x) =� and Y = (Y � y) =� we have that

f(X;Y) =
1

2��2
exp

�
X 2 + Y2

2

!
(A:3)

Observing now that

Xi = �Xi + xi; i = 1; 2 (A:4)

and

Yi = �Yi + yi; i = 1; 2 (A:5)

we can write

j J j�1=
h
(�X2 + x2 � �X1 � x1)

2 + (�Y2 + y2 � �Y1 � y1)
2
i
: (A:6)

188

In order to express X and Y as functions of U and V , we solve Eqns. 6.3 and 6.4

for X and Y ; then using Eqns. A.4 and A.5, we can show that

X = Z + C (A.7)

Y = W +D (A.8)

where

Z = U (X2 �X1) � V (Y2 � Y1) +
X1 +X2

2
(A.9)

C =
1

�
[(U � u) (x2 � x1) � (V � v) (y2 � y1)] (A.10)

W = U (Y2 � Y1) + V (X2 �X1) +
Y1 + Y2

2
(A.11)

D =
1

�
[(U � u) (y2 � y1) + (V � v) (x2 � x1)] : (A.12)

Eqn. 6.5 can then be rewritten as

f (U; V) =
1

8�3�2

Z
R4

exp

0
B@�

�
(Z + C)2 + (W +D)2

�
2

2

1
CA

� exp

�
(X1 + Y1)

2

2

!
� exp

�
(X2 + Y2)

2

2

!

�
h
(�X2 + x2 � �X1 � x1)

2+

(�Y2 + y2 � �Y1 � y1)
2
i
dX1dX2dY1dY2 :

(A:13)

Substitution of expressions A.9 through A.12 in A.13, and integration of the result

yields the expression in Eqn. 6.6. 2

189

Bibliography

[1] Aho, A. and J. Hopcroft and J. Ullman. The Design and Analysis of

Computer Algorithms. Addison-Wesley, 1984.

[2] Attneave, F. Some Informational Aspects of Visual Perception. Psycho-
logical Review, 61, 1954.

[3] Ayache, N. and O. Faugeras. HYPER: A New Approach for the Recog-
nition and Positioning of Two-dimensional Objects. IEEE Transactions on

Pattern Analysis and Machine Intelligence, 8(1):44{54, 1986.

[4] Baker, H., editor. The Collected Mathematical Papers of J.J. Sylvester.
Cambridge University Press, 1904-12.

[5] Ballard, D. Generalizing the Hough Transform to Detect Arbitrary
Shapes. Pattern Recognition, 13(2):111{122, 1981.

[6] Ballard, D. Parameter Nets: A Theory of Low Level Vision. In Proceed-

ings of the Seventh International Joint Conference on Arti�cial Intelligence,
pages 1068{1078, 1981.

[7] Ballard, D. and C. Brown. Computer Vision. Prentice-Hall, 1982.

[8] Ballard, D. and D. Sabbah. Viewer Independent Object Recognition.
IEEE Transactions on Pattern Analysis and Machine Intelligence, 5(6):653{
660, 1983.

[9] Bederson, B., R. Wallace and E. Schwartz. A Miniaturized Active
Vision System. Technical Report 588, Courant Institute of Mathematical
Sciences, New York University, October 1991.

[10] Bergevin, R. and M. Levine. Generic Object Recognition: Building
Coarse 3D Descriptions from Line Drawings. In Proceedings of the IEEE

Workshop on Interpretation of 3D Scenes, pages 68{74, Austin, Texas,
November 1989.

190

[11] Besl, P. and R. Jain. Three-dimensional Object Recognition. Computer

Surveys, 17(1):75{145, March 1985.

[12] Biederman, I. Human Image Understanding: Recent Research and a
Theory. Computer Vision, Graphics, and Image Processing, 32:29{73, 1985.

[13] Boie, R. and I. Cox. Two Dimensional Optimum Edge Recognition
using Matched and Weiner Filters for Machine Vision. In Proceedings of the

International Conference on Computer Vision, London, England, December
1987.

[14] Bolle, R., A. Califano, and R. Kjeldsen. A Complete and Extendable
Approach to Visual Recognition. IEEE Transactions on Pattern Analysis

and Machine Intelligence, 14:534{548, May 1992.

[15] Bolles, R. and P. Horaud. 3DPO: A Three-dimensionalPart Orientation
System. The International Journal of Robotics Research, 5:3{26, 1986.

[16] Bolles, R. and R. Cain. Recognizing and Locating Partially Visible
Objects: the Local Feature Focus Method. The International Journal of

Robotics Research, 1:57{82, 1982.

[17] Bourdon, O. and G. Medioni. Object Recognition Using Geometric
Hashing on the Connection Machine. In Proceedings of the International

Conference on Patern Recognition, pages 596{600, Atlantic City, New Jer-
sey, June 1990.

[18] Breuel, T. Model Based Recognition Using Pruned Correspondence
Search. In Proceedings of the IEEE Computer Vision and Pattern Recogni-

tion Conference, Maui, Hawaii, June 1991.

[19] Brooks, R. Symbolic Reasoning Around 3D Models and 2D Images. Ar-
ti�cial Intelligence, 17:285{348, 1981.

[20] Califano, A. Feature Recognition Using Correlated InformationContained
in Multiple Neighborhoods. In Proceedings of the Seventh AAAI, pages 831{
836, 1987.

[21] Califano, A. and R. Mohan. Multidimensional Indexing for Recognizing
Visual Shapes. In Proceedings of the IEEE Computer Vision and Pattern

Recognition Conference, Maui, Hawaii, June 1991.

[22] Carrihill, B. and R. Hummel. Experiments with the Intensity Ratio
Depth Sensors. Computer Vision, Graphics, and Image Processing, 32:337{
358, 1985.

191

[23] Chen, C. and A. Kak. A Robot Vision System for Recognizing 3D
Objects in Low-order Polynomial Time. IEEE Transactions on Systems

Man and Cybernetics, 19(6):1535{1563, 1989.

[24] Clemens, D. and D. Jacobs. Model Group Indexing for Recognition. In
Proceedings of the IEEE Computer Vision and Pattern Recognition Confer-

ence, Maui, Hawaii, June 1991.

[25] Costa, M., R. Haralick and L. Shapiro. Optimal A�ne Matching.
In Proceedings of the 6th Israeli Conference on Arti�cial Intelligence and

Computer Vision, Tel Aviv, Israel, December 1989.

[26] Dickinson, S., A. Pentland, and A. Rosenfeld. 3D Shape Recovery
Using Distributed Aspect Matching. IEEE Transactions on Pattern Anal-

ysis and Machine Intelligence, 14(2):174{198, 1992.

[27] Duda, R. and P. Hart. Pattern Classi�cation and Scene Analysis. John
Wiley and Sons, 1973.

[28] Ettinger, G. Large Hierarchical Object Recognition Using Libraries of Pa-
rameterized Model Subparts. In Proceedings of the IEEE Computer Vision

and Pattern Recognition Conference, Ann Arbor, Michigan, June 1988.

[29] Fischer, D., R. Nussinov, and H. Wolfson. 3D Substructure Matching
in Protein Molecules. In Proceedings of the International Conference on

Pattern Matching, Arizona, June 1992.

[30] Fischler, M. and R. Bolles. Random Sample Consensus: A Paradigm
to Model-�tting with Application to Image Analysis and Automated Car-
tography. Communications of the ACM, 24(6):381{395, 1981.

[31] Flynn, P. and A. Jain. BONSAI: 3D Object Recognition Using Con-
strained Search. IEEE Transactions on Pattern Analysis and Machine In-

telligence, 13(10):1066{1075, 1991.

[32] Flynn, P. and A. Jain. 3D Object Recognition Using Invariant Feature
Indexing of Interpretation Tables. Computer Vision, Graphics, and Image

Processing: Image Understanding, 55(2):119{129, 1992.

[33] Forsyth, D., J. Mundy, A. Zisserman, C.Coelho, A. Heller, and

C. Rothwell. Invariant Descriptors for 3D Object Recognition and
Pose. IEEE Transactions on Pattern Analysis and Machine Intelligence,
13(10):971{991, 1991.

[34] Gavrila, D. and F. Groen. 3D Object Recognition from 2D Images Us-
ing Geometric Hashing. Pattern Recognition Letters, 13(4):263{278, 1992.

192

[35] Goad, C. Special Purpose Automatic Programming for 3D Model-based
Vision. In Proceedings of the DARPA Image Understanding Workshop,
1983.

[36] Grimson, W. and D. Huttenlocher. On the Sensitivity of Geomet-
ric Hashing. In Proceedings of the International Conference on Computer

Vision, Osaka, December 1990.

[37] Grimson, W. and D. Huttenlocher. On the Veri�cation of Hypothe-
sized Matches in Model-based Recognition. IEEE Transactions on Pattern

Analysis and Machine Intelligence, 13(12):1201{1213, 1991.

[38] Grimson, W. and T. Lozano-Perez. Model-based Recognition and
Localization from Sparse Range or Tactile Data. The International Journal
of Robotics Research, 3(3):3{35, 1984.

[39] Grimson, W. and T. Lozano-Perez. Localizing Overlapping Parts by
Searching the Interpretation Tree. IEEE Transactions on Pattern Analysis

and Machine Intelligence, 9(4):469{482, 1987.

[40] Gu�eziec, A. and N. Ayache. Smoothing and Matching of 3D Space
Curves. In Proceedings of the European Conference on Computer Vision,
Santa Margherita Ligure, Italy, May 1992.

[41] Hillis, W. and G. Steele. Data Parallel Algorithms. Communications of

the ACM, 29, 1986.

[42] Hong, J. and H. Wolfson. An Improved Model-based Matching Method
Using Footprints. In Proceedings of the International Conference on Patern

Recognition, Rome, Italy, November 1988.

[43] Horn, B. Robot Vision. The MIT Press, 1986.

[44] Hough, P. Method and Means for Recognizing Complex Patterns, 1962.
U.S. Patent 3,069,654.

[45] Hummel, R. and H. Wolfson. A�ne Invariant Matching. In Proceedings
of the DARPA Image Understanding Workshop, April 1988.

[46] Humphreys, G. and V. Bruce. Visual Cognition: Computational, Ex-

perimental and Neuropsycological Perspectives. Laurence Erlbaum Asso-
ciates, 1989.

[47] Huttenlocher, D. Three-dimensional Recognition of Solid Objects from a
Two-Dimensional Image. Technical Report 1045, Massachussetts Institute
of Technology, 1988.

193

[48] Huttenlocher, D. Feature Matching for Object Localization in the Pres-
ence of Uncertainty. Technical Report 1133, Massachussetts Institute of
Technology, 1990.

[49] Huttenlocher, D. Fast A�ne Point Matching: An Output-sensitive
Method. In Proceedings of the IEEE Computer Vision and Pattern Recog-

nition Conference, Maui, Hawaii, June 1991.

[50] Huttenlocher, D. and S. Ullman. Recognizing Solid Objects by Align-
ment. In Proceedings of the DARPA Image Understanding Workshop, April
1988.

[51] Jacobs, D. Optimal Matching of Planar Models in 3D Scenes. In Proceed-
ings of the IEEE Computer Vision and Pattern Recognition Conference,
Maui, Hawaii, June 1991.

[52] Kalvin, A., E. Schonberg, J. Schwartz, and M. Sharir. Two-
dimensional Model-based Boundary Matching Using Footprints. The In-

ternational Journal of Robotics Research, 5(4):38{55, 1986.

[53] Kim,W.-Y. and A. Kak. 3D Object Recognition Using Bipartite Match-
ing Embedded in Discrete Relaxation. IEEE Transactions on Pattern Anal-

ysis and Machine Intelligence, 13(3):224{251, 1991.

[54] Kishon, E. and H. Wolfson. 3D Curve Matching. In Proceedings of

the AAAI Workshop on Spatial Reasoning and, Multisensor Fusion, pages
250{261, St. Charles, Illinois, October 1992.

[55] Knudsen, E., S. du Lac and S. Esterly. Computational Maps in the
Brain. Annual Review of NeuroScience, 10:41{65, 1987.

[56] Knuth, D. Sorting and Searching. Addison-Wesley, 1973.

[57] Kriegman, D. and J. Ponce. Recognizing and Positioning Curved 3D
Objects. IEEE Transactions on Pattern Analysis and Machine Intelligence,
12(12):1127{1137, 1990.

[58] Lamdan, Y. Geometric Hashing. PhD thesis, New York University, June
1989.

[59] Lamdan, Y. and H. Wolfson. Geometric Hashing: A General and E�-
cient Model-based Recognition Scheme. In Proceedings of the International

Conference on Computer Vision, pages 238{249, 1988.

[60] Lamdan, Y. and H. Wolfson. On the Error Analysis of Geometric Hash-
ing. In Proceedings of the IEEE Computer Vision and Pattern Recognition

Conference, Maui, Hawaii, June 1991.

194

[61] Lamdan, Y., J. Schwartz and H. Wolfson. Object Recognition by
A�ne Invariant Matching. In Proceedings of the IEEE Computer Vision

and Pattern Recognition Conference, pages 335{344, Ann Arbor, Michigan,
June 1988.

[62] Lamdan Y., J. Schwartz, and H. Wolfson. On Recognition of 3D
Objects from 2D Images. In Proceedings of the IEEE International Con-

ference on Robotics and Automation, pages 1407{1413, Philadelphia, PA,
April 1988.

[63] Levine, M. Vision in Man and Machine. McGraw-Hill, 1985.

[64] Linnainmaa, S, D. Harwood, and L. Davis. Pose Determination of
a Three-dimensional Object Using Triangle Pairs. IEEE Transactions on

Pattern Analysis and Machine Intelligence, 10:634{647, 1988.

[65] Lin, W-M. and V. Prasanna Kumar. E�cient Histograming on Hyper-
cube SIMD Machines. Computer Vision, Graphics, and Image Processing,
49:104{120, 1990.

[66] Little, J., G. E. Blelloch, and T. A. Cass. Algorithmic Techniques for
Computer Vision on a Fine-Grained Parallel Machine. IEEE Transactions

on Pattern Analysis and Machine Intelligence, 11(3), March 1989.

[67] Lowe, D. The Viewpoint Consistency Constraint. International Journal

of Computer Vision, 1:57{72, 1987.

[68] Lowe, D. G. Perceptual Organization and Visual Recognition. Kluwer
Academic Publishers, 1985.

[69] Mundy, J. and D. Thompson. Model-directed Object Recognition on
the Connection Machine. In Proceedings of the DARPA Image Understand-

ing Workshop, pages 98{104, 1987.

[70] Mundy, J. and D. Thompson. Three-dimensional Model Matching from
an Unconstrained Viewpoint. In Proceedings of the IEEE International

Conference on Robotics and Automation, pages 208{220, Raleigh, NC 1987.

[71] Narayanan, P. and L. Davis. Replicated-data Algorithms in Image Pro-
cessing. Technical Report 536, Center for Automation Research, University
of Maryland, College Park, 1991.

[72] Narayanan, P., L. Chen and L. Davis. E�ective Use of SIMD Par-
allelism in Low- and Intermediate-level Vision. IEEE Computer: Special

Issue on Parallel Processing for Computer Vision and Image Understand-

ing, February 1992.

195

[73] Nassimi, D. and S. Sahni. Data Broadcasting in SIMD Computers.
IEEE Transactions on Computers, C-30:101{107, 1981.

[74] Preparata, F. and M. Shamos. Computational Geometry. Springer-
Verlag, New York, 1985.

[75] Press, W. H., B. Flannery, S. A. Teukolsky and W. T. Vetterling.
Numerical Recipes in C: The Art of Scienti�c Computing. Cambridge Uni-
versity Press, 1988.

[76] Quinn, M. J. Designing E�cient Algorithms for Parallel Computers.
McGraw-Hill, 1987.

[77] Richardson, D. The World's Major Military Jets. Salamander Books
Ltd., 1990.

[78] Rigoutsos, I. and R. Hummel. Implementation of Geometric Hashing
on the Connection Machine. In Proceedings of the IEEE Workshop on

Directions in Automated CAD-Based Vision, Maui, Hawaii, June 1991.

[79] Rigoutsos, I. and R. Hummel. On a Scalable Parallel Implementation
of Geometric Hashing on the Connection Machine. Technical Report 554,
Courant Institute of Mathematical Sciences, New York University, April
1991.

[80] Rigoutsos, I. and R. Hummel. Robust Similarity Invariant Matching
in the Presence of Noise. In Proceedings of the 8th Israeli Conference on

Arti�cial Intelligence and Computer Vision, Tel Aviv, Israel, December
1991.

[81] Rigoutsos, I. and R. Hummel. Massively Parallel Model Matching:
Geometric Hashing on the Connection Machine. IEEE Computer: Special

Issue on Parallel Processing for Computer Vision and Image Understand-

ing, February 1992.

[82] Roberts, L. Optical and Electro-optical Information Processing, chapter
title: Machine Perception of Three-dimensional Solids. MIT Press, Cam-
bridge, Massachusetts, 1965.

[83] Schreiber, I. and M. Ben-Bassat. Polygonal Object Recognition. In
Proceedings of the International Conference on Patern Recognition, pages
852{859, Atlantic City, New Jersey, June 1990.

[84] Schwartz, J. and H. Wolfson. Improved Shape-signature and Matching
Methods for Model-based Robotic Vision. In Proceedings of the Workshop

on Space Telerobotics, pages 103{109, JPL, NASA, January 1987.

196

[85] Shankar, R., G. Ramamoorthy and M. Suk. Three-dimensional Ob-
ject Recognition on the Connection Machine. Pattern Recognition Letters,
11(6):485{492, 1990.

[86] Sossa, H. and R. Horaud. Model Indexing: the Graph-hashing Ap-
proach. In Proceedings of the IEEE Computer Vision and Pattern Recogni-

tion Conference, Urbana-Champaign, Illinois, June 1992.

[87] Stan�ll, C. and B. Kahle. Parallel Free Text Search on the Connection
Machine System. Communications of the ACM, December 1986.

[88] Stark, L. and K. Bowyer. Achieving Generalized Object Recognition
through Reasoning about Association of Function to Structure. IEEE

Transactions on Pattern Analysis and Machine Intelligence, 13(10):1097{
1104, 1991.

[89] Stein, F. and G. Medioni. E�cient Two-dimensional Object Recogni-
tion. In Proceedings of the International Conference on Patern Recognition,
pages 596{600, Atlantic City, NewJersey, June 1990.

[90] Stein, F. and G. Medioni. Structural Hashing: E�cient Three-
dimensional Object Recognition. In Proceedings of the IEEE Computer

Vision and Pattern Recognition Conference, pages 244{250, Maui, Hawaii,
June 1991.

[91] Stockman, G. Object Recognition and Localization via Pose Clustering.
Computer Vision, Graphics, and Image Processing, 40:361{387, 1987.

[92] Strat, T. and M. Fischler. Context-based Vision: Recognizing Objects
Using Information from both 2D and 3D Imagery. IEEE Transactions on

Pattern Analysis and Machine Intelligence, 13(10):1050{1065, 1991.

[93] Swain, M. Color Indexing. PhD thesis, University of Rochester, 1990.

[94] Sweetman W. and R. Bonds. The Great Book of Modern Warplanes.
Portland House, 1987.

[95] Thinking Machines. Parallel Instruction Set: Reference Manual. Tech-
nical report, Thinking Machines Corp., 1989.

[96] Tremblay, M. and D. Poussart. MAR: An Early Vision System with
Integrated Optics and Processing. In Proceedings of the Canadian Con-

ference on Very Large Scale Integration, pages 33{40, Vancouver, British
Columbia, October 1989.

197

[97] Ullman, S. Aligning Pictorial Descriptions: An Approach to Object
Recognition. Cognition, 32(3):193{254, 1989.

[98] Ullman, S. and R. Basri. Recognition by Linear Combination of Mod-
els. IEEE Transactions on Pattern Analysis and Machine Intelligence,
13(10):992{1006, 1991.

[99] Vayda, A. and A. Kak. A Robot Vision System for Recognition of
Generic Shaped Objects. Computer Vision, Graphics, and Image Process-

ing: Image Understanding, 54(1):1{46, 1991.

[100] Wallace, R., P.-W. Ong, B. Bederson, and E. Schwartz. Space-
variant Image Processing. Technical Report 589, Courant Institute of Math-
ematical Sciences, New York University, October 1991.

[101] Wolfson, H., E. Schonberg, A. Kalvin and Y. Lamdan. Solving
Jigsaw Puzzles by Computer Vision. Annals of Operations Research, 12:51{
64, 1988.

198

