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Abstract
We note first that the first degree entailment of Lukasiewicz’s 3-
valued logic and a 3-valued logic that is extracted of Belnap’s 4-valued
logic is the same. Then, we give an axiomatization of that entailment
as the calculus E¢3c + AN—-A— BV B, where Eyg is the first degree
entailment of Anderson-Belnap’s logic E of relevance and necessity.

We consider propositional language L based on an infinite set Var of
propositional variables and connectives: A, V,— and —, denoting arbitrary
formulas via A, B,... (probably with subscripts). Following [AB 75|, we
call the formulas of the form A — B, where both A and B do not contain
any occurrances of —, first degree entailments. Thus, from now on, we will
refer to formulas as not containing the connective — and to the first degree
entailments as simply entailments.

Interest to the logics of the first degree entailment arises in connection
with an attempt to present the computer-represented knowledge in the form
of domain structure, finding further for the last a suitable informative system
in the sense of [Sco 82|, using for those purposes that or another calculus of

first degree entailment (cf. [Mur 94, Mur 95a, Mur 95b)).
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As it was established in [AB 75|, the first degree entailment fragment
of the logic E (of relevance and necessity) is axiomatized in the form of
the calculus Fy4. and coincides with the first degree entailment fragment
of the 4-valued logic that arises in considering 4-valued matrix {¢t, f, L, T}
with the single designated value ¢ and connectives defined as follows: A and
V are infimum and supremum on the following 4-valued distributive lattice
called further B4 (after Nuel Belnap; cf. [Bel 75]), respectively, and other
connectives are defined with respect to the following tables:
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Considering B4 as a universal algebra of the signature < A,V,—, - >, we
notice that < {¢, L, f},A,V,—, = > is one of its subalgebras. We denote
it via B3. It is easy to see that A, V and — are defined in it as in well-
known 3-valued logics of Lukasiewicz and Kleene (cf. [Res 69]; also [Luk 20]
and [Kle 52], respectively). However, the implication — seems to be new.
Recall that implication — in Lukasiewicz’s logic, 13, and B3 are defined as it
is pictured in the following tables:
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Let < mean the relation of order on B3, defined as usual:
z<y &< zAy=z,orzVy=y.
The following proposition follows immediately from definitions.
Proposition 1 For every z,y € B3, the following conditions are equivalent:

i) z<y;
i) z—y=1tint3;
i) z—y=tin B3.

The Proposition 1 shows us that the first degree entailment of £3 and
B3 coincide. (That is why we use the “two” in the title.) We present below
an axiomatization of this first degree entailment in the form of calculus E3.
Thus, Lukaciewicz’s logic is one source of our interest for that. However,
more principal one is that {¢, f, L} along with the imposed order C defined
as

tCy < z=_1

constitutes the simplest epistemic structurein the sense of [Mur 95a, Mur 95b],
that generates a domain which can be considered as a knowledge carrier for
the computer-represented knowledge.

Following [AB 75, Bel 75|, we call setup (or assignment) a mapping s from
Var into {¢, f, L}, being extended to the set of formulas with respect to the
following well-known conditions:

o s(AAB)=s(A)A s(B);
o s(AV B)=s(A)V s(B);
° 3(—|A) = —|S(A).

Thus, in virtue of the Proposition 1, an entailment A — B belongs to B3 (or
is true in B3) if and only if for every setup s, s(4) < s(B).
Now let

E3 ¥ B+ AN-A—BV-B,

where the last is thought of as an axiom scheme.



Theorem 1 For any formulas A,B, the following conditions are equivalent:

i) -pg A— B;
1) s(A) < s(B) for every setup s.

Proof. The implication (¢) = (3¢) follows from the two facts: 1) B3 is a
subalgebra of B4 and, hence, all the entailments derived in E4. are valid
on B3; and 2) the entailment A A -A— B V =B is valid on B3, because for
every setup s, s(AA—-A) € {f,L} and s(BV —B) € {L,t}, independently
of which formulas A and B are.

Now prove the implication (z
such that for every setup s, s(A)

First of all, notice that A —
normal form,

= (7). Assume an entailment A — B is
s(B). We have to show that g3 A— B.
can be reduced by means of Ef4. to a

)
<
B
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where each 4; and Bj is a primitive conjunction and a primitive disjunction,
i.e. a conjunction of literals! and a disjunction of literals, respectively. A
pair of literals p and —p is called contrary. Thus, our premise is: for every
setup s,

s(A1V ...V An) < (B A ... A By). (1)

Consider any pair A; and B;. Assume the entailment A; — B is explicitly
tautological, [AB 75] that is, A; and B; have a common literal. Then Fg,,,
A; — Bj and, hence, - pg A; — B;.

Suppose A; — Bj is not explicitly tautological. Then A; and B; have no
common literal. Rewrite the entailment A; — B; in the form:

a1 N...Nap—b V...V b.

Thus, we have {a;,...,ax} N {b1,...,b} = (. Denote the sets {ai,...,az}
and {b;,...,b;} via Il and X, respectively. Consider the following cases.
Case 1: there is no contrary pair in II. Define a setup s; as follows:

t ifpell
silp)=¢ f if-pell

1 otherwise.

'We call a literal a propositional variable from Var or its negation. The authors
of [AB 75] prefer the term atom in the same sense.
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Then we see that s;(a; A ... Aax) =t and s1(by V... V) € {L, f} and,
hence, s1(4;) £ s1(Bj;).

Case 2: there is no contrary pair in . Define a setup s, as follows:

t if-peX
s2(p)=q f ifpeX
1 otherwise.

Then we find that sa(a; A...Aax) € {t, L} and s3(by V...V b) = f. So we
have s3(4;) £ s2(B;).

However, in both cases, we must have according to our premise (1):
31,2(141') S 31,2(141 V...V Am) S 31,2(31 VANPIAN Bn) S 31,2(Bj).

A contradiction.
Thus, both II and X have contrary pairs, for instance, p,7p € II and
q,7q € X. In that case, -p3 p A =p—qV —q and, hence, g3 A; — B;.
Now by means of Ey4., we conclude that -pg A— B.
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