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Abstract

We consider the case where a pool of DNA molecules clones both, flipped and not-flipped, have
been cut by restriction enzymes. Ideally, each clone is cut in the same positions, although in
practice due to errors, this does not always happen. The computational problem is to determine
where the cuts have occurred.

This is a key problem in determining the structure of the original DNA molecule.

A single molecule is represented by a string of 1’s and 0’s, with cuts represented by 1's. A
set of molecules clones (with errors) is observed, but the orientation/parity of each molecule is
unknown. Clear is that the location of the observed cuts of one molecule are dependent on the
parity: flipping the molecule would result in the cuts location, as observed, being “flipped” .

We propose a Bayesian approach to generate a posterior distribution on the cuts and parity,
given the data. We first present an approximate algorithm where we attempt to divide the prob-
lem into subproblems, but it is not guaranteed to solve the problem. Then, we propose another
approximate method based on a statistical framework and a mean field annealing algorithm. It
computes the maximum posterior marginal (MPM estimator) and maximum aposteriori estimate
(MAP estimator).

We also provide evidence that the exact solution of the problem is intractable.



1 Introduction

We start by giving a background on the origins of the problem and then give a brief description
of the problem.

1.1 Background and Problem Description

Restriction enzymes cut a DNA molecule at certain specific base pair pattern termed site. A
biologist obtains valuable information from knowing the order of the sites along with distances
between each of them. This is called the Physical Mapping Problem.

Given different pieces of DNA molecules, the Contig Problem is to find the overlap between
these strands. This is done by first obtaining the physical map of each molecule, and then using
the physical maps to detect the overlap between the DNA molecules.

What kind of information does a biologist/chemist provide a computer scientist? Firstly, for
the physical map, the computer scientist is given the results of an experiment carried out in a
laboratory: hence this is technology driven. Gel Eleclotrophoresis and Optical Mapping (see [2],
[9]) are two methods to provide input for the physical mapping problem.

Gel Electrophoresis is a popular method of studying the fragments of DN A molecules obtained
by digesting with restriction enzymes. It gives the number of fragments of a particular size, but
gives no information of the order of these segments on the DNA molecule. The physical mapping
problem is to find this order.

Optical Mapping was introduced by David Schwartz (e.g., [10]) and has been a significant
breakthrough in the experimental method to study the cutting of DNA molecules by restriction
enzymes.

The current optical mapping technique is the second generation approach which can use
DNA fragments as small as 300 base pairs[9].! The process fixes elongated DNA molecules onto
polylysine-treated glass surfaces. The fixation conditions are carefully controlled to minimize
DNA coil relaxation effects but allow enough relaxation at endonuclease cleavage sites for their
detection by flourescence microscopy. ? This surface based optical mapping approach will provide
the necessary basis for the development of a fully automated approach to genomic analysis that

should eliminate the need for electrophoretic techniques.

1The first generation approach used agarose gel and was less accurate; the second generation is combining

simplicity of the procedure along with increased accuracy.
?Here we are talking about a balance between a molecule coiling up into a ball, which gives very little or no

information about its length, or not retracting at all so as to completely hide the cutting site.



What is the advantage of optical mapping over conventional methods? It is believed that
optical mapping is more suitable for automated approach than other conventional methods. The
automated approach should help analyze genomes of other biologically valuable organisms.

It must be pointed out that the digestion rate is fairly high in the Gel Electrophoresis method
but is poor in the optical method. 3 In the former it is believed to be 99% whereas in the latter
it could be as low as 30%.

significantly by using specially treated surfaces.

But, recent experiments have shown that this can be improved

The error model in optical mapping is also a little different from that of the electrophoretic
method: now there could be cuts that are optical and actually don’t exist on the molecules.
This is the Type Il or false positive error. Due to unexplained reasons, sometimes the restriction
enzymes fail to cleave at a site: this is the Type [ or false negative error.

The reader may note that the contig problem is independent of the way by which the digestion
is carried out: hence it is the same in both the approaches.

Let us summarize the pros and cons of the two techniques in the following table:

The Physical Map Problem The

Techniques Digestion | Error | Order of | Computational Contig Automation

Rate Types | fragments Problems Problem
Gel good Type I | unknown hard same not
Flectrophoresis | (99%) combinatorial conducive
Optical fair Type I | known vision & same conducive
Technique (33%) & 11 tractable (but, more

combinatorial reliable
result)

In the table, we say that the contig problem, using the Optical technique, gives a more reliable

result, since its input comes from the “better” Physical map (since the ordering is known).

1.2 Detection of single DN A molecules

In our previous work [5] and master thesis guided by one of the authors [8] we have considered algorithms
to extract DNA molecules from microscopic images (in the context of the optical mapping approach).

The idea was to describe DNA molecules as a smooth chain (Markov chain) of light grey values (light

3The efficiency with which the restriction endonucleuses digest (cut) the DNA molecule.



compared to the background) with possible gaps (due to the activity of the restriction enzymes). We
have employed dynamic programming and Dijkstra algorithms to find optimal solutions to our model.

A problem arises since these molecules have inherent errors, as described before, and a statistical
analysis of the results generated by the detection algorithm needs to take place. Thus, our work extends

our previous work on detecting individual DNA’s molecules.

1.3 The problem

We can now describe our proposed problem based on the data obtained by the molecule detection
algorithm. The data d;; = 0,1 indicates if molecule ¢ at the given orientation (parity) has a cut at
position z;. Thus the input data is a set of m strings (“molecules”), each one of length n with values
0’s and 1’s.

For example consider:

10100100010 | 10100100010
01000110101 | 10101100010
10100100010 | 10100100010
10100000010 | 10100000010
01000100101 | 10100100010
10000100010 | 10000100010

10100100010

The original molecule is the string in the right and bottom. The input is the array on the left and
the output, i.e., the flipping solution is the array on the right. The reader may verify that the array on
the right is the “best” possible arrangement. Rows 2 and 5 have been flipped to obtain the alignment
of 1’s in columns 1, 3, 6 and 10. The original molecule, the string in the right and bottom, is obtained
by maximizing the columns correlation on the right (after flipping has been solved).

Now we define a criteria for the “best” possible arrangement.

2 Formulation of the Computational Problem

We introduce the binary processes {P; = —1,1 ;i =1,....,m}and {Y; = 0,1;5 =1,...,n}. P, = -1
indicates that molecule ¢ has parity —1 and needs to be flipped to have the same orientation as everyone
else. When flipping a molecule the location of the cuts change to their complementary position. P; = 1
keeps the orientation as it is. Y; = 1 is a decision that a cut occur at position z; of the “true” molecule

(the one we started to copy from).



We define a probability measure on the data given the variables {#;},{Y;}, assuming n is even?,

m nf2
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where 3 is a parameter that does not alter the ordering of the distribution, but reflects the uncertainty

in the model. In physics it plays the role of the inverse of the temperature of the system. Z is the

normalization constant known as the partition function. This model encourages the detection of cuts,

Y; = 1, when “cut data” is observed at either (i) location z; if the parity is P; =

1 or (ii) location

Tp_j41 if the parity is reversed, P; = —1. Moreover, it inhibits the detection of cuts, Y; = 0, when “cut

data” is not observed, again, at either (i) location z; if the parity is P, = 1 or (ii) location z,_;4; if

the parity is reversed, P; = —1.

In the absense of a prior distribution on {F;,Y;} we consider a maximum likelihood approach, i.e.,

we assume a uniform distribution on {#;} and {Y;} to obtain

By changing variables, X;

energy reduces to

E(Y,X)

PP Y di;}) =

= %(1_P2)71

P({di;}I{ i}, {Y;}).

DY EG(Y,X

=1 7=1
m n/2

-2 2 vl

=1 7=1

)( dzg + Xdzn ]—}—1]
+(1 =Yyl = Xi)(1

= N2V Xi(di i

=1 j7=1
+Y;(2d; ;- 1)+ (1 - d; j)]
m nf2 n/2

A=Y - ZTXX ZTYY

=1 7=1

—dij) + Xi(1 = d; p—jt1)]

—d; ;) + Xi(dij — dip—j41)

e., X; = 1if a flip occurs and X; = 0 if it does not, the

4If n is odd, we just remove the nT"'l—th column. Note that this does not affect the flipping problem.



where A = (1 —d; ;), and

n/2
X = Ejil(di,j—dz’,n—m)
o= YI(2di; - 1)
= Adipjr — dig)

Let us look at the coefficients of the various terms and their properties:

terms coefficients observations
XY
X _ T
o T = _%
> 2 X
X; Tz'X = E;L/ (dij = din—jy1) o —n/2< 71" <n/2

(the data can be simply altered so that
0< 71X <n/2)

Y; T]Y =y(2d;; - 1) o —m < TJY <m
X: X 0
Y;Y; 0
XZ}I] Tzi'(Y = Q(di7n—j+1 - dl]) TZ%(Y € {_27072}

Noting that X? = X; for X; = 0,1, we can also write this energy in terms of a quadratic form

m T

E(Z)=-ZCZ+> Y (1-dy),

=1 j7=1

where Z = {Zi;k=1,....m+n} = (X1,..., X0, Y1,..., Yp), le.

X, for kE<m
ARE
Yy for m<k<m+n
and C is a symmetric matrix with the upper and diagonal part
C’kk:T]g( for l=Fk<m
C’kk:T,z/ for m<l=k<m+n

C =
C’kl:T,ggY for k<m and m<li<m+n

Cr =0 everywhere else



This formulation have lead us to believe this problem is NP hard, since in general, quadratic and
non-positive form of integer problems are NP hard. However, because of the particular structure of the

matrix C, it is still possible that a polynomial algorithm exist.

2.1 Alternative views

Sometimes the representation of the strings (with cuts) is such that a cut must have occurred either at
jorat N —j4 1. More precisely, we can assume that the non-occurrence of a cut at 7, Y; = 0, implies

that a cut occurred at n — 54 1,1i.e., Y,_;41 = 1. We can then consider the following two costs

1. Maximize #(bits=1) in the cut column.

EY,X) = =Y > Y;[(1 - Xi)dij + Xids n—j41]
=1 7=1
+ (1 =Y)[(1 = Xi)din—j1 + Xidij] (2)

This cost function becomes very similar to the previous one, except that the term T]Y changes to

Yoiti(dip—j+1 — d; ;) and the constant is also changed.

2. Maximize #(bits=1) — #(bits=0) in the cut column and #(bits=0) — #(bits=1) in the no-cut

column. The cost function is then defined as follows:

m n/2
BE(Y,X) = =3 3 Vil - X)(2dij = 1) + Xi(2din_jr = 1)]
+ (1= YH)I(1 = Xi)(1 = 2dij) + Xi(1 — 2d; njy1)] (3)

This cost function is again similar to the original one, except the coefficient 7¥ = 0.

All these problems are similar from the optimization point of view.

2.2 Modeling the error

We describe how to account for two sources of noise in the system, first due to false cuts and true misses

that are introduced to the system and, second due to errors in the localization of the cuts.



False cuts and True misses: On many occasions molecules will be cut where no cut is expected
and some cuts will not appear where they are expected. The incidence of these events can be tested
prior to our modeling. Assume that pr is the probability of a “true” cut not being present and pr the

probability of “false” cut appearing in the molecule. We can then reformulate the energy function as

m n/2
E(Y.X) = =310 Yipr + V(1 - pr)l (1 - Xi)di + Xidi i)
=1 j7=1
+HYipr+ (1= Y5)(1 = pp)] [(1 = Xo)(1 = dig) + Xi(1 = din_j1)] }
m n/2
= =Y D12V Xi(1 — pr — pr)(dip—jpr — dij) + Xi(1 = 2pp)(dij — di—jy1)
=1 j7=1
+Y;(1 = pr — pr)(2di; — 1) + (1 — dij) + pr(2di; — 1) ]
m nf2 m n/2
= A=Y YX - X - Y
=1 7=1 =1 7=1
where A" = (1 —d;;)+ pr(2d;; — 1), and
WX = (=) i — i) = (1= 2pp)r
o= (l—pr—pr) X (2di;— 1) = (1= pr — pr)7)
XV = 201 = pr— pr)(dip—ji1 — dij) = (1 = pr — pr)7y ¥

Note that for the special case pr = pr = 0 we recover the error-free model, and for the other special
case pr + pr = 1 the problem becomes completely ambiguous, i.e., any solution is equally good and we

can no longer solve for Y;.

Error in localization: Many times a cut may be not localized properly. The model is then modified

so that an observation of a cut in one location supports a cut in a nearby location.

E(Y,X) = =3 3400 - Y)pr +Yi(1- pr)]

=1 7=1

[(1 = Xi)(dij + a(dijpr + dij—1)) + Xi(din—j+1 + a(din—jt2 + din—j))]
+Vipr + (1 =Y —pr)l 4

[(1 = Xi)((1 = dij) + a((1 = dija) + (1 = dij1)))

FXi((1 = digin) + (1 = dippjya) + (1= din )] }

1
1+ 2a

m n/2 n/2

AN VAR B WAL D WA
j=1



where a < 1 indicates the weight of nearby observed cuts, A” = [1 — ﬁ(dﬁ 1+ a(di,j-ﬂ + di,j—l))] +
pr(2 1+12a(dij + a(d; j41 + d;j—1)) — 1], and

" — n/f2
B = BBl Sy — di )+ ol(dijor — i)+ (dijan — i )]
= Usprope) o (2di; — 1) + a((2d; j — 1) + (2d; 51 — 1))
v = M) [(di g — dig) + a((dijor = dinej) + (dija1 = dinjy2))]

The important conclusion is that after these errors have been accounted for, the optimization prob-
lem remains the same: to find a set of {X;,Y;} that optimizes a cost function of the form given by (1).
Moreover, from the optimization standpoint, the constants A, A’, A” are irrelevant and can be neglected

as we proceed.

3 Approximate Solution

Here we present our first approximation method, based on our previous optimization work on template
fitting in a problem of junction detection in images [11]. Indeed, this approximation method was
devised in conjuction with the formulation of the problem. Then we show a linear time algorithm that

approximates a solution.

3.1 A dynamic programming algorithm

Let m be the number of molecules; P the number of pixels per intensity profile. We are seeking to solve
Ct¢p (Cyp) where f is the maximum number of confrags >

Let j\/[;k denote the cost of fitting a single confrag to points j,...,% of molecule i. Let C'f,, denote
the cost of fitting f confrags to the m molecules while cosidering the points 1,...,n.

If we ignore the String Flipping Problem, we get

E;r'il */w{n f = 17

Cin = :
In min; ¢ {Cf_lj + > *M]Z'+1n} otherwise.

In order to account for the flipping, we incorporate a heuristic in the the formulation to decide on the
flip of each molecule. Let Mf;ﬁ denote the cost of fitting a single confrag to points j...k of molecule ¢,
taking left as the direction; and similarly ﬁ[;kR. CY and C are arrays to store the intermediate values

as shown below.

5Confrags are a group of 0’s in the string, bounded by 1’s, representing a fragment of the DNA molecule that

has not been cut



where

AR s

The formulation is based on the profile, but it is both feasible and practical to preprocess the input

so as to locate positions of cuts with some probability on the profile and work on the data as being a

YLy min( Mg, M) f=
L _ L
R 'R

L L il L
Cri = Cf_yji + MYy, + Ay

R _ R iR R
Cini = Cfqji + M, + A

7

AL — Extra (non-negative) cost if molecule ¢ flipped,
1o otherwise.

defined similarly.

sequence of real numbers denoting cut or no cut with some confidence.

3.2

This is a linear time approximate algorithm (that does O (n(m + logn)) work) which has an approxima-
tion factor > 0.5. This algorithm works from left to right (or reverse) with respect to the data strings.
It makes assumptions about the structure of the problem that are not valid and consequently is biased

towards the orientation of the solution. However, some preliminary experiments suggest that it may be

A linear time algorithm

a useful algorithm.

Algorithm: We have used the energy equation (2).

Let us define 7' = n — j + 1 for simplicity.

. Let ¢; = Y ent(d;;,d;5), j = 1,2,...,n/2, where, cnt(z,y) = {

0 z=y=0,
1 otherwise.

O(mn) work.

Sort ¢;,7 =1,2,...,n/2 to obtain s;.
O(nlogn) work.

. Define loss[i] = gain[i] = 0, parity[i] = no-flip, 7 = 1,2,...,m. Define G and G’ as follows.

Initialize G = G’ = 0.
For j =1,2,...,n/2, do the following;:

3-1. Assume the cut position of j and, count the increase in support of this hypothesis.

if parity[i] = flip,

10

min; ; {C'f_lj + 3, {min(CJj;_lji + ﬁ\fﬁln,Cf_lﬁ + M)+ AR+ Aﬁ}} otherwise.



if d;»=1 then tgain =gain[t]+ 1 else tloss = loss[i]+ 1.
if parity[i] = no-flip,
if d;; =1 then tgain =gain[i]4+ 1 else tloss = loss[i]+ 1.
If (tloss > tgain)
then G = G + (tloss — gain[z])
else G = G + (tgain — gain[7]).
3-2. Assume the cut position of j’, and, count the increase in support of this hypothesis.
if parity[i] = no-flip,
if d;;y =1 then tgain =gainf[i]+ 1 else tloss = loss[i]+ 1.
if parity[i] = flip,
if d;; =1 then tgain =gain[i]4+ 1 else tloss = loss[i]+ 1.
If (tloss > tgain)
then G' = G’ + (tloss — gain[7])
else G/ = G’ 4 (tgain — gain[]).
3-3. If G > G, position j is a cut else j'. Update loss[i], gain[7], parity[i],7 = 1,2,..., m accord-
ingly.

O(m) work.
Approximation Factor: Let ¢; be as defined in the algorithm. Then,
citeat .ty > optimal

Clearly, from the algorithm,

CQ—|-63—|-...+CN/2

Jpapprox 2 e + 5

Thus, the approximation factor > 0.5.

11



Figure 1: Examples using the linear algorithm: The images on the left are the input to the
flipping string problem with white marks representing the cuts. The images on the right are the
solution with the best flip for each molecule. [m=300, n=100]

12



Figure 2: Another example, more realistic one to include data errors, of using the linear algorithm:
Rate of false negative (pr) is 0.3, false positive (pr) is 0.16, number of molecules (m) 500, length
of each molecule (n) is 150 pixels. The algorithm extracts the hypothesis that was used to create
the data. The column on the right representes the flipped strings producing a “maximally”

correlated data.
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4 Statistical approach: MPM and MAP

It is known that from the estimation of Z we can obtain average estimates of X and Y. These average
estimates correspond to the MPM estimate of the posterior distribution. Moreover, it is known (e.g,
[4]) that in the limit of 3 — oo the MPM estimate becomes the MAP estimate. So we address the
two problems, the one of estimating the MPM estimates, X; and Yj, and the MAP estimates. More

precisely, we have

where z is the average estimate of z. We now proceed to compute Z.

R I i T

{Xi=0,1}" {y;=0,1}n/2 =1 j=1
n/2

- Y Iy I

{y; 01}”/22 1 X,;=0,1;=1

Y+TX XY;]

m nf2 Y n/2

7_

SO FEUES

{y;=0,1}7/2i=1 j=1

m nf2 TY n/2 ,r

= > HHeﬁ Yi) 1—|—He (Rp+7i " Yi))

{Y;=0,1}n/2i=1 5=1

analogously we can average out {Y;}

n/2 m X
= > IIdIe=* 1+H6 ERCARP (5)

{X;=0,1}m j=1 i=1

In appendix A we investigate on the factorization property of multivariable functions, possibly

related to the NP hardness of this problem.

4.1 Mean field approximation and annealing

We can now apply the mean field approximation, by fixing some of the variables at the unknown mean

state, and averaging out the remaining ones as follows

14



n/2 Y n/2

RN VI G0 1 (IR0 1 Ch il

{Y;=0,1}n/2 5=1 i=1 J=1
n/2 n/2
< (I X P9I [T
J=1Y;=0,1 =1 7=1
n/2

4

(I +e) H[1+ef’f Heﬁf”y (6)

where Y; is the mean value of Y;, that is still unknown. Analogously, we obtain

m n/2 m _
7~ (L + TN+ T 5, (7)
=1 7=1 =1

where X; is the mean value of X; that it is still unknown. We can now obtain the average estimate of

the variable X; from equations (4) and (6) as follows

_ I T P
X = . XYy, /2
4 P L P oot | FEE
1

= n/2 1 > ? (8)
(e By LTS E_Y)_|_1)

n/2

it ” . Note that the limit # — oo we have

X _
where we used 7* = —1 3"

n/2
o 1
Jim X; = O (Y - 3)) (9)
. =

where O(z) = 1 if 2 > 0 and ©(z) = 0 otherwise. This is equivalent to optimizing the energy (1) for
the X;’s variables while keeping the Y;’s fixed.

Analogously we obtain for the average estimate of Y;, from equations (4) and (7),

ﬁZz 1 l)J(Y)(
= (10)
! [e_ﬁ J —}—eﬁzz 1 1)J(YX]
In the limit 8 — oo we have
Jm ¥ = e AR, il
i =1

This is equivalent to optimize the energy (1) for the Y;’s variable while keeping the X/s fixed.
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Algorithm: We can now devise an approach to find an approximate solution to the problem. We
start with 3 = 0 where the solution is clearly X; = 17] = 1/2 for all 7 and j.

We then increment (3 and evaluate the new set of {X;} and {Y;} by iterations over (8) and (10),
until a stable point is reached. We then proceed and increment 3 and update {X;} and {Y;} again. In

the limit of 3 — oo the solution {X;} and {Y;} becomes 0,1 and a solution is obtained.

Acknowledgement

This work is motivated by the activities on the DNA optical mapping developed at the W.M.Keck

Laboratory for Biomolecular Imaging, led by David Schwartz.

A A remark on function factorization

Let us consider the partition function again

m nf2 7_Y n/2

Z = S TII 2+ 1+He n/2+% )y

{Y;=0,1}n/2i=1 j=1

Suppose that we could factorize

n/2 X n/2
(1 + [T LG9 2 1] fa(vy)
7=1 7=1

We also assume that such a factorization process would not take exponential time in n. Then we would

obtain

m n/2 Y

7= X & 5m)

{Y,=0,1}n/2i=1j=1
n/2

- 11X om0,

7=1Y;=0,1:=1

n/2 m m LY
= TII £i50) + IT £:5(1)e?
7=1 =1 =1

This would be an exact/analytical calculation for Z and so X; and 17' could be directly computed from

(4). The complexity would be the one to compute the coefficients 7, T]Y and ta'ugy, which is linear

16



on n and on m, multiplied by the complexity of the calculation of Z which is also linear on n and m
(assuming that the factorization process is constant). This would produce a O(n*m?) algorithm.
X
However we can show that such decomposition, (1 + Hn/2 Alamtms ) Hn/z fii(Y;), does not
6
occur.’.

Proof: Suppose it does occur, and that the functions are positive, then

n/2 n/2 X XYY
> log(fi;(Y;)) = log(1 + [ ?mtma )y
j:l ] 1
and the Hessian {/#ZYZ) on both sides becomes
6 82 1 v 82 1 1 n/2 /2+7_nyj)
T | i
o VI e B trX;)
- Poy
Z(1+H] 2 ?YYJ))
n/2 n/2
= Zk Tzl [He n/2+7';] 1_|_ He n/2—|—7’l] ))
7=1
n/2 n/2
) ALY B
n/2 n/2
= Zk T’Ll H € n/2+7—” 1 —I— H e TL/2 +sz ))
7=1

= BTy F({Y})

And this is a contradiction, since the left hand side must be zero for k # | and the right hand side
is not zero.

Now we offer a different proof, without using the assumption of a positive decomposition,

Proof: Let us first consider the problem of two variables, i.e., 1 + f(z)g(y) = r(z)s(y).

Then for a discrete set of values of x and y (indeed we are only interested in the cases z,y € {0,1})
we have 1 + f;g9; = r;s;, where 1 = 0,1...,1 and j = 0,1,...,J. The matriz M;; = r;s; has rank 1
since every column jth of M;; is a scalar (s;) times a vector s = sg, $1,...,51. So all columns are linear
dependent. The condition for the matriz A;; = 1 + f; g; to have rank 1 is that the columns and rows
become linear dependent. This occurs only if g; = 0Vj or if f; = 0Vi or if f; and g; are constant. Thus,

the decomposition is not valid.

60ne of the authors have profited from conversations with L. Gurvits on this proof
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In the case of more variables, say three, we have 1+ f(z)g(y)h(z) = r(z)s(y)t(z). Then we can
group two variables to have 1 + f(z)G(y,z) = r(2)S(y, z). Then, we can sample again and consider a
matrix where the columns represent all samples on y and z. The matriz is not square, but the results are
the same as the ones we obtained above. Therefore, the impossibility of the factorization is generalizable
to any number of variables.

Therefore, the sum of these two functions is not factorizable. More importantly, it suggest that (if
indeed the original problem is NP hard) the hardness of NP problems may be related to the impossibility

of this factorization.
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