
SYNTHESIZING EXECUTABLE PROGRAMS

FROM REQUIREMENTS

by

Cory Plock

A dissertation submitted in partial fulfillment

of the requirements for the degree of

Doctor of Philosophy

Department of Computer Science

New York University

May 2008

Benjamin Goldberg

© Cory Plock

All Rights Reserved, 2008

Dedication

For my beloved wife Lizette, who gave me the strength to continue when the end wasn’t

anywhere in sight. Also for my parents, whose love, support, and inspiration have

guided me through the past many years. Finally, for my brother Michael, whose love,

encouragement, and sense of humor have propelled me through all the tough times.

iv

Acknowledgments

I would like to thank my advisor Ben Goldberg and co-advisor Hillel Kugler for their

guidance, support, and encouragement over the past many years. I would like to also

extend my gratitude to Amir Pnueli for taking the time to provide research guidance,

and to Anina Karmen for going far above and beyond the call of duty. Thanks to Bonnie

MacKellar, who introduced me to the world of research as an undergraduate and always

challenged me to excel. Finally, thank you to Mr. Charles McFarlane, who saw talent in

me that I couldn’t see myself, and without whom I couldn’t have reached this point.

v

Abstract

Automatic generation of correct software from requirements has long been a “holy grail”

for system and software development. According to this vision, instead of implement-

ing a system and then working hard to apply testing and verification methods to prove

system correctness, a system is rather built correctly by construction. This problem,

referred to as synthesis, is undecidable in the general case. However, by restricting the

domain to decidable subsets, it is possible to bring this vision one step closer to reality.

The focus of our study is reactive systems, or non-terminating programs that con-

tinuously receive input from an external environment and produce output responses. Re-

active systems are often safety critical and include applications such as anti-lock braking

systems, auto-pilots, and pacemakers. One of the challenges of reactive system design is

ensuring that the software meets the requirements under the assumption of unpredictable

environment input. The behavior of many of these systems can be expressed as regu-

lar languages over infinite strings, a domain in which synthesis has yielded successful

results.

We present a method for synthesizing executable reactive systems from formal re-

quirements. The object-oriented requirements language of Live Sequence Charts (LSCs)

vi

is considered. We begin by establishing a mapping between various subsets of the lan-

guage and finite-state formal models. We also consider LSCs which can express time

constraints over a dense-time domain. From one of these models, we show how to for-

mulate a winning strategy that is guaranteed to satisfy the requirements, provided one

exists. The strategy is realized in the form of a controller which guides the system in

choosing only non-violating behaviors. We describe an implementation of this work as

an extension of an existing tool called the Play-Engine.

vii

Contents

Dedication iv

Acknowledgments v

Abstract vi

List of Figures xii

List of Tables xiv

Introduction 1

1 Requirements Languages 7

1.1 Synchronous Languages . 8

1.2 Visual Modeling . 9

1.2.1 Message Sequence Charts . 9

1.2.2 Multiple MSCs . 11

1.2.3 Shortfalls . 12

1.3 Live Sequence Charts . 14

1.3.1 Example . 15

1.3.2 Justification for Use . 18

viii

2 LSC Requirements 21

2.1 Object Systems . 21

2.1.1 Definitions . 22

2.1.2 Relationship to LSCs . 23

2.2 Live Sequence Charts . 23

2.3 Liveness . 25

2.3.1 Hot and Cold Temperature . 26

2.3.2 More on Cold Temperatures 28

2.3.3 Warm Temperatures . 28

2.3.4 Conditions . 32

2.4 Variables and Properties . 33

2.5 Events . 34

2.6 Temporal Event Ordering . 37

2.7 Visible Events . 37

2.8 The LSC Language . 38

2.8.1 Cuts . 38

2.8.2 Enablement . 39

2.8.3 Assignments and Conditions 40

2.8.4 Successor Cuts . 41

2.8.5 Runs & Computations . 42

2.8.6 Hidden Events . 43

2.8.7 Chart Satisfaction and Violation 45

2.9 Example . 45

2.10 Multiple LSC Requirements . 48

2.11 Self-Spawning LSCs . 50

ix

3 Timed LSC Requirements 52

3.1 Introduction to Time . 52

3.2 Related Work . 53

3.3 Single Discrete-Time LSCs . 53

3.3.1 Definition . 54

3.3.2 Timed Cuts . 55

3.3.3 Discrete-Time Assertions . 56

3.3.4 Successor Cuts . 56

3.3.5 Runs and Computations . 57

3.4 Single Dense-Time LSCs . 58

3.4.1 Successor Cuts . 60

3.4.2 Runs and Computations . 60

3.5 Multiple Dense-Time LSCs . 61

3.5.1 Runs and Computations . 63

3.6 Timed LSC Example . 64

4 From Requirements to Specifications 67

4.1 Related Work . 68

4.2 Single Discrete-Time LSC Specifications 69

4.2.1 State Space . 69

4.2.2 Büchi Automata . 70

4.2.3 Translation . 71

4.2.4 Example . 77

4.3 Dense-Time LSC Specifications . 78

4.3.1 Timed Automata . 79

4.3.2 Translation . 82

x

4.4 Multiple LSC Specifications . 91

4.4.1 Translation . 92

4.5 Non-Deterministic Hidden Events . 95

5 Automata-Based Synthesis 97

5.1 Related Work . 98

5.2 Smart Play-Out . 99

5.2.1 An Example . 101

5.3 Overview . 102

5.4 Game Structures . 103

5.5 Game Rules . 104

5.6 The Synthesis Problem . 106

5.6.1 Definitions . 107

5.6.2 Main Result . 107

5.6.3 Algorithm . 108

5.7 Example . 113

5.8 Finding the Winning Strategy . 115

6 Symbolic LSC Synthesis 118

6.1 Symbolic Game Structures . 119

6.1.1 Dependent vs. Independent Transitions 121

6.1.2 Deadlock . 123

6.2 Definitions . 124

6.2.1 Controllable Predecessors . 125

6.2.2 Realizability & Winning Strategy 126

6.3 Smart Play-Out . 127

xi

6.4 Main Result . 128

6.4.1 Variables . 129

6.4.2 Transitions . 131

6.4.3 Initial & Winning Conditions 133

6.5 Implementation & Results . 135

7 Contributions and Future Work 138

7.1 Summary . 138

7.2 Contributions . 139

7.3 Future Directions . 141

7.3.1 Time Consumption . 142

7.3.2 System Choices . 143

7.3.3 Unrealizability . 143

7.3.4 Synthesis with Time . 144

Appendix 146

Bibliography 150

xii

List of Figures

1.1 Basic Message Sequence Chart . 10

1.2 MSC Requirements using hMSCs and Sequential Composition. 12

1.3 Cellular Phone Scenario: Turn On . 16

1.4 Cellular Phone Scenario: Turn Off . 18

2.1 LSCs with Fairness . 27

2.2 LSC with Warm Temperatures . 31

2.3 Hidden Event Generation . 44

2.4 Fairness Free Universal LSC . 46

2.5 Self-Spawning LSC . 50

3.1 Robot Test Pad . 64

3.2 Scenario 1: Switching Robot On . 65

3.3 Scenario 2: Turning Right . 66

4.1 LSC Simultaneous regions . 70

4.2 Büchi Automaton of Fig. 4.1 . 78

4.3 Timed Automata Successor Sequence Problem 84

5.1 LSC Requirements for Smart Play-Out 101

5.2 Finding Uncontrollable States . 114

xiii

5.3 Removing Paths to Uncontrollable States 115

5.4 Forward Controllable Set . 116

xiv

List of Tables

6.1 Input LSC Requirements Data . 136

6.2 Synthesis Runtime Performance . 136

xv

Introduction

The general consensus among those in the software engineering community is that

object-oriented programming—particularly its role in enabling software reuse—is a fa-

vorable programming paradigm. Many practitioners are attracted to the idea that one

can write software, test it, and then deliver it to another developer without the recipient

having to concern herself with implementation details. The recipient can instead simply

refer to “the interface,” which usually amounts to a textual description of what the object

is supposed to do.

Creating objects for other developers to use is a process which lends itself to intra-

object design practices. That is, designs which focus primarily on the data members of

the object and how the data changes over time with respect to method calls. In fact,

considerable effort goes into testing individual objects. However, comparatively little

attention seems to be paid to inter-object issues in practice—that is, the question of

whether objects properly interact with each other.

This gives rise to large libraries of objects whose inter-object behavior is unclear,

despite a clear understanding of each individual object’s behavior. The inevitable conse-

quence is software which does not behave as expected. This could possibly be explained,

1

in part, by the fact that popular modeling languages such as UML are weak on express-

ing object interactions. Arguably, intra-object constructs such as Statecharts tend to be

taken more seriously among developers than the inter-object counterparts, e.g., sequence

diagrams.

The problem of arriving at correct software extends beyond the inter-object vs.

intra-object design issue. Indeed, even in the presence of perfect designs, any imple-

mentation process that incorporates human intervention on a large scale is virtually

guaranteed to introduce errors into the final implementation. Errors can range from

behavior which was not intended by the requirements author(s) to straight-out system

crashes. We therefore find it reasonable to explore the possibility of removing at least

some of the human component of software implementation.

Software Lifecycle

The software development process begins with the requirements phase, referring to the

gathering of information which describes how a final program is intended to behave.

The output of the specification phase delivers a set of software blueprints, describing

how the requirements are to be carried out. The implementation phase refers to the

process of writing instructions (e.g., in a programming language), part of which often

involves the compilation to machine level code. The testing phase amounts to formal or

informal verification of the implemented software with respect to the requirements.

A correct executable program is the desired outcome of this process. A correct

program, with respect to the requirements, carries out all intended behaviors and no

2

unintended ones. In order to be classified as incorrect, a program need only carry out

just one unintended behavior or fail to carry out one intended behavior.

Incorrect behavior has the potential to be catastrophic in the case of safety critical

software systems. Past incidents confirm that our fears are justified. For example, energy

management software—later found to be incorrect [Jes04]—failed to alert officials of a

problem that contributed to the largest rolling power outage in the history of the northern

United States in August, 2003. In September 1999, a relatively simple unit conversion

error caused the untraceable disappearance of NASA’s Mars Climate Orbiter, marking a

total economic loss of over
�����

million dollars [NAS99].

Researchers and engineers have struggled for years to develop software design

and implementation methodologies which lead to correct executable programs. Despite

numerous useful research results and programming methodologies that have emerged

over the years, a general solution for consistently achieving correctness remains elusive

for all but the most trivial programming tasks.

Requirements can take on a variety of forms ranging between prose to a formal

description. In practice, most fall somewhere in between. One popular requirements

methodology is the Object Management Group’s standardized Unified Modeling Lan-

guage (UML)[BRJ99], and more recently, UML 2.0.

One typical problem with requirements is incompleteness, characterized by their

inability to classify all possible behaviors as good or bad. For example, requirements

are often biased toward sunny day scenarios, whereby “normal” behavior is described

in full detail, but exceptional behavior—most often caused by unexpected input—is not.

Failure to account for unexpected inputs at the requirements level leads to behavior

3

whose correctness is unknown. In some cases (e.g., software crashes) these behaviors

are obviously bad. Other cases are more subtle in the sense that some may view the

behaviors as correct, while others may not. In the absence of a precise blueprint, it is

impossible to determine.

Even when the requirements are complete, the final implementation can still nev-

ertheless be incorrect. Experience shows that this is attributable to human error in many

cases, and can be traced to any phase of the software life-cycle which involves human

intervention. Specific causes can include poor coding technique, miscommunication, in-

correct operating assumptions, language barriers, or a multitude of other factors. Also,

requirements in written form may not necessarily agree with the intentions of the person

who wrote them—the designer may have overlooked certain subtleties in the descrip-

tion, for example.

Lacking any better methods at their immediate disposal, design teams often just

try their best at writing correct code with the hope that creating and executing test cases

will capture most errors. While better solutions may exist, whether it be in practice or

in theory, most software engineers lack knowledge of formal verification techniques.

Of particular interest to us are reactive systems, or non-terminating programs

which perpetually respond to environment inputs [HP85]. These systems are found

everywhere and include toasters, microwaves and alarm clocks, for example. Many

safety critical applications are reactive too, including anti-lock braking systems, pace-

makers, and aircraft autopilots—all of which, if not correct, can lead to catastrophic

consequences.

In most reactive systems, assumptions about external environment behavior must

4

necessarily be limited. By this, we mean that one cannot assume that the environment

will cooperate in delivering inputs precisely as the software designer expected. These

systems are environment-driven insofar as they are expected to respond to the environ-

ment, not vice versa. The burden is therefore on the system to respond to each environ-

ment input correctly, in the sense that the totality of these behaviors—those of both the

system and environment—satisfies the requirements.

In this work, we consider a subset of the object-oriented requirements language

Live Sequence Charts (LSCs) [DH01]. LSCs express inter-object behaviors using sce-

narios, where emphasis is placed on the interaction between objects in the system. This

is in contrast to the more usual intra-object approach which focuses on the internal be-

haviors of each object. One of our reasons for choosing LSCs is that behaviors can be

described visually, in a way that many people—even non-developers—can understand.

The visual aspect of LSCs does not come at the cost of precision or clarity, as as LSCs

describe reactive behaviors precisely.

An ambitious vision is presented in [Har00], whereby fully executable code could

someday be generated seamlessly from requirements. According to this vision, the

object-oriented scenario-based requirements language of LSCs would also serve as the

final implementation. The research community has responded rather positively to this

vision by proposing a number of approaches to reaching this goal. See, for example,

[HM01, KW01, BH02, BS03b, Gil03, PGZ05].

5

Contributions

We proceed according to the above vision by presenting a method for synthesizing exe-

cutable reactive systems directly from requirements. Our work is broken down into two

major parts.

We first present a method for the automatic translation of requirements to speci-

fications. That is, a translation from the visual domain of LSCs to deterministic Büchi

automata. We then extend the result to include single LSC models which can express

rational time constraints over a dense time domain, and present a method for translating

from this domain to deterministic timed Büchi automata. We conclude with one of the

main contributions of this work, a translation from multiple-LSC requirements over a

dense time domain to deterministic timed Büchi automata.

The second part discusses two solutions for performing controller synthesis on

LSCs, starting from a specification. The first is an algorithm which abstracts away

certain specification details to focus on the general framework for solving the problem

intuitively for LSCs. Secondly, we describe an approach for modifying an existing

specification to be suitable for input to a controller synthesis algorithm. We also describe

a modification to the original result which permits us to express LSC behaviors more

naturally than we could otherwise.

A more detailed discussion of our contributions appears in Chapter 7, after the

reader has become familiarized with the material in this work.

6

Chapter 1

Requirements Languages

The first stage in the software life-cycle is the creation of requirements that express a de-

sign team’s behavioral expectations of a future application. Our goal is to automatically

translate requirements to executable code, so it is essential that we only consider re-

quirements which are precisely defined. A requirements language is used for authoring

requirements, similar to the way a programming language is used to write programs.

In this work, we restrict our attention to specifying reactive systems [PR89b,

PR89a], or systems which continuously react to external stimuli. This is in contrast

to computational programs which, given an input, produce some output and then termi-

nate. Reactive systems are characterized by an infinite sequence of environment inputs

and system reactions.

7

1.1 Synchronous Languages

We adopt the synchrony hypothesis, a notion first described in [BG92]. The hypothesis

is best explained by the paper itself:

“Synchrony amounts to saying that the underlying execution machine takes
no time to execute the operations involved in instruction sequencing, pro-
cess handling, inter-process communication, and basic data handling.”

The main purpose of adopting the synchrony hypothesis is to abstract away these details

in order to focus on behaviors which are more relevant to the requirements set forth

by the user. Requirements languages operating under this hypothesis are commonly

referred to as synchronous languages.

The first synchronous languages were developed independently in the 1980s and

early 1990s, most notably Esterel [BMR83], Lustre [HCRP91], Signal [GBGM91], and

Argos [Mar90]. Prior to these languages, deterministic automata, Petri-Nets and con-

current programming languages were primarily used as requirements. None of the prior

solutions were very succinct. Automata, for example, could easily grow beyond a size

that is conducive to human understanding. Moreover, systems comprised of multiple

components generally required asynchronous semantics, giving rise to other problems

such as components “interrupting” each other during reactions.

The synchronous languages above are mostly text-based and exhibit the flavor of

a programming language. They all have precise semantics, are relatively succinct, and

abstract away irrelevant behavioral details.

8

1.2 Visual Modeling

One drawback to the synchronous languages mentioned above is that they can some-

times be too succinct. A complete reactive system specification may appear to have a

small amount of input, but at the cost of readability. For example, minor changes to the

program input can dramatically change the output behaviors. Even worse, input changes

may alter the output behaviors more subtly, in a way that eludes the designer. Therefore,

larger more complex input programs can easily become unmanageable in practice.

An alternative approach is to describe behaviors graphically instead. Statecharts

[Har87] is one such methodology which has enjoyed great commercial success. It ex-

hibits the simplicity of finite state automata but addresses the size issue by injecting the

notions of state-hierarchy, concurrency, and communication into the previously flat au-

tomaton model. A number of software tools have been developed to support Statecharts,

most notably, Statemate [HLN � 90] and Rhapsody [HG96, HK04].

1.2.1 Message Sequence Charts

Another visual language is Message Sequence Charts. Originally standardized in 1992

[Z1293], Message Sequence Charts (MSCs) is a formal graphical requirements lan-

guage originally used by the telecommunications industry for modeling the behaviors

of distributed telecommunications software. MSCs were the original inspiration for se-

quence diagrams which were later adopted into the popular Unified Modeling Language

(UML)[BRJ99].

MSCs offer an inter-object or scenario-based approach to behavioral modeling.

9

Rather than specifying the behavior of each object individually, MSCs model the inter-

action between objects. The individual object behavior is then inferred from the interac-

tion.

Each MSC scenario is depicted by a Basic Message Sequence Chart (bMSC),

which visually depicts the participating instances in a scenario and the interactions be-

tween them. Under the synchrony hypothesis, atomic behaviors called events occur in

zero time. The most basic form of interaction is the sending and receiving of asyn-

chronous messages between objects over a reliable FIFO channel. Message sending and

receiving are examples of events.

Each instance has a vertical instance line, representing a temporal top-to-bottom

ordering of behaviors. Each instance line has an ordered set of locations, and there exists

a surjective mapping from locations to events. The permissible ordering of events over

one instance is a strict ordering of the locations on the instance line. The permissible

ordering over multiple instances is a partial order over the locations. A bMSC run is a

maximal linearization of the partial order.

i j

msg2

msg1

���������
	��� �������������������

Figure 1.1: Basic Message Sequence Chart

10

Consider the MSC of Fig. 1.1, entitled Begin transaction. This scenario mod-

els the interaction between two instances, i and j. The horizontal arrows depict asyn-

chronous messages sent from one instance to the other. According to this scenario,

instance i sends message ������� , sometime after which instance j receives it. Another

message, ������� is communicated reciprocally.

MSC syntax can be converted into a textual BNF grammar, allowing one to rea-

son formally about the structure. An extension of the original MSC standard [Z1293]

provides a translation from the textual representation to a process algebra, which is in-

tended to assign semantics to the language. The precision and scope of these semantics

had been an issue of debate in the literature [LL93, Ren95]. Assuming a complete

and unambiguous process algebra, the BNF grammar would imply the regularity of the

MSC language in the sense that it can be converted into an automaton for the purpose

of formal reasoning, such as verification.

1.2.2 Multiple MSCs

Most interesting systems are too complex to describe in a single bMSC. This gives rise

to the question of how multiple MSCs can be combined to form complete requirements.

This question is first addressed in the revised MSC96 standard [Z1296], which offers two

general solutions: The first proposes a flow graph called a High Level MSC (hMSC) that

connects bMSCs using arrows. An hMSC may also contain other hMSCs, producing a

hierarchical requirements structure. The second is composition, whereby continuation

points located inside bMSCs depict the entry or exit points for other bMSCs. Fig. 1.2

illustrates the two methods.

11

(a) (b)

C1

C1

Figure 1.2: MSC Requirements using hMSCs and Sequential Composition.

High Level MSCs depict a flow of execution between vertices, each vertex de-

noting either a bMSC or another hMSC. An initial and terminal vertex is assumed. The

vertices may connected—using branching choice, concatenation, and iteration—thereby

inducing a language that expresses the entirety of the requirements. Fig. 1.2(a) shows a

simple example of hMSCs using iteration.

The composition approach utilizes a condition, depicted by a hexagon, to denote

the continuation of a scenario. For instance, when the bottom condition in Fig. 1.2(b)

is reached, it synchronizes with the similarly labeled condition on the top, admitting an

infinite execution.

1.2.3 Shortfalls

The MSC example in Fig. 1.2(a) describes a non-regular language. Every send event

must be paired with an eventual receive event and the FIFO queue can contain arbi-

trarily many send events, giving rise to the issue of unboundedness. This could occur,

12

for example, in a situation where messages have been sent but communication delays

prevent them from being received right away.

Although a graphical means of specifying behavior could be useful for increasing

readability, as we have just seen, MSCs unfortunately suffer from the same problems

synchronous languages already addressed. In a sense, this is a step backward. Although

problems such as the above have been addressed [HMNT99, HMKT00], the user is still

forced to deal with these extraneous details.

Most software executes certain behaviors conditionally. It is therefore necessary

on the requirements level to have a mechanism for specifying that certain behaviors

are allowed or disallowed based on the truth values of conditions. The MSC standard

suggests overloaded semantics for conditions. Conditions serve the dual purpose of

restricting behaviors (guarding conditions) and making assertions over the state space

(setting conditions). In the latter case, the condition may possibly double as a composi-

tion operator.

The process algebra suggested by the ITU standard unfortunately does not provide

semantics for conditions in either case. Although variations have been suggested, none

seem to have gained mainstream acceptance, making the absence of condition semantics

a fairly significant drawback.

It has been argued in the literature that safety properties alone are insufficient for

describing most reactive behavior. For example, Damm & Harel point out that MSCs

lack liveness. That is, the ability to specify whether behaviors can happen or must

happen. It is also unclear whether MSC conditions can or must evaluate to true. That

is, whether false conditional evaluations are a violation of the requirements, or whether

13

they merely affect the subsequent behaviors.

1.3 Live Sequence Charts

Live Sequence Charts (LSCs) [DH01] is an extension of MSCs which remedies the

above shortcomings by adding liveness to the requirements, among other things. By

assigning a hot or cold temperature to MSC messages, conditions, and locations, LSCs

can describe whether events are mandatory or provisional. Additionally, they can de-

scribe whether or not scenarios themselves are mandatory, and if so, the conditions

under which they must occur.

LSCs come in two varieties: universal and existential. Universal LSCs restrict the

set of permissible behaviors by imposing requirements that must hold over all system

runs. They can be used to describe scenarios that must happen and even anti-scenarios—

those which must not happen. Existential LSCs, on the other hand, impose requirements

which must hold over at least one system run. They can be viewed as the dual of univer-

sal LSCs: whereas universal LSCs restrict behaviors from occurring, existential LSCs

require behaviors to occur.

Instances on an LSC are each identified by a name, which appear across top of the

LSC within solid rectangles. Extending downward from these are instance lines which

depict the flow of control for each instance in the scenario. Each instance executes the

behaviors depicted on its instance line in a top-down manner. Universal charts consist

of a prechart, annotated by a dashed hexagon, and a main chart, annotated by a solid

rectangle. The relationship between the prechart and main chart is one of temporal

14

causality: if the behaviors of the prechart occur then the behaviors of the main chart are

required to eventually occur.

LSC messages can depict a variety of real-life behaviors. For example, a message

could represent a packet of transmitted data, the invocation of a function call, or a real-

world event (e.g., sunrise). The type of event is usually understood by context. For our

purposes, it is usually not necessary to make the distinction.

1.3.1 Example

Consider Fig. 1.3, an example of LSC requirements consisting of precisely one sce-

nario, described by a universal LSC. The scenario describes the requirements of a sim-

ple cellular phone power-on sequence. Three instances, User, Power Button and

Display, participate in the scenario. Specifically, User represents the external en-

vironment and the other two instances belong to the cellular phone. In general, there

can exist other scenarios belonging to the same requirements, which could describe ad-

ditional behaviors over and above that of Fig. 1.3. For now, we focus our attention on

single LSC requirements.

The prechart of Fig. 1.3 depicts a synchronous message called ����� � � which is

sent from User to Power Button. Synchronous messages, denoted by a solid arrow

head, are characterized by the instantaneous occurrence of sending and receiving. In

the example, User sends ����� � � at the same instant as Power Button receives it. In

real life, the message describes the act of physical touch—the sender and receiver of the

message refer to the initiator and recipient of the action, respectively. An asynchronous

message, not shown in this example, is depicted in the same way as synchronous mes-

15

Press

Illuminate

Power Button Display

User

Display.On := True

Display.On = False

Figure 1.3: Cellular Phone Scenario: Turn On

sages, except for an open arrowhead. Asynchronous messages are suitable for describing

events in which a delay occurs between the sending and receiving.

LSCs may contain LSC variables and object properties, both of which are similar

to variables in many imperative programming languages. They are both typed and refer

to memory locations wherein discrete values, corresponding to the type, can be stored.

LSC variables are an attribute of the LSC, whereas object properties are an attribute of

an object. LSC variables are initially undefined each time the scenario begins executing,

and are visible and mutable only within one particular LSC. In contrast, object properties

are persistent between scenario executions and are visible to and mutable by any LSC

in the requirements.

LSC variables and object properties can participate in LSC assignments and condi-

tions. An assignment is depicted by a small solid rectangle and an embedded annotation

of the form ������� where � is an LSC variable or object property and � is a con-

stant. A condition is depicted as a small solid hexagon annotated by a predicate over the

LSC variables and object properties. Based on the valuation of the variables or object

16

properties, conditions evaluate to true or false in the obvious way.

When an LSC condition evaluates to true, the scenario proceeds beyond the condi-

tion. When it evaluates to false, the consequence depends on the temperature of the con-

dition. Temperature is depicted by coloring the condition box red or blue, correspond-

ing respectively to a hot or cold temperature. Hot conditions are required to evaluate to

true—a false evaluation constitutes a violation of the requirements. A false evaluation of

a cold condition, on the other hand, causes the scenario to terminate without violation1.

The condition shown in Fig. 1.3 is cold, meaning that the scenario will proceed to the

bottom of the main chart if the display is not on. Otherwise, the chart will terminate

without violation. Intuitively, this means that the scenario is applicable only to the case

where the display is not on.

Putting it all together, the scenario of Fig. 1.3 states that whenever the user presses

the power button, it is required that either the Displaymust already be on, or otherwise

must illuminate itself and then switch to an ��� state. This scenario handles only the

case of the phone being turned on, even though the power button might serve as an

on/off toggle.

We expand the above requirements by adding the LSC of Fig. 1.4, which describes

the scenario of turning off the phone. The LSC consists of a prechart which is identical

to that of Fig. 1.3 and a main chart which is similar. The conditional expression at the

top of Fig. 1.3 is the negation of the corresponding prechart in Fig. 1.3. Specifically, if

the Display instance of Fig. 1.4 is in an ��� state, then it executes the ����� � ���	���
�

message and satisfies the main chart by setting the ��� variable to false. The LSCs

1We assume in this work that LSCs do not contain subcharts. Generally speaking, however,
if a cold condition within a subchart evaluates to false then only the subchart terminates.

17

Press

Power Button Display

User

PowerDown

Display.On := False

Display.On = True

Figure 1.4: Cellular Phone Scenario: Turn Off

of Figs. 1.3 and 1.4 work in conjunction with each other to describe the entire on/off

switching behavior. When User sends the ��� � � � message, both precharts are simulta-

neously satisfied and the Display instance is then required to satisfy both main charts.

If the phone’s display is already off, then the “Phone Off” scenario in Fig. 1.4 immedi-

ately ends due to the condition. However, the “Phone On” scenario of Fig. 1.3 continues

on to illuminate the display and then change the state of the display’s ��� property to

true.

1.3.2 Justification for Use

The requirements phase of a software development life-cycle is arguably the most im-

portant, since it has been shown through practice that careful design reduces errors and

overall implementation time. The requirements phase is intended to capture the be-

havioral description of the software. There is a vast range of requirements languages

ranging from informal descriptions to rigorous and complete formal modeling tools.

18

There exist contrasting viewpoints concerning the intended purpose of require-

ments, and the extent to which they should be used. Some practitioners view require-

ments as only an abstract description or set of general guidelines, rather than a concrete

set of rules. According to this opinion, real-life requirements are too abstract and there-

fore insufficient for addressing the inherent complexities of a software system. Others

adopt a stricter approach, citing that requirements should strive to express the most

complete behavioral description possible, even if the state-of-the-art does not currently

permit the level of rigor or formality necessary for a totally precise description. Ac-

cording to this point of view, an up-front reduction in the level of ambiguity results in

a more guided development approach, thereby reducing the need for time-consuming

discussions during the implementation phase.

This work is primarily directed to those who adopt the latter approach of utilizing

formal and precise requirements languages to capture behavioral detail, or those willing

to explore the possibilities of using this approach. We do not claim superiority of this

approach over the former approach, or any other. However, we do maintain that the

use of formal requirements languages have proven to be useful for a variety of reactive

software projects.

In this work, we study the use of LSCs as a requirements language. Precise LSC

definitions permit us to reason formally about LSC behavior for the purposes of syn-

thesizing executable code. From a user standpoint, LSCs are related in appearance and

function to UML sequence diagrams, with which many practitioners in the field are al-

ready familiar. We believe that a visual depiction of scenario-based behaviors is intuitive

to not only professional developers, but also those with little or no technical background

in software development. Existing tools such as the Play-Engine [HM03] also serve as

19

an aid in capturing LSC requirements by generating LSCs through the user manipulation

of a graphical interface.

Although introduced only within the past few years, LSCs have already shown to

be promising for developing or modeling many types of systems. For example, they

have been used to model the weather synchronization logic for NASA’s Center TRA-

CON Automation System [BHK03], to create virtual wrappers for a PCI bus [BG02], to

design a radio-based train system [BDK � 02], and even to model living biological sys-

tems [KHK � 03]. We find these initial results encouraging for developing the embedded

software systems in which we’re interested.

20

Chapter 2

LSC Requirements

We now provide definitions for the subset of LSC requirements considered in this work.

The subset is comprised of messages, assignments, conditions, variables, and properties.

These definitions are similar to the more extensive treatments appearing in [HK00a,

HM03]. We begin with a discussion of untimed LSCs and then expand the discussion in

Chapter 3 to include the notion of time. We focus initially on requirements consisting

of only one LSC and then later treat the more common and expressive case of multiple

LSC requirements.

2.1 Object Systems

An object system is a set of objects which represent hardware, software, users, or other

physical or conceptual entities that interact with one another. Each object acts on behalf

of the system or environment. System objects are those belonging to and controlled by

21

the application we seek to design, whereas environment objects and their behaviors are

outside the system’s control.

2.1.1 Definitions

Formally, an object system is a double ��� � �������
	�� where � is a set of application

types and 	 is a set of objects. Each application type ��� is a finite set of values.

We make a simplifying assumption that each set is strictly-ordered so that the binary

comparison operators (e.g. �������������) can be applied to all types. This allows us to

develop a single theory, rather than addressing the formal details of a complete type

system. For types where ordering doesn’t make sense, the comparison operators aren’t

used.

An object is a triple ����������� �!� ���
�"� where ���#��� is the name of the object, � is a

set of properties (data members) and ���
�$�&% sys � env ' classifies the object’s ownership

as either system or environment, respectively. Properties are defined by �����#�����()�+*,�.-�� ,
where ���#��� is the name of the property, �/� is its application type, *0�1 is the

property value, and - is the initial value.

We adopt the convention of referring to elements of a tuple using an object-

oriented “dot” notation. For example, to distinguish between the set of properties be-

longing to objects 243 and 265 , we write 243879� and 2:5;7<� , respectively. We also extend

this notation to members of sets; for example, if we first establish the existence of a

particular property =)�$243>79� , we may later write 243?7 = to make the ownership explicit.

The set of all properties is given by �����(@ � �A%(=CBD=)�$2!7<� EF2G�H	!' . The state

22

space of the object system, denoted ��� 	�� , refers to the set of all valuations of properties

in ��� �(@ � . The initial valuation of ��� 	�� , denoted � �����
	���� 	��� , is the valuation that maps

all properties = � �����(@ � to their initial value, = 7 - .

2.1.2 Relationship to LSCs

Intuitively, an object system can be viewed as the full set of components making up

an executable program. Each component can communicate with other components by

means of messages, which we refer to more abstractly as behaviors. Sending and receiv-

ing messages may cause the state of the objects (i.e., the property valuations) to change

over time.

On a high level, LSCs model object system behaviors. They precisely describe

acceptable and unacceptable behaviors. Given an object system and LSC requirements,

we may check to see if any executable trace of that system agrees with the require-

ments. Alternatively, we may use the object system and requirements to automatically

generate a “book of rules” by which the object system is guaranteed to agree with the

requirements. The former method has already been implemented in a tool called the

Play-Engine [HM03]. The latter method—also known as synthesis—is precisely the

subject of this work, and we later describe an extension to the Play-Engine to support it.

2.2 Live Sequence Charts

Formally, a Universal Live Sequence Chart � over object system ��� � is an 8-tuple de-

fined by � � �������1��� ��� ����� ����� � ��� ��� � �
� � � @"� consisting of:

23

� � — a set of instances, each defined as a pair � ������� �(2 � where
�������

is a (fi-

nite) totally ordered set of locations and 2 � 	 is the object corresponding to

the instance. We denote the set of locations of an instance � by
������� 	�� � . The

location numbers across all instances are mutually distinct. We set
������� 	 � � �

	
3�
� ������� 	�� � .

� � — a set of messages �����#���������.����� ���� �����
�D� ��� � � where ���#��� is the name of the

message, ���.����� � � are the sending and receiving instances, ��� � ������� 	���� �.����� �
������� 	������ are the locations at which the message is sent and received1, and � ��� �!�
%����! ' denotes whether the message is asynchronous or synchronous.

� � — a finite set of typed LSC variables, each defined by �����������(�+* � where ���#���
is the variable name, � � is the type, and * �$#"�%�$ ' is the value. We use $

to denote an undefined variable. We require all types � to be finite and discrete.

By ��� � � we denote the state space of � —that is, the set of valuations mapping

each %�� � to a value %�7 * . The initial valuation of � , denoted � ����� 	���� � �� , is the

valuation where all variables are undefined.

� � — a set of assignments � ������� �(�'&)(�* � , where
�������

is the set of locations to

which the assignment is anchored (i.e., visually attached to the location), and �)&'(�*
is an expression of the form “ � � � � ” where � � 	�� " � ���(@ � � and � � � 7 .

We denote the set of locations corresponding to a particular assignment �!� � by

������� 	�� � . If � is an assignment, we may refer to � as ��7�� and � as ��7 � .

� � — a set of conditions � ������� �.�)&)(+* � , where
�������

is the set of locations to which

the condition is anchored. Conditions compare either variables or properties to a

1An instance may send a message to itself, in which case , �.- , � and / �0- / � .

24

constant using an operator � �&% � ������� ��� ��� � ����� � ���� ' . In particular, expres-

sion �)&)(�* is of the form “ ��� � ” where � � %�7 .

� ������� ������� 	 � � — a prechart.

� ��� ��� � � ������� 	�� ��� � — a many-to-one mapping between locations and events.

The set of events, � consists of the union of visible events �
	 , hidden events �
� ,
and unrestricted events �� . Events are discussed in greater detail in section 2.5.

Let ��� ��� ����� ������ ���������������
map an event to the set of locations in the LSC where

the it occurs.

�! �"$# = � ������� 	�� � " �%� %'&)�����)(' — maps a location to a hot, cold, or warm

temperature. Also maps a condition to a hot or cold temperature. We turn to the

topic of temperature in the next section.

2.3 Liveness

Each LSC instance depicts a visual top-to-bottom ordering of events, as represented

formally by the instance’s ordered set of locations. When an object system executes,

each instance begins in its topmost location. During the course of execution, the LSC

keeps track of the current location and moves to the next consecutive location whenever

the event corresponding to that location occurs.

A central concept of LSCs is the notion of liveness, which is expressed by assign-

ing a temperature to every location. The temperature of a location tells us whether the

next consecutive event can or must occur. In the former case, the object system is given

25

the choice of whether or not to execute the next event. In contrast, failure to ever execute

it in the latter case is considered a violation of the requirements.

2.3.1 Hot and Cold Temperature

A cold location, depicted by a blue location coloring, represents that an instance may

either remain forever at the location or progress. Hot locations, depicted by a red loca-

tion coloring, impose a mandatory progress requirement. To avoid dependence on color

displays, location temperatures in the following example and throughout the remainder

of this work are depicted by the letters H, C, denoting hot and cold, respectively. Later

we will discuss the warm temperature, which is depicted on the LSC by the letter W.

Later, in section 2.8.1, we formally discuss the concept of a cut, which is a snap-

shot of an LSC’s configuration during execution. Roughly speaking, it is the product

comprised of one location from every instance. Hot and cold temperatures extend to

cuts in the following way. A cold cut consists of all cold locations, whereas a hot cut

consists of at least one hot location. Similar to location temperatures, an LSC may re-

main forever in a cold cut without violating the requirements, whereas hot cuts require

eventual progress.

Consider the scenario of Fig. 2.1(a) which illustrates the interaction between a

user (shown as User), automatic teller machine (ATM), and a user display (Display).

Fig. 2.1(b) shows the cuts overlaid on Fig. 2.1(a). For the purposes of this example, we

number the cuts � ��7 7�7 ��� and show the temperature of each using letters H and C on the

far right.

26

C

C C C

C C

EnterPin

PromptPin

InsertCard

ShowMenu

C C

ChooseTrans

ShowChoice

H H

H H

C

ATM Display

C

C C C

C C

EnterPin

PromptPin

InsertCard

ShowMenu

C

ChooseTrans

ShowChoice

H

H H

2

7

1

ATM Display

C

5

3

(b) ATM SCENARIO WITH CUTS(a) ATM SCENARIO

C C

C

C

4

H

H H H
C H

C

H H
C

H
H

C

6

8

H

C

C

H

H

C

H

C0

User User

C C

Figure 2.1: LSCs with Fairness

The LSC is in precisely one cut at a time, starting at cut 1 and progressing sequen-

tially. Cuts 0, 3, and 8 are special cuts which are not associated with any messages, the

first and last of which are the initial and final cut, respectively. In order to reach these

cuts, special hidden events must occur. Hidden events are discussed in further detail in

section 2.8.6.

Fig. 2.1 requires that whenever a user inserts a card (cut 1) and the ATM prompts

the user for a PIN on the display (cut 2), the prechart is satisfied (cut 3) and the main

chart is consequently required to eventually be satisfied. In particular, when User sends
� ��� � ��� � � , the main chart progresses to cut 4. Since cut 4 is hot, the ATM is required

to send the � � ����� � ��� to Display, causing the main chart to progress to cut 5. Since

cut 5 is cold, no progress is required from this point. However, if User sends the
� � � � � ��� �	� � � message, the LSC progresses to cut 6—a hot cut—from which it is re-

quired that ATM eventually send the � � ��� � � � � ��� message. When the message is sent,

the LSC progresses to cut 7. The LSC can finally move to cut 8, thereby satisfying the

LSC.

27

2.3.2 More on Cold Temperatures

The LSC literature describes two possible interpretations of cold temperatures. Accord-

ing to the first, instances take the lazy approach of never progressing from a cold cut.

This interpretation is safe in the sense that no harm can be done (with respect to violat-

ing the requirements) by remaining forever in a cold cut. We refer to this as a minimal

policy, as defined in [HM03].

The second interpretation states that instances should always progress from a cold

cut if they can, despite the absence of a requirement to do so. This option is not as safe

because sometime after leaving the cold cut, the possibility of a future violation arises.

This interpretation follows a maximal policy.

Precharts contain only cold locations by which follow a maximal policy. There

would be no need for a main chart otherwise, since it would never be reached under

a minimal policy. Main charts, on the other hand, can follow a minimal or maximal

policy. The Play Engine, in particular, follows a maximal policy for both precharts and

main charts.

2.3.3 Warm Temperatures

Rather than assign two or more possible semantics to cold locations, we instead assign

the minimal policy exclusively to cold temperatures and create a new warm temperature

to express the maximal policy.

Aside from obtaining greater clarity, another advantage of this approach is that

we permit the user to freely use cold, warm or hot temperatures within the main chart

28

of universal LSCs. Whenever a sequence of one or more warm locations precedes a

sequence of one or more hot locations, this is equivalent to stating that if all events

leading up to the last warm location occur, then all the events associated with the subse-

quent hot locations must occur. For this reason, we require that all prechart locations are

warm. A similar semantics is also suggested for Modal Sequence Diagrams in [HM07],

whereby alternation between cold fragments (blocks of warm locations) and hot frag-

ments (blocks of hot locations) is permitted.

We say that an event is enabled if it is legal for that event to occur next based on

the sequence of events that has already occurred. We have already mentioned LSC cuts,

which record the present position of each instance along an instance line, and hence the

set of events which have already occurred. Therefore, we typically say that events are

enabled or not enabled with respect to some cut. The notion of enablement is discussed

more formally in section 2.8.2.

Cuts map to temperatures in the following way: if any location in the cut is hot,

then the cut is hot. If no locations in the cut are hot, but at least one location is warm, then

the cut is warm. Otherwise, the cut is cold. With these notions of cut temperature and

enablement, we arrive at the following semantics for expressing LSC liveness properties:

• If an enabled event occurs from a warm cut, the LSC must progress from that cut.

• If a non-enabled event occurs from a warm cut, the LSC must remain forever in

the warm cut.

We hereafter assume that all prechart locations are warm. Main chart locations

may be either cold, warm, or hot, except for the locations appearing at the very bottom

29

of the chart, which must be cold so that the chart closes. These assumptions do not

affect the later results of this work, but are adopted only to remain consistent with the

generally accepted LSC semantics.

If an LSC is in a warm cut and the next event causes a violation of the partial

order, the LSC remains in the current cut forever. If the cut were cold, the decision

to remain there forever would have been made upon reaching the cut. As described

above, warm cuts permit the decision (of whether or not progress) to be delayed until

the next event occurs. In either case, when the decision to remain forever in the cut has

been determined, the LSC may close without violation since all obligations have been

fulfilled. From a practical standpoint, it is wasteful to consume memory resources to

perform bookkeeping for an LSC whose state will never change in the future.

We illustrate the use of warm locations using the example of Fig. 2.2. This exam-

ple is identical to Fig. 2.1 except that certain cold locations have now been replaced by

warm locations. In particular, we make all prechart locations warm and, additionally,

change some of the main chart temperatures from cold to warm.

When message sequence � � � � ��� � � ��� , ����� � @ � � � � occurs, the LSC progresses to

cut 3 thereby satisfying the prechart. Since cut 3 is warm, the LSC is required to progress

if
� ��� � � � � � occurs, but the main chart closes without violation if some other message

occurs. Supposing that
� ��� � � � � � occurs, the LSC advances to cut 4—a hot cut. It is

therefore required that � � ����� � ��� eventually occur. If it does, the LSC progresses to

cut 5. Because cut 5 is warm, the LSC must progress if
� � � � � ��� � � � � occurs or the LSC

otherwise closes without violation. Supposing
� � � � � ��� � � � � occurs, the LSC progresses

to cut 6, from which there is a new requirement that � � ��� � � � � ��� must eventually occur.

30

If it never does, the requirements are violated. Otherwise, the LSC advances to cut 8—a

cold cut—which causes the LSC to close.

W

C C C

W

EnterPin

PromptPin

InsertCard

ShowMenu

W W

ChooseTrans

ShowChoice

H H

H H

W

Display User

W

C C C

W W

EnterPin

PromptPin

InsertCard

ShowMenu

W

ChooseTrans

ShowChoice

H

H H

2

7

1

Display

W

5

3

(b) ATM SCENARIO WITH CUTS(a) ATM SCENARIO

W W

W

4

H

W W W
W

W

W WW
H

W

6

8

H

W

C

H

H

W

W

H

W

W

W

User ATMATM

0
W

W W

Figure 2.2: LSC with Warm Temperatures

Fig. 2.2 illustrates classic reactive behavior, where User is viewed as the external

environment and ATM, Display belong to the system whose behavior we are specify-

ing. We see a series of obligations created during the course of the run. The require-

ments of this example essentially state that if the system and environment cooperate

in producing the message sequence � � � � ��� � � � � , ����� � @ � � � � , then the following holds:

if the environment sends
� ��� � � � � � then the system must eventually send � � ����� � ��� .

Thereafter, if the environment sends
� � � � � ��� �	� � � then the system must eventually send

the message � � ��� � � � � ��� .

The above example describes a set of “if-then” behavioral requirements. Without

warm locations, the above behavior could not be described using only one LSC. Roughly

speaking, each “if” would require a prechart of its own, and therefore a distinct LSC.

31

2.3.4 Conditions

Conditions are depicted on LSCs as small hexagons with a dashed border. Inside the

hexagon is a conditional expression over the LSC variables and object properties. When

a specific valuation in ��� � � " ��� 	�� is applied to the expression, a Boolean output is

produced, indicating whether the expression is true or false. Conditions are treated

more formally in section 2.8.3, but we provide a brief overview of the semantics here.

Conditions are anchored to locations on one or more instance lines. Instance lines

that are attached to a particular condition are said to participate in that condition. When

all participating instances are exactly one location above the condition, the condition

can be evaluated. If the evaluation is true, all instances move onto the condition simul-

taneously. The outcome of a false conditional evaluation depends on the condition’s

temperature, which is determined by the � � � @ function.

All conditions, similarly to locations, take on a hot or cold temperature2. Hot

conditions are shown on the LSC by a red hexagonal border, whereas cold conditions

are blue. We now explain the significance of condition temperature.

Each LSC scenario tells the story of a behavioral interaction among instances. The

story begins with all instances at the topmost locations and ends when they arrive at the

bottom. Sometimes its necessary to end the story prematurely, for example when the

system is in a state from which it makes no sense to proceed. Cold conditions are used

to abort scenarios in this way. When a cold condition evaluates to false, the LSC closes

normally.

2There are no warm conditions.

32

In other cases, a requirements designer may wish to assert that it is unacceptable

for the system to arrive at or remain in a particular state. A system that reaches such a

state is said to be in violation of the requirements. Hot conditions are used to perform

the assertion. If the system remains in a state where a hot condition evaluates to false,

this is considered a violation of the requirements.

2.4 Variables and Properties

Variables and properties are analogous to local method variables and data members in

an object-oriented program. Both are finite discrete types, but they differ in lifetime

and scope. Lifetime refers to the temporal duration in which a variable or property is

available for use. A variable or property is visible if it can be legally referenced in a

specific place in the requirements. Scope refers to the set of visible places.

Each LSC maintains a set of its own variables which are visible within the LSC.

We assume that variables can appear only within assignments and conditions3. The

lifetime of a variable begins when it is initialized to a value using an assignment and

ends when the scenario terminates.

In contrast, properties are attributes of objects, not LSCs. An object’s property

is visible from any LSC in which the object appears. All properties have an infinite

lifetime which commences at the start of execution. That is, the value of every property

persists beyond the termination of any one scenario. One consequent of this setup is

that property mutation in one LSC may alter the outcome of behaviors in another LSC

3In the full LSC language, variables can be used as message parameters. If the same message
appears in more than one LSC, unification is necessary to reconcile the variable bindings.

33

of the same requirements. Like variables, properties appear only in assignments and

conditions.

In the full LSC definitions, variables can be assigned a constant value, the value of

an object’s property, or a user-supplied function. In this work, we assume that variables

are assigned constant expressions only. This is a simplifying assumption only, as the

other two cases could be handled similarly. The main requirement is that variables are

assigned a value which is within their respective finite domain . In the case of a user-

supplied function, we further require the function to be defined for all inputs and range

over any subset of .

2.5 Events

Reactive systems produce behaviors that are visible to the outside world. LSCs observe

these behaviors and update their state accordingly. Events serve as the connection be-

tween the behaviors of the reactive system and the LSC requirements. Events identify

behaviors (e.g., a message name) and the objects participating in the behaviors (e.g.,

the sender and receiver). LSCs respond to events and map them to locations. A single

event can map to one or more multiple locations. There are two possible reasons for the

latter. The first is that several instances can participate in the same event—for example,

instances synchronizing on a condition. The second is that the event needs to happen

more than once during the scenario.

We proceed to define events in the following way. The set of LSC events is de-

noted by � , whose membership is comprised of the union of disjoint subsets � 	 (visible

34

events), �� (hidden events), and � � (unrestricted events).

Visible events are observable behaviors, which are comprised of the sending and

receiving of messages between objects. The set of visible events is given by ��	 �
� �	 "��

�
	 "��

�
	 , where � �	 � �

�
	 � �

�
	 are defined as follows. The set of synchronous message

events is defined by � �	 � % 	 # 7<���#��� � # 7 ���.7 2 � # 7 ���
7 2 � B # � � E # 7 � ��� � � ' .

That is, the name, sending object and receiving object for all synchronous messages.

The sending and receiving are considered separate for asynchronous messages: � �	 �
% 	 # 7<���#����� # 7 ���.7 2 � B # � � E # 7 � ��� � � ��' and � �	 � % 	 # 7<���#����� # 7 ����7 2 � B # �
� E # 7 � � � � � ��' .

The set of hidden events is given by � � � � �� " � �� " � �� , which are defined as

follows. The set of hidden events is � �� � %�@ � � � � � �+@ � � � ' , referring to the synchroniza-

tion of instances at the beginning and end of a prechart, respectively. For assignments,

we have � �� �A%���7 �)&'(�*�B � � � ' and for conditions, � �� �A%�� 7 �'&)(�*�B�� � ��' .

Unrestricted events with respect to an LSC are those which are irrelevant to the

LSC scenario but may legally occur in any order4 during its execution. This form of ab-

straction permits the user to focus on relevant behaviors while not necessarily excluding

irrelevant ones. The set of unrestricted events, �
� , is specified a priori by the user and

must satisfy � ��� � ��� � 	 �	� .

Function ��� ��� � maps locations to events and satisfies the following:

• Assignments:
 � � ��
 ������ � ��7 ������� � ��� ��� � 	 � � � ��� ��� � 	 ��� �

• Conditions:
��4� ��
 � � � � ���#7 ������� � ��� ��� � 	 � � � ��� ��� � 	 � � �
4If there exist multiple LSCs in the requirements, the other LSCs could impose an ordering

requirement.

35

• Synchronous Messages:

 # � � ��� # 7 � � � � �
��� ��� ��� � 	 # 7 �� � � ��� ��� � 	 # 7 �����

The first two statements tell us that all locations of an assignment or condition

correspond to the same event. The third statement says that the sending and receiving

of a synchronous message refers to the same event. We also require:

• Prechart Initiation:

 ������� �&%������ 	 ������� 	�� � � �������:B � � ��' � ��� ��� � 	 � � � ��� ��� � 	 �� � � @ � � � � �

• Prechart Completion:

 ����� � �&%��	��
 	 ������� 	�� � � �������:B � � ��' � ��� ��� � 	 � � � ��� ��� � 	 � � � � @ � � �

• Main Chart Completion:

 ����� � �&%��	��
 	 ������� 	�� � �:B � � ��' � ��� ��� � 	 � � � ��� ��� � 	 � � � � @ � � � � �

We refer to the bulleted items above as synchronizing events, since their main func-

tion is to synchronize all instances at particular points during execution. Specifically, the

first two items state that the instances synchronize at the top and bottom of the prechart.

All locations at the top and bottom of the prechart refer to the events @ � � � � � and @ � � � ,

respectively. A similar synchronization occurs at the bottom-most locations of the main

chart. Notice that the top-most locations of the prechart and bottom-most locations of

the main chart both correspond to the same event, @ � � � � � . Consequently, control returns

to the prechart at the precise instant that the main chart scenario completed.

36

2.6 Temporal Event Ordering

We now establish a series of assertions characterizing the temporal order of events based

on the constructs appearing on an LSC.

For LSC � , we write � 3� to represent location � of instance � . Additionally, we

write ��� ��� � 	 � 3� � ��� ��� ��� � 	 � 3� � to express that ��� ��� � 	 � 3� � occurs strictly before ��� ��� � 	 � 3� � .
For some instances �+� � and some � � ������� 	�� � ����� ������� 	 � � , we write ��� ��� � 	 � 3� � ���
��� ��� � 	 � 5 � � to express that ��� ��� � 	 � 3� � occurs at the same instant as ��� ��� � 	 � 5 � � . The tem-

poral relation has a transitivity property which carries over to multiple instances in the

sense that ��� ��� � 	 � 3� � ��� ��� ��� � 	 � 3� � and ��� ��� � 	 � 3� � ��� ��� ��� � 	 � 5 � � implies ��� ��� � 	 � 3� � ���
��� ��� � 	 � 5 � � .

A simultaneous region is a maximal set of locations satisfying the temporal prop-

erty “happens at the same time.” More formally, a simultaneous region is a set of lo-

cations � such that there exists an event " where for all ���	� we have ��� ��� � 	 � � � " .
Moreover, for all locations � � � ������� 	 � ��
�� , we have ��� ��� � 	 � � � �� " . We denote by

� � ���� the set of simultaneous regions of � .

2.7 Visible Events

Recall that visible events refer to the sending and receiving of messages. We impose the

following requirements on visible events:

•
 # � � ��	 # 7 � ��� � � � ��� ��� ����� � � � � � ��� ��� � 	 # 7 �� � ��� ��� ��� � 	 # 7 � ���

37

•
 # � � � 	 # 7 � ��� � � � � � � ��� ����� � ��� � � ��� ��� � 	 # 7 �� � ��� ��� ��� � 	 # 7 �����

The first requirement states that synchronous messages must be sent and received

at the same instant. The second states that asynchronous message must be sent strictly

before it is received.

2.8 The LSC Language

An LSC operates by continuously observing events and updating its state accordingly.

We now define the notion of state more precisely.

2.8.1 Cuts

A cut is a tuple consisting of:

• A valuation mapping every object property to a value.

• A valuation mapping every LSC variable to a value.

• A mapping from every instance to a location.

Formally, the set of cuts is given by:

Cuts � ��� 	 ��� ��� �����
�

3�
�
������� 	�� �

For a cut � , we write ��� 	�� 	�� � to represent a specific valuation which maps ev-

ery property to some value. Similarly, we write ��� � � 	�� � to represent the valuation

38

mapping all LSC variables to a value in � . Finally, we write � 	�� � to represent the

locations of the cut—an instance-to-location mapping—which due to the mutual dis-

tinction among locations, we express here for convenience as a set of locations. That is,

� 	�� � � % � � � 7�7�7 ������' , for some cut � where
�
�0B � B .

The initial cut, denoted � ����� 	�� � , is the cut � where all instance locations are set to

their top-most locations, all LSC variables are undefined (� 	�% � � $, for all % � �), and

all object properties map to some initial value (� 	 = � � = 7 - , for all =)� ��� �(@ �).

The temperature of a cut � is a function of � 	�� � . Specifically,

• � � � @ 	�� � � &�� ������� 	�� � ��� � � @ 	 � � � &

• � � � @ 	�� � � (� � � � @ 	�� ���� & E���� �	� 	�� � ��� � � @ 	 � � � (

• � � � @ 	�� � � �
� � � � @ 	�� ���� &FE � � � @ 	�� ���� (

2.8.2 Enablement

The down-closure of a cut � , denoted � � is the set of locations at and above the cut on

the LSC. That is, � � � % � 3� B � 3� � � �
 ��� � ��� 3� � � ' . Conversely, the top-line of a

set � , denoted �� is given by % � 3� B�� 3� ���FE���� 3� ��� s.t. � � � ' .

An event " is enabled from cut � , denoted � � � ��� ��� 	�� � " � , iff there exists a simul-

taneous region such that all of the following hold:

1.
 ��� � ��� ��� � 	 � � � "

2.
 � 5 � � � 5 ��� � �

39

3.
 # � � � � # 7 � ��� � �#�4E # 7 � �,�
��� # 7 �� � � �

The first statement says that all locations of the simultaneous region refer to the same

event " . The second statement requires that the cut be precisely one location above each

of the locations of . The third statement states, in the case of asynchronous messages,

that the message must have been sent at or before cut � . We can also state explicitly that

� � is the enabled cut with the 3-parameter assertion � � � ��� ��� 	�� � � � � " � .

Enablement may also be expressed in terms of sim-regions. Let � � � � ��� and

define
������� 	 � � � 	

�
�� ������� 	� � . Given some subset � � � � ���� and a simultane-

ous region � , we say that � is enabled from � iff � � � ��� ��� 	 ������� 	 � � � 	 ������� 	 � � "
%� � ' �.��� 	� � � � , written ��� � � � � ��� ��� 	 � �! � � .

2.8.3 Assignments and Conditions

An assignment � � � consists of an expression �)&'(�* of the form “ � � � � ” where �

is an LSC variable or object property in � " �����(@ � and � is a constant. We denote the

valuation of � in cut � by � 	 � � . We define an assertion over ��� 	�� and ��� � � , which

relates two cuts � and � � with respect to an assignment:

� � ��� � � 	�� � � � � � � � � � � � � 	 � � � ��� E �
�� �� � � � � 	�� � � � 	�� � �

This states that � � � in cut � � and the valuation of all other variables is unchanged

between cuts � and � � . Similarly, a condition �$� � consists of an expression �)&)(+*
of the form “ � � � ” where � �G% � ���� ����������������' . We introduce predicate ��� � � �

40

� � Cuts ���� which, for expressions of the form “ ��� � ,” is defined by:

��� � � 	 �#� � � � � 7�� � � � � � 	 � 7�� � �� $ E � 	 �#7 � � �#7�� �#7 ���

Conditions are assigned a hot or cold temperature according to the function � � � @ .

Semantically, when an LSC arrives on a cold condition which evaluates to false, the LSC

closes without violation. If it evaluates to true, chart progress is permitted to continue. A

hot condition must evaluate to true before the chart may progress further, otherwise the

LSC remains at the hot condition and will violate the requirements if it never progresses.

We require the following for the next section:

� � ��� 	�� � � � � � � � � 	 � � � � � 	 � �

This states that the value of � remains unchanged between cuts � and � � .

2.8.4 Successor Cuts

Let � � � � be cuts and let ��� � � 	�� � �
 � 	�� � . That is, the set of locations of cut � � minus

the locations of � . Intuitively, this refers to the locations of the event that caused the cut

to change. Transitions between cuts are defined by a total function � ��� � � Cuts � � ��
� Cuts. We say � � is a successor of � iff there exists " such that � � ��� ��� � 	�� � " � . This is

the case whenever all of the following hold:

1. � � � ��� ��� 	�� � � � � " �	� � �����
	�� � �
Event " is enabled from � , or leads to the initial cut.

41

2.
 � � � � � ������� 	�� � � � � � � � � � ��� � � 	�� � � � � ��7 � � ��7 � � �
When arriving on a variable assignment, � � will reflect the new value of variable

or object property � .

3.
 � � 	�� " �����(@ � � � � �
 �H� � � ��7 � �� � � ������� 	�� � � ��� � E�� � �����
	�� � � �
� � ��� 	�� � � � � � � �
If not arriving on an assignment or returning to the initial state, all variable and

property valuations remain unchanged.

4.
��4� � � � ������� 	 � � � � � � ��� � � 	�� � �
� � TRUE

Advancing beyond a condition in the LSC requires that the condition evaluate to

true.

5. � � � � @ 	�� � � � � � � � ����� 	�� � �
Transitions into cold cuts lead into the initial state (cause the LSC to close).

6.
��4� � � � ������� 	 � � � �FE � � � @ 	 �
� � � E ��� � � 	�� � � � � FALSE ��� � ����� 	�� � �
Transitions into false cold conditions lead into the initial state (cause the LSC to

close).

7. � �����
	�� � � �
 % � � � � � 	�% � � $

All LSC variables are undefined in the initial state.

2.8.5 Runs & Computations

An LSC run is an infinite sequence of cuts � � � � � � � � 7�7�7 , satisfying:

• � ����� 	�� � � (initiality)

42

•
 � � " 3 � � 3 � � � � ��� �
	�� 3?� " 3 � (consecution)

Let � ����� @ � � % �GB � � � @ 	�� � �� &H' . Let � ��� 	 � � be the set of cuts occurring

infinitely often in run � . An LSC computation is an LSC run also satisfying: � ����� @ � �
� ��� 	 � � �� � . An event trace is the sequence of events induced by a computation. The

LSC language of an LSC is the set of all event traces. If � � " 3 ��7 7�7
� " � is a subsequence

of an event trace, we write � ��� ��� 	�� � iff there exists a sequence of cuts � 3?��7�7�7 � � � � � such

that � 5 � � � � ��� �
	�� 5#�
" 3�� for all � � � � � .

2.8.6 Hidden Events

We distinguish between event behaviors which are produced by the reactive system

(i.e., messages) and those which are internal to the LSC (i.e., assignments, conditions,

and synchronization points). Later, we will construct an automaton which monitors

a sequence of visible behaviors and decides whether it satisfies or violates the LSC

requirements. It is first necessary to establish a semantics that determines precisely how

hidden events are to be carried out based solely on the occurrences of visible events.

We present one particular interpretation which will be assumed for the purposes of our

construction in Chapter 4.

Our interpretation requires hidden events to execute at the instant they become

enabled. This means, for example, that if an assignment or condition appears directly

below a message on an instance line, it would execute at the same instant as the message.

If the assignment or condition is anchored to other instances, it must also be enabled with

respect to those instances. Otherwise, it executes upon the occurrence of the first visible

43

event to enable it. Subsequences of consecutive enabled hidden events execute at the

same time instant provided each is enabled. If differing linearizations of these hidden

event subsequences exist, the LSC chooses one arbitrarily. The chosen linearization

could be significant if multiple assignments to the same variable or property exist in the

subsequence.

Inst A Inst C

Msg1

Condition 2

Inst B

Condition 1

Msg2

Figure 2.3: Hidden Event Generation

To illustrate, consider Fig. 2.3 which depicts two messages and two conditions.

We omit the conditional expressions for this example. We first consider the events which

occur on instance � only. Since message 1 immediately precedes condition 1 on instance

� , it is the case that condition 1 will occur at the same instant as message 1. Condition

2, on the other hand, may only be evaluated once both messages have occurred since

it is anchored to another instance. Therefore, condition 2 will be evaluated at the same

instant as whichever message occurs later in time. Moreover, if message 2 occurs before

message 1, then both conditions will be evaluated at the same instant as message 1.

Let " � �
" � � 7�7�7 be the event trace induced by some LSC run. We impose the follow-

ing temporal requirements:

•
 � � " 3 � 	 � 	 " �� � E " 3 � � ���� � " 3 ��� " 3 � �

44

•
 � � " 3 � 	 � 	 " �� � E " 3 � � ��� 	 � " 3 ��� " 3 � �

2.8.7 Chart Satisfaction and Violation

A sequence of events � � "
� ��7�7�7
�

"�� satisfies the prechart of a Universal LSC (denoted

� B � � ���) if " � � @ � � � � � , "�� � @ � � � and � ��� � � 	 � � holds. Intuitively, � satisfies

the prechart if it terminates with a satisfying subsequence and causes the bottom-most

locations of the prechart to be reached.

We say that � � "
� ��7�7�7
�

"�� violates the prechart (denoted � B � � �����) if " � �
@ � � � � � , "�� � @ � � � � � , � ��� � � 	 � � , and " 3��� @ � � � for � � � ��� . We say � is a minimal

violating sequence if there does not exist
�

such that " 5 � @ � � � � � for � � � ��� .

An event sequence � � "
� ��7�7 7 �

" 5;��7�7 7 � "�� satisfies the main chart of a universal

LSC � (denoted � B � �) if � " � ��7 7�7 �
" 5�� B � ����� , "�� �/@ � � � � � and � ��� � � 	�� � holds.

Sequence � � "
� �
" � ��7 7�7 violates the main chart, and therefore the requirements,

if there is a subsequence � 5 � � " � 7�7�7
�
" 5�� such that � 5 B � ����� and either � � � �

s.t.

" � � @ � � � � � or � � ��� ��� 	 � � holds.

2.9 Example

To familiarize the unacquainted reader, we present the example of Fig. 2.4. The scenario

depicts communication between a user, buffered keypad, and CPU. The prechart states

that whenever the user sends ��� � � � ��� and then ����� � �	� � � , the interaction appearing

in the main chart must follow thereafter. Namely, that Keypad sends the ����� ��� � �	
 � �

45

message to CPU, followed by the CPU sending
� �
�	� �
 � � to Keypad, followed finally

by the CPU sending � � ��� �.� to User.

The example is adorned with horizontal dashed lines to show three points of syn-

chronization, each annotated by the name of the corresponding hidden event. All sce-

narios begin with the instances synchronized to the top-most location of each instance.

The hidden event which describes the act of synchronization is @ � � � � � . All instances

synchronize again at the bottom of the prechart, where event @ � � � occurs. In the main

chart, all instances synchronize at the bottom-most locations of each instance upon the

occurrence of @ � � � � � . Note that this is a continuation point which signifies a return of

control to the prechart.

ProcessBuf

Notify

ClearBuf

User CPUKeypad

PressKey

PressOn
pbegin

pend

pbegin

Figure 2.4: Fairness Free Universal LSC

We now consider various event sequences and differentiate satisfying behaviors

from violating behaviors. For brevity, we omit the identity of the sender and receiver

instances of a message (e.g., the message
� �
�	� �	
 � � is understood by context to be sent

by CPU and received by Keypad). All messages in this example are synchronous, so

we use the name of each message to denote the simultaneous sending and receiving of

46

the message. Our discussions consider finite fragments of LSC computations.

We begin by considering visible events only. Consider the event sequences � � �
��� � � � ��� , ��� � � �	� � � and � � � ��� � � �	� � � . Sequence � � satisfies the prechart whereas

� � violates the prechart. However, 	 � � �
�

is not in the language, whereas 	�� � � � is. This

is because � � generates the obligation that the subsequence which follows must satisfy

the main chart (which it doesn’t), whereas the prechart violating behavior of � � never

creates any obligation.

Let � � � ��� � � � ��� , ��� � � �	� � � , ��� � ��� � �	
 � � ,
� �
�	� �
 � � , � � � � �.� . This sequence

satisfies the requirements since it satisfies the prechart and main chart. Let ��� �
��� � � � ��� , ��� � � �	� � � , ��� � ��� � �	
 � � , � � � � �.� . Sequence ��� violates the requirements be-

cause the prechart is satisfied but ����� ��� � �	
 � � is not followed by
� �
�	� �
 � � as required

by the main chart.

Until now, we omitted hidden events from the discussion of Fig. 2.4. Let us as-

sume that an object system outputs the visible event sequence � � . From this, the LSC

carries out the sequence @ � � � � � � � ��� � � � ��� � � ��� � � �	� � � ��� @ � � �)��� ��� � ��� � �	
 � �
��� � �

�	� �
 � �H��� � � ��� �.� ��� @ � � � � � � � . All computations begin with the hidden event

@ � � � � � . Hidden events are executed as soon as they become enabled, and each occurs at

the same time instant as the immediately preceding visible event. For example, @ � � � oc-

curs next in the order and at the same temporal location as � � � � �	� � � . Likewise, @ � � � � �
immediately follows � � � � �.� .

47

2.10 Multiple LSC Requirements

We now consider LSC requirements consisting of more than one LSC. Traditional meth-

ods of scenario composition, such as that seen in MSCs [MSC99], offer the choice of

executing multiple scenarios sequentially, alternatively, or concurrently. The choices

must be stated up-front by the user using high-level MSCs (hMSCs). In the realm of

multiple-LSC requirements, concurrency is dynamic in the sense that a particular set of

scenarios may run concurrently, sequentially, alternatively, or any combination thereof,

based not on fixed user input but rather on the input behaviors. The dynamic behavioral

approach to LSC composition gives rise to the possibility of interesting interactions be-

tween several executing scenarios.

Multiple LSC requirements share the same set of objects, and therefore the same

object properties, but have distinct sets of LSC variables. For this reason, multiple-

LSC requirements cannot be expressed simply as the product of cuts from each LSC,

otherwise duplication of object properties occurs.

Let
� 5 � � 5;7 ��� ��� � � 5 7�� 3
 � ������� 	�� � represent the set of LSC variable valuations

and the instance-to-location mapping for LSC
�

only. Given an object system 	 and

LSCs � � ��7�7�7 ���
� , we define multiple LSC requirements by ��� � � � ��7 7�7 ���

� � where

each � 3 is an LSC. An m-cut (multi-cut) is the tuple:

�
�
� � � � ��� 	���� �

� ������� � � �

In the case of single LSCs, the assertions � � ��� � � � � � ��� and predicate ��� � � are

defined over the valuations in ��� 	 � and ��� � � for object properties and variables, re-

48

spectively. For multiple LSCs, there exists only one set of valuations ��� 	 � but one ��� � �
valuation for each LSC

�
—each referenced by

� 5 . It is understood that when assign-

ments or conditions over an LSC variable occur in LSC � , the semantics of � � ��� � � � ��� � �

and � � ��� are carried out with respect to
� 3 . This is assumed to be the case from this

point forward.

We can project an m-cut onto an ordinary single LSC cut with the function � � � � �
�
�
� � � ��� �� � Cuts. We write � � � �
	�� ��� � � � to denote the cut � for LSC � in m-cut

� . Each single LSC cut has its own successor function � ��� � , as we have previously

described. We refer to the particular successor function of LSC � with � ��� � 3 .

The initial m-cut is the m-cut where � ����� 	 � � � � 	�� ��� � � holds for all � . We write

� ����� 	�� � to assert that m-cut � is initial.

A function � � ��� � � � �
� � � � � �� �

�
� � � is defined in terms of original cuts.

Specifically, � � � � � ��� �
	�� � " � iff there exists " such that for all � � � � � �
	�� � ��� � �
� ��� �D3 	 � � � � 	�� ��� �.� " � . We say an m-cut � � is a successor of � whenever � � ��� �
	�� � " � �
� � holds for some event " .

In the spirit of single LSCs, a run of � is an infinite sequence of m-cuts � �
� � ��� � ��7�7�7 , satisfying:

• � ����� 	�� � � (initiality)

•
 � � " 3 ����3 � � � � � ��� � 	���3?� " 3�� (consecution)

A multiple-LSC computation is a run satisfying � ����� @ � 3 � � ��� 	 � ���� � for all � ,

where � ����� @ � 3 � % � B � � � @ 	 � � � �
	�� ��� � � �� &H' . An event trace is the sequence of

events induced by a computation. The language of an LSC is the set of all event traces.

49

2.11 Self-Spawning LSCs

It is possible for a single universal LSC to spawn and execute several instantiations of it-

self concurrently—a phenomenon we refer to as self-spawning scenarios. This happens,

for example, if the LSC is configured to monitor every input for a minimal event—

an event which causes the prechart to progress from the top-most locations. Several

“copies” of the LSC could therefore exist, each monitoring the input event sequence

starting from differing points in the trace.

c

a

b

a

b

Figure 2.5: Self-Spawning LSC

Consider the LSC requirements of Fig. 2.5, consisting of one LSC. When the

messages ��� � occur, the LSC requires ��� ��� � to occur. By carrying out the required

behaviors of the main chart, however, it is possible to satisfy the prechart. This gives

rise to a requirement for an infinite cycle of behaviors, namely 	���� �
� � , anytime the prefix

��� occurs.

We can proceed in one of two directions. The first is to monitor for prechart

activation only when the chart is at the initial location. This approach would essentially

50

ignore the prechart whenever the LSC is at a location other than the initial. The second

approach is to monitor the prechart at all stages of the execution and permit requirements

such as the one in Fig. 2.5.

In this work, we choose the former approach in which scenarios cannot self-spawn

in this way. That is, we assume one “copy” of each LSC can exist. The main reason

for doing this is so we may restrict our attention to a simpler subset of features. Self-

spawning scenarios are capable of producing behaviors which could require special han-

dling. For the interested reader, self-spawning scenarios are considered in [PGZ05].

51

Chapter 3

Timed LSC Requirements

3.1 Introduction to Time

Many software designs, aside from specifying legal orderings of behaviors, also include

timing constraints. Using the previously introduced LSC assignment and condition con-

structs along with special time variables, LSCs can express timing constraints. We refer

to LSCs with such capability as timed LSCs. Timing constraints are generally used to

impose upper and lower time bounds on a certain sequence of events, which has the

effect of reducing the number of acceptable event traces. Event sequences which are

acceptable without timing constraints could become unacceptable if the sequences do

not occur within the prescribed time bounds.

In this chapter, we consider two particular models of timed LSCs which shall

be translated to formal models in later sections. We first consider the simpler case of

discrete-time in which time is assumed to be in the domain of natural numbers. Without

52

loss of generality, we further assume that time deltas (i.e., consecutive time units) are

separated by a time value of 1. We do not concern ourselves with the specific interpre-

tation of time units; that is, whether the units express minutes, seconds, etc.

We follow up the discrete time discussion by considering dense-time LSCs, in

which time units are monotonically increasing values expressed over the domain of non-

negative real numbers. Like before, we are not interested in the particular interpretation

of time units. However, one important distinction between the two models is that dense-

time does not assume any fixed time delta.

3.2 Related Work

Although several LSC language extensions have been proposed since the seminal LSC

paper [DH01], literature on timed LSCs, in particular, has been relatively scant. The first

proposal for LSC time constraints to our knowledge was offered in [KW01]. Another

scheme, which more closely follows the spirit of the untimed LSC variant, was intro-

duced a year later in [HM02]—our translation most closely follows this approach. The

treatment of timed LSCs presented in this chapter is based on the author’s contributions

to the work in [PGZ05].

3.3 Single Discrete-Time LSCs

We consider LSC requirements which can express time in discrete units. For this pur-

pose, we incorporate a global system clock, ranging over the naturals, into our subset

53

of the LSC language. The system clock is viewed as a special object Clock with a

message � � ��� . Execution of � � ��� causes the clock value to increment by 1. The current

value of the system clock is depicted on the LSC as Time.

All behaviors described by an untimed LSC can be interleaved with occurrences of

� � ��� in a timed LSC. Assignments and conditions similar to those seen in the previous

chapter can be used to store Time into a special time-stamp variable (ts-var) and later test

time variables with respect to Time. Time-stamp variables range over � " %�$�' where $

is undefined.

Storage of the system clock value into a ts-var is accomplished exclusively using

special LSC time assignments of the form “ � ��� Time,” where � is a ts-var. Only Time

may be stored into a ts-var—constants, ordinary LSC variable or object property r-values

are not permitted to be stored in a ts-var. The value of a ts-var may be recalled using an

LSC condition restricted to the form “Time � ��� � ��� ��� ” where � �&% ������������� � ������ '
and � ��� ��� is a constant.

Like LSC variables, ts-vars are undefined at the beginning of each LSC execu-

tion. In contrast to LSC variables, however, the range of time-stamp variable values is

theoretically unbounded. Consequently, discrete-time LSCs are infinite state systems.

3.3.1 Definition

We expand the definition of LSCs, as presented in section 2.2, to include ts-vars. Let

��� �������1��� ��� � ��� ����� ����� � ��� ��� � � � � � @ � , where � ���1��� ��� ����� ����� � ��� ��� � � � � � @ are

as before and:

54

• � � —a set of time-stamp variables, each of which is defined by �����#�����D* � where

���#��� is the name of the variable and * � � " %�$ ' is the value.

The set of ts-vars is defined separately from standard finite discrete LSC variables

in order to distinguish between the unbounded ts-vars variables and the bounded LSC

variables. As before, the assertions ��� � � , � � ��� � � , � � ��� are still applicable to assignments

and conditions over the LSC variables and object properties. We will introduce new

assertions for dealing with ts-vars shortly.

3.3.2 Timed Cuts

The set of timed cuts is given by:

TCuts � Cuts � ��� � � �

where Cuts is the set of cuts as seen before and ��� � � � is the set of ts-var valuations.

In future sections, we distinguish original cuts from timed cuts by referring to

them as untimed or timed cuts, respectively. If � is a timed cut, the untimed cut of � ,

written Untime 	���� , is the projection of Cuts on � . We denote by � 	 � � the valuation of

ts-var ��� � � . We use � 	�� � , as before, to project the element of the cut referring to the

instance-to-location mapping location. The initial timed cut is given by � �����
	���� �
 � �
� � ��� 	 � � � $ E � ����� 	 Untime 	���� � .

55

3.3.3 Discrete-Time Assertions

We characterize the semantics of LSC time assignments using the assertion � � ��� � ��� .
Given a ts-var assignment � , a timed cut � and a time , the assertion states that variable

��7 � takes on the value in cut � :

� � ��� � � � 	���� ��� � ��� 	���7 � � �

We provide a similar assertion, ��� � � � , for ts-var conditions:

��� � � � 	 �#� ��� � � � 	 � 7�� � �� $ E �#7�� � 	 �#7 � � � � 7 �

where � �&% � ���� ����������������' . Finally,

� � ��� � 	�� � � � � � � ��� 	 � � � � � 	 � �

3.3.4 Successor Cuts

Similar to section 2.8.4, we use the shortcut � � � � 	�� � �
 � 	�� � , where � � is understood

to refer to the simultaneous regions in � � not appearing in � . We say timed cut � � over

system clock value is a discrete-time successor of � if there exists an event " � � such

that � � � � � ��� � 	�� � " � . This is the case iff all of the following hold:

1. Untime 	 � � � ��� ��� � 	 Untime 	 � �.� " �
The untimed LSC semantics of section 2.8.4 hold.

2.
 � � � � � ������� 	�� � � � � E ��7 � � � � ��� � � ��� � � � 	���� � � � �

56

When arriving on a ts-var assignment, store in ts-var ��7�� .

3.
 � � � � � �
 � � � ����7 � �� � � ������� 	�� � � � � ��E � � �����
	�� � � � � � ��� � 	 ��� � � � � � �
If ts-var � does not appear in an assignment, then its value is unchanged.

4.
��4� � � � ������� 	 � � � � E �#7 � � � � � � � ��� � � � 	 �#� ��� � � TRUE �
Advancing from a condition requires that it evaluate to true.

5.
��4� � � � ������� 	 � � � � E � � � @ 	 � � � � E ��� � � 	�� � �
� � FALSE ��� � �����
	�� � � Cold

conditions which evaluate to false lead into the initial state.

6. � �����
	 � � � �
 % � � � ��� � 	�% � � $

All LSC ts-vars are undefined in the initial state.

3.3.5 Runs and Computations

Let � ����� @ � � % � B � � � @ 	���� �� &H' . A discrete-time LSC run is an infinite sequence of

cuts � � � � � � � ��7�7�7 , satisfying:

• � ����� 	 � � � (initiality)

•
 � � " 3 � �
3 � � � � � ��� � 	 �
38� " 3 � (consecution)

A discrete-time LSC computation is a discrete-time LSC run satisfying: � ����� @ � �
� ��� 	 � � �� � . A discrete-time event trace is the sequence of events induced by a com-

putation. The discrete-time language of an LSC is the set of all discrete-time event

traces.

57

3.4 Single Dense-Time LSCs

Within the domain of dense time, values of the ts-vars and system clock both range

over the non-negative reals (
�����

). A single dense-time LSC is defined similarly to the

discrete-time case, where:

• � � —a set of time-stamp variables, each of which is defined by �����#�����D* � where

���#��� is the name of the variable and * � ����� " %�$�' is the value.

As in the discrete-time case, the set ��� � � � of ts-var valuations is infinite and un-

bounded. However, these valuations can be mapped into a finite number of clock regions

according to [AD94]. The set of timed cuts is the same as in the discrete case, except

substituting the new dense-time version of � � :

TCuts � Cuts � ��� � � �

where Cuts is the set of untimed cuts and ��� � � � is defined as above. Note that we use the

same name � � to refer to the ts-vars for both the dense-time case here and in the previous

section for the discrete-time case. This permits us to interchange the two models so as

to better express the later results of this work more succinctly. For a timed cut � , we

again denote by � 	 � � the set of locations belonging to the cut.

An instance Clock with message � � ��� is not used, as in the discrete-time case1.

In our approach, the passage of time is expressed by associating each input event with

1Generally, it is possible to use a ���	��
 message which is parameterized by a dense “real
time” value. However, we do not consider parameterized messages in this work.

58

an explicit time value. We define a timed event by the 2-tuple 	 �!� ����� � . Let �
� � � ��� �

be the infinite set of timed events.

Assertions ��� � � and � � ��� � � are used for characterizing the semantics of LSC as-

signments and conditions over over LSC variables and object properties. That is, assign-

ments and conditions not involving time constraints. In section 3.3.3, the discrete-time

analogues ��� � � � and � � ��� � � � were presented. We now redefine these assertions for the

dense-time case.

Assertion � � ��� � � � takes three parameters: an LSC assignment �)� � , a timed cut

� � TCuts, and a time value � � ���
. The latter parameter identifies the time at which

the assignment itself is carried out.

� � ��� � � � 	���� ��� � ����7 � � � � � � 	���7 � � �

Similarly, ��� � � � also requires three parameters consisting of a condition �)� � ,

timed cut � � TCuts, and time value � � ���
.

��� � � � 	 � � ��� � � �#7 � � � � � � � 	 �#7 � � �� $ E �#7�� � 	 � 7 � � � � 7 ���

Finally, � � ��� � takes three parameters: two timed cuts ��� � � and a ts-var � . By

� 	 Time � we denote the system clock value in timed cut � 2.

� � ��� � 	���� � � � � � ��� � 	 � � � � 	 � � � 	�� � 	 Time � � � 	 Time � �
2This system clock value can be extracted from a timed cut by reserving a special ts-var and

assigning it the system clock valuation.

59

3.4.1 Successor Cuts

We define a transition function � � ��� � � TCuts � �
� � � ��� � �� � ���������

. Let ��� � � be

timed cuts and � � � � 	�� � �
 � 	 � � . We say timed cut � � over system clock value is a

dense-time successor of � if there exists an event " � � and time � � ���
such that

� � � � � ��� �
	�� � 	 " � � � . This is the case iff all of the following hold:

1. Untime 	 � � � ��� ��� � 	 Untime 	 � �.� " �
Assertions over the untimed cuts.

2.
 � � � � � ������� 	�� � � � � ��� � � ��� � � � 	���� � � � �
When arriving on an assignment for ts-var � , the timer value of � is reset to zero.

3.
 � � � � � �
 � � � ����7 � �� � � ������� 	�� � � � � ��E � � �����
	�� � � � � � ��� � 	 ��� � � � � � �
If ts-var � does not appear in an assignment, then its value is .

4.
��4� � � � ������� 	 � � � � � ��� � ��� � � � 	 �#� ��� � � TRUE �
Advancing beyond a condition in the LSC requires that the condition evaluate to

true.

5. � �����
	 Untime 	�� � � � � �
 % � � � ��� � 	�% � � $ �
All LSC ts-vars are undefined in the initial state.

3.4.2 Runs and Computations

A dense-time LSC run is a sequence of pairs � � 	�� � �

� � � 	 � � �

 � � ��7�7 7 satisfying:

1. � �����
	 � � � (initiality)

60

2.
 � � " � � ��� 3 � � � � � ��� �
	�� 3 � 	 " 3?� 3�� � (consecution)

3.
 � � � � " 3?� " 5 � � 	 E � � � � 3 � 5 (monotonicity)

4.
 � � ��� �+� � � s.t. 3 � (progress)

If � � � � � � � ��7�7 7 is a dense-time run, then we express the untimed projection

of � as Untime 	�� � � Untime 	�� � � � Untime 	 � � � � 7�7�7 . A dense-time LSC computation is

a dense-time LSC run satisfying � ����� @ � " � ��� 	�� � , where � ��� 	���� is the set of timed

cuts appearing infinitely often in � and � ����� @ � � % Untime 	�����B � � � @ 	 Untime 	�� � � ��
&H' . A dense-time event trace is the sequence of events induced by a dense-time LSC

computation. The dense-time language is the set of all dense-time event traces.

3.5 Multiple Dense-Time LSCs

We now present the formal definitions for dense-time multiple timed LSC requirements.

A similar formulation can be applied to the untimed and discrete-time cases, but are not

considered here.

Multiple timed LSC requirements collectively describe the behaviors of an ob-

ject system. LSC variables and ts-vars are meta-variables used for the purpose of con-

straining the behaviors of the objects. Both are unique to each particular LSC and the

valuations of both begin in an undefined state at the start of each scenario and become

undefined again at the end. In contrast, object property valuations define the state of

the object system throughout its entire lifetime. Furthermore, they persist indefinitely,

beyond the lifetime of any one scenario. Accordingly, the variables, ts-vars, and the

61

current position of each instance of an LSC are components that are unique to the LSC,

whereas object properties are global to all LSCs in the requirements.

Given an object system 	 and LSCs � � ��7�7�7
���
� , we define multiple timed LSC

requirements by ������� ��� � � � � ��7 7�7 ���
� � where each � 3 is an LSC as defined previously.

The state of LSC
�

is given by:
� 5 � � 5#7 ��� ��� � � 5 7�� 3�
� ������� 	�� � � � 5 7 ��� � � � .

This represents the set of variable valuations, instance-location mapping, and ts-vars,

respectively, for LSC � 5 . The set of ts-vars is assumed to operate in the dense time

domain for the purpose of this work, but a discrete time domain could also be adopted.

A timed m-cut (multi-cut) is a tuple:

� �
�
� � � � ��� 	���� �

� ������� � � �

A projection function � � � � � � � � �
� � � � % � ��7�7�7
� � '��� � �

�
� � � yields a timed

cut given the unique number of a dense-time LSC. A timed m-cut � is an initial timed

m-cut, denoted � ����� 	�� � iff � �����
	 � � � � �
	�� ��� � � holds for ��� � � � .

A visible event of the composed system is defined by �
	 � 	
3 � 3 7�� 	 . For some

LSC
�
, we assume that if " � � 	 and " �� � 5 7 � 	 then " � � 5 7�� � .

We define � � � ��� � � � � �
� � � � 	 �!� � ��� � �� � �	��
 � ��� as the transition function

of the composed requirements. Let � � � ��� �+3 refer to the successor function of LSC � .

We say that � � is a timed m-cut successor of � , written � � � � � � ��� � 	�� � 	 " � � � , if there

exists event " and time such that:

1. " � � 	 �
 � � � � � � � 	�� � ��� � � � � � ��� � 3 	 � � � � � 	�� ��� � � 	 " � � �

62

2. �+� � " � � 3?7 �� � � � � � � 	�� � ��� � � � � � ��� � 3 	 � � � � � 	�� ��� �.� 	 " � � �

Intuitively, visible events cause a synchronous transition to be taken among all

LSCs, since each is expected to respond in some way to the occurrence of the event.

Each hidden event, on the other hand, represents an internal behavior for just one partic-

ular LSC. The case distinction is necessary since LSCs only recognize their own hidden

events, otherwise the semantics could be entirely synchronous.

3.5.1 Runs and Computations

A dense-time run of � ����� ��� is a pair 	 � � �
� � � � � ��� � � 	�� � �

�

� �.� 	�� � �
� � �.��7�7�7 satisfying:

1. � �����
	�� � � (initiality)

2.
 � � " 3 � 3 � ��3 � � � � � � ��� �
	���3?� 	 " 3?� 3 � � (consecution)

3.
 � � � � " 3?� " 5 � � 	 E � � � � � 3 � � 5 (monotonicity)

4.
 � � ��� �+� � � 3 � (progress)

A dense-time computation of � ��� � ��� is a dense-time run of � � ��� ��� which satisfies,

for all � , � ����� @ � 3 � � ��� 	 � � �� � where � ����� @ � 3 �G% � B � � � @ 	 � � � � � 	�� ��� � � �� & ' . An

timed event trace of � � ��� ��� is the sequence of events induced by a timed computation

and the timed language of � ��� � ��� is the set of all timed event traces.

63

3.6 Timed LSC Example

We now consider a four-wheeled robotic agent that navigates the perimeter of a round-

cornered rectangle drawn in black on a white background. The agent is controlled by a

microprocessor with a single light sensor input and an output that controls motor speed

for each wheel. Differential wheel power is used to turn the agent left or right. We as-

sume that the agent is initially placed directly over any edge of the rectangle, positioned

to travel clockwise as shown in Fig. 3.1.

light sensorRCX microcrontroller

controller
wheels & steering

Figure 3.1: Robot Test Pad

To make the LSC more readable, we introduce a special up/down arrow notation

on the left side of assignments and conditions to indicate either the preceding (up arrow)

or succeeding (down arrow) visible event with which each is associated. The same

requirements can be expressed without the use of this notation.

In Fig. 3.3, variable
�

is assigned at the same time instant that message TurnRight

is sent, and the condition over
� �

executes at the same time instant that TurnRight is

received.

The first scenario of this example (Fig. 3.2) describes what should happen when

64

H H

RCX Motor

SwitchOn

User

W

SetSpeed(3)H H

C C C

H

H

On HH

Off HH

W W

H

Time = T + 10

T := Time

W

Figure 3.2: Scenario 1: Switching Robot On

the user switches on the micro controller. In particular, the motor speed is set to 3 and

the micro controller switches on the motor. Precisely ten time units after the motor is

switched on, the motor is switched off by the micro controller.

The second scenario (Fig. 3.3) involves a description of how the agent will nav-

igate the black line. This is carried out by means of a light sensor which is connected

to the micro controller. The light sensor can observe two possible conditions: bright or

dark. When the agent is over the black line, it senses dark; otherwise, it senses bright.

Whenever the agent passes from dark to bright, the sensor sends the micro controller

a bright interrupt signal. Conversely, when the agent passes from bright to dark, the

sensor triggers a dark interrupt signal. By default, the agent moves straight unless it

receives a bright signal, which means that the agent has reached a corner and must start

turning right. The second scenario describes this requirement.

The LSC of Fig. 3.3 describes the required behavior whenever the sensor sends

a bright signal to the micro controller. The specification requires that the agent begin

65

HDarkH H

H

WBright

H

C C C

Light
Sensor

Steering
ControllerRCX

W

W

W

TurnRightW W

W

TurnStraight HH

Time <= T + .2

T2 := Time

T := Time

Time <= T2 + .2
H

H

H

Figure 3.3: Scenario 2: Turning Right

turning no more than 0.2 time units after the sensor sends the signal. Here, we assume

that the agent requires zero time to commence a turn and zero time to straighten out the

wheels after the turn is complete. If, during the turn, the agent re-intercepts the black

line, the light sensor sends a dark signal, which prompts the steering controller to end

the turn in no greater than 0.2 time units. Notice that this contrived example does not

require the dark signal to ever occur, as denoted by the cold temperature locations. In

this situation, the agent can legally remain in a right turn for the remainder of the run.

Notice that the two scenarios described above are not disjoint with respect to time.

That is, they can (and in this case, are expected to) execute concurrently: the first LSC

turns the motor on and waits ten time units before shutting it off. The second scenario

could execute multiple times while the first is executing.

66

Chapter 4

From Requirements to Specifications

We now describe a process to convert Live Sequence Charts from a visual representa-

tion to formal models. The two target models considered here are deterministic Büchi

automata (DBA) [Büc62] for discrete-time LSCs and deterministic timed Büchi au-

tomata (DTBA) [AD94] for dense-time LSCs. Both may be used as language acceptors

to determine if input event sequences generated by an object system satisfy the LSC

requirements.

We proceed by first discussing the single LSC translation to deterministic Büchi

automata for discrete-time LSCs, then the single LSC translation to deterministic timed

Büchi automata for dense-time LSCs. We then present the multiple-LSC construction

which can be applied to either of the two single LSC results.

67

4.1 Related Work

The earliest known related work is [HK00a], where Harel and Kugler describe how

a state-based representation of a single LSC can be combined with others to form a

global state automaton, formally describing the full set of requirements. The paper

describes how the construction would be carried out theoretically, but does not provide

full details. It is also in the same work that satisfiability of LSC requirements is shown

to be equivalent to consistency.

In [KW01], Klose and Wittke describe a procedure for converting LSCs to timed

automata, where extra features such as coregions and timing annotations are included.

The type of timing constraints used in the above work differ quite fundamentally from

those presented in our work. Another distinguishing aspect is that the input alphabet

of the automaton in the above work consists of visible events and the internal hidden

events. This raises the question of when, how, and by whom the hidden events are

expected to originate. According to our approach, these details are taken care of by the

construction so that no additional intervention or interpretation is necessary.

In [HM02], Harel and Marelly discuss the use of ordinary LSC assignments and

conditions—the same as seen in untimed LSCs—to also express timing constraints. This

method of expressing time was then later adopted by a software tool called the Play-

Engine [HM03], and is the same approach used here.

In [BH02], Bontemps and Heymans offer a formal semantics based loosely around

LSCs. The work covers a set of features that is substantially different from that which

is proposed in [DH01], but borrows some main ideas. The authors remove all notions

68

of liveness from conditions, and also disregard the notion of universality or existential-

ity, instead focusing on charts that are composed by means of parallel and sequential

composition. The work also proposes the use invariants in addition to the existing chart

constructs.

4.2 Single Discrete-Time LSC Specifications

In this section, we first consider a translation from a single LSC to a DBA. Both the

untimed and discrete-time constructions are carried out in the same manner, with the

only differences being a new assertion � � ��� and a new version of � � ��� � � and ��� � � , all

newly equipped to handle time. We later extend the result to consider multiple LSC

requirements using the subset of LSC features defined in section 2.2.

4.2.1 State Space

Recall that a simultaneous region (sim-region) is a set of locations which map to some

event. All locations in a sim-region satisfy the temporal property � � . The set of sim-

regions of a single-LSC automata is characterized by the quotient set of
������� 	 � � by

��� , denoted � � ���� . Fig. 4.1 shows an example � � � (left) and its corresponding set of

sim-regions depicted by solid black rectangles (right).

We write � �����
	� � to assert that a sim-region �A� � ��� is the initial sim-region.

That is, the sim-region comprised of the top-most locations of the LSC: � ����� 	� � � �

��� ��� ����� 	 @ � � � � � � . We define the handy function � � � � ��� �� � , mapping every sim-

region to an event. Specifically � 	� � � " �
 � � � ��� ��� � 	 � � � " . Given a sequence

69

B
A

D

BA

Dr Ds

C

C

Figure 4.1: LSC Simultaneous regions

of sim-regions �� � � ��7 7�7
� � , we say � � � is a successor of � , denoted � � �
� � , iff

��� � � � � ��� ��� 	� �� �! � � � � holds.

4.2.2 Büchi Automata

A Büchi automaton (BA) is a tuple � � � � ��� ��� �;��� ��� � where:

• � is the alphabet.

• � is a finite set of states.

• � � is the initial state.

• � ��� � � �	� is the transition relation.

• � ��� is the set of final states.

A deterministic Büchi automaton (DBA) is a BA such that B � � B � � and for all

states � and actions � , there exists at most one � � such that 	
� � ������� � �	� .

70

A Büchi automaton decides the inclusion of infinite words over � by processing

individual input symbols sequentially. Execution begins from state � 3 �	� � . Inductively,

from a current state � , the next symbol � is read from the input and if 	 � ��� ��� � � �	� then

a transition to ��� can be taken. We say that � is a deterministic Büchi automaton (DBA)

iff for all � � � there exists precisely one � � such that 	
� � � ��� � �:� � . A word is considered

accepting if every input symbol corresponds to a transition and at least one state in �

appears infinitely many times in the word. If � is some Büchi automaton, then the set

of words accepted by � is the language of � , written � 	
� � .

4.2.3 Translation

The set of valuations ��� � � � for discrete-time variables is infinite because ts-vars can be

assigned a system clock value which exceeds any finite bound. This is problematic since

Büchi automata require a finite number of states.

Toward a resolution, consider the LSC conditional expression “Time � � � � .”

Whenever � � % ������' and the expression is true, the expression remains true for any

greater value of Time. Likewise, if � � % ������' and the expression is false, then it re-

mains false for any greater value of Time. In general, the expression will always yield the

same value for any value of Time greater than the largest constant in the requirements.

We take advantage of this property by reformulating the above time expression

as an equivalent expression “Time � � � � ”. Instead of representing a ts-var value

explicitly, we instead maintain a timer value expression Time � � . The timer value is

zero when the assignment first occurs. Each occurrence of � � ��� causes an increase in

the timer value. However, the timer value can be bounded by the maximum constant,

71

� ��� ��� � � � , appearing in any LSC condition over the ts-vars. The assertions � � ��� � � �� and

��� � � �� (to be defined shortly) capture these semantics. The assertions work the same as

before for the LSC variables and object properties.

We now present one of the contributions of this work:

Theorem 1 Let ��� � ��� be a single discrete-time LSC and � 	 ��� � ��� � be the language of

��� � ��� . Then there exists a DBA � � � � ��� ��� �;��� ��� � such that � 	 � � � � 	 ��� � ��� � .

We show this result constructively:

• � � � 	 , the visible events of � .

• � � ��� � ��� ��� 	���� ��� � � �
	 � ��� � � � , the timed cuts of � .

The alphabet is the set of visible events of � . An automaton state consists of an

object property valuation component ��� 	�� , an LSC variable valuation component ��� � � ,
the time-stamp variable component ��� � � � , and the sim-region component

��� � � �
	 . We

let � 	 � � � ��� � � �
	 be the set of sim-regions in state � . Intuitively, � 	
� � is the set of sim-

regions visited in the past during one scenario execution. A new sim-region is added to

the set at each step of the computation.

The initial state of � is the one where all variables are undefined, all properties

are set to an initial value, and the sim-region component is a singleton set referring to

the hidden event @ � � � � � . Formally,

• � � � % � B � �����
	 ��� 	 ��� ��� � � 	
� � � E � ����� 	 � 	 � � �.'

72

There exists a mapping
�
� � �� TCuts. We define the set of final states:

• � � % ��B � � � @ 	 � 	 � � �
�� &H'

The acceptance component � enforces the LSC liveness properties discussed in

section 2.3. Specifically, that the LSC visits cold and warm cuts infinitely often. In order

to express ts-vars as timers, we introduce the following:

� � ��� � � �� 	���� � � ����7 � � � � � � 	���7�� � � �

��� � � �� 	 � ��� � � �#7 � � � � � � � 	 � 7�� � �� $ E � 	 � 7�� � � 7 � � 7 ���

where � � % � ���� ����������������' . The top expression states that the variable � being

assigned in LSC assignment � receives the value � . The bottom expression evaluates to

true if, for a condition � of the form “ � � � ,” variable � is defined and the expression

��� � is true in state � .

Each transition in � causes a change of state based on a visible event. When the

visible event occurs, a sequence of hidden events is carried out in the order in which the

events are permitted by � . In the event that several possible orderings of events exist,

any permissible ordering may be chosen. A heuristic function, for example, may be

used for selecting the specific order or set of orderings. More than one ordering may be

added, but with the possible side-effect of non-determinism.

Given a state � � � and visible event " � �	 , the successor sequence of 	 � � " � is

a sequence of sim-regions �� � � ��7�7 7 �! � satisfying:

1. � �	� 	
� �

73

2.
 � 	 ��� ��� � � �� 3 � �3 ��� E � 	� 3�� � � �

Momentarily, we discuss how to encapsulate the semantics of these hidden events into a

single automaton transition.

A successor sequence � ��7�7�7
�! � is maximal if for all sim-regions � � � such that

 � � � � � , it is the case that � 	� � � � � � � 	 . This means that only visible events are

reachable from � . Given a successor sequence for 	 � � �
" � we arrive at a state ��� by

inducing a sequence � � ��7�7�7 ����� where for all �C� �
� �
3 � � � � � ��� �
	 � 3?��� 	� �3� � . We

call 	 � � �
" ����� � a successor sequence transition. A successor sequence transition whose

successor sequence is maximal is called a maximal successor sequence transition.

• � � ��� " �
�

is defined below.

��� is the set of maximal successor sequence transitions 	 � � �
" ����� � , each with pre-

cisely one maximal successor sequence � ��7 7�7 �! � of 	 � � �
" � inducing a correspond-

ing state sequence � � ��7 7�7
� ��� , such that the following requirements are satisfied for all

��� � � � :

1. ��� � � � � ��� ��� 	 � 	 �
3 ��� �.�! 3��
Semantics for enablement (cf. secs. 2.7.4 and 3.3.4, requirement 1).

2.
 � � � � � ������� 	�� � � 3 E ��7 � � � ��� � � � ��� � � 	 � 	
�
3 ��� �.�
� 	
�
3� � ��7 � � ��7 � � �

Untimed assignments (cf. sec. 2.7.4, requirement 2).

3.
 � � � � � ������� 	�� � � 3 ��� � � ��� � � �� 	���� � 	
�
3�� �
Discrete-time assignments (cf. sec. 3.3.4, requirement 2).

74

4.
 � � 	�� " �����(@ � � � � �
 � � � ����7 � �� � � ������� 	�� � � �3 ���
� � ��� 	 � 	
�
3 ��� �.�

� 	
�
3 �.� � � �
Unchanged untimed variable valuations (cf. sec. 2.7.4, requirement 3).

5.
 � � � � � � �
 � � � ����7�� �� � � ������� 	�� � � 3 ��� � � ��� � 	 � 	 � 3 ��� � �
� 	 � 3 � � � � �

Unchanged timed variable valuations (cf. sec. 3.3.4, requirement 3).

6.
��4� � � � ������� 	 � � �# 3 ��� ��� � ��� � � 	 � 	
�
3 ��� �.� � � � TRUE �
Untimed (hot and cold) conditions (cf. sec. 2.7.4, requirement 4).

7.
��4� � � � ������� 	 � � �# 3 ��� ��� � ��� � � �� 	 � 	
�
3 ��� �.� � � � TRUE �
Timed (hot and cold) conditions (cf. sec. 3.3.4, requirement 4).

�
�

is the set of maximal successor sequence transitions 	 � � �
" � � ��� � � � each with pre-

cisely one maximal successor sequence � ��7�7�7
�! � of 	 � � �
" � inducing a corresponding

state sequence � � ��7�7�7
����� , such that at least one of the following requirements are satis-

fied for all ��� � � � :

1. � �4� � � � ������� 	 � � �# 3 ��� E � � � @ 	 � � � � E ��� � � �� 	 � 	
�
3 �.� � � � FALSE �
False timed cold conditions (cf. sec. 3.3.4, requirement 5).

2. � �4� � � � ������� 	 � � �# 3 ��� E � � � @ 	 � � � � E ��� � � 	 � 	 � 3 ��� �.� �
� � FALSE �
False untimed cold conditions (cf. sec. 2.7.4, requirement 6).

3. � � � @ 	 � 	 �
3 � � � �
Reaching a cold cut (cf. sec. 2.7.4, requirement 5).

and all of these requirements hold:

75

4.
��4� � � � ������� 	 � � �# 3 ��� E � � � @ 	 � � � & � ��� � � 	 � 	 � 3 ��� � � �
� � TRUE �
Hot untimed conditions must be true (cf. sec. 2.7.4, requirement 4).

5.
��4� � � � ������� 	 � � �# 3 ��� E � � � @ 	 � � � & � ��� � � �� 	 � 	 � 3 ��� � � �
� � TRUE �
Hot timed conditions must be true (cf. sec. 3.3.4, requirement 4).

6.
 % � � � � 	 � � � � � � 	�% � � $

Uninitializing untimed variables (cf. sec. 2.7.4, requirement 7).

7.
 % � � � � � 	
� ��� � � � 	�% � � $

Uninitializing ts-vars (cf. sec. 3.3.4, requirement 6).

Turning to correctness, we show that the initiality and consecution requirements

of section 3.3.5 are met and show that the automaton captures discrete-time LSC com-

putations.

The initiality requirement is satisfied by the singleton � � , whereas consecution

is satisfied by the forward and back edge sets � � and �
�

, respectively. Forward edges

are characterized by assignments and true conditional evaluations. Back edges are char-

acterized by entry into cold cuts and false cold conditional evaluations. We list the

circumstances under which edges in � � and �
�

are constructed above; the reader may

easily confirm the correspondence to the requirements in sections 2.7.4 and 3.3.4.

LSC computations are captured by the edges above in combination with the live-

ness properties which are expressed by means of state temperature. Specifically, in-

finitely many visits to warm and cold states are considered satisfying behavior, and the

set of final states � capture this requirement.
�

76

For the purpose of maintaining determinism, the construction requires precisely

one maximal successor sequence. It is not necessarily the case that more than one se-

quence will result in non-determinism. Indeed, there may exist multiple permissible

sequences, each carrying out the events in different orders, whose final state � � is the

same regardless of the order. However, the redundant sequences are unnecessary since

all ultimately lead to ��� . On the other hand, non-determinism is possible if the multiple

orderings induce distinct terminal states. A definitive ordering must therefore be chosen,

using heuristics for example.

Our approach deviates from the semantics of smart play-out in two general ways.

First, smart play-out does not necessarily execute hidden events at the same time instant.

This is because waiting (or not waiting) to execute an assignment or condition may

change a future outcome (e.g., whether a violation occurs later). The second point of

differentiation is that paths exist for all permissible orderings in smart play-out, so that

the model-checker can discover any ordering which won’t cause a violation.

4.2.4 Example

Fig. 4.2 shows the general automaton structure induced by the translation procedure,

given the previous example of Fig. 4.1 as input. The top-most state % ��' reflects the

initial hidden event @ � � � � � . This state and the bottom-most state refer to the same state,

thereby introducing a cycle. To reduce clutter, this example illustrates only the forward

edges.

77

{I,B}

{I,B,Ds}

A

{I}

{I,A,B,Ds}

C

C

{I,B,Ds,Dr}
C

Dr

Ds

A

Dr

B
Ds

Dr

A

B

A

Ds

{I,A}

{I,A,B,Ds,Dr}

{I,A,B}

{I,A,B,C,Ds}

{I,A,B,C}

{I}

Figure 4.2: Büchi Automaton of Fig. 4.1

4.3 Dense-Time LSC Specifications

The discrete-time approach was possible due to the use of timers in establishing an

upper bound on the infinite discrete set of ts-var valuations. The same approach under

dense time doesn’t work since there are still infinitely many valuations, despite the upper

bound. In this section, we show how the language of dense-time LSC requirements can

be translated into a finite-state specification.

For the purposes of this section, we consider deterministic timed Büchi automata

(DTBA) specifications, first introduced in the seminal paper of [AD94]. The paper more

generally introduces dense time to a collection of previously existing formal models

78

which recognize * -regular languages. Specifically, timed Büchi automata (TBA) and

timed Muller automata (TMA) are considered and shown to be equivalent in expressive

power under non-determinism. Deterministic models, such as deterministic timed Büchi

automata (DTBA) and deterministic timed Muller automata (DTMA), are also consid-

ered. It is shown that DTBA—the target of our upcoming LSC translation—recognize

languages which are strictly less expressive than those recognized by DTMA and are

closed under union and intersection, but not complement. However, a straightforward

translation from DTBA to DTMA is possible, which admits closure under complement.

It turns out that timed automata are particularly useful for verification and syn-

thesis. This is due to the region construction proposed in [AD94], which expresses the

infinite-state timed automata as a finite state untimed model which is equivalent with

respect to the verification and synthesis problems. Timed automata are often used for

model-checking, in which one seeks to discover whether various properties hold for all

or some behaviors expressed by the language of a timed automata. Therefore, if we can

only express LSCs in terms of timed automata, the ability to perform model checking

on timed automata comes for free for those model checkers supporting timed automata.

One such model checker is Uppaal [LPY95].

4.3.1 Timed Automata

Before proceeding with the LSC to timed automata translation, we first give a brief

overview of the timed automata model introduced in [AD94]. Deterministic timed Büchi

automata (DTBA) are Büchi automata supplemented with a finite set of clocks whose

values range over the non-negative reals. Each clock has a valuation which begins

79

initially at zero and increases continuously at a rate of 1. A state of the automaton is a

discrete state (from a finite set of discrete states) and a valuation mapping every clock

to a non-negative real time value.

Each transition consists of a guard (conditional expression over the clock valu-

ations) and a set of clocks whose valuations are reset to zero if the guard is true and

the transition is taken. A transition may be taken from an origin state whenever the

guard evaluates to true in the state. The transition leads into some destination state state

whose clock valuations reflect the clock resets from the transition, but whose other clock

valuations are identical to the origin state.

The system clock is a special clock which is never reset and therefore always

reflects absolute time elapsed since the beginning of the run. A run is a sequence of

timed events which cause some accepting state to be reached infinitely often. A timed

event is an event (action) associated with some system clock valuation, meant to refer to

the absolute time at which the event occurred. Upon the occurrence of each timed event,

all clock valuations are updated to reflect the elapsed time since the last timed event.

Formally, a timed Büchi automata (TBA) is a tuple � � � � ��� ��� �;� � � � �!��� �
consisting of the following components:

� � — a finite set of actions.

� � — a finite set of states.

� � � ��� — a set of initial states.

� � �
— a finite set of clocks each ranging over

� ���
.

80

� � � � ����	 � � � � � � ��� � � — a set of transitions, where ��	 � � � is a set of

guards (conditional expressions) over
� �

.

� � — a set of final states.

An edge 	 � ��� � ����� ��� � � �	� leads from state � into � � by the input action � , guarded

by �A����	 � � � , and resets the clocks in � � � �
. A guard is defined inductively by

� � � � ��B � � � B � � B �:E � , where �$� � �
, � ��� , and � � % ��������� � ��' . Note that

the constants are rational, which is required for the aforementioned region construction

to work.

A deterministic timed Büchi automaton (DTBA) is a TBA in which B � ��B � � and

for all states , actions � and edge pairs � � � � � ��� � ��� � � and � � � � � ��� � � � � � , guard � � E � �

is unsatisfiable.

A timed word is a pair 	�� � ��� � 	�� � �

� �.� 	�� � �

 � � ��7�7 7 where � is an infinite sequence

of actions and � is an infinite sequence of non-negative real numbers satisfying strict

monotonicity (�
3,� � 3 � � for all � � �) and progress (for all non-negative reals , there

exists an � such that �
3 �).

Given a timed word 	 � 	 � � � � � 	�� � �

� � � 	�� � �

 � �.��7�7�7 , a run of � over 	 is an

infinite sequence � � 	
� � � �
� � � 	
� � �

�

� �.��7�7�7 where each �
3 is a state, and each � 3 is a real

valuation of the clocks in
� �

. We say that a valuation satisfies a guard, written � B � � if

the guard is true under valuation � . We write � � to denote the clock valuation � with

 added to each value. We require:

1. Initiality: � � �	� � and for all �C� � �
, �
� 	 � � � � .

2. Consecution:
 � � � we have 	 � 3 ��� � ���3 ��� 38���#3?��� 3�� �	� s.t.:

81

• 	 � 3 ��� �
 3 �

 3 ��� � B � ��3 .

• For all � �� � , � 3 	 � � � � 3 ��� 	 � � �
 3 �

 3 ��� .

• For all � � � , � 3 	 � � � � .

4.3.2 Translation

The translation to timed automata follows similarly to the discrete-time case, except that

assignments and conditions over ts-vars are not expressed through discrete variables by

means of assertions ��� � � �� , � � ��� � � �� , and � � ��� � but rather through guards and clock resets.

This introduces interesting subtle complexities which are not present in the discrete-time

construction.

Undefined Time-stamp Variables

We have seen in section 3.4.1 that ts-vars take on undefined values ($) at certain points

during execution. The significance is that any undefined ts-var appearing in an LSC con-

dition results in a false evaluation, by definition. As we will see, ts-vars are implemented

in our construction by means of timed automata guards. However, timed automata have

no notion of undefined clock values and therefore no way to recognize undefined clocks

inside a guard, since clocks always map to some non-negative real value.

We can express undefined clock values in timed automata by introducing an array

of Boolean flags as part of the discrete state space—one flag for each clock. A true

flag valuation indicates that a particular clock value is “defined” and that any transition

leaving such a state whose guard contains a reference to that clock should be evaluated

82

normally. A false flag valuation, on the other hand, represents an “undefined” value. For

each ts-var, it is straightforward to set the corresponding flag to true whenever the ts-var

is first assigned in an LSC and false whenever a back-edge to the initial state is taken.

Supposing the aforementioned array is present, let us discuss how the information

would be used: we first construct the automaton from the LSC under the assumption

that all ts-vars are defined, ignoring the flags. After the automaton is built, we remove

transitions in the following way. Given a discrete state in which some clock � is flagged

as undefined (false), we remove all transitions leaving that state in which � appears

in the guard. The rationale is that the LSC condition—and hence, the corresponding

automaton guard—would always evaluate to false, making it impossible to traverse the

edge.

Below, we will present a translation from dense-time LSCs to a timed automaton.

Rather than complicating the construction with the above details, we instead propose to

carry out the edge removal as a post-processing step. It is easy to see that the resulting

automaton will preserve the semantics of undefined ts-vars, since only guards which test

the values of “defined” ts-vars will remain in the final automaton.

Static Evaluation

One limitation of timed automata transitions is that clocks may be reset only after the

guard has evaluated to true. This presents a complication from the standpoint of our

construction, since the successor sequence may dictate an order which the automaton

cannot handle—specifically, an assignment followed by a condition over the same ts-

var. In this case, we can statically evaluate the condition and modify the transitions to

83

reflect the evaluation. This is possible since ts-var conditional expressions of the form

“Time � � � � ��� ��� ,” can be reduced to the expression Time � Time � � ��� ��� .

msg1

X := TimeTime <= X + 1

Figure 4.3: Timed Automata Successor Sequence Problem

To solidify this point, consider the simple example of Fig. 4.3. At the moment

������� occurs, an assignment and condition execute in some order. Two successor se-

quences are possible: the assignment followed by the condition, and vice versa. In the

case that the condition precedes the assignment, no special handling is necessary since

the automaton edge will already perform the actions in the desired order. On the other

hand, executing the assignment before the condition requires static evaluation: by sub-

stituting Time for
�

, we arrive at Time � Time � � , which is true. Consequently, the

assignment will be carried out by the automaton by means of a clock reset, whereas the

conditional expression will be removed.

At first, it may seem reasonable to proceed in a manner similar to undefined ts-

vars: construct the rest of the automaton and then remove any edges in which false

statically evaluations exist. Although possible to carry out this way, we avoid this ap-

proach for two reasons: first, it is possible to accomplish this without extending the state

space with more flag variables. Secondly, we feel it is more intuitive to the reader if this

84

is handled from within the construction itself, rather than as a post-processing step.

Toward solving this issue, we introduce a predicate ��� � ��� ����� � � � � �� � , which

given any condition, will evaluate the condition under the assumption that Time � � .

Whenever it is necessary to statically evaluate a timed condition, the outcome of this

predicate will be “hard-coded” into the timed automaton guard. This can be achieved

by adding conjuncts which make the guard unsatisfiable for false outcomes (e.g., � �
� E � � �), or by not adding conjuncts for true outcomes. Equivalently, the transition

can be removed.

Given a successor sequence �� � � ��7�7 7
�! � for 	
� � �
" � , it is essential that the au-

tomaton transitions respect the ordering in which assignments and conditions are carried

out according to �� . It is possible to determine the outcome of any condition over the

discrete variables at the time of construction. This is accomplished by starting at state

� � , applying the assignment or condition semantics from sim-region � to arrive at � � ,
and so on.

It turns out for the following construction that we need to know the first position

among the sim-regions in �� at which a hot condition over the discrete variables evalu-

ates to false, if any. Similarly, we need to know the first position in �� at which any cold

condition over the discrete variables evaluates to false, if any. The following reasoning

applies: if the first hot condition over the discrete variables which evaluates to false oc-

curs at position
�
, then a transition to the initial state can still be taken if there exists

a false cold condition over the ts-vars at any position � � �
such that the ts-var condi-

tion evaluates to false. Intuitively, if a false cold condition occurs before the false hot

condition, the chart may close without violation—this is a legal transition to the initial

85

state.

Conversely, if we know that a cold condition over the discrete variables evaluates

to false at position
�

in the successor sequence, then the transition can be taken, provided

that all hot conditions over the ts-vars at positions � � �
evaluate to true. Intuitively, if a

hot condition evaluates to false prior to
�

then this is a violation of the requirements—no

transition to the initial state exists in this case.

We now present another contribution of this work, in which we offer a translation

from single dense-time LSCs to a deterministic timed Büchi automaton:

Theorem 2 Let � � � � � be a single dense-time LSC and � 	 ��� � � � � be the language of

��� � � � . Then there exists a DTBA � � � � ��� ��� �;� � � ���;��� � such that � 	 � � � � 	 ��� � � � � .

By way of construction, we define � as follows:

� � � � 	

� � � ��� 	���� ��� � ��� � �

� � � � % ��B � ����� 	 ��� 	 ��� ��� � � 	 � � � E � ����� 	 � 	 � � �.'
� � �

� � �
� � � % ��B � � � @ 	 � 	 � � �
�� &H'

• � is the set of transitions � � " �
�

defined below.

��� is the set of transitions 	
� � ��� �
" � �#� ��� � , each with precisely one maximal suc-

cessor sequence transition 	
� � �
" ����� � and each having a maximal successor sequence

 �� � � ��7 7�7 �! � of 	
� � �
" � such that for all � 	 ��� � � � � :

86

1. ��� � � � � ��� ��� 	 � 	 �
3 ��� �.�! 3��
Semantics for enablement (cf. secs. 2.7.4 and 3.3.4, requirement 1).

2.
 � � � � � ������� 	�� � � 3 E ��7 � � � ��� � � � ��� � � 	 � 	
�
3 ��� �.�
� 	
�
3� � ��7 � � ��7 � � �

Untimed assignments (cf. sec. 2.7.4, requirement 2).

3.
 � � 	�� " �����(@ � � � � �
 � � � ����7 � �� � � ������� 	�� � � �3 ���
� � ��� 	 � 	
�
3 ��� �.�

� 	
�
3 �.� � � �
Unchanged untimed variable valuations (cf. sec. 2.7.4, requirement 3).

4.
��4� � � � ������� 	 � � �# 3 ��� ��� � ��� � � 	 � 	
�
3 ��� �.� � � � TRUE �
Untimed (hot and cold) conditions (cf. sec. 2.7.4, requirement 4).

5. � � 	 �3�� � %���7 � B �!� � E ������� 	�� � � 3 E ��7 � � � � '

6. � �
� �3�� � % � � � � � 	 � �:B �4� � E ������� 	 � � �# �3>'

where:

� � � � � 	 � � �

��� �� � 7���� � 7 � ��� � 7�� �
	 ���� � � � � ��	�	 �
� � ��� �������������� � � � ��
��� � ��� ����� � � 	 �
� ��� � 7�� �
	 ��� � � ��	�	 �
� � ��� �������������� � � � ��

�
�

is the set of back-edges. Given the maximal successor sequence transition

	
� � �
" � ��� � and one maximal successor sequence �� � � ��7 7�7 �! � of 	
� � �

" � , let:

• � � � 7�7�7 � ��� be the list of all cold ts-var condition positions in �� .

• � � ��7�7 7
����� be the list of all hot ts-var condition positions in �� .

87

• & (� resp.) be the position of the first false hot (cold resp.) condition in �� over

the LSC variables and object properties, or 0 if none exists.

Let 	 � � ��� �
" � �#� � ��� � � �:� �

�
if � �� � where for some � 	�� � � � and all

� 	 � � � � , all

of the following requirements hold:

1. � � �4� � � ������� 	 � � �# 3 ��� E � � � @ 	 � � � � E ��� � � 	 � 	 � 3 ��� �.� �
� � FALSE � �
� � � @ 	 � 	 �
3 � � � �
Cold cuts and false untimed cold conditions (cf. sec. 2.7.4, requirements 5 & 6).

2.
��4� � � � ������� 	 � � �# (5 ��� E � � � @ 	 � � � & � ��� � � 	 � 	
� 5 ��� � � � � � TRUE �
Hot untimed conditions must be true (cf. sec. 2.7.4, requirement 4).

3.
 % � � � � 	 � � � � � � 	�% � � $

Uninitializing untimed variables (cf. sec. 2.7.4, requirement 7).

4.
 % � � � � � 	
� ��� � � � 	�% � � $

Uninitializing ts-vars (cf. sec. 3.3.4, requirement 6).

5. � � �

6. � �
� �5�� � % � � � ��� 	 � 	� ��� � �:B � � � �� � E ��5 � � '

Let % 	 � � � � � �
" ��� ��� ��� � � � � ��7 7�7 � 	
� � � � � � " ��� ��� ��� � � � � ' ���

�
s.t. for all ��� � � = :

1. Requirements 2, 3 and 4 above hold.

2. � � �,E 	 & � � � ��3 � & �

3. � 3 � �

88

4. ��3 � � � � � ��� 	 � 	� ��� � � E � ��� ���5 � � � � � ��� 	 � 	� � � � �

where � 	�� � refers to the condition at position 3 in the successor sequence.

We now show that the transitions of the timed automaton faithfully simulate a

dense-time LSC computation. In the above construction, we describe the circumstances

under which automaton edges are created in three cases: one for forward-edges and

two for back-edges. We show that these cases collectively meet the requirements for

dense-time LSCs as defined in section 3.4.1. There are five requirements.

Requirement 1 states that all untimed requirements from section 2.8.4 hold, and

requirements 2-5 are specific to dense-time. The general construction technique is sub-

stantially the same as in Theorem 1 for the untimed requirements, with the only differ-

ence being a case split on the set of back-edges. It is straightforward to confirm that all

untimed requirements hold among the three cases.

For each ts-var assignment, rather than storing the fixed value of the system clock

at the time of the assignment, we instead reset a clock and refer to the elapsed time inside

the subsequent conditions. LSC assignments are carried out by resetting clocks and

conditions are implemented as guards. The reader can easily verify that the assertions

� � ��� � � �� and ��� � � �� capture the formal semantics, thereby satisfying requirements 2-4.

Requirement 5 states that all ts-vars are undefined in the untimed initial state, and can

be met by applying the post-processing procedure described earlier.

As in Theorem 1, forward-edges capture successor sequences which terminate in

a state from which only visible events are permissible. Unlike Theorem 1, however,

there are two sets of back-edges which lead to the untimed initial state. The outcome of

89

a condition over a discrete variable is known at the time of the automaton construction,

whereas the outcome of a condition over the ts-vars is not known until the automaton is

deciding membership of a timed input word. If a condition over a discrete variable eval-

uates to false within the successor sequence, there are two cases depending on whether

the condition is hot or cold.

The first case identifies the first cold condition over a discrete variable in the suc-

cessor sequence which evaluates to false. An automaton transition leading to the un-

timed initial state is created and the corresponding guard checks that all hot conditions

over ts-vars leading up to this point are satisfied. The second case pertains to the first

hot condition over a discrete variable in the successor sequence which evaluates to false.

If there exists some false cold condition over the ts-vars which occurs before that point

in the successor sequence, however, then a transition to the untimed initial state is still

possible, thereby avoiding violation. Multiple transitions to the untimed initial state are

therefore constructed—one for every cold condition over the ts-vars leading up to that

point. The corresponding guards test for the falsehood of each cold condition over the

ts-vars.

By definition, all timed automata runs satisfy initiality, consecution, monotonicity

and progress, and are therefore also dense-time LSC runs. To show that they are also

dense-time LSC computations, we observe that the set � of final states above captures

the requirement of infinitely many visits to a cold or warm state.
�

90

4.4 Multiple LSC Specifications

We turn to the construction of a generalized deterministic timed Büchi automaton which

accepts the language of multiple timed LSCs ��� � ��7�7 7
����� � . The discrete case is not

treated here because it adds extra detail without offering any new insight. A straight-

forward automata product construction cannot be immediately applied, for the reasons

explained below.

First, one may think of the multiple-LSC construction as a synchronous composi-

tion of visible events, but an asynchronous composition of successor sequences. That is

to say, if multiple LSCs are enabled to carry out the same visible event, then an occur-

rence of that event will cause all enabled input automata to transition simultaneously.

The successor sequence which then follows amounts to an asynchronous interleaving of

the hidden events among the input automata. To maintain a deterministic construction,

a single interleaving for each 	
� � " � pair must be fixed. The duality between the asyn-

chronous and synchronous semantics requires special handling, which we address in the

next section.

Next, the object property valuations should be shared between the LSCs in the

sense that a change in an object’s property valuation in one scenario should be reflected

immediately in all others. A brute-force product construction would wrongly produce

independent object valuations. This can be addressed rather easily by redefining the state

space so that all object valuations are shared, but everything else—the LSC variables,

and ts-vars—are owned by each individual LSC.

The third reason is that memory is required for keeping track of whether each LSC

91

passes through a final state infinitely often. Rather than add memory variables explic-

itly, we instead employ a generalized Büchi acceptance condition in conjunction with

a timed transition system, which yields a generalized timed Büchi automaton. This is

an automaton whose acceptance component � is instead expressed as a set of accepting

sets � � ��7�7�7 ���
� . The requirement is that at least one state in each of the sets occur in-

finitely often during a run. Generalized timed Büchi automata can be expressed as an

ordinary timed Büchi automata using known techniques.

4.4.1 Translation

We present the main translation result and additional contribution of this work:

Theorem 3 Let ������� ��� � � � � ��7�7�7
���
� � be dense-time LSC requirements and � 	 � ��� � ��� �

be the language of � ��� � ��� . Then there exists a generalized DTBA � � � � ��� ��� �;���;���
�
�

such that � 	
� � � � 	 ������� ��� � .

A single LSC is defined by
� 5 � � 5 7 ��� � � � � 5 7�� 3�
� ������� 	�� � � � 5 7 ��� � � � . This

comprises the set of variable valuations, instance-to-location mappings and ts-var valu-

ations for LSC
�
. We denote by

� 3 	 � � the current valuation of LSC � in state � , and by
� 	 � � , the current valuation of all LSCs in state � . We construct � as follows:

• � � 	 �3�� � � 3?7�� 	

• � � ��� 	���� �
� ������� � � �

We define a partial function
�
� � � % � ��7 7�7
� � '��� TCuts which given a state and

LSC number, yields a timed cut.

92

• � � � % � �	�FB
 � � � �����
	 � 	
� ��� � �('

• �
�
� 	 � � � 7�7�7 ���

� � where � 3 � � � � @ 	 � 	 � ��� � ���� &

• � is the set of transitions � � " �
�

.

We start by defining the notion of successor sequences for multiple-LSC require-

ments. Specifically, we build up to the definition of maximal composed successor se-

quence transition in a manner similar to the non-composed version. The contents of sets

��� and �
�

then follow from the construction of Theorem 2.

The notion of successor sequences is similar to the single-LSC case, except that

there exist � enablement assertions, distinguished by ��� � � � � ��� ��� 3 for � � � � � . We

can express the notion of enablement with respect to a sequence of sim-regions belong-

ing to LSC � using the notation � 3 . In a multiple-LSC setting, successor sequences are

an interleaving between the permissible orderings according to each � 3 . The sequence

is thus a hybrid of sim-regions among the LSCs.

As in the single-LSC case, the chosen interleaving of assignments and conditions

over the variables and object properties are respected by the maximal composed succes-

sor sequence. There can exist greater than one maximal composed successor sequence.

In order to preserve determinism, precisely one must be selected since any larger subset

of interleavings may result in a non-deterministic construction. As before, a heuristic

function may be employed to choose among the available interleavings.

Let � � ��7�7 7 ��� � be a sequence of numbers ranging over % � � 7�7�7 � � ' , where each refers

to the number of an LSC in the requirements. We write 3
�

to refer to a sim-region of

LSC � 5 . Given a state ���	� and visible event " � �
	 , the composed successor sequence

93

of 	 � � " � is a sequence of sim-regions � � 3��� ��7�7�7
�! 3��� satisfying:

1. � 3� � � �� 3� �	� 	 � 	 � ��� � �

2.
 3� � � �� 3� �	� 	 � 	 � ��� � � E 3� � 3 3� � � 	� 3� � � "

3.
 3� � � �� 3� �	� 	 � 	 � ��� � � E 3� � 3 3� � � 	� 3� � � � �

4.
 # � � ��= � # � = � � E 3� �! 3� �! 3� � � � 3� � 3 3�

The first statement says that each LSC has a sim-region in state � . The second

statement says that all sim-regions which are immediate successors of sim-regions in �
are associated with visible event " . Each of these events will ultimately cause progress

to be made in any LSC in which " is enabled. The third requirement states that any sim-

region other than immediate successors of will refer to hidden events. This prevents

events other than " (e.g., other messages) from occurring during the sequence. The

fourth statement requires the sequence to satisfy � 3 for all LSCs ��� � � � .

A composed successor sequence � � 3��� ��7�7 7 �! 3��� is maximal if for all � and for

all � , we have 3���
	 � 5 � � 3 3� E � 	� 3� � � � 	 . This means that all reachable hidden events

have been exhausted and only visible events are successors.

Given a composed successor sequence for 	
� � �
" � we arrive at a state � � by inducing

a sequence � � ��7�7�7
����� where
 � � � � 3 � � 3 � � � � � � ��� �
	 �
38� 	 � 	� �3� � 3 � � . We call

	
� � " � ���
� a composed successor sequence transition. As before, a successor sequence

transition whose successor sequence is maximal is called a maximal composed successor

sequence transition.

94

Now that we have formally defined the notion of a maximal successor sequence

transition, we construct � � and �
�

according to Theorem 2. For each 	
� � " � , limiting the

number of maximal composed successor sequences to one essentially reduces the size

of the language by discarding other paths. This reduces the correctness proof of this

construction to that given in Theorem 2.
�

4.5 Non-Deterministic Hidden Events

All of the constructions offered in this chapter assume that assignments and conditions

occur at deterministic points in time. Specifically, at the same time instant that they

become enabled, which is also the same time instant at which the preceding visible

event occurs. The overall semantics are generally the same, with the differences resting

mainly in the minor details.

We’ve also noted that smart play-out differs from our approach in that it uses a

less restrictive semantics for determining the time at which to execute assignments and

conditions. It is reasonable to ask why we have not chosen similar semantics for our

constructions in this chapter.

Intuitively, such a construction would require a means to execute hidden events

temporally between visible events, rather than at the same time instant. A so-called

silent transition (otherwise known as � -transition) variant of timed automata would seem

necessary so that transitions could fire without an accompanying event. As one might

expect, such an addition introduces non-determinism. It turns out that there are other

side-effects in the case of dense-time.

95

The original timed automata work of [AD94] does not include any notion of silent

transitions. The issue of adding silent transitions is considered in [BGP96], and con-

cludes that doing so can add expressiveness to the language. That is, it can result in an

automaton whose language cannot be expressed by any timed automaton without silent

transitions. Later, in [DGP97], it is further shown that the introduction of silent tran-

sitions does not add expressiveness if no clocks are reset on the transition. Moreover,

silent transitions with resets may also occur, but may not appear on any directed cycle.

It seems problematic to implement the semantics of non-deterministic LSC assign-

ments in timed automata. Specifically, since a dense-time assignment is implemented

as a clock reset, a silent transition with a clock reset is required. All paths in an LSC

automata—according to our subset of features—lie on a directed cycle, thereby making

the above results unusable for relating the expressiveness of the automaton with silent

transitions to one without.

We believe it may be still possible to prove LSC automata, in particular, exempt

from the problems above despite the presence of cycles. Nevertheless, additional prob-

lems exist. Recall that a successor sequence can, in the general case, contain an ar-

bitrary interleaving of assignments and conditions. Although, according to the non-

deterministic interpretation, it is unnecessary to group together the successor sequence

temporally, a construction method for dealing with arbitrary sequences is still neces-

sary. However, it is unknown to us at present whether an algorithm for removing silent

transitions from arbitrary successor sequences is decidable.

96

Chapter 5

Automata-Based Synthesis

Going directly from requirements to a correct implementation has long been a “holy

grail” for system and software development. According to this vision, instead of im-

plementing a system and then working hard to apply testing and verification methods

to prove system correctness, a system is rather built correctly by construction. Syn-

thesis is particularly challenging for reactive systems, in which the synthesized sys-

tem must satisfy the requirements for any possible behavior of an external environment

[ALW89, Dil89, PR89a].

The problem of constructing reactive systems directly from formal requirements

dates back to Church’s problem in 1963. Various solutions to the problem have since

been proposed; for example, see [BL69, Rab72]. Due to the widespread interest in Lin-

ear Temporal Logic (LTL), synthesis using LTL formulas as requirements has also been

considered [PR89a]. In the general case, time complexity for most of these solutions is

intractable due to the theoretical double exponential lower bound [PR89a]. Despite this,

97

recent work focuses on various subsets of LTL [AMPS98, AT04] whose time complexity

is suitable for building tools of practical use.

It turns out that one particular subset is sufficient for the purposes of synthesiz-

ing from many interesting LSC requirements. The subset in question is the recurrence

property seen previously—“infinitely often, the LSC must be in its prechart.” More-

over, the synthesis problem for this subset has been shown [PPS06] to be solvable in

polynomial-time.

In this chapter, we introduce an automata-based algorithm for solving the synthe-

sis problem for LSCs, specifically. We will see that the worst case time complexity of

the algorithm is linear in the product of states, edges and inputs.

5.1 Related Work

There have been considerable efforts to synthesize executable systems from scenario-

based requirements [KM94, KMST96, LMR98, KGSB99, WS00, WSK03, UKM04,

LDD06]. In many of these papers, the requirements are given using a variant of classical

message sequence charts while the synthesized system is state-based. Although there are

many common aspects to our work and these papers, the main distinguishing feature is

that we consider synthesis from LSCs, which we have already seen is more expressive

than most of the classical MSC variants.

Synthesis from LSCs was first studied in [HK02], and is tackled there by defining

consistency, showing than entire LSC requirements are consistent iff they are satisfiable

by a state-based object system. A satisfying system is then synthesized. This line of

98

work was continued in [HKP05] which includes an implementation of a sound but not

complete algorithm for Statechart synthesis. A game theoretic approach to synthesis

from LSCs involving a reduction to parity games is described in [BS03a, BHS05]. Syn-

thesis from LSCs using a reduction to CSP is described in [SD05]. All the above papers

were either theoretical and did not include an implementation, or the synthesis approach

was sound but not complete, or the initial experimental results were not encouraging.

An alternative strategy for synthesis from LSCs uses a translation from LSCs to tempo-

ral logic [KHP � 05] or automata [KW01] and then applies existing synthesis algorithms,

e.g., [PR88, Var95, JB06].

5.2 Smart Play-Out

The Play-Engine [HM03] is a software package which enables users to create and exe-

cute LSC requirements based on the so-called play-in/play-out approach [HM03]. Play-

in provides an intuitive method to capture requirements by manipulating the graphical

interface of the system, while play-out executes the scenarios in a way that gives a feel-

ing of running an implementation of the system.

An improvement called smart play-out, is introduced in [HKMP02]. Smart play-

out uses verification methods—in particular, model-checking—to run LSC requirements

and avoid certain LSC violations that may occur for the original version of play-out. One

of the shortcomings of smart play-out is that the executable traces it generates are not

guaranteed to avoid all violations of the LSC requirements.

The following results overcome the limitations of smart play-out by guaranteeing

99

non-violating behavior for all scenario executions. We consider requirements in which

certain objects participating in the scenario represent the system to be constructed and

the rest represent an external environment. We assume open systems which assume no

environment cooperation in satisfying the requirements.

Unlike [KHP � 05], we intentionally shift much of the LSC logic from a temporal

logic formula to the finite discrete system so as to potentially reduce synthesis time com-

plexity and focus our attention on a simpler generalized Büchi temporal logic formula

that has a better chance of success in practical settings.

We view the synthesis problem over LSC requirements as a two-player game be-

tween the system and the environment. The system refers to the collection of software,

hardware, or conceptual objects which are within the immediate control of the reac-

tive system. Conversely, the environment refers to the collection of objects which are

external to the program, and whose behaviors are beyond the control of the system.

The system attempts to win the game by taking whatever legal actions necessary

to satisfy the requirements. Legal actions refer to a subset of the behaviors permitted

by the requirements. The environment attempts to foil the system by preventing it from

satisfying the requirements. Thus, the environment’s goal is the negation of the system’s.

The environment has the upper hand because the system usually needs to meet numerous

behavioral criteria in order to win, whereas the environment need only find one way to

prevent the system from winning.

100

5.2.1 An Example

To illustrate why synthesizing LSC requirements is important, we present Fig. 5.1, con-

sisting of two universal LSCs.

sleep

fall

LSC 2User

make

Tree Noise

LSC 1User

wake

fall make

Tree Noise

SYNC

SYNC

FALSE

Figure 5.1: LSC Requirements for Smart Play-Out

Instance USER belongs to the environment, while TREE and NOISE are system

instances. Accordingly, the behaviors of TREE and NOISE are within the control of the

system we intend to construct, whereas the behaviors of the USER are assumed to be

external.

According to LSC1, whenever USER sends the wake message, the system must

respond with a non-deterministic ordering of message fall and make in order to satisfy

the main chart. Therefore, the traces wake , fall , make or wake , make , fall are both

acceptable for satisfying LSC1. On the other hand, LSC2 is an anti-scenario which states

that the sequence make , fall , sleep cannot ever occur. The synchronizing conditions

remove the otherwise non-deterministic ordering of make , fall , sleep to ensure that only

traces with this precise ordering will satisfy the prechart.

We now consider how smart play-out might respond to an input message wake .

101

After formulating a model-checking problem that attempts to verify the non-existence

of a satisfying LSC1 trace, the resulting counter-example yields one of the two possible

event sequences above. Supposing that smart play-out executes the sequence: make ,

fall , LSC1 would be satisfied, but the prechart of LSC2 would advance such that the

next enabled message is sleep . The environment could then execute sleep and violate

the requirements. This illustrates the inability of smart play-out to look ahead into the

future by more than one super-step.

Using synthesis, it is possible for the system to decisively choose an alternative

sequence that would not allow the environment to violate the requirements. In response

to the message wake , the synthesis algorithm would have removed the transitions that

permit the sequence make , fall to occur, leaving fall , make as the only existing path.

5.3 Overview

The synthesis problem is broken down into two parts. The first part is the realizability

question, which asks whether or not there exists some way for the environment to win

the game. If the answer is in the negative, then the system is said to be realizable. The

second part of the problem is to formulate a winning strategy for the system, provided

the system is realizable. The winning strategy is like a road map which guides the

system in producing behaviors that will always satisfy the requirements.

Let � be multiple untimed LSC requirements over an object system 	 . We first

translate � into an automaton using the discrete-time multiple LSC construction of sec-

tion 4.2.2. Note that the untimed construction is just a specialized case of discrete-time,

102

whereby the set � � of ts-vars is empty. Recall that we solve the synthesis problem by

formulating a two-player game between the system and environment. For the purposes

of synthesis, the automaton must be converted into what we call a game structure, suit-

able for the purposes of game play. The two models are substantially the same, except

that the transitions of the game structure are partitioned into two disjoint sets, necessary

for identifying the transitions of each player.

5.4 Game Structures

A game structure is defined by
�
� � � ��� �.- ����� �����.� � � , where:

• � is a set of states.

• � is the set of events.

• - is the set of initial states.

• ��� ����� � � � � � � are the set of environment and system transitions.

• � � � is the accepting set.

Notice that there exist two transition sets, ��� and ��� , whose purpose is to identify

the legal moves for each player at any given state. The intuition is similar to a board

game such as Chess: just as Chess players are only permitted to move their own pieces,

we similarly require that each player can only move between states using their own

transitions.

103

The process of identifying which transitions belong to which player is carried out

as follows. Given an object system 	 , recall that each object 20�H	 is owned by either

the system or environment. That is, 2 7 ���
�0� % � � � � � ����' . We partition the objects

of 	 into two disjoint sets according to their ownership. Using this information, we

assign ownership to LSC messages. Specifically, messages sent by the environment

are classified as environment messages, whereas those sent by the system are system

messages. Since messages are defined, in part, by the LSC locations to which they are

associated, we can map these locations to visible events by means of function ��� ��� � .

To summarize the above: by partitioning the set of objects, we arrive at a parti-

tioning of the set of visible events. Let � � be the set of environment events, and � � be

the set of system events induced by this object partitioning. If we let � � � �0" � � , we

can identify every transition 	� � " �! �� � as belonging to the environment if " � � � , or the

system if " � � � .

Ownership of hidden events, on the other hand, depends on the owner of the pre-

ceding visible event, as discussed in section 2.8.6. Therefore, hidden event ownership

is dynamic, whereas visible event ownership is static. Fortunately, we need not concern

ourselves with hidden events since the semantics are handled implicitly by the automa-

ton construction.

5.5 Game Rules

A play of game structure
�

is a sequence of states � �! � � 7�7�7 , satisfying:

1. Initiality: � �$-

104

2. Consecution:
 � � " � 	� �3?� " �! 3 � � � � ��� " ���

3. Reactivity: 	� �3?� " 38�! 3 � � � � ��� , for infinitely many � .

The behaviors of the game follow the * -regular expression 	 � � ��� � ��� � , where

the environment executes an event in � � and the system responds with a super-step � � �
consisting of zero or more events. Since the system may choose empty super-steps, event

traces could consist of events entirely in � � . However, the system is not permitted to

block environment input by prolonging its super-step to infinitely many events—hence,

the third requirement above which states that environment events occur infinitely often1.

We also require super-steps to be atomic in the sense that the environment is not

permitted to interrupt the super-step by injecting a � � event. This is justified because

in real-life systems, environment inputs are often buffered—for example, in a FIFO

queue—while the system processes events at the front of the queue. The synchrony hy-

pothesis allows us to ignore issues of timing and queue boundedness which are beyond

the scope of the current work.

We also require that environment messages only appear in precharts2. To see why

this is necessary, we first note that the system is responsible for choosing super-steps

that satisfy the requirements. Allowing environment messages to appear in the main

chart would have the effect of creating future obligations for the environment. However,

in a real-life setting, the environment could trivially violate the safety properties by

producing the wrong behavior or not producing any behavior at all, thereby leading to

1One may model “no environment input” using a self-loop labeled by a reserved no-op sym-
bol.

2This assumption is necessary for the current result, but not necessary in general. We later
discuss a winning condition which does not require this assumption.

105

unrealizable requirements.

To remedy the above problem, one might impose artificial assumptions of the en-

vironment which state that the environment will cooperate by producing the expected

behavior whenever a main chart requires the behavior to occur. However, since the pur-

pose of this work is to underline the hostile and unpredictable nature of the environment,

we felt it counterintuitive to take this approach.

5.6 The Synthesis Problem

Let
�

be a game structure with accepting set � . We say that a game structure
�

satisfies

� , written
� B � � iff for all paths of

�
, some state in � occurs infinitely often. Formally,

the synthesis problem is defined in two parts:

1. Realizability: Given a game structure
�

with accepting set � , does there exist
� �

with
� � 7 ��� � � 7 ��� such that

� � B � � ?

2. If so, construct
� � .

In the sections to follow, we present a decision procedure for realizability check-

ing. Later, we show how to arrive at the winning strategy, provided the specification is

realizable. Construction of the strategy amounts to deciding which transitions, if any, to

remove from
�

.

106

5.6.1 Definitions

We say that a state � � is stable, denoted ��� � ��� � 	� � iff
 � � � " 3 � � � � � � �
	� � " 3?�! � � � ��� � . That is, iff every environment input is enabled from .

Stable states are precisely those in which all LSCs are located somewhere within

a prechart. This follows from our above assumption that environment messages cannot

appear in the main chart—indeed, if any of the LSCs were in a main chart, then no

environment inputs would be enabled. Hence, all LSCs are in their prechart.

A super-step path by " is a path between two stable states � �
� (denoted �

�
�

 �), such that � � ����� � � where 	� � �
" � � �6� ��� and for all � � � ��� , 	� �3?� �! 3 � � � �

��� . If we aren’t interested in the identity of event " , we simply write �
� � .

A stable state is controllable if for all 	� � " � �� � � ��� there exists a super-step path

by " . State is said to be forward controllable to � � � � iff is controllable and for all

 � � � � � � � E � is controllable. Set � � � � is a forward controllable set if each

 �� � � is stable and forward controllable to � � .

5.6.2 Main Result

Theorem 4 (Realizability) Let
�

be a game structure where winning condition � �

%� B���� � ��� � 	� �(' . Then there exists
� � with

� � 7 ��� � � 7 ��� such that
� � B � � iff there exists

a forward controllable set � � � � in
�

s.t. � � � � .

Proof:

� Since there are finitely many states in � � , all paths leaving � must therefore

107

lead to a cycle of stable states. Let � � be the set of states of
� � and begin with the edges

of
�

. Let � be the set of states belonging to any super-step leading out of any state

in � � . Remove from
� � any edge which leads to a state outside of � . The remaining

edges are guaranteed to lead to some other � � � � , since � � is a forward controllable

set. Clearly,
� � � �

. Moreover, since all paths from � lead to a cycle of stable states,

we have
� � B � � .

� Let � � be the set of stable states in
� � reachable from and including � . We

show that this set is forward controllable: Since
� � B � � , all paths leading out of states

in � � lead to a cycle of stable states. Let � be the set of stable states appearing in any

cycle. Since every state in � is in a cycle, each stable state in the cycle is controllable,

since each leads to another stable state. Since every state in � is controllable, � must

be forward controllable. Now consider the set of states � � � � which aren’t in � . Since
� � B � � , these states all lead to � . Hence, � � � � " � is forward controllable.

�

5.6.3 Algorithm

We present a two-part algorithm for deciding realizability, written in pseudo-BASIC.

The main idea is to determine the existence of a forward-controllable subset of � , which

by Theorem 4, is equivalent to deciding realizability. The first part places tokens on

states and propagates them across the game structure to determine all-pairs reachability

among the stable states. In the second part, we identify uncontrollable states (stable

states having no reachable successor), remove these states, determine whether this re-

moval affects the controllability of other stable states, and repeat until we converge on

the (possibly empty) set of forward controllable states.

108

In the algorithms below, � � ����� denote the transition relations for the environment

and system, respectively. Each contain transitions of the form 	� � " 3?� �3�� where is the

origin state, 3 is the destination state and " 3 is the event label, indexed by � . We let

��� � ��� � 	� � and � ����� � � � � � ��� � 	� � be assertions stating that state is stable or controllable,

repsectively.

Algorithm Part 1, presented in listing 5.1, contains two main loops. Within the

first loop, tokens are placed on all states which are adjacent to a stable state. We assume

a mapping of � � to a finite subset of the naturals, such that every outgoing transition

is assigned a number according to the outgoing transition’s event. Each token � �����
contains information identifying both the identity of the stable state and the number of

the transition � from which originated the token.

Listing 5.1: Algorithm Part 1: State Marking� �
Let

�
:= �

Let �����
 �
	������� := ���������������! "#���%$

For each �'&(�����
 �
	��� � � and a l l #�*)%+ 3)%� 3 � in , �
P l a c e t o k e n -.�*)�,#/ on s t a t e � 3
I f Not ���������! 0#� 3 � Then �����
 �
	��� �2143 � := �����
 �5	0�� �6173 ��89��� 3 $
j ++

End For

U n t i l �����
 �
	��� � � -7: Do :
For each �'&;�����
 �
	��< � � and a l l #��)%+ 3)%� 3 �=&>, �

I f t o k e n -.�*)�,�/ i s on � 3 Then cont inue
P l a c e t o k e n -.��)�,#/ on � 3
I f Not �?�����?�@ "#� 3 � Then �����
 �
	��� �2143 � := �����
 �5	��A �6143 �A8B��� 3 $

End For
j ++

End U n t i lC D

109

The second loop propagates the token to all reachable states in a breadth-first

manner. The propagation terminates wherever a stable state is encountered or a state

containing the same token is encountered. The latter case is indicative of a cycle. The

finite number of edges of
�

assures termination. When the algorithm terminates, each

stable state contains the tokens of every other stable state that can reach it.

Turning to issues of time complexity, the first loop places one token on each of the

outgoing edges of the stable states. We therefore have B � B � B � ��B tokens. The second loop

propagates these tokens around the game board, such that each token traverses each edge

at most once. Thus, the worst-case time complexity of the algorithm is 2 	(B � B �.B � ��B �(B � B � .

The tokens placed by the algorithm above are each of the form � ����� where is the

stable state from which the token originated and � is the number of an outgoing transition

from which maps to some input event. Every stable state � has a set of tokens, called

a token set, representing all of the tokens which reached �� . More specifically, if � ����� is

in the token set of stable state � then has a super-step by � leading to � .

Algorithm Part 2, shown in listing 5.2, identifies a forward controllable set if it

exists. To accomplish this, the set of abandoned tokens is first identified. A token is

considered to be abandoned if it appears in none of the token sets of any of the stable

states. If � ��� � is an abandoned token, then is uncontrollable since the super-step by �

leading out of doesn’t lead to any stable state. Then, any tokens which belonged to the

token set of the uncontrollable state are now considered abandoned. The process repeats

again until no more abandoned tokens exist.

The set of states � � which remain after the process is finished is a forward control-

lable set, as will be proven later. If the initial state � is among the states in � � , then the

110

LSC requirements are realizable by Theorem 4.

For listing 5.2, let � � � � � � � � � be the set of all tokens on the game structure. That

is, % � � ��� �8��7 7�7 � � � �
� �>��7�7 7
� � � ���
�8� 7�7�7 � � � � � ��' . We let � � � � � � 	� � be the token set of

and � � � � � � �F% � � � � � � 	� � B���� � ��� � 	� � E � � ' be the set of non-abandoned tokens.

The set of abandoned tokens is therefore given by � � � � � � � � �
 � � � � � � . The function

predicate � ����� ��� � � � ��� � 	� � ��� % � ���
�>��7�7�7 � � � � ��' � � � � � � � decides the controllability of

state . The algorithm is as follows:

Listing 5.2: Algorithm Part 2: Find Forward Controllable States� �
Let � ���� := �2�5� � �
� ?	 ��� � �
� ?	 �
Let j := 0

While � � ��� -7: Do

For each -.��)�,#/ &�� � �
I f Not � ��	 ��� ���5�!�����! #��� Then

� �6173 � := � � �21 3 �A8 � �
* ?	 ��#���
� �
� �	 ��#����� -7:

Fi
End For
j ++

End WhileC D

Theorem 5 (Correctness) Algorithm Parts 1 and 2 correctly decide realizability.

Proof:

Part 1 is a token propagation scheme. It consists of two loops, one which initiates

the placement of tokens from every stable state, and the second which propagates the

tokens until either a cycle or stable state is encountered. Clearly, one of the two will be

111

encountered on every path and so the algorithm terminates.

Algorithm part 2 maintains a set of abandoned tokens—those which do not appear

on any stable state. We begin with � 	 � � � � � � � � � � � �
 � � � � � � . Inductively, for each

token � ����� contained in � 	 � � , we determine whether is controllable. If so, nothing

happens. Otherwise, all tokens from � � � � � � 	� � are removed and placed into � 	 � ��� � .
The algorithm terminates when � 	 � � � � is empty—termination is guaranteed since the

set of tokens is finite.

Upon termination of the algorithm, we claim that the set of controllable states is

also a forward controllable set. Formally, � ����� ��� � � � ��� � 	� � � is forward controllable:

� If is forward controllable then it is also controllable, by definition. That is,

� ����� ��� � � � ��� � 	� � holds.

� If � ����� ��� � � � ��� � 	� � holds then we need only show that � is controllable. It

would then follow that is forward controllable. Supposing � is not controllable,

� ����� ��� � � � ��� � 	� � � does not hold and so � has at least one abandoned token. Since �
has an abandoned token, the set of tokens appearing on ��—including that belonging to

 —would be removed by the algorithm. Therefore the super-steps of must lead to a

stable state which is controllable: a contradiction. Therefore, is forward controllable.

Due to this and Theorem 4, we conclude that LSC requirements are realizable iff

- � %� B � ����� ��� � � � ��� � 	� �(' . �

Turning our attention back to time complexity, algorithm 2 is comprised of an

outer and inner loop. The outer loop iterates so long as there exist abandoned tokens.

In the worst case, one abandoned token will be added to � 	 � � on each iteration and

112

all tokens will eventually be abandoned, yielding at most B � B ��B � � B loop iterations. The

inner loop performs constant-time processing on each token, making the worst-case time

complexity 2 	.B � B ��B � �#B � .

5.7 Example

To illustrate the above algorithm in action, consider Fig. 5.2, which depicts the state of

affairs after the first part of the algorithm terminates. The darkened circles represent

states. For the purposes of this example, we label the states � � ��7�7�7
� ��� . The straight

arrows leading out of the stable states represent environment input transitions. We as-

sume B � � B � �
and assign � � � to the outgoing transitions, which are shown next to

each straight arrow. The curved arrows depict system responses, or paths consisting of

unstable states (not shown).

Also depicted in Fig. 5.2 is the set of tokens belonging to each stable state. For

example, state ��� has two tokens: � � � � � �8� � � � ���
� , which means that state � � has a

super-step by transition
�

leading to ��� and � � has a super-step by transition � also

leading to ��� . Notice that the super-step leading out of ��� by transition � leads to a

cycle which never reaches any stable state. Consequently, token � ��� ���
� does not appear

in the token set of any of the states and is therefore abandoned, as shown at the bottom.

Since � ��� ���
� is abandoned, it immediately follows that ��� is uncontrollable. The

token set of ��� is therefore emptied. Each token which previously belonged to the token

set of ��� is considered abandoned if that token appears on no other stable state.

The abandoned tokens correspond to the dashed super-steps shown in Fig. 5.3.

113

21

1

1

1

1

2

2

2

2

S1

S2

S3

S4

S5

{[S2,2]}

{[S1,2],[S2,1]}{[S1,1]}

{[S4,2],[S5,1],[S3,1],[S3,2],[S2,1]}

{[S2,2],[S5,2]}

Abandoned: {[S4,1]}

Figure 5.2: Finding Uncontrollable States

Notice that there are no other super-steps leaving state � � by transition
�
, which means

that � � will be found to be uncontrollable in the next loop iteration. In contrast, the

super-step by transition � leaving state � � does have an alternate super-step, so the

controllability of � � is not affected.

When the algorithm terminates, it is left in the situation depicted in Fig. 5.4 in

which all states remaining are forward-controllable. The LSC specification is realizable

if the initial state is � � � ��� or ��� .

114

21

1

1

1

1

2

2

2

2

S1

S2

S3

S4

S5

{[S2,2]}

{[S1,1]}

{[S4,2],[S5,1],[S3,1],[S3,2],[S2,1]}

{[S2,2],[S5,2]}

Abandoned: {[S4,1]}

{ }

Figure 5.3: Removing Paths to Uncontrollable States

5.8 Finding the Winning Strategy

Once an LSC specification is determined to be realizable, the second part of the synthesis

problem is to construct a game structure
� � whose set of transitions is some subset of

�
.

Thus, the winning strategy amounts to determining which transitions to remove, if any.

The realizability decision procedure gave us a forward controllable set of states

� � � � . Since every state � � � is controllable, all paths out of are guaranteed to lead

to some other state in � � . Our goal is to cut out edges which don’t lead to a state in � � .
To solve the problem, we place tokens on edges rather than states. More specif-

115

21

1

1

1

1

2

2

2

2

S1

S2

S3

S4

S5

{[S2,2],[S5,2]}

{ }

{ }

{ }

{[S4,2],[S5,1],[S3,1],[S3,2],[S2,1]}

Figure 5.4: Forward Controllable Set

ically, from every state in &� � � we place a token on all edges which are backward

reachable from . Unlike the tokens seen previously, the edge tokens are not labeled in

any way—an edge either has a token or it doesn’t. Any path which intersects with a tok-

enized edge is guaranteed to lead to some �� � � . It is also guaranteed not to lead to any

state outside of � � due to the fact that the algorithm stops placing tokens once any stable

state has been reached, whether the state is controllable or not. This would prevent an

uncontrollable stable state from being encountered along the path to a controllable one.

The algorithm is defined as follows:

Listing 5.3: Controller Extraction� �
Let j := 0
Let �%� ��
 ������� ������ - ���'� � ��	 ��� ���5�!�����! #���%$

116

U n t i l � � �
������ � � � -7: Do

For each �'& � � ��
�������� � � and a l l #� 3)%+ 3)%� �=& , � :
P l a c e a t o k e n on edge #� 3)%+ 3)%���
I f Not �?�����?�@ 0#� 3 � Then p l a c e � 3 in �%� ��
 ������� �2143 �

End For
j ++

End U n t i lC D

The time complexity of the algorithm is similar to the first algorithm presented,

except that there are B �4B tokens instead of B � B � B � � B . The algorithm therefore has a

worst-case time complexity of of 2 	.B � B���B � B � .

To arrive at the winning strategy, we remove from
�

all edges containing no token.

By doing so, we arrive at game structure
� � , which implements the winning strategy.

117

Chapter 6

Symbolic LSC Synthesis

We presented an automata-based approach to LSC synthesis, which is a natural exten-

sion to the previously presented LSC-to-automaton construction. That approach lends

itself to an explicit state construction, whereby every state and edge occupies space in

memory. Another type of construction uses a symbolic state approach, whereby states

and transitions are characterized by assertions over Boolean propositions. This can be

represented efficiently in space using directed acyclic graphs called Binary Decision

Diagrams (BDDs) [Bry86].

We now consider an alternate solution to synthesis of LSC requirements, in which

the transition system for LSCs is encoded symbolically in the BDD-based language of

SMV [McM92, McM98]. The synthesis algorithm itself is written in the SMV wrapper

language TLV-BASIC, which is part of TLV [PS96]. The symbolic approach allows us

to solve the same problem as before, but typically in a more space-efficient manner. This

opens the door for implementing these methods in software with a much better chance

118

of success.

We choose SMV and TLV, in particular, for compatibility with the smart play-out

feature of the Play-Engine [HM03, HKMP02] which utilizes both languages. Smart

play-out, being a closely related technology, provides much of the overhead necessary

for our work. We can therefore refrain from duplicating many of the features already

offered by the Play-Engine and focus more attention on the modifications and extensions

necessary for synthesis. Aside from the synergies offered by smart play-out, we can also

take advantage of several other Play-Engine features, most notably the graphical user

interface and play-in.

As with the previous synthesis results, we view controller synthesis as a two-

player open game consisting of an environment and system. We construct a game struc-

ture which encodes the rules of the game as a standard transition system, but this time

using symbolic methods. Instead of using the realizability and winning strategy extrac-

tion methods from the previous chapter, we instead use the more general approach of

[Pnu05] with some modifications. A practical implementation based on these results is

also presented in [KPP07].

6.1 Symbolic Game Structures

The following definition is similar to that in [Pnu05]. A game structure (GS) is defined

by
�
� � � � � ��� �.- �����.����� � � � consisting of:

• � , a finite set of typed state variables. We define a state to be an interpretation

of � , assigning to each variable % � � a value � % �4�1 	 within its respective

119

domain. We denote by � the set of all states. We extend the evaluation function

 � � � to expressions over � in the usual way. An assertion is a Boolean formula

over � . A state satisfies an assertion � , denoted �B � � , if � � � � TRUE. We say

that is a � -state if B � � .

•
� � � is a set of input variables controlled by the environment. Let �

�
denote

the set of all input variable valuations.

• � � �
 �
is a set of output variables controlled by the controller. Let �� denote

the set of all output variable valuations.

• - is the initial condition characterizing all initial states of
�

.

• ���
	��� ����!���� � ���� � � is the transition relation of the environment. This is an assertion

relating state � � to a possible input value
�
� � � �

�
by referring to unprimed

and primed copies of �
�

and �� . The transition relation � � identifies valuation
�
� �

as a possible input in state , if for some output
�� � , 	� � �� � � �� � � B � ���
	��� ����!���� � ���� � �

where 	� �
�
� � �
�� � � denotes a transition from state to state 	

�
� � �
�� � � .

• ��� 	 �� � ��!� �� � � �� � � is the transition relation of the controller. This is an assertion

relating state � � to a possible output value
�� � ���� by referring to unprimed

and primed copies of �
�

and �� . The transition relation ��� identifies valuation
�� �

as a possible output in state , if for some input
�
� � , 	� �

�
� � �
�� � � B � ���
	��� ����!���� � ���� � � .

• � is the winning condition, given by an LTL formula.

As can be seen, changes in state are characterized by changes in the variable valuations.

Rather than partitioning transitions according to ownership as in the automata-based

120

approach, we instead partition variables into those controlled by the environment (input

variables) and those by the system (output variables). Each player may then observe and

modify the valuations of its own variables, but can only observe the valuations of the

opponent’s.

6.1.1 Dependent vs. Independent Transitions

Following traditional game terminology, we say that a player transitions or moves when-

ever it modifies the variable valuations according to its transition relation. In most

synthesis work, including [Pnu05], players strictly alternate between moving: a pre-

designated player moves first according to the current valuation of the input and output

variables. The second player then observes the same valuations as the first and also the

first player’s move and then moves herself. We refer to both moves as a round.

The work of [dAHM01] presents a different approach whereby both players move

symmetrically and independently. That is, they move at the same time and both moves

are a function of the current variable valuations only, but neither player may observe

the opponent’s move. We present a similar approach, whereby the players move sym-

metrically, as before. However, unlike the previous work, both players can move either

dependently or independently according to our approach. A dependent move is one

in which both players’ moves are a function of the current variable valuations and the

opponent’s move. Otherwise, it is an independent move, like above.

We adopt this approach because LSCs inherently require objects to simultaneously

synchronize at certain points during the execution. This happens, for example, when

multiple instances move onto an LSC condition—either all the participating instances

121

must move onto the condition, or none at all. Our definition lends itself to modeling

this type of behavior quite naturally since all instances can observe whether the other

instances are moving or not moving to a particular place during a given move. It is

possible to simulate this type of synchronous behavior using the previous alternating-

turn approach. However, this would require extra memory and logic.

To illustrate the notion of independent and dependent moves, consider the SMV

code of listing 6.1.

Listing 6.1: Example SMV Code� �
1 n e x t (s y s) := c a s e
2 s y s =0 & env =0 : � 1 , 2 $;
3 1 : s y s ;
4 e s a c ;
5
6 n e x t (env) := c a s e
7 s y s =0 & env =0 & n e x t (s y s)= 1 : 2 ;
8 s y s =0 & env =0 : 3 ;
9 1 : env ;
10 e s a c ;C D

The example depicts the transition relation for environment input variable env

between lines 1-4, and system output variable sys on lines 6-10. Elsewhere, variable

sys is defined to range over � ��7�7�7
� � and env over � ��7�7�7
� � .

The transition relation for each variable is expressed by a case statement. Each

line of the case statement is of the form expr : val where expr is an expression over

the variables and val is any number within the legal range. Each line is evaluated in the

order appearing in the input. For each line, the variable, in the next state, will take on

the value appearing on the right if the expression on the left holds. Otherwise, the next

line is considered, and so on. Expression “1” is a catch-all expression referring to all

122

cases not covered by the expressions appearing above it.

For example, according to line 2, if sys and env are both � in the current state,

then sys can nondeterministically choose between � or
�

in the next state. Line 3 states

that the value of sys remains unchanged for all other cases. Lines 2 and 3 are examples

of independent moves, since neither relies on the environment’s move (the value of env

in the next state).

Moving to the transition relation for env, line 7 states that if sys and env are �

and sys is � in the next state, then env is
�

in the next state. Line 7 is an example of

a dependent move, since the case only holds with the cooperation of the system. Line 8

is also dependent since it implies next(sys) != 1. However, line 9 is independent

because it doesn’t depend on any particular value of next(sys).

6.1.2 Deadlock

Conceptually, each round of play proceeds as follows: from a given state, both play-

ers each choose among any available move, including dependent moves. The players

then simultaneously “announce” their intended move. There are two outcomes: if at

most one of the players takes a dependent transition, the players may then proceed to

move according to their announced choices. If both players choose dependent moves,

there exists the possibility that the players’ choices will conflict in such a way that nei-

ther player can proceed using their original choice. We refer to this phenomenon as a

deadlock. In this situation, the players must repeat the selection process.

To illustrate the notion of deadlock in this context, consider the SMV code exam-

123

ple below.

Listing 6.2: Deadlock Example� �
1 n e x t (s y s) := c a s e
2 s y s =0 & env =0 & n e x t (env) = 1 : 1 ;
3 1 : s y s ;
4 e s a c ;
5
6 n e x t (env) := c a s e
7 s y s =0 & env =0 & n e x t (s y s)= 1 : 0 ;
8 1 : env ;
9 e s a c ;C D

First note that lines 2 and 7 both refer to dependent transitions, since the transition

relation for each player’s variable depends on the opponent’s move. Now consider the

state where sys=0 & env=0 holds. According to line 2, if env is 1 in the next state,

then sys is 1 in the next state. However, according to line 7, if sys is 1 in the next

state, then env is 0 in the next state: a deadlock.

In the actual implementation, the players don’t go through multiple rounds of

selection in this way. Rather, each round is a member of the intersection of non-

deadlocking moves. As we will see, our definitions follow very closely from those

seen in [Pnu05, PPS06] with special deadlock checking added in.

6.2 Definitions

Let
�

be a game structure and and �� be states of
�

. We say �� is a successor of if

	� � � �!B � ��� E ��� . We freely switch between 	� �
�
� � �
�� � � B � ��� and ���
	� �

�
� � �
�� � � � � and

124

similarly for ��� .

A play � of
�

is a maximal sequence of states � �0 � �! � � 7�7�7 satisfying initiality

(� B � -) and consecution (for each � � � �! ;3 � � is a successor of .5). Let � be a play

of
�

. From state , the environment chooses an input
�
� � � �

and system chooses an

output
�� � such that � �
	� � �� � � �� � � � � and ��� 	� � �� � � �� � � � � .

We say that play � is winning for the system if it is infinite and satisfies � . Other-

wise, � is winning for the environment.

A strategy for the system is a function
�
� � � � �

� �� �� such that if � �
 � ��7 7�7 �! � then for every

�
� � � �

�
and some

�� � � �� such that � �
	� � � �� � � �� � � � � we have

��� 	� � � �� � � � 	 � � �� � � � � � . A play � � � ��7�7�7 is said to be compliant with strategy
�

if for

all � � � we have
� 	� � ��7 7�7 �! 3>�! 3 � � � �

� �� � 3 � � � ���� , where �3 � � � �
� � and �3 � � � �� � are the

restrictions of �3 � � to variable sets
�

and � , respectively.

Strategy
�

is winning for the system from state � � if all -plays (plays de-

parting from s) which are compliant with
�

are winning for the system. We denote by

(� the set of states from which there is a winning strategy for the system.
�

is said to

be winning for the system if all initial states of
�

are winning for the system. In this

case, we say
�

is realizable and we synthesize a winning strategy which is a working

implementation for the system. Otherwise
�

is unrealizable.

6.2.1 Controllable Predecessors

A transition leading into a state is said to be controllable if the system can force the

game into in one step. That is, if the system can choose an independent transition

125

for which all environment transitions lead into = —or—if all of the system’s dependent

transitions (for any possible environment transition) lead to = . The disjunction of these

two requirements can be logically simplified to the expression
 �� � � �� � � ��� � � � � . When

conjoined with a deadlock check, it forms the controllable predecessor equation shown

in equation (6.1) below.

The controllable predecessor of an assertion = , denoted = , is defined by the

following, where
� = � denotes the set of states characterized by assertion = :

��� � 	� � �� � � �� � � B � ���

� � � 	� � �� � � �� � � B � ��� E 	 �� � � �� � � � � = �

� = � �A%� B � �� � � �� � � ��� E � � ��E
 �� � � �� � � ��� � � � �>' (6.1)

The right side of the main conjunction is the same as that in [Pnu05] and the left

side amounts to assuring the absence of a deadlock.

6.2.2 Realizability & Winning Strategy

Once the notion of controllable predecessor is in place, the decision procedure for real-

izability and the extraction of the winning strategy proceeds according to [Pnu05]. The

work focuses on winning conditions which are recurrence properties, i.e., LTL formulas

of the form ��� � for an assertion � . We restrict our attention to formulas of this form

for the purposes of our work also.

126

A state satisfies = (for some assertion =) if the system can force the environ-

ment to reach a = -state within a single step from . Based on this pre-image operator, a

set of winning states is computed according to the following fix-point equation [Tar55],

where � and � denote minimal and maximal (resp.) fix-points:

(� � ��� � � 7 � � �:E � (6.2)

Given a game structure
�

, we can check realizability of
�

by testing (� � - � � .
If

�
is winning for the system, a winning strategy is extracted by removing controllable

transitions which lead to states outside of (� .

6.3 Smart Play-Out

In this section, we describe how to construct a game structure from untimed multiple

LSC requirements in SMV. Since our work is based on smart play-out [HKMP02], we

first give an overview of the translation from LSC requirements to SMV.

SMV is a language for specifying program behaviors using a symbolic represen-

tation of the transition system. A module is a transition system consisting of variables

and a transition relation. SMV permits the use of multiple modules, which can be

composed either asynchronously or synchronously. When an asynchronous program

executes, SMV interleaves the execution of the modules arbitrarily but fairly. A syn-

chronous program is one in which all modules transition together simultaneously. In

either case, modules may observe the variables of other modules. However, variable

values may only be modified by the module that owns the variable.

127

Smart play-out constructs a transition system which is sufficient for the purposes

of model checking. The general setup is the same as in the previous chapter. There exist

a set of stable states, from which the environment may produce an input. It is then up to

the system to formulate a response, called a super-step, leading to another stable state.

Smart play-out finds super-steps on a local level by formulating a model check-

ing problem for a given environment input. Roughly speaking, smart play-out tries to

verify the property “no super-step leading to a stable state exists” with the hope that the

property is false. If it is indeed false, the model checker produces a counterexample as a

witness to the existence of the super-step. Smart play-out then feeds the counterexample

to the Play-Engine so that the user may witness the super-step being carried out on the

program.

In order to set up the model checking problem, smart play-out first constructs an

SMV transition system whose allowable behaviors are consistent with the LSC require-

ments. The transition system and an LTL formula serve as input to the model checker.

For the purposes of our work, we aren’t interested in the LTL formula since we are per-

forming synthesis rather than model checking. However, several parts of the transition

system can be reused for the purposes of synthesis.

6.4 Main Result

There are a few main differences between smart play-out’s transition system and our

game structure. On a high level, smart play-out defines one module for every object in

the requirements and composes the modules asynchronously. In contrast, the synthesis

128

algorithm of [Pnu05] requires precisely two (2) transition systems—one for the system

and one for the environment. Therefore, most of the work amounts to reorganizing the

smart play-out transition system and adding extra variables specific to the synthesis.

Rather than provide the full details, we will focus mainly on the differences. The inter-

ested reader may consult [HKMP02] for the specifics of the smart play-out construction.

Our definitions below will follow in the general spirit of this work.

6.4.1 Variables

Let 	 be an object system and let � � � � ��7�7�7
���
� over 	 be a set of LSC requirements.

We construct a game structure
�

with a set of input variables belonging to the environ-

ment and output variables belonging to the system. We now specify the set of variables

� by defining the input variables
�

and output variables � . The input variables are as

follows:

1. � ��� �� is 1 when the main chart of LSC � is active, and 0 otherwise.

2. ����� �� ����� � denotes the sending of a message from object 2,5 to object 2 � in which

265;7 ���
� � � ��� (265 belongs to the environment). The value is set to 1 at the

occurrence of the send and is changed to 0 at the next state.

3. ����� � � ����� � denotes the receipt of a message by object 2 � from object 265 in which

265;7 ���
� � � ��� . As in the case of sending, the value is 1 at the instant the message

is received and changes to 0 in the next state.

4.
� � � � � � is the location of object 2,5 in the main chart of LSC � where 2:5#7 ���
� � � ��� .

The location number ranges over � ��7�7�7 � � � � � where
� � � � is the last location of 2:5

129

in the main chart of LSC � . This variable is meaningful only when � ��� �� is 1.

5.
� � ��� ��� � � � � � is the location of object 2:5 in the prechart of LSC � where 2:5;7 ���
� �
� ��� . Its value ranges over � ��7�7�7
� � � � � where

� � � � is the last location of 2:5 in the

prechart of LSC � . This variable is meaningful only when � ��� �� is 0.

6. �
�
� ��� � is an auxiliary variable used to reduce a Generalized Büchi winning con-

dition to a Büchi winning condition.

7. � ��� ����� is a variable that determines which of the environment’s objects has control

in the next step.

The output variables belonging to the system are given by:

1. ����� �� ����� � denoting the sending of a message from object 2 5 to object 2 � in

which 265;7 ���
� � � � � (2 � belongs to the system).

2. ����� � � ����� � denoting the receipt of a message by object 2 � from object 265 in which

265;7 ���
� � � ��� .

3.
� � � � � � is the location of object 2,5 in the main chart of LSC � such that 2:5 7 ���
� �
� � � .

4.
� � ��� ��� � � � � � is the location of object 2:5 in the prechart of LSC � such that 2,5;7 ���
� �
� ��� .

5. � � � ��� ��� is a number ranging over � ��7�7 7
� B9	 B , referring to the object 2 � �����
	��� that

currently has control of the execution.

130

The active flags, (� ��� �� , for all �) and the auxiliary variable �
�
����� � are not prop-

erties of the environment specifically, although they are environment variables. These

are examples of bookkeeping variables, whose values are a function of the variables of

both players. The choice of ownership could therefore be arbitrary. However, we assign

ownership of these variables to the environment in order to be conservatively safe.

For example, if there exists a subtle error in the transition relation of any of these

variables, the environment would find a way to utilize the error to its advantage in order

to win the game and deem the requirements unrealizable. This is positive because we

are forced to deal with the error in such a case. We could have alternatively chosen

the system as the owner instead, in which case an error in the definitions could lead to

false realizability—a more dangerous situation, particularly in the case of safety critical

systems.

The purpose of the remaining variables, � ��� � ��� and � � � ��� ��� are explained below.

6.4.2 Transitions

Smart play-out constructs a transition system comprised of an asynchronous composi-

tion of SMV modules. Each module defines the behaviors of one object in the LSC

requirements, consisting of a set of variables and a transition relation. When generating

traces, the TLV-BASIC model-checking routine arbitrarily selects modules for execution

one at a time. The corresponding variables are then updated according to the transition

relation of the selected module. Intuitively, each module’s (i.e., object’s) transition rela-

tion permits the object to carry out the next behavior on the object’s instance line, with

respect to the object’s present LSC location.

131

On the other hand, synthesis requires a synchronous game structure in which all

objects (and associated transition relations) belonging to the system are grouped into a

single system module, and likewise for the environment. This raises the question of how

to deal with the multiple definitions for each variable. We now describe the solution.

Let � 3 be any variable belonging to object 2�3 in the smart play-out construction.

The transition relation, according to [HKMP02], for � 3 takes on the form:

� �3 �

������ �����
� � ����� �
...

...

� � � ��� �
where �D5 is a constant and � 5 is a conditional expression over the variables of all objects

in 	 . In our synthesis construction, we have:

� � �

������ �����
� � � ��� � � � ��� ��� � �
...

...

� � � � � � � � ��� ��� � �
where

�
is the number of objects. Therefore, we may simulate the asynchronous behav-

ior of the smart play-out transition system by manipulating the variable � � � ��� ��� . This

variable is responsible for determining which object, among the system and environment

objects, move in the next step.

Variable � � � ��� ��� must necessarily be owned by either the system or the environ-

ment. It would seem that permitting just one player to determine the current objects for

both itself and its opponent could result in an unfair advantage. To level the playing

132

field according to our result, the system and environment choose among their respective

objects, but the decision of when each player gets their turn to decide goes to the system.

To prevent the system from starving the environment of any opportunity to move, we

will require the system to yield control to the environment infinitely often.

Formally, let 2 � ��7�7�7 �(265 be the set of objects belonging to the environment and

265 � � ��7�7 7 �(2 � be those of the system. We let:

� ��� � ��� � �A% � ��7�7�7 � '

The environment uses � ��� � ��� to non-deterministically choose which of its objects will

be the next to move once given a turn. With this in place, the system selects the current

object in the following way:

� � � ��� ��� � �A% � ��� � ��� � � � � � 7�7�7 � � '

Note that this permits the system to execute arbitrarily long super-steps, since it can just

keep selecting values between
� � � ��7�7�7
� � . However, the winning condition discussed

in the next section will require that � � � ��� ��� � � �
infinitely often, causing all super-steps

to be finite.

6.4.3 Initial & Winning Conditions

The initial condition, - , of our game structure is the set of states in which �
�
� ��� � �

� � � ��� �� � � for all � , all message variables are set to 0, and all location variables are

set to 0. The initial value of � ��� � ��� is not specified in - , so the choice is therefore

133

non-deterministic.

The winning condition � is the generalized Büchi LTL formula:

���
�

�

3�� �
� ��� �� � �,E � � � � � � � ��� � �

which is equivalent to:

� � �
�
����� � � �

where:

�
�
����� � � �

������ �����
� ��� � � ����� � � �
� ��� � � ����� � � � E � �

3�� � � ��� �� � �

� ��� � � ����� � � � E � � � ��� ��� � �

The above winning condition ensures that a stable state (characterized by all main

charts being inactive) is visited infinitely often and that all super-steps are finite. It as-

sumes that no environment messages appear in a main chart—for this, a more expressive

winning condition beyond the scope of this paper is necessary.

The reason environment messages in the main chart are problematic is that the sys-

tem would have to rely on the environment to perform the correct behavior at precisely

the moment when an environment message is encountered in the main chart. While it

is possible to adopt an assumption stating that the environment will always cooperate in

these particular circumstances, we feel that this is unrealistically restrictive in light of

our underlying assumption that the environment is hostile.

134

6.5 Implementation & Results

We implemented the above result as an extension to the Play Engine [HM03]. The

implementation is broken down into two main pieces: the construction of the game

structure and the TLV-BASIC [PS96] synthesis algorithm, both previously described.

The appendix contains SMV code for the example in section 5.2.1, simplified from

its original form for readability. In particular, listing 1 shows the controllable predeces-

sor function as discussed in section 6.2.1 and listings 5 and 6 show the environment and

system transition relations (combined to form the game structure) for the specific input

described in section 5.2.1. The remaining listings are not new to this work [Pnu05] but

are included for the reader’s convenience.

Once the Play Engine generates the game structure, it spawns a TLV process and

the synthesis algorithm executes only once. If realizable, the resulting controller resides

in memory for the lifetime of the play-out session. There exists an IPC component for

interfacing the Play Engine and the externally spawned TLV session.

We have gathered performance data to give the reader a general sense of the run-

time performance based on our experimentation to date. Our main focus was the running

time of the synthesis algorithm, taking into account the size of the input game structure.

In the worst case, the number of game structure states is exponential in the number of

LSC locations, causing the resulting runtime performance to fall within an exponen-

tial upper bound. This is due to the non-determinism induced by the partial ordering

which is inherent in most LSC requirements. We may overcome the exponential space

blowup to some degree by utilizing the symbolic representation, however, exponential

135

LSC Linearizations # Elements
1 2 3
2 1 6

N3 6 5
PR3 1 4
D4 1 13

Table 6.1: Input LSC Requirements Data

Test # LSCs Realizability (s) Extraction (s)
1 1,2 2 2
2 1,2,N3 19 20
3 1,2,N3,PR3 29 *
4 1,2,N3,PR3,D4 106 *
5 1,2,D4 47 55
6 1,2,PR3,D4 72 *

Table 6.2: Synthesis Runtime Performance

time complexity is seemingly unavoidable within this paradigm.

The tests we conducted consist of various combinations of five (5) LSCs com-

prised of only two elements: messages and conditions. In order to give a sense of the

non-determinism present in each LSC and the approximate sizes, we show the number

of linearizations (legal possible orderings of events) and the total number of elements

for each LSC in table 6.5. LSC 1 and 2 are those shown in the example of section 5.2.1.

The purpose of LSC N3 is to introduce non-determinism into the requirements. LSC

PR3 partially refines the behaviors of N3 by narrowing the number of linearizations of

N3 from 6 to 3. LSC D4 is a deterministic LSC with substantially more elements than

the rest. Conservative performance metrics were gathered using an Intel-based 900MHz

136

PC running Windows 2000 and are shown in table 6.5. All time units are expressed in

seconds. Note that the introduction of PR3 into the requirements causes the require-

ments to become unrealizable. For this reason, benchmarks for controller extraction are

not provided since a controller does not exist in these cases.

137

Chapter 7

Contributions and Future Work

7.1 Summary

In this work, we have presented a method for synthesizing correct reactive programs

directly from formal requirements. This work was motivated by the need to reduce im-

plementation errors which typically arise during manually-driven development efforts.

Toward achieving this goal, we selected the inter-object language of Live Sequence

Charts to serve as a formal language with which to develop requirements.

In this work, we define a subset of LSCs which we believe is sufficient for show-

ing the usefulness of a synthesis method. We discuss methods for translating LSC

requirements to formal models—specifically, deterministic Büchi automata and timed

automata. We then use these models as a basis for introducing an automata-theoretic

approach to controller synthesis. We later describe an alternate solution using symbolic

methods, which we implemented and incorporated into an LSC development tool called

138

the Play-Engine.

Previously, Play-Engine users may have occasionally encountered violations of

the requirements while observing behavioral reactions to user-inputs. It is difficult to

conclude whether the violations constituted an error in the requirements or whether

the Play-Engine simply made a bad choice. Our work provides users with a means

of guaranteeing the correctness of the response to input requirements, insofar as non-

violation is guaranteed provided the requirements are realizable. We view our software

implementation as a successful proof-of-concept study, upon which we wish to expand

in the future.

7.2 Contributions

Our LSC to automaton translation process described in chapter 4 focuses on a subset of

the LSC language which considers messages, assignments, conditions, LSC variables,

and object properties. Our motivation for producing the untimed automata construction

was to use it as a stepping-stone toward a later dense-time model. The untimed construc-

tion was carried out independently of any other work, primarily out of need because the

literature lacked a full detailed construction.

Other untimed implementations existed at the time, most of which focusing on

small subsets of the language. Among the notable work includes the theoretical founda-

tion in [HK00a] which serves as a basis for translations to state-based systems. Another

theoretic approach to the LSCs to automata translation problem is presented in [BH02],

but uses a different interpretation for dealing with multiple LSC requirements. Both of

139

these works predated the LSC definitions presented in the Play-Engine [HM03], which

we regard as the “official” LSC language interpretation for the purposes of synthesis.

Turning to the translation of timed LSCs, our work is based on [PGZ05]. The

only other closely related work we know of which presents a constructive solution is

presented in [KW01]. An interesting aspect of this construction focused on the method

for which timing constraints were expressed, and the construction details pertaining

to this. To this extent, the above work differs substantially from ours, since it uses

a different means of expressing time constraints. Specifically, it borrows the idea of

timing annotations from Symbolic Timing Diagrams, whereas we use the more freestyle

approach of using assignments and conditions used by the Play-Engine. Additionally,

our construction shows how to deal with multiple-LSC requirements, a critical aspect of

the LSC language overlooked by most other work.

We also present the notion of warm temperature in LSCs. Here, we acknowledge

two very reasonable semantic interpretations which previously existed for cold temper-

ature and bring these distinctions out into the open. We propose to make use of the cold

vs. warm temperature distinction by permitting users to utilize either interpretation in

main charts as they see fit. We argue, by way of an example, that such a language ad-

dition could serve to make the LSC language more succinct by requiring possibly fewer

LSCs for the same requirements. It should be noted that other independent work was

carried out in [HM07], which considers a similar concept within the realm of UML 2.0.

Turning to the synthesis problem, this work presents two solutions to the same

problem. The first contribution is an automata-based solution to controller synthesis,

whose framework is well-suited for LSC requirements. This work provides an abstrac-

140

tion which focuses on major concepts such as stable states and super-steps without con-

sidering specific construction details, which may vary depending on the desired game

rules. The details are encoded by means of states and transitions, depending on the LSC

subset or specific semantic interpretation desired.

The second synthesis result was motivated by our goal to create a practical work-

ing implementation. In joint work with Hillel Kugler and Amir Pnueli, we created an ex-

tension to the Play-Engine’s smart play-out feature. Whereas the synthesis result above

focused more on the theory of controller synthesis for LSCs under Büchi winning con-

ditions, this result utilizes a known implementation by Pnueli [Pnu05] and focuses more

on the construction of the game structure—that is, precisely the detail not considered by

the first solution. Additionally, we presented a modification to Pnueli’s algorithm which

follows a synchronous approach to environment/system interaction, in contrast to the

existing alternating approach which is more commonly used.

7.3 Future Directions

Our work motivates the need for using formal requirements and demonstrates a method

for automatically obtaining correct software from those requirements. However, in order

to put these methods to use in practice, much more work is necessary. During the course

of our research, we have identified several opportunity areas which we believe would

best serve as a starting point for future work.

141

7.3.1 Time Consumption

This work and most literature on the subject make use of the synchrony hypothesis.

Adoption of this hypothesis permits us to abstract away unnecessary details and work in

an idealized world where nothing outside the realm of our system goes wrong. This is

achieved by asserting, quite simply, that that all events occur instantaneously.

Even in a world where everything goes right, there is still no escaping the time-

driven nature of software development. Function calls, for example, always consume

time. It is natural to interpret LSCs messages as calls to object-oriented methods,

where the sender represents the invoking object and the receiver represents the object

whose interface is being invoked. As it currently stands, however, the act of receiving a

message—which one may reasonably interpret to mean executing a method—occurs in-

stantaneously. While assignments and conditions could be used for modeling the usual

time consumption of functions, this method can be cumbersome. Object-oriented LSC

modeling is discussed in greater detail in [HK00b].

In [EWY98], an extension to timed automata is proposed, whereby events are

associated with real-time tasks which execute in parallel alongside the existing timed

automaton in an event queue according to a predetermined scheduling policy. While the

events themselves still execute in zero-time, the tasks which are spawned by these events

require the passage of time before they can be removed from the queue. The question of

whether it is possible for all tasks to terminate by predetermined deadlines is answered

in the above work.

We believe that expanding our existing results to incorporate the so-called timed

automata with tasks could be a rewarding line of work, particularly for the practitioner

142

who wants to model real-time systems with time deadlines. This would involve per-

forming a translation from LSC requirements to the timed automata with tasks model

and a study of how synthesis could be performed using this model.

7.3.2 System Choices

Both synthesis results presented in this work involve the use of history information to

meet a winning condition, as well as removing transitions which result in bad things

happening at some point in the future. However, after the controller has been extracted,

the system may still be left with a non-deterministic choice of transitions, all of which

satisfy the winning condition. The question becomes: which transition, when faced with

multiple choices, should the system take? Although all available choices will satisfy

the requirements, some transitions may be more suitable than others, depending on the

criteria one wishes to optimize.

Attributes of super-steps, such as minimal number of events, minimal battery con-

sumption, or minimal time elapsed, could possibly be used. The issue isn’t a lack of

method for solving these problems. More to the point, it isn’t immediately clear where

some of the information would originate. For example, how does one estimate battery

consumption on a transition by transition basis, and can it even be estimated faithfully?

7.3.3 Unrealizability

We previously discussed two methods for deciding the realizability of LSC require-

ments. In the case of unrealizable requirements, there are no methods currently in place

143

for demonstrating the cause of unrealizability to the user. Currently, identification of the

root cause requires patience along with an expert intuition about synthesis.

One step in the right direction might be to formulate a new realizable problem and

reverse the roles of the environment and system: instead of asking whether the system

can win the game, we instead ask if the environment can win. If the answer is in the

affirmative, we propose using the Play-Engine to show traces which lead to winning

behavior for the environment—or equivalently, losing behavior for the system.

This is only a first step, however. Counter-example traces can sometimes be long

and incomprehensible, making it difficult to pinpoint the root cause of the problem. This

could be especially problematic for synthesis, since the user would need to worry about

how the program changes state from step to step as in verification, but also who causes

the state change. We therefore consider it promising to pursue the avenue of conveying

counter-example information to users in a more intuitive way.

7.3.4 Synthesis with Time

There has been previous work on the topic of controller synthesis from timed automata

[AMPS98], and also synthesis of dense time systems using symbolic methods [AMP95].

A natural extension of our work would be to implement a similar result to what we

already have, except using the dense-time case.

There exist a few issues which prevent us from plugging in our timed automaton

construction as input to these algorithms. As previously mentioned, smart play-out and

our untimed synthesis result utilize the SMV language, which is incapable of express-

144

ing dense time directly. Extra work would therefore be necessary to faithfully simulate a

dense-time computation in a discrete time setting. This topic is discussed in greater de-

tail in [GP00]. Secondly, we’ve already pointed out that time in general requires a more

expressive winning condition than Büchi, since the environment would play a significant

role in determining the passage of time. Given too much control, the environment could

trivially violate timed LSC requirements by manipulating time passage to violate a main

chart, for example. Just as we needed to impose reasonable environment restrictions on

our untimed construction, we suspect that similar restrictions would be necessary for the

dense time case.

145

Appendix

Listing 1: Controllable Predecessor� �
Func c p r e d (a s s e r t) ;

Le t a s s e r t 1 := ((rho1 ��� (rho2 & prime (a s s e r t))) fo r some prv2) f o r a l l p rv1 ;
Le t a s s e r t 2 := ((rho & prime (a s s e r t) fo r some prv1) fo r some prv2) ;
Re tu rn a s s e r t 1 & a s s e r t 2 ;

End � � Func c p r e d (a s s e r t) ;C D

Listing 2: Winning States� �
Func win (q) ;

Loca l y ;
Loca l zz := 1 ;
Loca l cy ;
Le t i z := 1 ;
F ix (zz)

Le t y := 0 ;
Le t cy := 1 ;
F ix (y)

Le t y := c p r e d (y) � q & c p r e d (zz) ;
Le t y [cy] := y ;
Le t yy [i z] [cy] := y ;
Le t cy := cy + 1 ;

End � � Fix (y)
Le t zz := y ;

Le t z [i z] := zz ;
Le t i z := i z + 1 ;
Le t maxcy := cy � 2 ;

End � � Fix (zz)
Re tu rn zz ;

End � � Func win (q) ;C D

Listing 3: Realizability Checking� �
To c h e c k r e a l i z a b i l i t y ;

p r e p a r e s y n t ;
Le t winn ing := win (r e c u r r e n c e) ;
Le t c o u n t e r := The ta & ! winn ing ;
I f (c o u n t e r)

P r i n t ” Requ i r emen t s a r e u n r e a l i z a b l e . � n ” ;
P r i n t c o u n t e r ;
Re tu rn ;

End � � I f (c o u n t e r)
P r i n t ” Requ i r emen t s a r e r e a l i z a b l e � n ” ;

End � � To c h e c k r e a l i z a b i l i t y ;C D

146

Listing 4: Controller Extraction� �
To s y n t h e s i z e ;

Le t t r a n s 1 2 := rho1 & rho2 ;
Le t z := win (r e c u r r e n c e) ;
Le t t r a n s := z & t r a n s 1 2 & r e c u r r e n c e & n e x t (z) ;
Le t low := y [1] ;
For (r i n 2 . . . maxcy)

Le t t r a n s := t r a n s � y [r] & ! low & t r a n s 1 2 & n e x t (low) ;
Le t low := low � y [r] ;

End � � For (r i n 2 . . . maxcy)
Le t c t s := n e w t s () ; � � Def ine new FDS
C a l l s e t V (va r s , c t s) ; � � S e t v a r i a b l e s
C a l l s e t I (The t a & z , c t s) ; � � S e t i n i t i a l c o n d i t i o n
C a l l a d d d i s j u n c t T (t r a n s , c t s) ; � � S e t t r a n s i t i o n r e l a t i o n

End � � To s y n t h e s i z e ;C D

Listing 5: Input (Environment) Module� �
MODULE I n p u t (f a l l , make , loc Sys1 LSC1 , loc Sys2 LSC1 ,

loc Sys1 LSC2 , loc Sys2 LSC2 , c u r r e n t p r o c e s s)

VAR

wake : b o o l e a n ; � � t h e ” wake ” message
s l e e p : b o o l e a n ; � � t h e ” s l e e p ” message
gbuch i : 0 . . 2 ; � � a u x i l i a r y v a r i a b l e
a c t i v e 1 : b o o l e a n ; � � 1 when LSC 1 main c h a r t i s a c t i v e
a c t i v e 2 : b o o l e a n ; � � 1 when LSC 2 main c h a r t i s a c t i v e
loc Env LSC1 : 0 . . 2 ;
loc Env LSC2 : 0 . . 4 ;
env req : 0 . . 0 ; � � on ly 1 e n v i r o n m e n t o b j e c t (0)

ASSIGN

i n i t (wake) := 0 ;
n e x t (wake) := c a s e

n e x t (c u r r e n t p r o c e s s) != 0 : 0 ;
n e x t (f a l l)=0 & n e x t (make)=0 & n e x t (s l e e p)=0 & a c t i v e 1 =0 : � 0 ,1 � ;
1 : 0 ;

e s a c ;

i n i t (s l e e p) := 0 ;
n e x t (s l e e p) := c a s e

n e x t (c u r r e n t p r o c e s s) != 0 : 0 ;
n e x t (wake)=0 & n e x t (f a l l)=0 & n e x t (make)=0 & a c t i v e 2 =0 : � 0 ,1 � ;
1 : 0 ;

e s a c ;

i n i t (gbuch i) := 0 ;
n e x t (gbuch i) := c a s e

gbuch i =0 : 1 ;
gbuch i =1 & a c t i v e 1 =0 & a c t i v e 2 =0 : 2 ;
gbuch i =2 & c u r r e n t p r o c e s s � 1 : 0 ;
1 : gbuch i ;

e s a c ;

i n i t (a c t i v e 1) := 0 ;
n e x t (a c t i v e 1) := c a s e

a c t i v e 1 =0 & n e x t (loc Env LSC1)=1 : 1 ;
a c t i v e 1 =1 & n e x t (loc Env LSC1)=1 & n e x t (loc Sys1 LSC1)=1 &

147

n e x t (loc Sys2 LSC1)=1 : 0 ;
1 : a c t i v e 1 ;

e s a c ;

i n i t (a c t i v e 2) := 0 ;
n e x t (a c t i v e 2) := c a s e

a c t i v e 2 =0 & n e x t (loc Env LSC2)=2 & n e x t (loc Sys1 LSC2)=2 &
n e x t (loc Sys2 LSC2)=3 : 1 ;

� � There i s no way t o t r a n s i t i o n back t o an i n a c t i v e s t a t e
1 : a c t i v e 2 ;

e s a c ;

i n i t (loc Env LSC1) := 0 ;
n e x t (loc Env LSC1) := c a s e

a c t i v e 1 =0 & loc Env LSC1 =1 : 0 ;
n e x t (c u r r e n t p r o c e s s) = 0 & loc Env LSC1 = 0 & n e x t (wake)=1 : 1 ;
1 : loc Env LSC1 ;

e s a c ;

i n i t (loc Env LSC2) := 0 ;
n e x t (loc Env LSC2) := c a s e

a c t i v e 2 =0 & loc Env LSC2 � 3 : 0 ;
n e x t (c u r r e n t p r o c e s s)=0 & loc Sys2 LSC2 =2 & loc Env LSC2 =0 : 1 ;
n e x t (c u r r e n t p r o c e s s)=0 & loc Env LSC2 =1 & n e x t (s l e e p)=1 : 2 ;
n e x t (c u r r e n t p r o c e s s)=2 & loc Env LSC2 =0 & n e x t (loc Sys2 LSC2)=3 : 1 ;
n e x t (c u r r e n t p r o c e s s)=0 & loc Env LSC2 =2 & loc Sys1 LSC2 =2 &

loc Sys2 LSC2 =3 : 4 ;
n e x t (c u r r e n t p r o c e s s)=1 & loc Env LSC2 =2 & n e x t (loc Sys1 LSC2)=4 : 4 ;
n e x t (c u r r e n t p r o c e s s)=2 & loc Env LSC2 =2 & n e x t (loc Sys2 LSC2)=5 : 4 ;
1 : loc Env LSC2 ;

e s a c ;

i n i t (env req) := 0 ;
n e x t (env req) := 0 ;C D

Listing 6: Output (System) Module� �
MODULE Outpu t (wake , s l e e p , gbuchi , a c t i v e 1 , a c t i v e 2 , loc Env LSC1 , loc Env LSC2 , envreq)

VAR
f a l l : b o o l e a n ; � � t h e ” f a l l ” message
make : b o o l e a n ; � � t h e ” make ” message
loc Sys1 LSC1 : 0 . . 1 ;
loc Sys2 LSC1 : 0 . . 1 ;
loc Sys1 LSC2 : 0 . . 4 ;
loc Sys2 LSC2 : 0 . . 5 ;
c u r r e n t p r o c e s s : 0 . . 2 ;

ASSIGN

i n i t (f a l l) := 0 ;
n e x t (f a l l) := c a s e

n e x t (c u r r e n t p r o c e s s) != 1 : 0 ;
a c t i v e 1 = 1 & loc Sys1 LSC1 = 0 & n e x t (loc Sys1 LSC1)= 1 & n e x t (wake)=0 &

n e x t (s l e e p)=0 & n e x t (make)=0 : 1 ;
1 : 0 ;

e s a c ;

i n i t (make) := 0 ;

148

n e x t (make) := c a s e
n e x t (c u r r e n t p r o c e s s) != 2 : 0 ;
a c t i v e 1 = 1 & loc Sys2 LSC1 = 0 & n e x t (loc Sys2 LSC1)=1 & n e x t (wake)= 0 &

n e x t (s l e e p)=0 & n e x t (f a l l)=0 : 1 ;
1 : 0 ;

e s a c ;

i n i t (loc Sys1 LSC1) := 0 ;
n e x t (loc Sys1 LSC1) := c a s e

a c t i v e 1 =0 & loc Sys1 LSC1 � 0 : 0 ;
n e x t (c u r r e n t p r o c e s s) = 1 & loc Sys1 LSC1 = 0 & n e x t (f a l l)=1 : 1 ;
1 : loc Sys1 LSC1 ;

e s a c ;

i n i t (loc Sys2 LSC1) := 0 ;
n e x t (loc Sys2 LSC1) := c a s e

a c t i v e 1 =0 & loc Sys2 LSC1 � 0 : 0 ;
n e x t (c u r r e n t p r o c e s s) = 2 & loc Sys2 LSC1 = 0 & n e x t (make)=1 : 1 ;
1 : loc Sys2 LSC1 ;

e s a c ;

i n i t (loc Sys1 LSC2) := 0 ;
n e x t (loc Sys1 LSC2) := c a s e

a c t i v e 2 =0 & loc Sys1 LSC2 � 3 : 0 ;
n e x t (c u r r e n t p r o c e s s)=1 & loc Sys1 LSC2 =0 & n e x t (f a l l) = 1 : 1 ;
n e x t (c u r r e n t p r o c e s s)=1 & loc Sys1 LSC2 =1 & loc Sys2 LSC2 = 0 : 2 ;
n e x t (c u r r e n t p r o c e s s)=2 & loc Sys1 LSC2 =1 & n e x t (loc Sys2 LSC2) = 1 : 2 ;
n e x t (c u r r e n t p r o c e s s)=0 & loc Sys1 LSC2 =2 & n e x t (loc Env LSC2)=4 : 4 ;
n e x t (c u r r e n t p r o c e s s)=1 & loc Sys1 LSC2 =2 & loc Env LSC2=2 &

loc Sys2 LSC2 =3 : 4 ;
n e x t (c u r r e n t p r o c e s s)=2 & loc Sys1 LSC2 =2 & n e x t (loc Sys2 LSC2)=5 : 4 ;
1 : loc Sys1 LSC2 ;

e s a c ;

i n i t (loc Sys2 LSC2) := 0 ;
n e x t (loc Sys2 LSC2) := c a s e

a c t i v e 2 =0 & loc Sys2 LSC2 � 4 : 0 ;
n e x t (c u r r e n t p r o c e s s)=0 & loc Sys2 LSC2 =2 & n e x t (loc Env LSC2)=1 : 3 ;
n e x t (c u r r e n t p r o c e s s)=1 & loc Sys2 LSC2 =0 & n e x t (loc Sys1 LSC2)=2 : 1 ;
n e x t (c u r r e n t p r o c e s s)=2 & loc Sys1 LSC2 =1 & loc Sys2 LSC2 =0 : 1 ;
n e x t (c u r r e n t p r o c e s s)=2 & loc Sys2 LSC2 =1 & n e x t (make)=1 : 2 ;
n e x t (c u r r e n t p r o c e s s)=2 & loc Sys2 LSC2 =2 & loc Env LSC2=0 : 3 ;
n e x t (c u r r e n t p r o c e s s)=0 & loc Sys2 LSC2 =3 & n e x t (loc Env LSC2)=4 : 5 ;
n e x t (c u r r e n t p r o c e s s)=1 & loc Sys2 LSC2 =3 & n e x t (loc Sys1 LSC2)=4 : 5 ;
n e x t (c u r r e n t p r o c e s s)=2 & loc Sys2 LSC2 =3 & loc Sys1 LSC2 =2 &

loc Env LSC2 =2 : 5 ;
1 : loc Sys2 LSC2 ;

e s a c ;

i n i t (c u r r e n t p r o c e s s) := � envreq , 1 , 2 � ; � � s e l e c t : env i ronmen t , Sys1 , Sys2
n e x t (c u r r e n t p r o c e s s) := � envreq , 1 , 2 � ;C D

149

Bibliography

[AD94] R. Alur and D.L. Dill. A theory of timed automata. Theor. Comp. Sci.,
126:183–235, 1994.

[ALW89] M. Abadi, L. Lamport, and P. Wolper. Realizable and unrealizable concur-
rent program specifications. In Proc. 16th Int. Colloq. Aut. Lang. Prog.,
volume 372 of Lect. Notes in Comp. Sci., pages 1–17. Springer-Verlag,
1989.

[AMP95] E. Asarin, O. Maler, and A. Pnueli. Symbolic controller synthesis for dis-
crete and timed systems. In P. Antsaklis, W. Kohn, A. Nerode, and S. Sas-
try, editors, Hybrid System II, volume 999 of Lect. Notes in Comp. Sci.,
pages 1–20. Springer-Verlag, 1995.

[AMPS98] E. Asarin, O. Maler, A. Pnueli, and J. Sifakis. Controller synthesis for
timed automata. In IFAC Symposium on System Structure and Control,
pages 469–474. Elsevier, 1998.

[AT04] Rajeev Alur and Salvatore La Torre. Deterministic generators and games
for LTL fragments. ACM Trans. Comput. Logic, 5(1):1–25, 2004.

[BDK � 02] J. Bohn, W. Damm, J. Klose, A. Moik, and H. Wittke et al. Modeling
and validating train system applications using statemate and live sequence
charts. In H. Ehrig, B. J. Kramer, and A. Ertas, editors, Proceedings of
the Conference on Integrated Design and Process Technology (IDPT2002),
2002.

[BG92] G. Berry and G. Gonthier. The esterel synchronous programming language:
Design, semantics, implementation. Sci. Comput. Program., 19:87–152,
1992.

[BG02] A. Bunker and G. Gopalakrishnan. Verifying a VCI Bus Interface Model
Using an LSC-based Specification. In H. Ehrig, B. J. Kramer, and A. Ertas,

150

editors, Proceedings of the Sixth Biennial World Conference on Integrated
Design and Process Technology, pages 1–12, 2002.

[BGP96] B. Bérard, P. Gastin, and A. Petit. On the power of non observable actions
in timed automata. In C. Puech and R. Reischuk, editors, Proceedings of
the 13th Annual Symposium on Theoretical Aspects of Computer Science
(STACS’96), number 1046 in Lecture Notes in Computer Science, pages
257–268. Springer-Verlag, 1996. Full version in Technical Report 95.08 of
ENS de Cachan, LIFAC.

[BH02] Y. Bontemps and P. Heymans. Turning high-level Live Sequence Charts
into automata. In “Scenarios and State-Machines: Models, Algorithms and
Tools” SCESM workshop of the 24th Int. Conf. on Software Engineering
ICSE, 2002.

[BHK03] Y. Bontemps, P. Heymans, and H. Kugler. Applying LSCs to an Air Traffic
Control Case Study. In Proc. 2nd Int. Workshop on Scenarios and State
Machines (SCESM’03), 2003.

[BHS05] Y. Bontemps, P. Heymans, and P. Y. Schobbens. From live sequence charts
to state machines and back: A guided tour. IEEE Trans. Software Eng.,
31(12):999–1014, 2005.

[BL69] J.R. Büchi and L.H. Landweber. Solving sequential conditions by finite-
state strategies. Trans. Amer. Math. Soc., 138:295–311, 1969.

[BMR83] G. Berry, S. Moisan, and J. Rigault. ESTEREL: Toward a synchronous
and semantically sound high level language for real time applications. In
Proc. IEEE Real-Time Systems Symposium, pages 30–37, Los Alamitos,
CA, 1983. IEEE CS Press.

[BRJ99] G. Booch, J. Rumbaugh, and I. Jacobson. The Unified Modeling Language
User Guide. Addison-Wesley, Reading, Massachusetts, 1999.

[Bry86] R.E. Bryant. Graph-based algorithms for Boolean function manipulation.
IEEE Transactions on Computers, C-35(12):1035–1044, 1986.

[BS03a] Y. Bontemps and P.Y. Schobbens. Synthesizing open reactive systems from
scenario-based specifications. In Proc. of the 3rd Int. Conf. on Applica-
tion of Concurrency to System Design (ACSD’03). IEEE Computer Science
Press, 2003.

[BS03b] A. Bunker and K. Slind. Property Generation for Live Sequence Charts.
Technical report, University of Utah, 2003.

151

[Büc62] J.R. Büchi. On a decision method in resricted second-order arithmetics. In
Proc. Int’r Congr. Logic, Method. Phil. of Sci., 1960, pages 1–12. Stanford
University Press, 1962.

[dAHM01] L. de Alfaro, T.A. Henzinger, and R. Majumdar. From verification to con-
trol: dynamic programs for omega-regular objectives. In Proc. 16th IEEE
Symp. Logic in Comp. Sci., pages 279–290. IEEE Computer Society Press,
2001.

[DGP97] V. Diekert, P. Gastin, and A. Petit. Removing � -transitions in timed au-
tomata. In Proceedings of the 14th Annual Symposium on Theoretical As-
pects of Computer Science (STACS’97). Springer-Verlag, 1997.

[DH01] W. Damm and D. Harel. LSCs: Breathing life into message sequence
charts. Formal Methods in System Design, 19(1):45–80, 2001. Prelimi-
nary version appeared in Proc. 3rd IFIP Int. Conf. on Formal Methods for
Open Object-Based Distributed Systems (FMOODS’99).

[Dil89] D.L. Dill. Trace Theory for Automatic Hierarchical Verification of Speed-
Independent Circuits. MIT Press, 1989.

[EWY98] C. Ericsson, A. Wall, and W. Yi. Timed automata as task models for event-
driven systems. In Nordic Workshop on Programming Theory, 1998.

[GBGM91] P. Le Guernic, M. Le Borgne, T. Gauthier, and C. Le Maire. Programming
real time applications with signal. In Proceedings of the IEEE, Special
Issue, September 1991.

[Gil03] A. Gilboa. Finding All Super-Steps in LSC Specifications. Master’s thesis,
Weizmann Institute of Science, Israel, 2003.

[GP00] O. Grinchtein and A. Pnueli. Dense-time analysis with fractional adjust-
ment steps. Technical report, The John von Neumann Minerva Center, the
Weizmann Institute, 2000.

[Har87] David Harel. Statecharts: A visual formalism for complex systems. Science
of Computer Programming, 8(3):231–274, June 1987.

[Har00] D. Harel. From play-in scenarios to code: An achievable dream. In Tom
Maibaum, editor, Proc. Fundamental Approaches to Software Engineer-
ing (FASE’00), volume 1783 of Lect. Notes in Comp. Sci., pages 22–34.
Springer-Verlag, 2000.

152

[HCRP91] N. Halbwachs, P. Caspi, P. Raymond, and D. Pilaud. The synchronous
data-flow programming language LUSTRE. Proceedings of the IEEE,
79(9):1305–1320, September 1991.

[HG96] D. Harel and E. Gery. Executable object modeling with statecharts. In
Proc. 18th Int. Conf. on Software Engineering, Berlin, March 1996.

[HK00a] D. Harel and H. Kugler. Synthesizing state-based object systems from LSC
specifications. In Proc. 5th Inf. Conf. on Implementation and Application
of Automata (CIAA’00), volume 2088 of Lect. Notes in Comp. Sci., pages
1–33. Springer-Verlag, July 2000.

[HK00b] D. Harel and O. Kupferman. On the behavioral inheritance of of state-based
objects. In Proc. 34th Int. Conf. on Components and Object Technology,
Santa Barbara, August 2000. IEEE Computer Society.

[HK02] D. Harel and H. Kugler. Synthesizing state-based object systems from
LSC specifications. Int. J. of Foundations of Computer Science (IJFCS).,
13(1):5–51, Febuary 2002. (Also,Proc. Fifth Int. Conf. on Implementation
and Application of Automata (CIAA 2000), July 2000, Lecture Notes in
Computer Science, Springer-Verlag, 2000.).

[HK04] D. Harel and H. Kugler. The RHAPSODY Semantics of Statecharts (or, On
the Executable Core of the UML). In Integration of Software Specification
Techniques for Application in Engineering, volume 3147 of Lect. Notes in
Comp. Sci., pages 325–354. Springer-Verlag, 2004.

[HKMP02] D. Harel, H. Kugler, R. Marelly, and A. Pnueli. Smart play-out of behav-
ioral requirements. In Proc. � � � Intl. Conference on Formal Methods in
Computer-Aided Design (FMCAD’02), Portland, Oregon, volume 2517 of
Lect. Notes in Comp. Sci., pages 378–398, 2002. Also available as Tech.
Report MCS02-08, The Weizmann Institute of Science.

[HKP05] D. Harel, H. Kugler, and A. Pnueli. Synthesis Revisited: Generating State-
chart Models from Scenarios-Based Requirements. In Formal Methods in
Software and System Modeling, volume 3393 of Lect. Notes in Comp. Sci.,
pages 309–324. Springer-Verlag, 2005.

[HLN � 90] D. Harel, H. Lachover, A. Naamad, A. Pnueli, M. Politi, R. Sherman,
A. Shtull-Trauring, and M. Trakhtenbrot. Statemate: A working envi-
ronment for the development of complex reactive systems. IEEE Trans.
Software Engin., 16:403–414, 1990.

153

[HM01] D. Harel and R. Marelly. Specifying and executing behavioral require-
ments: The play-in/play-out approach. Tech. Report MCS01-15, The Weiz-
mann Institute of Science, 2001. Submitted.

[HM02] D. Harel and R. Marelly. Playing with time: On the specification and exe-
cution of time-enriched LSCs. In Proc. 10th IEEE/ACM International Sym-
posium on Modeling, Analysis and Simulation of Computer and Telecom-
munication Systems (MASCOTS’02), Fort Worth, Texas, 2002.

[HM03] D. Harel and R. Marelly. Come, Let’s Play: Scenario-Based Programming
Using LSCs and the Play-Engine. Springer-Verlag, 2003.

[HM07] D. Harel and S. Maoz. Assert and Negate Revisited: Modal Semantics
for UML Sequence Diagrams. Software and System Modeling (SoSyM),
2007. To Appear. Early version in 5th Int. Workshop on Scenarios and
State Machines: Models, Algorithms and Tools (SCESM’06).

[HMKT00] J.G. Henriksen, M. Mukund, K. Narayan Kumar, and P.S. Thiagarajan. On
Message Sequence Graphs and finitely generated regular MSC languages.
In Proceedings of the 27th International Colloquium on Automata Lan-
guages and Programming (ICALP’2000), number 1853 in Lecture Notes
in Computer Science, Geneva, Switzerland, 2000. Springer.

[HMNT99] J. Henriksen, M. Mukund, K. Narayan, and P. Thiagarajan. Towards a
theory of regular msc languages, 1999.

[HP85] D. Harel and A. Pnueli. On the development of reactive systems. In K. R.
Apt, editor, Logics and Models of Concurrent Systems, volume F-13 of
NATO ASI Series, pages 477–498, New York, 1985. Springer-Verlag.

[JB06] B. Jobstmann and R. Bloem. Optimizations for LTL synthesis. In 6th
Conferences on Formal Methods in Computer Aided Design (FMCAD ’06),
San Jose, California, USA, Nov 2006.

[Jes04] Anick Jesdanun. GE Energy acknowledges blackout bug. Associated Press,
as published at http://www.securityfocus.com, February 2004.

[KGSB99] I. Krüger, R. Grosu, P. Scholz, and M. Broy. From MSCs to Statecharts.
In Proc. Int. Workshop on Distributed and Parallel Embedded Systems
(DIPES’98), pages 61–71. Kluwer Academic Publishers, 1999.

154

[KHK � 03] N. Kam, D. Harel, H. Kugler, R. Marelly, A. Pnueli, E.J.A. Hubbard, and
M.J. Stern. Formal Modeling of C. elegans Development: A Scenario-
Based Approach. In Corrado Priami, editor, Proc. Int. Workshop on Com-
putational Methods in Systems Biology (CMSB 2003), volume 2602 of
Lect. Notes in Comp. Sci., pages 4–20. Springer-Verlag, 2003. Extended
version appeared in Modeling in Molecular Biology, G.Ciobanu (Ed.), Nat-
ural Computing Series, Springer, 2004 .

[KHP � 05] H. Kugler, D. Harel, A. Pnueli, Y. Lu, and Y. Bontemps. Temporal Logic
for Scenario-Based Specifications. In N. Halbwachs and L.D. Zuck, edi-
tor, Proc. � � � � Intl. Conference on Tools and Algorithms for the Construc-
tion and Analysis of Systems (TACAS’05),, volume 3440 of Lect. Notes in
Comp. Sci., pages 445–460. Springer-Verlag, 2005.

[KM94] K. Koskimies and E. Makinen. Automatic synthesis of state machines
from trace diagrams. Software — Practice and Experience, 24(7):643–658,
1994.

[KMST96] K. Koskimies, T. Mannisto, T. Systa, and J. Tuomi. SCED: A Tool for
Dynamic Modeling of Object Systems. Tech. Report A-1996-4, University
of Tampere, July 1996.

[KPP07] Hillel Kugler, Cory Plock, and Amir Pnueli. Synthesizing reactive systems
from LSC requirements using the Play-Engine. In OOPSLA Companion,
pages 801–802, 2007.

[KW01] J. Klose and H. Wittke. An automata based interpretation of live sequence
charts. In Proc.

� � � Intl. Conference on Tools and Algorithms for the Con-
struction and Analysis of Systems (TACAS’01), volume 2031 of Lect. Notes
in Comp. Sci., Springer-Verlag, 2001.

[LDD06] H. Liang, J. Dingel, and Z. Diskin. A comparative survey of scenario-based
to state-based model synthesis approaches. In Proceedings of the Interna-
tional Workshop on Scenarios and State Machines: Models, Algorithms,
and Tools (SCESM’06), pages 5–12, 2006.

[LL93] Peter B. Ladkin and Stefan Leue. What do message sequence charts mean?
In FORTE, pages 301–316, 1993.

[LMR98] S. Leue, L. Mehrmann, and M. Rezai. Synthesizing ROOM models from
message sequence chart specifications. Tech. Report 98-06, University of
Waterloo, April 1998.

155

[LPY95] Kim G. Larsen, Paul Pettersson, and Wang Yi. Model-checking for real-
time systems. In Proc. of Fundamentals of Computation Theory, number
965 in Lecture Notes in Computer Science, pages 62–88, August 1995.

[Mar90] F. Maraninchi. Argos: a graphical synchronous language for the descrip-
tion of reactive systems. Technical report, C29, LGI-IMAG Grenoble,
1990. Submitted to Science of Computer Programming.

[McM92] K. L. McMillan. The SMV System Draft. Carnegie-Mellon Univerisity,
1992.

[McM98] K.L McMillan. Getting started with smv. Technical report, Cadence Berke-
ley Labs, 1998.

[MSC99] ITU-TS Recommendation Z.120 (11/99): MSC 2000. ITU-TS, Geneva,
1999.

[NAS99] NASA. Mars Climate Orbiter Mishap Investigation Board Phase I Re-
port. ftp://ftp.hq.nasa.gov/pub/pao/reports/1999/MCO report.pdf, Novem-
ber 1999.

[PGZ05] C. Plock, B. Goldberg, and L. Zuck. From requirements to specifications.
In Proc. � � � � Annual IEEE Intl. Conference and Workshop on the Engi-
neering of Computer-Based Systems. IEEE Computer Society Press, 2005.

[Pnu05] A. Pnueli. Extracting controllers for timed automata. Technical report,
New York University, 2005.

[PPS06] N. Piterman, A. Pnueli, and Y. Sa’ar. Synthesis of reactive(1) designs.
In Proceedings of the 7th International Conference on Verification, Model
Checking, and Abstract Interpretation (VMCAI’06), volume 3855 of Lect.
Notes in Comp. Sci., pages 364–380. Springer-Verlag, 2006.

[PR88] A. Pnueli and R. Rosner. A framework for the synthesis of reactive mod-
ules. In F.H. Vogt, editor, Proc. Intl. Conf. on Concurrency: Concurrency
88, volume 335 of Lect. Notes in Comp. Sci., pages 4–17. Springer-Verlag,
1988.

[PR89a] A. Pnueli and R. Rosner. On the synthesis of a reactive module. In Proc.
16th ACM Symp. Princ. of Prog. Lang., pages 179–190, 1989.

[PR89b] A. Pnueli and R. Rosner. On the synthesis of an asynchronous reactive
module. In Proc. 16th Int. Colloq. Aut. Lang. Prog., volume 372 of Lect.
Notes in Comp. Sci., pages 652–671. Springer-Verlag, 1989.

156

[PS96] A. Pnueli and E. Shahar. The tlv system and its applications. Technical
report, The Weizmann Institute, 1996.

[Rab72] M.O. Rabin. Automata on Infinite Objects and Church’s Problem, vol-
ume 13 of Regional Conference Series in Mathematics. Amer. Math. Soc.,
1972.

[Ren95] M.A. Reniers. Syntax requirements of Message Sequence Charts. In In R.
Braek and A. Sarma, editors, Proc. of hte 7th SDL Forum, pages 63–74.
Elsevier Science Publishers B.V., October 1995.

[SD05] J. Sun and J. S. Dong. Synthesis of distributed processes from scenario-
based specifications. In International Symposium of Formal Methods Eu-
rope (FM’05), pages 415–431, 2005.

[Tar55] A. Tarski. A lattice theoretical fixpoint theorem and its applications. Pacific
J. of Mathematics, 5, 1955.

[UKM04] S. Uchitel, J. Kramer, and J. Magee. Incremental elaboration of scenario-
based specifications and behavior models using implied scenarios. ACM
Trans. Software Engin. Methods, 13(1):37–85, 2004.

[Var95] M.Y. Vardi. An automata-theoretic approach to fair realizability and syn-
thesis. In P. Wolper, editor, P. Wolper, editor, Proc.

� � � Intl. Conference
on Computer Aided Verification (CAV’95), volume 939 of Lect. Notes in
Comp. Sci., Springer-Verlag, pages 267–278, 1995.

[WS00] J. Whittle and J. Schumann. Generating statechart designs from scenarios.
In 22nd International Conference on Software Engineering (ICSE 2000),
pages 314–323. ACM Press, 2000.

[WSK03] J. Whittle, J. Saboo, and R. Kwan. From scenarios to code: an air traffic
control case study. In 25th International Conference on Software Engineer-
ing (ICSE 2003), pages 490–495. IEEE Computer Society, 2003.

[Z1293] Z.120 ITU-TS Recommendation Z.120: Message Sequence Chart (MSC).
ITU-TS, Geneva, 1993.

[Z1296] Z.120 ITU-TS Recommendation Z.120: Message Sequence Chart (MSC).
ITU-TS, Geneva, 1996.

157

	Dedication
	Acknowledgments
	Abstract
	List of Figures
	List of Tables
	Introduction
	1 Requirements Languages
	1.1 Synchronous Languages
	1.2 Visual Modeling
	1.2.1 Message Sequence Charts
	1.2.2 Multiple MSCs
	1.2.3 Shortfalls

	1.3 Live Sequence Charts
	1.3.1 Example
	1.3.2 Justification for Use

	2 LSC Requirements
	2.1 Object Systems
	2.1.1 Definitions
	2.1.2 Relationship to LSCs

	2.2 Live Sequence Charts
	2.3 Liveness
	2.3.1 Hot and Cold Temperature
	2.3.2 More on Cold Temperatures
	2.3.3 Warm Temperatures
	2.3.4 Conditions

	2.4 Variables and Properties
	2.5 Events
	2.6 Temporal Event Ordering
	2.7 Visible Events
	2.8 The LSC Language
	2.8.1 Cuts
	2.8.2 Enablement
	2.8.3 Assignments and Conditions
	2.8.4 Successor Cuts
	2.8.5 Runs & Computations
	2.8.6 Hidden Events
	2.8.7 Chart Satisfaction and Violation

	2.9 Example
	2.10 Multiple LSC Requirements
	2.11 Self-Spawning LSCs

	3 Timed LSC Requirements
	3.1 Introduction to Time
	3.2 Related Work
	3.3 Single Discrete-Time LSCs
	3.3.1 Definition
	3.3.2 Timed Cuts
	3.3.3 Discrete-Time Assertions
	3.3.4 Successor Cuts
	3.3.5 Runs and Computations

	3.4 Single Dense-Time LSCs
	3.4.1 Successor Cuts
	3.4.2 Runs and Computations

	3.5 Multiple Dense-Time LSCs
	3.5.1 Runs and Computations

	3.6 Timed LSC Example

	4 From Requirements to Specifications
	4.1 Related Work
	4.2 Single Discrete-Time LSC Specifications
	4.2.1 State Space
	4.2.2 Büchi Automata
	4.2.3 Translation
	4.2.4 Example

	4.3 Dense-Time LSC Specifications
	4.3.1 Timed Automata
	4.3.2 Translation

	4.4 Multiple LSC Specifications
	4.4.1 Translation

	4.5 Non-Deterministic Hidden Events

	5 Automata-Based Synthesis
	5.1 Related Work
	5.2 Smart Play-Out
	5.2.1 An Example

	5.3 Overview
	5.4 Game Structures
	5.5 Game Rules
	5.6 The Synthesis Problem
	5.6.1 Definitions
	5.6.2 Main Result
	5.6.3 Algorithm

	5.7 Example
	5.8 Finding the Winning Strategy

	6 Symbolic LSC Synthesis
	6.1 Symbolic Game Structures
	6.1.1 Dependent vs. Independent Transitions
	6.1.2 Deadlock

	6.2 Definitions
	6.2.1 Controllable Predecessors
	6.2.2 Realizability & Winning Strategy

	6.3 Smart Play-Out
	6.4 Main Result
	6.4.1 Variables
	6.4.2 Transitions
	6.4.3 Initial & Winning Conditions

	6.5 Implementation & Results

	7 Contributions and Future Work
	7.1 Summary
	7.2 Contributions
	7.3 Future Directions
	7.3.1 Time Consumption
	7.3.2 System Choices
	7.3.3 Unrealizability
	7.3.4 Synthesis with Time

	Appendix
	Bibliography

