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Abstract. Iterative methods are considered for saddle point problems with a penalty term.
A positive definite preconditioner is constructed and it is proved that the condition number of the
preconditioned system can be made independent of the discretization and the penalty parameters.
Examples include the pure displacement problem in linear elasticity, the Timoshenko beam, and the
Mindlin-Reissner plate.
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1. Introduction. In this article, we extend the preconditioning strategy for sad-
dle point problems with a penalty term, discussed in Klawonn [15], to a more general
class of problems, including the Timoshenko beam and the Mindlin-Reissner plate.

We consider problems of the form

a(u,v) + blv,p) = (f,v)o YoeV,
b(u,q) — t*c(p,q) = (9,90 Vge M. tel0,1],

where V, M and M, are Hilbert spaces with M. dense in M. In [15], we required that
a(+,-) be V-elliptic and ¢(+,-) be equivalent to the Ly-inner product. In this paper,
we prove that the condition number of the preconditioned system is bounded from
above, independently of the discretization and the penalty parameters, if only the
assumptions of the Babugka-Brezzi theory hold, i.e. i) a(-,-) is elliptic on Vj := {v €
V :ib(v,q) =0 VYq € M}, ii) b(-,) fulfills an inf-sup condition and iii) ¢(+,) is non-
negative. From these conditions, one can obtain an inf-sup and a sup-sup condition

for the bilinear form

A((u,p), (v,9)) := a(u,v) + b(v,p) + b(u, q) — t*¢(p, q)

defined on the space X := V x M,. The proof of the bound of the condition number is
based mainly on the interpretation of these inf-sup and sup-sup conditions as providing
an estimate for the condition number of A(-, -). Our preconditioning strategy can then
be interpreted as introducing a new metric on V x M., i.e. performing a change of
basis. Let us point out that a unifying multigrid approach for saddle point problems

with a penalty term is developed in Brenner [8].
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The outline of the remainder of the paper is as follows. In Section 2, we describe
an abstract theory for saddle point problems with a penalty term using the bilinear
form A(+,-). As examples, we discuss the Timoshenko beam and the Mindlin-Reissner
plate. In Section 3, we analyze the preconditioner discussed in Klawonn [15], using
the results from the previous section and give our condition number estimate.

2. Saddle point problems with a penalty term. In this section, we first
describe an abstract framework for saddle point problems with a penalty term and

then give some examples arising in solid mechanics.

2.1. The abstract framework. Let (V.|| ||v) and (M, || - ||ar) be two Hilbert
spaces, let M. be a dense subspace of M, and let

(1) a(+,):VxV R, b ):VXM->R, c,): Mo x M, - R,

be three continuous bilinear forms. Additionally, we introduce Vj, a subspace of V,
given by Vo :={v eV :b(v,q) = 0Vq € M}. We assume that a(-,) is Vp-elliptic and
that ¢(-,-) is M.-positive semi-definite. We consider the following problem:

Find (u,p) € V x M., such that

a(u,v) + blv,p) = <fiv> YoeV
b(u,q) — te(p,q) = <g,q> Vge M. tel0,1].

(2)
We denote by X :=V x M, the product space and by

A(z,y) := a(u,v) + b(u, q) + b(v,p) — *e(p, q),
v=(wp)€X, y=(v,q) € X,

the bilinear form of problem (2) on X. With the additional definition
Fly) =< fiv>+<g,q>,

we obtain an equivalent formulation of problem (2)

(3) Alz,y) = F(y) VyeX.
We equip X with a new norm. We assume that we have an additional norm on M.,
i.e. ||| |||ar, and introduce the new norm on X by

[l == [Jullv + [[lgll[ar for @ = (u,p) € X.

REMARK 1. If the bilinear form c(-,-) is continuous on M x M, we define
|2/l|ar := ||pllar. Otherwise, |||p|||ar is defined by ||p||ar + t|p|c, where |pl|. := \/e(p,p)
s a semi-norm on M..

According to the well-known theory of Babuska; see [5], we have to verify a sup-
sup and an inf-sup condition to guarantee the well-posedness of the problem. From
the assumptions, we can conclude that A(-,-) is a continuous bilinear form on X, i.e.
Az, y)

W % S Tl = ™
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where 47 > 0 is independent of ¢ € [0, 1]. Additionally, A(-,-) has to fulfill an inf-sup

condition,

(5) inf sup Az, y)

T 2 Yo > 0
veX zex |[|=|[ [I]yll] 7

where 7 is independent of ¢ € [0, 1].
THEOREM 1. Let the following three assumptions be satisfied:

(i) The continuous bilinear form a(-,-) is Vy-elliptic, i.e.

Jag > 0, such that a(v,v) > aollv||}; Vo € Vo,

(ii) The continuous bilinear form b(-,-) fulfills an inf-sup condition, i.e.

b
36y > 0, such that inf sup (v.q)

—— > [J
1€Me ey ||v]lv]lgllm ’

(iii) The continuous bilinear form c(-,-) is M.-positive semi-definite, i.e.

c(q,q) >0 Vg€ M..

Then, the inf-sup condition (5) holds if in addition one of the following conditions is
satisfied:

1) The bilinear form c(-,") is continuous on M x M.

2) The bilinear form a(-,-) is V —elliptic.

Proof: Let us first assume that condition 1) holds. Then, we define the norm
|| - 1llar by [||pll|ar := ||pl|ar; see Remark 1. The proof that the inf-sup condition (5)
holds, can be found in Braess and Blémer [7].

Now, let us assume that 2) is fulfilled. In this case, we define |||p|||ar := ||p||a +
t|ple, see Remark 1. For a special formulation of the Mindlin-Reissner plate a proof
for (5) can be found in Huang [14], Lemma 3.1. The arguments given in that proof
immediately carry over to the abstract setting used in this section.

O

All these results are also valid for suitable finite element spaces; see 2.2. We
then require, additionally, that the constants in Theorem 1 are independent of h.
The continuity assumptions turn into uniform boundedness with respect to h; see e.g.
Braess [6].

2.2. Examples. We now discuss some problems from solid mechanics that can
be treated within this abstract framework. We denote the finite element spaces ap-
proximating V and M (resp. M) with V* and M" (resp. M!). Since we have already
treated the pure displacement problem for nearly incompressible materials in Klawonn
[15], we refer to that article for that case.

The notations that are used for the operators and finite element spaces, are col-

lected in Section 4.



2.2.1. The Timoshenko beam problem. Let Q@ := I C R be a finite interval
and f € Ly(I). The mixed Ansatz for the Timoshenko beam is given by

(6) 0,00+ @ =070 = (Fiv)e Y(v,0) eV,
(7) ('wl - 0777)0 - t2(7777)0 = 0 V77 € va

with V := (H}(1))” and M := Ly(I). Equations (6) and (7) represent a saddle point
problem with a penalty term, in the sense of Theorem 1, with

! !

a((w70)7 (Ua¢)) = (0 7¢ )07
b(('vv ¢)777) = (Ul -, 77)0
6(7777) = (7777)0-

We obtain the finite element formulation by replacing V x M := (HJ(I))* x Ly(I)
2

with V* x M .= (Mg’o(ﬁ)) x M*=Y(T), k > 2; see Arnold [1], Braess [6], p.278,

and Braess and Blomer [7]. The proof that the assumptions of Theorem 1 hold, can

also be found in these references.

2.2.2. The Mindlin-Reissner plate problem. Let @ C R? be a polygonal
domain and f € Ly(Q?). The mixed Ansatz for the Mindlin-Reissner plate that we
consider is part of the Brezzi-Fortin formulation of this problem; see Brezzi and Fortin
[10]. The problem considered is:

Find (¢, ¢) € (H&(Q))2 x H'(Q)/R, such that

() a(0,9)+ (rot(¥),plo = (f)o Vo € (HYQ))',
(9) (rot(0), q)o — *(curl(p), curl(g))o = 0 Vg€ H'(Q)/R,
with a(6, = [ {Q,ue ce(Y) + 2‘/\2“ div() div(zﬁ)}dm. The constants g and A

denote the Lame parameters and ? represents the thickness of the plate.
By setting 21 := (—x3,2;) for € R%, we have

rot(v) = div(yr).

By using the definition of curl(p), we obtain an equivalent Stokes problem with a

penalty term from (8),(9)

(10)  a(eh e+ @i = (v vt e (@),
(11) (div(8%),q)o — 2(p, )1 = O Vg € H'(Q)/R.

The finite element formulation is obtained by replacing V x M := (H(%(Q))2 X
H'(Q)/R with VF s M" := (N o(Th))* x M§(Th)/R, where Noo(T) := M o(Th) &
B2(T); see Arnold, Brezzi, and Fortin [3], or Arnold and Falk [4]. These finite element
spaces correspond to the MINI-element of Arnold, Brezzi, and Fortin; see [3]. Since
the problem considered is similar to the Stokes problem, it is also possible to use other
elements that are common in fluid dynamics, e.g. the Taylor-Hood element; see Huang
[14] and also Klawonn [15].



The assumptions of Theorem 1 hold with V := (H&(Q))2 M = Ly(Q)/R, M, :=
H'()/R. A proof can be found in the references just provided.

It is also possible to use the MITCn-elements, introduced by Brezzi, Bathe, and
Fortin in [9]; see also Peisker and Braess [16].

Finally, we would like to point out that the approach considered in this section is
not the only one possible. There are direct approaches that do not use the Helmholtz
decomposition; see Arnold and Brezzi [2].

3. The preconditioner. To construct the preconditioner, we work with the ma-

trix representation of the saddle point problem,

A B
(12) A= ( B i ) c R"tm % Rn+m’
and give the preconditioner the form
(13) B:= ( g g ) € R™™ x R,

Here A and C satisfy certain ellipticity conditions, i.e. there exist positive constants
ag, a1 and cg, ¢1, such that

a [Jull$ < u'Au < af [|ulF,
co lllpllfar < p'Cp < el lllplllar-

The next lemma shows that B is positive definite and defines a norm on X, which is
equivalent to ||| - ||].
LemMMA 1. There exist positive constants by, by, such that

bo ||zl < 118"z < b |-

Proof: Using the ellipticity of A and C’, we obtain

182l = o'Ba
= utflu—l—pté'p
< aillulli + ef lllplllRe
< max{ai, e }([lull¥ + [llpll13s)
< max{ai, i }(||ullv +[lIpllIm)*
max{ay, ci}|||z[]|*
Analogously, we get
Hzll® = (lullv + [lplllan)*
< 2]|ull + 2/l|plll3s
< 2max{ . ) 18]

-1 ~
2 (min{af, c3}) " (1B},
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Examples for very fast and efficient methods that fulfill the ellipticity requirements,
are given by domain decomposition and multigrid methods or, more generally, by
Schwarz methods; see e.g. Dryja, Smith, and Widlund [12] or Chan and Mathew [11].
In view of Theorem 2 in Klawonn [15], see also Hackbusch [13], p. 270, our goal is

to give an estimate of the condition number x(B='A):= p(B~'A)p((B~'A)~"). Since
B is positive definite, B71.A and B~1/2.4B-/2 have the same eigenvalues and we obtain
p(B~YA) = ||B~2AB~"/?||,. Here, we use that B~'/2AB~"/2 is normal. The same
argument applies to p ((B_IA)_I). Thus, we only have to provide upper bounds for

1812 AB=1 2y and || (B1/2ABY/2) 7
The next two Lemmata are well known and are given here for the sake of com-
pleteness only.
LEMMA 2. Let L be a (n+ m) X (n + m)- Matriz. Then, the following three
inequalities are equivalent:
inf sup ﬂ > a,
veX e x [|2(2llyll2
2> allyllz Yy e X,

_ 1
1272 < .
(0%

Ly

LEMMA 3. Let L be a (n 4+ m) x (n + m)-Matriz. Then, the following three
inequalities are equivalent:

'Ly
sup sup
yeEX r€X 1z |2yl 2

ILyllz < C'|lyllz2 Yy € X,
IIL||2 < C.

<C,

In the following lemma, we prove a lower (resp. upper) bound for the inf-sup
(resp. sup-sup) of B~'/2AB~1/2,
LEMMA 4. There exist positive constants Cy, Cy, such that

th—]/QAB—l/Qy

Co < inf sup
YEX peX lll21lyll2
tR=-1/2 43-1/2,
C1 > sup sup v B AB Y
vexzex  lzll2llyll2

Proof: The Lemma follows immediately from (4), (5) by changing basis and by
applying Lemma 1.

The next theorem follows from the definition of the condition number in combi-
nation with Lemmata 2, 3 and 4.



THEOREM 2. The condition number of B~'A is bounded independently of the
discretization and the penalty parameters, i.e.

K(B™TA) < g—;.

4. List of Notations. We introduce the following product for matrices
d d
o7 = ZZO’MTU,
1=1j7=1

where o, 7 € Mat(d,d) .
The Sobolev spaces are defined by:

=
e
=

i

{ve HY(Q):vp, =0},
H3(Q) := HEQ) with T = 09.

Mk(ﬁ) = {v e LyQ): v € Prforall T € Tn}
Mo(Tw) = MNTa)n HY(R),
Mio(Tw) = MM (Th) 0 Hg(Q),
B*(Tn) = {v €& My(Th): v vanishes on the boundary of every element },
No(Th) = My(Tw) @ B*(Th),

where 7y, is a triangulation of Q. Here, P* is the space of polynomials of degree < k.
The differential operators are defined by:

d
0v;
div(v) := ,
= Oz,
0 0
rot(v) = —T2+8—Za
dq g
curl(q) := (_8—w2’3—m)t’
Vo = (Vv)iz1,..ds
6(7)) = % (V?} + (V.v)f) .

All of these operators can be defined element by element on the space Mk(ﬁ) The
resulting discrete operators are marked by a subscript A.
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