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Abstract

We propose a new natural memory consistency model, Smile consistency. Not only does
Smile provide an intuitive memory consistency model but also a paradigm in which users can
define their own synchronization primitives, called synchronization classes. Programmers can
use the synchronization class to ease the programming work related to basic synchronization
operations. Therefore, in addition to shared memory, threads can also communicate with each
other via synchronization objects, instances of synchronization classes. Programs with high-level
synchronization objects may also outperform those with only basic synchronization primitives.
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1 Introduction

Software distributed shared memory uses workstations and local networks to provide an economi-
cal virtual parallel machine without using any special hardware. The two main components of any
distributed shared memory system are the memory consistency protocol that defines the behavior of
memory when threads access it, and the synchronization operations used to synchronize threads and
data access. Systems such as [LLH89], [BZS93],

[CBZ95], and [ACD'96] have worked at creating efficient consistency protocols to enhance data
access to shared memory.

However, these systems just provide very basic synchronization primitives, for example locks and bar-
riers. The complexity of using such basic synchronization operations to solve some synchronization
problems is known to be very complicated for programmers and prone to errors[Tan92].



We introduce a new natural shared memory model that is a combination of user-definable high level
synchronization primitives and a variant of release consistency. We call this model Smile consistency.
User-definable synchronization primitives ease the coding of complicated parallel programs. In some
cases the programmer can use a high-level synchronization primitive to increase performance by
reducing unnecessary message-passing between processors.

In section 2, we will give a brief overview of the programming model of Smile. Section 3 describes
the details of Smile consistency, defining the interaction between synchronization objects and shared
memory. In section 4, we briefly discuss the implementation of the synchronization objects, and in
section b we describe an application and performance results. Related work is discussed in section 6.

2 Programming Model

There are two types of shared objects that threads use to communicate with each other in Smile —
shared memory and synchronization objects. Shared memory consists of a contiguous memory array
in virtual memory. Two operations are allowed on shared memory, reads and writes. Whatever a
thread writes on shared memory may be visible to other threads. In addition to shared memory,
threads can also communicate with each other via synchronization objects. Each thread accesses syn-
chronization objects only by calling operations defined in synchronization classes. Synchronization
objects can not access other shared objects.

Each synchronization operation is annotated with one of following attributes, put, get, get_put and
put_get or nothing. These attributes are used to define the visibility of the values in shared mem-
ory. Informally, the annotation put may be thought of as meaning that the thread “puts” its shared
memory writes onto the synchronization object, and get meaning that the thread “gets” the previous
writes from the synchronization object. For example, suppose a thread ¢ writes to shared variable X
and then performs a put operation of synchronization object S. If thread ' subsequently performs
an get operation of S, ' can read what ¢ has written on X. Similarly, get_put and put_get may be
thought of as a combination of the two. The meaning of the annotations is discussed in detail in
section 3.2.

2.1 Synchronization Objects and Synchronization Classes

Synchronization objects can be accessed only by calling operations provided by them. The compu-
tation of a synchronization object is like that of a server servicing a remote procedure call and is
sequential. The synchronization object may decide not to reply immediately to the caller and receive
other requests. The caller is stalled until the synchronization object sends a response back.

Defining synchronization classes is very similar to defining regular classes in the C++ program-
ming language, (see Fig. 1). Instead of class in C++, synchronization classes start with SyncClass.
Synchronization classes do not currently have the inheritance properties of regular object oriented
languages. The operations declared in the public section of the synchronization class are the only



SyncClass ParaBuf_class{
public:
ParaBuf_class(int size_of_buffer);
put int PutItemPtr(bulk_itemptr_type itemptrs);
get itemptr GetItemPtr();
private:
Queue_class<int> *empty; /#* keep thread requests when the buffer is empty (or full) */
Queue_class<itemptr_type> *buffer; /* keep products’ pointers*/

+;
ParaBuf_class *ParaBuf;

main(int argc, char **argv){

Figure 1: Synchronization Class

operations which can be called by threads. Each operation can have at most one parameter. In
addition, each of the public operations may be tagged with a synchronization attribute of either put,
get, put_get, or get_put. These attributes are used to define the visibility of threads’ writes to shared
memory.

Our system provides two basic synchronization classes, semaphores and barriers. Semaphores have
two operations, P(k) and V (k), where k is the number to increase or decrease the counter of the
semaphore. P(k) and V (k) are annotated with get and put attributes respectively. The P and V'
operations of binary semaphores usually correspond to operations on locks, which are used to protect
a critical section. When a thread locks a lock using the P operation, the get annotation specifies that
the previous lock holder’s writes become visible to the thread. Similarly, when the thread leaves the
critical section using the V' operation, the put annotation specifies that subsequent threads will see
its writes.

A barrier has one operation, WaitForBarrier(proc), where proc is the number of attending threads.
The attribute of WaitForBarrier(proc) is put_get. Intuitively, the put_get attribute can be thought
of specifying a put and then a get. In this case, the calling thread will be “putting” its writes (i.e.
making them visible) when it calls WaitForBarrier and will be “getting” other writes (i.e. collecting
currently visible writes) when the call returns.



2.2 Shared Memory

Shared memory consists of a set of shared variables, X, Y, Z ...etc.. Without loss of generality we
deem each variable an integer. A visible set of X to thread ¢, Vi, is a set of values thread ¢ may
get when t reads X. Initially Vx = {0} to all threads. In the following discussion, we are going to
discuss computation without race conditions at first. More details can be found in section 3.

When a thread performs a put operation! on synchronization object S, it also gives the update
information on shared memory to S. When a thread performs get operation on a synchronization
object, the thread also obtains all updates that have been put on S so far. If a thread ¢, writes « to
X, the visible set of X becomes {a}. If after ¢; performs a put operation on synchronization object
S, no other threads write to X, then if subsequently thread ¢, performs an get operation on S, Vx
to thread ¢ is {a}.

Fig. 1 shows a fragment of a synchronization class which defines a buffer for a producer-consumer
style program. In this example, the buffer stores pointers to products in shared memory. There
are two operations on the synchronization class, PutltemPtr() and GetltemPtr(). PutltemPtr() is
annotated with put because the update made by producers should be visible by consumers. The
return value of

PutltemPtr() indicates whether the buffer is full. GetltemPtr() is annotated with get because the
requesting thread needs to see what producers write. The returned value of GetltemPtr() is the
pointer of an available product or a null pointer if empty.

3 Smile consistency

The execution of a thread or a synchronization object itself is sequential. The updates of one thread
which performs a put operation on a synchronization object S, are visible to another thread, ¢, which
subsequently performs get operation on S.

In this section, we are going to define the relation between the execution of a parallel program and
the behavior of the shared memory.

3.1 Phases and Events

The execution of a thread or a synchronization object is sequential and consists of phases. Performing
a synchronization operation is an event of a thread. Receiving a request from a thread and replying
to a thread are events of a synchronization object. The computation between two events, including
the ending event, is a phase. The execution of a thread or a synchronization object is a sequence
of phases in program order. The phase of a synchronization object starting with a requesting event

'In the context of this discussion put operations are operations with attribute put, get_put or put_get. Get operations
are operations with attribute get, put_get, or get_put.



from a thread is called a receiving phase, even though the requesting event is not in the phase. The

phase of a synchronization object ending with a replying event to a thread is called a replying phase.

3.2

The

whe

The Execution of a Parallel Program
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Figure 2: A directed acyclic graph of a computation.
execution of a parallel program can be represented by a directed acyclic graph, G = {V, F'},

re V is the set of phases and F is the set of edges connected by two phases. The visibility of a

written value on shared memory is defined by GG. There is an edge e,, from vertex v to v if and

only if one of following conditions exists.

1.

v’ and v are phases from the execution of the same thread or synchronization object and v’
immediately follows v in program order. See Fig. 2(1).

. Thread 7 invokes a synchronization operation with the get attribute. v is the replying phase
of the synchronization object, and v’ is the phase after thread i invokes the synchronization
operation. See Fig. 2(2).

. Thread 7 invokes a synchronization operation with the put attribute. v is the phase ending with
the synchronization operation, and v’ is the receiving phase of the synchronization object. See

Fig 2(3).

. Thread 7 invokes a synchronization operation with the put_get attribute. In this case there are
two edges.



(a) v is the phase of thread i ending with the synchronization operation, and v’ is the receiving
phase of the synchronization object. See Fig 2(4), edge Evy0 -

(b) v is the replying phase of the synchronization object and v’ is the phase after thread i
invokes the synchronization operation. See Fig 2(4), edge €y -

5. Thread 7 invokes a synchronization operation with the get_put attribute. In this case there are
two edges:

(a) v is the phase of thread i ending with the synchronization operation, and v’ is the phase
immediately after the replying phase of the synchronization object. See Fig 2(5), edge
€yl -

(b) v is the replying phase of the synchronization operation, and v’ is the phase after thread
i invokes the synchronization operation. See Fig 2(5), edge € -

A phase p is reachable to p’ if there is a path from p to p’. Two phases are concurrent if there is no
path between them.

3.3 Visibility of a Written Value on a shared variable

A written value of a write operation, w, on shared variable z in phase p is visible to a read operation
on z in phase p if and only if one of following situations holds

1. if p = p’, the write operation is the last write operation on z before the read operation.

2. if p # p’ and p is reachable to p’, w is the last write on z in phase p and there is no other phase
on the path from p to p’ which has write operation on z.

3. pand p’ are concurrent.

The set of written values visible to the read operation op is called the wvisible set of op. Any of the
values in the visible set returned for op is legal in Smile.

From the programmer’s point of view, a get action happens when the synchronization object replies
to the thread. All updates on shared memory visible to the synchronization object before it replies
are also visible to the thread after the thread receives the response from the synchronization object.

The time put acts depends on how conservatively the updates on shared memory are expected to
be propagated. If attribute put_get or put is used, the updates of the thread which performs the
synchronization operation are visible to synchronization object when the object receives the request.
If the operation is annotated with get_put, the updates are made visible to the synchronization object
after the object replies to the thread.

A synchronization operation can be without any attribute. In such case, the updates of the thread
are not visible to the synchronization object when it performs the synchronization operation.



4 Implementation of Synchronization classes and objects

In the current implementation, on each processor there are two processes in charge of the computa-
tion. One process, the thread, is used for the computation of the application. The other process, the
system server, serves the requests for synchronization and requests for the most recent updates of
a page of shared memory. We will just briefly describe our implementation of the synchronization
objects, and not go into the details of our implementation of shared memory.

Each synchronization object resides on one of the system servers. Every synchronization object has
a unique id number and each method in the public section of the synchronization class is assigned an
id number. When a thread accesses a method of a synchronization object, the thread itself sends a
message to its local system server about which object and operation it is accessing. The local system
server processes the request if the synchronization object resides locally. Otherwise it forwards the
request to the remote system server where the object resides.

SyncClass’es are written by the programmer. A preprocessor generates two classes by parsing it, one
is for threads and the other is for system servers. The class for threads contains only the methods
declared in the public section of the synchronization classes. The function of these methods is to
compose a message to the system server and wait for the response from the server if necessary.

The generated class for system servers has the actual code for the user-defined methods of the syn-
chronization class, plus some extra operations for communicating the results and the information for
updating shared memory.

5 Performance

The platform we used to evaluate performance are 8 PCs with Pentium Pro processors and 64
Megabytes RAM connected by by 100Mbps Ethernet. Reported times are wall clock times.

We present performance results for computations of the Mandelbrot set. We chose the Mandelbrot
computation because it is relatively easy to understand and illustrates the use of synchronization
objects well. The algorithm used to compute the Mandelbrot set is taken from [GL.S94], and will be
briefly described here.

The protocol we use to implement the memory model is called single owner protocol[CK96]. Single
owner protocol is also a multiple writer protocol[CBZ95, KCDZ94]. For each page on shared mem-
ory there is a page owner which keeps the current version of the page and serves read request from
other threads. We also run the program without high level synchronization primitives using the lazy
invalidation protocol for comparison.



5.1 Application

The Mandelbrot set is defined as the set of all complex numbers ¢ that satisfy the following criteria.

Define the function f7(z) as the repeated application of f.(z) = 22 + ¢, where ¢ and z are numbers
on the complex plane. Thus f!(2) = f.(2) and f2(2) = f.(f-(2)). If f7(0) stays bounded as n — oo,
then we say that ¢ is a member of the Mandelbrot set.

It can be shown that if |f(0)| > 2 for some n, then f. is not bounded at ¢. For computational
purposes, this means we can pick a suitably large number N and calculate f7(0) forn < N. If f.
stays bounded for N steps, then we give up and add it to the set. If not, then ¢ is not in the set.

We can represent each complex number ¢ as a pixel of an image. If f. stays bounded for N steps
we can give it some color, say black. If f. becomes unbounded after n steps, we can give it another
color that is some function of n. Thus, a sequential version of this program can iterate through all
points of the image, assigning a color to each pixel. In this way, a striking picture develops.

An optimization to the sequential algorithm is described in [GLS94]. The authors note that if the
border of any square of pixels are all the same color, then the interior must be of the same color also.
Thus our new algorithm starts by checking the boundary of the region, and if it is all the same color,
it colors the interior. If not, it breaks the region into equal sized blocks and recursively calls itself
on each new region. If a particular block is of a minimum size, it gives up and colors the interior
anyway sequentially. This substantially speeds up the computation.

5.2 Implementation

The simple parallelization of this algorithm involves putting the blocks in a shared task pool. Each
worker accesses the pool, computes the block and does one of two things: it either breaks up the
block and puts the new pieces in the shared task pool or it colors the whole block (either because it
is of minimum size or because it is all one color).

Because the computation time of each block is small compared to the cost of communication on a
typical network of workstations, we adopt a modification of the original scheme to make it slightly
coarser grained.

Each worker will have its own local task pool from which it grabs the blocks. Periodically, say after
doing N blocks, the worker will consult with the global pool to see whether it should take or add
blocks to the global pool to more properly balance the workload. The way it decides this is based
on an approximation of the total number of existing blocks. It takes this number and divides it by
the number of workers. This result can be considered the number of blocks each processor should be
working on (in the ideal case). If the current worker has more than that number of blocks, it takes
some from its local pool and adds it to the global pool. If it has less, it takes from the global and
adds to the local. If the worker cannot get any block to work on, it sleeps and waits until there are
available blocks in the pool. In our experiment, we did not include the time to display the result on



the screen since it takes much longer than the time to compute the colors of all pixels on the screen.

We show the results for two programs. The first program uses a user defined high level synchroniza-
tion primitive, PoolController, to keep the control information. There are two operations used to
synchronize workers, GetInfomation and Done. Getlnformation is annotated with a get attribute.
It also returns the information about what the worker should do next — i.e. whether it should take
or add blocks to the global pool. Then the worker can either get or put some blocks into the global
pool or it may not need to access the global pool at all and can just work on those blocks on its
local pool. The worker can also be informed that the computation is finished. Done is annotated
with a put attribute. After a worker finishes accessing the global pool, it executes Done to inform
PoolController.

When the PoolController receives a request for GetInfomation from a worker, the server updates the
information about the status of the worker and sends how many jobs the worker needs to do next.
If the worker needs to access the global pool, the server does not respond to any other worker until
the worker performs the Done operation. If there is no available blocks on the global pool for the
worker, the server postpones responding to the worker until some other worker puts blocks on the
global pool. If all workers are waiting for blocks, the server sends a terminating response back. Then
all workers finish the computation.

The second program uses semaphores to synchronize the workers. Several semaphores are needed to
emulate a high-level synchronization object. Decisions about the number of semaphores needed and
coordination amongst them require careful coding from the programmer. We use two semaphores,
called mutexr and sleep, to synchronize workers. The control information about status of other work-
ers, how many blocks are on the global pool, how many workers sleep and wait for blocks, and the
pool itself, is protected by mutex, a binary semaphore. Every time a worker accesses the control
information it needs to execute the P operation of mutex. Then it obtains the control information
and decides to either write or read the global pool. Afterwards, it executes the V' operation of mutez
when it leaves the critical section. If the worker finds there is nothing to work on, it goes to sleep by
executing the P operation of sleep. It also may wake up other sleeping workers by executing the V
operation of sleep.

5.3 Performance Result

We checked the Mandelbrot set on the plane where z = [—2, —1.25] and y = [0.5, 1.25]. Assume there
are 720 x 480 points on the plane. Each point on the plane is tested by the iteration function, f7(z)
defined at section 5.1 with z = 0. If the function stays bounded after 256 iterations, we consider ¢
is in Mandelbrot set.

Sequential execution time is 18.2 seconds. The execution time of single owner protocol, with high
level synchronization primitives, on eight processors is 3.72, see figure 3. Its speedup is 4.91. The
execution time of single owner protocol without high level synchronization primitives is 5.8 seconds
on eight processors. Its speedup is 3.2. The execution time of lazy invalidation protocol without
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Figure 3: Speedup for Computing Mandelbrot Set

high level synchronization primitives is 5.9 seconds on eight processors. Its speedup is 3.1.

Table 4 shows the program with the high level synchronization primitive uses fewer messages and
the message size is also smaller than the program with basic synchronization primitives. The high
level synchronization primitive itself eliminates fine grained access to control information for load
balancing and the status of the global pool. This information is stored in the server locally. Putting
a worker to sleep is done by postponing responding to the worker. In contrast, with semaphores, the
worker goes to sleep by calling another semaphore, resulting in more messages.

6 Related Work

put and get operations are similar to release and acquire in release consistency [GLL190]. In con-
trast, put and get operations are performed with respect to synchronization objects but release and
acquire are performed with respect to other threads. None of these systems have user-definable
synchronization primitives, but only provide basic locks and barriers.

In entry consistency[BZS93], synchronization objects are also restricted to either locks or barriers.
Entry consistency requires an association between shared data and its guarding synchronization ob-
ject S. The work of association is done by the programmer. This association is used to piggy-back

10



number of processors 2 3 4 5 6 7 8

single

owner || Numberof messages | 103 | 133 | 204 | 257 | 201 | 311 | 375

protocol

with high | | 4

level sy%C sizeof messages 52 |83 |142 [192 |231 |27.7 |357
11 (K bytes)

single

owner number of messages | 188 254 1423 | 476 593 614 780

protocol

with sizeof messages

basicsync|| (K bytes) 113 |196 |376 |658 |90.7 |97.7 |139.2

lazy inv-

alidation number of messages | 215 313 412 554 648 719 760

protocol —t

with basic || Sizeof messages

sync. (K bytes) 101 |208 |402 |674 |985 |138.1 |1635

Figure 4: Speedup for Computing Mandelbrot Set

fine-grained data with the acquire and release operations. The updates of the guarded shared data
of thread t are visible to other threads after ¢ performs a release access on S. Thread ¢’s updates
are not visible to thread ¢’ until ¢’ performs an acquire access on .S. Only those variables associated
with S are visible to thread ¢'. The execution between acquire access and release access in the entry
consistency memory model is mutually exclusive and called a critical section. A thread can not
access the critical section until the previous acquiring thread performs a release access.

In contrast, with Smile consistency, programmers do not need to associate shared datum with a
synchronization object. All writes on shared memory are visible to the subsequent get’ting thread.
However, the fine-grained data can be still passed around by synchronization objects, by the param-
eters and return values of the user-defined methods. Execution between a get operation and a put
does not have to be mutual exclusive. It is up to the definition of synchronization class.

Like Calypso[BDK95] and Cilk[BJK*95], we concentrate on giving the user a more friendly inter-
face to shared memory and do not emulate sequential consistency. But synchronization is done
through the spawning and joining of threads in Calypso and Cilk. Our memory model is similar to
Cilk’s DAG (directed acyclic graph) consistency, but their DAG is not built through operations on
a synchronization object. Instead the DAG is based on thread creation and completion. Cilk and
Calypso’s focus is on fault tolerance and adaptive load balancing.
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7 conclusion

We present a program centric memory model, Smile. Smile provides a user friendly memory model
and a paradigm for users to compose their own synchronization primitives. We also show a program
with high level synchronization primitives may outperform a program with basic synchronization
primitives.
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