OVERLAPPING SCHWARZ METHODS FOR VECTOR VALUED
ELLIPTIC PROBLEMS IN THREE DIMENSIONS
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Abstract. This paper is intended as a survey of current results on algorithmic and theoretical
aspects of overlapping Schwarz methods for discrete H (curl; Q) and H (div; Q)—elliptic problems set
in suitable finite element spaces. The emphasis is on a unified framework for the motivation and
theoretical study of the various approaches developed in recent years.

Generalized Helmholtz decompositions — orthogonal decompositions into the null space of the rele-
vant differential operator and its complement — are crucial in our considerations. It turns out that the
decompositions the Schwarz methods are based upon have to be designed separately for both com-
ponents. In the case of the null space, the construction has to rely on liftings into spaces of discrete
potentials.

Taking the cue from well-known Schwarz schemes for second order elliptic problems, we devise
uniformly stable splittings of both parts of the Helmholtz decomposition. They immediately give rise
to powerful preconditioners and iterative solvers.

Key words. Schwarz methods, domain decomposition, multilevel methods, multigrid, Raviart—
Thomas finite elements, Nédélec’s finite elements

AMS subject classifications. 65N55, 65N30

1. Introduction. Schwarz methods offer highly efficient iterative solvers for dis-
crete second order elliptic problems. In a finite element setting, the guiding principle
is to provide a splitting of the finite element approximation space into subspaces and
to seek corrections of an approximate solution in these subspaces [27, 54]. Considerable
research has in recent years been devoted to Schwarz methods for second order elliptic
problems. Prominent are multigrid methods [33], which were relatively recently revealed
to be Schwarz methods [61, 32, 12]. Multigrid methods belong to the larger class of mul-
tilevel Schwarz methods, which includes multilevel preconditioners [15] and hierarchical
basis type methods [62, 63, 5], as well. In all these methods, the basic subspace decom-
position arises from a sequence of finite element spaces associated with a hierarchy of
meshes generated by, possibly local, refinements. Other important Schwarz methods are
overlapping domain decomposition methods [27, 54] and iterative substructuring algo-
rithms [13, 14, 27, 26]. They base the subspace splitting on the decomposition of the
computational domain as the union of smaller subregions. In addition, a global space,
defined on a coarse mesh, is often indispensable [59]. First conceived for standard h—
version conforming finite elements, Schwarz methods have been successfully applied to
spectral methods [49, 51, 50] and nonconforming schemes [47]. They have also proved
to be a valuable tool for the fast solution of fourth order problems [46, 66].

We point out that this presentation is confined to overlapping Schwarz methods
in a broad sense. This means that the support of the functions belonging to different
subspaces of the decomposition have some overlap. We will consider overlapping and
multigrid methods, but important schemes, like hierarchical basis methods and iterative
substructuring algorithms, will not be addressed.
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The algorithmic developments in the field of Schwarz methods have been paralleled
by the emergence of a rather comprehensive convergence theory, which permits us to
assess the performance of a scheme based on a few estimates characterizing the stability
of the subspace decomposition [27, 54, 61, 64, 12]. Thus for many of the schemes asymp-
totic optimality can be established, which means that the rate of convergence does not
deteriorate as we proceed to finer and finer approximating spaces.

Many physical models, when cast into variational form, lead to problems posed in
the vector-valued function spaces H (curl; Q) and H (div;2). Here Q C R® is a bounded
connected domain. These spaces are defined by

H (curl; Q) := {¢ € L*(Q); curl € € L*(Q)}
H(div; Q) := {v € L*(Q);dive € L}(Q)},

and are endowed with the natural Hilbert space graph norm. Appropriate essential
boundary conditions prescribe the normal component for H (div; Q) and the tangential
component for H (curl; ), respectively, [31]. In this presentation, spaces with homoge-
neous essential boundary conditions imposed on the whole boundary 992 will be tagged
with a subscript 0.

These spaces are of considerable physical relevance: H (div; ) is the ideal space for
quantities that obey flux conservation, whereas H (curl; Q) is a the natural choice for
electric and magnetic fields and certain stream functions in fluid mechanics. Moreover
H (div; ) is also encountered in the mixed formulation of second order elliptic problems
[53, 19].

Usually, when these spaces come into play, we have to deal with variational problems
and bilinear forms, respectively, that are elliptic with respect to the corresponding norm
of the function space. The prototypes of such bilinear forms are given by

(1) a(y,v) = (j,v)Lz(Q) + 7 - (div g, div 'v)LQ(Q)
and
(2) a(g,n) = ({,n)La(Q) +n- (curl{,curln)La(Q) )

respectively, where 7 is a real, positive parameter. From each of these selfadjoint bilinear
forms we can derive a symmetric linear operator from the function space into its dual.
We adopt the notation A for this operator in the remainder of the paper.
Commensurate with the importance of the spaces H(div;2) and H (curl; Q) there
is a need for efficient iterative solvers for discrete variational problems arising from
the above bilinear forms. They can be used as preconditioners for the minimal residual
method to obtain a fast solver for mixed schemes for second order elliptic equations
[41, 3]. Also penalty methods and augmented Lagrangian techniques for the same class
of problems require an efficient solution of H (div; Q)-elliptic problems [40, 57]. In this
case the parameter i occurring in the definition of the bilinear form (1) is linked to
the penalization parameter and the solver must not deteriorate for large values of 7.
Furthermore, efficient methods for H (div; 2)-elliptic problems are also the key to the
fast solution of the linear systems arising from some first order system least squares
methods, since the least square functional is elliptic in H (div; Q) x H'(Q) [21, 52]. We
should also mention that the sequential regularization methods for the incompressible
Navier-Stokes equations involves the solution of an H (div;Q)-elliptic problem [42].
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There are also numerous problems in computational electromagnetism that would
benefit greatly from a fast solver for H (curl; 2)—elliptic problems. Examples are eddy
current simulations [8] and time domain simulations of Maxwell’s equations with implicit
time stepping [38, 43]. Here, 7 is related to the size of the time step, so that convergence
of the iterative solver should not deteriorate for small 1. Another promising application
of such methods might be the stream function—vorticity formulation of Stokes’ problem
[31, 30].

Compared to the H'(Q)-elliptic case, progress toward efficient preconditioners in
H (div; 2) and H (curl;Q2) has been rather slow. This has to be attributed to the pres-
ence of large null spaces of the operators div and curl, that replace the more benign
differential operator grad related to H'(). These null spaces destroy what may be
called the proper ellipticity of the corresponding differential operators grad div +1d and
curl curl +/7d. We use this term to refer to the uniform amplification of functions of a
certain “frequency”, regardless of their “direction”. In a sense, this corresponds to the
classical concept of ellipticity based on the symbol of a differential operator. It turns
out that most Schwarz methods for selfadjoint problems owe much of their clout to the
proper ellipticity of the differential operators: it is prerequisite for the effectiveness of
the coarse space correction. Thus naive approaches to H (div; ) and H (curl; 2) might
run into difficulties.

These considerations highlight the need to treat the kernels of the differential oper-
ators and their orthogonal complements separately. In a slight generalization of the term
[31, Chapter 1], we call such L2-orthogonal splittings of the function spaces induced by
the differential operator, Helmholtz—decompositions. Thus the design of Schwarz meth-
ods or H (div; Q) and H (curl; Q) follows one idea: find viable decompositions for both
parts of the Helmholtz decomposition separately and merge them into an overall Schwarz
scheme. It might not be conspicuous in the final algorithm, but many successful Schwarz
methods are based on this rule.

The bulk of earlier contributions in the field of Schwarz methods for elliptic prob-
lems in H (curl; Q) and H (div; ) is confined to the 2D case. Nevertheless, we point out
that investigations of viable subspace decomposition of H (div; 2)-conforming Raviart—
Thomas finite element spaces in two dimensions were germinal in the development of
the theory: the principal idea that solenoidal vector fields have to be targeted separately
was first pursued in [28] to construct asymptotically optimal multilevel preconditioners
and domain decomposition methods for mixed saddle point problems in 2D. Based on
these techniques, a H (div; Q2)-stable multilevel decomposition was proposed in [58]. Si-
multaneously, nonoverlapping Schwarz schemes based on a hierarchical basis multilevel
decomposition, were introduced in [20, 60]. In [3, 4] Helmholtz—decompositions were
exploited in a study of overlapping Schwarz methods for H (div;2) in two dimensions.
The application of these ideas to H (curl;2) in two dimensions is discussed in [55].

The principles guiding the design of Schwarz methods are basically the same in any
dimension. Yet the technical devices employed in the proofs in two and three dimensions
differ significantly. The reason is that there is no genuine analogue for the curl-operator
in 2D; thus in three dimensions we have to grapple with a more complicated represen-
tation of solenoidal vector fields by vector potentials instead of scalar stream functions
and we encounter a new class of H (curl; Q)-elliptic variational problems.

This paper provides a survey of the state of the art of the algorithmic and theoretical
development of Schwarz methods for elliptic problems in vector valued functions spaces
in three dimensions. It summarizes results published in a series of papers in recent
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years. In [22], an overlapping domain decomposition method for H (div; Q) was studied,
while in [36, 39], a multilevel splitting of H (curl;2), which was shown to be stable
with respect to the [lcurl-||2o)-seminorm, was instrumental in the construction of
an efficient preconditioner in the space of divergence free vector fields. Based on these
results, a proof of the optimality of a multilevel decomposition for H (div; Q) was given
n [37]. This work also paved the way to a fast multigrid method in H (curl; ) [38]
and provided the theoretical underpinning for an overlapping domain decomposition of
H (curl; Q) [56].

In this paper, we develop a unified view, suggested by some glaring parallels be-
tween the spaces H (div;2) and H (curl; Q). If we write D for a generic differential
operator, which may stand for div and curl, the definitions can be lumped together
into

H(D,Q):={ve L*(Q); Dve L*(Q)}.
Thus, we will use our unified framework as long as possible, studying the bilinear form

(3) alu,v) = (4, v)p2(q) + 7 (D, Dv)rag)

It is our objective to illustrate the common rationale behind the construction of the
subspace decompositions and point out the relationship to the standard H!(Q)-elliptic
case, which is, in fact, also covered by setting D = grad. We want to stress that it
takes nothing but the smart application of totally standard techniques to master Schwarz
methods for H (div; Q) and H (curl;Q2), both theoretically and from the point of view
of implementation.

The outline of the paper is as follows. In the next section, we provide a brief de-
scription of the finite element spaces used for discretizing the bilinear forms (1) and
(2). These are the H (div;Q)—conforming Raviart-Thomas spaces and H (curl;Q)-
conforming Nédélec spaces. We list their relevant properties and discuss the close rela-
tionship between them.

In the third section, we specify the subspace decompositions underlying both the
multigrid method and the overlapping domain decomposition algorithm. Prior to that
we try to give a sound motivation of their construction by studying the properties of
the bilinear forms. We then describe the actual implementations of the algorithms that
arise from these decompositions.

The fourth section provides the technical tools employed for establishing the sta-
bility of the decomposition. These are mainly discrete and continuous Helmholtz—
decompositions and various projection operators affiliated with them.

In the fifth section, we investigate the convergence properties of the Schwarz meth-
ods relying on the algebraic theory of Schwarz methods for selfadjoint bilinear forms.
Under certain assumptions on the computational domain, we show that the performance
of the preconditioners is independent of the problem size and the number of subspaces
involved in the splitting, which amounts to asymptotic optimality.

2. Finite element spaces. Let 7, := {1}, denote a quasiuniform simplicial
or hexahedral triangulation of the polyhedral domain Q C R® with meshwidth A :=
max{diam 7T;}. We require that the elements are uniformly shape-regular in the sense
of [23] and we introduce the following conforming finite element spaces on this mesh:
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Vi(grad, 7;) C H'(Q) stands for the space of continuous finite element functions,
piecewise polynomial of degree d+1 over Ty, the conventional Lagrangian finite elements
(see [23]).

Vy(curl, 7;) C H(curl; Q) denotes the so-called Nédélec finite element space of
order d € Nintroduced in [44]. For a tetrahedron T' € Ty, these finite element functions
have a local representation given by

Va(eurl, T) := (Pd(T))S + {p € (Pd+1(T))3§ (p(z), z) = 0} ,

where P4(T") designates the space of polynomials of degree < d over 7. For the lowest
order case d = 0, this leads to the representation Vy(curl, T) = {a + b x =, a,b € R}.
On a hexahedron T, aligned with the coordinate axes, the local finite element spaces
are

Vi(eur, T) := Q4-1,4,4(T) X Qa,d—1,4(T) X Qa,4,4-1(T) ,

where Q, &,k (1') is the space of polynomials of degree < k; in the ith coordinate
direction, 1 = 1,2, 3.

Va(div, 7;) C H (div; Q) denotes the Raviart—Thomas finite element space of order
d € Ny (see [53, 44, 19]). On tetrahedral meshes they locally agree with the space

Va(div, T) := (Pa(T))” + 2 - (Pa(T)’
for each tetrahedron T' € T;. On a hexahedral grid we obtain instead

Va(div, T) := Qut1,4,4(T) X Qa,a41,d(T) X Qa,a,a41(T)

for each hexahedron 7' € 7},.

The same notations, supplemented by a subscript 0, will denote the spaces equipped
with homogeneous boundary conditions (in the sense of an appropriate trace operator,
as explained in the introduction):

Vd,O(D7 7;1) = Vd(D7 7;1,) N HO(D7 Q) y

A few alternative choices for H(div;Q2)- and H (curl; Q)-conforming spaces are con-
ceivable, e.g., the spaces introduced in [18] and [45], respectively. With slight modifi-
cations, the approach presented in this paper carries over to discretizations based on
them, as well.

Despite the differences in their definitions these finite element spaces are closely
related. As discussed in [10, 35, 11], they all can be viewed as spaces of discrete dif-
ferential forms, for which they offer very natural approximations. Our unusual notation
for the finite element spaces is meant to underscore this common pattern.

All finite element spaces V4(D,7T;) are equipped with sets of degrees of freedom
(d.o.f.), denoted by Z4(D, 73), which ensure conformity. In the lowest order case d =
0, they are given, for Vy(grad, 7,) by point values at the vertices, for Vy(curl, 73)
by path integrals along the edges, and for Vy(div,7;) by normal fluxes through the
faces. We refer to [44, 35] for a comprehensive exposition, also covering higher order
finite elements. All degrees of freedom remain invariant under the respective canonical
transformations of the finite element functions (see e.g. [35]). Consequently, all finite
element spaces form affine families in the sense of [23].
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Based on the degrees of freedom, sets of canonical nodal basis functions can be
introduced as bases dual to Z4(D, 7). They are locally supported and form an L%-

frame: we can find generic constants C',C' > 0, independent of the meshwidth A and

depending only on the type of finite element space and the shape regularity of 73, such
that for all £, € V4(D, T)

(4) CllEllT2iy < D R(ED10alT2 () < CllEIT2q)

where x runs through all degrees of freedom of the respective finite element space and
1,. stands for the canonical basis function of Vy4(D,7;) belonging to the d.of. k €
Z4(D, 7). In the following, a capital C' will denote a generic constant. Its value can
vary between different occurrences, but we will always specify what it must not depend
on.

Now, given the degrees of freedom, for sufficiently smooth argument functions the
nodal projections (nodal interpolation operators) Hd?ﬁl onto the finite element space
Va(D,T;) can be introduced as in [23]. First of all we stress a particular algebraic
property of these operators, expressed by the following commuting diagram property
[25, 30, 19]: For d € Ny the diagram

C>(Q) ce) - cx@) & o)
[ e |meest |mé, |7,

Va(grad, T) £2% Va(eurl, 7o) 0 vy(div, Ti) —2 v,(0,73)

grad
e

commutes, which links nodal projectors and differential operators. We have written
Va(0,7:) to denote the space of piecewise polynomials of degree d over 7, and Hg,ﬁ
for the L%-orthogonal projection onto this space. A proof of the commuting diagram
property can be found in [35].

A trivial, but very important consequence of the commuting diagram property is
the fact that nodal interpolations as defined above preserve the kernels of the differential
operators:

(5) r€ HD,Q)NDP7) A Dz=0 = D(Pyz)=0

Here, D(HBTh) denotes the set of vector fields for which the interpolation operator is
well-defined.

An inconvenient trait of the nodal projectors has to be stressed: they cannot
be extended to continuous mappings on the entire function spaces. A slightly en-
hanced smoothness of the argument function is required. For instance, in the case
of Vy(eurl, 73,), the integrals along edges occurring in the definition of the d.o.f. are
continuous functional only for functions £, which locally belong to the space X, (T) for
p>2and any T € T (see [2, Lemma 4.7]). X, (T) is given by

(6) X,(T) :={n € (L(T))*; curln € (L"(T))*; n x n € (LP(9T))%} .

This leads to considerable technical complications. Nevertheless, we cannot dispense
with using nodal interpolation; no other projectors are known that satisfy the commuting
diagram property (compare Remark 3.1 in [30]).
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Affine equivalence techniques along with the commuting diagram property can be
used to establish the approximation properties (see [44, 17, 53])

<Ch[Dzlgiq) Vo € H(D,Q);Dz € HY(Q),

(™) HD (x - HgTh) £2(Q)
with C' > 0 independent of h.
A highly desirable property of the finite element spaces Vy(D, 7},) is that an essential
algebraic property of the continuous function spaces is preserved in the discrete setting
(see [9, 36]):
THEOREM 2.1 (DISCRETE POTENTIALS). Let Q be simply connected with a con-
nected boundary. Then the following sequences of vector spaces are exact for any d > 0:

curl div

{const.} LN Va(grad, 7) gri; Va(eurl, T5) =— Vy(div, T) — Va(0, Tn) — {0}
{0} 24 vy o(grad, i) &2 Vio(curl, 77) <22 Vyo(div, 7h) 2% Vi0(0, 75) — {0},

’

where Vy0(0,7p,) contains piecewise polynomials with zero mean value.
The gist of this theorem is that for domains €2 complying with the assumptions we
have

(8) 2 €Vy(D, 7)) ADz=0 <= z=Dyforanyec VyD,T5),

where D is the “potential operator” associated with D fulfilling DD = 0, i.e. for
D = curl, D = grad, and for D = div, D = curl. In the sequel we will take for
granted that the topology of 2 makes Theorem 2.1 hold.

Remark. If Q is topologically more complex, Theorem 2.1 is still valid, except
for a low dimensional space of functions in the kernel of D that lack a representation
by means of a potential [2, Section 3]. The dimension of this space solely depends on
fundamental topological properties of €2 and not on 7. Because of this invariance, the
Schwarz analysis confronts little difficulties on general domains, since kernel functions
without potential representation can all be treated on the coarse grid. For the sake of
simplicity, we forgo a general discussion, however.

3. Overlapping Schwarz methods. It is well known how to construct efficient
Schwarz methods for standard second order elliptic problems; see [54, 27, 12]. In order
to adapt these recipes to the case of H (curl;Q2)- and H (div;Q)-elliptic problems suc-
cessfully, we have to make sure that the targeted differential operator displays proper
ellipticity, as pointed out in the introduction. The bilinear forms (1) and (2) obviously
lack this property; functions in the kernel of the differential operators div and curl are
acted upon differently from functions in the orthogonal complement, even if they may
have the same oscillatory character. In the following, the space N (D) will generically
denote the kernel of the differential operator D: the space on which D is considered will
be clear from the context.

On the orthogonal complement A/ (D)1 we may expect a proper elliptic character
of the bilinear forms, since there the (D -, D -)LQ(Q)fpart prevails. To elaborate further,

let us temporarily switch to the entire space R®. Straightforward computations in the
frequency domain bear out that for all u,v € H(D,R*)nAN(D)*

a(u,v) := (u, ’U)L2(Q) +n- (Vu, VU)L’Z(Q)



Overlapping Schwarz Methods for Vectorfields 8

This means that when restricted to A/ (D)* the differential operators Id + n grad div
or Id + ncurl curl associated with a(-,-) agree with the vector Laplacian plus a zero
order term. Informally, we can write

(9) AxId+7n-A on N(D)*.

The crucial question is how to deal with the kernel A'(D) is given by representation
theorems stating that A'(div) = curl H (curl;2) [31, Theorem 1.3.4] and N (curl) =
grad H'(2) [31, Theorem 1.2.9]. In short, we can write

N(D)=DH(D,Q),

which holds for domains topologically equivalent to a ball. This tells us that a lifting into
a suitable potential space can convert the problem on A/(D) into an elliptic problem.
Tersely writing, we have

(10) D'oAoD~A on N(D),

where D* stands for the formal L?-adjoint of the differential operator D.

These considerations for the continuous function spaces, are also valid in the dis-
crete setting, since the particular finite element spaces introduced in Section 2 inherit
many crucial properties of the function spaces. Relying on these insights we pursue the
following policy:

1. We treat the two components A'(D) and AV (D)* of the L?-orthogonal Helmholtz
decomposition separately.

2. In order to tackle A (D)* we will use a decomposition of the finite element
space which resembles those used in the context of Schwarz methods for second order
elliptic problems. We note that the components of the splitting do need not be exactly
orthogonal to the kernel; approximate orthogonality is enough, since we only aim at
constructing a preconditioner.

3. For the treatment of the null space A'(D) we make use of Theorem 2.1 to switch
to discrete potentials. We thus resort to an appropriate decomposition of J\/‘(f))J‘ which
can be obtained from the previous guidelines.

3.1. Overlapping domain decomposition method. Let 7z be a triangulation
of the domain €, with meshwidth H, consisting of tetrahedra {Q;}7_,. Let 7, be a
refinement of Tg, with meshwidth A < H. We suppose that both Ty and 7, are shape-
regular and quasiuniform. Consider now an open covering of Q, say {Q2:}/_,, such that
each subregion Q! is the union of tetrahedra of 75 and contains an element of 7Tz. In
addition define the overlap § as

§ = min{dist (9%, Q) }.
We will assume that the following two properties hold:

ASSUMPTION 3.1.
a) [Generous overlap] The relative overlap (6/H) is bounded away from zero.
b) [Finite covering] For every point P € S, P belongs to at most N, subregions

Z.n {Q; ;]:1 °
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MSP(z € Vqo(D,7x), f € Vao(D,Tr))
{
for e=0,---,J
{
r+ f— Az
r x4+ RZTAZ»_IRZ'T‘
}
}

F1G. 1. Evaluation of the multiplicative Schwarz preconditioner MSP(z, f).

For the sake of brevity we will write V}, for the finite element space Vi0(D,7)
introduced in Section 2. We define the subspaces {V; C V}, fori =1,---,.J, by setting
the degrees of freedom outside Q) to zero. The space V}, admits the decomposition
Vi = Z;]:l V;. Following standard practice in overlapping domain decomposition for
2nd order elliptic problems [27, 54], we augment this decomposition by a coarse grid
space Vir := V;0(D, Tg). Since Ty, is a refinement of 7, Vi is contained in V3. Keeping
in mind the above considerations, we have now achieved a promising decomposition
of the orthogonal complement of A/(D) in the finite element space. The very same
approach is applied to the space Vi = Vd70(f), Tr) of discrete potentials which yields
the preliminary decomposition

J
Vh=VH+]~)‘7H+Z(%+]~)‘7¢) }

=1

Using it for the construction of an overlapping domain decomposition methods would
involve unnecessary computational work, since we observe

DVy CcVyg and DV.C V.

Hence the contributions of the potential space can actually be absorbed by the compo-
nents of the decomposition of A’(D)L. Thus, the final splitting the overlapping domain
decomposition method for Hy(D, €2) is based upon, is

J
(11) Vi=Vu+Y Vi

=1

We remark that we have resorted to the discrete Helmholtz decomposition only for
derivation of the splitting (11). The decomposition is never calculated in practice: both
multiplicative and additive methods can be implemented in a perfectly standard fashion
[54]. Figure 1 shows the evaluation of the multiplicative preconditioner: RY is the linear
interpolation operator from the subspace V; to V3, and A; is the operator relative to the
bilinear form «, defined on the subspace V; (we have set Vj = V).

3.2. Multilevel method. The setting for the multilevel methods assumes that
we have a nested sequence of quasiuniform triangulations 7;, [ =0, ..., J of Q, created
by regular refinement of an initial mesh as, for instance, described in [6] for simplicial
meshes. Then the meshwidths h;, [ = 0,...,.J, decrease in a geometric progression,
i.e. by =~ 27!, Without loss of generality we may set hg ~ 1.
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Initial guess: z,, right hand side fr,
MGVC(int k,z; € Vao(D, Ti), fi € Vao(D,Ti))
{
if (I==0) z0:= A" fo
else
{
z;  Si(zy, fi)  [Presmoothing]
ei_1 0
MGVC(l — 1,e;_1 ,Rg_ (f[ A1$1)
x4 2+ PLe
z;  Si(zy, fi)  [Postsmoothing]

}

F1G. 2. Multigrid V(1,1)-cycle for discrete variational problem related to a(-,-) on finite element
space Vao (D, TL).

Standard multigrid methods and multilevel preconditioners for second order ellip-
tic problems arise from a nodal multilevel decomposition of the finite element space
Vi := Vi 0(D, Tj) (see [12, 32, 61]). This means that the Schwarz algorithm is based
on one—dimensional subspaces spanned by the nodal basis functions on all the meshes
Ti,...,7; and an additional coarse grid space Vy := V; (D, 7). Following the very
same reasoning as above, i.e. employing a nodal multilevel decomposition of both
Vao(D, Ty) and Vd70(]~), Tr), we immediately get the splitting

(12) Vi = Vo + Z (Z Span {1, } + ZSpan {D¢~ })

=1 7]

where £ runs through all d.o.f. in Z¢(D, 7;) and K; covers all d.o.f. in _d(D Ti). By ¥
and 7~ we denoted the canonical basis functions of V; (D, 73,) and Vg O(D Th), respec-
tively, belonging to a particular d.o.f. x and K. Evidently, generous overlap between the
subspace on different levels is present in (12).

The straightforward symmetric multiplicative version of the multilevel Schwarz
method leads to a multigrid V(1,1)-cycle with GauB-Seidel smoother. The algorithm
is outlined in Figure 2, in order to convey that it can be implemented in a perfect
multigrid—like fashion:

The operators Pll_1 : Vao(D,Ti—1) — Vio(D,T;) and Rg_l : Vao(D, ) —
Vao(D, Ti—1) designate the canonical intergrid transfers, prolongation and restriction,
of the finite element spaces, induced by the natural embedding of these spaces in the
case of nested meshes (see [34]). They are transposes of each other and lend themselves
to a purely local evaluation.

The only special thing about the method is the design of the smoother Si(-,-),
the steps of which are described in Figure 3. It might be called a “hybrid” Gauf-
Seidel smoother, since smoothing sweeps both in the current finite element space
Vao(D,7T;) and discrete potential spaces Vd70(]~),7]) are carried out. In Figure 3, ]
stands for the linear operator (i.e. the stiffness matrix) related to the bilinear form
(U, v1) — (f) ﬁl,f)ﬁl)Lz(Q) in Vd70(]~),’ﬁ). The GauBi-Seidel relaxation of any linear
system is invariably supposed to be based on the canonical bases of the finite element
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SiCe1 € Vio(D,Th),s1 € Vao(D,T1))
{
GauB-Seidel sweep on Ajc; = s
Ty S — Alcl
Fl — Tl*rl
]71 +«0
GauB-Seidel sweep on Cjp; =Ty
return c; + 17y

F1G. 3. Evaluation of the hybrid smoother Si(ci, si).

spaces.

The lifting into a potential space is reflected by the transfer operator 7;
Vd70(]~), Ti) = Vio(D,Ti). It is defined by the embedding f)Vdp(f), T) C Vao(D,T))
and, due to the local nature of the basis functions of both spaces, a local evaluation is
also possible in this case. Therefore, a smoothing step requires a computational effort
proportional to the dimension of the finite element space on the current level.

Also in the case of the multigrid method the explicit corrections in the spaces of
discrete potentials can be discarded, yet at the expense of larger subspaces in the de-
composition of V;o(D, 7T;), [ =1,...,J: Denote by K7, the minimal set of Vao(D,Ti)-

basis functions such that D 12;1 C Span {KE l}' Then a viable multigrid method can be
founded on the clustered decomposition

Vi, = Vo + ZJ: > Span {K;,z} )

=1 El

which has been introduced for H (div; Q)-elliptic problems in 2D by Arnold, Falk and
Winther [3, 4]. We do not need to smooth in the potential space any more, but now
several nodal values of the spaces V,o(D, 7;) have to be relaxed simultaneously, which
affects the savings in computational costs.

4. Decompositions and projections. The considerations that led us to the
Schwarz decompositions centered around the notion of a Helmholtz—decomposition of
vector fields. For the theoretical investigation of the methods they turn out to be crucial,
but in the finite element setting their usefulness is tainted by awkward properties of the
orthogonal complements.

In the following, we will carry on our analysis for the space Vio(D,7,) C
H,(D, Q) of vectors satisfying homogeneous essential boundary conditions; the results
for V4(D, 7) C H(D,Q) (free boundary values) can be obtained in a similar fashion.
Accordingly, in the following N(D) will denote the kernel of the operator D, defined
in Ho(D, ), and N (D) its orthogonal complement in Hq(D, ), with respect to the
L?-scalar product, giving the continuous Helmholtz—decomposition:

(13 Hy(D,9) = N(D) & N (D)* .
Denote by V3 (D, 73) the kernel of the operator D defined in Vi o(D, 75):

V30D, Th) = {vk € Vao(D, Tn), Dvj, = 0},
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and by V{,(D, 75) the L*~orthogonal complement of V9 o(D, 7) in V4 o(D, 75); we have
thus obtained the discrete Helmholtz—decomposition

(14) Vio(D, i) = Vio(D, Tr) & Vi, (D, Ta).
For nested meshes, T < 7T, we have the following inclusions:
Vio(D, T) C Vao(D,Ti) and Vio(D,Ta) C Vio(D, Ta);

but it is easy to see that, in general, VIO(D, Ta) ¢ Vd+,0(Dv 7r). In addition, the space
VIO(D, Tr) lacks a set of neatly localized basis functions, which prevents the use of
standard finite element techniques. In short, any analysis of the overlapping Schwarz
methods relying on discrete orthogonal complement faces formidable difficulties.

As an alternative to the completely discrete Helmholtz—decomposition (14), we can
consider the continuous Helmholtz—decomposition (13). Any finite element function
vy, € Vg0(D,73) is also a member of the continuous function space, and, as such, can
be decomposed as vy = v) + vib, where, according to (13), D v = 0 and vi- € V'(D)<.
Writing Vj:O(D, Tr) for the image of Vy0(D,7) under the L?-orthogonal projection

onto the continuous space A'(D)1, it is immediate that
Vio(D, Tu) C Vip(D,Th) and D Vi(D,Th) =D Vio(D, Th) -

In other words, these spaces are nested and at least their images under the relevant
differential operator are contained in proper finite element spaces. Moreover, under
some assumptions on the domain €, they exhibit some additional regularity:

LEMMA 4.1. Let Q be a convex Lipschitz—domain. Then the seminorm ||D ||z (q)
is an equivalent norm on the orthogonal complement of N'(D) in Hy(D,Q), which is
equivalent to the norm || g ().

Proof. For the proof, it is enough to recall the following identities (see [31, 24]),

N(div)t = {u € Ho(div;Q); curlu = 0} ,
N(curl)t = {u € Ho(curl;Q); divu =0} ;

the result then follows from [2, Theorem 2.17]. O

Remark. Lemma 4.1 is also valid if the differential operator D is defined in the
whole space H(D, ) (natural boundary conditions). In this case (see [31, 24]) the
orthogonal complements are given by

N(div)t = {u € H(div; Q)N Ho(curl; Q); curlu = 0} ,
N(curl)t = {u € H(curl; Q) N Ho(div;Q); divu = 0} ;

and the result also follows from [2, Theorem 2.17]. This remark allows us to extend the
convergence analysis of the following section to the case of boundary value problems
with natural boundary conditions. In the following, we will always assume that Q is a
convex polyhedron.

The bottom line is that these semicontinuous spaces Vj:O(D, Tr) offer a more benign
environment for the examination of Schwarz methods. Following this idea, we have to
introduce a suitable projection which takes us from the finite element space into the
continuous orthogonal complement:
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DEFINITION 4.1 (ENERGY PROJECTION). The energy projection Pj, : H(D, Q) —
Vj:O(D, Tr) onto the semicontinuous space Vj:O(D, Tr) is a linear mapping defined by

(D(u - Py u),Dvh)Lg(Q) =0 Vv, € Vdp(D,'ﬁz) .

Please note, that if V;(D, 7;) = Vi,0(D, T1), as is the case for Hj(€2)-conforming
finite elements, then the projection P} agrees with the usual a(-, -)-orthogonal projec-
tion. Clearly, whenever P} is applied to a vector u in V,IO(D7 T1), it coincides with the
L%-orthogonal projection onto A'(D)1; in this case we have D(u — Pj, u) = 0.

The energy projection features the following crucial approximation property. It is
a generalization of the approximation estimates that hold for the | - |H1(Q)701'thogonal
projection in the case of elliptic regularity [23, Section 3.2].

LEMMA 4.2. Let Q be convex and let T, be a quasiunform, shape—reqular trian-

gulation of meshwidth h > 0. Then the following error estimate holds for the energy
projection Py : H(D,Q) — Vi,(D, Tp):

lo = Pyl o) < ChID o] ag), Vo€ N(D)*

with C > 0 independent of h and v.

Proof. The proof employs classical duality techniques and hinges on the following
regularity result which is valid in the case of convex Q (see [2, 29, 31]) and can be
deduced from Lemma 4.1:

D*Du= fin Q

15 e ND)L, feND):

[ullg1 @) < CllAlz2 ()
1D f| 1y < CHprz

ue H'(Q) A Due H' (Q)
} -
For arbitrary v € /(D)% let z € (D) be determined by
(D=, DQ)L2(Q) =@- Py UyQ)L2(Q) Vg € N(D)L
Due to the definition of the energy projection, we get for all g, € V;0(D, Tz)
[v = Prvl|729) = (D(z = @), D(v = Phv) 2

and end up with

IN

lv = Py ol 720 ID(v = Pro)ll2q - ID(z = an)llr2(0

evdo(DT (€)
Ch{D ||z q) - [lv - Ph vl 120 5

IN

where we relied on the approximation estimate (7) and the regularity of the boundary
value problem from (15).0

However, ultimately the decompositions are set in the original finite element spaces.
Thus, we need another projector to return from the semicontinous spaces:

DEFINITION 4.2 (HELMHOLTZ-PROJECTION). The Helmholtz—projection By
H(D,Q)— VIO(D, Tr), onto the orthogonal complement from the discrete Helmholtz—
decomposition (14) of the finite element space Vq (D, Ty) is the linear mapping defined
by

(D(u — Bh ‘U), Dvh)L2(Q) =0 V?Jh € Vd,O(D7 ,Th) .
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This definition makes sense, since a function from VJO(D,'E) is uniquely deter-
mined by its image under the linear differential operator D. For the same reason, we
have D(u— By u) = 0, whenever u € Vy (D, 73) or u € Vi(D, Ty). Note that both the
Helmholtz—projection and the energy projection are orthogonal projections w.r.t. the
1D -l z2(q)-seminorm.

In order to ensure that our return to the genuine finite element spaces does not
destroy the essential properties of the decompositions, we have to rely on yet another
error estimate:

LEMMA 4.3. Let € be convex and let Ty, be a quasiuniform, shape—regular triangu-
lation of meshwidth h > 0. Then the Helmholtz—projection By, onto Vdfo(D7 Th) satisfies

st ot

) < Ch ”D’Uﬁ' ) V’U}Jl' S Vj:O(D77;L) )

2(Q 12(Q)

where C' > 0 depends only on Q2 and the shape—regularity of Ty.
Proof. Following [44], we immediately conclude from the definition of the Helmholtz—
projection and of the semicontinuous spaces Vj:O(D, Tr) that

D(Bh’t)é_—’v}i_) :07
which, due to (5), yields
D(Byvif —MP70i) =0 < Byvj — N2z vir € VIo(D, Th) -

Both By vi- and vjt are orthogonal to V370(D, Th), so that

HBh v~ vﬂ jL?(Q)

= (Buvk —vf, (Buo = 27 o) + (1P, vt — vih))

12(@)
1Br vit = vyl 2@ - 1087, — Id)v}fHLz(Q) :

IN

It remains to estimate the interpolation error of the nodal projector in the L?-norm.
Naturally, we aim to exploit vi- € H'(Q2) provided by Lemma 4.1:

Consequently, for D = div the assertion of the lemma follows from classical inter-
polation estimates for Raviart—Thomas finite element functions [19, Prop. 3.6].

In the case D = curl the proof is more intricate [48, Section 4], [2, Section 4]. Let
us first consider an arbitrary element T' € 7, and write v for the image of v}hT under

the suitable canonical transformation onto the reference element 7'. Since € Hl(ff)
and curl v is polynomial, it is clear from Sobolev’s imbedding theorems [1, Ch. 5] that

~

v € X3(T) (cf. (6)). Thus [2, Lemma 4.7] teaches us that

I 1y < CUPNza gy + lewrl @l o gy + 119 2l o)) -

As curl ¥ belongs to a finite dimensional space of polynomials on f, we can further
estimate

rjcurl ~ -~ N
Hde« v”L2(f) < C”v”Hl(T) .

Since the interpolation operator ﬁ;‘%l preserves constants, a Bramble—Hilbert argument
[23, Section 3.1] shows
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Using the following transformation estimates [48, Section 3], which can be obtained by
straightforward affine equivalence techniques,

ChY? Jo| )

|6|H1 T
(T) 12
Ch HUHL2(QA~)

<
HUHB(T) <

(constants only depending on the shape regularity of the mesh) we get

3

|25, — 10|, ) < CR ok
which can be turned into the desired global estimate by summing over all elements and
applying Lemma 4.1.

Similar arguments bear out the assertion for D = grad, since v} is a piecewise
polynomial, continuous function. We skip the technical details. O

Lemma 4.3 allows us to prove another error estimate for the energy projection.

LEMMA 4.4. Let Q be convex and let T, be a quasiunform, shape—reqular trian-
gulation of meshwidth h > 0. Then the following error estimate holds for the energy
projection Py : H(D,Q) — Vi (D, Tp):

Jvit = Puoi| gy < ORI gy W0 € VLoD Th),

2(Q)
with C > 0 independent of h and ’U}j_.

Proof. Let vi € V{,(D, Ts). Since By Py v} = v, for all vj € VJ (D, Tz), from
Lemma 4.3, we have

HU;Lr — b U;Lr| L2(Q)

sy = HBh Pvf — Py v,j)

< Ch|[D Py o} |

2(Q

The definition of P}, proves the assertion. O

In our analysis we will also employ the L%-orthogonal projection @, : L?(Q)
Vao(D, Ts), onto the finite element space. The following stability and error estimates
hold. They can be proved like in the case of standard finite elements (see [16]).

LEMMA 4.5. Let the mesh Ty be shape—regular and quasiuniform with meshwidth
h. Then the L?-orthogonal projection Qs onto Vqo(D,Th) satisfies,
HD Qh U”L2(Q) §C|U|H1(Q) Vv € HI(Q)
”U_ Qh U”L2(Q) SCh|U|H1(Q) Yo EHl(Q) ,

with constants independent of h.

5. Convergence theory. First, we briefly recall the fundamental results of the
algebraic theory of abstract Schwarz methods for a selfadjoint positive definite varia-
tional problem, characterized by the bilinear form a : V}, x Vj, — R. For further details,
we refer to [54, 61, 64, 17] and the references therein.

We assume that the Schwarz method is based on a decomposition

J
(16) ‘/h - E‘/Z ;
=0
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where the V;, 2+ = 0,...,.J, are closed subspaces of the Hilbert space V}. Let us now
define the following operators for ¢ = 0,---, J:

T;: Vi, — V,
a(Tiu,v) =a(u,v), Yo € V,.

The additive and symmetric multiplicative Schwarz operators are defined as

Tsi=1— (I =To)---(I=Ty)(I="Ty)--(I -Tp) .

Different choices of multiplicative operators and various hybrid methods are also possible
[54]. The equation T'u = g is then solved with a conjugate gradient type method, without
any further preconditioner, employing a(-,-) as the inner product and using a suitable
right hand side g. The choices T = T,; and T" = T,,; correspond to the additive and
multiplicative algorithm, respectively.

Two basic assumptions then need to be verified to establish the convergence prop-
erties of the multiplicative and additive Schwarz schemes:

The first measures the stability of the decomposition with respect to the energy
norm defined by the bilinear form af(-,-), while the second is related to the quasi-
orthogonality of the subspaces that make up the splitting:

ASSUMPTION 5.1 (STABILITY OF THE DECOMPOSITION). There exists a constant
Co > 0 such that for all vy, € V},

inf{z a(vi, v;); Zvi =uvp, v, €Vi} < C’ga(vh,vh) .

ASSUMPTION 5.2 (QUASI-ORTHOGONALITY OF SUBSPACES). There exist constants
0 < ¢; < 1 such that the following strengthened Cauchy-Schwarz inequality holds
Vu, € Vi, v; €V;, 4,5 € {1,...,J}:

1 1
|a(ui, v;)| < € aui, u)? - a(vj,v;)2.

Let p(E) be the spectral radius of the J x J matrix £/ = (¢; ;). We remark that the
“coarse” subspace Vj is not included in Assumption 5.2.

The following lemma provides upper bounds for the condition number of the additive
and multiplicative algorithms; the proof can be found in [54].

LeMMA 5.1, If Assumptions 5.1 and 5.2 hold, then, Yu € V},

(17) Cila(u,u) < a(Tasu,w) < (p(E)+ 1)a(u, u),
(18) (1 + 2,02(E))_ Cila(u,u) < a(Thsu,u) < alu,u).

The bound for the multiplicative scheme can be improved by suitably rescaling the
local problems, and inexact solvers can also be employed on each subspace.
We will show that Cy and p(F) are uniformly bounded with respect to the number
of subdomains of the overlapping domain decomposition method, and the number of
refinement levels of the multilevel method, in analogy to the H!()-elliptic case.
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5.1. Overlapping domain decomposition method. To examine Assump-
tion 5.1 for the decomposition (11) of Vy (D, 74), we pick an arbitrary v, € V40(D,73)
and establish the stability of a particular splitting of this finite element function with
constants independent of vy.

Using our main idea, we start with the discrete Helmholtz—decomposition of vj:

(19) b= b DU =0, uf € Vi(D,Th)

and we then provide separate decompositions for v and ’U}T.

As regards to v:, the first step involves eliminating the low frequency compo-
nents that might cripple stability. To this end we employ the L?—orthogonal projection
Qpm onto Vyo(D,Tx), in combination with the energy projection P, : H(D,Q) —
Vio(D, Tp) from Def. 4.1:

v = Qu Py + wp

The remainder wy, € V,0(D, 73) is then treated in a classical way [27, 54]. We introduce
a piecewise linear partition of unity {y;}7_, relative to the covering {Q/}_, [27], defined
as a set of continuous functions, satisfying the following properties,

Xi € Pi(T), VT € Ti(92),
supp (xi) C %,
0<xi<L Y xi=1.

k3

1\/[01'e0Ve1‘7 we Call assume
lgrad Xil| .« () < /0.

Thus the remainder wj; can be decomposed into parts belonging to the local subspaces:

J
wp =Y HPn (xi - wh)
=1

We have thus found the decomposition

J
v;f = Zvi with vy = Qg Py v}f and v; = Hd?ﬁ (Xi . (v}f - vo)) .
1=0

First we examine vg. Using the stability of the L?-orthogonal projection and the regu-
larity of the space Vj:O(D, Tr), Given by Lemmas 4.5 and 4.1 we get

(20) D wollizqey < CIPw v |y < CD Puvf |, ) = CID vl

Additionally, since the Helmholtz—decomposition is L?-orthogonal

(21) lvoll2ay < | Pavi|

e S Hvﬂ = lon

12(Q L2(Q) -
We now proceed in close analogy to Section 5.3.1 in [54]. In order to estimate the

energy of the v; we continue with local considerations. Fix 7 € {1,...,.J} and pick a
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T € Ty. Denote by x; 7 the average of x; over T'. A straightforward application of the
triangle inequality and using y; < 1 shows

B 2
(22) D wilfar) < 2|DIP7 (6 = Xar)w)

2
() + 2(|D wh| 72y

From the definition of the degrees of freedom it is clear that for ¢ € P1(T") and v, €
Va(D,T)

(23) w(e o) S C lellpeo(ry - K(vn)

for any degree of freedom k € Z4(D,T’). The constant C' may be chosen in such a way
that it depends on the polynomial degree d only. Now recalling the L?-stability estimate
(4), it is immediate that

HHdﬁz - Xi T)wh) <C HXZ X'i,THioo(T) ”UJh %2(7«) .

LA(T) —
In addition, by virtue of the special choice of the partition of unity {y;}:, we get
Ixi = Xi 7l ooy < CRJS

These estimates, in combination with an inverse inequality, permits us to bound the
first term on the right hand side of (22) by

HD 127, ((xi Xz',T)'wh)Hz

2 2
2y < C/6% [[wall72r

By the finite covering property of the subdomains, we can easily switch back to the
global finite element space and get

(24) ZHszHLz < C/8 |lwhl| T2 () + CID will (g

Finally, we resort to the approximation estimates from Lemmas 4.5 and 4.4 in combi-
nation with Lemma 4.1:

llwnl|720) < 2” Qu —1d) Py vy H +2H (Ph—Id)of HL 2(9)

2
< CH? <|Ph ”}T|H1(Q)+HDvh H ) SCHZ”]:)U}LH%Q(Q)

L2(Q)
Plugging this into (24) shows that

J H 2
2 2
29 DD vile <€ () 1D vl

The L?-stability of the decomposition is readily concluded from (23) and (21):

2
(26) [vollz2 o +Z”UZHL2 < Cllvallze ()
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Merging (20), (25) and (26), we get

J 2
(27) a(vo, vo) + Ea(vi,vi) <C (1 + <%> ) a(vy, vh) ,

=1

with C' > 0 independent of 7. B B
To deal with vY, we use Theorem 2.1 and choose 52' € V40(D,Tp,) such that D 17: =
vY. Using the very same approach as above in the potential space, we end up with the

splitting
J ~
T =To+ ) T Vi,
i=1
with the property
J 2
~ 2 ~ 2 H N~ 2
28 ID%lam + 2 Dl < (1 +(5) ) 1D 1320 -
i=1

Adding (28) and (27), we finally obtain

(29) ci<cC (1 + (%)2) ,

where Cj is defined in Assumption 5.1. This proves the first inequality in (17).
The proof of the second inequality in (17) is standard and can be found in [27, 54, 3].
In particular, we obtain

(30) p(E) < (Ne+1),

where V. is the finite covering parameter defined in Assumption 3.1.
We have thus proved the following theorem:

THEOREM 5.2. If the domain 2 is convex, and the triangulations T, and Ty are
shape-regular and quasiuniform, the condition numbers of the additive and multiplicative
two-level algorithms are bounded uniformly with respect to h, the number of subregions
and 1. The bounds grow quadratically as (1+ (H/§)?).

Remark. In the analysis of overlapping Schwarz methods for the scalar H'—elliptic
case, if the L? projection on the coarse space is employed, the coarse triangulation
T has to be quasiuniform, in order for the estimates in Lemma 4.5 to hold. This
assumption can be removed by employing alternative interpolation operators, such as
Clément interpolation or other suitable local averages [23]. In the vector case studied
in this work, the use of the L?-projection can be avoided, but quasiuniformity is still
required for the proof of Lemma 4.4. This is mainly due to the lack of localized properties
of of the energy projection P, and the auxiliary semicontinuous spaces Vj:O(D,’ﬁL)
employed.

5.2. Multilevel scheme. As in Section 5.1 we start with the discrete Helmholtz—
decomposition (19) of an arbitrary v, € Vqo(D, 7). Unlike before, we then switch to
a sort of skewed Helmholtz—decomposition

(31) vp = wi +w}
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where
+ + 4 +
wi = By Povy + Y Bi(P1— Prq)v)
=1
J
w) = o) —|—ZZ(B;— Bi.1) Py v;f .
=1

The operators P; and B; are the energy and Helmholtz projections in V¢(D, 7;). This
splitting was employed in the study of some multilevel decompositions of H (div; <) in
2D [58, 3, 40]. Owing to the “D—preserving” property of the Helmholtz—projections B;
from Def. 4.2, we notice that

(Bi— Bi.y) Privif € V(D T),

and thus D wg =0.
We first tackle wz We start with the trivial estimate

HDB” Po U:Hp(m S HDU;: 2Q)

Now, for the sake of brevity, set r; := Bj(P; — P, )v};", for which we get by means of
Lemmas 4.3 and 4.2 and the properties of projection operators:

Irill oy < [P = Pro)vif

st | (ra = By (P = Pryyof

L2(9)

<|@a-rpoyri-re )U;HLQ o F Chu|D(Pr = Py o] |

()

L2(9)

< Chi|[D(Py = Pry)vif s

Exploiting the ||D -HLQ(Q)forthogonality implied by the properties of the energy projec-
tion, we arrive at

2
12(Q

)SCHDU}T

J J
2
-2 2 +

62 YAl < O L [P - Py e
In this we followed the general policy of certain regularity—based proofs of the stability
of multilevel decompositions of H!(Q)-conforming finite element spaces [65, 63]. The
crucial duality techniques are concealed in the proof of Lemma 4.2.

Next, we recall that for a basis function v, ; on level /, we have straightforwardly
that

‘|¢5JHL2(Q) <Chy ”D¢5JHL2(Q) .
Plugging this estimate into (32) and using the L?-stability (4) yields

2
2

(33) | B0 Pyt o XJ:E D ell3aq) < C|D v
=1 &

2
(@)’

where, for a Vyo(D, 71)-d.o.f. k, we set r,; 1= k(r)) Vs,
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We emphasize that the proof of (33) remains valid in the potential space. For a suit-
able 0} € Vy0(D, 7;,) with DT = w), which can be found according to Theorem 2.1,
we have just shown the existence of a nodal multilevel decomposition

J
o+ 30T, = By € Span (i} T € Vao(D, o).
=1 %
with the property
~ 2 J ~ 2 ~ 2
(34) 1D %0l + 3 32 1D gy < CID -

In addition, we observe

2
J
2 2
H'wQHLz(Q) < 2||U2HL2(Q)+2 2T
=l
(35) 2 J I
< 2””2”L2(Q)+2 121}”2 l;h12|’rl”%2(ﬂ)
2
< 2/vRllz2(q) + ClID vall T2y -

thanks to the geometric decrease of the meshwidths.
Combining (33), (34), and (35) confirms Assumption 5.1 for the nodal multilevel
splitting (12) with a stability constant

CG=Cli+7),
Ui
where C' > 0 only depends on the shape-regularity of the initial triangulation 79 and
the domain €2. Compared to the case of the overlapping Schwarz method, this bound
degrades as 1 decreases. This is the price to pay for using the non—orthogonal skewed
Helmholtz—decomposition (31).

To establish the strengthened Cauchy—Schwarzinequality of Assumption 5.2 we can
resort to tricks that have been conceived, e.g., in [7, 62, 61] for H!(Q)-conforming stan-
dard finite elements. For applications of these techniques to H (div; Q)—elliptic problems
in two dimensions, we refer to [40, 4]. It turns out that the approach carries over to
three dimensions and H (curl; Q) with scarcely any modifications. Thus we will only
briefly sketch the idea. A more detailed discussion can be found in [36, 37].

To begin with, we sort the basis functions of V; (D, 7;) and Vd70(]~), T),l=1,...,J
into different classes such that the intersection of the supports of any two basis functions
in one class has measure zero. A small number of such classes will do on any level
of refinement due to the uniform shape regularity of the meshes. Write N and N,
respectively, for these numbers. We introduce the notations Yli, t=1,...,N and f’li,
1 =1,.. .,ZV, for the subspaces spanned by the basis functions in class 7. Note that
the basis functions in one class are mutually a(-, -)-orthogonal. For this reason we may
well replace the one-dimensional subspaces in (12) by YEI and )7/ without the slightest
impact on p(£) in Assumption 5.2. For this “lumped decomposition”, we can prove
the following lemma, by means of Green’s formula and purely local investigations on
elements of the coarser mesh (see [36, Section 6]).
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LEMMA 5.3. For0 < m < k < J and any z,, € Vi o(D,Tn), ¢x € Yki (1<i<N),
and py € Yki (1 <1< N) we can estimate

h
olaiszn) < C (12 + o) ID gz 1D 2l

~ h ~
a(Dpr,zm) < C\ 5= Dl 2 ) - 12mll12(q) -

Using Cauchy-Schwarz inequalities, the geometric decrease of the meshwidths A,
and estimates for the spectral radius of the matrix ' from Assumption 5.2 [61, Lemma
4.6], we end up with

1
< — .
PE) < C(=+1)
Again, we face a deterioration of the bound for very small values of 7.

In sum, as a consequence of Lemma 5.1, we have shown

THEOREM b.4. For a convex polyhedron €0, in the case of uniform regqular refine-
ment, the multigrid method and the multilevel preconditioner based on the decomposi-
tion (12), exhibit a rate of convergence and a condition number, respectively, that are
bounded independently of the depth J of refinement. The theoretical bound behaves like
O(n_3/2) for small values of the scaling parameter n.

Remark. Numerical experiments from [37, 37, 39] strongly hint that for the multi-
grid scheme, the convergence is hardly affected by a dominant zero order term, whereas
the additive preconditioners is not robust for a small 5. Since the above analysis is valid
for both approaches, it fails to reflect the superiority of the multiplicative strategy.

6. Conclusion. In this paper, we have presented a uniform framework for the
analysis of some overlapping and multigrid schemes for elliptic problems in H (div;$2)
and H (curl; Q) , discretized by means of Raviart—Thomas and Nédélec finite elements.
Guided by the idea that the kernels of the differential operators div and curl require a
special treatment, we derived viable decompositions for overlapping domain decompo-
sition methods and multilevel schemes. Their implementation can be carried out in a
standard fashion, as for the case of H!(Q)-elliptic discrete variational problems. More-
over, we showed that our methods are optimal if the computational domain is convex.
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