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A BDDC ALGORITHM FOR A MIXED FORMULATION
OF FLOW IN POROUS MEDIA

XUEMIN TU∗

Abstract. The BDDC (balancing domain decomposition by constraints) algorithms are similar
to the balancing Neumann-Neumann methods, with a small number of continuity constraints enforced
across the interface throughout the iterations. These constraints form a coarse, global component
of the preconditioner. The BDDC methods are powerful for solving large sparse linear algebraic
systems arising from discretizations of elliptic boundary value problems. In this paper, the BDDC
algorithm is extended to saddle point problems generated from the mixed finite element methods used
to approximate the scalar elliptic problems for flow in porous media. Edge/face average constraints
are enforced and the same rate of convergence is obtained as for simple elliptic cases. The condition
number bound is estimated and numerical experiments are discussed. In addition, a comparison of
the BDDC method with an edge/face-based iterative substructuring method is provided.
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1. Introduction. The BDDC algorithms, introduced by Dohrmann in [5], see
also [13, 14], are nonoverlapping domain decomposition methods, which are similar to
the balancing Neumann-Neumann (BNN) algorithms. In BDDC, the coarse problems
are given in terms of a set of primal constraints. An important advantage with such
a coarse problem is that the Schur complements that arise in the computation will all
be invertible. The relation between the BDDC and BNN is similar to that between
the FETI-DP and one level FETI. Recently, the BDDC and FETI-DP algorithms for
elliptic problems were rederived and a much shorter proof of the main result in [14]
was given in [11].

Mixed formulations of elliptic problems, see [2], lead to large, sparse, symmetric,
indefinite linear systems. Such methods have extensive applications, as in flow in
porous media, where a good approximation to the velocity is required.

Overlapping domain decomposition methods for this kind of problem were de-
veloped in [6, 15, 16, 17]. These additive or multiplicative overlapping Schwartz
alternating methods reduce the problem to a symmetric positive definite problem for
a vector, divergence free in a finite element sense. Then two-level overlapping meth-
ods are applied to the reduced positive definite problem in the benign, divergence free
subspace. The algorithms converge at a rate independent of the mesh parameters and
the coefficients of the original equation.

In [9], two non-overlapping domain decomposition algorithms were proposed.
They are unpreconditioned conjugate gradient methods for certain interface variables
and are, to the best of our knowledge, the first iterative substructuring methods.
The rate of convergence is independent of the coefficients of the original equations,
but depends mildly on the mesh parameters. The consequence of the singular local
Neumann problems that arise was addressed in [9]. Other non-overlapping domain
decomposition methods were proposed in [8] and [4] with improved rates of conver-
gence. A BNN version of the Method II of [9] was proposed in [3], see also [20]. The
same rate of convergence is obtained as for simple elliptic cases.
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Using mixed formulations of flow in porous media, we will obtain a saddle point
problem which is closely related to that arising from the incompressible Stokes equa-
tions. We note that, in a recent paper [12], the BDDC algorithms have been applied
to the incompressible Stokes equation, where the constraints enforced across the in-
terface satisfy two assumptions. One assumption forces the iterates into the benign
subspace in which the operator is positive definite and the other ensures a good bound
for the condition number. In general, both these assumptions are required.

In this paper, we extend the BDDC algorithms to mixed formulations of flow in
porous media. This work is directly related to [12], but our situation is also different.
First of all, our problem is not originally formulated in the benign, divergence free
subspace, and it will therefore be reduced to the benign subspace, as in [6, 15, 16, 17],
at the beginning of the computation. In addition, only edge/face constraints are
needed to force the iterates into the benign subspace and to ensure a good bound for
the condition number, since Raviart-Thomas finite elements, see [2, Chapter III], are
utilized. These elements have no degrees of freedom associated with vertices/edges in
two/three dimensions. Also, the condition number estimate for the Stokes case can be
simplified since the Stokes extension is equivalent to the harmonic extension, see [1].
However, this is not the case here, and different technical tools are required. We also
note that our BDDC method is closely related to an edge/face-based substructuring
iterative method. We will give a detailed description later.

An iterative substructuring method with Raviart-Thomas finite elements for vec-
tor field problems was proposed in [24, 21]. We will borrow some technical tools from
these papers in our analysis of the BDDC algorithms.

The rest of the paper is organized as follows. The mixed formulation for the elliptic
problems and its finite element discretization are described in Section 2. We reduce our
system to an interface problem in Section 3. In Section 4, we introduce the BDDC
methods for our mixed methods. We give some auxiliary results in Section 5. In

Section 6, we provide an estimate of the form C
(
1 + log H

h

)2
of the condition number

for the system with the BDDC preconditioner; these H and h are the diameters of the
subdomains and elements, respectively. We also compare the BDDC methods with
an edge/face-based algorithm in Section 7. Finally, some computational results are
given in Section 8.

2. An elliptic problem discretized by mixed finite elements. We consider
the following elliptic problem on a bounded polygonal domain Ω in two or three
dimensions with a Neumann boundary condition:

(2.1)

{
−∇ · (a∇p) = f in Ω
n · (a∇p) = g in ∂Ω.

Here n is the outward normal to ∂Ω and a is a positive definite matrix function with
entries in L∞(Ω) satisfying

(2.2) ξT a(x)ξ ≥ α‖ξ‖2, for a.e. x ∈ Ω,

for some positive constant α.
The functions f ∈ L2(Ω) and g ∈ H−1/2(Ω) satisfy the compatibility condition

∫

Ω

fdx +

∫

∂Ω

gds = 0.

The equation (2.1) has a solution p which is unique up to a constant. Without
loss of generality, we assume that g = 0 and that f has mean value zero. We also
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require that the solution p has mean value zero over Ω; therefore we have a unique
solution.

We assume that we are interested in computing −a∇p directly as is often required
in flow in porous media. We then introduce the velocity u:

u = −a∇p,

and call p the pressure. We obtain the following system for the velocity u and the
pressure p:

(2.3)





u = −a∇p in Ω
∇ · u = f in Ω
n · u = 0 in ∂Ω.

Let c(x) = a(x)−1 and define a Hilbert space by

H0(div, Ω) = {v ∈ L2(Ω)2 or L2(Ω)3;∇ · v ∈ L2(Ω) and v · n = 0 on ∂Ω},

with the norm

‖v‖2
H(div,Ω) = ‖v‖2

L2(Ω) + H2
D‖∇ · v‖2

L2(Ω),

where HD is the diameter of Ω.
Given a vector u ∈ H(div, Ω), it is possible to define its normal component u · n

on ∂Ω, as an element of H−1/2(∂Ω), and the following inequality holds

(2.4) ‖u · n‖2
H−1/2(∂Ω) ≤ C‖u‖2

H(div,Ω),

with a constant C that is independent of HD, the diameter of Ω, see [24, Section
2]. The trace operator that maps a vector in H(div, Ω) into its normal component in
H−1/2(∂Ω) is thus continuous, and it can be shown to be surjective; see [7, Ch. I,
Th. 2.5 and Cor. 2.8].

The weak form of (2.3) is as follows: find u ∈ H0(div, Ω) and p ∈ L2
0(Ω) = {q :

q ∈ L2(Ω),
∫
Ω

qdx = 0} such that
{

a(u,v) + b(v, p) = 0 ∀v ∈ H0(div, Ω)
b(u, q) = −

∫
Ω fqdx ∀q ∈ L2

0(Ω),

where a(u,v) =
∫
Ω

uT c(x)vdx and b(u, q) = −
∫
Ω
(∇ · u)qdx.

Let Ŵ be the lowest order Raviart-Thomas finite element space with a zero
normal component on ∂Ω, see [2, Chapter III, 3], and let Q be the space of piecewise
constants with a zero mean value, which are finite dimensional subspaces of H0(div, Ω)

and L2
0(Ω), respectively. The pair Ŵ, Q satisfy a uniform inf-sup condition, see [2,

Chapter IV. 1.2]. The finite element discrete problem is: find uh ∈ Ŵ and ph ∈ Q
such that

{
a(uh,vh) + b(vh, ph) = 0 ∀vh ∈ Ŵ
b(uh, qh) = −

∫
Ω fqhdx ∀qh ∈ Q,

and the matrix form is:

(2.5)

[
A BT

B 0

] [
uh

ph

]
=

[
0
Fh

]
.

The system (2.5) is symmetric indefinite with the matrix A symmetric, positive defi-
nite. For details on the range of negative and positive eigenvalues of (2.5), see [19].
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3. Reduction to an interface problem. We decompose Ω into N nonover-
lapping subdomains Ωi with diameters Hi, i = 1, · · · , N , and with H = maxi Hi. We
assume that each subdomain is a union of shape-regular coarse rectangles/hexahedra
and that the number of such rectangles/hexahedra forming an individual subdomain
is uniformly bounded. We note that the algorithm can be extended to different types
of subdomains. In a more general case, we can still define faces, regarded as open sets,
that are shared by two subdomains. Two nodes belong to the same face when they
are associated with the same pair of subdomains. We then introduce quasi-uniform
triangulations of each subdomain. The global problem (2.5) is assembled from the
subdomain problems

(3.1)

[
A(i) B(i)T

B(i) 0

][
u

(i)
h

p
(i)
h

]
=

[
0

F
(i)
h

]
.

The degrees of freedom of the Raviart-Thomas finite elements are the normal
components on the boundary of each element only.

Let Γ be the interface between the subdomains. The set of the interface nodes Γh

is defined as Γh = (∪i6=j∂Ωi,h ∩ ∂Ωj,h) \ ∂Ωh, where ∂Ωi,h is the set of nodes on ∂Ωi

and ∂Ωh is the set of nodes on ∂Ω. We decompose the discrete velocity and pressure

spaces Ŵ and Q into

(3.2) Ŵ = WI

⊕
ŴΓ, Q = QI

⊕
Q0.

ŴΓ is the space of traces on Γ of functions of Ŵ. WI and QI are direct sums of

subdomain interior velocity spaces W
(i)
I , and subdomain interior pressure spaces Q

(i)
I ,

i.e.,

WI =

N⊕

i=1

W
(i)
I , QI =

N⊕

i=1

Q
(i)
I .

The elements of W
(i)
I are supported in the subdomain Ωi and their normal components

vanish on the subdomain interface Γi = Γ ∩ ∂Ωi, while the elements of Q
(i)
I are

restrictions of elements in Q to Ωi which satisfy
∫
Ωi

q
(i)
I = 0. Q0 is the subspace of Q

with constant values q
(i)
0 in the subdomain Ωi that satisfy

(3.3)

N∑

i=1

q
(i)
0 m(Ωi) = 0,

where m(Ωi) is the measure of the subdomain Ωi. R
(i)
0 is the operator which maps

functions in the space Q0 to its constant component of the subdomain Ωi.

We denote the subdomain velocity space by W(i) = W
(i)
I

⊕
WΓ, the space of

the interface velocity variables by W
(i)
Γ , and the associate product space by WΓ =∏N

i=1 W
(i)
Γ .

The subdomain saddle point problems (3.1) can be written as

(3.4)




A
(i)
II B

(i)T

II A
(i)T

ΓI 0

B
(i)
II 0 B

(i)
IΓ 0

A
(i)
ΓI B

(i)T

IΓ A
(i)
ΓΓ B

(i)T

0Γ

0 0 B
(i)
0Γ 0







u
(i)
h,I

p
(i)
h,I

u
(i)
h,Γ

p
(i)
h,0




=




0

F
(i)
h,I

0

F
(i)
h,Γ




,

4



where (u
(i)
h,I , p

(i)
h,I ,u

(i)
h,Γ, p

(i)
h,0) ∈ (W

(i)
I , Q

(i)
I ,W

(i)
Γ , Q

(i)
0 ). We note that, by the diver-

gence theorem, the lower left block of the matrix of (3.4) is zero since the bilinear

form b(v
(i)
I , q

(i)
0 ) always vanishes for any v

(i)
I ∈ W

(i)
I and a constant q

(i)
0 in the sub-

domain Ωi.

3.1. Obtaining a divergence free correction. First of all, we seek a discrete

velocity u∗
h ∈ Ŵ such that

(3.5) Bu∗
h = Fh.

Let ŴH be the lowest order Raviart-Thomas finite element space on the coarse
triangulation, associated with the subdomains, with zero normal components on ∂Ω
and let QH be the space of piecewise constants with vanishing mean value. RT

0 is

the natural interpolation operator from ŴH × QH to Ŵ× Q. We also use the same
interpolation operator on the corresponding right hand side space. Let

(3.6)

[
A0 BT

0

B0 0

]
= R0

[
A BT

B 0

]
RT

0 ,

and
[

u∗
0

p∗0

]
= RT

0

[
A0 BT

0

B0 0

]−1

R0

[
0
Fh

]
.

We note that the coarse grid solution u∗
0 does not necessarily satisfy (3.5), but that

Bu∗
0 − Fh has mean value zero over each subdomain Ωi, see [16, 6]. Then the local

Neumann problems, with u
(i)
h,Γ = 0 and the right hand sides

[
−A(i)u

∗,(i)
0

F
(i)
h − B(i)u

∗,(i)
0

]
, i =

1, · · · , N , are all well-posed. We can solve

(3.7)

[
A

(i)
II B

(i)T

II

B
(i)
II 0

][
u

(i)
h,I

p
(i)
h,I

]
=

[
−(A(i)u

∗,(i)
0 )I

(F
(i)
h − B(i)u

∗,(i)
0 )I

]
, i = 1, · · · , N,

and set

u∗
i =

[
u

(i)
h,I

0

]
, i = 1, · · · , N.

Let u∗
h = u∗

0 +u∗
1 + · · ·+u∗

N which satisfies (3.5). We then write the solution of (2.5)
as [

uh

ph

]
=

[
u∗

h

0

]
+

[
u
p

]
,

where the correction (u, p)T satisfies

(3.8)

[
A BT

B 0

] [
u
p

]
=

[
−Au∗

h

0

]
.

This problem can be assembled from the subdomain problems:

(3.9)




A
(i)
II B

(i)T

II A
(i)T

ΓI 0

B
(i)
II 0 B

(i)
IΓ 0

A
(i)
ΓI B

(i)T

IΓ A
(i)
ΓΓ B

(i)T

0Γ

0 0 B
(i)
0Γ 0







u
(i)
I

p
(i)
I

u
(i)
Γ

p
(i)
0




=




f
(i)
I

0

f
(i)
Γ

0


 ,

5



where (u
(i)
I , p

(i)
I ,u

(i)
Γ , p

(i)
0 ) ∈ (W

(i)
I , Q

(i)
I ,W

(i)
Γ , Q

(i)
0 ) and f

(i)
I = −

(
A(i)u∗(i)

)
I

and

f
(i)
Γ = −

(
A(i)u∗(i)

)
Γ
.

3.2. A reduced interface problem. We now reduce the global problem (3.8)
to an interface problem.

We define the subdomain Schur complements S
(i)
Γ as: given w

(i)
Γ ∈ W

(i)
Γ , deter-

mine S
(i)
Γ w

(i)
Γ such that

(3.10)




A
(i)
II B

(i)T

II A
(i)T

ΓI

B
(i)
II 0 B

(i)
IΓ

A
(i)
ΓI B

(i)T

IΓ A
(i)
ΓΓ







w
(i)
I

p
(i)
I

w
(i)
Γ


 =




0

0

S
(i)
Γ w

(i)
Γ


 .

We know from the definition in (3.10), that the action of S
(i)
Γ can be evaluated by

solving a Neumann problem on the subdomain Ωi. We note that these Neumann prob-
lems are always well-posed, even without any constraints on the normal component
of the velocity since we have removed the constant pressure component constraints.
Furthermore, since the local matrices

[
A

(i)
II A

(i)T

ΓI

A
(i)
ΓI A

(i)
ΓΓ

]

are symmetric, positive definite, we have, by an inertia argument,

Lemma 1. The subdomain Schur complements S
(i)
Γ defined in (3.10) are sym-

metric, positive definite.

Given the definition of S
(i)
Γ , the subdomain problems (3.9) are reduced to the

subdomain interface problems
[

S
(i)
Γ B

(i)T

0Γ

B
(i)
0Γ 0

] [
u

(i)
Γ

p
(i)
0

]
=

[
g

(i)
Γ

0

]
, i = 1, 2, ..., N,

where

g
(i)
Γ = f

(i)
Γ −

[
A

(i)
ΓI B

(i)T

IΓ

] [
A

(i)
II B

(i)T

II

B
(i)
II 0

]−1 [
f
(i)
I

0

]
.

We denote the direct sum of S
(i)
Γ by SΓ. Let R

(i)
Γ be the operator which maps

functions in the continuous interface velocity space ŴΓ to the subdomain components

in the space W
(i)
Γ . The direct sum of the R

(i)
Γ is denoted by RΓ. Then the global

interface problem, assembled from the subdomain interface problems, can be written

as: find (uΓ, p0) ∈ ŴΓ × Q0, such that

(3.11) Ŝ

[
uΓ

p0

]
=

[
ŜΓ B̂T

0Γ

B̂0Γ 0

] [
uΓ

p0

]
=

[
gΓ

0

]
,

where gΓ =
∑N

i=1 R
(i)T

Γ g
(i)
Γ , B̂0Γ =

∑N
i=1 B

(i)
0ΓR

(i)
Γ , and

(3.12) ŜΓ = RT
ΓSΓRΓ =

N∑

i=1

R
(i)T

Γ S
(i)
Γ R

(i)
Γ .
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Thus, Ŝ is an interface saddle point operator defined on the space ŴΓ × Q0. But by
Lemma 1, this operator is symmetric positive definite on the benign subspace where
B̂0ΓuΓ = 0. From (3.8), we know that the correction (uΓ, p)T lies in this benign
subspace. We will propose a preconditioner for (3.11) which keeps all the iterates
in this benign subspace. Therefore, the iterates remain in the benign subspace in
which the preconditioned operator is positive definite and a preconditioned conjugate
gradient method can be applied.

4. The BDDC methods. We follow [12, Section 4] closely in this section. We

introduce a partially assembled interface velocity space W̃Γ by

W̃Γ = ŴΠ

⊕
W∆ = ŴΠ

⊕
(

N∏

i=1

W
(i)
∆

)
.

Here, ŴΠ is the coarse level, primal interface velocity space which is spanned by
subdomain interface edge/face basis functions with constant values at the nodes of
the edge/face for two/three dimensions. We change the variables so that the degree
of freedom of each primal constraint is explicit, see [11] and [10]. The space W∆

is the direct sum of the W
(i)
∆ , which is spanned by the remaining interface velocity

degrees of freedom with a zero average over each edge/face. In the space W̃Γ, we have
relaxed most continuity constraints on the velocity across the interface but retained
all primal continuity constraints, which has the important advantage that all the
linear systems are nonsingular in the computation. This is the main difference from
an edge/face-based iterative substructuring domain decomposition method, where we
will encounter singular local problems; see Section 7.

We need to introduce several restriction, extension, and scaling operators be-

tween different spaces. R
(i)

Γ restricts functions in the space W̃Γ to the components

W
(i)
Γ related to the subdomain Ωi. R

(i)
∆ maps functions from ŴΓ to W

(i)
∆ , its dual

subdomain component. RΓΠ is a restriction operator from ŴΓ to its subspaces ŴΠ

and R
(i)
Π is the operator which maps vectors in ŴΠ into their components in W

(i)
Π .

RΓ : W̃Γ → WΓ is the direct sum of R
(i)

Γ and R̃Γ : ŴΓ → W̃Γ is the direct sum of

RΓΠ and R
(i)
∆ . We define the positive scaling factor δ†i (x) as follows: for γ ∈ [1/2,∞),

δ†i (x) =
cγ
i (x)∑

j∈Nx
cγ
j (x)

, x ∈ ∂Ωi,h ∩ Γh,

where Nx is the set of indices j of the subdomains such that x ∈ ∂Ωj. We assume

that ci(x) is a constant in each subdomain. We then note that δ†i (x) is constant
on each edge/face since the nodes on each edge/face are shared by the same pair of

subdomains. Multiplying each row of R
(i)
∆ with the scaling factor δ†i (x) gives us R

(i)
D,∆.

The scaled operators R̃D,Γ is the direct sum of RΓΠ and the R
(i)
D,∆. We also use the

notation

R̃ =

[
R̃Γ

I

]
and R̃D =

[
R̃D,Γ

I

]
.

We also denote by FΓ, F̂Γ, and F̃Γ, the right hand side spaces corresponding to

WΓ, ŴΓ, and W̃Γ, respectively. We will use the same restriction, extension, and

scaled restriction operators for the spaces FΓ, F̂Γ, and F̃Γ as for WΓ, ŴΓ, and W̃Γ.
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We define the partially assembled interface velocity Schur complement S̃Γ : W̃Γ →
F̃Γ by

(4.1) S̃Γ = R
T

ΓSΓRΓ.

S̃Γ can also be defined by: for any given wΓ ∈ W̃Γ, S̃ΓwΓ ∈ F̃Γ satisfies

(4.2)




A
(1)
II B

(1)T

II A
(1)T

∆I Ã
(1)T

ΠI

B
(1)
II 0 B

(1)
I∆ B̃

(1)
IΠ

A
(1)
∆I B

(1)T

I∆ A
(1)
∆∆ Ã

(1)T

Π∆

. . .
...

Ã
(1)
ΠI B̃

(1)T

IΠ Ã
(1)
Π∆ . . . ÃΠΠ







w
(1)
I

p
(1)
I

w
(1)
∆

...

wΠ




=




0

0

(S̃ΓwΓ)
(1)
∆

...

(S̃ΓwΓ)Π




.

Here,

Ã
(i)
ΠI = R

(i)T

Π A
(i)
ΠI , Ã

(i)
Π∆ = R

(i)T

Π A
(i)
Π∆, ÃΠΠ =

N∑

i=1

R
(i)T

Π A
(i)
ΠΠR

(i)
Π , B̃

(i)
IΠ = B

(i)
IΠR

(i)
Π .

Given the definition S̃Γ on the partially assembled interface velocity space W̃Γ, we
can also obtain ŜΓ from S̃Γ by assembling the dual interface velocity part on the
subdomain interface, i.e.,

(4.3) ŜΓ = R̃T
Γ S̃ΓR̃Γ.

We can also define the operator B̃0Γ, partially assembled from the subdomain oper-

ators B
(i)
0Γ , which maps the partially assembled interface velocity to the subdomain

constant pressures. Then B̂0Γ can also be obtained from B̃0Γ by assembling the dual
interface velocity part on the subdomain interface, i.e., B̂0Γ = B̃0ΓR̃Γ.

Therefore, we can write the global interface saddle point problem operator Ŝ,
introduced in Equation (3.11), as

(4.4) Ŝ =

[
ŜΓ B̂T

0Γ

B̂0Γ 0

]
=

[
R̃T

Γ S̃ΓR̃Γ R̃T
Γ B̃T

0Γ

B̃0ΓR̃Γ 0

]

The BDDC preconditioner for solving the global interface saddle point problem
(3.11) is then

(4.5) M−1 =

[
R̃T

D,Γ

I

][
S̃Γ B̃T

0Γ

B̃0Γ 0

]−1 [
R̃D,Γ

I

]
.

We use the notation

S̃ =

[
S̃Γ B̃T

0Γ

B̃0Γ 0

]
,

then the preconditioned BDDC algorithm is of the form: find (uΓ,p0) ∈ ŴΓ × Q0,
such that

(4.6) R̃T
DS̃−1R̃DŜ

[
uΓ

p0

]
= R̃T

DS̃−1R̃D

[
gΓ

0

]
.
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We define two subspaces ŴΓ,B and W̃Γ,B of ŴΓ and W̃Γ, respectively, as in [12,
Definition 1]:

ŴΓ,B = {wΓ ∈ ŴΓ | B̂0ΓwΓ = 0},

W̃Γ,B = {wΓ ∈ W̃Γ | B̃0ΓwΓ = 0}.

We call ŴΓ,B ×Q0 and W̃Γ,B ×Q0 the benign subspaces of ŴΓ ×Q0 and W̃Γ ×Q0,

respectively. With Lemma 1, it is easy to check that both operators ŜΓ and S̃Γ, given
in (3.12) and (4.1), are symmetric, positive definite when restricted to the benign

subspaces ŴΓ × Q0 and W̃Γ × Q0, respectively and we also have

Lemma 2. For any w ∈ W̃Γ,B × Q0, R̃T
Dw ∈ ŴΓ,B × Q0.

Proof: We need to show that for any w ∈ W̃Γ,B ×Q0, R̃T
Dw ∈ ŴΓ,B ×Q0. Given

w = (wΓ, p0) ∈ W̃Γ,B × Q0, we have B̃0ΓwΓ = 0 and

(4.7) R̃T
Dw =

[
R̃T

D,Γ

I

][
wΓ

p0

]
=

[
R̃T

D,ΓwΓ

p0

]
∈ ŴΓ × Q0.

We only need to show that B̂0ΓR̃T
D,ΓwΓ = 0 and we find that

B̂0ΓR̃T
D,ΓwΓ = B̃0ΓR̃ΓR̃T

D,ΓwΓ = B̃0ΠwΠ = 0.

Here we use the definitions of B̂0Γ and B̃0Γ for the first equality. For the second, we
use that the Raviart-Thomas finite element functions only have degrees of freedom
on edges/faces. In our BDDC algorithm, we choose the continuous primal interface

velocity space WΠ and the subdomain dual interface velocity spaces W
(i)
∆ such that

if u
(i)
∆ ∈ W

(i)
∆ , then u

(i)
∆ has a zero edge/face average for each edge/face. In fact,

R̃ΓR̃T
D,Γ computes the average of the dual interface velocities w∆, then distributes

them back to each subdomain and leaves wΠ the same. We recall that the weights at
these nodes are the same for each edge/face since these nodes are shared by the same
pair of subdomains. The averaged dual interface velocity still has a zero edge/face

average for each edge/face. For the third equality, we use that B̃0ΓwΓ = B̃0ΠwΠ = 0,

since w ∈ W̃Γ,B × Q0.

2

Therefore, we can conclude that the preconditioned BDDC operator, defined in

(4.6), is positive definite in the benign subspace W̃Γ,B × Q0.

5. Some auxiliary results. We first list some results for Raviart-Thomas finite
element function spaces needed in our analysis. These results were originally given in
[24, 21, 23].

We consider the interpolation operator ΠH
RT from Ŵ onto ŴH . Recall that ŴH

is the Raviart-Thomas finite element space on the coarse mesh with mesh size H ,
which is defined in terms of the degrees of freedom λF , by

λF (ΠH
RT u) :=

1

|F|

∫

F

u · nds, F ⊂ FH .

We consider the stability of the interpolant ΠH
RT in the next lemma.
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Lemma 3. There exists a constant C, which depends only on the aspect ratios of

K ∈ TH and of the elements of Th, such that, for all u ∈ Ŵ,

‖div(ΠH
RT u)‖2

L2(K) ≤ ‖divu‖2
L2(K),

‖ΠH
RTu‖2

L2(K) ≤ C

(
1 + log

H

h

)(
‖u‖2

L2(K) + H2
K‖divu‖2

L2(K)

)
.

Proof: See [24, Lemma 4.1].
2

We define N(∂Ωi) as the the space of functions that are constant on each element
of the edges/faces of the boundary of Ωi and its subspace N0(∂Ωi), of functions that
have mean value zero on ∂Ωi. Let NH be the space of functions µ defined on Γ, such
that for each subdomain Ωi and each edge/face F of Ωi, µ is constant on F . We note

that NH is the space of normal components on Γ of vectors in ŴH .
The stable extension operator, defined in the next lemma, provides a divergence-

free extension of boundary data given on ∂Ωi.
Lemma 4. There exists an extension operator H̃i : N0(∂Ωi) −→ W(i), such that,

for any µ ∈ N0(∂Ωi),

divH̃iµ = 0, for x ∈ Ωi,

and

(5.1) ‖H̃iµ‖L2(Ωi) ≤ C‖µ‖H−1/2(∂Ωi).

Here C is independent of h, H, and µ.
Proof: See [24, Lemma 4.3].

2

Given a subdomain Ωi, we define partition of unity functions associated with
its edges/faces. Let ζF be the characteristic function of F , i.e., the function that is
identically one on F and zero on ∂Ωi\F . We clearly have

∑

F⊂∂Ωi

ζF (x) = 1, almost everywhere on ∂Ωi\∂Ω.

Given a function µ ∈ N(∂Ωi) and a face F ⊂ ∂Ωi, let

µF := ζFµ ∈ N(∂Ωi).

We have the following estimates for the edge/face components of the particular func-
tions in N(∂Ωi) with a vanishing average on the subdomain edges/faces.

Lemma 5. Let µ ∈ N(∂Ωi) with
∫

∂Ωi
µds = 0, and for any F ⊂ ∂Ωi,

∫
F

µds =∫
F

µFds = 0. There then exists a constant C, independent of h and µH , such that,
for any µH ∈ NH ,

‖µF‖
2
H−1/2(∂Ωi)

≤ C

(
1 + log

H

h

)(
(1 + log

H

h
)‖µ + µH‖2

H−1/2(∂Ωi)
+ ‖µ‖2

H−1/2(∂Ωi)

)
.(5.2)

Proof: See [24, Lemma 4.4].

10



2

The following lemma compares norms of traces on the subdomain boundaries that
share an edge/face.

Lemma 6. Let Ωi and Ωj be two subdomains with a common edge/face F . Let
µF be a function in H−1/2(∂Ωi), that vanishes outside F . Then, there is a constant
C, that depends only on the aspect ratios of Ωi and Ωj, such that

‖µF‖H−1/2(∂Ωi) ≤ C‖µF ‖H−1/2(∂Ωj).

Proof: See [21, Lemma 5.5.2].

2

We next list some results for the benign subspace W̃Γ,B × Q0.

Let ‖w‖2
eS

= wT S̃w and ‖wΓ‖2
eSΓ

= wT
Γ S̃ΓwΓ. We then have

Lemma 7. Given any w ∈ W̃Γ,B × Q0, we have

‖w‖2
eS

= ‖wΓ‖
2
eSΓ

.

Proof:

‖w‖2
eS

= wT S̃w =
[
wT

Γ qT
0

]
[

S̃Γ B̃T
0Γ

B̃0Γ 0

][
wΓ

q0

]
= wT

Γ S̃ΓwΓ = ‖wΓ‖
2
eSΓ

.

2

We define the average operator by ED = R̃R̃T
D. We see that for any vector

w = (wΓ, q0) ∈ W̃Γ × Q0,

(5.3) ED

[
wΓ

q0

]
=

[
R̃Γ

I

] [
R̃T

D,Γ

I

] [
wΓ

q0

]
=

[
ED,ΓwΓ

q0

]
,

where ED,Γ = R̃ΓR̃T
D,Γ, which computes the average of the interface velocities across

the subdomain interface. Lemma 2 shows that after averaging a benign vector across
a subdomain interface the result is still benign.

An estimate of the norm of the ED operator restricted to the benign subspace

W̃Γ,B × Q0 is given in the next lemma.

Lemma 8. There exists a positive constant C, which is independent of H and h,
and the number of subdomains, such that

‖EDw‖2
eS
≤ C

(
1 + log

H

h

)2

‖w‖2
eS
, ∀w = (wΓ, q0) ∈ W̃Γ,B × Q0.

Proof: Given any w = (wΓ, q0) ∈ W̃Γ,B × Q0, we know, from Lemma 2, that

R̃T
Dw ∈ ŴΓ,B ×Q0. Therefore, EDw = R̃DR̃T

Dw ∈ W̃Γ,B ×Q0. We have, by Lemma
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7, that

‖EDw‖2
eS

≤ 2
(
‖w‖2

eS
+ ‖w − EDw‖2

eS

)

≤ 2
(
‖w‖2

eS
+ ‖wΓ − ED,ΓwΓ‖

2
eSΓ

)

= 2
(
‖w‖2

eS
+ ‖RΓ (wΓ − ED,ΓwΓ) ‖2

SΓ

)

= 2

(
‖w‖2

eS
+

N∑

i=1

‖R
(i)

Γ (wΓ − ED,ΓwΓ) ‖2

S
(i)
Γ

)
.(5.4)

Let wi = R
(i)

wΓ and set

(5.5) vi(x) := R
(i)

Γ (wΓ − ED,ΓwΓ)(x) =
∑

j∈Nx

δ†j(wi(x) − wj(x)), x ∈ ∂Ωi ∩ Γ.

Here Nx is the set of indices of the subdomains that have x on their boundaries. Since
a fine edge/face only belongs to exactly two subdomains, for an edge/face F ij ⊂ ∂Ωi

that is also shared by Ωj , we have

(5.6) vi = δ†jwi − δ†jwj , on F ij .

We note that the simple inequality

(5.7) ciδ
†2

j ≤ min(ci, cj),

holds for γ ∈ [1/2,∞).
Since vi · n has a vanishing mean value on each face of Ωi, we can define, by

Lemma 4, vE
i = H̃i(vi · n). Then

(5.8) divvE
i = 0, for x ∈ Ωi,

and,

(5.9) ‖vE
i ‖2

L2(Ωi)
≤ C‖vi · n‖

2
H−1/2(∂Ωi)

.

We then obtain

‖vi‖
2

S
(i)
Γ

= ci‖v
E
i ‖2

L2(Ωi)
≤ Cci‖vi · n‖

2
H−1/2(∂Ωi)

≤ Cci

∑

Fij⊂∂Ωi

‖ζFij (vi · n)‖2
H−1/2(∂Ωi)

.(5.10)

Using (5.6), we have, with (wi · n)Fij the average over F ij ,

ci‖ζFij(vi · n)‖2
H−1/2(∂Ωi)

= ci‖ζFijδ†j (wi − wj) · n‖
2
H−1/2(∂Ωi)

≤ 2ciδ
†2

j

(
‖ζFij(wi · n− (wi · n)Fij)‖

2
H−1/2(∂Ωi)

+ ‖ζFij (wj · n− (wj · n)Fij)‖
2
H−1/2(∂Ωi)

)

≤ 2ci‖ζFij (wi · n − (wi · n)Fij )‖2
H−1/2(∂Ωi)

+ 2cj‖ζFij (wj · n − (wj · n)Fij )‖
2
H−1/2(∂Ωj)

12



Here we use Lemma 6 and (5.7) for the last inequality.

We only need to estimate the first term since the second term can be estimated
similarly.

Since w is in the benign space, wi · n has vanishing mean value on ∂Ωi. By
Lemma 4, we can construct

wE
i = H̃i(wi · n),

such that

divwE
i = 0, for x ∈ Ωi.

Let wE
0 ∈ Ŵ be defined by

wE
0 =

{
wE

i in Ωi

0 otherwise.

Let uH = ΠH
RT w0 and µH = uH · n. By the definition of ΠH

RT , we know that

ζFij µH = (wi · n)Fij , and for any F ⊂ ∂Ωi,
∫
F

(wi · n− µH)ds = 0. Using Lemma 5,
we have

(5.11)

‖ζFij(wi · n − (wi · n)Fij )‖
2
H−1/2(∂Ωi)

= ‖ζFij(wi · n − µH)‖2
H−1/2(∂Ωi)

≤ C

(
1 + log

H

h

)(
(1 + log

H

h
)‖wi · n‖

2
H−1/2(∂Ωi)

+ ‖wi · n− µH‖2
H−1/2(∂Ωi)

)

≤ C

(
1 + log

H

h

)(
(1 + log

H

h
)‖wi · n‖

2
H−1/2(∂Ωi)

+ ‖µH‖2
H−1/2(∂Ωi)

)
,

where we use the triangle inequality for the last inequality.

By Lemma 3, we know that

(5.12) ‖divuH‖2
L2(Ωi)

≤ ‖divwE
0 ‖

2
L2(Ωi)

= ‖divwE
i ‖2

L2(Ωi)
= 0.

and

‖uH‖2
L2(Ωi)

≤ C

(
1 + log

H

h

)(
‖wE

0 ‖
2
L2(Ωi)

+ H2‖divwE
0 ‖

2
L2(Ωi)

)

= C

(
1 + log

H

h

)
‖wE

i ‖2
L2(Ωi)

.(5.13)
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Using (5.11), (2.4), (5.12), and (5.13), we obtain:

‖ζFij (wi · n− (wi · n)Fij )‖
2
H−1/2(∂Ωi)

≤ C

(
1 + log

H

h

)(
(1 + log

H

h
)‖wi · n‖

2
H−1/2(∂Ωi)

+ ‖µH‖2
H−1/2(∂Ωi)

)

≤ C

(
1 + log

H

h

)(
(1 + log

H

h
)‖wE

i ‖2
H(div,Ωi)

+ ‖uH‖2
H(div,Ωi)

)

≤ C

(
1 + log

H

h

)(
(1 + log

H

h
)‖wE

i ‖2
L2(Ωi)

+ (1 + log
H

h
)‖wE

i ‖2
L2(Ωi)

)

≤ C

(
1 + log

H

h

)2

‖wE
i ‖2

L2(Ωi)

≤
C

ci

(
1 + log

H

h

)2

‖wi‖
2

S
(i)
Γ

.

Here we use that divwE
i = 0 for the third inequality.

Finally, we obtain

(5.14) ci‖ζFij(vi · n)‖2
H−1/2(∂Ωi)

≤ C

(
1 + log

H

h

)2

‖wi‖
2

S
(i)
Γ

Since w is benign, we have, from Lemma 7, that ‖w‖eS = ‖wΓ‖eSΓ
; then by

Equations (5.4), (5.5), (5.10), and (5.14), we have

‖EDw‖2
eS
≤ C

(
1 + log

H

h

)2

‖wΓ‖
2
eSΓ

= C

(
1 + log

H

h

)2

‖w‖2
eS
.

2

6. Condition number estimate for the BDDC preconditioner. We are
now ready to formulate and prove our main result; this follows directly from the proof
of [12, Theorem 1] by using Lemma 2 and Lemma 8.

Theorem 1. The preconditioned operator M−1Ŝ is symmetric, positive definite

with respect to the bilinear form 〈·, ·〉bS on the benign space ŴΓ,B × Q0 and

(6.1) 〈u,u〉bS ≤
〈
M−1Ŝu,u

〉
bS
≤ C

(
1 + log

H

h

)2

〈u,u〉bS , ∀u ∈ ŴΓ,B × Q0.

Here, C is a constant which is independent of h and H.

7. Comparison with an edge/face-based iterative substructuring do-
main decomposition method. We define an edge/face-based iterative substruc-
turing domain decomposition method as a hybrid method (see [22, Section 2.5.2]).
Similar to the BNN method, as defined in [18, Section 4], the coarse problems and
the local problems are treated multiplicatively and additively, respectively, in this
preconditioner. We use a different coarse component, i.e., a different choice of the
matrix L0 for the coarse problem, but the same local problems as in [18, Section 4].
Here, each column of L0 corresponds to an edge/face on the interface of Ω and is given

by the positive scaling factor δ†i (x). It is clear that we can prove that the condition

number with this preconditioner is also bounded by C
(
1 + log H

h

)2
. We will call this

method the FBA.
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Table 1

Condition number bounds and iteration counts, for a pair of the BDDC and the FBA algorithms,

with a change of the number of subdomains. H/h = 8 and c ≡ 1.

Num. of sub. BDDC FBA
nx × ny Iter. Cond. Num. Iter. Cond. Num.
4 × 4 5 1.66 5 2.43
8 × 8 8 2.95 8 2.90

12 × 12 9 3.08 7 2.75
16 × 16 9 3.13 7 2.72
20 × 20 8 3.15 7 2.71

Table 2

Condition number bounds and iteration counts, for a pair of the BDDC and the FBA algorithms,

with a change of the size of subdomain problems. 8 × 8 subdomains and c ≡ 1.

BDDC FBA
H
h Iter. Cond. Num. Iter. Cond. Num.
4 8 2.17 7 2.12
8 8 2.95 8 2.90
12 9 3.47 9 3.45
16 9 3.88 9 3.83
20 9 4.20 9 4.15

The size and sparsity of the coarse problems of the BDDC and the FBA are the
same. However, the two algorithms are different. The FBA is a hybrid algorithm
and a coarse problem has to be solved before the rest of the iterations. In contrast,
only the variables have to be changed at the beginning of computation with the
BDDC, to accommodate the edge/face constraints. In addition, the FBA requires two
Dirichlet local problems and one singular local Neumann problem in each iteration,
whereas the BDDC requires one local Dirichlet problem and two nonsingular local
Neumann problem. In the latter algorithm, singular problems are avoided. Numerical
experiments show that FBA is somewhat slower than BDDC.

8. Numerical experiments. We have applied our BDDC and FBA algorithms
to the model problem (2.1), where Ω = [0, 1]2. We decompose the unit square into
N × N subdomains with the sidelength H = 1/N . Equation (2.1) is discretized, in
each subdomain, by the lowest order Raviart-Thomas finite elements and the space
of piecewise constants with a finite element diameter h, for the velocity and pressure,
respectively. The preconditioned conjugate gradient iteration is stopped when the
l2-norm of the residual has been reduced by a factor of 10−6.

We have carried out two different sets of experiments to obtain iteration counts
and condition number estimates. All the experimental results are fully consistent with
our theory.

In the first set of experiments, we take the coefficient c ≡ 1. Table 1 gives the
iteration counts and the estimate of the condition numbers, with a change of the
number of subdomains. We find that the condition number is independent of the
number of subdomains for both algorithms. Table 2 gives the results with a change
of the size of the subdomain problems.

In the second set of experiments, we take the coefficient c = 1 in half the subdo-
mains and c = 100 in the neighboring subdomains, in a checkerboard pattern. Table

15



Table 3

Condition number bounds and iteration counts, for a pair of the BDDC and the FBA algorithms,

with a change of the number of subdomains. H/h = 8 and c is a checkerboard pattern.

Num. of sub. BDDC FBA
nx × ny Iter. Cond. Num. Iter. Cond. Num.
4 × 4 3 1.03 5 2.20
8 × 8 3 1.06 7 2.44

12 × 12 3 1.07 7 2.49
16 × 16 3 1.08 7 2.51
20 × 20 3 1.08 7 2.53

Table 4

Condition number bounds and iteration counts, for a pair of the BDDC and the FBA algorithms,

with a change of the size of subdomain problems. 8× 8 subdomains and c is a checkerboard pattern.

BDDC FBA
H
h Iter. Cond. Num. Iter. Cond. Num.
4 3 1.04 7 2.00
8 3 1.06 7 2.44
12 4 1.10 8 2.69
16 4 1.11 8 2.88
20 4 1.12 8 3.02

3 gives the iteration counts, and condition number estimates with a change of the
number of subdomains. We find that the condition numbers are independent of the
number of subdomains for both algorithms. Table 4 gives the results with a change
of the size of the subdomain problems.
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