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Abstract. The paper introduces the construct of temporal testers as a compositional basis for the
construction of automata corresponding to temporal formulas in the PSL logic. Temporal testers can
be viewed as (non-deterministic) transducers that, at any point, output a boolean value which is 1 iff
the corresponding temporal formula holds starting at the current position.

The main advantage of testers, compared to acceptors (such as Büchi automata) is that they are
compositional. Namely, a tester for a compound formula can be constructed out of the testers for its
sub-formulas. In this paper, we extend the application of the testers method from LTL to the logic
PSL.

Besides providing the construction of testers for PSL, we indicate how the symbolic representation of
the testers can be directly utilized for efficient model checking and run-time monitoring.

1 Introduction

The standard way of model checking an LTL property ϕ over a finite-state system S, represented by
the automaton MS , is based on the construction of an ω-automaton A¬ϕ that accepts all sequences
that violate the property ϕ. Having both the system and its specification represented by automata,
we may form the product automaton MS × A¬ϕ and check that it accepts the empty language,
implying that there exists no computation of S which refutes ϕ [14].

Usually, the automaton A¬ϕ is a non-deterministic Büchi automaton, which is constructed
using an explicit-state representation. In order to employ it in a symbolic (BDD-based) model
checker, it is necessary to encode the automaton by the introduction of auxiliary variables. An-
other drawback of the normal (tableau-based) construction is that it is not compositional. That is,
having constructed automata Aϕ and Aψ for LTL formulas ϕ and ψ, there is no simple recipe for
constructing the automaton for a compound formula which combines ϕ and ψ, such as ϕ U ψ.

The article [10] introduces a compositional approach to the construction of automata corre-
sponding to LTL formulas. This construction is based on the notion of a temporal tester that has
been introduced first in [9]. A tester for an LTL formula ϕ can be viewed as a transducer that keeps
observing a state sequence σ and, at every position j ≥ 0, outputs a boolean value which equals
1 iff (σ, j) |= ϕ. While acceptors, such as the Büchi automaton Aϕ, do not compose, transducers
do. In Fig. 1, we show how transducers for the formulas ϕ, ψ, and p U q can be composed into a
transducer for the formula ϕ U ψ.
There are several important advantages to the use of temporal testers as the basis for the construc-
tion of automata for temporal formulas:

• The construction is compositional. Therefore, it is sufficient to specify testers for the basic
temporal formulas: X!p and p U q, where p and q are assertions (state formulas). Testers for
more complex formulas can be derived by composition as in Fig. 1 .

• The testers for the basic formulas are naturally symbolic. Thus, a general tester, which is a
synchronous parallel composition (automata product) of symbolic modules can also be easily
represented symbolically.
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Fig. 1. Composition of transducers to form T [ϕ U ψ].

• As shown below, the basic processes of model checking and run-time monitoring can be per-
formed directly on the symbolic representation of the testers. There is no need for determiniza-
tion or reduction to explicit state representation.

In spite of these advantages, the complexity of constructing a transducer (temporal tester) for an
arbitrary LTL formula is not worse than that of the lower-functionality acceptor. In its symbolic
representation, the size of a tester is linear in the size of the formula. This implies that the worst-case
state complexity is exponential.

In the work presented in this paper, we generalize the temporal tester approach to the more
expressive logic PSL, recently introduced as a new standard logic for specifying hardware properties
[1]. Due to compositionality, it is only necessary to provide the construction of testers for the basic
operators introduced by PSL.

In addition, we show how to construct an optimal symbolic run-time monitor. By optimality,
we mean that the monitor extracts as much information as possible from the observed trace. In
particular, an optimal monitor stops as soon it can be deduced that the specification is violated or
satisfied, regardless of the possible continuations of the observed trace.

2 Accellera PSL

In this section, we are going to follow [6] and formally define the logic PSL. However, we only con-
sider a subset of PSL. For brevity, we omit the discussions of OBE (Optional Branching Extension)
formulas that are based on CTL. Note that using testers we can obtain a model checking algorithm
even for CTL∗ branching formulas by combining PSL testers with the work in [10]. Regarding
run-time monitoring, which together with model checking is the primary motivation for our work,
branching formulas are not applicable at all. In addition, we only consider unclocked formulas. This
is not a severe limitation since clocks do not add any expressive power to PSL [6].

2.1 Syntax

The logic Accellera PSL is defined with respect to a non-empty set of atomic propositions P . Let
B be the set of boolean expressions over P . We assume that the expressions true and false belong
to B.

Definition 1 (Sequential Extended Regular Expressions (SEREs)) .

– Every boolean expression b ∈ B is a SERE.



– If r, r1, and r2 are SEREs, then the following are SEREs:
• {r} • r1 ; r2 • r1 : r2 • r1 | r2

• [∗0] • r1 && r2 • r[∗]
Definition 2 (Formulas of the Foundation Language (FL formulas)) .

– If r is a SERE, then both r and r! are FL formulas.
– If ϕ and ψ are FL formulas, r is a SERE, and b is a boolean expression, then the following are

FL formulas:
• (ϕ) • ¬ϕ • ϕ ∧ ψ • 〈r〉ϕ
• X!ϕ • [ϕ U ψ] • ϕ abort b • r 7→ ϕ

Definition 3 (Accellera PSL Formulas) .

– Every FL formula is an Accellera PSL formula.

2.2 Semantics

The semantics of FL is defined with respect to finite and infinite words over Σ = 2P ∪ {>,⊥}.
We denote a letter from Σ by l and an empty, finite, or infinite word from Σ by u, v, or w
(possibly with subscripts). We denote the length of word v as | v |. An empty word v = ε has
length 0, a finite word v = (l0l1l2 . . . lk) has length k + 1, and an infinite word has length ω.
We use i, j, and k to denote non-negative integers. We denote the ith letter of v by vi−1 (since
counting of letters starts at zero). We denote by vi.. the suffix of v starting at vi. That is, for
every i <|v|, vi.. = vivi+1 · · · vn or vi.. = vivi+1 · · · . We denote by vi..j the finite sequence of letters
starting from vi and ending in vj . That is, for j ≥ i, vi..j = vivi+1 · · · vj and for j < i, vi..j = ε.
We use lω to denote an infinite-length word, each letter of which is l.

We use v̄ to denote the word obtained by replacing every > with a ⊥ and vice versa. We call v̄
the complement of v.

The semantics of FL formulas over words is defined inductively, using as the base case the
semantics of boolean expressions over letters in Σ. The semantics of a boolean expression is assumed
to be given as a relation ‖= ⊆ Σ × B relating letters in Σ with boolean expressions in B. If
(l, b) ∈ ‖=, we say that the letter l satisfies the boolean expression b and denote it by l ‖= b. We
assume the two special letters > and ⊥ behave as follows: for every boolean expression b, > ‖= b
and ⊥ ‖6= b. We assume that, otherwise, the boolean relation ‖= behaves in the usual manner.
In particular, that for every letter l ∈ 2P , atomic proposition p ∈ P and boolean expressions
b, b1, b2 ∈ B, (i) l ‖= p iff p ∈ l, (ii) l ‖= ¬b iff l ‖6= b, and (iii) l ‖= true and l ‖6= false. Finally,
we assume that for every letter l ∈ Σ, l ‖= b1 ∧ b2 iff l ‖= b1 and l ‖= b2.

Semantics of SEREs SEREs are defined over finite words from the alphabet Σ. The notation
v |≡ r, where r is a SERE and v a finite word means that v tightly models r. The semantics of
unclocked SEREs are defined as follows, where b denotes a boolean expression, and r, r1, and r2

denote unclocked SEREs.

– v |≡ {r} ⇐⇒ v |≡ r
– v |≡ b ⇐⇒|v|= 1 ∧ v0 ‖= b
– v |≡ r1 ; r2 ⇐⇒ ∃v1, v2 s.t. v = v1v2, v1 |≡ r1 and v2 |≡ r2

– v |≡ r1 : r2 ⇐⇒ ∃v1, v2, and l s.t. v = v1lv2, v1l |≡ r1 and lv2 |≡ r2

– v |≡ r1 | r2 ⇐⇒ v |≡ r1 or v |≡ r2

– v |≡ r1 && r2 ⇐⇒ v |≡ r1 and v |≡ r2

– v |≡ [∗0] ⇐⇒ v = ε
– v |≡ r[∗] ⇐⇒ v = ε or ∃v1, v2 s.t. v1 6= ε, v = v1v2 and v1 |≡ r and v2 |≡ r[∗]



Semantics of FL Let v be a finite or infinite word, b be a boolean expression, r be a SERE,
and ϕ, ψ be FL formulas. We use ² to define the semantics of FL formulas. If v ² ϕ we say that v
models (or satisfies) ϕ.

– v ² (ϕ) ⇐⇒ v ² ϕ

– v ² ¬ϕ ⇐⇒ v̄ 2 ϕ

– v ² ϕ ∧ ψ ⇐⇒ v ² ϕ and v ² ψ

– v ² b! ⇐⇒|v|> 0 and v0 ‖= b

– v ² b ⇐⇒|v|= 0 or v0 ‖= b

– v ² r! ⇐⇒ ∃j <|v| s.t. v0..j |≡ r

– v ² r ⇐⇒ ∀j <|v|, v0..j>ω ² r!
– v ² X!ϕ ⇐⇒|v|> 1 and v1.. ² ϕ

– v ² [ϕ U ψ] ⇐⇒ ∃k <|v| s.t. vk.. ² ψ, and ∀j < k, vj.. ² ϕ

– v ² ϕ abort b ⇐⇒ v ² ϕ or ∃j <|v| s.t. vj ‖= b and v0..j−1>ω ² ϕ

– v ² 〈r〉ϕ ⇐⇒ ∃j <|v| s.t. v̄0..j |≡ r, vj.. ² ϕ

– v ² r 7→ ϕ ⇐⇒ ∀j <|v| s.t. v̄0..j |≡ r, vj.. ² ϕ

3 Computational Model

3.1 Fair Discrete Systems with Finite Computations

We take a just discrete system(JDS), which is a variant of fair transition system [11], as our
computational model. Under this model, a system D : 〈V, Θ,R,J , F 〉 consists of the following
components:

• V : A finite set of system variables. A state of the system D provides a type-consistent inter-
pretation of the system variables V . For a state s and a system variable v ∈ V , we denote the
value assigned to v by the state s by s[v] .

• Θ: The initial condition. This is an assertion (state formula) characterizing the initial states. A
state is defined to be initial if it satisfies Θ.

• R(V, V ′): The transition relation, which is an assertion that relates the values of the variables
in V interpreted by a state s to the values of the variables V ′ in an R-successor state s′.

• J : A set of justice (weak fairness) requirements. Each justice requirement is an assertion. An
infinite computation must include infinitely many states satisfying the assertion.

• F : The termination condition, which is an assertion specifying the set of final states. Each finite
computation must end in a final state.

A computation of an JDS D is a non-empty sequence of states σ : s0, s1, s2, ..., satisfying the
requirements:

• Initiality : s0 is initial.
• Consecution: For each i ∈ [0, |σ|), the state si+1 is a R-successor of state si. That is, 〈si, si+1〉 ∈

R(V, V ′) where, for each v ∈ V , we interpret v as si[v] and v′ as si+1[v].
• Justice: If σ is infinite, then for every J ∈ J , σ contains infinitely many occurrences of J-states.
• Termination: If σ = s0, s1, s2, ..., sk (i.e., σ is finite), then sk must satisfy F .

A sequence of states σ : s0, s1, s2, ... that only satisfies all conditions for being a computation
except initiality is called an uninitialized computation. A sequence of states σ : s0, s1, s2, ... that
only satisfies consecution is called an uninitialized run.



Given two JDS’s, D1 and D2, their synchronous parallel composition, D1 ||| D2, is the JDS
whose sets of variables and justice requirements are the unions of the corresponding sets in the
two systems, whose initial and termination conditions are the conjunctions of the corresponding
assertions, and whose transition relation is defined as the conjunction of the two transition relations.
Thus, a step in an execution of the composed system is a joint step of the systems D1 and D2.

3.2 Interpretation of PSL formulas over JDS

We assume that the set of atomic propositions P is a subset of the variables V , so we can easily
evaluate all the propositions at a given state of a JDS. We say that a letter l ∈ 2P corresponds
to a state s if p ∈ l iff s[p] = 1. Similarly, we define a correspondence between words and compu-
tations. We say, that a computation σ models (or satisfies) PSL formula ϕ, denoted σ ² ϕ, if the
corresponding word v satisfies PSL formula ϕ.

4 Temporal Testers

One of the main problems in constructing a Büchi automaton for a PSL formula (or for that matter
any ω-regular language) is that the conventional construction is not compositional. In particular,
given Büchi automata Aϕ and Aψ for formulas ϕ and ψ, it is not trivial to build an automaton
for ϕ U ψ. Compositionality is an important consideration, especially in the context of PSL. It is
expected that specifications are written in a modular way, and PSL has several language constructs
to facilitate that. For example, any property can be given a name, and a more complex property
can be built by simply using a named sub-property instead of an atomic proposition.

One way to achieve compositionality with Büchi automata is to use alternation [3]. Nothing
special is required from the Büchi automata to be composed in such manner, but the presence
of universal branching in the resulting automaton is undesirable. Though most model checkers
can deal with existential non-determinism directly and efficiently, universal branching is usually
preprocessed at exponential cost.

Our approach is based on the observation that while there is very little room to maneuver during
the merging step of two Büchi automata, the construction process of the sub-components is wide
open for a change. In particular, we suggest that each sub-component assumes the responsibility
of being easily composed with other parts. The hope is that, by requiring individual parts be more
structured than the traditional Büchi automata, we can significantly simplify the composition
process.

Recall that the main property of Büchi automata (as well as any other automata) is to correctly
identify a language membership of a given sequence of letters, starting from the very first letter.
It turns out that for composition it is also very useful to know whether a word is in the language
starting from an arbitrary position i. We refer to this new class of objects as testers. Essentially,
testers are transducers that at each step output whether the suffix of the input sequence is in the
language. Of course, the suffix is not known by the time the decision has to be made, so the testers
are inherently non-deterministic.

Formally, a tester for a PSL formula ϕ is a JDS Tϕ, which has a distinguished boolean variable
xϕ, such that:

• Soundness: For every computation σ : s0, s1, s2, ... of Tϕ , si[xϕ] = 1 iff σi.. |= ϕ

• Completeness: For every sequence of states σ′ : s′0, s
′
1, s

′
2, ..., there is a matching computation

σ : s0, s1, s2, ... such that for each i, si and s′i agree on the interpretation of ϕ-variables.



Intuitively, the second condition requires that a tester must be able to correctly interpret xϕ

for an arbitrary input sequence. Otherwise, the first condition can be trivially satisfied by a JDS
that has no computations.

5 LTL Testers

We are going to continue the presentation of testers by considering two very important PSL op-
erators, namely X!(next) and U(until). First, we show how to build testers for two basic formulas
X!b and b1 U b2, where b, b1, and b2 are boolean expressions. Then, we demonstrate high composi-
tionality of the testers by easily extending the result to cover full LTL. Note that our construction
for LTL operators is very similar to the one presented in [9].

5.1 A Tester for ϕ = X!b

Let Tϕ = 〈Vϕ, Θϕ, Rϕ,Jϕ, Fϕ〉 be the tester we wish to construct. The components of Tϕ are defined
as follows:

T (X!b) :





Vϕ : P ∪ xϕ, where P is a set of atomic propositions used to construct B
Θϕ : 1

Rϕ(V, V ′) : xϕ = b′

Jϕ : ∅
Fϕ : ¬xϕ

It almost immediately follows from the construction that T (X!b) is indeed a good tester for X!b.
The soundness of the T (X!b) is guaranteed by the transition relation with the exception that we
still have a freedom to incorrectly interpret xϕ at the very last state. This case is handled separately
by insisting that every final state must interpret xϕ as false. The completeness follows from the
fact that we do not restrict P variables, in any way, by the transition relation, and we can always
interpret xϕ properly, by either matching b′ or setting it to false in the last state.

5.2 A Tester for ϕ = b1 U b2

The components of Tϕ are defined as follows:

T (b1 U b2) :





Vϕ : P ∪ xϕ

Θϕ : 1
Rϕ(V, V ′) : xϕ = b2 ∨ (b1 ∧ x′ϕ)

Jϕ : b2 ∨ ¬xϕ

Fϕ : b2 ∨ ¬xϕ

Unlike the previous tester, T (b1 U b2) has a non-empty justice set. A technical reason is that
the transition relation allows xϕ to be continuously set to true without having a single state that
actually satisfies b2. The situation is ruled out by the justice requirement. Another way to look at
the problem is that Rϕ represents an expansion formula for the U(strong until) operator, namely
b1 U b2 ⇐⇒ b2∨(b1∧X![b1 U b2]). In general, starting with an expansion formula is a good first step
when building a tester. However, the expansion formula alone is usually not sufficient for a proper
tester. Indeed, consider the operator W(weak until), defined as b1 W b2 ≡ ¬(true U ¬b1)∨ b1 U b2,
which has exactly the same expansion formula, namely b1 W b2 ⇐⇒ b2 ∨ (b1 ∧ X![b1 W b2]). We
use justice to differentiate between the two operators.



6 Tester Composition

In Fig. 2, we present a recursive algorithm that builds a tester for an arbitrary LTL formula
ϕ. In Example 1, we illustrate the algorithm by applying the tester construction for the formula
ϕ = true U

(
X![b1 U b2] ∨ (b3 U [b1 U b2])

)
.

• Base Case: If ϕ is a basic formula (i.e., ϕ = X!b or ϕ = b1 U b2), use construction from
Section 5. For a trivial case, when the formula ϕ does not contain any temporal operators, we
can use a tester for false U ϕ.

• Induction Step: Let ψ be an innermost basic sub-formula of ϕ, then Tϕ = Tϕ[ψ/xψ ] ||| Tψ,
where ϕ[ψ/xψ] denotes the formula ϕ in which each occurrence of the sub-formula ψ is replaced
with xψ.

Fig. 2. Tester construction for an arbitrary LTL formula ϕ

Example 1 Tester Construction for ϕ = true U
(
X![b1 U b2] ∨ (b3 U [b1 U b2])

)

We start by identifying b1 U b2 to be the innermost basic sub-formula and building the correspond-
ing tester, Tb1Ub2 . Assume that z is the output variable of the tester Tb1Ub2 . Let α = ϕ[b1 U b2/z];
after the substitution α = true U

(
X!z ∨ (b3 U z)

)
. Note that we performed the substitution twice,

but there is no need for two testers, which can result in significant savings. We proceed in similar
fashion and build two more testers TX!z and Tb3Uz with the output variables x and y. After the
substitutions, we obtain β = true U [x ∨ y]. Since x ∨ y is just a boolean expression, the formula
satisfies the condition of the base case, and we can finish the construction with one more step. The
final result can be expressed as:

Tϕ = Tβ ||| TX!z ||| Tb3Uz ||| Tb1Ub2 .

Though we have assumed ϕ is an LTL formula, the algorithm is applicable for PSL as well. The
only extension necessary is the ability to deal with additional basic formulas.

7 Associating a Regular Grammar with a SERE

Following [8], a grammar G = 〈V, T ,P,S〉 consists of the following components:

• V: A finite set of variables.
• T : A finite set of terminals. We assume that V and T are disjoint. In our framework, T consists

of boolean expressions and a special terminal ε.
• P: A finite set of productions. We only consider right-linear grammars, so all productions are

of the form V → aW or V → a, where a is a terminal, and V and W are variables.
• S: A special variable called a start symbol .

We say a grammar G is associated with a SERE r if, intuitively, they both define the same
language. While this definition is not accurate, we show a precise construction of an associated
grammar for a given SERE in Appendix A. For example, we associate the following grammar G
with SERE r = (a1b1)[∗] && (a2b2)[∗]

V1 → ε | (a1 ∧ a2)V2

V2 → (b1 ∧ b2)V1

Theorem 1. For every SERE r of length n, there exists an associated grammar G with the number
of productions O(2n). If we restrict SERE’s to the three traditional operators: concatenation ( ; ),
union ( | ), and Kleene closure ( [∗] ), the number of productions becomes linear in the size of r.



8 PSL Testers

As we have mentioned before, to handle the full PSL it is enough to handle all the basic PSL
formulas. More complicated formulas can be handled via tester composition according to the al-
gorithm in Fig. 2. There are only two additional PSL basic formulas that we need to consider,
namely ϕ = 〈r〉b and ϕ = r, where r is a SERE and b is a boolean expression. All other PSL tem-
poral operators can be expressed using those two and the LTL operators, X! and U . For example,
r! ≡ 〈r〉true, and r 7→ b ≡ ¬(〈r〉¬ϕ). The abort operator is a little bit more complicated, and we
present a set of rewriting rules in Section 8.3.

8.1 A Tester for ϕ = 〈r〉b

Let Tϕ = 〈Vϕ, Θϕ, Rϕ,Jϕ, Fϕ〉 be the tester we wish to construct. Assume that xϕ is the output
variable. Let G = 〈V, T ,P,S〉 be a grammar associated with r. Without the loss of generality, we
assume G has variables V1, . . . , Vn with V1 being the start symbol. In addition, each variable Vi, has
derivations of the form:

Vi → α1 | · · · | αm | β1V1 | · · · | βnVn

where α1, . . . , αm, β1, . . . , βn are boolean expressions. The case that variable Vi does not have a
particular derivation Vi → βjVj or Vi → αk, is covered by having βj = false, and similarly,
αk = false. Note that by insisting on this specific form, which does not allow ε productions, we can
not express whether an empty string is in the language. However, since, by definition of 〈〉 operator,
a prefix that satisfies r must be non-empty, we do not need to consider this. The tester Tϕ is given
by:

T (〈r〉b) :





Vϕ : P ∪ xϕ ∪ {X1, . . . , Xn, Y1, . . . , Yn}
Θϕ : 1

Rϕ(V, V ′) : Each derivation Vi → α1 | · · · | αm | β1V1 | · · · | βnVn

contributes to ρ the conjunct
Xi = (α1 ∧ b) ∨ · · · ∨ (αm ∧ b) ∨ (β1 ∧X ′

1) ∨ · · · ∨ (βn ∧X ′
n)

and the conjunct
Yi → (α1 ∧ b) ∨ · · · ∨ (αm ∧ b) ∨ (β1 ∧ Y ′

1) ∨ · · · ∨ (βn ∧ Y ′
n)

the output variable is constrained by the conjunct
xϕ = X1

Jϕ : {¬Y1 ∧ · · · ∧ ¬Yn, X1 = Y1 ∧ · · · ∧Xn = Yn}
Fϕ : Each derivation Vi → α1 | · · · | αm | β1V1 | · · · | βnVn

contributes to F the conjunct
Xi = (α1 ∧ b) ∨ · · · ∨ (αm ∧ b)

Example 2 A Tester for ϕ = 〈{pq}[∗]〉b.

To illustrate the construction, consider formula 〈{pq}[∗]〉b. Following the algorithm from Ap-
pendix A and removing ε productions, the associated right-linear grammar for the SERE {pq}[∗]
is given by

V1 → pV2

V2 → q | qV1

Consequently, a tester for 〈{pq}[∗]〉b is given by



T (〈{pq}[∗]〉b) :





Vϕ : P ∪ xϕ ∪ {X1, X2, Y1, Y2}
Θϕ : 1

Rϕ(V, V ′) :




(X1 = (p ∧X ′
2)) ∧

(X2 = (q ∧ b) ∨ (q ∧X ′
1)) ∧

(Y1 → (p ∧ Y ′
2)) ∧

(Y2 → (q ∧ b) ∨ (q ∧ Y ′
1)) ∧

xϕ = X1




Jϕ : {¬Y1 ∧ ¬Y2, X1 = Y1 ∧X2 = Y2}
Fϕ : (X1 = false) ∧ (X2 = q ∧ b)

The variables {X1, . . . , Xn, Y1, . . . , Yn} are expected to check that the rest of the sequence from
now on has a prefix satisfying the SERE r. Thus, the subsequence sj , . . . , sk, . . . ² 〈r〉b iff there
exists a generation sequence V j = V1, V

j+1, . . . , V k, such that for each i, j ≤ i < k, there exists a
grammar rule V i → βV i+1, where si ‖= β, V k → α, and sk ‖= (α ∧ b).

The generation sequence is represented in a run of the tester by a sequence of true valuations for
the variables Zj = Z1, Z

j+1, . . . , Zk where Zi ∈ {Xi, Y i} for each i ∈ [j..k]. An important element
in this checking is to make sure that any such generation sequence is finite. This is accomplished
through the double representation of each Vi by Xi and Yi. The justice requirement (X1 = Y1)∧· · ·∧
(Xn = Yn) guarantees that that any true Xi is eventually copied into Yi. The justice requirement
¬Y1 ∧ · · · ∧ ¬Yn guarantees that all true Yi’s are eventually falsified. Together, they guarantee
that there exists no infinite generation sequence. The double representation approach was first
introduced in [12].

8.2 A Tester for ϕ = r

We start the construction exactly the same way as we did for ϕ = 〈r〉b, in Section 8.1. Let Tϕ =
〈Vϕ, Θϕ, Rϕ,Jϕ, Fϕ〉 be the tester we wish to construct. Assume that xϕ is the output variable. Let
G = 〈V, T ,P,S〉 be a grammar associated with r.

The tester Tϕ is given by:

T (r) :





Vϕ : P ∪ xϕ ∪ {X1, . . . , Xn, Y1, . . . , Yn}
Θϕ : 1

Rϕ(V, V ′) : Each derivation Vi → α1 | · · · | αm | β1V1 | · · · | βnVn

contributes to ρ the conjunct
Xi = α1 ∨ · · · ∨ αm ∨ (β1 ∧X ′

1) ∨ · · · ∨ (βn ∧X ′
n)

and the conjunct
α1 ∨ · · · ∨ αm ∨ (β1 ∧ Y ′

1) ∨ · · · ∨ (βn ∧ Y ′
n) → Yi

the output variable is constrained by the conjunct
xϕ = X1

Jϕ : {Y1 ∧ · · · ∧ Yn, X1 = Y1 ∧ · · · ∧Xn = Yn}
Fϕ : Each derivation Vi → α1 | · · · | αm | β1V1 | · · · | βnVn

contributes to F the conjunct
Xi = α1 ∨ · · · ∨ αm ∨ β1 ∨ · · · ∨ βn

The variables {X1, . . . , Xn, Y1, . . . , Yn} are expected to check that the rest of the sequence from
now on has a prefix that does not violate SERE r. We follow a similar approach as for the tester
ϕ = 〈r〉b. However, now we are more concerned with false values of the variables X1 . . . Xn. The
duality comes from the fact that, now, we are trying to prevent postponing the violation of the
formula r forever.



8.3 Handling abort operator

To handle abort , we rewrite a given formula to a semantically equivalent one not containing the
abort operator. Let ϕ be a given formula. Without loss of generality, assume that ϕ = ψ abort b,
where ψ is abort-free. An arbitrary formula can be processed by starting with an inner-most abort
and removing them one by one.

For convenience, let precedes be the dual of abort such that φ precedes b ≡ ¬(¬φ abort b). Let f
and g denote arbitrary PSL formulas; b, b1, and b2 denote boolean expressions; r denote a SERE.
Let rb be a SERE such that the formula φ = rb is equivalent to φ = r abort b. A simple algorithm
to construct rb, given r, is presented at the end of this section. We use the following equivalencies
to rewrite ϕ:

• b1 abort b2 ≡ b1 ∨ b2 • b1 precedes b2 ≡ b1 ∧ ¬b2

• (¬f) abort b ≡ ¬(f precedes b) • (¬f) precedes b ≡ ¬(f abort b)
• (f ∧ g) abort b ≡ (f abort b) ∧ (g abort b) • (f ∧ g) precedes b ≡ (f precedes b) ∧ (g precedes b)
• (X!f) abort b ≡ b ∨X!(f abort b) • (X!f) precedes b ≡ ¬b ∧X!(f precedes b)
• (f U g) abort b ≡ (f abort b) U (g abort b) • (f U g) precedes b ≡ (f precedes b) U (g precedes b)
• (〈r〉f) abort b ≡ 〈rb〉(f abort b) • (〈r〉f) precedes b ≡ 〈r && ¬b[∗]〉(f precedes b)
• r abort b ≡ rb • r precedes b ≡ r && ¬b[∗]

Note that the size of the resulting formula is linear in the size of the original. In addition, while
&& is usually a very expensive operator, it is benign in our case since a grammar for ¬b[∗] has only
one non-terminal, and can be completely eliminated from the rewriting rules.

We conclude the discussion of the abort operator by elaborating on the construction of rb. Let
G be a grammar associated with r. Our goal is to construct G′ = 〈V ′, T ′,P ′,S ′〉 - a grammar
associated with rb.

– V ′ = V ∪ {Vf}
– T ′ = T ∪ {b}
– P ′ = P ∪ {Vf → trueVf , Vf → ε} ∪ {Vi → bVf | Vi ∈ V}
– S ′ = S

8.4 Complexity of the Construction

Theorem 2. For every PSL formula ϕ of length n, there exists a tester with O(2n) variables. If we
restrict SERE’s to three traditional operators: concatenation ( ; ), union ( | ), and Kleene closure
( [∗] ), the number of variables is linear in the size of ϕ.

To justify the result, we can just count the fresh variables introduced at each step of the tester
construction. There is only linear number of sub-formulas, so there is a linear number of output
variables. The only other variables introduced are the ones that are used to handle SERE’s. Ac-
cording to Theorem 1, the associated grammars contain at most O(2n) non-terminals (O(n) - for
the restricted case). We conclude by observing that testers for the formulas ϕ = 〈r〉b and ϕ = r
introduce exactly two variables, Xi and Yi, for each non-terminal Vi.

9 Using Testers for Model Checking

One of the main advantages of our construction is that all the steps, as well as the final re-
sult – the tester itself, can be represented symbolically. That is particularly handy if one is to



use symbolic model checking [2]. Assume that the formula under consideration is ϕ, and Tϕ =
〈Vϕ, Θϕ, Rϕ,Jϕ, Fϕ〉 is the corresponding tester. Let JDS D represent the system we wish to model
check.

We are going to use traditional automata theoretic approach based on synchronous composition,
as in [2]. We perform the following steps:

– Compose D with Tϕ to obtain D ||| Tϕ.
– Check if D ||| Tϕ has a (fair) computation, such that s0[xϕ] = 0. D ||| Tϕ has such a computation

iff D does not satisfy ϕ.

As you can see, a tester can be used anywhere instead of an automaton. Indeed, we can always
obtain an automaton from a tester by restricting the initial state to interpret xϕ as true.

10 Run-time Monitoring with Testers

The problem of run-time monitoring can be described as follows. Assume a reactive system D and
a PSL formula ϕ, which formalizes a property that D should satisfy. In order to test the conjecture
that D satisfies ϕ, we construct a program M , to which we refer as a monitor , that observes
individual behaviors of D. Behaviors of D are fed to the monitor state by state. After observing the
finite sequence σ : s0, . . . , sk for some k ≥ 0, we expect the monitor to be able to answer a subset
of the following questions:

1. Does σ satisfy the formula ϕ?
2. Is ϕ negatively determined by σ? That is, is it the case that σ · η 6|= ϕ for all finite or infinite

completions η.
3. Is ϕ positively determined by σ? That is, is it the case that σ · η |= ϕ for all finite or infinite

completions η?
4. Is ϕ σ−monitorable? That is, is it the case that there exists a finite η such that ϕ is positively

or negatively determined by σ · η. If D is expected to run forever then it is useless to continue
monitoring after observing σ such that ϕ is not σ−monitorable.

Solving the above questions leads to a creation of an optimal monitor - a monitor that extracts
as much information as possible from the observation σ. In particular, an optimal monitor detects
a violation of the property as early as possible. Of course, a monitor can do better if we supply
it with some implementation details of the system D, which may allow to deduce a violation even
earlier [13]. In the extreme case, when a monitor knows everything about D the monitoring problem
is reduced to model checking.

10.1 Monitoring with Testers

Let D : 〈P, Θ, R,J , F 〉 be a reactive system with observable variables P , and let ϕ be a PSL formula
over P , which validity with respect to D we wish to test. Assume that Tϕ = 〈Vϕ, Θϕ, Rϕ,Jϕ, Fϕ〉
is the tester for ϕ, where the variables Vϕ = P ∪ A are partitioned into the variables of D and
additional auxiliary variables A. Let xϕ be the distinguished output variable of the tester T .

For an assertion (state formula) α, we define the Rϕ-predecessor and Rϕ-successor of α by

Rϕ 1 α = ∃V ′
ϕ : Rϕ(Vϕ, V ′

ϕ) ∧ α′ and α 1 Rϕ = unprime(∃Vϕ : Rϕ(Vϕ, V ′
ϕ) ∧ α),

where unprime simply replaces all next state variables with current state variable. Remember that
the transition relation Rϕ has two copies of each variable, one representing a current state and the
other copy (a primed one) the next state.



Let σ : s0, s1, . . . , sk be a finite observation produced by system D. That is, a sequence of evaluations
of the variables P . We define the symbolic monitoring trace M = α0, α1, . . . , αk as the sequence of
assertions given by

α0 = Θϕ ∧ xϕ ∧ (P=s0), and αi+1 = (αi 1 Rϕ) ∧ (P=si+1) for all i < k,

where P = s stands for
∧

v∈P

v = s[v].

Essentially, αi represents a ”current” state of the monitor, which is more precisely just a set of
states of the tester Tϕ. Whenever, the system makes a step from si to si+1, a monitor takes the
corresponding step from αi to αi+1 according to the transition relation Rϕ and the interpretation of
the propositions by the state si+1. The whole process can be described as, on the fly, synchronous,
composition of the system and the tester, in which the later is determinized using classical subset
construction. Note that we only need to worry about the existential non-determinism, A similar
approach, but for alternating automata was also used for a so called breadth-first traversal in [7].
The monitoring sequence can be used to answer the first of the monitoring questions as stated by
the following claim:

Claim 1 (Finitary satisfaction) For a PSL formula ϕ, the finite sequence σ : s0, s1, . . . , sk

satisfies ϕ, i.e., σ ² ϕ, iff the formula αk ∧ Fϕ is satisfiable.

The correctness of the claim results from the following observations. The tester Tϕ can be
interpreted as a non-deterministic automaton for acceptance of sequences satisfying ϕ if we insist
that xϕ is true in the initial state. Furthermore, the assertion αk represents all the automaton
(tester) states which can be reached after reading the input σ. If any such evaluation is consistent
with the assertion Fϕ, which represents the set of final states, then this points to an accepting run
of the automaton.

10.2 Deciding Negative Determinacy

Claim 1 has settled the first monitoring task. Next we consider one of the remaining tasks. Namely,
we show how to decide whether, for a given σ, σ · η 6|= ϕ for all infinite or finite completions η.

In order to do this, we have to perform some offline calculations as a preparation. We generalize
the notion of a single-step predecessor to an eventual predecessor by defining

R∗
ϕ

1 α = α ∨Rϕ 1 α ∨Rϕ 1(Rϕ 1 α) ∨ · · ·

Consider the fix-point expression presented in Equation (1).

feas = [µX : (Rϕ 1 X) ∨ Fϕ]
∨

[νY : Rϕ 1 Y ∧
∧

J∈J
R∗

ϕ
1(Y ∧ Jϕ)] (1)

The first expression captures all the states that have a path to a final state. The second expression
captures a maximal set of tester states Y such that every non-final state s ∈ Y has an Y -successor
and, for every justice requirement J , s has a Y -path leading to some Y -state which also satisfies
J . The following can be proven:

Claim 2 (Feasible states) The set feas characterizes the set of all states which originate an
uninitialized computation.

Assuming that we have precomputed the assertion feas, the following claim tells us how to decide
whether a finite observation σ is sufficient in order to negatively determine ϕ:



Claim 3 (Negative Determinacy) The PSL formula ϕ is negatively determined by the finite
observation σ = s0, s1, . . . , sk iff αk ∧ feas is unsatisfiable.

The claim is justified by the observation that αk ∧ feas being unsatisfiable means that there is no
way to complete the finite observation σ into a finite or infinite observation which will satisfy ϕ.

10.3 Deciding Positive Determinacy

In order to decide positive determinacy, we need to monitor the incoming observations not only by
assertion sequences which attempt to validate ϕ but also by an assertion sequence which attempts
to refute ϕ. Consequently, we define the negative symbolic monitoring trace M− = β0, β1, . . . , βk

by

β0 = Θϕ ∧ ¬xϕ ∧ (P=s0), and βi+1 = (βi 1 Rϕ) ∧ (P=si+1) for all i < k

Claim 4 (Positive Determinacy) The PSL formula ϕ is positively determined by the finite ob-
servation σ = s0, s1, . . . , sk iff βk ∧ feas is unsatisfiable.

10.4 Detecting Non-Monitorable Prefixes

Unfortunately, not all properties can be effectively monitored. Consider a property 01 p, which
is not σ-monitorable for any σ prefix. No useful information can be gained after observing a finite
prefix if the property only depends on the things that must happen infinitely often. A good monitor
should be able to detect such situations and alert the user. Next, we show how to decide whether
ϕ is σ-monitorable, for a given σ.

Let M = α0, α1, . . . , αk and M− = β0, β1, . . . , βk be the positive and negative symbolic moni-
toring traces that correspond to σ. Let Γ represent a set of assertions. We define the Rϕ-successor
and eventual Rϕ-successor of Γ by

Γ 1Rϕ = {(γ 1 Rϕ) ∧ (P = s) | γ ∈ Γ, s is some state of the system D}

and
Γ 1R∗

ϕ = Γ ∨Rϕ 1Γ ∨Rϕ 1(Rϕ 1Γ ) ∨ · · ·

Claim 5 (Monitorability) A PSL formula ϕ is σ−monitorable, where σ = s0, s1, . . . , sk, iff
there exists an assertion γ such that either γ ∈ (αk 1R∗

ϕ) or γ ∈ (βk 1R∗
ϕ), and (γ ∧ feas) is

unsatisfiable.

The claim almost immediately follows from the definition of σ−monitorable properties, Claim 3,
and Claim 4. Note that the algorithm can be very inefficient due to the double-exponential com-
plexity. One way to cope with the problem is to consider each state in αk and βk individually.
The idea is very similar to never-violate states introduced in [5]. A state of a Büchi automaton
is called never violate if, on any input letter, there is a transition to another never-violate state.
Similarly, we can define never-satisfy states and obtain a reasonable approximation to the problem
of monitorability. Note that the complexity of this solution is exponential, which hopefully can be
managed using BDD’s. In addition, the never-violate and never-satisfy states can be pre-computed
before the monitoring starts. However, it remains to be seen whether the approximation works well
in practice.



11 Related Work

It is very interesting to compare our approach to the one suggested in [4], which uses alternating
automata. We have already mentioned some high-level distinctions between testers and alternating
automata in Section 4. However, the question remains about which construction is better. It turns
out that both approaches yield very similar results, assuming universal non-determinism is removed
from the alternating automata. Although that is a somewhat unexpected conclusion, it is not hard
to justify it.

Without going into the details of algorithm described in [4], it is enough to mention that each
state in the alternating automaton is essentially labeled with a sub-formula. To remove universal
non-determinism, we follow classical subset construction. In particular, we assign a boolean variable
x for each sub-formula ϕ to represent whether the corresponding state is in the subset. One can
easily verify that x is nothing more but the output variable of the tester Tϕ and follows the same
transition relation.

To finish the partial determinization and define the final states in the new automata, the authors
of [4] use the same trick with double representation as we do. At this step, the automata obtained
after the subset construction is composed with itself via a cartesian product. This step is concep-
tually the same as introducing Y variables in the tester construction. However, we only introduce
the extra variables when dealing with SERE’s. For the LTL portion of the formula, the tester
construction avoids the quadratic blow out associated with the cartesian product by essentially
building a generalized Büchi with multiple acceptance sets (i.e., multiple justice requirements). If
one to insist on a single acceptance set, our approach would yield an automaton identical to the
one obtained in [4]. Note that, for symbolic model checking, using a generalized Büchi automaton
might be more efficient then the corresponding Büchi automaton.

While our approach may not necessarily yield a better automaton, it never performs worse,
and there are several significant benefits. Since model checking is very expensive, we expect that,
in practice, automata for commonly occurring sub-properties will be hand-tuned. In such a case,
it is more beneficial to work with testers since an alternating automaton requires an exponential
blow-up due to universal non-determinism that cannot be locally optimized.

Another important advantage is that PSL testers can be used anywhere instead of LTL testers.
For example, if one were to extend CTL∗ with PSL operators, our approach combined with [10]
immediately gives a model checking algorithm for the new logic.

12 Conclusion

In this paper, we have shown a new approach towards model checking logic PSL, recently introduced
as a new standard for specifying hardware properties. Our approach is based on testers that, unlike
automata, are highly compositional, which is very advantageous in the context of PSL.

In addition, we have described a framework for symbolic run-time monitoring. In particular,
we have identified some of the major questions that a good monitor should be able to answer and
shown how to answer those questions using symbolic algorithms.
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A Associating a Regular Grammar with a SERE

Let b be a boolean expression, r′, r, r1, r2 be SEREs, and G′,G,G1,G2 the corresponding grammars.
Our algorithm is recursive and we assume that G, G1, and G2 have already been properly constructed.
Our goal is to build G′ = 〈V ′, T ′,P ′,S ′〉 for the SERE r′.

• r′ = b
− V ′ = {V }
− T ′ = {b}
− P ′ = {V → b}
− S ′ = V

• r′ = r1 ; r2

− V ′ = V1 ∪ V2

− T ′ = T1 ∪ T2

− P ′ =
{V → aW | V → aW ∈ P1} ∪
{V → aS2 | V → a ∈ P1, a 6= ε} ∪
{V → aS2 | V → aW ∈ P1, W → ε ∈ P1} ∪
P2

− S ′ = S1

• r′ = r1 : r2

− V ′ = V1 ∪ V2

− T ′ = T1 ∪ T2



− P ′ =
{V → aW | V → aW ∈ P1} ∪
{V → a ∧ b | V → a ∈ P1,S2 → b ∈ P2} ∪
{V → (a ∧ b)W | V → a ∈ P1,S2 → bW ∈ P2} ∪
P2

where a ∧ b =





ε, if a = b = ε
a, if b = ε
b, if a = ε
a ∧ b, otherwise

− S ′ = S1

• r′ = r1 | r2

− V ′ = {S ′} ∪ V1 ∪ V2

− T ′ = T1 ∪ T2

− P ′ =
{S ′ → aW | S1 → aW ∈ P1} ∪
{S ′ → aW | S2 → aW ∈ P1} ∪
P1 ∪
P2

− S ′ = S ′

• r′ = r1 && r2

− V ′ = V1 × V2

− T ′ = T1 ∪ T2

− P ′ = {(V, X) → a ∧ b(W,Y ) | V → aW ∈ P1, X → bY ∈ P2} ∪
{(V, X) → a ∧ b | V → a ∈ P1, X → b ∈ P2}

− S ′ = (S1,S2)

• r′ = [∗0]
− V ′ = {V }
− T ′ = {b}
− P ′ = {V → ε}
− S ′ = V

• r′ = r[∗]
− V ′ = V
− T ′ = T

− P ′ =
{S → ε} ∪
{V → aS | V → a ∈ P, a 6= ε} ∪
{V → aS | V → aW ∈ P,W → ε ∈ P}

− S ′ = S


